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ABSTRACT The automatic detection of an emotional state from human speech, which plays a crucial role
in the area of human–machine interaction, has consistently been shown to be a difficult task for machine
learning algorithms. Previous work on emotion recognition has mostly focused on the extraction of carefully
hand-crafted and highly engineered features. Results from these works have demonstrated the importance
of discriminative spatio-temporal features to model the continual evolutions of different emotions. Recently,
spectrogram representations of emotional speech have achieved competitive performance for automatic
speech emotion recognition (SER). How machine learning algorithms learn the effective compositional
spatio-temporal dynamics for SER has been a fundamental problem of deep representations, herein denoted
as deep spectrum representations. In this paper, we develop a model to alleviate this limitation by leveraging
a parallel combination of attention-based bidirectional long short-term memory recurrent neural networks
with attention-based fully convolutional networks (FCN). The extensive experiments were undertaken
on the interactive emotional dyadic motion capture (IEMOCAP) and FAU aibo emotion corpus (FAU-
AEC) to highlight the effectiveness of our approach. The experimental results indicate that deep spectrum
representations extracted from the proposed model are well-suited to the task of SER, achieving a WA
of 68.1% and a UA of 67.0% on IEMOCAP, and 45.4% for UA on FAU-AEC dataset. Key results indicate
that the extracted deep representations combined with a linear support vector classifier are comparable in
performance with eGeMAPS and COMPARE, two standard acoustic feature representations.

INDEX TERMS Speech emotion recognition, bidirectional long short-term memory, fully convolutional
networks, attention mechanism, spectrogram representation.

I. INTRODUCTION
Automatic emotion recognition from speech signals, aim-
ing at the identification of our basic emotional states using
machine learning, remains a difficult task. A major challenge
currently being faced by researchers is how best to extract
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approving it for publication was Haishuai Wang.

discriminative, robust, and affect-salient features that rep-
resent the acoustic contents of speech signals. Many previ-
ous research efforts have investigated several hand-crafted
acoustic features for the task of speech emotion recognition
(SER), such as prosodic features (e. g. , pitch, energy, zero-
crossings), spectral features (e. g. , linear predictor coeffi-
cients (LPC), linear predictor cepstral coefficients (LPCC),
mel-frequency cepstral coefficients (MFCC), and non-linear
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features such as the Teager-energy-operator (TEO). More
recently, with the increased use of neural networks for SER
tasks, mel-scale filterbank spectrograms are now widely used
as an input feature. Deep spectrum representations, which
are features automatically extracted from speech spectrogram
images using deep learningmodels, have produced promising
results in the fields of SER [1] and other speech and audio
related applications [1]–[3].

Inspired by their performance in visual recognition
tasks [4], recent SER approaches such as deep spectrum
have incorporated convolutional neural networks (CNNs) to
extract features from spectrograms. CNNs are exception-
ally good at capturing high-level representations in a spatial
domain. Recently, fully convolutional networks (FCNs) [5]
have been proposed as a variant of CNNs. A major advantage
of FCNs is that they can handle inputs of variable sizes;
based on this property, they have achieved state-of-the-art
performance in time-series based classification tasks [6], [7].

However, a drawback of FCNs is that they are not pri-
marily tailored for learning temporal features. In this regard,
recurrent neural networks with long short-term memory
(LSTM-RNNs) offer the advantage of being suitable tomodel
temporal dependencies between sequences [8], and as a result
are widely used in SER [9], [10]. The approach proposed
herein aims to leverage the inherent strengths of the two
aforementioned models. The framework combines, in a par-
allel manner, FCNs and LSTM-RNNS, specifically bidi-
rectional LSTM-RNNs (BLSTM-RNNs), to learn effective
compositional spatio-temporal dynamics from spectrograms
for the SER task.

In addition to learning useful spatio-temporal features, it is
also important to select the emotionally salient sections of
an input signal to improve SER performance further [11].
The use of attention mechanisms in RNN and CNN-based
models has frequently been demonstrated as a useful tool to
encourage a model to more heavily weight specific regions of
an input sequence or image [12]. Attention mechanisms have
also been effectively applied in SER [11], [13]–[15].

Motivated by the above analysis, and following on
from our previous preliminary work [10], [16], we pro-
pose the Attention-BLSTM-FCN model, a spatio-temporal
spectrogram-based approachwhich leverages attention-based
BLSTM-RNNs (Attention-BLSTM-RNNs) and attention-
based FCNs in parallel for SER. An advantage of the
Attention-BLSTM-FCN model is that it enables the model
to capture both temporal and frequency dependence in the
spectrogram of the speech, relying on FCNs to extract repre-
sentations from the spectrogram and modelling the temporal
dynamics using a BLSTM network. In order to focus on fea-
ture extraction in the emotionally salient parts of an utterance,
we investigate the benefits of including attention-based archi-
tectures in the model. A concatenation operation is employed
to take advantage of the complementary features extracted
from BLSTM and FCN, and the learnt representations are
then fed into a deep neural network (DNN) to predict the
emotion of the input utterance.

The main contributions of this article are, therefore, as fol-
lows: i) we propose a novel framework to fuse both spa-
tial and temporal representations for SER by leveraging
attention-based FCNs with attention-based BLSTM-RNNs,
an approach capable of automatically learning feature repre-
sentations and modeling the temporal dependencies; ii) fol-
lowing the recent success of applying deep learning methods
directly to spectrograms, enhanced deep spectrum represen-
tations are derived from forwarding spectrograms through the
Attention-BLSTM-FCNmodel; and iii) the proposed method
can be easily adapted to enhance existing state-of-the-art
methods. To the best of the authors’ knowledge, this is the
first work in the literature that applies the Attention-BLSTM-
FCNmodel to learn enhanced deep-spectrum representations
for SER.

II. RELATED WORK
SER is a highly active research field, with many novel
approaches being proposed and investigated over the past
decade. With the increase of available data and compu-
tational power, deep learning methods are rapidly becom-
ing the predominant approach [17], [17]–[19]. In particular,
many recent studies have explored leveraging deep neu-
ral networks as feature extractors to learn discriminative
representation [20]. Due to their success in many visual
recognition tasks, CNNs are being widely used in feature
representation learning in various speech analysis tasks. For
example, Huang et al. used spectrograms of speech together
with a CNN to perform SER [21], and similar work is pre-
sented in [22], in which a CNN was employed to learn
affect-salient features from spectrograms.

Nowadays, extracting spectrograms from audio clips
and extracting deep spectrum representations by feed-
ing them through a deep CNN has become a new
research trend [1], [2], [23]–[25]. Furthermore, deep spec-
trum representations benefit from the advantage of trans-
fer learning, as they are formed by passing spectrograms
through pre-trained image classification deep CNNs such
as AlexNet [26] or VGG [27]. Deep spectrum representa-
tions have been shown to produce suitable salient features
which achieve state-of-the-art performance in a range of
speech-related recognition tasks including SER [1].

Additionally, given that context information is crucial for
detecting emotional states, RNN paradigms are widely used
in SER to exploit the temporal information inherent in speech
signals. LSTM-RNNs, in particular, are frequently employed
in SER tasks [9], [11], [28]–[30].

Inspired by the success of CNNs and RNNs, there has
been an increasing interest in incorporating both into a
single architecture. For example, in [31], the Convolutional
Long Short-TermMemory Deep Neural Networks (CLDNN)
model was proposed for speech recognition. The devel-
oped model consisted of convolutional layers, LSTM gated
recurrent layers, and fully connected (FC) layers. More
recently, end-to-end network architectures have emerged as a
promising network structure. These can automatically extract
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representations directly from raw (unprocessed) data, rather
than manually extracting hand-crafted features.

The SER approach proposed in [9] jointly exploited a CNN
to automatically extract suitable representations from raw
audio signals and an LSTM-RNN to capture the temporal
information. A similar framework was proposed in [32] for
the related task of speech-based depression detection. In [33],
a specially designed neural network structure that accepts
variable-length speech was proposed for SER. This approach
combines CNN-based deep spectrogram representations with
an RNN to handle the variable-length speech segments.

Similar to the Attention-BLSTM-FCNmodel developed in
this paper, a parallel combination of LSTM and the CNN neu-
ral network framework has been explored for acoustic scene
classification [34]. The results presented in [34] demonstrate
that the LSTM model extracted key sequential information
from consecutive audio features and the CNN model learnt
salient spectro-temporal locality from spectrogram images.

Attention-based RNNs have begun to be widely used
across a range of machine learning tasks. For exam-
ple, they have been successfully applied in tasks such
as speech recognition [15], natural language processing
(NLP) [35], [36] and SER [10], [11], [30]. Similarly, atten-
tion mechanisms have also been exploited for CNNs for
NLP tasks [37], audio-related classification tasks [24] and
SER [6], [13], [14].

In summary, while there is a range of work in the
literature focusing on feeding spectrograms into CNNs
for speech-based recognition tasks, very little research
has been undertaken to explore attention-based FCNs and
attention-based LSTM-RNNs as mechanisms for extracting
emotionally salient information from spectrograms.

III. PROPOSED METHODOLOGY
In our proposed Attention-BLSTM-FCN model (cf. Fig. III),
the Mel-spectrograms are fed into two parallel net-
works, namely an Attention-BLSTM and an Attention-
FCN. We then concatenate the network outputs to form a
new feature sequence. The Attention-BLSTM layers extract
sequential information from the spectrograms, while the
Attention-FCN layers extract spatial information. Fusion of
the concurrently extracted and complementary features forms
a joint spatio-temporal feature vector.

A. SPECTROGRAM GENERATION
The first step in our proposed system is the extraction of the
mel-spectrograms. Spectrograms are a time-frequency visual
representation of a signal produced by a short-time Fourier
transform (STFT) [38]. In the presented work, we used the
librosa1 framework to first resample the audio signals to
16 kHz, and then transform them to spectrograms utilizing
the STFT implemented with a Hamming window function
with a frame length of 25ms at a rate of 10ms. Following this,
we mapped the STFT matrices into their magnitude squared

1https://github.com/librosa/librosa

via:

Xi(f ,m) = |STFT {xi}(f ,m)|2, (1)

where xi is an utterance signal, f stands for frequency
and m for window position. Finally, we generate the
mel-spectrograms by scaling the f hertz signal into m
mel-scaled bands via:

m = 2595 log10(1+
f

700
). (2)

Mel-frequency spacing approximates that of the human
cochlea, and thus the resulting mel-spectrograms reflect the
relative importance of different frequency bands as perceived
by the human ea [39].

B. ATTENTION-BASED BIDIRECTIONAL LONG
SHORT-TERM MEMORY NETWORKS
Our proposed system includes the use of attention mech-
anisms, together with BLSTM in order to focus fea-
ture learning onto the salient regions of a sequence. The
so-called Attention-Based BLSTM-RNN unit contains four
components:

1) The input layer: the spectrogram is fed into the model.
2) An LSTM layer: utilizes a BLSTM to extract high-level

representations from step (1).
3) An attention layer: produces a weight vector, and

merges frame-level features from each time step into
an utterance-level feature vector by multiplying it with
the weight vector.

4) The output layer: outputs the resulting utterance-level
feature representation.

We describe the LSTM and attention layers below in the
following.

1) BIDIRECTIONAL LONG SHORT-TERM
MEMORY NETWORKS
As LSTM units solve the issue of vanishing and exploding
gradients in RNN training [8], they are, usually, employed as
the basic unit in RNN. An LSTM-RNN can, therefore, model
long-range dynamic dependencies while avoiding issues
relating to vanishing or exploding gradients during training.
A standard LSTM can, however, only process sequential
data in one direction [40], hence the BLSTM-RNN has been
proposed to overcome this limitation. In a BLSTM-RNN,
the input is processed both in the standard order and reversed
order, allowing the network to combine future and past infor-
mation at every time step.

A BLSTM component comprises two LSTM layers pro-
cessing the input separately to produce

−→
h , −→c , the hidden

states and the cell states of an LSTM processing the input
in the forward direction, and

←−
h , ←−c , the hidden states and

cell states of an LSTM processing the input in reversed order.
Both
−→
h , and

←−
h , are then combined using:

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by, (3)

to produce the output sequence of the BLSTM layer.
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FIGURE 1. An overview of our proposed Attention-BLSTM-FCN model, in which spectrograms are fed
into two parallel networks, an Attention-BLSTM to extract temporal information, and an Attention-FCN
to extract spatial information. The fusion of the outputs of these networks forms a joint
spatial-temporal feature vector.

Note that it is also possible to use the cell states, instead of
the hidden states, of the two LSTM layers in a BLSTM layer
to produce the output sequence of the BLSTM layer:

yt = W−→c y
−→c t +W←−c y

←−c t + by. (4)

2) ATTENTION LAYER
In this layer, a 1D attention module is built on top of
the BLSTM layer. To determine the attention weights αi,
we calculate each vector entry xi in a sequence of inputs x,
as follows:

αi =
exp(f (xi))∑
j exp(f (xj))

, (5)

in which f (x) denotes the scoring function. We use f (x) =
W T x for f (x), in which W is the trainable parameter, as a
linear scoring function.

The output of the attention layer is then the weighted sum
of the input sequence, defined as attentivex :

attentivex =
∑
i

αixi. (6)

C. ATTENTION POOLING BASED FULLY
CONVOLUTIONAL NETWORKS
Our proposed system also includes the use of attention mech-
anisms, together with FCN in order to focus feature learning
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onto more emotion-relevant time-frequency regions of the
mel-spectrograms of speech.

1) FULLY CONVOLUTIONAL NETWORKS
Similar to a conventional CNN, the FCN structure only
consists of convolutional layers, and hence the local feature
structures are effectively preserved with a relatively small
number of weights. Meanwhile, the FCN structure also pro-
vides advantages by allowing the networks to model the
temporal and harmonic structure of audio signals [41]. Given
these benefits, we use spatial convolutional neural networks
with an FCN-like structure for our deep spectrum features
extraction.

In this work, the output of our FCN is a three-dimensional
array of size F × T × C , where the F and T stands for the
frequency and time domains of the spectrogram and C for
channel size. We consider the output as a variable-length grid
of L elements, L = F × T . In set A, each of the elements is
a C-dimensional vector corresponding to a region of speech
spectrogram, represented as αi.

A = {α1, . . . , αL} , αi ∈ RC . (7)

In this work, we employ a 3-layer FCN which contains
three convolutional layers and three max-pooling layers. The
network takes a log-amplitude mel-spectrogram sized 40 ×
500 as input and predicts a 128-dimensional output vector.
As the FCN is performing feature extraction, its final output
comes from the attention pooling [42], which reduces the
number of parameters of the network.

2) ATTENTION POOLING METHOD
As not all time-frequency units will contribute equally to the
emotional state associated with an utterance, we, therefore,
adopt an attention mechanism similar to [6]. We place it on
top of the FCN to help the network pay more attention to
specific time-frequency regions of the input spectrogram.
We realize the attention module as follows. First, the anno-
tation ai is fed as input to obtain a new representation of ai
through a multilayer-perceptron (MLP) layer employing tanh
as the non-linear activation function:

ei = uT tanh(Wai + b). (8)

Next, we calculate the importance weight, ei, of the ai by
the inner product between this new vector and the learnable
vector u. After this, the normalized importance weight αi is
calculated using the softmax function:

αi =
exp(λei)∑L
k=1 exp(λek )

. (9)

In this equation, λ is a scale factor which controls the uni-
formity of the importance weights of the annotation vectors.
λ ranges between 0 and 1. If λ = 1, the scaled-softmax
becomes the commonly used softmax function. If λ = 0,
the importance weights will be a uniform distribution on the
setA, whichmeans all the time-frequency units have the same

TABLE 1. Instance distribution over four emotion classes for the
IEMOCAP Dataset.

importance weights for the final utterance emotion vector.
In this work, we set λ = 0.3 according to the performance
on the validation set [6]. Finally, the utterance emotion vector
c is computed as the weighted sum of set A with importance
weights:

c =
L∑
i=1

αiai. (10)

IV. EXPERIMENTS AND RESULTS
In this section, we provide key details relating to the experi-
mental setup, our experiments, and the results of our analysis.

A. DATASET DESCRIPTION
IEMOCAP consists of audio-visual data with transcrip-
tions from recordings of dialogues between two professional
actors, over 5 sessions, with the corpus divided into two
parts: improvise and script [43]. In our experiments, we only
focus on the improvised sessions. Adopting the methodology
of previous works, we used a leave-one-session-out strat-
egy. In each training process, 8 speakers from 4 sessions
were used as training data, and the remaining session was
separated into two parts: one being regarded as validation
data and the other as test data. It is also worth noting here
that the data distribution of each emotion class is heavily
imbalanced. As in [44], we, therefore, merge the happy and
excited utterances into the happy class since they are close in
emotion. Four emotion categories are, therefore, employed
in the training and evaluation: angry, happy, sad, and neutral
(cf. Table 1).

FAUAibo Emotion Corpus (FAU-AEC), on the other hand,
is composed of spontaneous and emotional German speech
samples [45]. The corpus contains 9.2 hours of German
speech from a total of 51 children interacting with Sony’s
pet robot Aibo at two different schools. As per [46], we used
9 959 utterances from 26 children (13 males and 13 females
from the Ohm School) as the training set and 8 257 utterances
from 25 children (8 males and 17 females from the Montes-
sori School) as the test set.2 In this study, we concentrated on
the five-class problem with the emotion categories of anger,
emphatic, neutral, positive, and rest (cf. Table 2).

2We will provide a URL for a document with details on partitions and
seeds upon acceptance.

VOLUME 7, 2019 97519



Z. Zhao et al.: Exploring Deep Spectrum Representations via Attention-Based Recurrent and CNNs for SER

TABLE 2. Instance distribution over five emotion classes for the FAU Aibo
Emotion Corpus.

B. EXPERIMENT SETUP AND EVALUATION METRICS
The proposed Attention-BLSTM-FCN model has many
hyperparameters, a proportion of these being tuned based
on the recommendations from previous works which utilized
the same database [10], [16]. In order to identify the optimal
model, we optimized 15 hyperparameters: window size, con-
volutional kernel size, pooling size, stride on convolutional
layer, initial number of filters and neurons, learning rate,
the number of convolutional/pooling/fully connected layers,
type of activation function, optimization algorithm, dropout
on convolutional and fully connected layers, and frequency
resolutions of the input spectrogram. The details on these
hyper-parameters are given below:

1) We set the window size to 25ms (window sizes
between 15ms to 200mswere tested) and window shift
is set to 10ms

2) The BLSTM contained 128 × 2 nodes. We also tested
BLSTMs of 64 × 2 nodes however we observed an
accuracy drop of 1-3%

3) Our Mel-spectrograms were formed using 40 Mel
bands (30, 60, 80, and 100 bands were also tested)

4) The optimal FCN topology was found to be 3 layers
(we tested 2-5 layers), similarly, the best topology for
BLSTM is found to be 2 layers (we tested 1-3 layers)

5) The FCN filters are set to 64, 128, 128 (each layer was
tested from 8 to 256). Stride for the CNN layers was set
as (1, 1).

6) A dropout layer, batch normalization techniques, and
ReLU activation functions are applied to prevent over-
fitting.

7) The Adam optimizer with a learning rate of 10−3, and
a decay of 10−6 is used for training.

8) All models were implemented by the TensorFlow3

framework.
9) All models were trained with a maximum epoch

of 100 and batch size of 100with dropout regularization
utilized to prevent overfitting.

To evaluate the performance of the proposed framework,
we conducted several experiments. First, in order to inves-
tigate the influence of spatial and temporal information,
we built our FCNs, attention-FCN, and attention-BLSTM
models as described above. A comparison of FCNs, attention-
FCN, attention-LSTM, attention-BLSTM, as well as our
proposed model was performed. We then evaluated the
performance of the standard spectrogram with different spec-
trogram resolutions based on the Attention-BSLTM-FCN

3https://www.tensorflow.org

FIGURE 2. A Visual comparison of different Mel scaled frequency
resolutions and different STFT window lengths of 2-seconds-long
spectrogram fragments.

model. Note, resolution is an important decision when gener-
ating models that rely on spectrograms. The work presented
in [47] reveals the performance differences among differ-
ent frequency resolutions of the input spectrogram. To this
end, the Attention-BLSTM-FCN model was re-trained using
either a 30-band, a 40-band, 60-band, 80-band, or 100-band
Mel-spectrogram. Moreover, spectrograms represent a 2D
representation of audio signals. On the one hand, changes in
theMel-scale represent a scale effect on the vertical direction.
On the other hand, the horizontal scale of each data point
is influenced by (temporal) window length (cf. Figure 2).
We therefore also tested the effect of varying window sizes
between 15ms to 200ms.

Thirdly, we compared the effectiveness of the deep
spectrum representations extracted from the Attention-
BSLTM-FCN model with two commonly used SER fea-
ture representations: extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) [48] and Interspeech Computa-
tional Paralinguistics Challenge (COMPARE) features set.
In order to do so, we first extracted the eGeMAPS and Com-
ParE low level features with the openSMILE toolkit [49]. Due
to the high dimension of the ComParE feature set, we per-
formed the PCA technique on the training set to reduce the
feature size by selecting top 150 components which explained
>95% variances of the original features. We then applied
functionals (max, min, range, mean, and standard-deviation)
on the two feature representations independently for each
combination of speaker and feature independently. Finally, all
the feature representations are fed into a linear support vector
machine (SVM) implemented using the scikit-learn4 toolbox,
and trained via stochastic gradient descent.

Finally, in order to show the effectiveness of our
approach, we compared the performance with systems based
on pre-trained CNNs, namely ‘AlexNet’ [26], ‘VGG16’,
and ‘VGG19’ [27]. We obtained the pre-trained ‘AlexNet’
network from MATLAB R2017a3, and ‘VGG16’ and

4http://scikit-learn.org
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TABLE 3. Configurations of ‘AlexNet’, ‘VGG16’, and ‘VGG19’.

TABLE 4. Class weights for data balance when using the FAU Aibo
Emotion Corpus.

‘VGG19’ from MatConvNet [50]. Then, we exploited the
Mel-spectrograms as the input for these three pre-trained
CNNs and extracted the deep representations from the acti-
vations on the second fully connected layer (fc7) as feature
vectors (cf. Table 3). The feature representations extracted
by the three pre-trained CNNs and Attention-BLSTM-FCN
were fed into the linear SVM.

As evaluation measures, we employ the standard evalua-
tion criteria used on the IEMOCAP and FAU-AEC dataset.
For IEMOCAP, we used both unweighted and weighted accu-
racies (UA and WA respectively) as the evaluation metric,
while for FAU-AEC, we use only unweighted accuracy (UA)
as the evaluating measure as this database is extremely
unbalanced. Furthermore, in order to tackle the problem
of unbalanced data, we apply class weights during training
(cf. Table 4) identified using:

rk =
N
Nk
∝

1
Nk
, (11)

where N is the total number of training examples, and Nk is
the number of the training examples of each class [51].

C. RESULTS
A comparison shows that the Attention-BLSTM-FCN model
achieves the best performance. It can be seen that the pro-
posed approach outperforms previous works on the IEMO-
CAP and FAU-AEC datasets (cf. Table 5). Our highest UA
and WA achieved on IEMOCAP were 68.1%, and 67.0%,
respectively. This represents a significant improvement over
the baseline FCN model (p < .05 in a one-tailed z-test).
The same system set-up also achieved the best UAR, 45.4%,
on FAU-AEC. Again, this represents a significant improve-
ment over the baseline FCN (p < .05 in a one-tailed z-test).

TABLE 5. Performance comparison between the proposed
Attention-BLSTM-FCN with other models on the IEMOCAP and FAU Aibo
Emotion corpus.

TABLE 6. Performance comparison between different mel-bands on the
IEMOCAP and FAU Aibo Emotion corpus.

TABLE 7. Performance comparison of the deep spectrum features with
eGeMAPS and COMPARE feature sets.

Our second experiment explores the difference in the fre-
quency resolution in our system set-up (cf. Table 6) We
observed that frequency plays an important role when extract-
ing deep features. In this group of experiments, the best
performances were 68.1% (WA) and 67.0% (UA) on IEMO-
CAP; 45.4% (UA) on FAU-AEC was achieved by the resolu-
tion of 40 Mel-bands.

When comparing our features with two standard acoustic
features (cf. Table 7), we observed that the best UA (66.5%)
and WA (66.7%) on IEMOCAP and the best UA (43.9%)
on FAU-AEC were achieved by the deep spectrum features
extracted from our proposed model. This set-up yielded a
significant improvement over the eGeMAPS (p < 0.01
in a one-tailed z-test) and C OMP ARE (p < 0.01 in a
one-tailed z-test) feature sets. These comparisons indicate the
promise of the deep spectrum features; further investigations
are warranted to establish their suitability over a range of
speech-related tasks.
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FIGURE 3. Performance comparison between the proposed Attention-BLSTM-FCN with pre-trained models on the IEMOCAP dataset.

FIGURE 4. Performance comparison between the proposed
Attention-BLSTM-FCN with pre-trained models on the FAU Aibo Emotion
corpus.

Finally, when comparing the Attention-BLSTM-FCN
model with more conventional deep spectrum approaches,
the advantages of this framework can be clearly seen
(cf. Fig. 3 and Fig. 4). Across the two data sets, and
across the different mel-frequency resolutions, the Attention-
BLSTM-FCN approach also yielded a significant improve-
ment over deep spectrum representations extracted by
AlexNet, ‘VGG16’ and ‘VGG19’ (p < .01 in a one-tailed
z-test). Given the previous results showing the suitabil-
ity of AlexNet, in particular, for deep spectrum fea-
ture extraction [1], [2], [10], [16], these results highlight the
effectiveness of our proposed model for SER.

D. DISCUSSION
From an overall experimental view point, the presented
results demonstrate that our proposed model achieves notable
performance improvements over the other, existing meth-
ods on IEMOCAP as well as the FAU-AEC. Further-
more, the proposed model outperforms both the baseline

models and the individual application of attention-FCN and
attention-BLSTM. These comparisons imply that it is cru-
cial to use both spatial and temporal spectral information to
boost speech emotion recognition and analysis. In terms of
improved performance, it is clear that both the attention-FCN
and the attention- BLSTM models complement each other.
The consistently stronger performances of the Attention-
BSLTM-FCN deep features compared to the other three
deep pre-trained convolutional neural networks (cf. Fig. 3 and
Fig. 4) support this hypothesis.
Our results also demonstrate that, on average, attention

mechanisms can improve the prediction accuracy of the FCNs
and BLSTM modules. We observed that the attention-FCN
module did not result in a consistent improvement in WA
over use of the FCN model alone when using the IEMOCAP
dataset. In this regard, it is important to note that WA is
highly dependent on the distribution of classes in the dataset.
Therefore, we lend more importance to the UA; it better
reflects the imbalanced distribution of the emotional classes.
A comparison of the results for the proposed architecture with
those for the eGeMAPS and ComParE feature sets indicate
that it performs well as a feature extractor. It is worth noting
that we did not perform any preprocessing on data and only
used an SVM for classification. Additionally, the recognition
results based on the deep spectrum representations derived
from the proposed model outperformed the other two com-
monly used feature sets. These results add to the growing
evidence in the literature that forwarding spectrogram rep-
resentations through deep learning models produces salient
features suitable for speech-related classification tasks.

We also observed that the frequency resolution of the
input spectrogram is an important factor in determining the
overall performance of the model (cf. Table 6). This effect
is most likely due to the network learning some form of
frequency discriminating function. Consistent with some
—-other— results in the literature [58], setting the frequency reso-
lution to 40mel bands yields better results than those with any
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other value. This result contradicts those presented in [47],
in which it was observed that using a higher number of mel
frequency bands uniformly improved system accuracy. How-
ever, a reasonable explanation for this could be the difference
in the models employed. Thus, the number of mel-bands
required should potentially be treated as a hyperparameter
and evaluated on a case-by-case basis.

Even though our results are more than encouraging, our
approach has several limitations and a number of research
directions should be considered for future research. A poten-
tial limitation of our proposed model is increased compu-
tations due to the generation of more trainable weights and
hyperparameters. Moreover, further research needs to be con-
ducted to confirm the robustness of our proposed model. Fur-
thermore, we expect that the application of our approach to
large datasets would show bigger improvements with respect
to deep spectrum representations.

V. CONCLUSION
We have proposed and developed a joint deep neural network
architecture comprising a parallel combination of attention
enhanced FCN and BLSTM networks to perform efficient
SER from spectrograms. We trained an Attention-BLSTM-
FCN model based on the spectrograms generated from the
IEMOCAP and FAU-AEC datasets. The results of our exper-
iments are highly promising, providing a new direction for
consideration when performing emotion recognition.

In future work, we plan to further realize the potential
of our proposed model and deep spectrum representations
by establishing their suitability in other speech and acoustic
recognition tasks.
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