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Central Limit Theorems for
Motion-Invariant Poisson Hyperplanes
in Expanding Convex Bodies

LOTHAR HEINRICH

Abstract

It has been recently proved in Heinrich et al. [9] that the total number ¥o(BY)
of intersection points generated by a stationary process of d-dimensional Poisson
hyperplanes in a ball Bg with radius ¢ is asymptotically normally distributed for
large o. In the present paper we generalize this and other results by replacing
Bg by an expanding sampling window ¢ K, where K is some fixed convex body
with inner points. If the Poisson hyperplane process is additionally isotropic, the
asymptotic variance of the scaled number W (o K)/0%~ /2 of intersection points in
0 K can be expressed in terms of a non-additive, motion-invariant ovoid functional
of K, which is calculated explicitly for the unit ball B{, ellipses and rectangles.
Moreover, the method of U—statistics applied to the Poisson distributed number
of hyperplanes hitting ¢ K allows to derive multivariate central limit theorems for
the vector of numbers of intersection k—flats (k = 0,1, ...,d— 1) hitting o K as well
as for the vector of their total k—volumes (k =0,1,...,d — 1) within ¢ K .

Keywords : POISSON HYPERPLANE PROCESS, k—FLAT INTERSECTION PROCESS,
HYPERPLANE TESSELLATION, INTRINSIC VOLUMES, CROFTON’S FORMULA, U-
STATISTICS, NON-ADDITIVE OVOID FUNCTIONALS

MCS 2000 : 60D05, 60F05, 52A40, 53C65

1 Preliminaries and notation

In the last fifteen years central limit theorems (briefly CLTs) for geometric functionals
and measures associated with random tessellations of the d-dimensional Euclidean space
R¢ have been studied in various papers, see e.g. [5], [17], [18], [1], [8], [9], [10], [19]. The
investigation of Gaussian limits for empirical characteristics such as the total length of
cell boundaries or the number of vertices of the cells contained in expanding regions
is of great relevance for the statistical analysis of random tessellations (construction
of confidence intervals for mean-value estimators or asymptotic goodness-of-fit tests).
Voronoi-tessellations as well as random line or plane tessellations are bench mark mod-
els to describe real-world cell structures which arise in diverse disciplines, for example
in material sciences, see [15] or [16], and in modelling of telecommunication networks,
see [8], [9]. For a lot of further applications of random tessellations and for the mathe-
matical background from stochastic geometry and the theory of point processes we refer
the reader to the monographs [16], [25], [12], [14], [23], and [4].



A CLT for the total number of vertices of convex polytopes induced by a stationary
Poisson—Voronoi tessellation (briefly PVT) in cubes [~n,n]? has been first proved in
[5], see also [7] for calculating exact asymptotic variances of these numbers in case of
d=2and d=3.

An analogous result for motion-invariant Poisson line tessellations in growing circular
regions of the Euclidean plane was obtained by K. Paroux in [17] by employing the
classical ‘method of moments’. In Heinrich et al. [9] Paroux’s CLT has been extended
to stationary (not necessarily isotropic) Poisson hyperplane tessellations (briefl PHTS)
in expanding ball in R? by applying Hoeffding’s decomposition for U-statistics with
Poisson distributed unboundedly growing samples sizes.

It should be noted that the probabilistic properties of PVTs and PHTs are quite dif-
ferent. So stationary PVTs are absolutely regular (or (-mixing) with exponentially
decaying mixing coefficient being responsible for Gaussian approximations of mean—
value estimates, see [5], [10]. On the other hand, stationary PHTs have ‘long-range
dependences’ which entail slowly decaying correlations between distant parts of PHTs.
This is seen, for example, from the explicitly known ‘pair correlation function’ of the
point process of vertices in motion-invariant PHTS, see e.g. [7]. For the same reason
the variance of the total k-volume of k-facets (0 < k < d — 1) of a stationary PHTs
contained in a large (convex) sampling region of R? grows significantly faster than its
d-volume and depends additionally on its shape. The strong mixing properties of sta-
tionary Voronoi tessellations ensure that the corresponding variances are proportional
to the d-volume of the sampling region as it is known from many other classes of random
set models, see e.g. [6].

In Section 2 we briefly introduce some notions from intergal and stochastic geometry
needed in the sequel and recall the definition of a stationary (isotropic) Poisson hyper-
plane process (briefly PHPs) in R?. In Section 3 we consider motion-invariant PHPs
in an expanding convex region o K , where K is a convex body containing the origin as
inner point. We prove a CLT for the joint distribution of the number of intersection
points and the number of intersection k-flats (k =1,...,d — 1) hitting o K as p — oco.
Section 4 is focused on proving Gaussian limits for the k-dimensional Lebesgue measure
of the union of intersection k-flats (generated by intersection of d — k hyperplanes) in
oK for k=0,1,...,d — 1. Note that for studying these random total k-volumes the
convexity of K can be weakened. It is also noteworthy that the rank of the correspond-
ing asymptotic covariance matrix equals 1 in any dimension d > 2. Moreover, we show
in Section 5 that the covariance matrix of the Gaussian limit in Section 2 has full rank
for any d > 2. However, the entries of this covariance matrix strongly depend on the
shape of K. In particular the asymptotic variance of each component is up to some
constant a non-additive, motion-invariant ovoid functional of K which seems to be of
interest in its own right. In Section 6 we give some estimates of these functionals and
derive explicit formulas in case of balls (d > 2) and for ellipses and rectangles (d = 2).

At the end of this section we introduce some basic notation used repeatedly in this paper.
Throughout, let B¢ be the o—algebra of Borel sets in IR? and let [©2,2(, P] be a common
probability space on which all random objects are defined in this paper. The symbols
E, Var and Cov are used for expectation, variance and covariance w.r.t. the probability
measure P. Further, let (z,y) = Zizl 2k denote the scalar product of the coordinate
vectors z = (z1,...,24) andy = (y1,...,yq) in R%. By means of the Euclidean norm



|- = +/(,-) we may define the closed ball B = {z € R? : ||z|| < r} with radius
r > 0 centered at the origin and the unit sphere S9! = {z € R? : ||z|| = 1} in RY,
respectively. Furthermore, let Si_l = {(z1,...,2q)" € ST!: 25 > 0} be the upper
unit hemisphere and let v;(-) denote the Lebesgue measure in R* for k = 0,1,...,d.
This measure will also be used instead of the k-dimensional Hausdorff measure in R for
k=0,...,d—1. Asusual, vy(-) coincides with the counting measure, i.e., vy(B) = #B.
The d-volume of the unit ball is abbreviated by rg = v4(B{) with

k 92k+1 L 1k

™
KoL — ﬁ and Rok+1 = W fOI' ]{? = 0,1, cee

2 Stationary Poisson hyperplane processes in IRY and their
k-flat intersection processes, 0 < k <d—1

An unoriented hyperplane in IR? can be represented in the parametrized form

H(p,v) ={z € R: (z,v) =p}

with orientation vector v € Sfifl (the normal unit vector of H(p,v)) and p € R! gives
the signed perpendicular distance from the origin.

Definition A stationary Poisson hyperplane process @g\d)@ in R? is defined to be a count-
able family {H(P;,V;) : i > 1} of random (d — 1)—dimensional affine linear subspaces
of R? (hyperplanes), where ¥ = {[P;, V;] : i > 1} is a stationary independently marked
Poisson point process on the real line R' with intensity 0 < A\ < oo and mark distri-
bution ©(-) (called orientation distribution of the PHP ) given on the measurable mark
space [Sflfl, BN Sflfl ].

X/ z ~

Figure 1: Motion-invariant Poisson line process in a rectangular and
elliptic window



Note that non-stationary PHPs can be defined in the same way by letting ¥ an inde-
pendently marked Poisson process with an intensity measure A(-) on [R!,%B!] being

not shift-invariant, see e.g. [24]. A stationary PHP @g\% (or its orientation distribution

O(+)) is called non-degenerate if ©(H (0, v)ﬂSflfl) < lforallv e Sfl . This assumption
on ©O(-) ensures that each of the stationary k—flat intersection processes

O\ = (H(P,, Vi) N NH(Piy Viy )+ 1 <1 < oo <ig_i)

has positive mean k-volume in the unit cube [0,1]? for each k = 0,1,...,d — 1 and the

stationary PHT induced by @g\% consists of bounded cells; see Chapter 6 in [23]. In the
latter reference the reader can find a rigorous introduction into the general theory of
stationary k—flat processes in IR? which are described there as point processes on the
space .Aﬁ of all k—dimensional affine subspaces in RY, 0 <k <d—1. A (d — 1)—flat
process is usually called hyperplane process. Sometimes the orientation distribution of
a PHP is introduced as an even probability measure ©*(-) on the entire sphere S%~1

which is then connected with ©(-) by ©*(B) = 3 (@(B NSt +e(-Bn Si_l)) for

any Borel set B C S%!) and, conversly, ©(B) = ©*(B) + ©*(—B) for any Borel set
B eC Si_l . The symmetry condition ©*(B) = ©*(—B) expresses the identification of

hyperplanes with antipodal orientation vectors. A stationary PHP @E\dg is said to be

isotropic (or motion-invariant) if O(-) is the uniform distribution U(-) = 2v4_1(-)/d kg
on S‘fr_l ,i.e. ©*(-) is the uniform distribution on S%~1. It turns out that the union sets

d—k
== U NH®E, V) for 0<k<d—1

1<t < <ig—g j=1

are stationary resp. motion-invariant random closed sets, see [12], iff the PHP @g\dg

does so in the above-defined sense. The intensity A of @g\d)@ can be expressed by

1 , d 1 =(d)
A= o E#{i>1:H(P,V;)NB; #0} = va(B) Evga-1)(Exe N B)

for any r > 0 and any bounded B € B¢.

Now we are in a position to introduce two functionals W,gd)(-) and C,gd)(-) on the family
of sets K, := 0K, p > 1, where K is convex and compact such that Bg C K for some
e>0.Fork=0,1,...,d — 1 define

d 1 * d—k
fo,(g N(K,) = @ Z X(jgl H(P,;,V;,) NK,) (2.1)
L ileigok>1
and 1 d—k
d * =

U, td—k 21

where x(C) = 1 for C' # () and x() = 0 and the asterisk in >_" indicates that the
sum runs over pairwise distinct indices i1, ...,iq_r > 1. Obviously, \I/lgd) (K,) counts
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the number of intersection k—flats of @g\d)@ hitting K, , whereas C,gd)(K o) measures their

the total k—volume in K,.

To determine expectations, variances and last but not least the asymptotic behaviour
(as 0 — o0) of (2.1) and (2.2) we consider the stationary independently marked Poisson
process ¥ on R' as a non-stationary Poisson process on the product space R' x Si_l .
An equivalent formulation of the Poisson property of this point process enables us to
argue as follows: Given the Poisson distributed number

N(K,) =#{i > 1: H(P, Vi) N K, # 0} = > X(H(P;,V;) N K,)
i>1

of hyperplanes hitting K,, say N(K,) = n, the random vectors Xi(g) = (P, V;),
i = 1,...,n, are (conditionally) independent of N(K,) and independent identically
distributed (briefly IID) with common distribution Qg)(-) which is defined, for B € B!
and S € B NS, by

QB x8) = s [ [ xEw Ky o)
B S
= b@gK) //X(H(Q‘lp,v)ﬂK)@(dv)dp,
B S
where
bo(K) = / / X(H(p,v) 0 K) O(dv) dp (2.3)
Rl 8171

For brevity put X; = XZ.(l) fori=1,2,... and let X denote the generic random vector
with distribution Qg )() Therefore we may write

d d=
(K, = 3 x(n HX) N K,) (2.4)
1<iy < <ig_x<N(Kp) 7
(d) d d—k ()
GV (K, = > uk(jng(Xij )NK,) . (2.5)

1<iy <-<igy<N(K,)

Here the symbol 4 indicates distributional equality. The expectation of N(K,) can
be calculated by means of Campbell’s theorem, see e.g. [4], and leads to the following
simple formula:

EN(K,) =EY x(H(P,V;)NK,) = A obo(K) ,
i>1



The integral bg(K) defined in (2.3) can be rewritten as

bo(K) = /S (hx(©) + hi(—v)) O(dv) .

where hg(v) = max,cx (v,x) denotes the support function of the convex body K.
The last relation becomes clear since hx(v) equals just the distance of the support
hyperplane with exterior normal unit vector w from the origin. The value of bg(K)
can be interpreted as ‘direction-weighted breadth’ of the convex body K w.r.t. the
distribution O(-).

If the PHP &\ 29 is motion-invariant, i.e. ©(-) = U(-), then by (K) coincides with the
mean breadth b( ) of K which is a well-known from integral geometry, see [22].

In what follows we put special emphasis on motion-invariant PHPs @g\dzj. In this case
the calculation of (conditional) expectations will be done by iterated application of
Crofton’s formula which can be written as follows:

(d) _ Kd-1 (k+1)Kkiq (d)
/.‘si—l /Rl V. (H(p,v) N K)dpU(dv) = dr . Vi (K) (2.6)

for k =0,1,...,d — 1, where Vk(d)(K) is called the k—th intrinsic volume of the con-
vex body K C R?, see [22]. These additive, motion-invariant and increasing ovoid
functionals can be defined by the well-known Steiner formula

d
va(K + BY) :Zrd F ka_ kV )(K) for r>0.
k=0

The intrinsic volumes of K are connected with Minkowski’s quermassintegrals Wéd)(K )
by (4 W(d)( K) =k, V(d) (K) for k=0,1,...,d — 1. We list some special cases:

5y gy VD () = 2 va 0K) L VIO () = va(K)

Vi () = x(K) , Vi (K) = 5

2 K41
and Vk(d)(K) = vp(K) if V/ﬁ)1( ) =0 for some k < d— 1.

Next we calculate the mean values of (2.1) and (2.2). For doing this we use the distribu-
tional identities (2.4) and (2.5) and the well-known fact that the (d—k)—th factorial mo-
ment of the Poisson distributed number N (K,) equals (EN(K,))?* = (X 0 be(K))4*
so that, for a stationary PHP,

Ev (K,) = E (ﬁ(K2)> Ex('0 H(XP) N K, = (o)l ), (27)

where



(d—k)! k: // // mHPuUz)ﬁK)dpl@(dm) - dpg—k O(dvg_p) -

Sd lRl Sle

If ©(-) = U(-) we may apply Crofton’s formula (2.6) d — k times which leads to

—k— (d)
(1) K1 (G + 1) ki Vax(K)  rrgq\dF (d)
a I;I <dmd s ) e (dmd> Ka—k Vo (K) - (28)

In the same manner we find that

Aob d—Fk —
el (1) = ST B O N 8 = 3G i), (29)
where
g’ Vi ( ﬂ H(p;,v;) N By)dp1 ©(dwvy) - - - dpg—x O(dvg_g) -

Sd lRl Sd lRl

Here, By can be any bounded Borel set in IR? satisfying v4(Bp) = 1. Again by multiple
application of (2.6) it follows that

(kd) _ (A Kd ( Kd—1\9F
AU - (kj) KL < dﬁd> ’ (210)

Note that the relation (2.9) remains valid for any bounded K € B¢ (the term bg(K)

cancels out) so that EC,gd)( By) = A4k )\(k’d) can be regarded as intensity of the random
d)

measure (d)(-) as well as of the k—flat intersection process \Il(
( ) )

. Furthermore, one

can rewrite A\ as follows:
k.d 1
Aé) ) = = / / Vi k(vi,. .., v4-k) O(dvr) - - O(dvg—) = Vd(f)k(Z@)
8171 Si71
fork=0,1,...,d—1, where V4_g(v1,...,v4_) denotes the (d—k)-dimensional volume
of the parallelotope spanned by vy,...,v4_ € Si_l and Zg is a centrally symmetric

convex body uniquely determined by the orientation distribution O(-) - called associated
zonoid or Steiner compact in [12], see [23] for details.

At the end of this section we recall some basic facts on U-statistics. Let Y1,Y5,... be a
sequence of IID random elements in some measurable space [F, €] and, for fixed m > 2,



let f: E™ — R! be a ¢™-measurable symmetric function such that E|f(Y1,...,Yy,)| <
oco. A U-statistic UT(Lm)(f) of order m > 1 with kernel function f is defined by

Um(f) = Z f,....Y;,) for n>m.

1< <. <tm<n

The representations (2.4) and (2.5) reveal that \Iléd)(K o) as well as ¢ ,gd)(K o) can treated
as random U-statistics of order d — k with Poisson distributed sample size N((K,). In

d—k d—k
contrast to the standard case the kernel function x( ﬂl H(yi)NK,) resp. v( 'ﬁl H(y;)N
1= 1=
K,) and the common distribution Qg)(-) of the Y;’s depend on the (mean) sample size.

The proofs of the CLTs we are going to present in Sections 3 and Sections 4 rely on
Hoeffding’s decomposition of U-statistics which allows to approximate UT(Lm)( f) by a
simple sum of independent random variables :

o - (e = (2 70) St -+ (1) mwn. e

m m . m
i=1

where pn = Ef(Y1,Ys,...,Y,,) and g(y) = Efin(y, Ya,...,Y,,) is the conditional expec-
tation of f(Y1,Ya,...,Y,,) given Y1 = y € E. The remainder term Rﬁlm)( f) contains
sums of martingale difference sequences arising in Hoeffding’s decomposition which in
turn allows to prove the following crucial estimate given in

Lemma 2.1 Provided that Ef?(Y1,...,Y,,) < oo we have

E(RYY ()" < B ES (Vi Vo) forany n>m

and some positive constant c,, only depending on the order m.

This result is the main step in the proof of Hoeffding’s CLT for U-statistics, see e.g.
[3] or [9] for a sketch. In [3]| the reader can find a lot of further details on U-statistics
including weaker versions of Lemma 2.1.

3 CLTs for the number of intersection k-flats hitting o K

In this section we study the joint asymptotic behaviour (as ¢ — o) of the centered and
scaled random variables

—(d d—k— d i (kd
Tp(K) = o™ (WD (K,) — (M) G () ) (3.1)

for k=0,1,...,d — 1 in case of a stationary PHP \I/g\dg with ug’d)(K) defined in (2.7).

More precisely, we shall prove a multivariate CLT for the random vector (Tédz)(K ))g;é



and determine the covariance matrix of the Gaussian limiting vector in the particular
case O(-) = U(:). To use results from the theory of U-statistics we introduce the
conditional expectation

d—k—1
o5 (), 5) = ("D H(X) 0 Hp, ) 01 K)

for (p,v) € R'xS%!. In analogy to (2.8) we apply Crofton’s formula (2.6) d—k—1 times
(with K replaced by H(p,v) N K) to derive a more explicit formula of the conditional

expectation g)((k(’}i)((p, v), K), namely

ggfi?)((p,v),K) = a,gd) W Vd(f)k_l(H(p,v) NK) (3.2)

with

a _(dnd> Kg—k—1 for k=0,1,...,d—1.

In the first step we calculate the asymptotic covariances

o1 (0, K) = lim Cov(T})(K), T))(K)).

00—

For brevity, put a,(;ll)(K) = a,(;ll)(U, K) for k,l =0,1,...,d—1.

Lemma 3.1 Let \Ilg\d)e be a stationary PHP with non-degenerate orientation distribution

O(:). Then,

Abo (K 2d—k—1-1 kod Ld
(d(— k ! 1))!)(d =) Eq\S) (Yo, K) g[8 (X0, K) >0 (33)

d
aM©e,K) =

fork,1=0,1,...,d—1.
In the particular case of a motion-invariant PHP \I’g\dzj , we have

o D(K) = A2kt gl (@) (3.4)

<[ [V 0 B VS 0 0 K apUa)

d—1 Rl
S, R

Proof By symmetry of the kernel function x(H(y1)N---NH(ym) N K,) for m=d—k
and m = d — | we may write

(d— k) (d — DL E(W (K,) 17 (K,))



_ E< S X(dr_wkH(Xi(If’)) ng)>( S x(dﬁlH(X](f)) OKQ))

. . b= . - q=1
1<, ig— kSN (K) 1<51,500Ja—1SN (Kp)

Some basic combinatorial relations combined with the independence assumptions made
in (2.4) yield that, for 0 < k<1<d-1,

d—1

@) g (d) d—k\ (d—1
et S g () ()
* (o) 2 (o)
< B X (O HED k)N 0 B )N K)

1<y, iza—k—1— SN (Kp)

B0 )

2d—k—1—j

x E (X(dmkH(X,(,g)) N Ky) x(

(o)
) S ), )

d—1 2d—k—1—j
K)o)

— EU(k,) BV (K be (

(e +;J'd F= M d—1-j)!

2d—k—1—j

X

e (17 HOG) N ) HOX)NE) )

N
q=d—k—j+1

Here, we have used that the summand for j = 0 equals E\Il,(cd) (Kp) E\Ill(d) (K,). Therefore,

the covariance Cov(\Iléd)(K o) \I!l(d) (K,)) can be written as non-negative polynomial of
degree 2d — k —1 — 1 in ¢ > 0. Hence, in view of (3.1), dividing this polynomial by

0??~k=1=1 yields the covariance Cov(@,&ﬁ(K ),El(f? (K)) which together with
d—k 2d—k—I1—1 k,d 1,d
E(x(0, H(X,) NK)x( 0 H(Xg) N K)) = Eg "8 (X0, ) 9,78 (X0, K)

implies the limiting relation (3.3).
2d—k—1—1 2d—2k—1

Since x/( Qk H(X,)NK) > x( Qk H(X,)NK) for k <1, we get
9= q=d—

Eg ") (X0, K) "2 (X0, K) = E(¢" (X0, K))? = (Eg") (X0, K))?

and the non-degeneracy of ©(-) entails that E\I/;d) (K) > 0 for any convex body K

with inner points, see Chapt. 6.3 in [23], so that, by (2.7), (g)((kg)(Xo,K))2 > 0 for
k=0,1,...,d— 1.

10



Finally, relation (3.4) follows by combining (3.2) and (3.3), where the distribution of
Xo is Qg)(-) as defined in Sect. 2. Thus, Lemma 3.1 is proved. O

We now establish the announced multivariate CLT for the random counting variables
(2.1). For this we consider the d-dimensional vector of centered and individually scaled
counting variables (3.1). By Ny(0,%) we denote a d-dimensional Gaussian vector with

mean vector o = (0,...,0)" and covariance matrix ¥ and 4, means convergence in
distribution.

Theorem 3.1 Let \Ifgf% be a stationary PHP with non-degenerate O(-).

Then,

(TE) D L Noy(0,%a(0, K)) (3.5)

k=0 0—00

d—1

where the entries of the covariance matriz ¥4(0,K) = (a,i?(@,[())klzo

the limits (3.3). If ©(-) is the uniform distribution on ST,
then

are given by

(Wl(j;(K))d_l L Ny(o, Za(K)) (3.6)

k=0 5 oo

where p& ¥ (K) = pP ¥ (K) s as in (2.8) and Sa(K) = (o} ()1,

(3.4).

is defined by

Proof For notational ease put N, = N(K,), n, = EN(K,) = X o bo(K) and
ta—x(f) = Ef(X1,...,Xq-k). We first apply the decomposition (2.11) for general
U-statistics to the counting variables (2.1): For k =0,1,...,d — 1,

nd*k
\I]I(cd) (K,) — Eq;]gd) (K,) 4 < (d]igk> - ﬁ) pa—k(f)

N,
N,—-1 2 N 3
o () (o) —ean)+ () w0,

1=

where f(X1,...,Xq-k) = x(H(X1)N--- N H(X4—k) N K) and the X;, Xy,... are IID
random vectors in R} x Si_l with common distribution Qg )() .

d—k—1/2

Dividing both sides of the previous equality by o and some simple rearrange-

ments on the left-hand side provide

11



) <Zg (Xi, K) — ng pa— k(f))

o p
ko o? d—k—1
LopaklD) [ Ne N Dy (Ne= 1Y N1 g
od—k—1/2 d—k d—k-1 d—k—1) (d—k)
1 No '\ p(d-k)
—_ R .
T od—k=1/2 <d—k> Ne )
we find, using Lemma 2.1, that

Since N, is conditionally independent of X7, Xo,
n>d-—k.

n) < Cd—;k Efz(Xl,... ,Xd,k) for
n

E((RD )N, =

Hence, we deduce that
e(( M Yreog) = s () E((RY(1))? | Ny =n) POV, =)
d—Fk N, - d—Fk N, e e
n>d—k
ca—p Ef2 (X1, ..., Xay) E N,—1?
- (d—k)? d—Fk—-1
Since E((N, —1)(Np —2) -+ (N, —d + k + 1))2 is a polynomial of degree 2d — 2k — 2
in n,, it follows that
1 N, —1
WE<d—k—1> el
Thus,
1 N, (d—k) P
Q12 (d— k) Ry, "(f) =20, (3.7)
where — denotes convergence in probability P. The validity of the limit
No—1 ngik P
— 0 )
> (d—Ek)! ] o—oo (3:8)

Ng_l +n
d—Fk—1 \d—k—-1

d—k—1/2

1 N,
0 d—k
can be verified by repeating word by word the arguments used in Sect. 3 of [9] to treat

L...,d—1

) ?

the special case K = B{. With

G() )= o /2 (ngd) X;, K) —nglud,k(f)> for k=0
and by using that NV, is Poisson distributed with mean A pbg(K) and independent of
it is easily checked that

X1, X, ..., ]
12



EGI)(K) GIY () = Abo () Eg\l8) (X0, K) g

9 (X0, K) (3.9)

for 0 <k <1<d—1aswell as N,/o —— Abg(K), which in turn implies the limit
0—00

1 N, -1 P (Abe(K))d-k-1
S — —
o k1 \d—k—1) o~o (d—k—1)!

Combining (3.7), (3.8), (3.9) for £ = [, and the latter relation, we obtain with the
above-introduced notation

—(d) oy d (Abo(K))FL ) (d)
\Ilk,g(K) - (d—kﬁ—l)' Gk7Q(K)+Zk,g(K) ’

where the term Zlidg(K ) disappears asymptotically as o — oo, i.e. Z,gd;(K ) P.o0.
) ) 0—00

Recall that due to well-known Cramér—Wold device, see [2], the multivariate CLT (3.5)
is equivalent to the univariate CLT

d—1
S HT(K) - N(0,tTS4(0,K)t) (3.10)
for all t = (tg,...,tq_1)" € R%\ {o}. Slutsky’s theorem, see also [2], tells us that on
the left-hand side of (3.10) the random variables T,gd;(K ) can be replaced by the scaled
random sums (Abe(K))* 1 GF(K)/(d — k — 1)! for k = 0,1,...,d — 1 without
changing the limit in distribution. In other words, we have to prove

No
HO = g1 <Z hX:) = n, Eh(Xo)> 4 N(0,tTS(0,K)t) (3.11)
i=1

0—00
for all t = (tg,...,tq—1)' € R%\ {o}, where

(Moo (K)4*1
d—Fk—1)

gikg)(XuK) for i=1,2,....

This means that the proof of (3.5) can be put down to a CLT for sums of a Poisson
distributed number of IID random variables. There are several results in the literature
addressing this problem in great generality. However, we can do this in a simple way
without referring to other results. Note that after a short calculation, using among

others that EN,(N, — 1) = nZ, we arrive at

T&.
—_
T&.
—_

E(H{")? = Abe(K) ER*(Xo) = trtiol) = tTS(0,K)t

e
Il
o
Il
o



in accordance with the expressions of the asymptotic covariances in (3.3).

The characteristic function of H, éd) is easily obtained by using the independence as-

sumptions and generating function EzVe = exp{n,(z — 1)} for any complex z, so that

Eexp{is Héd)} = exp {ng (Eexp{%h(Xo)} -1- \i/—SEEh(XO)> }

whence, by applying the well-known inequality | v —1—ir— % ‘ < % for z € R!,
it follows that, for all s € R!,

Eexp{is Héd)} — exp{—S;)\b@(K) EhQ(XO)} = exp{—SQ—?tTE(@,K)t} ,

0—00

which is equivalent to (3.11). Hence, the first assertion of Theorem 3.1 is proved. The
second assertion is an immediate consequence of the first one and (3.4) which completes
the proof of Theorem 3.1. O

4 CLTs for the total k-volume of intersection k-flats in o K

In continuation of the previous section we now consider the joint asymptotic behaviour
(as o — o0) of the centered and scaled random variables

—=(d —(d— _
(oK) = o~ (10 (1) = X4 AG? ot wy(K) ) (4.1)

for k = 0,1,...,d — 1 for a stationary PHP \IJ&d)@, where )\g’d) defined by (2.9) resp.
by (2.10) if the PHP is additionally isotropic. In order to argue along the line of the
previous section we need the conditional expectation

k.d d—k—1
98 ((pv), K) = Evi(" 0 H(X:) N H(p,v) N K)
for (p,v) € R x Sfl[l. In order to evaluate g,(jk[’]d)((p,v),K) by analogy to (3.2), we

apply Crofton’s formula (2.6) d — k — 1 times (with H(p,v) N K instead of K ) leading
to

(k,d) Kq—1\4-k d! Kq (d)

K)= H K). 4.2
o (@), ) = (F2) g Vi .0 N K) (4:2)
for k = 0,1,...,d — 1. As in the foregoing section we first calculate the asymptotic

covariances

. —(d —(d
(0, K) = lim Cov(Tya(K), G0 (K)).
0—00

For brevity, put T]g;i)(K) = T,gf)(U, K) for k,1=0,1,...,d — 1.

14



Lemma 4.1 Let \Ifg\d)@ be a stationary PHP with non-degenerate O(-) .
Then,

( A b@(K) )2d7k7l71

d—k—1)1(d-1-1)

(k,d)

(0, K) = (Egve (X0, K) gyd) (Xo.K)  (43)

fork,1=0,1,...,d—1.
In case of a motion-invariant PHP \Ilg\dg] , we get with Agg’d) from (2.10) that

rW(K) = NARNED VD (@ — k) (d - 1)
(4.4)

<[ [ Wit 0wy apu).

d—1 R1
SR

Proof The proof of Lemma 4.1 resembles that of Lemma 3.1 almost verbatim. We
have to replace the kernel function X(H(ng)) NN H(ng)) N K,) by uk(H(ng)) N
- NH(X 9) N K,) and then to take into consideration the different scaling

d—k 2d—k—1—j
(o) J (o) )
Eve( O H(X) N Ko m( _ 11 HXD)NK)

" d—k 2d—k—1—j
0 E<yk( NHX)NK)u( N H(X, mK)) .
=1 g=d—k—j+1

Therefore, the covariance Cov(C,gd) (Kyp) Cl(d)(Kg)) represents a polynomial of degree
2d — 1 in g, so that after dividing by 0*¢~! we get the limit (4.3) whence, by (4.2), it
follows (4.4) completing the proof of Lemma 4.1. O

Theorem 4.1 Let \Ilg\d)@ be a stationary PHP with non-degenerate ©(-).
Then,

(Eg,lz;(K))Z:l ~L Ni(o,Tu(©,K)) (4.5)

=0 poo

where the entries of the covariance matriz Ty(©,K) = (Tlg?)(@,K))Z;io are giwen by
the limits (4.3). If ©(-) is the uniform distribution on Sflfl,

then

—=(d d—1 d

(G (E)) g o Nalo, Tu(K)) (4.6)
where )\g’d) = )\gg’d) is taken from (2.10) and T4(K) = (T,g;i)(K))Z_lio 1s determined by

(4.4).

15



Employing Lemma 4.1, the proof of the CLT (4.5) (and also of (4.6)) coincides step
by step - up to evident changes - with the proof of the first assertion of Theorem 3.1.
For this reason the details of the proof of of Theorem 4.1 are fet to the reader. Instead
we make some remarks on a more explicit representation of the conditional expectation
g,(jk@d)((p, v), K) the derivation of which can be found in [11].

Remark Let \Ifgf% be a stationary, non-degenerate PHP in IR?. Then

(d—k—1)!
(bo(K) )1

for k = 0,1,...,d — 1 and all (p,v) € R! x Silfl such that H(p,v) N K # (), where
Z¢ denotes the image of the associated zonoid Zg under orthogonal projection onto
H(0,v). With the notation introduced in at the end of Section 2 , the intrinsic volume

g (p,v), K) = -V (28) v (H (p,v) N K)

Vd( i )1(2”) is seen to be equal to

m /'”/vdk(vla---,vdk1,'U)6(d'l)1)---@(d1)dk1).

-1
TS

Consequently, the covariance TISO(@, K) in (4.3) admits the representation

I d 2 d— v d— v
N2kl / / (VD (Hp,v) 1K) dp VD (28) VI (22) 0 (dv)
8171 Rl

for k,1=0,1,...,d—1. In view of Vd(f)l(H(p, V)NK) = v4_1(H(p,v)NK), this formula
as well as the CLT (4.5) hold for any bounded K € B¢ satisfying v4(K) > 0.

5 Some properties of the matrices >;(K) and Ty(K)

In this section we study the algebraic properties of the covariance matrices ¥4(K) and
Ty4(K) defined in Theorem 3.1 and 4.1, respectively. Whereas the linear hull spanned
by the columns of Ty(K) is a one-dimensional subspace in R for any d > 2, the rank
of ¥4(K) equals d, i.e. det(X4(K))>0.

Theorem 5.1 Let \Ifg\dgj be a motion-invariant PHP in R with intensity X > 0, and
let K be a convez body in R? containing Bg for some e > 0. Then,

(1) the rank of Ty(K) equals 1 for any d > 2 and, for 0 <k <l1<d-1,

ColB) — TOE) e 6
n () 7 ()

0—00

1) and 24 as full ran i.e. the inverse d ~ emists.
(i) d ¥4(K) has full kd,1 he i (Z)(K))1 ]

16



Proof Clearly, (4.6) implies that T]g;i)(K) = \/T,gz)(K) Tl(ld) (K) for 0 < k,l <d-1.
This means that each column of the matrix Ty(K) is a multiple of the column vector

( T,EZ) (K ))Z;é proving (i). The relation (5.1) even holds in the quadratic mean since

the shape of the limiting covariances (4.6) implies that

— _ 2
E((\/7i (K) Sl (K) = /7 (K) C(K) ) — 0.

Going back to the very definition of positive definiteness und making use of (3.4), our
assertion (ii) means that

d—1 d—1

2
> tetiol (K) = E(Y sk Vi, (H(Xo) N K) ) >0 (5.2)
k,l=0 k=0

for any (to,t1, ..., t4—1) € R4\ {o} with s, = M=*=1 /Xb(K) a\” 5 for k =0,1,...,d—
1. Equivalently, the (non-negative) double sum in the foregoing line attains zero iff

to =+ =tgq—1 = 0. Assuming that the right-hand side of (5.2) disappears, i.e.,
d—1
d
S sV (Hpw)NK) =0 (5.3)
k=0

for (11 x U)-almost every (p,v) € R! x Silfl satisfying H(p,v) N K # 0, we will prove
that so =~ =s4-1=0.

Let e € OK be an extreme point of K. Applying the characterization of extreme points
given in [21], Lemma 1.4.6, we find, for any § > 0, a closed halfspace Hf, = { H(p,u) :

p>q} with ¢ = q(e,0) € R and u = u(e, §) € Si‘l depending on (e, d), such that

d(e,8) := inf{[le — 2| : x € H(q,u)} >0 and KNH[, C Bl(e) .= B +e¢.

Since B? C K, that part of the convex hull of {e¢} and B contained in the halfspace H. tu
also belongs to Bgl(e). Therefore, by evident continuity arguments ( shifting H(q,u)
closer to e and moving ¢ slightly) we find an open interval (n1,72) C [q,q + d(e, )]
and a sufficiently small n-neighbourhood W) (q) := Bf]l(u) NSt of u € ST such
that Vd(il)l(H(p,v) NK) > 0 and Vl(d)(H(p,v) NK) < Vl(d)(Bg) = ddrgq/kq—1 for all
(p,v) € (m,n2) x Wy(q). Note that the latter set has positive (v; x U)-measure and
d > 0 can be chosen arbitrarily small. Now we use a well-known known consequence
of the Alexandrov-Fenchel inequality, see [21], Chapt. 6.4, which can be rewritten in

terms of the intrinsic volumes Vk(d)(-) as follows:

oz (25 (0 e

for0<j<k<d—1.
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We first show that s;—1 = 0 in (5.3). Together with Vo(d)(H(p,v) NK) =1 it follows

from (5.3) that
d—1

sa-1] < > [sa—kaa| VO (H(p,v) NE) . (5.5)
k=1

Inequality (5.4) for j =1 applied to H(p,v) N K for (p,v) € (n1,1m2) x Wy(q) yields

k
VO (H (p, ) 0 ) < O (Z) for 1<k<d—1. (5.6)
d—k

Inserting these estimates on the right-hand side of (5.5) and letting 6 | O reveal that
only sq_1 = 0 is possible. In the next step, we assume that sq_; = --- = s4_; = 0 for
some j € {1,...,d — 2} so that then (5.3) implies

d)

-1 (
V' (H NK
sagl € 3 bsapor] L 2O KD (5.7)
k=j+1 Vi (H(p,v) N K)

Combining (5.4) with (5.5) (the latter for k = j) leads to the estimate

d .
V,C()(H(p,v)ﬂK)<6k_j 'd =) Ka—j for

jl
(d) - k' (d— k) kg
Vi (H(p,v) N K) (d = k)l Fa

which together with (5.7) enables us to conclude that sq—;_; = 0. This proves (ii) and
completes the proof of Theorem 5.1. O

(p,v) € (m,m2) x Wy(q) ,

6 Special cases and some inequalities

In this final section we derive some estimates and discuss extremal properties of the
ovoid functionals

T (K) = / / (VD (H(p,0) N K))*dpU(dv) , k=0,1,...,d—1,
8171 Rl
which are motion-invariant,non-decreasing and continuous, but not additive on the fam-
ily of convex bodies in IR?.
We first compute J,gd) (K) for some special convex bodies such as balls B in any dimen-
sion, ellipses E,, = {(z1,22) € R? : 22/a® + 23/b? < 1} with numerical excentricity
k=+/1-0b%/a?2 €0,1) (i.e. a > b) and planar rectangles R, = [—a,a] x [—b,b].

Lemma 6.1

2k+1
N (Br) <(d—k—1)md,k,l) @kt 0 Vsksdol (6.1)
2) B 32ab? ™ ™ _/”/2 dp
J17 (Eap) = 3 F<2,k> , where F<2,kz)— ; —1—k:2 . (6.2)
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is a ‘complete elliptic integral of the first kind in Legendre form’.

) _ 16
J17(Rap) = P <I(a, b) + I(b,a) > , (6.3)
where

N 2
I(a,b) = 3ab? log(%m)—lf (Va2 62 —b) .

The formulae (6.1) were derived in [9]. To calculate the functionals Jl(z) (Eqp) and
Jl(z) (Rq,p) (which are needed in cases as illustrated in Figure 1) one has to determine the
lengths of all chords through F,; and R, , respectively. In particular, the computation
of the chord lengths through R, ; requires to distinguish several cases of how a (random)
lines crosses the boundary dR,;. These lengthy procedures and the computations of
the corresponding integrals might be of interest in its own right and will be carried out

in the Appendix below.

In the particular case a = b relation (6.2) coincides with (6.1) for d =2,k = 1,r = a
and (6.3) results in

32a?
J1(2) (Ra a) =

)

<3log(1+x/§)+1 —\/§> ~ 757124 .

s

Notice that (6.2) and (6.3) exhibit special cases of chord-power integrals which are
studied quite well in integral geometry, see [22] and references therein. From Theorem
6.3.7 in [22] we deduce the inequality

M)W

s

T2 < 2 ( (6.4)

for any convex body in IR?, where equality holds iff K = B2,

general inequalities. Having in mind the variances (3.4) and (4.4) fork =1=1,d =2, it
is intuitively clear that, for fixed area v(K) , the functional J1(2) (K') may take arbitrarily
small values when K becomes strip-like. For example, fixing the area A = wab of the

family of ellipses E,; and setting b = A/ma, we get

see also [20] for more

I as) = 2 (5T R 0.
This means that long and thin planar convex bodies K diminish the variance of @éﬁl) (K).
Likewise, for fixed v4(K), the functional .J C(l(i)l (K) can be minimized to zero in each
dimension d > 2. In contrast to this, the functional J1(3) (K) is bounded from below by
mv3(K). This is rapidly seen by applying the isoperimetric inequality (Vl(z)(H (p,v) N
K) )2 > V2(2) (H(p,v) N K), see [21], p. 323, for all planar convex bodies H(p,v) N K.
Together with Crofton’s formula (2.6) for d = 3,k = 2 we obtain
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1w = [ [V H ) 0 K dpU) = ms ().

d—1 Q1
SR

where the equality holds iff K = B?.

So far, to the best of the author’s knowledge, sharp upper bounds of J,gd)(K ) (1<k<
d—1, d > 3) in terms of intrinsic volumes of K seem to be unknown. We conclude this

paper with a conjecture concerning an upper bound of JC@I (K) for any d > 2. The
relations (6.1) and (6.4) give rise to presume that the estimate

d
T

(d—1)kg 1)’ <2d14¢1{))(2d—1wu

(
)< i)

Kd

holds with equality for balls K = BZ.

7 Appendix: Proof of Lemma 6.1

1. Computation of J1(2) (Eqp) for a > b
Unoriented straight lines g(p, ¢) in a Cartesian zy-coordinate system can be represented
in the form

g(p.p) ={(z,9) e R*:zcosp+ysinp=p} with 0<p<m, peR', (7.1)

which corresponds to the representation of hyperplanes H(p,v) at the beginning of
Section 2 with orientation vector v = (cos p,siny) € S}F. For reasons of symmetry it
suffices to consider chords with end-points g(p, ) NOE., = {(x1,y1), (x2,y2)} only for
0 < <7/2and p > 0. The coordinates of the two points of intersection (x1,y;) and
(x2,y2) are obtained as solutions of the system of equations

Va2 +a?y? =a’b?® and zcosp+ysing =p

for0<p<nm/2,0<p< Va2 cos? ¢ + b2sin’ .

By solving the corresponding quadratic equation we find that, for i = 1,2,

N et sin ¢ o pb?sing 4 (=1) ab cos ¢ /a2 cos? ¢ + b2 sin® p — p?
' cosgp Vi a2 cos? ¢ + b2 sin? ¢

)

whence it follows

2ab cos /a2 cos? ¢ + b2 sin® o — p?

a? cos? p + b2 sin? ¢

Y2 — Y1 =

and

~2ab sin ¢ v/a2 cos? p + b2 sin® p — p?

o — 1 = .
a2 cos? p + b2 sin?
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so that the squared length of the chord connecting (x1,y1) and (z2,y2) can be expressed
by
4a?b? (a?cos? ¢ + b%sin® p — p?
(1_2 _ .%'1)2 + (y2 _ y1)2 _ ( ¥ ¥ )

(a2 cos? ¢ + b2 sin? )2

Finally, using the symmetry and integrating (over ¢) w.r.t. the uniform distribution on
S}F, we obtain

A 7/2 /a2 cos? p+b? sin? ¢
2
J1( )(Ea,b) = = / / ((z2—21)* + (y2—y1)*) dpd ¢
0 0
7/2 /a2 cos? p+b? sin? ¢
16 a® b? a? cos? ¢ + b?sin? p — p?
7 (a? cos? ¢ + b? sin” ¢)?
0 0
w/2
32 d
— 2% 2p2 / b
3w Va2 cos? o + b2sin? ¢
/2 5
32 d b
= —ab2/—@ , where k=4/1-—. a
37 1— k2 sin? ¢ a

On can prove the following expansions and estimates of F <§, k> for any k € [0,1):

0 k2n 2n n
n

T T o\ 2 T e k
Q’k 2242” (n) _27;)4 n!k

n=0

(4k —3) = — (1 —k*)~V4,
1

T
- 2
Here we have used the inequality (2")2 < (4n—-3)-(4n—"T7)---5-1forany n > 1.

i \n

Inserting k* = 1 — b?/a® and taking into account that vo(E, ) = mab yield

(2) <2 2T [ 1/2:E 3/2:E Vo (Eap) \3/2
J17 (Eap) < 3 Tab <b> 3 (ab) 3 <77T > ,

which coincides with (6.4) for K = E, .

2. Computation of J1(2) (Rap)

By definition the edges of the rectangle R, are parallel to the axis and its the vertices
in anti-clockwise ordering are (—a, —b), (a,—b), (a,b), and (—a,b). As in the case of
ellipses we consider chords arising from the intersection of the boundary dR,; with the
straight line g(p, ¢) defined in (7.1) only for 0 < ¢ < 7/2 and p > 0. By contrast with
ellipses, several different types of chords through R, ; emerge. Basically, we distinguish
case (I) 0 < ¢ < 2(a,b) := arctan § and case (IT) z(a,b) < p < 5.
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In case (I), for ¢ being fixed, there exist certain p; and p* depending on a, b, ¢ such that
the end-points of the chord g(p, ) N Rqyp are {(z1,—b), (x2,0)} resp. {(a,y1),(x2,b)}
for 0 < p < p; resp. p1 <p < p*, where

xycosp—bsinp=p , xocosp+bsinp=p , acosp+y; sinpg=p

and p; resp. p* is just the distances of the line containing (a, —b) resp. (a,b) from the
origin, that is,

p1=pi(a,b,p) =acosp —bsing and p* =p“(a,b,p) =acosp+bsing.

Hence, for 0 < p < pi(a,b,p), we get

4b?
cos? p

2b sing

(mg—x1)2+(2b)2:( >2+(2b)2:4b2(1+tan24p):

CoS

anda for pl(a’ba 90) < p < p*(a’ba 90) )

(w2—a)?+(b—y1)? = (m_a)ﬂ(w_b)? _(n=e cosp — b ngy?.

cos @ sin ¢ sin ¢ cos @
Now, we are in a position to evaluate the integral
z(a,b) p*(abep)
2
K(a,b) = (11(9(p; ) N Rap) )" dpdyp .
0 0
The first step is to calculate the inner integral
p*(a,b,p) p1(aby) 452 p*(a,b,p) “(a.b.0) )
2 b \a,b,p)—p
(v1(g(p, ) N Rap) ) dp = 5—dp+ (—) dp
cos? sin ¢ cos ¢
0 0 p1(a;byp)
3
_ APpi(aby)  ((abe) —pi(aby)
cos? p 3 sin? ¢ cos? ¢

4ab®> 40 singp
cosep 3 cos?p

)

which results in
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z(a,b) z(a,b)

K(a,b) = 4ab? / M_{_‘l_bg / d(cos p)

1—sin?¢ 3 cos?
0
sin(z(a,b)) 3 1
B ST
B 1—22 3 22
0 cos(z(a,b))

vaz+b2+a 4 h? 4
= 2ab’1 - | - — (Va2 + b2 — = = .
ab og( 0 < a b b) 3Z(a,b)

Here we have used the relations

/Owli—zzz = %logii_i for 0<z<1, (7.2)
in(z(a tan(x(a, b)) _ a

sin(a(a,b)) V1+tan?(z(a,b))  VaZ+0b%’ (73)
cos(z(a,b)) = ! b (7.4)

V/1+ tan?(z(a, b)) N Va2 + b2

Next we treat the case (II). For fixed ¢ € [z(a,b),7/2], there exist a unique py =
p2(a,b, ) € [0,p*] being equal to the distance of the line with orientation angle ¢
containing the vertex (—a,b), i.e. py = —a cosp + bsinp. The end-points of the

chord g(p, @) N Rayp are {(—a,y1), (a,y2)} resp. {(z1,0),(a,y2)} for 0 < p < py resp.
p2 <p < p*, where

—acosp+ysing=p, acosp+yasing=p, x1cosp+bsing=p

so that, for 0 < p < pa(a,b,v), we get

4 a?

sin? ¢

2a cosc,o)2 B

(2a) + (g2 — 1) = (20)” + ( = 40” (14 cot? ) =

sin ¢

and, for pa(a,b,p) <p < p*(a,b, ),

) 9 p—Dbsing 2 P — a cos @ 2 p*(a,b,p) —p\2
- — — (T 2727 p)) = (A0 7 )
(z1—a)” + (b—12) < cos ¢ a) + < sin ¢ ) < sin ¢ cos ¢ )

In analogy to case (I) we have to compute the double integral
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/2 p*(a,b)

L(avb)=/ / (v1(9(p, ) N Rap))  dpdy .
z(a,b) 0

We again treat the inner integral first:

p*(a,b,p) p2(a,b,p) L2 p*(a,b,p) “(a.b,9) )
2 a pla,b,p)—p
dp = d —77 -~ ) d
(v1(g(p,) N Rap) )~ dp / sl p+ / < Sing cos g ) p
0 0 p2(ab,p)

3
4a?pa(a,b¢) | (P7(a:00) — pala,bp))
sin? ¢ 3 sin? ¢ cos? ¢

4a®b  4a® cos

sin ¢ 3 sin? ¢

so that we can proceed with

w/2 5 w/2
4 .
Lot = —aaty [ gl gt [ deing
1—cos?p 3 sin® ¢
z(a,b) z(a,b)
cos(z(a,b)) 1

3
e [ ke [

_ 1 + cos(x(a, b)) 4a’ !
= 242D log <1 —COS(:L‘(CL,b))> 3 <m B 1>

vaz+b%+b 4 a? 4
_ 2a2610g< C AT )— a (\/a2+b2—a>:§l(b,a).

o
<
=]
—~
8
—~
e
-~
=
=

Va2 + b2 —b 3

Finally, it remains to summarize the above integrals which confirms (6.3) as follows

*

™ p ) 790)

(a,b

/ (v1(9(p,¢) N Rap) ) dpde
0 —p*(abe)

w/2 p*(abe)

= / / (v1(9(p#) N Rap) ) dpdep
0

0

3| =

JP(R,,) =

)

SEFS

= —(K(a,b) + L(a,b)) = g—i (I(a,b) +I(b,a)). O
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As by-product we may deduce from (6.4) for K = R, the inequality

b
I(a,b) + I(b,a) < 8aby/ %> forall a,b>0.
T
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