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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Regularisierung von differentiell-alge-
braischen Gleichungen (DAEs) abstrakter Funktionen. Diese sogenannten Operator DAEs
sind Operatorgleichungen, die die Struktur differentiell-algebraischer Gleichungen verall-
gemeinern. Sie bieten eine alternative Formulierung partieller Differentialgleichungen, die
gewissen Nebenbedingungen genügen müssen. Die vorgestellte Regularisierung verbessert
die Sensibilität der Operator DAEs gegenüber Störungen und resultiert in gut gestellten
Systemen bei der Ortsdiskretisierung.

Operator DAEs sind hervorragend geeignet zur Modellierung physikalischer Systeme.
Anwendungsbereiche findet man in der Strömungsmechanik, der Kontinuumsmechanik
sowie im Bereich des Elektromagnetismus. Im Allgemeinen führen gekoppelte Systeme,
die aus mehreren Subsystemen bestehen, oft auf diese Art von Gleichungen. Die For-
mulierung physikalischer Systeme als Operator DAE steht im direkten Zusammenhang
zur schwachen Formulierung von partiellen Differentialgleichungen. Als Verallgemeinerung
von DAEs kann auch die Nebenbedingung selbst einen Differentialoperator beinhalten
wie zum Beispiel bei den Navier-Stokes Gleichungen, die durch die Divergenzfreiheit re-
stringiert sind. Es handelt sich also um DAEs, die allgemein in einem Banachraum
definiert sind. Eine weitere Charakterisierung ist gegeben durch die Eigenschaft, dass
eine Semidiskretisierung im Ort auf eine DAE im ursprünglichen Sinne führt. Daraus
resultieren auch die Stabilitätsprobleme wie die hohe Sensibilität gegenüber Störungen
sowie die Notwendigkeit konsistenter Anfangsdaten.

Die Regularisierung folgt den Ideen der Indexreduktion für DAEs. Dabei sucht man
eine äquivalente Operatorgleichung, die bessere numerische Eigenschaften aufweist. In
dieser Arbeit wird speziell die Methode minimal extension betrachtet, die sich hervorra-
gend für semi-expliziete Systeme eignet. Dies führt dann auf ein vergrößertes System, da
im Regularisierungsprozess neue Variablen eingeführt werden. Dabei ist zu erkennen, dass
sich der Index der semidiskreten Systeme verringert. In der Strömungsmechanik erhält
man DAEs vom Index 1 statt Index 2 und im Bereich der Kontinuumsmechanik reduziert
sich der Index sogar von 3 auf 1.

Diskretisiert man die Operatorgleichungen zuerst in der Zeit statt im Ort, so erhält
man eine Folge von stationären partiellen Differentialgleichungen. Der letzte Teil der
Arbeit analysiert die Konvergenz dieser Zeitdiskretisierung. Dabei ist zu beobachten,
dass sich die einzelnen Variablen unterschiedlich verhalten. Der Lagrange Multiplikator,
beziehungsweise der Druck im Bereich der Strömungsmechanik, benötigt stärkere Reg-
ularitätsannahmen, um die Konvergenz zu garantieren. Desweiteren wird der Einfluss
von kleinen Störungen untersucht. Auch hierbei zeigt sich der Vorteil der präsentierten
Regularisierung in Bezug auf die besseren Stabilitätseigenschaften verglichen mit dem ur-
sprünglichen System.
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Abstract

This thesis is devoted to the regularization of differential-algebraic equations in the
abstract setting (operator DAEs) and the resulting positive impact on the corresponding
semi-discrete systems and on the sensitivity to perturbations. The possibility of a mod-
ularized modeling and the maintenance of the physical structure of a dynamical system
make operator DAEs convenient form the modeling point of view. They appear in all
fields of applications such as fluid dynamics, elastodynamics, electromagnetics, as well as
in multi-physics applications were different system types are coupled.

From a mathematical point of view, operator DAEs are constrained PDEs, written in
the weak formulation. Therein, the constraint may itself be a differential equation such as
in the Navier-Stokes equations where the velocity of a Newtonian fluid is constrained to be
divergence-free. On the other hand, operator DAEs generalize the notion of DAEs to the
infinite-dimensional setting, including abstract functions which map into a Banach space.
Thus, a spatial discretization leads to a DAE in the classical sense. This also implies that
typical stability issues known from the theory of DAEs such as the high sensitivity to
perturbations also translate to the operator case.

The regularization of an operator DAE follows the concept of an index reduction for
a DAE. Hence, an equivalent system is sought-after which has better properties from a
numerical point of view. The presented regularization lifts the index reduction technique of
minimal extension for semi-explicit DAEs to the abstract setting and leads to an extended
operator DAE. A spatial discretization of the regularized system then leads to a DAE of
lower index compared to the semi-discrete system arising from the original operator DAE.
For flow equations we obtain a reduction from index 2 to index 1 whereas the applications
from the field of elastodynamics yield a reduction from index 3 to index 1.

The last part of this thesis deals with the convergence of time discretization schemes
applied to the regularized operator DAEs. Therein, we observe a qualitative difference for
different variables. More precisely, we show that the Lagrange multiplier needs stronger
regularity assumptions on the given data in order to guarantee the convergence to the exact
solution of the operator DAE. Furthermore, the influence of perturbations in the right-
hand sides of the system is analysed for the semi-discrete as well as for the continuous
setting. This analysis shows the advantage of the presented regularization in terms of
stability.
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1. Introduction

With an increasing importance of automatic modeling, differential-algebraic equations
(DAEs) register an increase in popularity. DAEs allow a quick and facile modeling proce-
dure with a smaller need of system simplifications and exploit the system structure and
sparsity [CM99]. In particular, they enable modularized modeling of several uni-physics
components.

Nowadays, many models contain partial differential equations (PDEs). A coupling of
systems then leads to a mixture of DAEs and PDEs which are called partial differential-
algebraic equations (PDAEs) or, formulated in a weak functional analytic setting, operator
or abstract DAEs. This approach follows the paradigm to include all available information
to the system rather than implicitly eliminate variables. Thus, all variables remain a
physically valid part of the system, also throughout the discretization process.

However, the simplicity of modeling shifts the difficulties to the mathematical part,
i.e., to the analysis and simulation of such systems. DAEs suffer from instabilities, drift-off
phenomena, and ill-posedness [GM86, KM06, Ria08, LMT13]. Note that the ques-
tion of stability is of special importance if one considers applications including uncertain
components, parameters, or inputs from other subsystems including themselves numerical
errors.

The aim of this thesis is to regularize a specific class of PDAEs in the sense that
these instabilities are reduced. Furthermore, the regularization increases the potential
of adaptive methods for the simulation of constrained PDEs and is independent of the
discretization scheme. The connection between the presented regularization on operator
level and the index reduction for DAEs is illustrated in the following scheme.

operator DAE of
high-index type

operator DAE of
index-1 type

DAE of high index DAE of index 1

regularization

of operator DAEs

index reduction

for DAEs

spatial
discretization

spatial
discretization

Applications

Typical fields of applications which are modeled by DAEs are multibody systems such as
problems in robotics [ESF98] as well as electrical circuit networks in which a (typically
large) number of devices is coupled and constrained by Kirchhoff’s laws [Tis96]. Another
application comes from path control in which a specific part of a mechanical system is
supposed to follow a prescribed trajectory. This typically leads to DAEs of very high
index [BK04]. Note that the index measures, loosely speaking, the distance of a DAE
from an ODE and thus, provides a measure of difficulty.

However, there are several applications for which the framework of DAEs is too re-
strictive. This is the case if the involved physical properties are described by PDEs.
The Navier-Stokes equations illustrate a typical example as they consist, besides the dy-
namics, of an equation describing the conservation of mass, namely the incompressibility
[Tem77, EM13]. For levitated droplet problems, in which one considers the effect of
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the surface tension on a fluid interface, the coupling condition even contains the pressure
variable [BKZ92, EGR10]. Multibody systems including flexible components are also
described by PDAEs [Sim00, Sim13]. Further examples are the modeling of chemical
kinetics [KPSG85] or the gas transfer in pipeline networks [GJH+13]. Also applications
in chemical engineering such as a non-reacting gas ignition or a superconductive coil often
lead to PDAEs [CM99]. In general, one can say that multi-physics models which arise
from a coupling of different components often lead to PDAEs [EM13].

Operator DAEs

The large range of applications calls for a good understanding of the resulting systems.
However, the analysis of PDAEs in the general form is still far from complete [EM13].
This includes results on their well-posedness as well as a classification as it exists for DAEs
in form of the index-concept [Tis03, LMT13].

An essential property used in this thesis is the possibility to formulate PDEs as ODEs
in Banach spaces which we refer to as operator or abstract ODEs. Here we distinguish
two approaches: the semigroup approach [Paz83] and the generalized formulation based
on evolution triples which is used in this thesis. The use of generalized solutions provides
the possibility to formulate problems from mathematical physics in an elegant functional
analytic way [Zei90a, Ch. 19]. We consider here the generalized formulation since it
appears naturally from the weak formulation of PDEs and allows for more general right-
hand sides. The formulation as operator ODE is based on four principles [Zei90a, Ch. 23],
namely

• to treat time and space variables in a different way,

• to use different spaces for the solution and its derivatives,

• to use generalized derivatives in time, and

• to search for solutions in appropriate Sobolev-Bochner spaces.

Following this framework, we may formulate constrained PDEs as operator DAEs. One
advantage of the formulation is the resulting structure which retains the DAE structure
although the problem is formulated in a Banach space. This facilitates the exploration of
the interaction of DAE and operator theory.

As mentioned above, there exists no general theory for the existence and uniqueness of
solutions. Since the systems of interest generalize DAEs as well as PDEs, we cannot expect
a unified solution theory [LMT13]. For coupled systems, one difficulty may already arise
in the modeling part when it is not specified which components require initial or boundary
conditions. Note, however, that this problem does not appear within this thesis, as we
only consider semi-explicit systems. The solvability of semi-linear PDAEs with nonlinear
monotone operators, which are intended to study coupled systems as in circuit simulations,
were analyzed in [Mat12], see also [Gün01].

Another open challenge is the missing index concept for general PDAEs, as this is
much more complex than for DAEs. Recall that even in the DAE case there exist several
nonequivalent notions of the index [Meh13]. However, first steps in this direction have
been done as there exist classifications for particularly structured systems. An extension of
the tractability index to a class of PDAEs, which is based on linearizations, was introduced
in [LMT01, Tis03]. A generalization of the perturbation index for linear systems is given
in [CM99]. Note that the involved perturbations are not restricted to the time variable,
see also [LSEL99, RA05].
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Contents

This thesis is divided into four parts. An introduction to several aspects from DAE theory
and functional analysis is given in Part A. Since the thesis deals with constrained time-
dependent PDEs and its formulation as operator DAEs, we have to analyse the interaction
of these two topics. DAEs are characterized by its high sensitivity to perturbations and
the resulting lack of robustness which carries over to the abstract setting. For the formula-
tion of DAEs in an abstract setting, we need to introduce the concepts of Bochner spaces
and Gelfand triples which provide the right spaces for the generalized formulation. Fur-
thermore, we have to discuss the meaning of initial conditions and consistency conditions
as they appear in the finite-dimensional setting. Finally, we recall basic discretization
schemes in time and space which are needed for the simulation of time-dependent PDEs.

Part B is devoted to the regularization of constrained time-dependent PDEs of semi-
explicit structure. This kind of remodeling approach goes along with the pattern of thought
of maintaining all constraints within the system equations and even adds the so-called
hidden constraints. Within the procedure, no variable transformation is needed such that
the original physical meaning of the variables is preserved. The key for the presented
regularization is the formulation of the system equations as operator DAE which allows
to translate methods from the theory of DAEs to the abstract setting.

In Part C we analyse the positive effects of the regularization process in terms of the
DAEs which result from a spatial discretization. We first consider the method of lines in
which one discretizes in space first. A comparison of the DAEs arising from the original
and regularized operator equation shows a decrease of the index and thus, an improvement
in terms of stability. Because of this, we may consider the regularization procedure as an
index reduction on operator level.

Discretizing the operator DAE first in time, i.e., following the Rothe method, we obtain
a stationary PDE in every time step. Although this blurs the original DAE structure
(because of the missing time dependence), the positive impact of the regularization from
Part B is still apparent. These effects are analyzed in the final Part D. Furthermore, we
prove the convergence of the Euler method for the semi-discretized operator DAE. Note
that this corresponds to the limit case where the stationary PDEs of each time step are
solved exactly. The analysis of the limiting case is important to anticipate problems which
may appear for very small discretization parameters and helps to design discretization
schemes which preserve properties from the continuous equations.
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Part

A

Preliminaries

The analysis, discretization, and simulation of constrained time-dependent PDEs re-
quires the knowledge of different areas of numerical mathematics. For the formulation
of such constrained PDEs in a weak sense, which is advantageous for the regularization
as well as the simulation, we need several functional analytic concepts. This includes,
in particular, the notion of Sobolev and Bochner spaces but also of Gelfand triples and
Nemytskii mappings. On the other hand, semi-discretizations in space lead to DAEs. As
a result, for an understanding of the occuring instabilities for such systems it is helpful to
access the theory of DAEs. Well-known results such as the necessity of consistent initial
values and the appearance of derivatives of the right-hand side in the solution also apply to
the infinite-dimensional case. One may also observe the loss of convergence for low-order
schemes applied to constrained PDEs.

Finally, speaking about discretizations, we have to deal with discretization schemes in
time and space which lead to stable approximations. Here, we have to consider instabilities
due to the differential-algebraic structure as well as instabilities due to the saddle point
structure which occurs in the considered models. For this, we analyse stable mixed finite
element schemes and time integration schemes which are suitable for DAEs.

This introductory part is organized as follows. In Section 2 we briefly review the
characteristics of DAEs including the concept of the differentiation index and the cor-
responding stability problems. Driven by applications in fluid dynamics and structural
mechanics, we do not consider the most general case and restrict ourselves to DAEs of
semi-explicit structure. For such systems, special regularization techniques can be applied
which form the basis of the reformulation of the operator DAEs in Part B.

For the analysis of time-dependent PDEs several functional analytic tools are needed.
Weak formulations are stated in Sobolev spaces and the time-dependence additionally
leads to so-called abstract functions. Within Section 3, we collect the necessary tools for
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the analysis performed in this thesis including the integral notion for abstract functions.
Using these functional analytic concepts, we can formulate time-dependent PDEs in the
form of abstract differential equations in Section 4. Thus, we obtain ODEs and DAEs in
an abstract setting of Banach spaces which are equivalent to time-dependent PDEs in the
weak sense.

Section 5 closes the introductory part with a short overview of some discretization
methods. This includes some basic finite element spaces, which we will use to discretize
the problem in the space variables, as well as time integration schemes. Of special interest
for the simulation of time-dependent PDEs is the interplay between spatial and temporal
discretization. Here we distinguish between the method of lines and the Rothe method.

2. Differential-algebraic Equations (DAEs)

A convenient way of modeling, which allows modularized coupling, is provided by
differential-algebraic equations (DAEs). For this, different systems may be coupled through
the introduction of algebraic constraints which classify the type of connection. On the
other side, this kind of modeling leads to systems which may cause difficulties for numer-
ical simulation. DAEs are known for their stability issues since the solution needs besides
integration also a numerical differentiation which may be an ill-posed problem.

In the first part of this section the notion of the index, which classifies DAEs, is intro-
duced. Since we are interested in a special kind of systems, we focus on semi-explicit DAEs
of first and second order. Typical examples with this structure are the semi-discretized
Navier-Stokes equations and systems arising in (flexible) multibody dynamics. Second,
problems arising from a high index are analyzed and index reduction methods are in-
troduced. These methods provide a unified way to deal with DAEs of arbitrary high
index - at least theoretically. Aim of an index reduction is to find an equivalent system
with better stability properties which is beneficial for numerical simulations. Usually, the
index-reduced systems can be treated similarly to stiff ODEs and thus, can be handled by
well-analyzed methods. A summary of differences between DAEs and ODEs can be found
in [Pet82].

2.1. Index Concepts. The index of a DAE is supposed to classify the difficulty of
solving a given system. Nevertheless, there are several concepts which may lead to different
indices. In the applications of interest we only have square systems such that we focus on
the so-called differentiation index. Further notions are then shortly discussed afterwards.
For a more detailed introduction, we refer to the monographs [BCP96, KM06, Meh13].

The most general form of a DAE of first order is given by

F (t, x, ẋ) = 0, x(t0) = x0.(2.1)

In particular, we will consider semi-explicit systems of the form

u̇ = f(u, p), 0 = g(u)(2.2)

or, of second order,

ü = f(u, u̇, λ), 0 = g(u).(2.3)

The best-known example of the form (2.2) is given by the semi-discrete Navier-Stokes
equations. Examples of type (2.3) appear in mechanical systems such as multibody systems
as well as semi-discretized elastodynamics.
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2.1.1. Differentiation Index. As introductory example we consider the linear DAE
0 −1 0

. . .
. . .

0 −1

0

 ẋ+ x = f

with a smooth right-hand side f : [0, T ] → Rn and some (consistent) initial condition for
x(0) ∈ Rn. This system is easily solvable and yields, via recursion, the solution formula

xn = fn,

xn−1 = fn−1 + ẋn = fn−1 + ḟn,

...

x1 = f1 + ẋ2 =
n∑
k=1

f
(k−1)
k .

From this example we see that derivatives of the right-hand side may appear in the so-
lution. Thus, small perturbations of f may lead to large errors, since the derivative of
a small perturbation does not need to be small itself. Because of this instability, the
number of required derivatives can be seen as a measure for the difficulty of solving the
problem numerically. This motivates the definition of the differentiation index (d-index)
[HW96, Chap. VII.1]. The d-index νd of a DAE (2.1) is the minimal number of analytical
differentiations of the DAE,

F (t, x, ẋ) = 0,
dF (t, x, ẋ)

dt
= 0, . . . ,

dνdF (t, x, ẋ)

dtνd
= 0,(2.4)

which allows to extract algebraically from the equations in (2.4) an explicit ODE for
x(t). This resulting ODE is the so-called underlying ODE. For a precise definition of the
differentiation index, we refer to [BCP96, Def. 2.2.2].

Remark 2.1. With additional information about the structure of the DAE, it is suf-
ficient to consider differentiations of a part of (2.1). In particular, this is the case for
systems of semi-explicit form.

For the semi-explicit DAEs (2.2) and (2.3) the d-index can be determined in an easy
manner. We formulate these results in form of two lemmata [HW96, Ch. VII.1]. For
the second-order case we consider a more specific case as it appears in the modeling of
mechanical systems.

Lemma 2.2 (d-index for semi-explicit DAEs of first order). The semi-explicit DAE
(2.2) has d-index 2 if the matrix gufp with gu = ∂g/∂u and fp = ∂f/∂p is invertible.

Lemma 2.3 (d-index for mechanical systems). Consider the semi-explicit DAE of sec-
ond order,

M(q)q̈ = f(q, q̇)−GT (q)λ,

0 = g(q).

If M(q) is positive definite and the Jacobian G(q) := ∂g/∂q is of full row rank, then this
system is of d-index 3.

Proof. The proof is based on the fact that the matrix GM−1GT is non-singular.
Details are given in [HW96, Ch. VII.1]. �
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2.1.2. Further Index Concepts. Although the d-index is sufficient for the purpose of
this thesis, we give a short overview of further notions. The perturbation index measures
the effects of perturbations of the right-hand side [HLR89]. This approach is similar to
the differentiation index but may lead to different indices in special cases. For an example
we refer to page 460 in [HW96]. Note, however, that the perturbation index does not
distinguish between the single components of the system. For semi-explicit systems one can
observe that the differential variables are more robust to perturbations than the algebraic
ones.

If the system is not square or underdetermined, one needs a more general concept.
One possibility is given by the strangeness index [KM06, Ch. 3], which is closely related
to the differentiation index. An analysis of the strangeness index for (2.2) in terms of
the semi-discrete Navier-Stokes equations is given in [Wei97]. Therein the strangeness
index was chosen because the differentiation index may not be defined if the divergence
operator is discretized in such a way that gu is not of full rank. This may happen if the
non-uniqueness of the pressure variable is reflected within the discretization.

Further definitions of other index concepts such as the tractability or structural index
can be found in [LMT13, Meh13]. For the applications considered in this thesis, all
these concepts are essentially equivalent. In the following, we refer to the d-index simply
as index.

2.2. High-index DAEs. The numerical integration of DAEs with index 1 works
essentially as for stiff ODEs [HW96, Ch. VI.1]. Even for DAEs of index 2 the convergence
of classical Runge-Kutta schemes is often preserved. However, the order of convergence
may be limited by two [Arn98a].

For DAEs of higher index, i.e., with index νd ≥ 2, the situation turns out to be worse
and may lead to numerical instabilities due to the occurrence of derivatives of the right-
hand side. As a consequence, a direct treatment is not advisable as also the iteration
matrix is very ill-conditioned [BCP96, Ch. 5.4]. In general, the application of standard
numerical methods (for ODEs) to high-index problems may lead to a reduction of the
convergence order or even a loss of convergence [Meh13]. For the implicit Euler scheme
and two Runge-Kutta methods with 2 and 3 stages a survey of the convergence orders for
DAEs is given in Table 2.1.

Table 2.1. Order of convergence of different time integration schemes for
ODEs and DAEs, cf. [KM06, Ch. 5.2].

ODE index 1 index 2 index 3 index 4 index 5

Implicit Euler order 1 order 1 order 1 - - -

Radau IIa (s=2) order 3 order 3 order 2 order 1 - -

Radau IIa (s=3) order 5 order 5 order 3 order 2 order 1 -

Before we deal with methods to decrease the index of a DAE, we show how the concept
of modularized coupling may lead to DAEs of arbitrary high index. We illustrate this by
means of an example in which we couple two subsystems. Consider the two DAEs of index
2, [

1 0

0 0

][
ẋ1

ẋ2

]
=

[
0 1

1 0

][
x1

x2

]
+

[
0

f

]
,

[
1 0

0 0

][
ẏ1

ẏ2

]
=

[
0 1

1 0

][
y1

y2

]
+

[
0

g

]
.

Coupling the two systems via g = −ẋ2, we obtain a DAE of index 4 since the solution
involves the third derivative of the right-hand side f . This difficulty should be in mind
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when using automatic modeling, in particular for multi-physics systems, where different
types of models are coupled. Because of this it is advisable to couple systems which are
itself at most of index 1. Note, however, that this may lead to high-index DAEs as well.

The numerical problems arising from high-index DAEs motivate the idea of an index
reduction. For this, the given system is modified to a system of lower index which has the
same solution set. Several strategies are introduced in the next subsection.

2.3. Index Reduction Techniques. A common approach for the reduction of the
index of a general nonlinear DAE

F (t, x, ẋ) = 0, x(t0) = x0

is given by the derivative array approach [KM06, Ch. 6.2]. Since this approach does not
assume any structure of the given system, the method works for all DAEs, which satisfy a
certain hypothesis, cf. [KM06, Hyp. 3.48]. Within this procedure, one has to differentiate
all equations (νd− 1) times and to find suitable projections to extract the differential and
algebraic equations. For large systems of high index the derivative array becomes very
large and may cause memory problems. This holds especially for systems coming from the
semi-discretization of PDEs such as for flexible multibody systems.

The complexity can be reduced if additional information about the structure of the
system is available. This is the case for semi-explicit DAEs as systems (2.2) or (2.3).
Then, it suffices to build up a reduced derivative array. In Section 2.3.2 we discuss a
variant where no projection matrices are needed. Instead, so-called dummy variables are
introduced which extend the system. Nevertheless, the systems dimension remains of
moderate size for many applications. Such an approach was introduced in [MS93] and
later extended in [KM04]. This method is of particular interest as it is the base of the
regularization of the operator DAEs in Part B.

2.3.1. Index Reduction by Differentiation. Before introducing the method of minimal
extension in the next subsection, we study the simplest index reduction technique of all.
Consider a DAE of semi-explicit structure, e.g., a DAE of second order

M(q)q̈ = f(q, q̇)−GT (q)λ,(2.5a)

0 = g(q).(2.5b)

We assume that the DAE fulfills all assumptions of Lemma 2.3 such that it is of index

3. If the constraint 0 = g(q) is replaced by its second derivative 0 = d2

dt2
g(q), we obtain a

DAE of index 1.
Although the DAE is now suitable for numerical integration, we observe a so-called

drift-off. This means that the constraint 0 = g(q) is violated independent of the used
step size. The magnitude of the drift-off is analyzed in [HW96, Th. VII.2.1]. A detailed
illustration of this phenomenon by means of the mathematical pendulum for different
formulations and solvers can be found in [Ste06, Ex. 5.3.1].

2.3.2. Minimal Extension. In this subsection we apply the index reduction technique of
minimal extension [KM04] to a constrained multibody system, see also [KM06, Ch. 6.4].
Consider again the system (2.5) with symmetric and positive definite mass matrix M(q) ∈
Rn,n and the Jacobian of the constraint G(q) = ∂g/∂q ∈ Rm,n, which is assumed to be of
full row rank with m ≤ n. From Lemma 2.3 we know that this system represents a DAE
of index 3. Since G(q) is of full row rank, there exists an orthogonal matrix Q ∈ Rn,n such
that G(q)Q has the block structure

G(q)Q =
[
G1 G2

]
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with an invertible matrix G2 ∈ Rm,m. Note that the choice of Q is not unique and that
we assume Q to be independent of time which may restrict to length of the computational
time interval. The matrix Q then allows to partition the position variable q into[

q1

q2

]
:= QT q.

Thereby, the new variables are of size q1 ∈ Rn−m and q2 ∈ Rm, consistent with the splitting
of G(q). Since we can identify the equations which have to be differentiated, namely the
algebraic constraint, we consider the reduced derivative array. For this, we add to the
original system the two derivatives of the constraint, i.e.,

0 = G(q)q̇ + gt(q) and 0 = G(q)q̈ + z(q, q̇)

with z(q, q̇) = 2Gt(q)q̇ + gtt(q) + ∂G(q)/∂q(q̇, q̇). These equations are called the hidden
constraints. To avoid the expensive search for projectors, we introduce two dummy vari-
ables p2 := q̇2 and r2 := q̈2. Thus, we apply an extension instead of projecting the system
to its original size. With the variables q1, q2, p2, r2, and λ, the extended system is then
square. Replacing every occurrence of q̇2 and q̈2 by its corresponding dummy variable, we
obtain the overall system

M(q)Q

[
q̈1

r2

]
= f(q1, q2, q̇1, p2)−GT (q1, q2)λ,

0 = g(q1, q2),

0 =
[
G1 G2

] [q̇1

p2

]
+ gt(q1, q2),

0 =
[
G1 G2

] [q̈1

r2

]
+ z(q1, q2, q̇1, p2).

The proof that the resulting DAE is of index 1 is given in [KM06, Th. 6.12]. It is based
on the implicit function theorem and the structure of G(q)Q which allows to write q2, p2,
and r2 in terms of q1 and its derivatives. Then, the DAE reduces to a quasi-linear ODE
for q1 and an algebraic equation for λ.

Note that the dimension of the overall system has been increased by twice the number
of constraints. Thus, for most applications the system is still of moderate size. The diffi-
culty of this method is to find a suitable transformation Q. For time-dependent constraints
it may happen that the matrix Q has to be adapted over time in order to guarantee the
full rank property of the block G2.

On the other hand, there are several applications where Q can be chosen as the identity
matrix if a suitable reordering of the variables is assumed. In this case, the needed variable
transformation is just a permutation and thus, all variables keep their physical meaning.
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3. Functional Analytic Tools

This section gives a summary of functional analytic tools which are needed to formulate
constrained dynamical systems as operator DAEs, i.e., as DAEs on an abstract level.
Starting from the definition of distributions, we introduce the concept of Sobolev spaces
which is needed for the weak formulation of PDEs. In the analysis of PDEs, these spaces
have proven to be more suitable than the classical Ck spaces of continuously differentiable
functions.

For the notion of abstract differential equations, we consider so-called abstract func-
tions, i.e., functions of the form

f : [0, T ]→ X

with a real Banach space X and a bounded time interval [0, T ]. We introduce Bochner
integrals in Section 3.2, which allow to integrate abstract functions, and the corresponding
function spaces which generalize the concept of Lebesgue spaces. A further important tool
for abstract differential equations is the notion of Gelfand triples as well as the generaliza-
tion of distributions. This then leads to Sobolev-Bochner spaces for which we summarize
several properties in Section 3.3.

3.1. Fundamentals. Within this section, Ω ⊂ Rd always denotes a domain, i.e., Ω
is open, connected, and bounded. Furthermore, the domain is assumed to be non-empty.
The boundary of Ω, namely ∂Ω, can be classified in terms of smoothness.

Definition 3.1 (Ck-boundary [RR04, Def. 7.9]). A domain Ω ⊂ Rd has a Ck-
boundary, k ≥ 1, if for every point x ∈ ∂Ω there exists a neighborhood Nx such that
Nx ∩ ∂Ω is a Ck-surface. Furthermore, Nx ∩ Ω has to be ’on one side’ of Nx ∩ ∂Ω.

Definition 3.2 (Lipschitz boundary [RR04, Def. 7.10]). The boundary of a domain
Ω ⊂ Rd is called Lipschitz if for every point x ∈ ∂Ω there exists a neighborhood Nx such
that Nx ∩ ∂Ω is the graph of a uniformly Lipschitz continuous function. Furthermore,
Nx ∩ Ω has to be ’on one side’ of Nx ∩ ∂Ω.

Remark 3.3 (Polygonal domains). For simulations which rely on finite element dis-
cretizations and thus, triangulations of the domain Ω, polygonal domains play a special
role. If two neighboring boundary edges touch each other only at nodes and each boundary
node is the end of exactly two boundary edges, then the polygonal domain has a boundary
of Lipschitz type. In particular, this excludes domains with crack.

3.1.1. Dual Operators and Riesz Representation Theorem. In this subsection we recall
some basic properties of operators between Banach spaces such as the existence of a
dual operator. For Hilbert spaces we obtain the so-called adjoint operator due to the
representation theorem of Riesz. This subsection is based on the two chapters [Yos80,
Ch. VII] and [RR04, Ch. 8.4].

Consider two real Banach spaces X and Y and a linear operator A : D(A) ⊂ X → Y ,
where D(A) denotes the domain of A. The range R(A) then denotes the subspace of Y ,
given by

R(A) := {y ∈ Y | there exists an element x ∈ D(A) with y = Ax}.

The null space or kernel of the operator A is the subspace of X which is defined by
ker(A) := {x ∈ X | Ax = 0}. As in the finite-dimensional case, linear operators are
invertible if and only if its kernel contains only the zero element. The inverse operator is
then also linear [RR04, Th. 8.3].
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For a given operator A : D(A) ⊂ X → Y we want to define a mapping between the
the dual spaces of Y and X, which generalizes the transpose of a matrix. The dual space,
namely X∗, contains all linear functionals on X, i.e., linear bounded mappings from X to
R. Given such a functional w ∈ X∗, the action on an element x ∈ X is defined by the
duality pairing, 〈w, x〉X∗,X := w(x).

Definition 3.4 (Dual operator [Yos80, Def. VII.1.1]). Consider a linear operator
A : D(A) ⊂ X → Y , where D(A) is dense in X. Let D(A∗) denote the following subset of
Y ∗: An element v ∈ Y ∗ satisfies v ∈ D(A∗) if there exists an element w ∈ X∗ such that
for all x ∈ D(A) it holds that

〈v,Ax〉Y ∗,Y = 〈w, x〉X∗,X .
This defines the mapping A∗ : D(A∗) ⊂ Y ∗ → X∗ given by A∗v := w. The operator A∗ is
called the dual operator of A.

The dual of a linear operator is linear and satisfies for x ∈ D(A) and v ∈ D(A∗),

〈v,Ax〉Y ∗,Y = 〈A∗v, x〉X∗,X .
Furthermore, if A is linear and continuous, then D(A∗) = Y ∗ and A∗ is linear and contin-
uous as well [Yos80, Th. VII.1.2].

We now consider the situation for Hilbert spaces H which are isometric to their dual
space. In particular, the following theorem provides a representation of functionals in H∗

by elements in H.

Theorem 3.5 (Riesz representation theorem [RR04, Th. 6.52]). Let H be a Hilbert
space with inner product (·, ·)H . Then, there exists an invertible and isometric mapping
J : H∗ → H such that

〈h, x〉H∗,H = (Jh, x)H
for all h ∈ H∗ and x ∈ H. This operator is called the Riesz mapping.

Remark 3.6 (Embedding H ↪→ H∗). The inverse of the Riesz mapping, J−1 : H →
H∗, which maps an element x ∈ H to the functional (x, ·)H , characterizes one possible
continuous embedding H ↪→ H∗. A second possibility will be introduced in Section 3.3.1
below by means of a Gelfand triple.

The combination of the dual operator and the Riesz mapping yields the so-called
adjoint operator (or Hilbert adjoint) of A. For two Hilbert spaces H1, H2 and A : H1 → H2,
the adjoint operator Aad := JH1A

∗J−1
H2

: H2 → H1 satisfies

(Aady, x)H1 = 〈A∗J−1
H2
y, x〉H∗1 ,H1 = 〈J−1

H2
y,Ax〉H∗2 ,H2 = (y,Ax)H2

for all x ∈ H1 and y ∈ H2.

3.1.2. Test Functions and Distributions. To generalize the concept of derivatives, which
is necessary for the later analysis of differential equations, we have to introduce so-called
test functions. For a domain Ω ⊂ Rd, these are smooth functions which have a compact
support in Ω. The set of all test functions is denoted by D(Ω) := C∞0 (Ω). We say that
a sequence of test functions Φn, n ∈ N, converges in D(Ω) to a function Φ ∈ D(Ω) if all
derivatives of Φn converge uniformly to those of Φ. Several properties of test functions
can be found in [RR04, Ch. 5.1]. The latter definition allows to introduce distributions
as the generalization of a function.

Definition 3.7 (Distribution [RR04, Def. 5.8]). A linear mapping Φ 7→ (f,Φ), which
maps from D(Ω) to R, is called a distribution if it is continuous, i.e., the convergence of a
sequence Φn → Φ in D(Ω) implies (f,Φn)→ (f,Φ).
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We remark that a continuous function f can be identified with a distribution due to

(f,Φ) :=

∫
Ω
f(x)Φ(x) dx.

The set of distributions also includes the Dirac delta function which is no function in the
classical sense. Since the definition of distributions is based on smooth functions, we can
define derivatives of arbitrary order.

Definition 3.8 (Generalized derivative [RR04, Ch. 5.2]). The derivative with respect
to the multi-index α of a distribution f is defined by(

Dαf,Φ
)

:= (−1)|α|
(
f,DαΦ

)
.

Remark 3.9. The derivative of a distribution is again a distribution. Furthermore,
the definition coincides with the classical derivative for functions f ∈ C1(Ω) due to the
integration by parts formula.

The generalization of the derivative permits to define weak solutions of differential
equations. For this approach, mainly used for PDEs, the equation of interest is multiplied
by a test function and then, the integration by parts formula is applied. Pushing some or
all derivatives to the test function, we obtain the notion of weak solutions which may be
of lower regularity than stated in the original formulation. In the following subsection, we
use the notion of distributions to define Sobolev spaces.

3.1.3. Sobolev Spaces. This subsection is devoted to a short summary of Sobolev spaces
and corresponding embedding results. These spaces are based on generalized derivatives
from the previous subsection and the Lebesgue spaces Lp(Ω). The given definitions and
results of this subsection can be found in standard text books on functional or numerical
analysis, e.g., in [AF03, Tar07] or [RR04, Ch. 7].

Definition 3.10 (Sobolev space W k,p(Ω)). Consider a domain Ω ⊂ Rd and any integer
k ≥ 0 and 0 ≤ p ≤ ∞. Then, the Sobolev space W k,p(Ω) contains all distributions
u ∈ Lp(Ω) which have (generalized) derivatives Dαu ∈ Lp(Ω) for all multi-indices α with
length |α| := α1 + · · ·+ αd ≤ k.

Let ‖ · ‖p and ‖ · ‖∞ denote the norms of Lp(Ω) and L∞(Ω), respectively. Then, the

space W k,p(Ω) is a Banach space equipped with the norm

‖u‖k,p :=
( ∑
|α|≤k

‖Dαu‖pp
)1/p

(3.1)

for p <∞, and otherwise

‖u‖k,∞ := max
|α|≤k

‖Dαu‖∞.

In the special case p = 2, we obtain a Hilbert space and write Hk(Ω) := W k,2(Ω). For
this, we equip the space with the inner product

(u, v)Hk(Ω) :=
∑
|α|≤k

(
Dαu,Dαv

)
L2(Ω)

=
∑
|α|≤k

∫
Ω
DαuDαv dx.

Note that for k = 0 we obtain the Lebesgue space H0(Ω) = L2(Ω). Since Sobolev spaces
are based on Lebesgue spaces, we obtain the likewise result concerning separability and
reflexivity of W k,p(Ω).
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Theorem 3.11 (Separability and reflexivity). For p < ∞ the spaces W k,p(Ω) are
separable. Furthermore, W k,p(Ω) is reflexive if 1 < p <∞.

Most of the proofs for elements of Sobolev spaces are based on density arguments. Here
we only state that C∞(Ω)∩Hk(Ω) is dense in Hk(Ω), see [RR04, Lem. 7.48]. Furthermore,
one is interested in embeddings of Sobolev spaces into each other as well as the question
which Sobolev spaces are embedded in the space of continuous functions C(Ω) or even
continuously differentiable functions (in the classical sense). Two negative examples are
given by H1(Ω) 6⊂ Lp(Ω) for p > 6, see [Tar07, Lem. 8.1], and H1(Ω) 6⊂ C(Ω) for d ≥ 2.

Theorem 3.12 (Sobolev embedding I [Ste08, Th.2.5]). Consider a domain Ω ⊂ Rd
with Lipschitz boundary and p > 1. Then, for all parameters s > d/p we obtain the
continuous embedding W s,p(Ω) ↪→ C(Ω).

Theorem 3.13 (Sobolev embedding II [BS08, Sect.1.4]). Consider a domain Ω ⊂ Rd,
non-negative integers k ≤ m, and real numbers 1 ≤ p ≤ q ≤ ∞. Then, we obtain the
continuous embedding Wm,q(Ω) ↪→W k,p(Ω).

It is also possible to define Sobolev spaces W s,p(Ω) with s ∈ R, so-called broken Sobolev
spaces [AF03]. We will only consider the special case of s = 1/2. For this exponent we
obtain the space of traces as introduced in the following subsection.

3.1.4. Traces. As mentioned in the previous subsection, functions in Sobolev spaces
are not necessarily continuous. This leads to the question whether Sobolev functions can
be ’restricted’ to surfaces of measure zero, in particular on the boundary of a domain
Ω, the so-called trace. This property is crucial to enforce Dirichlet boundary conditions
for PDEs. The presented results are taken from [Tar07, Ch. 13], [BF91, Ch. III.1], and
[Ste08, Ch. 2].

For continuous functions in C(Ω) the restriction to the boundary ∂Ω is well-defined.
This restriction defines a linear operator which can be continuously extended to functions
in H1(Ω). Note that the extension itself is not the restriction to the boundary, since this
is not defined as ∂Ω is of measure zero [Tar07, Ch. 13]. The proof of the well-posedness
of the extension is given in [Ste08, Th. 2.21] and motivates the following definition.

Definition 3.14 (Trace operator). Consider a domain Ω ⊂ Rd with Lipschitz bound-
ary. Then, the extension of the restriction operator on ∂Ω defines a linear and bounded
operator γ : H1(Ω)→ H1/2(∂Ω), the so-called trace operator.

Theorem 3.15 (Inverse trace theorem [Ste08, Th. 2.22]). The trace operator from
Definition 3.14 has a continuous right inverse, meaning that there exists a bounded operator
E : H1/2(∂Ω)→ H1(Ω) with γEw = w for all w ∈ H1/2(∂Ω).

Remark 3.16. Justified by Theorem 3.15, Definition 3.14 also defines H1/2(∂Ω) as
the trace space of H1(Ω), i.e., the range of γ. Thus, a function defined on the boundary

satisfies w ∈ H1/2(∂Ω) if and only if there exists a Sobolev function v ∈ H1(Ω) with

γv = w. Note that the space H1/2(∂Ω) is a Hilbert space [BF91, Ch. III.1].

Remark 3.16 motivates the definition of a norm for the trace space with the help of
the H1(Ω)-norm. For this, we may define

‖w‖H1/2(∂Ω) := inf
v∈H1(Ω),
γv=w

‖v‖1,2.

An equivalent norm can be defined by the solution of a corresponding Dirichlet problem
[BF91, Ch. III.1]. The norm then reads

‖w‖H1/2(∂Ω) := ‖w̄‖1,2
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where w̄ ∈ H1(Ω) is the unique (weak) solution of

−∆w̄ + w̄ = 0 in Ω,(3.2a)

w̄ = w on ∂Ω.(3.2b)

We neglect the straightforward proof that this defines a norm on H1/2(∂Ω) but show that
‖w‖H1/2(∂Ω) = 0 implies w = 0. For this, we deduce from ‖w‖H1/2(∂Ω) = 0 that w̄ has

to vanish on Ω because ‖ · ‖1,2 forms a norm. As solution of the corresponding Dirichlet
problem, we finally get 0 = w on ∂Ω in the sense of traces.

Analogously, an inner product in H1/2(∂Ω) is given by

(v, w)H1/2(∂Ω) := (v̄, w̄)H1(Ω).

Therein, v̄ and w̄ again denote the solution of the corresponding homogeneous Dirichlet
problem (3.2) with boundary conditions v and w, respectively.

The space of traces is also defined for non-empty subsets (in the (d − 1)-dimensional

measure) of the boundary Γ ⊂ ∂Ω, namely H1/2(Γ). It can be defined by the closure of
all test functions D(Γ) ↪→ D(∂Ω) with respect to the norm ‖ · ‖H1/2(∂Ω). A norm is given

by

‖w‖H1/2(Γ) := inf
v∈H1(Ω),
γv|Γ=w

‖v‖1,2.

Remark 3.17. Clearly, test functions in D(Γ) can be extended by zero to the entire

boundary ∂Ω. However, one has to be aware of the fact that a function in H1/2(Γ) can

not always be extended by zero to a function in H1/2(∂Ω), see [BF91, Ch. III.1].

Within this thesis, we often omit to write the trace operator explicitly, i.e., we write
u instead of γu. Since we have defined the trace operator by a density argument, the
operator γ is analogously defined for functions in W 1,p(Ω). Embedding theorems for
Sobolev spaces then imply that the product of two traces is also well-defined [Tar07,
Lem. 13.3]. An important subspace of W 1,p(Ω) is defined by the kernel of γ.

Definition 3.18 (W 1,p
0 (Ω) and H1

0 (Ω)). Let the boundary of the domain Ω be Lips-

chitz and p > 1. Then, the subspace W 1,p
0 (Ω) is defined as the kernel of γ in W 1,p(Ω). In

particular, H1
0 (Ω) denotes the subspace of u ∈ H1(Ω) with γu = 0.

Remark 3.19. An alternative to Definition 3.18 is given by the closure of D(Ω) with
respect to the norm ‖ · ‖k,p from (3.1), cf. [Tar07, Def. 6.6]. This then leads, more

generally, to the subspaces W k,p
0 (Ω) and Hk

0 (Ω) of W k,p(Ω) and Hk(Ω), respectively.

Remark 3.20. The weak solution w̄ ∈ H1(Ω) of the Dirichlet problem (3.2) is orthog-
onal to H1

0 (Ω) w.r.t. the inner product of H1(Ω). Thus, w̄ equals the unique element in
H1

0 (Ω)⊥ which has the trace γw̄ = w.

Remark 3.21. Similarly to Definition 3.18, H1
Γ(Ω) denotes the subspace of H1(Ω)

with all functions that vanish along Γ ⊂ ∂Ω in the sense of traces. This definition requires
that Γ is of positive surface measure.

3.1.5. Poincaré Inequality and Negative Norms. A peculiarity of the Sobolev norms
(3.1) is the mixture of different units due to the involved derivatives. For some subspaces
V ⊂ W 1,p(Ω) it is possible to avoid the ‖u‖p term within the norm [Tar07, Ch. 10].
Within this subsection we assume Ω to be framed by a Lipschitz boundary.
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We say that a subspace V of W 1,p(Ω) satisfies a Poincaré inequality if there exists a
constant c > 0 such that

‖u‖p ≤ c ‖∇u‖p
for all u ∈ V . Such an inequality then implies that the norms ‖ · ‖1,p and ‖∇ · ‖p are
equivalent on V . Obviously, the Poincaré inequality cannot hold for subspaces that contain
the constant function 1.

Lemma 3.22 (Poincaré inequality [Tar07, Lem. 10.2]). Let Ω ⊂ Rd be a domain with

Lebesgue measure |Ω|. Then, the space W 1,p
0 (Ω) satisfies a Poincaré inequality of the form

‖u‖p ≤ c(p)|Ω|1/d‖∇u‖p
for all u ∈W 1,p

0 (Ω).

Remark 3.23. This result can be generalized for functions which do not vanish along
the entire boundary, i.e., the Poincaré inequality is also valid for functions in H1

Γ(Ω) if
Γ ⊂ ∂Ω has positive surface measure [Rou05, Ch. 1.4].

Remark 3.24. Lemma 3.22 remains valid for Sobolev spaces of higher order [RR04,
Rem. 7.33]. For 1 < p <∞ there exists a constant c = c(k, p, d,Ω) > 0 such that

‖u‖pk,p ≤ c
∑
|α|=k

‖Dαu‖pp

for all u ∈W k,p
0 (Ω).

Functions of subspaces which satisfy a Poincaré inequality do not necessarily vanish
along the boundary. Consider the inequality

‖u‖1,p ≤ c
(
‖∇u‖p +

∣∣ ∫
Ω
udx

∣∣).(3.3)

which is valid for all u ∈ W 1,p(Ω) if Ω has a Lipschitz boundary [Rou05, Ch. 1.4]. This
implies a Poincaré inequality also for the subspace of W 1,p(Ω) with vanishing mean value.
Note that the integral term in (3.3) may be replaced by any other W 1,p(Ω)-continuous
seminorm (i.e., a seminorm | · | which satisfies | · | ≤ c ‖ · ‖1,p) which does not vanish for
the constant function 1. A particular result for convex Lipschitz domains is given by the
following lemma.

Lemma 3.25 (Payne–Weinberger [PW60]). Let Ω ⊂ R2 be a convex Lipschitz domain
with diameter diam(Ω). Then, every function u ∈ H1(Ω) with integral mean ū =

∫
Ω u dx

satisfies

‖u− ū‖2 ≤
diam(Ω)

π
‖∇u‖2.(3.4)

We close this subsection with the introduction of negative norms and the corresponding
Sobolev spaces of negative order.

Definition 3.26 (H−k(Ω)). The space H−k(Ω) is defined as the dual space of Hk
0 (Ω).

Since the space H−k(Ω) is defined by duality, the norm is given by

‖f‖−k,2 := ‖f‖H−k(Ω) := sup
v∈Hk

0 (Ω)

〈f, v〉
‖v‖k,2

.
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3.1.6. Weak Convergence and Compactness. A fundamental property of infinite-dimen-
sional normed spaces is that the closed unit ball is not compact [Ruž04, Th. A.8.1]. As
a consequence, bounded sequences do not need to have a convergent subsequence. Here,
we mean strong convergence in X or convergence in norms, i.e., xn → x if and only if

‖xn − x‖X → 0 as n→∞.
In order to retain this compactness property, we have to switch over to weaker topologies
which leads to the notion of weak convergence. The results of this subsection are important
for the convergence proofs in Part D of this thesis. All definitions and results from this
subsection can be found in [Alt92, Ch. 5] and [Ruž04, App. A.8]. Furthermore, in what
follows X always denotes a Banach space.

Definition 3.27 (Weak convergence). A sequence (xn) ⊂ X is weakly convergent to
x ∈ X if and only if for all functionals f ∈ X∗ is holds that

〈f, xn〉 → 〈f, x〉 as n→∞.
In this case, we write xn ⇀ x.

Because of the involved functionals, the definition can be seen as the generalization
of the convergence in all coordinates in the finite-dimensional setting. At this point we
note that the weak limit is unique and that a weakly convergent sequence is bounded. For
sequences in a dual space, we define a second kind of weak convergence.

Definition 3.28 (Weak∗ convergence). A sequence (fn) ⊂ X∗ is weak∗ convergent to
f ∈ X∗ if and only if for all x ∈ X is holds that

〈fn, x〉 → 〈f, x〉 as n→∞.

In this case, we write fn
∗−⇀ f .

Remark 3.29. The two definitions above provide two different kinds of weak conver-
gence for sequences in the dual space X∗. If X is a reflexive Banach space, then these two
notions coincide.

In terms of the introduced weak topologies, we state the following compactness results.
The first result is based on the theorem of Banach-Alaoglu [Zei86, App.] which states
that the closed unit ball B = {f ∈ X∗ | ‖f‖X∗ ≤ 1} ⊆ X∗ is compact with respect to the
weak∗ topology.

Theorem 3.30 (Weak∗ compactness). Let X be a separable Banach space. Then,
every bounded sequence in X∗ has a weak∗ convergent subsequence.

For a reflexive Banach space this leads to the following theorem.

Theorem 3.31 (Weak compactness [Alt92, Th. 5.7]). Let X be a reflexive Banach
space. Then, every bounded sequence in X has a weakly convergent subsequence.

3.2. Bochner Spaces. This subsection is devoted to the definition of an integral
for abstract functions, i.e., for functions with values in a Banach space X, the so-called
Bochner integral. The presented results are based on [Emm04, Ch. 7.1].

As in the theory of Lebesgue measures, we first consider simple functions, i.e., functions
which take only a finite number of values {ui}i=1,...,n ⊂ X. Thus, for Lebesgue measurable
sets {Ai}i=1,...,n ⊆ [0, T ] with characteristic functions χAi , a simple function u : [0, T ]→ X
has the form u(t) =

∑n
i=1 ui χAi(t). The integral of a simple function is then defined as∫ T

0
u(t) dt :=

n∑
i=1

uiµ(Ai).
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Therein, we have used the Lebesgue measure µ. Note that the integral is again an element
of the Banach space X. Measurable functions are then defined as point-wise limits of
simple functions.

Definition 3.32 (Bochner measurability [Emm04, Def. 7.1.9]). A function u : [0, T ]→
X is called Bochner measurable if there exists a sequence (un) of simple functions such
that un(t)→ u(t) for a.e. t ∈ [0, T ] as n→∞.

Remark 3.33. The convergence of the sequence (un) in Definition 3.32 is required
to hold strongly in X. The concept of weak Bochner measurability is not considered
here, since it coincides with the strong measurability for separable Banach spaces X. All
applications throughout this thesis work on separable spaces.

As in the theory of Lebesgue, the next step is to introduce the notion of integrability.

Definition 3.34 (Bochner integrability [Emm04, Def. 7.1.14]). Consider a Bochner
measurable function u : [0, T ]→ X and a sequence of simple functions (un) with un(t)→
u(t). Then, u is called Bochner integrable if for every ε > 0 there exists a number nε ∈ N
such that for all n,m > nε it holds that∫ T

0
‖un − um‖X dt < ε.

For Bochner integrable functions, the integral over a Lebesgue measurable set A ⊆
[0, T ] with the corresponding characteristic function χA is defined via∫

A
u(t) dt := lim

n→∞

∫ T

0
un(t)χA(t) dt.

Note that the Bochner integral is a generalization of the Lebesgue integral since they
coincide in the case X = R. The strong connection between these two concepts is presented
in the following result.

Proposition 3.35. Let X be a separable Banach space. Then u is Bochner measurable
if and only if 〈f, u(·)〉X∗,X is Lebesgue measurable for every functional f ∈ X∗. Further-
more, a Bochner measurable function u is Bochner integrable if and only if ‖u(·)‖X is
Lebesgue integrable.

Proof. This result goes back to Pettis and can be found in [Rou05, Th. 1.34]. �

Given the relatedness of Bochner and Lebesgue integrability, it is no surprise that the
Bochner integral adopts several properties from the theory of Lebesgue integrals. Some
properties are summarized in the following proposition.

Proposition 3.36 (Properties of the Bochner integral [Emm04, Th. 7.1.15]). Let X
and Y be Banach spaces and let u : [0, T ] → X be a Bochner integrable function. Then,
for any Lebesgue measurable set A ⊆ [0, T ] and functional f ∈ X∗ it holds that∥∥∥∫

A
u(t) dt

∥∥∥
X
≤
∫
A
‖u(t)‖X dt,

〈
f,

∫
A
u(t) dt

〉
X∗,X

=

∫
A
〈f, u(t)〉X∗,X dt.

For a linear, continuous operator K : X → Y , the map Ku(·) is Bochner integrable and

K
∫
A
u(t) dt =

∫
A
Ku(t) dt.

Remark 3.37. The latter proposition shows that Bochner integrals are fully defined
by the action of linear functionals on the integrand.
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In the sequel we utilize the notion C([0, T ];X) for abstract functions with values
in X which are continuous in [0, T ]. Accordingly, AC([0, T ];X) denotes the space of
absolutely continuous functions with values in X. With this, the Bochner integral of
abstract functions allows to introduce the concept of primitives. For a Bochner integrable
function u : [0, T ]→ X we define the absolutely continuous function ũ ∈ AC([0, T ];X) by

ũ(t) :=

∫ t

0
u(s) ds.

The proof for ũ ∈ AC([0, T ];X) and the fact that ũ is a.e. differentiable (in the classical
sense) is shown in [Emm04, Th. 7.1.19]. The converse, i.e., the Bochner integrability of
derivatives of absolutely continuous functions, only applies if X is reflexive, see [Rou05,
Th. 1.39].

Collecting functions which coincide a.e. in equivalence classes, we obtain the notion
of Bochner spaces.

Definition 3.38 (Bochner spaces Lp(0, T ;X)). For p ≥ 1 the linear space Lp(0, T ;X)
is called Bochner space and contains the equivalence classes of Bochner integrable functions
u : [0, T ]→ X which satisfy

‖u‖Lp(0,T ;X) :=
(∫ T

0
‖u(t)‖pX dt

)1/p
<∞

if p <∞ and ‖u‖L∞(0,T ;X) := ess supt ‖u(t)‖X <∞ in the case p =∞.

As for Lebesgue integrable functions, we may also define the space L1
loc(0, T ;X) as

the space of functions which are Bochner integrable on every compact subset of ]0, T [. A
number of properties of the Bochner spaces Lp(0, T ;X) are summarized in the following
proposition.

Proposition 3.39 (Properties of Bochner spaces [Emm04, Th. 7.1.23]). Let X and
Y be Banach spaces with X ↪→ Y , i.e., X is continuously embedded in Y , and H a Hilbert
space. Then,

(a) with ‖u‖Lp(0,T ;X) from Definition 3.38, Lp(0, T ;X) forms a Banach space,

(b) if X is separable, then so is Lp(0, T ;X) for all 1 ≤ p <∞,

(c) if X is reflexive or X∗ separable, then Lp(0, T ;X) is reflexive for all 1 < p <∞,

(d) L2(0, T ;H) is a Hilbert space, and

(e) if 1 ≤ q ≤ p ≤ ∞, then Lp(0, T ;X) ↪→ Lq(0, T ;Y ).

We close this subsection with a characterization of the dual space of Lp(0, T ;X).

Proposition 3.40 (Dual of Bochner spaces and Hölder inequality). Consider 1 < p <
∞ with conjugate exponent p′ = p/(p− 1). If Lp(0, T ;X) is reflexive, then its dual space

can be identified with the space Lp
′
(0, T ;X∗). The corresponding dual pairing is given by〈

f, x
〉

:=

∫ T

0

〈
f(t), x(t)

〉
X∗,X

dt.

Furthermore, the Hölder inequality holds, i.e., for x ∈ Lp(0, T ;X) and f ∈ Lp′(0, T ;X∗)
we have ∫ T

0

〈
f(t), x(t)

〉
X∗,X

dt ≤ ‖f‖Lp′ (0,T ;X∗)‖x‖Lp (0,T ;X)
.

Proof. The first part of the claim is stated in [Emm04, Th. 7.1.23]. A proof of the
Hölder inequality can be found in [GGZ74, Ch. IV.2]. �
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3.3. Sobolev-Bochner Spaces. In this subsection, we discuss the interaction of
Sobolev and Bochner spaces. This is of special relevance for the formulation of abstract
differential equations which involves (generalized) derivatives of Bochner integrable func-
tions. For this, we have to introduce Gelfand triples which then leads to certain embed-
dings for Sobolev-Bochner spaces.

3.3.1. Gelfand Triples. For the formulation of abstract ODEs in Section 4 it is benefi-
cial to use different Sobolev spaces for the solution u and its derivative u̇. In fact, a third
space is needed to provide suitable initial conditions. A formalism, which has proven its
worth, is the so-called Gelfand or evolution triple.

This subsection is based on the two chapters [Emm04, Ch. 8.1] and [Wlo87, Ch. 17.1].

Definition 3.41 (Gelfand triple [Emm04, Def. 8.1.7]). Consider a real, separable,
and reflexive Banach space V and a real, separable Hilbert space H. If V is continuously
and densely embedded in H, then the spaces V , H, V ∗ form a Gelfand triple. The space
H is called the pivot.

A Gelfand triple is often written in the form V
d
↪−→ H ∼= H∗

d
↪−→ V ∗ which indicates the

resulting continuous and dense embedding H∗ ↪→ V ∗. This notion requires a justification
which we provide in the following. The equivalence of the Hilbert spaces H and H∗ is
given by the Riesz representation theorem, see Theorem 3.5. Furthermore, the continuous
embedding V ↪→ H implies the existence of a constant c > 0 with ‖v‖H ≤ c‖v‖V . Therein,
‖ · ‖V and ‖ · ‖H denote the norms in V and H, respectively. Consider a functional f ∈ H∗
which is, due to V ↪→ H, also a linear functional on V , i.e., f ∈ V ∗. We show that this
embedding H∗ ↪→ V ∗, characterized by the Gelfand triple, is continuous,

‖f‖V ∗ = sup
v∈V

〈f, v〉
‖v‖V

≤ c · sup
v∈V

〈f, v〉
‖v‖H

≤ c · sup
v∈H

〈f, v〉
‖v‖H

= c ‖f‖H∗ .

Note that H∗ is dense in V ∗ because V ↪→ H is assumed to be dense and V reflexive.
Another consequence of the Gelfand triple concerns the duality pairing 〈·, ·〉V ∗,V . Be-

cause of H ∼= H∗ ↪→ V ∗, the duality pairing of V , V ∗ is the continuous extension of the
inner product in H, namely (·, ·)H . Thus, for h ∈ H and v ∈ V , we obtain

〈h, v〉V ∗,V = (h, v)H .

For a functional f ∈ V ∗ there exists a sequence (hn) ⊂ H such that J∗hn → f in V ∗ with
the Riesz mapping J . Thus, for v ∈ V is holds that

〈f, v〉V ∗,V := lim
n→∞

(hn, v)H .

Remark 3.42. Consider the case where also V is a Hilbert space. We emphasize the
fact that the embedding V ↪→ V ∗ from Theorem 3.5 does not coincide with the embedding
given by the Gelfand triple V , H, V ∗. For u, v ∈ V we obtain the two different cases

Riesz: 〈v, u〉V ∗,V = (v, u)V ,

Gelfand: 〈v, u〉V ∗,V = (v, u)H .

Example 3.43. An example of a Gelfand triple which is used within this thesis is

H1
0 (Ω), L2(Ω), H−1(Ω). But also the more general Sobolev spaces W k,p

0 (Ω) lead to Gelfand
triples with the pivot space L2(Ω), see [Zei90a, Ex. 23.12].

Remark 3.44 (Poincaré-Friedrich inequality). As mentioned before, the embedding
V ↪→ H implies an inequality of the form ‖v‖H ≤ c‖v‖V . This inequality is called the
Poincaré-Friedrich inequality, cf. Section 3.1.5 which includes the special case for the
Gelfand triple of Example 3.43.
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3.3.2. Definition and Embeddings. This subsection is devoted to a special class of
Bochner spaces which occur in the analysis of abstract differential equations. For this,
we have to combine the concept of Bochner spaces with Gelfand triples from the previous
subsection. The results are taken from [Rou05, Ch. 7] and [Emm04, Ch. 8.1].

Similar to Definition 3.8, generalized derivatives can be defined for abstract functions
by shifting the derivatives to the test function. This means that u̇ ∈ L1

loc(0, T ;X) is called
the generalized derivative of u ∈ L1

loc(0, T ;X) if for all Φ ∈ C∞0 (0, T ) it holds that∫ T

0
u(t)Φ̇(t) dt = −

∫ T

0
u̇(t)Φ(t) dt.

Consider two Sobolev spaces V1 and V2 with V1 ↪→ V2. We define the Sobolev-Bochner
space

W 1;p,q(0, T ;V1, V2) :=
{
v ∈ Lp(0, T ;V1)

∣∣ v̇ ∈ Lq(0, T ;V2)
}
.

Note that the occurring derivative should be understood in the generalized sense. Together
with the norm

‖v‖W 1;p,q(0,T ;V1,V2) := ‖v‖Lp(0,T ;V1) + ‖v̇‖Lq(0,T ;V2)

the space W 1;p,q(0, T ;V1, V2) is again a Banach space. For abstract differential equations
of second order in time, we define in a similar manner

W 2;p,q,r(0, T ;V1, V2, V3) :=
{
v ∈ Lp(0, T ;V1)

∣∣ v̇ ∈ Lq(0, T ;V2), v̈ ∈ Lr(0, T ;V3)
}
.

Because of the assumed embedding V1 ↪→ V2, we obtain the following result.

Lemma 3.45 (Embedding for general Sobolev-Bochner spaces). Consider exponents
p, q ≥ 1 and continuously embedded Banach spaces V1 ↪→ V2. Then, there exists a contin-
uous embedding W 1;p,q(0, T ;V1, V2) ↪→ C([0, T ];V2). Furthermore, C1([0, T ];V1) is dense
in W 1;p,q(0, T ;V1, V2).

Proof. The proof can be found in [Rou05, Lem. 7.1 and Lem. 7.2]. �

The application of Lemma 3.45 with V = V1 = V2 and p = q yields the embedding

W 1;p(0, T ;V ) := W 1;p,p(0, T ;V, V ) ↪→ C([0, T ];V ).(3.5)

In particular, we have H1(0, T ;V ) := W 1;2(0, T ;V ) ↪→ C([0, T ];V ). Yet another special
case, which is important in the theory of abstract ODEs, is given by V2 = V ∗1 . If the
embedding V1 ↪→ V ∗1 is given by a Gelfand triple with pivot space H, then we obtain a
similar embedding result as in Lemma 3.45 but in a stronger topology.

Lemma 3.46 (Embedding with Gelfand triple [Rou05, Lem. 7.3]). Consider a Gelfand
triple V , H, V ∗ and conjugate exponents p ≥ p′, i.e., 1/p+1/p′ = 1. Then, the embedding

W 1;p,p′(0, T ;V, V ∗) ↪→ C([0, T ];H) is continuous. Furthermore, the integration by parts

formula holds for all u, v ∈W 1;p,p′(0, T ;V, V ∗) and 0 ≤ t1 ≤ t2 ≤ T , i.e.,(
u(t2), v(t2)

)
H
−
(
u(t1), v(t1)

)
H

=

∫ t2

t1

〈
u̇(t), v(t)

〉
V ∗,V

+
〈
v̇(t), u(t)

〉
V ∗,V

dt.

The next result is concerned with derivatives of functions which lie in a certain sub-
space. Recall that a closed subspace W of a Banach space V does not necessarily have to
possess a complement, i.e., a closed subspace Z with V = W ⊕Z [Mos06]. Subspaces for
which such a complement exists are called complemented.

Lemma 3.47. Consider a complemented subspace W of a Banach space V and a
Bochner integrable function v ∈ Lp(0, T ;W ). Then, the existence of the time derivative
v̇ ∈ Lp(0, T ;V ) implies that v̇ ∈ Lp(0, T ;W ).
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Proof. Since W is complemented, there exists a projection P : V →W , cf. [Zei90a,
Ch. 21.12]. By assumption, it holds that (id−P )v(t) = 0 for a.e. t ∈ [0, T ] with id
denoting the identity. Since the time derivative of v exists - at least in a generalized sense
- we may write (id−P )v̇(t) = 0, which finally implies for a.e. t ∈ [0, T ],

v̇(t) = P v̇(t) ∈W. �

Finally, we close this section with one existence result of a complemented subspace.
This particular situation will be faced in Section 6.

Lemma 3.48. Let A : V →W denote a linear and continuous operator with real Banach
spaces V and W . Assume there exists a closed subspace of V , namely V2, such that
A2 := A|V2 : V2 →W is bijective. Then, the kernel of A satisfies V = kerA⊕ V2.

Proof. We show that P := A−1
2 A : V → V2 is a projection on V2. For v ∈ V we

have Pv ∈ V2. In addition, for v ∈ V2 we know that Av = A2v since A2 is defined as the
restriction of A to the subspace V2. With this, we obtain

Pv = A−1
2 Av = A−1

2 A2v = v.

Thus, P defines a projection which also implies that (id−P ) is a projection and

V = (id−P )V ⊕ V2.

It remains to show that kerA = (id−P )V . The application of A to v − Pv yields

A(v − Pv) = Av −A2A
−1
2 Av = Av −Av = 0.

On the other hand, if v ∈ kerA and thus, Pv = 0, then its unique decomposition is given
by

v = (v − Pv) + Pv = v + 0,

i.e., kerA ⊂ (id−P )V . Note that since kerA and V2 are closed subspaces, the projection
P is even continuous. �
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4. Abstract Differential Equations

With the functional analytic background of the previous section, we are able to formu-
late the generalization of classical differential equations in an abstract framework. Thus,
we consider differential equations for abstract functions of the form

u̇+Ku = F , u(0) = g.

Instead of ODEs, where we search for a solution u ∈ C1([0, T ],Rn), we search here for a
solution u : [0, T ]→ V with a separable and reflexive Banach space V . The restriction to
separable and reflexive Banach spaces is reasonable in view of the considered applications
within this thesis. More precisely, we search for solutions u ∈ W 1,p,q(0, T ;V, V ∗) which
corresponds to weak solutions in the context of PDEs. However, several notions and
concepts of solutions exist as we will shortly discuss in the beginning of Section 4.2.
Afterwards, we discuss precisely the meaning of initial conditions for such problems.

In Section 4.3 we then introduce abstract or operator DAEs, the corresponding gen-
eralization of DAEs to the abstract framework. In preparation for this, we introduce first
the notion of Nemytskii mappings which deals with the extension of operators to Bochner
spaces.

4.1. Nemytskii Mapping. To obtain well-defined operator differential equations,
we need to extend possibly nonlinear operators K(t) : V → V ∗ to operators defined for
abstract functions of the Bochner space Lp(0, T ;V ). More precisely, we are interested for
which parameters 1 ≤ q, p < ∞ such an operator K induces a bounded operator of the
form

K : Lp(0, T ;V )→ Lq(0, T ;V ∗)

by (Ku)(t) := K(t, u(t)). This extension is called a Nemytskii map, cf. [Rou05, Ch. 1.3].
The question of boundedness is answered in the following theorem.

Theorem 4.1 (Nemytskii map [Rou05, Th. 1.43]). Consider an operator K : [0, T ]×
V → V ∗ which satisfies the properties

(a) K(t, ·) : V → V ∗ is continuous for a.e. t ∈ [0, T ],

(b) K(·, v) : [0, T ]→ V ∗ is measurable for all v, and

(c) ‖K(t, v)‖V ∗ ≤ κ(t) + c‖v‖p/qV for some κ ∈ Lq(0, T ).

Then, the mapping defined via K(v)(t) := K(t, v(t)) is continuous as a map from Lp(0, T ;V )
to Lq(0, T ;V ∗), where 1 ≤ p <∞ and 1 ≤ q ≤ ∞.

In the remainder of this thesis, we do not distinguish between these two notions of an
operator K and its corresponding Nemytskii map.

We give several examples which are of interest for miscellaneous applications. Of
special interest is the case when the exponents 1 < p, q < ∞ are conjugated, i.e, 1/p +
1/q = 1. This is a basic assumption in the analysis of nonlinear evolution equations using
monotonicity arguments [Rou05, Ch. 2 and Ch. 8]. The first example indicates that for
nonlinear operators even the uniformly boundedness of K(t) : V → V ∗ is not sufficient to
obtain the conjugacy of the time exponents [Emm04, Ch. 8.2].

Example 4.2 (Navier-Stokes operator). Consider the nonlinear operator which arises
in the weak formulation of the Navier-Stokes equations,

K : V → V ∗, 〈Ku,w〉V ∗,V :=

∫
Ω

(
u · ∇

)
u · w dx.
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Then, K : V → V ∗ is bounded independently of t, cf. [Tem77, Lem. II.1.1], but, in the
three-dimensional case, it is only bounded as an operator K : L2(0, T ;V )∩L∞(0, T ;H)→
L4/3(0, T ;V ∗), see e.g. [Rou05, Ch. 8.8.4].

Second, we give a positive example which leads to a bounded Nemytskii mapping with
conjugate exponents.

Example 4.3 (p-Laplacian). For the p-Laplacian, i.e.,

K : V → V ∗, 〈Ku, v〉V ∗,V :=

∫
Ω
|∇u|p−2∇u · ∇v dx,

we take the Sobolev space V = W 1,p
0 (Ω). This then induces an operator K : Lp

(
0, T ;V )→

Lp
′
(0, T ;V ∗) with 1/p+ 1/p′ = 1, see [Ruž04, Ch. 3.3.6].

Finally, we give a corollary of Theorem 4.1 which applies for instance to linear operators
that are uniformly bounded with respect to time.

Corollary 4.4. Consider any 1 ≤ p < ∞ and an operator K : [0, T ] × V → V ∗

which is measurable for fixed v ∈ V and uniformly bounded in the sense that there exists
a constant CK such that ‖K(t)v‖V ∗ ≤ CK‖v‖V for all v ∈ V and a.e. t ∈ [0, T ]. Then,
(Kv)(t) := K(v(t)) defines a continuous operator from Lp(0, T ;V ) to Lp(0, T ;V ∗).

Proof. The application of Theorem 4.1 with p = q and γ = 0 yields the result. �

Example 4.5 (Linear elasticity). In the case of linear isotropic material laws, i.e.,

K : V → V ∗, 〈Ku, v〉V ∗,V :=

∫
Ω

(
2µε(u) + λ trace ε(u)I2×2

)
: ε(v) dx

with ε(u) denoting the symmetric gradient, µ, λ the Lamé constants [BS08, Ch. 11], and
A : B :=

∑
i,j AijBij the inner product for matrices considered as vectors, we use as ansatz

space V = H1(Ω). This setting then induces the bounded operator K : L2(0, T ;V ) →
L2(0, T ;V ∗).

4.2. Operator ODEs. The generalization of an ODE, which allows solutions in func-
tion spaces, is called abstract ODE, abstract Cauchy problem, or evolution equation. How-
ever, not all of these notions are equivalent since they consider the differential equation in
different function spaces with different regularity assumptions. Consistent with classical
ODEs, the abstract Cauchy problem considers the equation

u̇+Ku = F
in a Banach space V . This means that the operator K maps from its domain D(K) ⊂ V to
V and that the right-hand side satisfies F : [0, T ]→ V . Then, a classical solution satisfies
u ∈ C1([0, T ];V ) and the corresponding initial condition reads u(0) = g ∈ V . For this
approach to the problem, there exists a generalization of the theorem of Picard-Lindelöf
[Emm04, Th. 7.2.3] for the local existence of solutions. This approach is closely related
to semigroups and often deals with unbounded operators K, see [Paz83, Ch. 4]. Also in
this framework weaker notions of solutions are used such as mild solutions.

Following the concept of weak formulations in the theory of PDEs, it seems more
natural to consider operators of the form K : V → V ∗ and right-hand sides F : [0, T ] →
V ∗. This leads to the theory of weak solutions which we use within this thesis. For an
introduction we refer to the book chapters [Wlo87, Ch. 26], [Emm04, Ch. 8], or [Rou05,
Ch. 8.1]. The interrelation between the classical and weak solution concept is discussed in
[Zei90a, Ch. 23]. Because of the weakened regularity assumptions, one important issue is
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the well-posedness of the initial condition and the question in which space this condition
has to be posed.

Remark 4.6. One has to be careful with the different terminology in PDE and operator
theory. A strong solution of an operator ODE corresponds to a weak solution of the
corresponding time-dependent PDE. Going further, weak solutions of operator equations
correspond to very weak solutions of the equivalent PDEs [Rou05, Ch. 8.1].

4.2.1. First-order Equations. This subsection is devoted to the formulation of semi-
linear parabolic PDEs as operator equations. The operator equation corresponds to the
weak formulation of the PDE in time and space and has the form

u̇+Ku = F , u(0) = g.(4.1)

Note that this formulation equals an ODE in an abstract setting, since we assume the
equation to hold in a Banach space. Thus, equation (4.1) is called an abstract or operator
ODE. In addition, a discretization of the Banach space by finite elements would lead to
an ODE in the common sense. In order to make this formulation reasonable, one has
to specify the search space for the solution u and in which space the system should be
understood. Considering also the weak form in time, the meaning of the initial condition
has to be clarified as well.

The solution should satisfy u(t) ∈ V for a.e. t ∈ [0, T ] for some separable and reflexive
Banach space V . Thus, we consider u to be an element of the Bochner space Lp(0, T ;V )
with 1 ≤ p. Further, we assume the operator K to satisfy K : Lp(0, T ;V )→ Lq(0, T ;V ∗),
cf. the previous subsection on Nemytskii maps. For the right-hand side we assume F ∈
Lq(0, T ;V ∗) such that it is sufficient for the (weak) time-derivative of u to take values in
the dual space V ∗. Thus, in the given model it is natural to search for a solution in the
space

u ∈W 1;p,q(0, T ;V, V ∗).

It remains to find a reasonable interpretation of the initial condition. For this, we assume
a Gelfand triple V , H, V ∗. Lemma 3.46 then implies for q ≥ p/(p−1) that u is embedded
in the space C([0, T ], H) such that the initial condition is well-posed for g ∈ H.

Remark 4.7 (Regularity of initial data). If the prescribed initial data satisfies g ∈ V ,
then we obtain ‖u(0)−g‖H = 0. Because of the embedding V ↪→ H as part of the Gelfand
triple V , H, V ∗, this implies ‖u(0)− g‖V = 0. Thus, the triangle inequality yields

‖u(0)‖V ≤ ‖u(0)− g‖V + ‖g‖V = ‖g‖V <∞.
As a result, the additional regularity of the initial data translates to u(0) ∈ V .

As mentioned above, the operator ODE corresponds to a PDE in weak form. For
this, we need to consider the PDE multiplied by test functions in V . The corresponding
composition in the operator form is to state equation (4.1) in the dual space V ∗. In
summary, the abstract ODE has the form:

For given data F ∈ Lq(0, T ;V ∗) and g ∈ H find u ∈ W 1;p,q(0, T ;V, V ∗) such that for
a.e. t ∈ [0, T ] it holds that

u̇(t) +Ku(t) = F(t) in V ∗(4.2)

with initial condition u(0) = g ∈ H.
Note that equation (4.2) should be understood pointwise in L1, i.e., equation (4.2)

means that for all v ∈ V and φ ∈ C∞0 (0, T ) it holds that∫ T

0

〈
u̇(t), v

〉
V ∗,V

φ(t) + 〈Ku(t), v〉V ∗,V φ(t) dt =

∫ T

0

〈
F(t), v

〉
V ∗,V

φ(t) dt.
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As an example, we formulate the heat equation in this abstract notion.

Example 4.8 (Heat equation). The heat equation on a domain Ω is given by

u̇−∆u = f in Ω, u = 0 on ∂Ω, u(0) = g.

For the weak formulation we consider the spaces V = H1
0 (Ω), H = L2(Ω) and define the

operator K : V → V ∗, which arises from the integration by parts formula, by 〈Ku, v〉 :=∫
Ω∇u · ∇v dx. If we understand this system also weakly in time, then we obtain the

operator ODE (4.2) with the initial condition stated in the space H.

Similarly, the concepts of this subsection can be applied to second-order PDEs as they
appear e.g. in the dynamics of elastic media. Nevertheless, the spaces have to be adapted
in this case.

4.2.2. Second-order Equations. We close the discussion on operator ODEs with the
formulation of hyperbolic PDEs in operator form. This includes applications such as the
wave equation as well as elastodynamics which are considered in detail in Section 7.1. As
in the previous subsection, the operator formulation is based on a Gelfand triple V , H,
V ∗, see also [Wlo87, Ch. 29] and [LM72, Ch. 3.8].

In this subsection we consider K to be an operator of the form K : L2(0, T ;V ) →
L2(0, T ;V ∗). With a right-hand side F ∈ L2(0, T ;V ∗) and initial data g and h, we may
consider the operator ODE of second order. Without damping term, this system has the
form

ü(t) +Ku(t) = F(t) in V ∗(4.3a)

with initial conditions

u(0) = g, u̇(0) = h.(4.3b)

A suitable ansatz space for u is given by W 2;2,2,2(0, T ;V,H, V ∗), i.e., we search for u ∈
L2(0, T ;V ) with derivatives in H and second derivatives in V ∗. As for first-order systems
in Section 4.2.1, we have to discuss reasonable spaces for the initial conditions. With the
embedding result from Lemma 3.46 we can only assure

u ∈ C([0, T ], H), u̇ ∈ C([0, T ], V ∗).

This would call for initial conditions in H and V ∗, respectively. However, with more
regular data F ∈ L2(0, T ;H) we even obtain continuity of u in V and of u̇ in H, see
[LM72, Ch. 3, Th. 8.1]. In this case, it is reasonable to state initial conditions g ∈ V and
h ∈ H.

Several existence and uniqueness results are known for operator ODEs of second order
for different assumptions on the included operators and right-hand sides. These also
include an additional viscous damping term of the form Du̇(t). Note that a damping term
may need an adjustment of the ansatz space as shown in Section 7. Existence results can
be found, e.g., in the monographs [LS65], [GGZ74, Ch. 7], [Zei90b, Ch. 33], or [Rou05,
Part II]. More recent results can be found in [ET10a] and the references therein. For
linear equations of second order, the analysis can be found in [Fat85, Ch. 2]. An example
of a linear system is given by the wave equation.

Example 4.9 (Wave equation). The wave equation with homogeneous boundary con-
ditions in a domain Ω is given by

ü−∆u = f in Ω, u(0) = g, u̇(0) = h.



4. Abstract Differential Equations 27

As for the heat equation in Example 4.8, we consider the Gelfand triple with V = H1
0 (Ω)

and pivot space H = L2(Ω). The weak form of the wave equation is then given by equation
(4.3) if we define K as for the heat equation by 〈Ku, v〉 :=

∫
Ω∇u · ∇v dx.

Equation 4.3 is just one prototype of a hyperbolic PDE which shows that the concept
of Gelfand triples is also valuable for second-order operator equations. The inclusion of
a damping term Du̇ requires small adjustments as shown in the case of elastodynamics
in Section 7.1. This is the case if the damping operator is of the form D : V → V ∗ such
that u̇ ∈ L2(0, T ;H) is not sufficient. Then, we search for a solution within the Sobolev-
Bochner space W 2;2,2,2(0, T ;V, V, V ∗). In this case, initial conditions with data g ∈ V and
h ∈ H are required also for F ∈ L2(0, T ;V ∗).

4.3. Operator DAEs. As ODEs lead to DAEs when adding an algebraic constraint,
we can obtain abstract DAEs in a similar way. In the abstract setting, the role of the
algebraic constraint may itself be a differential equation but without time derivatives.
Alternatively, abstract DAEs may be characterized by the fact that a semi-discretization
in space leads to a DAE. Note that the dimension of the resulting DAE depends on the
level of discretization and may be very large.

In Section 6 we will consider systems of semi-explicit structure which generalize the
DAE (2.2) to the abstract setting. For this, consider a system of the form

u̇(t) + Ku(t) + B∗λ(t) = F(t) in V ∗,(4.4a)

Bu(t) = G(t) in Q∗(4.4b)

which should hold a.e. in [0, T ] with initial condition

u(0) = g ∈ H.(4.4c)

Here, V and Q denote reflexive and separable Banach spaces. For the right-hand sides
we assume F ∈ Lq(0, T ;V ∗) and G ∈ W 1;p(0, T ;Q∗). Because of the constraint (4.4b),
which does not involve any time derivative, this system generalizes the notion of a semi-
explicit DAE. Note that the parts of the solution u(t) and λ(t) are still part of an infinite-
dimensional Banach space instead of being a vector in Rn. As already mentioned, a spatial
discretization of this system would lead to a semi-explicit DAE in the usual sense. This
motivates to call system (4.4) an abstract DAE or, as we often refer to, an operator DAE .

The operators K and B should be Nemytskii mappings of the form

K : Lp(0, T ;V )→ Lq(0, T ;V ∗), B : Lp(0, T ;V )→ Lp(0, T ;Q∗).

As for abstract ODEs above, we have to discuss the meaning of the initial condition if
we assume a solution to satisfy u ∈W 1;p,q(0, T ;V, V ∗) with conjugate exponents p and q,
i.e., p ≥ 2 and 1 = 1/p + 1/q. As mentioned in Section 4.2.1, the initial condition (4.4c)
is meaningful if we assume an underlying Gelfand triple V , H, V ∗. From the theory of
DAEs it is known that initial conditions have to satisfy a consistency condition. Also in
the abstract setting one directly obtains by equation (4.4b) that

Bu(0) = G(0).

Note that G(0) ∈ Q∗ is well-defined, since G ∈W 1;p(0, T ;Q∗) ↪→ C([0, T ];Q∗) by Lemma 3.45.
We emphasize that the operator B on the left-hand side is not applicable for u(0) ∈ H.
However, Bu may be evaluated at t = 0. The equality shows that the initial data g cannot
be chosen arbitrarily as for (abstract) ODEs. An exact characterization of admissible
initial data is given in Section 6, using the therein performed regularization. Consistent
initial conditions for operator DAEs are also discussed in [EM13].
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Remark 4.10. If the solution is sufficiently smooth, then it also has to satisfy the
hidden constraint d

dtBu|t=0 = Ġ(0).

As discussed already for abstract ODEs, the operator formulation corresponds to weak
solutions of PDEs in time and space with time derivatives understood in a generalized
sense. This remains valid for the here considered constrained PDEs. Hence, all operator
equations of this subsection should be understood pointwise in L1 as before.

For the convergence of the Lagrange multipliers in Part D of this thesis, we will rely
on a weaker notion of solutions. For this, we note that λ is the (generalized) derivative of

its primitive λ̃. As in [EM13] we then ask the pair (u, λ̃) to solve instead of (4.4a) the
equation∫ T

0
−
〈
u(t), v

〉
V ∗,V

φ̇(t) +
〈
Ku(t), v

〉
V ∗,V

φ(t)−
〈
B∗λ̃(t), v

〉
V ∗,V

φ̇(t) dt

=

∫ T

0

〈
F(t), v

〉
V ∗,V

φ(t) dt

for all v ∈ V and φ ∈ C∞0 (0, T ). In this case, we say that (u, λ̃) solves system (4.4) in the
weak distributional sense. Note that this formulation does not require u̇ ∈ Lq(0, T ;V ∗)
anymore.

In order to analyse applications of elastodynamics, we also consider second-order op-
erator DAEs of semi-explicit structure. The here assumed structure generalizes the DAE
of the form (2.5) to the infinite-dimensional case. Thus, we consider operator DAEs of the
form

ü(t) + Du̇(t) + Ku(t) + B∗λ(t) = F(t) in V ∗,(4.5a)

Bu(t) = G(t) in Q∗(4.5b)

which should hold for a.e. t ∈ [0, T ]. Furthermore, we assume given initial conditions of
the form u(0) = g ∈ V and u̇(0) = h ∈ H. For this particular problem class, we search
for solutions in W 2;2,2,2(0, T ;V, V, V ∗). Thus, the embeddings of Section 3.3.2 ensure that
the initial conditions are meaningful, see also the discussion for operator ODEs above.

As for the equations of first order, there exist consistency conditions for the initial
data g and h because of the constraint (4.5b). Obviously, g has to satisfy Bg = G(0). This
means that only a part of g can be chosen arbitrarily. A detailed characterization of the
admissible initial data is subject of Section 7. With more regular initial data of the form
h ∈ V , we additionally obtain the constraint Bh = Ġ(0).
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5. Discretization Schemes

For the simulation of time-dependent PDEs or its equivalent formulation as operator
ODEs or DAEs, we need discretizations in time and space. Because of the special role
of time we do not consider space-time schemes like the space-time finite element method
[HH90]. Instead, we consider the approach of discretizing in space and time separately.
This leads to the two possibilities of discretizing first in space (method of lines) or first in
time (Rothe method).

For the spatial discretization we consider the finite element method for which we intro-
duce common ansatz spaces. Special emphasis is placed on the discretization and stability
of saddle point problems, so-called mixed methods. Such systems are of importance for
the consideration of operator DAEs where the constraints are enforced by the Lagrangian
method. For simplicity, we restrict the subsection on finite elements to two-dimensional
domains Ω ⊂ R2. Note, however, that most of the presented schemes and results are also
valid for three space dimensions, if we consider triangulations out of tetrahedra.

For the time integration we restrict ourselves to the implicit Euler method. Thus, for
second-order systems we consider the scheme which results from the Euler discretization
to the corresponding first-order system. We shortly discuss the convergence properties of
these methods when applied to DAEs. For this, we assume a semi-explicit structure of
the system which is given for all the applications within this thesis.

Up to now, we have worked with Banach spaces V and H. In order to distinguish
the infinite dimensional spaces from their approximation spaces, we use curly letters such
as V, H, or Q for the general Banach spaces and Vh, Hh, or Qh for its finite-dimensional
counterpart.

5.1. Spatial Discretization. For the discretization in the space variable, we con-
sider finite elements. For this, an infinite-dimensional ansatz or search space V is ap-
proximated by a finite-dimensional space Vh. We distinguish conforming (Vh ⊂ V) and
nonconforming methods (Vh 6⊂ V). Both approaches are of interest and will be considered
in this section but also in the applications discussed in Section 6.3.

In general, the finite element spaces and resulting ansatz functions are based on a
triangulation T of the domain Ω. We always assume that the given domain Ω ⊂ R2 is a
polygonal Lipschitz domain such that there exists a triangulation with

⋃
T∈T T = Ω̄. In the

three-dimensional case we would accordingly assume a polyhedral domain. Furthermore,
we only consider regular triangulations in the sense of Ciarlet [Cia78], i.e., we exclude
hanging nodes. To avoid degenerate meshes, we also assume the mesh to be shape regular
which means that the proportion of the diameter of each triangle and the radius of its
interior sphere is bounded [Bra07, Ch. II.5].

In the sequel, we use the following notation: N denotes the set of nodes (or vertices)
of the triangulation T and E the set of edges. The next subsection introduces common
finite element spaces which will be used within this thesis. This includes the piecewise
linear hat-functions as well as edge-bubble functions. After this, we shortly summarize
how these spaces are used to approximate solutions of PDEs and analyse the stability of
such methods for saddle point problems.

Further results on the history and convergence results of finite element methods can
be found in the monographs [Bra07, BS08].

5.1.1. Finite Element Spaces. All considered finite element schemes are based on piece-
wise polynomials. Here, piecewise should be understood with respect to the given trian-
gulation T , i.e., the approximation space Vh consists of functions whose restriction to a
single triangle is a polynomial. The space of piecewise polynomials of degree k is denoted
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P0(T )

CR(T )S1(T )

Figure 5.1. Illustration of the finite element spaces P0(T ) (top), S1(T )
(left), and CR(T ) (right) in two space dimensions.

by Pk(T ). If the functions are in addition globally continuous, we write

Sk(T ) := Pk(T ) ∩ C(Ω̄) ⊂ H1(Ω).

In order to approximate the space H1
0 (Ω) we introduce the discrete space with zero bound-

ary conditions, namely Sk,0(T ).
In the linear case k = 1, the canonical basis functions are given by the usual nodal

basis functions, also called hat-functions. An illustration of the space S1(T ) is given in
Figure 5.1. These functions are node-oriented and have the value one at a certain node
and vanish at any other node [Bra07, Ch. II]. We denote these functions by ϕi where the
index i corresponds to a node of the triangulation. The dimension of S1(T ) equals the
number of nodes of T , whereas the dimension of S1,0(T ) equals the number of interior
nodes.

Remark 5.1. Nodal basis functions can also be defined on a tetrahedron [Fla00,
Ch. 4.5]. Thus, the space S1(T ) can be defined in the same manner also for three-
dimensional problems.

Another important function class are the so-called edge-bubble functions [Ver96, Ch. 1].
For an edge E ∈ E the edge-bubble function ψE is defined as the (scaled) product of the
two nodal basis functions associated to the endpoints of E. These functions are quite
popular because of their local support which equals the two triangles which share the
edge E. Furthermore, their use has proven to be beneficial for stabilization purposes, cf.
Section 5.1.3. Note that the space of edge-bubble functions B2(T ) is a subset of S2(T ).

A variant of the typical edge-bubble function was introduced by Bernardi and Raugel
[BR85], see also [GR86, Ch. II]. For an interior edge E ∈ Eint, the corresponding basis
function is given by

ΥE := ϕ1ϕ2νE ∈ R2.(5.1)

Therein, ϕ1 and ϕ2 denote the two hat-functions corresponding to the vertices of the edge
E and νE equals the outer normal vector on E. For an illustration of the basis function we
refer to Figure 5.2. These functions are used to construct a stable discretization scheme
for saddle point problems, see Section 5.1.3 below.

Remark 5.2. In three space dimensions, the outer normal vector is not well-defined
along edges. Thus, we have to consider bubble functions w.r.t. faces instead. They are
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E

v1

v2

Figure 5.2. Illustration of the vector-valued basis function ΥE = ϕ1ϕ2νE .

defined as the product of the three corresponding nodal basis functions and the outer
normal vector of the face [BR85].

Piecewise polynomials can be used in a discontinuous manner as well. Such a non-
conforming approximation space was introduced by Crouzeix and Raviart [CR73] and is
defined by

CR(T ) := P1(T ) ∩ C({mid(E) | E ∈ E}) 6⊂ H1(Ω).

Thus, the space contains all piecewise linear functions which are continuous only at the
midpoints of edges, cf. Figure 5.1. The degrees of freedom are hence the values taken in the
midpoints of edges in E . Because of this, we call the space CR(T ) edge-oriented. Possible
Dirichlet boundary conditions are introduced by setting the values at the midpoints of
boundary edges to zero. This space is then denoted by CR0(T ). The Crouzeix-Raviart
basis function corresponding to an edge E is denoted by φE . It takes the value one in the
midpoint of E and vanishes in any other midpoint.

Remark 5.3. On tetrahedra, the analogon is defined by piecewise affine functions
which have a patch condition along the faces, cf. [CR73].

5.1.2. Finite Element Discretization. The finite-dimensional spaces introduced in the
previous subsection can be used to achieve approximations of solutions of PDEs. We start
with an elliptic problem in weak form, i.e., we look for u ∈ V such that for all test functions
v ∈ V it holds that

a(u, v) = 〈f, v〉.(5.2)

Therein, a denotes a bounded and coercive bilinear form and f a linear functional in V∗.
Solving for example the Laplace problem with homogeneous Dirichlet boundary conditions
in a domain Ω, −∆u = f , we would set V = H1

0 (Ω) and a(u, v) := (∇u,∇v)L2(Ω).
Let Vh denote a finite element space, e.g. from Section 5.1.1, which approximates the

space V. The finite element approximation is then obtained by replacing (5.2) by the
finite-dimensional problem: find uh ∈ Vh such that for all vh ∈ Vh it holds that

a(uh, vh) = 〈f, vh〉.(5.3)

An equivalent formulation is given in terms of the coefficients of uh w.r.t. a basis of Vh.
Let x = [xi] denote the coefficient vector of uh, i.e., for a given basis {ϕi}i=1,...,n of Vh we
have uh =

∑n
i=1 xiϕi. Then, (5.3) is equivalent to the linear system

Kx = b

with the stiffness matrix [Kij ] := [a(ϕi, ϕj)] and the right-hand side given by [bi] :=
[〈f, ϕi〉].

Working with operators instead of bilinear forms, i.e., assuming an equation of the
form Ku = F in V∗ in place of (5.2), we can rewrite this equivalently in the form: find
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u ∈ V such that for all test functions v ∈ V it holds that 〈Ku, v〉 = 〈F , v〉. Then, the
stiffness matrix reads accordingly [Kij ] := [〈Kϕi, ϕj〉]. In the case of a nonlinear operator
K, the stiffness matrix has to be replaced by a nonlinear function K : Rn → Rn. The k-th
component of this function is then given by

K(q)k :=
〈
K
(∑n

i=1
qiϕi

)
, ϕk
〉
.

In the case of a nonconforming discretization scheme, one has to assure that the
involved operators are defined for the basis functions ϕi. Note that this is not automatically
given since Vh 6⊂ V. For this, it may be necessary to generalize the application of the
operator to a piecewise (w.r.t. the triangulation T ) application of it. This is normally
sufficient since we work with piecewise polynomials and thus, piecewise smooth functions.

With regard to the operator DAEs analyzed in Part B, we also consider problems with
a saddle point structure: find functions u ∈ V and p ∈ Q such that for all test functions
v ∈ V and q ∈ Q it holds that

a(u, v) + b(v, p) = 〈f, v〉,(5.4a)

b(u, q) = 〈g, q〉.(5.4b)

An example is given by the Stokes equation, describing the steady state motion of an
incompressible viscous fluid,

−∆u+∇p = f, ∇ · u = 0.

Therein, u denotes the velocity of the fluid and the scalar variable p indicates the pressure.
In this case, the weak formulation works with the bilinear forms a(u, v) := (∇u,∇v)L2(Ω)

and b(v, p) := −(∇ · v, p)L2(Ω). The corresponding Sobolev spaces are V = [H1
0 (Ω)]d and

Q = L2(Ω)/R.
The discretization of (5.4) by finite elements then needs two discrete spaces Vh and Qh.

These methods are often called mixed methods, see [BS08, Ch. 12] for an introduction.
The resulting linear system has the form[

K BT

B

][
x

y

]
=

[
b1

b2

]
.

Therein, x and y denote the coefficient vectors of the finite element approximations uh and
ph w.r.t a given basis {ϕi}i=1,...,n of Vh and {ψi}i=1,...,m of Qh, respectively. The matrix
B corresponds to the bilinear form b, i.e., [Bij ] = [b(ϕj , ψi)]. Besides the coercivity of the
bilinear form a in the nullspace of B, the well-posedness of the discrete problem requires
a stability condition of b of the form

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V‖qh‖Q
= βdisc > 0.(5.5)

Thereby, the bound βdisc should be independent of discretization parameters like the
mesh size. This crucial property is called the discrete inf-sup condition, also called the
Ladyzhenskaya-Babuška-Brezzi condition. It is especially related to the stability of the
pressure variable ph [BF91, Ch. VI.3]. Nowadays, this condition provides the right math-
ematical tool to analyse and prevent instabilities in the simulation of saddle point problems
[Bra07, Chap. III.7]. Within this thesis, we are interested in two particular cases for the
bilinear form b which appear in the applications of elastodynamics and fluid dynamics.
The detailed analysis of these two cases is subject of the following subsection.
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5.1.3. Stability for Saddle Point Problems. The first part of this subsection is devoted
to the case where the bilinear form b corresponds to the trace operator of Definition 3.14.
This particular case is of interest in the field of elastodynamics when there are constraints
along a boundary part Γ ⊂ ∂Ω, cf. Section 7.1.2 below. For this, consider the Sobolev
spaces

V := [H1(Ω)]r, Q∗ := [H1/2(Γ)]r

and the bilinear form b : V ×Q → R, which is densely defined by

b(v, q) :=

∫
Γ
v · q dx.(5.6)

Note that the integral of v ∈ V over the boundary involves the trace operator γ of Sec-
tion 3.1.4. The parameter r typically equals 1 (e.g. for the wave equation) or the dimension
of the domain d (e.g. for applications in elastodynamics).

We give a particular example of a stable discretization. For the ansatz space Vh we
choose the piecewise linear hat-functions in r dimensions. In order to ensure stability, this
space has to be enriched by a certain number of edge-bubble functions. Let BΓ(T ) denote
the subspace of B2(T ) which contains all edge-bubble functions corresponding to edges
along Γ. Then, we set

Vh := [S1,0(T )]r ⊕ [BΓ(T )]r.

On the other hand, the space Q is approximated by piecewise constant functions along Γ,
i.e.,

Qh := [P0(T )|Γ]r.

Note that functions in Qh are discontinuous but satisfy Qh ⊂ Q.

Lemma 5.4 (Discrete inf-sup condition). With the finite-dimensional spaces Vh and
Qh, the bilinear form b from (5.6) satisfies a discrete inf-sup condition, i.e., there exists
a positive constant βdisc, independent of the mesh size of T , which satisfies (5.5).

Proof. This stability result is a special case of [Lip04, Th. 2.3.7] and is true for d = 2
as well as d = 3. �

Remark 5.5. The work of [Lip04] contains the more general stability result for Qh =
[Sk(T )|Γ]r. In this case, Vh has to contain all products of edge-bubble functions with
piecewise polynomials of degree k.

Remark 5.6 (Time-dependent Dirichlet boundary). For d = 2 the proposed discretiza-
tion scheme Vh, Qh remains stable if the boundary part Γ changes (smoothly) with time.
The needed adjustments and assumptions can be found in [Alt14]. A possible applica-
tion are flexible multibody systems where the boundary conditions are used to model the
coupling. A movement of two connected domains then leads to time-dependent Dirichlet
boundaries.

Remark 5.7 (Mortar elements). An alternative scheme can be adapted from the nu-
merical analysis of contact problems, the so-called mortar methods [BMP93, Woh99,
BBBCM00]. These elements were originally introduced to enforce weak continuity con-
ditions in domain decomposition methods. The discrete ansatz space for the Lagrange
multipliers are piecewise polynomials which are globally continuous on the boundary seg-
ment. However, the polynomial degree differs, depending on whether the edge is at the
boundary of the segment or not.
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The second example appears in the simulation of fluids dynamics, as already mentioned
in the previous subsection. For the Stokes or Navier-Stokes equations, which we consider
in Section 6.3, the bilinear form b corresponds to the divergence operator. With the spaces

V := [H1
0 (Ω)]2, Q∗ := L2(Ω)/R,

for the two-dimensional case, we define the bilinear form b : V ×Q → R by

b(v, q) :=

∫
Ω
∇ · v q dx.

Because of the wide range of applications, several stable schemes are known for this bilinear
form, see [GR86, Ch. II] or [GS00, Ch. 3]. A negative example in the sense of stability
is given by the scheme Vh = [S1,0(T )]2 with Qh = P0(T )/R, see [BF91, Ex. VI.3.1].

In [BR85] the ansatz space [S1,0(T )]2 has been enriched by the variant of edge-bubble
functions introduced in (5.1). Thus, the fluxes through interior edges yield additional
degrees of freedom and serve as stabilization. This leads to the mixed scheme with spaces

Vh = [S1,0(T )]2 ⊕ {ΥE | E ∈ Eint}, Qh = P0(T )/R.(5.7)

The proof of the corresponding inf-sup condition can be found in [BR85].
A stable scheme of lowest order is given by the nonconforming Crouzeix-Raviart ele-

ment combined with a piecewise constant pressure approximation [CR73, BM11],

Vh =
[

CR0(T )
]2
, Qh = P0(T )/R.(5.8)

Thus, the piecewise linear ansatz is unstable in the conforming case and stable using
discontinuities. It turns out that it is sufficient to consider the nonconforming ansatz
in a single component. Thus, also the mixture of continuous and discontinuous velocity
components, namely Vh = S1,0(T ) × CR0(T ), leads to a stable discretization scheme
[KS95].

Finally, we mention the popular schemes of Taylor-Hood type [TH73]. Therein, the
velocities are approximated by polynomials of one degree higher than the pressure. The
Taylor-Hood element of lowest order is given by

Vh =
[
S2,0(T )

]2
, Qh = S1(T )/R.

One reason of the popularity is the continuity of the pressure ansatz which yields a more
natural model. On the other hand, this scheme using at least second order polynomials is
quite expensive, especially if one considers three-dimensional simulations of fluid flows.

5.2. Time Integration. This subsection is devoted to the temporal discretization
methods used within this thesis. Using ODE methods for the discretization of DAEs calls
for special care. Because of the numerical instabilities mentioned in Section 2, even simple
linear DAE systems may not be integrated accurately by ODE methods [LP86]. However,
index-1 systems can be solved without great difficulties whereas codes with automatic step
size adaptation often fail for high-index DAEs [GP84, KM06]. This is certainly the best
argument for index reduction techniques, cf. Section 2.3.

Examples from applications often provide a special structure which is advantageous
for the numerical integration. In particular, we consider here semi-explicit systems as
equations (2.2) and (2.3). For the temporal discretization, we simply consider the implicit
Euler scheme but other schemes could be employed as well [KM06, Ch. 5].
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5.2.1. Implicit Euler Scheme. Consider a semi-explicit DAE of first order

u̇ = f(u, p), 0 = g(u).(5.9)

We assume this system to be of index at most 2, cf. Lemma 2.2. The discretization by
the backward or implicit Euler scheme with step size τ then reads

un − un−1 = τf(un, pn), 0 = g(un).

It is shown in [LP86] that this scheme converges for systems which come e.g. from
applications such as fluid dynamics. However, the analysis assumes a certain accuracy in
solving the resulting (nonlinear) systems in every time step. This is necessary because of
the high sensitivity of DAEs w.r.t. perturbations. More precisely, it is assumed that the
differential equation in (5.9) is solved up to order O(τ) and the algebraic equation even
up to order O(τ2). A more detailed analysis, which does not rely on these assumptions, is
given in [Arn98b, Ch. 2]. Therein, the different behavior of the differential variable u and
algebraic variable p is stressed which shows that the index of a DAE provides no sharp
estimates of the error of the single variables. For systems in Hessenberg form such as (5.9),
the differential variable u is more robust to perturbations than its algebraic counterpart
p.

In summary, numerical ODE methods may be applied to semi-explicit DAEs (5.9) of
index up to 2 if the resulting algebraic systems are solved accurately enough. This counts
for errors of iterative solvers as well as errors due to Newton iterations. Results on the
implicit Euler scheme applied to operator DAEs of semi-explicit structure are subject of
Section 10.

Also schemes of higher order such as BDF or Runge-Kutta schemes can be applied to
DAEs [Arn93, Ost93]. However, these schemes are not used within this thesis.

5.2.2. Schemes for Second-order Systems. In this subsection we consider second-order
DAEs of the form

ü = f(u, u̇, λ), 0 = g(u).(5.10)

The applications in view of second-order systems are mainly problems from elastodynamics
or multibody dynamics. For such systems the Newmark scheme [New59, GC01] as well
as further developments like the HHT [HHT77] or the generalized-α methods [CH93,
AB07] are widely used. The two latter methods include numerical dissipation, i.e., an
artificial loss of energy, in order to damp the high-frequency modes of the system, which
often results from a finite element discretization [YPR98]. This is advantageous if one
is interested only in the low-frequency response of a system. The Newmark scheme is
of second order for ODEs but does not converge for the index-3 DAEs (5.10). More
precisely, it is the Lagrange multiplier λ which does not converge. For systems from
structural dynamics, the deformation u is not affected and still converges although one
has to pay attention to the badly conditioned iteration matrix.

The Newmark scheme may also be applied to the index-1 DAEs which result from
an index reduction. In this case, we regain the convergence of the method. Although
Newmark-type schemes are popular, we do not consider them here since they are not
suitable for the convergence of operator equations [EŠT13].

For the analysis of the Rothe method applied to second-order operator DAEs in Sec-
tion 11, we consider the scheme which corresponds to the implicit Euler method applied to
the equivalent first-order system. We only consider equidistant time steps with step size
τ . Let un denote the approximation of u at time tn = nτ . For the temporal discretization
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we then replace the derivatives u̇ and ü at time tn by

u̇→ un − un−1

τ
=: Dun, ü→ un − 2un−1 + un−2

τ2
=: D2un.

The convergence of this scheme for index-3 DAEs arising from multibody dynamics is
discussed in [LP86]. We emphasize that the analysis used therein assumes the constraint
to be solved with high accuracy, namely up to the order of O(τ3).

Note that we obtain the Störmer-Verlet scheme if u is replaced by un−1 instead of un.
Also this scheme is used regularly in the analysis of second-order operator equations but
is not considered within this thesis.

5.3. Discretization of Time-dependent PDEs. In Section 4 we have seen how to
model time-dependent PDEs with the help of operator ODEs or, in the constrained case,
operator DAEs. The subject of this section is the discretization of such systems in order
to obtain appropriate simulations and approximate solutions. For this, we combine the
techniques of Sections 5.1 and 5.2.

Since dynamical systems represent evolution problems, the time variable plays a special
role which should result in a special treatment [Emm04, Ch. 6]. This also explains the
consideration of abstract functions in the modeling part. One considers two main principles
[Rou05, Ch. 8]:

(1) One possibility is to maintain the time as a continuous variable and use a dis-
cretization of Galerkin type (e.g. finite elements of Section 5.1). This ansatz is
called the method of lines [Hol07, Ch. 3.4].

(2) The second ansatz is to discretize in time which leads to a stationary PDE in
every time step. For this, a time discretization scheme such as in Section 5.2
is formally applied to the abstract differential equation. This method is often
referred to as the Rothe method or the reverse method of lines [Rot30].

We discuss these two approaches in the following two subsections. Because of the
mentioned significance of the time variable, we do not discuss methods such as space-time
finite elements. An introduction of this approach by means of second-order systems can
be found in [HH90], see also the more recent paper on parabolic problems [NS11].

5.3.1. Method of Lines. Applying the finite element method (or any other discretiza-
tion scheme) to system (4.2), we obtain an ODE where t is the only remaining variable.
Accordingly, the finite element method applied to system (4.4) leads to a DAE. Note that
the size of the resulting systems may be arbitrary large and depends on the discretization
level and the corresponding mesh size. However, using suitable basis functions with local
support, we obtain sparse matrices in the ODE or DAE.

This ansatz can also be characterized in the following way: Approximate the solution
u ∈ L2(0, T ;V) by a function uh ∈ L2(0, T ;Vh) of the form

uh(x, t) =
n∑
i=1

qi(t)ϕi(x).

Therein, {ϕi}i=1,...,n denotes a basis of the finite-dimensional space Vh and qi ∈ L2(0, T ).
A justification of this ansatz is subject of the following lemma which shows that functions
of this form are dense in L2(0, T ;V) if Vh is an appropriate approximation space of V. By
this we mean that the union of Vh over all mesh sizes is dense in V, i.e.,⋃

h

Vh
V

= V.(5.11)
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For the following result, we restrict ourselves to the conforming case, i.e., Vh ⊂ V. Nev-
ertheless, analogous approximation properties also hold for nonconforming finite element
schemes [BS08, Ch. 10.3].

Lemma 5.8. Consider a real Banach space V and a sequence of finite-dimensional
approximation spaces Vh which satisfy property (5.11). Then, the union

⋃
h L

2(0, T ;Vh) is
dense in L2(0, T ;V).

Proof. Consider ε > 0, an arbitrary function u ∈ L2(0, T ;V), and an equidistant
partition 0 = t0 < t1 < · · · < tn = T with step size τ . We define the piecewise constant
function

uτ (t) :=
1

τ

∫ tj

tj−1

u(t) dt ∈ V for t ∈]tj−1, tj ].

Following the proof of Theorem 4.2.5 in [Emm01], we yield the convergence uτ → u in
L2(0, T ;V) as τ → 0. Hence, there exists a certain step size τε with a corresponding
partition of [0, T ] such that

‖u− uτε‖L2(0,T ;V) < ε/2.

With ujτε := uτε |]tj−1,tj ] ∈ V and the characteristic function χj := χ]tj−1,tj ], we can write
uτε in the form

uτε(t, x) =

nε∑
j=1

χj(t)ujτε(x).

Note that the partition of [0, T ] and the step size τε is fixed such that we have a finite
number of subintervals. Since Vh is assumed to be an approximation space of V in the
sense of (5.11), a sufficient fine triangulation yields for all j = 1, . . . , nε approximations

ujh,τε ∈ Vh which satisfy the bound∥∥ujτε − ujh,τε∥∥V < ε

2
T−1/2.

Combining all the above estimates, we note that uh(t, x) :=
∑nε

j=1 χ
j(t)ujh,τε(x) ∈ L2(0, T ;Vh)

satisfies

‖u− uh‖L2(0,T ;V) ≤ ‖u− uτε‖L2(0,T ;V) + ‖uτε − uh‖L2(0,T ;V)

<
ε

2
+
( nε∑
j=1

∫ tj

tj−1

‖ujτε − u
j
h,τε
‖2V dt

)1/2

<
ε

2
+
ε

2

( nε∑
j=1

∫ tj

tj−1

1

T
dt
)1/2

=
ε

2
+
ε

2
= ε. �

Lemma 5.8 shows that the ansatz of the method of lines is reasonable. In Part C of
this thesis, we will analyse the index of the semi-discrete DAEs resulting from the method
of lines applied to constrained operator equations of first and second order.

5.3.2. Rothe Method. Within the Rothe method, which goes back to Rothe [Rot30],
one discretizes in time first. Thus, time integration schemes are formally applied to the
abstract differential equation which then leads to a (stationary) PDE which has to be
solved in each time step. In general, this method is favored by the finite element community
since adaptive finite elements are easily applicable. The method of Rothe may also be used
to prove the existence of solutions of operator ODEs, see e.g. [Rou05, Th. 8.9]. In some
cases, this may require higher order schemes in time, cf. [Emm01].
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We have seen in Section 4 that the right-hand sides of operator equations are not
always assumed to be continuous. Thus, function evaluations of the right-hand side as
used for the discretization of ODEs are not well-defined. In this case, F(tn) may be
replaced by an integral mean over one time step or any other local regularization such
as the Clément quasi-interpolant [Clé75]. In this introductory subsection, we summarize
convergence results for two kinds of discretizations of the right-hand side which are used
within this thesis.

Consider a Bochner integrable function F ∈ L2(0, T ;V) with a real Banach space V
and an equidistant partition 0 = t0 < t1 < · · · < tn = T of [0, T ]. As in Lemma 5.8 we
compute the Bochner integrals over one time step τ ,

F j :=
1

τ

∫ tj

tj−1

F(t) dt ∈ V.

Recall that this is well-defined for F ∈ L2(0, T ;V). Therewith, we define the piecewise
constant function Fτ : [0, T ]→ V by

Fτ (t) := F j for t ∈]tj−1, tj ](5.12)

and a continuous extension in t = 0. An easy calculation shows that Fτ ∈ L2(0, T ;V),

‖Fτ‖2L2(0,T ;V) = τ
n∑
j=1

‖F j‖2V ≤
n∑
j=1

∫ tj

tj−1

‖F(t)‖2V dt = ‖F‖2L2(0,T ;V).(5.13)

One important property of Fτ , which we need within the convergence analysis of Part D,
is the strong convergence to F as τ → 0.

Lemma 5.9 (Limit of Fτ ). Consider F ∈ L2(0, T ;V) with its approximation Fτ as
defined in (5.12) and let A : V → W denote a linear and bounded operator between the real
Banach spaces V and W. Then, AFτ → AF in L2(0, T ;W) as τ → 0.

Proof. The proof of the strong convergence Fτ → F in L2(0, T ;V) as τ → 0 is given
in [Tem77, Ch. III, Lem. 4.9]. This then implies for τ → 0,

‖AFτ −AF‖2L2(0,T ;W) =

∫ T

0
‖A
(
Fτ (t)−F(t)

)
‖2W dt ≤ C2

A‖Fτ −F‖2L2(0,T ;V) → 0. �

For continuous functions G ∈ C([0, T ];Q) function evaluations are well-defined. In this
case, we may define

Gτ (t) := G(tj) for t ∈]tj−1, tj ].(5.14)

Again we consider a continuous extension at t = 0. This then leads to the following
convergence result.

Lemma 5.10 (Limit of Gτ ). Consider G ∈ C([0, T ];Q) with its approximation Gτ as
defined in (5.14) and let A : Q → R denote a linear and bounded operator between the real
Banach spaces Q and R. Then, AGτ → AG in L2(0, T ;R) as τ → 0.

Proof. To prove the strong convergence Gτ → G in L2(0, T ;Q), we estimate

‖Gτ − G‖2L2(0,T ;Q) =
n∑
j=1

∫ tj

tj−1

‖Gτ (t)− G(t)‖2Q dt ≤
n∑
j=1

τ max
t∈[tj−1,tj ]

‖G(tj)− G(t)‖2Q.



5. Discretization Schemes 39

For an arbitrary ε > 0 the (uniform) continuity of G then implies that for a sufficiently
small step size τ , it holds that

‖Gτ − G‖2L2(0,T ;Q) ≤
n∑
j=1

τε2 = Tε2.

The application of a linear and bounded operator does not influence the convergence. �

In Parts B and D we often deal with Bochner integrable functions of the form G ∈
W 1,p(0, T ;Q). In this case, we propose to discretize G by means of function evaluations

as in (5.14) and Ġ by the integral means as in (5.12). This approach has the nice prop-
erty that the discrete derivative (in terms of the implicit Euler scheme) of Gj equals the
approximation of the derivative, i.e.,

DGj :=
Gj − Gj−1

τ
= Ġj .

The application of a nonlinear function to a convergent sequence requires a special
treatment. In view of Section 10.5 below, we consider one particular result for trace
functions.

Lemma 5.11. Consider a Lipschitz domain Ω ⊂ Rd and a strongly converging sequence
Gτ with Gτ → G in L2(0, T ;H1/2(∂Ω)). If f : R → R is Lipschitz continuous, then also

f(Gτ )→ f(G) in L2(0, T ;H1/2(∂Ω)).

Proof. For the proof we consider the norm of H1/2(∂Ω) given in [Wlo87, Ch. 4.2],
i.e.,

‖u‖21/2 := ‖u‖2L2(∂Ω) + I1/2(u) := ‖u‖2L2(∂Ω) +

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|
|x− y|d

dx dy.

The Lipschitz continuity of f with constant CLip yields

‖fGτ − fG‖L2(∂Ω) ≤ CLip‖Gτ − G‖L2(∂Ω).

Thus, it remains to show that
∫ T

0 I1/2(fGτ − fG) dt tends to zero as well when τ → 0.
For this, consider an arbitrary ε > 0. With δ > 0, which we fix below, we split the double
integral into

I1/2(fGτ − fG) = I<δ + I≥δ

:=

∫
∂Ω

∫
x∈∂Ω,
|x−y|<δ

|fGτ (x)− fG(x)− fGτ (y)− fG(y)|
|x− y|d

dx dy

+

∫
∂Ω

∫
x∈∂Ω,
|x−y|≥δ

|fGτ (x)− fG(x)− fGτ (y)− fG(y)|
|x− y|d

dx dy.

For the first integral we use the triangle inequality in the numerator and the Lipschitz
continuity of f . This yields

I<δ ≤ CLip

∫
∂Ω

∫
x∈∂Ω,
|x−y|<δ

|Gτ (x)− Gτ (y)|
|x− y|d

+
|G(x)− G(y)|
|x− y|d

dx dy

Since Gτ , G ∈ H1/2(∂Ω), both fractions are integrable over ∂Ω × ∂Ω by the definition
of the norm. Furthermore, the integration domain tends to zero as δ → 0. Thus, by
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[Bog07, Th. 2.5.7], there exists a δ such that
∫ T

0 I<δ dt ≤ ε/2. For the second integral,
the Lipschitz continuity and the lower bound of |x− y| leads to the estimate

I≥δ ≤
CLip

δd

∫
∂Ω

∫
x∈∂Ω,
|x−y|≥δ

|Gτ (x)− G(x)|+ |Gτ (y)− G(y)|dx dy

≤ 2|∂Ω|CLip

δd

∫
∂Ω
|Gτ (x)− G(x)|dx.

Therein, |∂Ω| denotes the (d − 1)-dimensional measure of the boundary. Finally, the
Cauchy-Schwarz inequality implies

I≥δ ≤ C(δ)‖Gτ − G‖L2(∂Ω)

with a constant C(δ) which depends on δ and the boundary. The strong convergence of

Gτ then ensures
∫ T

0 I≥δ dt ≤ ε/2 for a sufficiently small step size τ . �



Part

B

Regularization of Operator DAEs

Within this part, a general framework for the regularization of constrained time-
dependent PDEs is presented. We consider systems which can be written as semi-explicit
and semi-linear operator DAEs of first or second order. Semi-explicit means that the
equation which constrains the dynamics is explicitly given whereas semi-linear means that
the time-derivative of the solution appears only linearly. The assumed structure is general
enough to include several major applications from the fields of fluid dynamics as well as
elastodynamics. In particular, we discuss the (linearized) Navier-Stokes equations, the
two-phase Stefan problem, and flexible multibody systems. More generally, we consider
operator DAEs which appear by the incorporation of a constraint via a Lagrange multi-
plier.

The main idea is to translate regularization techniques from the theory of DAEs to
the infinite dimensional case. More precisely, we introduce a regularization process which
is influenced by the index reduction technique of minimal extension. Here we use the fact
that the system is assumed to be of semi-explicit structure. Note that this adoption is
enabled by the formulation of the constrained PDE as operator DAE. By this we maintain
the typical DAE structure although the system is stated in a Banach space formulation
and we can translate the known results to the abstract framework.

We will call the presented procedure a regularization or index reduction on operator
level. The reason for that, and thus, the justification of the reformulation, is discussed
in detail in the two subsequent parts of this thesis. In Part C we analyse the beneficial
effect on the spatial-discretized system whereas Part D investigates the impact on the
convergence and stability of the temporal discretization.

This part is partitioned into two sections dealing with first- and second-order operator
DAEs. In Section 6, we consider semi-explicit operator DAEs of first order as they appear
within the Lagrangian method. Thus, we consider systems where the constraint is enforced
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by the insertion of a Lagrange multiplier which leads to an operator DAE of saddle point
structure. We gather assumptions on the constraint - of linear and nonlinear type - which
allow a regularization in the sense described above. The section ends with a discussion
of particular examples which fit in the given framework. This includes the Navier-Stokes
equations, an example from PDE constrained optimization, and the regularized Stefan
problem.

Second-order equations coming from the field of elastodynamics are subject of Sec-
tion 7. Therein, we focus on a particular case with the constraint given by Dirichlet
boundary conditions. For this example, existence and uniqueness results as well as the
continuous dependency of the solution on the data are analysed for a particular problem
including a nonlinear damping term.

6. Regularization of First-order Operator DAEs

This section is devoted to the regularization of first-order operator DAEs of semi-
explicit structure. More precisely, we consider an operator ODE as introduced in Sec-
tion 4.2,

u̇(t) +K(t)u(t) = F(t),

stated in the dual space of a real, separable, and reflexive Banach space V which is con-
strained by an equation

B(t)u(t) = G(t).

Therein, the constraint is formulated in the dual space of a second real, separable, and
reflexive Banach space Q. We further introduce the separable Hilbert space H which is
assumed to form a Gelfand triple V ↪→ H ∼= H∗ ↪→ V∗, see Section 3.3.1. The space H is
of special importance for the incorporation of the initial condition. The application of the
Lagrangian method [Ste08, Ch. 4.1.2] then leads to an operator DAE as in Section 4.3.
The overall problem has the form:

Find abstract functions u : [0, T ]→ V and λ : [0, T ]→ Q such that

u̇(t) + Ku(t) +
(∂B
∂u

(u)
)∗
λ(t) = F(t) in V∗,(6.1a)

Bu(t) = G(t) in Q∗(6.1b)

holds for a.e. t ∈ [0, T ] with initial condition

u(0) = g ∈ H.(6.1c)

Note that the constraint in enforced by the Lagrange multiplier λ which is applied to the
dual operator of the Fréchet derivative of B, i.e.,〈(∂B

∂u
(u)
)∗
λ(t), v

〉
V∗,V

:=
〈
λ(t),

∂B
∂u

(u)v
〉
Q,Q∗

.

Recall that this system forms an operator DAE since equation (6.1b) generalizes an alge-
braic constraint in the DAE framework. Obviously, the system is semi-linear and semi-
explicit in terms of the given constraint.

As discussed in Section 4, the choice of suitable ansatz spaces for a solution (u, λ)
is crucial. The right Sobolev-Bochner spaces with the embeddings given in Section 3.3
then also provide an adequate meaning of the initial condition (6.1c). As in the finite-
dimensional case, the initial condition has to satisfy a consistency condition as we discuss
below. For the right-hand sides we assume that F ∈ Lq(0, T ;V∗) and G ∈W 1;p(0, T ;Q∗).
Note that due to the semi-explicit structure of system (6.1), we do not need generalized
derivatives of F . This corresponds to the finite-dimensional case. The discussion on
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Nemytskii maps in Section 4.1 leads to the assumption that the operator K extends to the
map K : Lp(0, T ;V)→ Lq(0, T ;V∗) with 1 < q ≤ p <∞. Note that for the regularization
we do not require the boundedness of the operator. Furthermore, we assume p ≥ 2 which
is typical for applications.

The proper search space for the solution u turns out to be W 1;p,q(0, T ;V,V∗). However,
we need to guarantee the well-posedness of the initial condition (6.1c).

Remark 6.1. In the case q ≥ p′ with the conjugate exponent p′ = 1−1/p, Lemma 3.46
implies the regularity u ∈ C([0, T ],H). Thus, the initial condition (6.1c) is well-posed.
However, since the analysis below is also valid for smaller exponents, we refrain from a
restriction of the exponent.

For the regularization of operator DAEs we consider two cases. In Section 6.1 we
analyse the case of linear constraints, i.e., the operator B is linear in u. However, we allow
the constraint operator to be time-dependent. Nonlinear operators B are then subject of
Section 6.2. Therein, we restrict ourselves to the time-independent case.

The results of this section are published within Sections 3 and 5 of [AH14].

6.1. Linear Constraints. Consider the operator DAE (6.1) with a linear constraint
operator B(t) : V → Q∗. The linearity then implies that the Fréchet derivative of B is
equal to itself. Thus, the operator DAE is simply given by

u̇(t) + Ku(t) + B∗(t)λ(t) = F(t) in V∗,(6.2a)

B(t)u(t) = G(t) in Q∗(6.2b)

with a (consistent) initial condition as is (6.1c).

6.1.1. Assumptions on B. The regularization of the operator DAE (6.2) requires sev-
eral properties of the constraint operator B. We summarize these requirements in the
following assumption.

Assumption 6.2 (Properties of B [AH14]). The constraint operator B(t) : V → Q∗
satisfies the following conditions:

(a) B(t) is linear and uniformly bounded; B(·)v is measurable for all v ∈ V,

(b) VB := kerB(t) is independent of the time t,

(c) there exists a uniformly bounded right inverse of B(t), i.e., there exists a uniformly
bounded operator E(t) : Q∗ → V such that for all q ∈ Q∗ and a.e. t ∈ [0, T ] it
holds that

B(t)E(t)q = q,

(d) the range of the right inverse Vc := range E(t) is independent of time t, and

(e) the time derivatives Ḃ(t) : V → Q∗ and Ė(t) : Q∗ → V are uniformly bounded.

Remark 6.3. In the time-invariant case B(t) ≡ B, Assumption 6.2 reduces to the
points (a) and (c). The continuity constants of B and E are denoted by CB and CE ,
respectively.

Remark 6.4. In the finite-dimensional case, it would be sufficient to assume that the
range of the right-inverse has a constant rank, i.e., the spaces may change with time.
Accordingly, one may think of a time-dependent Riesz basis of V which then defines time-
dependent subspaces VB and Vc. However, this is excluded here, since it requires an
extension of the theory of Sobolev-Bochner spaces.
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Lemma 6.5 (Induced operators). Let B(t) : V → Q∗ satisfy Assumption 6.2 with the
pointwise right inverse E(t). Then, these operators induce the Nemytskii mappings

B : Lp(0, T ;V)→ Lp(0, T ;Q∗) and E : Lp(0, T ;Q∗)→ Lp(0, T ;Vc),
where E is the right inverse of B.

Proof. The fact that B maps into the space Lp(0, T ;Q∗) can be proved similar to the
result in Corollary 4.4 and follows by the uniform boundedness of B(t). For this, consider
an arbitrary v ∈ Lp(0, T ;V) and let p′ denote the conjugate exponent of p. Then, every

q ∈ Lp′(0, T ;Q) satisfies due to Hölders inequality, cf. see Section 3.2,〈
Bv, q

〉
=

∫ T

0

〈
B(t)v(t), q(t)

〉
Q∗,Q dt

≤ CB

∫ T

0
‖v(t)‖V‖q(t)‖Q dt ≤ CB ‖v‖Lp(0,T ;V)‖q‖Lp′ (0,T ;Q).

Thus, Bv is bounded for all q ∈ Lp′(0, T ;Q) which implies that Bv is itself an element of
the dual space, namely Lp(0, T ;Q∗). Since also E(t) is assumed to be uniformly bounded,
we similarly obtain that the operator E maps functions from Lp(0, T ;Q∗) to Lp(0, T ;Vc).

Next, we show that B is surjective. For this, consider an arbitrarily element q ∈
Lp(0, T ;Q∗), i.e., ∫ T

0
‖q(t)‖pQ∗ dt <∞.

In particular, q(t) ∈ Q∗ for a.e. t ∈ [0, T ] which implies that E(t) is applicable and

v(t) := E(t)q(t) ∈ Vc.

Because of Assumption 6.2, v(t) satisfies B(t)v(t) = q(t) and it only remains to prove that
v ∈ Lp(0, T ;V). This then implies Bv = q and thus, q is in the range of B. Because of the
uniform boundedness of E(t), we have the estimate∫ T

0
‖v(t)‖pV dt =

∫ T

0
‖E(t)q(t)‖pV dt ≤ CpE

∫ T

0
‖q(t)‖pQ∗ dt <∞. �

Note that the choice of the right inverse E (and therefore also Vc) in Assumption 6.2
is not unique. For a Hilbert space V the canonical choice for the complement space is
certainly the orthogonal complement of the kernel VB. We proceed with a collection of
properties of the right-inverse.

Lemma 6.6 (Properties of E [AH14]). Let B(t) satisfy Assumption 6.2. Then, the
right inverse E(t) : Q∗ → Vc ⊂ V is linear and one-to-one. Furthermore, Vc = range E(t)
is a subspace of V and the operator E(t)B(t) : V → V, restricted to Vc, equals the identity.

Proof. The linearity of E(t) follows from the linearity of the operator B(t) [RR04,
Ch. 8.1.2]. For the one-to-one relation, consider q1, q2 ∈ Q∗ with E(t)q1 = E(t)q2. Then,
the application of B(t) yields q1 = B(t)E(t)q1 = B(t)E(t)q2 = q2.

The linearity of E(t) implies that Vc is a subspace of V. Finally, for v ∈ Vc and fixed
t ∈ [0, T ] there exists an element q ∈ Q∗ with E(t)q = v. Then, Assumption 6.2 implies

v = E(t)q = E(t)
(
B(t)E(t)q

)
= E(t)B(t)v. �

In particular, Lemma 6.6 implies that E(t)B(t) : V → V is a projection onto Vc for a.e.
t ∈ [0, T ]. As a result, the operator B(t) defines an isomorphism as operator B(t) : Vc →
Q∗. Equivalently, by [Bra07, Lem. III.4.2], the dual operator

B∗(t) : Q →
{
f ∈ V∗ | 〈f, v0〉 = 0 for all v0 ∈ VB

}
⊆ V∗
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defines an isomorphism. A third equivalence is given by the well-known stability concept
of the inf-sup condition, i.e., there exists a positive constant β > 0 such that

inf
q∈Q

sup
v∈V

〈B(t)v, q〉
‖v‖V‖q‖Q

≥ β > 0.

Since B(t) and E(t) are assumed to be uniformly bounded, also the inf-sup constant β is
independent of time. Note that the existence of a uniform inf-sup constant implies the
existence of a right inverse E(t) but not point (d) of Assumption 6.2, i.e., the range of E(t)
is not necessarily time-independent.

Another implication of Assumption 6.2 is the resulting decomposition of Lp(0, T ;V).
This decomposition is necessary for the splitting of the variable u into an ’differential’ and
’algebraic’ part within the index reduction procedure of Section 6.1.2.

Lemma 6.7 (Decomposition of Lp(0, T ;V) [AH14]). Consider the subspaces VB and
Vc of V from Assumption 6.2. Then, we have the decomposition

Lp(0, T ;V) = Lp(0, T ;VB)⊕ Lp(0, T ;Vc).

Proof. For given v ∈ Lp(0, T ;V), we define r := Bv ∈ Lp(0, T ;Q∗), cf. Lemma 6.5.
Then, a decomposition of v ∈ Lp(0, T ;V) is given by

v = v0 + vc :=
(
v − Er

)
+ Er.(6.3)

Obviously, vc = Er ∈ Lp(0, T ;Vc) and v0 ∈ Lp(0, T ;VB) follows from Assumption 6.2 by
Bv0 = Bv − BEBv = 0. We show that the decomposition in (6.3) is unique. For this,
consider v0, w0 ∈ Lp(0, T ;VB) and vc, wc ∈ Lp(0, T ;Vc) with v = v0 + vc = w0 + wc. The
application of B yields Bvc = Bwc. Furthermore, there exist rv, rw ∈ Lp(0, T ;Q∗) such
that vc = Erv and wc = Erw. By Assumption 6.2 we then obtain

rv − rw = BErv − BErw = Bvc − Bwc = 0.

Thus, it holds that vc = Erv = Erw = wc and finally also v0 = w0. �

6.1.2. Regularization. As mentioned in the introduction of this section, the aim is a
regularization of the operator DAE (6.2). The justification of this reformulation and the
verification that this procedure is in fact an index reduction will be given in Section 8.2.
Therein, the semi-discretization is performed which leads to a DAE of lower index.

The presented regularization is an adaptation of the index reduction technique of
minimal extension [KM04], see also Section 2.3.2. In the sequel, we assume that the
operator B satisfies Assumption 6.2.

As explained in Section 2, it is well-known from DAE theory that the existence of
derivatives of the right-hand side are necessary for the solvability of a DAE. Since the
operator DAE (6.2) results under semi-discretization in a DAE of index 2 (see Section 8.2),
it can be expected that derivatives of the right-hand side are essential. Because of the
semi-explicit structure of the operator DAE, only the derivative of G is necessary and we
assume G ∈W 1;p(0, T ;Q∗).

Consider the time derivative of the constraint (6.2b), which is formally given by

Bu̇+ Ḃu = Ġ.

In terms of the theory of DAEs, this is the hidden constraint of the operator DAE (6.2).
At this point we assume sufficient regularity of the solution, namely u̇ ∈ Lp(0, T ;V). We
will discover that this condition may be relaxed, since for the differential part of u it is
sufficient to have a derivative in the dual space V∗.
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In order to split the variable u, we apply the decomposition of Lp(0, T ;V) into Lp(0, T ;VB)
and Lp(0, T ;Vc) from Lemma 6.7. Thus, we define u1 ∈ Lp(0, T ;VB) and u2 ∈ Lp(0, T ;Vc)
uniquely such that u = u1 + u2. Assuming that also u1 and u2 are differentiable in time,
we can reduce the constraint (6.2b) and its derivative to

Bu2 = G and Bu̇2 + Ḃu2 = Ġ.

Note that we make use of Lemma 3.47 at this point which implies that u̇2 ∈ Lp(0, T ;Vc)
and thus, the decomposition of u̇ is given by u̇ = u̇1 + u̇2. The reduction of the constraint
then causes that the operator B is only applied to the derivative of u2. The assumed
regularity of G implies with Assumption 6.2, Lemma 6.6, and equation (6.2b) that u2 ∈
W 1;p(0, T ;Vc). For the derivative of u1 it is sufficient to have u̇1 ∈ Lq(0, T ;V∗).

Following the procedure of minimal extension, we add an additional variable v2 :=
u̇2 ∈ Lp(0, T ;Vc). Since this variable is normally not of interest, it is often called a
dummy variable. Note that the invertibility of B(t) on Vc from Lemma 6.6 corresponds
to the full rank property of the Jacobian in the finite-dimensional case. This explains the
choice of the new variable. Finally, we obtain again a balanced number of variables and
equations.

Replacing all appearances of u̇2 by v2, we note that in the resulting operator DAE u2 is
not differentiated anymore. Thus, the initial condition only concerns u1. This corresponds
to the fact that the initial condition (6.1c) has to satisfy a consistency condition, see
Section 4.3. The initial condition for u1 can be chosen arbitrarily in the closure of VB in
H, see the discussion in Remark 6.9. The initial data for u2 is fixed by the right-hand side
G.

With these preparations, we are able to formulate the regularized operator DAE cor-
responding to (6.2). For this we neglect to write the time-dependence of B. Given right-
hand sides F ∈ Lq(0, T ;V∗), G ∈ W 1;p(0, T ;Q∗) and initial data g ∈ H, find functions

u1 ∈W 1;p,q(0, T ;VB,V∗), u2, v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp′(0, T ;Q) such that

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

)
+ B∗λ(t) = F(t) in V∗,(6.4a)

Bu2(t) = G(t) in Q∗,(6.4b)

Bv2(t) + Ḃu2(t) = Ġ(t) in Q∗(6.4c)

holds for a.e. t ∈ [0, T ] with initial condition

u1(0) = g − EG(0) ∈ H.(6.4d)

The well-posedness of the initial condition (6.4d) is again guaranteed by the embedding
due to the underlying Gelfand triple and the fact that G(0) ∈ Q∗ is well-defined. The latter
is true, since W 1;p(0, T ;Q∗) is continuously embedded in C([0, T ],Q∗), see Section 3.3.2.
Note that this does not imply that there exists a solution of system (6.4) for every initial
data g ∈ H, cf. Remark 6.9 below. The following theorem shows that the original system
(6.2) and the regularized system (6.4) are equivalent.

Theorem 6.8 (Equivalence of the reformulation [AH14]). Consider exponents 1 <
q ≤ p <∞ and p′ with 1/p′+ 1/p = 1. Assume that F ∈ Lq(0, T ;V∗), G ∈W 1;p(0, T ;Q∗),
and g ∈ H as well as the operator B satisfying Assumption 6.2. Then, the operator
DAE (6.2) has a solution (u, λ) with u ∈ W 1;p,q(0, T ;V,V∗), and λ ∈ Lp

′
(0, T ;Q) if

and only if system (6.4) has a solution (u1, u2, v2, λ) with u1 ∈ W 1;p,q(0, T ;VB,V∗), u2,

v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp
′
(0, T ;Q). Furthermore, it holds that u = u1 + u2 and

u̇2 = v2.
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Proof. Since Q is separable, the dual space of Lp
′
(0, T ;Q) can be identified with

Lp(0, T ;Q∗), cf. Proposition 3.40. Thus, Lp
′
(0, T ;Q) is a suitable space for the Lagrange

multiplier λ. Let (u, λ) be a solution of (6.2). We define

u1 := u− EBu ∈ Lp(0, T ;VB) and u2 := EBu ∈ Lp(0, T ;Vc).

With (6.2b), we obtain u2 = EG and thus, by the regularity of G and Assumption 6.2,
u̇2 ∈ Lp(0, T ;Vc). With v2 := u̇2 the quadruple (u1, u2, v2, λ) satisfies equations (6.4a-c).
The initial condition (6.4d) is satisfied because of

u1(0) = u(0)− u2(0) = g − EG(0).

For the reverse direction consider a solution of (6.4), namely (u1, u2, v2, λ). Then,
u := u1 + u2 ∈ Lp(0, T ;V) and because of the regularity of G, equation (6.4b), and the

boundedness of B and Ḃ, it holds that u̇ = u̇1 + u̇2 ∈ Lq(0, T ;V∗). We show that u̇2 = v2.
Equation (6.4c) and the time derivative of equation (6.4b) yield

Bv2 + Ḃu2 = Ġ =
d

dt

(
Bu2

)
= Bu̇2 + Ḃu2.

Note that u̇2 ∈ Lp(0, T ;Vc), as shown in the first part of the proof. The invertibility of B
on Vc (see Lemma 6.6) then gives u̇2 = v2. Thus, the pair (u, λ) satisfies equations (6.2a)
and (6.2b). For the initial condition (6.1c), we obtain

u(0) = u1(0) + u2(0) = g − EG(0) + EG(0) = g. �

Remark 6.9 (Consistent initial data). One conclusion of Theorem 6.8 is that not
every initial data g ∈ H may lead to a solution to (6.2). More precisely, it provides the
necessary condition that g can be decomposed into g = g0 + EG(0) with EG(0) ∈ Vc and
g0 is in the closure of VB in H. Thus, we suggest to write the initial condition (6.4d) in
the form

u1(0) = g0 ∈ VB
H
.(6.5)

Note that this provides no further restriction and goes along with the theory for abstract
ODEs in Section 4.2 since the operator equation (6.4) contains no constraint for u1. To
see this, we consider the Gelfand triple corresponding to the kernel of B, namely

VB ↪→ HB ∼= H∗B ↪→ V∗B.

Since a dense embedding is required, HB has to equal the closure of VB in H, i.e.,

HB := VB
H

. Thus, u1 ∈ Lp(0, T ;VB) with u̇1 ∈ Lq(0, T ;V∗) ↪→ Lq(0, T ;V∗B) implies
u1 ∈ C([0, T ];HB) for q ≥ p/(p − 1) such that the initial condition (6.5) is indeed well-
posed.

Example 6.10. If the operator B equals the divergence operator and V = [H1
0 (Ω)]d,

then VB denotes the space of divergence-free functions in V. In this case, the closure of
VB w.r.t. H = [L2(Ω)]d is a proper subspace of H, cf. [Tem77, Ch. 1, Thm. 1.4],

VB
H

=
{
v ∈ H | ∇ · v = 0, v · ν∂Ω = 0

}
6= H.

Note that the closure is even a subspace of H(div,Ω) = {v ∈ H | ∇ · v ∈ L2(Ω)}. Thus,
the initial value g0 cannot be chosen arbitrarily in H.

Example 6.11. If B equals the trace operator from Section 3.1.4, i.e., B : V = H1(Ω)→
H1/2(Ω), then we have VB = H1

0 (Ω). Since the closure of H1
0 (Ω) in H = L2(Ω) equals H

itself, the initial data only has to satisfy g0 ∈ H.
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Remark 6.12. The presented regularization is not the only possibility to obtain an
operator DAE of index-1 type (in the sense of Section 8 below). Similar results can be
obtained by including the hidden constraint with an additional Lagrange multiplier. This
approach, which is influenced by the GGL-formulation [GGL85], needs no splitting of the
variable u and maintains the saddle point structure. However, one has to require higher
regularity assumptions on the solution. A regularization based on the Baumgarte stabiliza-
tion [Bau72] is not recommended, since it strongly depends on the included parameter.
Thus, a bad choice may lead to arbitrary inaccurate approximations [Ost91, ACPR95].

6.1.3. Influence of Perturbations. As mentioned in the introduction, we do not define
an index for operator DAEs. However, the index concept for PDAEs from [LMT01], see
also [LMT13, Ch. 12], is defined for the operator DAEs (6.2) and (6.4) if formulated in a
stronger setting. Within this classification, the regularized operator DAE (6.4) is of index 1
which is not the case of the original system (6.2). This already provides a characterization
of the behavior of the solution w.r.t. perturbations of the right-hand sides. Nevertheless,
we analyse the influence of perturbations in detail within this subsection for the case
p = q = 2. For this, we compare the exact solution (u, λ) with the solution of the
perturbed problem

˙̂u + Kû + B∗λ̂ = F + δ in V∗,(6.6a)

Bû = G + θ in Q∗.(6.6b)

Here, (û, λ̂) denotes the solution if we include perturbations δ ∈ L2(0, T ;V∗) and θ ∈
W 1;2(0, T ;Q∗). For the regularized equations, the perturbed problem has the form

˙̂u1 + v̂2 + K(û1 + û2) + B∗λ̂ = F + δ in V∗,(6.7a)

Bû2 = G + θ in Q∗,(6.7b)

Bv̂2 + Ḃû2 = Ġ + ξ in Q∗.(6.7c)

For this system, we consider perturbations of the form δ ∈ L2(0, T ;V∗) and θ, ξ ∈
L2(0, T ;Q∗) and the solution is denoted by (û1, û2, v̂2, λ̂). The initial condition is given
by û1(0) = u1(0) − e1,0, i.e., e1,0 contains the initial error. Because of Theorem 6.8, it
is sufficient to consider the regularized system (6.7). Within the perturbation analysis of
system (6.6) a splitting of u as in the regularization process would be necessary. This then
leads to the equation

Bv̂2 + Ḃû2 = Ġ + θ̇.

Thus, the corresponding stability result for the original operator DAE follows if we replace
ξ by θ̇. Although the operator K was not of great importance for the regularization pro-
cess, we restrict the following analysis to linear, symmetric, on VB coercive, and bounded
operators, i.e, for u ∈ VB and v, w ∈ V we assume

k1‖u‖2V ≤ 〈Ku, u〉 and 〈Kv, w〉 ≤ k2‖v‖V‖w‖V .

To simplify notation, we introduce the norms ‖ · ‖ := ‖ · ‖V and | · | := ‖ · ‖H. By Cemb we
denote the continuity constant of the embedding V ↪→ H. Furthermore, we introduce the
errors

e1 := û1 − u1, e2 := û2 − u2, ev := v̂2 − v2, eλ := λ̂− λ.
The errors e2 and ev can be easily estimated. Because e2 ∈ Vc, the continuity of the
right-inverse of B directly implies with equations (6.4b) and (6.7b) that

‖e2‖L2(0,T ;V) ≤ CE‖θ‖L2(0,T ;Q∗).
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Equation (6.7c) implies

‖ev‖L2(0,T ;V) ≤ CE‖ξ‖L2(0,T ;Q∗) + C2
ECḂ‖θ‖L2(0,T ;Q∗).

Therein, CE and CḂ denote the continuity constants of E and Ḃ, respectively. With these
two estimates, we can derive an estimate for the error in the dynamic part u1. For this,
we test the difference of equations (6.7a) and (6.4a) with e1 ∈ VB. Thus, the term with
the Lagrange multiplier vanishes and we obtain

〈ė1, e1〉+ 〈ev, e1〉+ 〈K(e1 + e2), e1〉 = 〈δ, e1〉.
With this and the properties of K, we obtain the estimate

1

2

d

dt
|e1|2 + k1‖e1‖2 ≤ 〈δ, e1〉 − 〈ev, e1〉 − 〈Ke2, e1〉

≤ ‖δ‖V∗‖e1‖+ C2
emb‖ev‖‖e1‖+ k2‖e2‖‖e1‖.

With Young’s inequality [Eva98, App. B], we further obtain

d

dt
|e1|2 + k1‖e1‖2 ≤

3

k1

[
‖δ‖2V∗ + C4

emb‖ev‖2 + k2
2‖e2‖2

]
.

Integration over the interval [0, t] for t ≤ T leads to

|e1(t)|2−|e1(0)|2 +k1‖e1‖2L2(0,t;V) ≤
3

k1

[
‖δ‖2L2(0,T ;V∗) +C4

emb‖ev‖2L2(0,T ;V) +k2
2‖e2‖2L2(0,T ;V)

]
.

Note that this estimate holds for all t ∈ [0, T ]. Thus, maximizing over t and inserting the
estimates of e2 and ev, we obtain the following result.

Theorem 6.13. Consider the perturbed problem (6.7) with a linear, symmetric, co-
ercive, and bounded operator K, B satisfying Assumption 6.2, and perturbations δ ∈
L2(0, T ;V∗) and θ, ξ ∈ L2(0, T ;Q∗). With e1 := û1 − u1, where u1 denotes the solu-
tion of the unperturbed problem, the solution û1 then satisfies the estimate

‖e1‖2C([0,T ];H) + k1‖e1‖2L2(0,T ;V) ≤ |e1,0|2 + c
[
‖δ‖2L2(0,T ;V∗) + ‖θ‖2L2(0,T ;Q∗) + ‖ξ‖2L2(0,T ;Q∗)

]
.

Remark 6.14. Note that the errors in u1, u2, and v2 behave as in the operator ODE
case, since we have a linear dependence on the perturbations. However, this is only true
for the regularized system (6.4). For the original formulation (6.2) we have to insert ξ = θ̇.
Thus, the error also depends on the derivative of the perturbation θ which leads to possible
instabilities known from high-index DAEs, cf. Section 2. If the perturbation is not smooth
enough, one may even obtain useless results.

Remark 6.15. In the finite-dimensional setting, we obtain a continuous dependence
of the error e1 on θ also for the index-2 case if the constraint is linear [Arn98b, Ch. 2,
Th. 3]. This does not work in the analysis of the operator equation. Here, we can only

get rid of the θ̇-term if we integrate by parts which generates derivatives of e1. However,
the assumed regularity is not sufficient to bound this term such that we only manage to
obtain an estimate involving θ̇.

In this weak setting of the evolution equations, it is not possible to gain similar es-
timates for eλ. Estimates of the error in the Lagrange multiplier are only possible if we
consider the primitive of eλ or assume more regular data such that δ ∈ L2(0, T ;H∗) and
e1,0 ∈ V, cf. Section 10.

We summarize the regularization of first-order operator DAEs with a linear constraint
operator B in the following table. As before, we consider the Gelfand triples V ↪→ H ↪→ V∗

and VB ↪→ HB ↪→ V∗B with HB = VB
H

. Furthermore, we use the abbreviations L2(V∗) :=
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L2(0, T ;V∗) and L2(Q∗) := L2(0, T ;Q∗) and write a . b for the existence of a positive
constant c ∈ R such that a ≤ cb.

original formulation regularized formulation

system of equations operator DAE (6.2) operator DAE (6.4)

u ∈W 1;p,q(0, T ;V,V∗), u1 ∈W 1;p,q(0, T ;VB,V∗),
solution spaces λ ∈ Lp′(0, T ;Q) u2, v2 ∈ Lp(0, T ;Vc),

λ ∈ Lp′(0, T ;Q)

initial condition and u(0) = g ∈ H u1(0) = g0 ∈ HB
consistency g = g0 + B−G(0), g0 ∈ HB
spatial discretization leads to DAE of index 2, leads to DAE of index 1,

cf. Section 8 cf. Section 8

‖e1‖2C([0,T ];H) + ‖e1‖2L2(0,T ;V) ‖e1‖2C([0,T ];H) + ‖e1‖2L2(0,T ;V)

perturbations . |e1,0|2 + ‖δ‖2L2(V∗) . |e1,0|2 + ‖δ‖2L2(V∗)
+‖θ‖2L2(Q∗) + ‖θ̇‖2L2(Q∗) +‖θ‖2L2(Q∗) + ‖ξ‖2L2(Q∗)

6.2. Nonlinear Constraints. The regularization from the previous subsection is
also applicable to nonlinear constraint operators B : V → Q∗. Clearly, the assumptions on
the operator have to be adapted accordingly. In order to focus on the changes due to the
nonlinearity, we restrict ourselves to the time-independent case.

We denote the Fréchet derivative of B at v ∈ V by

Cv :=
∂B
∂u

(v) : V → Q∗.

The operator DAE (6.1) then reads

u̇(t) + Ku(t) + C∗uλ(t) = F(t) in V∗,(6.8a)

Bu(t) = G(t) in Q∗(6.8b)

for a.e. t ∈ [0, T ] with the initial condition

u(0) = g ∈ H.(6.8c)

Throughout this section, we suppose that there exists a solution of the constrained system
(6.8) which satisfies u ∈ W 1;p,q(0, T ;V,V∗) and λ ∈ Lp′(0, T ;Q). This includes the exis-
tence of the Fréchet derivative Cu along the solution u. As in the linear case, the existence
of a solution requires higher derivatives of the right-hand side G.

6.2.1. Assumptions on B. Similar to the linear case, we gather properties of the op-
erator B which allow a reformulation of system (6.8). Once again the aim is to obtain an
equivalent but regularized formulation of the given operator DAE in terms of the semi-
discretized system. For this, we assume that the constraint manifold is smooth in a certain
sense and can be characterized by an implicit function.

Assumption 6.16 (Properties of B [AH14]). Consider a function u ∈ Lp(0, T ;V) that
satisfies Bu = G in Q∗ for a.e. t ∈ [0, T ]. There exists a splitting of V into subspaces V1

and V2, i.e., V = V1 ⊕ V2, and a neighborhood U(t) ⊆ V around u(t) such that

(a) u = u1 + u2 with u1 ∈ Lp(0, T ;V1), u2 ∈ Lp(0, T ;V2),

(b) the Fréchet derivative ∂B
∂u exists in U(t),
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(c) C2,u := ∂B
∂u2

(u) : V2 → Q∗ is a homeomorphism, and

(d) ∂B
∂u2

(·) is continuous in u.

Remark 6.17. Later we use the fact that Cuv = C2,uv for v ∈ V2. This follows from
the definition of the Fréchet derivative which implies that for all w ∈ V it holds that

B(u+ w)− B(u) = Cuw + o(‖w‖).

In particular, this equation is satisfied for all v ∈ V2 which then equals the definition of
C2,u. The uniqueness of the Fréchet derivative finally yields the claim.

Remark 6.18. The splitting of V into V1 and V2 only depends on the operator B. Thus,
the spaces V1 and V2 are independent of the right-hand side G and also independent of
time. Note that this independence may restrict the length of the considered time interval,
in order to guarantee point (c) of Assumption 6.16. For a longer time horizon or a time-
dependent constraint operator B(t) an update of the decomposition may be necessary. In
this case, V has to be split again and the ansatz space for the differential part u1 changes.

Assumption 6.16 allows the application of the implicit function theorem for operators.
Let B satisfy this assumption for a function u ∈ Lp(0, T ;V) which thus decomposes into
u = u1 + u2 with u1 ∈ Lp(0, T ;V1) and u2 ∈ Lp(0, T ;V2). The implicit function theorem
[Ruž04, Ch. 2.2] then implies the existence of a mapping η(t) : V1 → V2, the so-called
implicit function, and a neighborhood U1 ⊆ V1 around u1 such that

B(v1 + η(v1)) = G in Q∗

for all v1 ∈ U1. Thus, the constraint manifold given by (6.8b) can be locally described
by the function η. Note that for the existence of the implicit function, point (b) of As-
sumption 6.16 can be weakened that only the Fréchet derivative with respect to u2 exists.
Nevertheless, the additional regularity ensures the Fréchet differentiability of η in a neigh-
borhood of u1 [Ruž04, Cor. 2.15]. This property is needed to ensure the differentiability
of η in time as shown in the following lemma.

Lemma 6.19 (Time derivative of η). Consider B, G, and u1 from Assumption 6.16
with u̇1 ∈ Lp(0, T ;V1). Furthermore, let η(t) : U1 ⊆ V1 → V2 denote the implicit function
defined above. Then, the function η(·, u1(·)) : [0, T ]→ V2 is a.e. differentiable in time.

Proof. Note that η depends implicitly on time, since it depends on the right-hand side
G. We want to apply the implicit function theorem to the operator B : V1×V2×Q∗ → Q∗,
given by

B(u1, u2,G) := B(u1 + u2)− G.
Obviously, B(u1, u2,G) = 0 is equivalent to (u1, u2) being a solution of B(u1 + u2) = G.
Because of Assumption 6.16, the implicit function theorem for operators [Ruž04, Ch. 2.2]
also applies to the operator B. Thus, there exists a Fréchet differentiable mapping

η̄ : V1 ×Q∗ → V2

which maps the pair (u1,G) to u2 such that B(u1, u2) = G. In contrast to η, the dependence
on G is explicitly included in the implicit function such that η̄ is independent of t. By
assumption, it holds that u̇1 ∈ V1 and Ġ ∈ Q∗ for a.e. t ∈ [0, T ]. Thus, we may calculate

d

dt
η(u1) =

d

dt
η̄(u1,G) =

∂η̄

∂u1
u̇1 +

∂η̄

∂G
Ġ ∈ V2. �
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Before we consider the regularized equations, we discuss the extensions of B and Cu
to Bochner integrable functions. Since the Fréchet derivative Cu is linear, a sufficient
condition to obtain a bounded operator of the form

Cu : Lp(0, T ;V)→ Lp(0, T ;Q∗)
is the uniform boundedness of Cu, cf. the proof of Lemma 6.5. Note that Assumption 6.16
only implies the pointwise continuity of the operator C2,u and thus, with the help of
Lemma 3.48, also for Cu. A uniform continuity constant may be assumed in addition. For
the nonlinear operator B, Assumption 6.16 allows to perform the regularization process
given in the next subsection. However, to make equation (6.8b) reasonable in Lp(0, T ;Q∗),
we need a Nemytskii map of the form

B : Lp(0, T ;V)→ Lp(0, T ;Q∗).
A sufficient condition is given in Theorem 4.1 which is satisfied if, e.g., B is uniformly
Lipschitz continuous.

6.2.2. Regularization. The regularization of the operator DAE (6.8) requires, as in the
linear case of Section 6.1.2, the derivative of the constraint. With the Fréchet derivative
of B, namely Cu, the derivative of (6.8b) has the form

Ġ(t) =
d

dt

(
Bu(t)

)
=
∂B
∂u

(u)u̇(t) = Cuu̇(t).

With the linearity of the Fréchet derivative [Zei86, Ch. 4.2] and the decomposition V =
V1 ⊕ V2 from Assumption 6.16, we may also write, due to Remark 6.17,

Cuu̇ = Cuu̇1 + C2,uu̇2 = Ġ(t).

Note that this calls for additional regularity of the form u̇1, u̇2 ∈ Lp(0, T ;V). Assuming
this regularity, we actually obtain by Lemma 3.47 that u̇2 takes values in V2. Thus, we
may define v2 := u̇2 ∈ Lp(0, T ;V2).

With the additional (hidden) constraint and the new variable v2, the extended operator

DAE reads as follows: Find u1 ∈W 1;p(0, T ;V1), u2, v2 ∈ Lp(0, T ;V2), and λ ∈ Lp′(0, T ;Q)
such that

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

)
+ C∗uλ(t) = F(t) in V∗,(6.9a)

B
(
u1(t) + u2(t)

)
= G(t) in Q∗,(6.9b)

Cuu̇1(t) + C2,uv2(t) = Ġ(t) in Q∗(6.9c)

for a.e. t ∈ [0, T ] with the nonlinear initial condition

u1(0) = g − η(u1(0)) ∈ V1.(6.9d)

Note that the assumed regularity u1 ∈W 1;p(0, T ;V1) ↪→ C([0, T ],V1) calls for initial data
in V1 instead of H in (6.8c). In the example of Section 6.3.3 below, the term Cuu̇1(t)
vanishes and it is sufficient to consider u1 ∈W 1;p,q(0, T ;V1,V∗) and thus, u1(0) ∈ H.

Remark 6.20 (Regularity). If the operator B can be defined in a weaker sense, e.g.,
for functions in H, then the regularity assumption on u̇1 may be weakened. For this
case, equation (6.9c) has to be understood in a weaker topology. As illustrative example
- although it is linear - consider the divergence operator div : [H1

0 (Ω)]d → L2
0(Ω) which is

also bounded as operator div : [L2(Ω)]d → H−1(Ω), cf. [Hei14, Sect. 3.2].

It remains to compare the extended system (6.9) with the original operator DAE (6.8).
We show that the the two systems are basically equivalent. Nevertheless, one has to be
aware of the additional smoothness assumptions on u1.
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Theorem 6.21 (Equivalence of reformulation [AH14]). Consider F ∈ Lq(0, T ;V∗),
G ∈ W 1;p(0, T ;Q∗), g ∈ V, and let B satisfy Assumption 6.16 for all u ∈ Lp(0, T ;V) that

satisfy Bu = G in Q∗. Then, there exists a solution (u, λ) ∈ Lp(0, T ;V) × Lp′(0, T ;Q)
of (6.8) with additional smoothness u̇ ∈ Lp(0, T ;V) if and only if (6.9) has a solution

(u1, u2, v2, λ) with u1 ∈ W 1;p(0, T ;V1), u2, v2 ∈ Lp(0, T ;V2), and λ ∈ Lp′(0, T ;Q). Fur-
thermore, we obtain the relations u = u1 + u2 and u̇2 = v2.

Proof. Let (u, λ) be a solution of system (6.8) with initial condition u(0) = g. As-
sumption 6.16, Lemma 3.47, and the additional regularity of u allow for a decomposition
u = u1 + u2 with u1 ∈ W 1;p(0, T ;V1) and u2 ∈ W 1;p(0, T ;V2). Then, the construction of
the quadruple (u1, u2, v2, λ) from this subsection with v2 := u̇2 shows that it satisfies equa-
tions (6.9a)-(6.9c). Furthermore, we calculate u1(0)+η(u1(0)) = u1(0)+u2(0) = u(0) = g,
which is the initial condition in (6.9d).

On the other hand, if (u1, u2, v2, λ) is a solution of (6.9), we first define u := u1 +u2 ∈
Lp(0, T ;V). Because of (6.9b), Assumption 6.16 is satisfied for this function u. From the
construction of u1, u2 in this subsection we see that u = u1+u2 is exactly the decomposition
given by point (a) of Assumption 6.16. It remains to show that u2 is time differentiable
in the generalized sense and v2 = u̇2. This then implies u1, u2 ∈ W 1;p(0, T ;V) and thus,
the pair (u, λ) solves system (6.8).

By the implicit function theorem for operators [Ruž04, Ch. 2.2], we may locally write
u2 = η(u1). Since η is differentiable in time by Lemma 6.19, we obtain u̇2 ∈ V2 for a.e.
t ∈ [0, T ]. Equation (6.9c) and the time derivative of (6.9b) yield

Cuu̇1 + C2,uu̇2 = Cuu̇1 + C2,uv2.

Since u̇2, v2 ∈ V2, part (c) of Assumption 6.16 implies u̇2 = v2 ∈ Lp(0, T ;V2). �

Theorem 6.21 provides a necessary condition on the initial data in (6.8c), cf. the end
of Section 6.1.2. Note that the additional regularity u̇ ∈ Lp(0, T ;V) requires initial data
g ∈ V.

6.2.3. Influence of Perturbations. As for linear constraints in Section 6.1.3 we analyse
the effect of perturbations in the right-hand sides on the solution behavior. We again
restrict the analysis to linear, symmetric, coercive in V1, and bounded operators K and
take Assumption 6.16 as given. Furthermore, we assume the inverse of C2,u to be uniformly
bounded.

Let (u1, u2, v2, λ) denote the solution of the regularized system (6.9). As before, we
consider perturbations δ ∈ L2(0, T ;V∗) and θ, ξ ∈ L2(0, T ;Q∗) which yield a perturbed

solution (û1, û2, v̂2, λ̂). The errors

e1 := û1 − u1, e2 := û2 − u2, ev := v̂2 − v2, eλ := λ̂− λ

satisfy the system

ė1 + ev + K
(
e1 + e2

)
+ C∗ueλ = δ in V∗,(6.10a)

B
(
û1 + û2

)
− B

(
u1 + u2

)
= θ in Q∗,(6.10b)

Cuė1 + C2,uev = ξ in Q∗.(6.10c)

The initial error is denoted by e1,0 := û1(0) − u1(0). For the following computations we
have to assume that û1 and û2 are ’close enough’ to u1 and u2, respectively. By this we
mean that there exist neighborhoods U1 ⊂ V1 and U2 ⊂ V2 with u1, û1 ∈ U1 and u2,
û2 ∈ U2 such that the corresponding implicit functions η : U1 → U2 and η̂ : U1 → U2, cf.
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[Ruž04, Ch. 2.2], satisfy

B
(
u1 + η(u1)

)
= B

(
û1 + η(û1)

)
= G, B

(
u1 + η̂(u1)

)
= B

(
û1 + η̂(û1)

)
= G + θ.(6.11)

Furthermore, we assume that the space V1 from Assumption 6.16 equals the kernel of Cu,
cf. Lemma 3.48. Exactly as in the linear case, we may test equation (6.10a) by e1 which
results in the estimate

d

dt
|e1|2 + k1‖e1‖2 ≤

3

k1

(
‖δ‖2V∗ + C4

emb‖ev‖2 + k2
2‖e2‖2

)
.(6.12)

Thus, it remains to find estimates of the errors e2 and ev. Since C2,u is a homeomorphism
and its inverse is assumed to be uniformly bounded, there exists a positive constant c ∈ R
with

‖ev‖ ≤ c ‖C2,uev‖Q∗ = c ‖Cuė1 + C2,uev‖Q∗ = c ‖ξ‖Q∗ .
By equation (6.11) and the definition of the Fréchet derivative, we obtain

θ = B
(
û1 + η̂(û1)

)
− B

(
u1 + η(u1)

)
= Cu

(
û1 − u1 + û2 − u2

)
+ o(‖e‖) = C2,u

(
e2

)
+ o(‖e‖).

Therein, we have used the abbreviation e := e1 + e2. Note that we benefit from the fact
that e1 ∈ V1 = ker Cu and e2 ∈ V2. Furthermore, Remark 6.18 ensures that the spaces
V1 and V2 are independent of the perturbation θ. Thus, we obtain up to a term of order
o(‖e‖) the estimate

‖e2‖ = ‖û2 − u2‖ = ‖η̂(û1)− η(u1)‖ ≤ c ‖C2,u

(
η̂(û1)− η(u1)

)
‖Q∗ ≈ ‖θ‖Q∗ .

Integrating equation (6.12) over the interval [0, t] for t ≤ T and using the gained estimates
of this subsection, we obtain the following result.

Theorem 6.22. Consider the solution (u1, u2, v2, λ) of the regularized system (6.9)
with a linear, coercive, and bounded operator K. Let B satisfy Assumption 6.16 and let
δ ∈ L2(0, T ;V∗) and θ, ξ ∈ L2(0, T ;Q∗) denote perturbations of the right-hand side. With

e1 := û1−u1 and e2 := û2−u2, the solution of the perturbed problem (û1, û2, v̂2, λ̂) satisfies,
up to a term of order o(‖e1 + e2‖2L2(0,T ;V)), the estimate

‖e1‖2C([0,T ];H) + k1‖e1‖2L2(0,T ;V) ≤ |e1,0|2 + c
[
‖δ‖2L2(0,T ;V∗) + ‖θ‖2L2(0,T ;Q∗) + ‖ξ‖2L2(0,T ;Q∗)

]
.

Remark 6.23. Results for the original system (6.8) are again obtained by setting

ξ = θ̇. Thus, the error in u1 is very sensitive to perturbations of the right-hand side G.

6.3. Applications. In the previous subsections, we have provided a framework to
regularize semi-explicit operator DAEs with linear as well as nonlinear constraints. We
close the section on first-order problems with three applications which fit into the given
framework and satisfy the postulated assumptions.

First, we consider the Navier-Stokes equations (or any linearized version) which contain
a constraint on the divergence of the velocity. This gives an example for a linear constraint.
As second example, we show that there are applications for which the divergence constraint
is not homogeneous, i.e., we have a constraint of the form ∇ · u = G 6= 0. For this, we
consider an optimal control problem, constrained by the Navier-Stokes equations, where
the pressure appears in the cost functional. Finally, we consider the Stefan problem in
a regularized version. This two phase flow example is constrained at the boundary in a
nonlinear manner and provides an application of the framework of Section 6.2.
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6.3.1. Navier-Stokes Equations. Consider a domain Ω ⊂ Rd with sufficiently smooth
boundary. The evolution of a velocity field u(t) : Ω→ Rd and the pressure p(t) : Ω→ R of
an incompressible flow of a Newtonian fluid is described by the Navier-Stokes equations
[Tem77]. Given initial data u0, a volume force β, and a viscosity constant ν involving
the Reynolds number, the equations of motion read

u̇+ (u · ∇)u− ν∆u+∇p = β in Ω× [0, T ],

div u = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(·, 0) = u0.

For the weak formulation, the commonly used spaces are V := [H1
0 (Ω)]d, H := [L2(Ω)]d,

andQ := L2(Ω)/R. This already includes the homogeneous Dirichlet boundary conditions.
Obviously, the dynamics are constrained by the incompressibility. Thus, the constraint
operator has the form B = div : V → Q∗ and the system can be written in the weak form
as

u̇(t) + Ku(t) − B∗p(t) = F(t) in V∗,(6.13a)

Bu(t) = 0 in Q∗(6.13b)

with initial condition u(0) = u0 ∈ H. Therein, the operator K : V → V∗ is defined via〈
Ku, v

〉
:=

∫
Ω

(u · ∇)u · v dx+ ν

∫
Ω
∇u · ∇v dx.

Note that linearizations of the Navier-Stokes equations such as the Stokes or Oseen equa-
tions lead to the same structure. In the Stokes equations, Ku corresponds to −ν∆u
whereas the Oseen equations include the term (u∞ ·∇)u−ν∆u with a given characteristic
velocity u∞. In this case, the unknown u describes the ’disturbance velocity’. Also the
Euler equations may be modeled in the form of system (6.13).

In the nonlinear case and without any further assumptions, the operator K(t) only
extends to K : L2(0, T ;V)→ L1(0, T ;V∗), cf. [Tem77, Lem. III.3.1]. This loss of regularity
causes the main difficulties in the existence theory for the Navier-Stokes equations. For
further remarks and results on the existence of a (unique) solution to the Navier-Stokes
equations, we refer to [Tem77, Ch. III], [Tar06, Ch. 25], and [HR90]. Nevertheless, this
has no influence on the regularization process presented in this section.

The operator DAE (6.13) has the structure of system (6.2) when the pressure p is
interpreted as Lagrange multiplier to couple the incompressibility to the state equations.
We show that Assumption 6.2 is satisfied. Clearly, B is linear and bounded. Furthermore,
the space V allows the Helmholtz decomposition into divergence-free functions VB = {v ∈
V | div v = 0} and its orthogonal complement Vc := V⊥VB . Then, the divergence operator
restricted to Vc yields an isomorphism such that there exists a continuous right inverse of
B [Tar06, Lem. I.4.1].

With regard to Remark 6.9 we emphasize that the closure of VB in H is a proper
subspace of H. Consequently, the initial data of the dynamic part of u (the divergence-
free part) cannot be chosen arbitrarily in H, see also Example 6.10.

The benefits of the possible regularization of (6.13) are presented in Section 8.4.
Therein, we also discuss the implementation of the regularized equations in practical sim-
ulations. Furthermore, we analyse the influence of the regularization with regard to the
stability of the Rothe method in Section 10. Note that the framework of the previous
section also allows an inhomogeneity in the constraint (6.13b). Such an inhomogeneity
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may appear within optimal control problems within the dual equations, as discussed in
the following subsection.

6.3.2. Optimal Control of Fluid Flows. As a second example, we consider an optimal
control problem where the minimization is constrained by the Navier-Stokes equations.
For an introduction to PDE constrained optimization, we refer to [Trö09]. Minimization
problems have a large variety of applications in the field of fluid dynamics such as finding
optimal inputs in order to decrease the drag or increase the mixture of two fluids [Hin00].
Many numerical methods for the Navier-Stokes equations are tailored for the particular
case of a vanishing divergence. Also in the analytical setting one often works in the
space of divergence-free functions. The here presented regularization is not affected by an
inhomogeneity in the constraint.

The following example presents an application where one is interested in solving a
Navier-Stokes system with an inhomogeneous constraint on the divergence. Thus, we
discuss an example of the form (6.2) with G 6= 0. Since the control variable is traditionally
denoted by u, we denote the velocity in this example by y. Then, the optimal control
problem has the form: Find an input u which minimizes the cost functional

J(y, p, u) := α

∫ T

0

∫
Ω
V (y,∇y, p) dx dt

subject to

ẏ − ν∇y + (y · ∇)y +∇p = βBu in Ω× [0, T ],

−∇ · y = 0 in Ω× [0, T ]

with homogeneous Dirichlet boundary condition y = 0 on ∂Ω and initial condition y(0) =
y0. The parameters α and β are assumed to be real and positive and B is a control
extension operator. Following the general approach in [Hin00, App. A], we obtain the
corresponding optimality system with dual variables z and q,

ẏ − ν∇y + (y · ∇)y +∇p = βBu in Ω× [0, T ],(6.14a)

−∇ · y = 0 in Ω× [0, T ],(6.14b)

−ż − ν∇z − (y · ∇)z + (∇y)T z +∇q = −α(V1 −∇ · V2) in Ω× [0, T ],(6.14c)

−∇ · z = −αV3 in Ω× [0, T ].(6.14d)

Therein, Vi denotes the i-th partial derivative of V (y,∇y, p) in the cost functional. In
addition, we have the boundary conditions y = z = 0 on ∂Ω and the initial conditions
y(0) = y0 and z(T ) = 0. Equations (6.14c) and (6.14d) then form a system of linear
Navier-Stokes type for the dual variables z and q. However, the constraint is given by
−∇ · z = −αV3 6= 0, i.e., G 6= 0 in the abstract setting, if the cost functional depends on
the pressure.

6.3.3. Regularized Stefan Problem. We close this section with an example of an opera-
tor DAE with a nonlinear constraint which fits the framework of Section 6.2. For this, we
consider the governing equations of a change of phase (e.g. water and ice), the so-called
Stefan problem [Fri68, And04]. This problem includes a free boundary at the transition
of the two phases. However, since we deal with the weak formulation of the problem, the
explicit condition at the free boundary vanishes.

For the formulation as operator DAE, we use the enthalpy formulation as stated in
[DPVY13]. In contrast to the temperature, the enthalpy jumps at the free boundary
where the phase changes and contains all the information on the state of the material.
More precisely, we consider the regularized version with an enthalpy-temperature function
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β which satisfies the following conditions. First, we assume that β : R → R is strictly
monotonically increasing and continuously differentiable with β′ ≥ ε > 0. Second, we state
as in [DPVY13] that there exist constants c, C > 0 such that sign(s)β(s) ≥ c|s|−C. For
the formulation as operator DAE we additionally assume that the derivative β′ is Lipschitz
continuous. Furthermore, we have to assume for the solution u of the regularized Stefan
problem that 1/β′(γu) ∈ Q∗ for a.e. t ∈ [0, T ]. Recall that γ denotes the trace operator
from Section 3.1.4. A sufficient condition would be the Lipschitz continuity of the inverse
of β′.

The governing equations of the Stefan problem then have the form: Find the enthalpy
u : [0, T ]→ V which satisfies the system

u̇−∇ ·
(
∇β(u)

)
= f in Ω× [0, T ],(6.15a)

β(u) = g on ∂Ω× [0, T ](6.15b)

with initial condition

u(0) = u0.(6.15c)

For the operator formulation, we pass to the weak formulation in which we search for
u ∈W 1;2,2(0, T ;V,V∗). Furthermore, we regard the nonlinear boundary condition (6.15b)
as constraint on u, which we enforce weakly by the Lagrangian method.

Remark 6.24. The one-to-one property of β implies the existence of an inverse such
that equation (6.15b) can be written in the form u = β−1(g). In this case, the boundary
constraint is linear. Nevertheless, assuming that β−1 is not given in explicit form, we would
rely on some kind of Newton method for the boundary values. In the finite-dimensional
case, i.e., in the case of DAEs, it is well-known that small perturbations in the constraints
may lead to crucial instabilities, see the discussion in [Arn98b, Ch. 2.1]. Because of
this, convergence proofs normally assume that the error in the constraint (and thus, the
Newton error) is maximal of size O(τ2) where τ equals the time step size. Because of this,
we prefer to handle the nonlinear boundary condition (6.15b) with the help of a Lagrange
multiplier.

For the formulation of system (6.15) as operator DAE, we define the spaces

V := H1(Ω), VB := H1
0 (Ω), Vc := [H1

0 (Ω)]⊥V , Q∗ := H1/2(∂Ω).

The constraint operator B : V → Q∗ has the form Bu := β(γu), i.e., for q ∈ L2(∂Ω) we
have 〈

Bu, q
〉
Q∗,Q =

∫
∂Ω
β(u)q dx.

Its Fréchet derivative at some ū ∈ V is given by the linear map

Cū :=
∂B
∂u

(ū) : V → Q∗, v 7→ β′(γū) · γv.

Note that this is well-defined, since β′ is assumed to be Lipschitz continuous and thus,
β′(γū) ∈ Q∗. With the operator B, the constraint (6.15b) has the weak form Bu = G in
Q∗ with right-hand side G ∈ H1(0, T ;Q∗) densely defined by〈

G(t), q
〉
Q∗,Q :=

∫
∂Ω
g(t)q dx
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for all q ∈ L2(∂Ω) and a.e. t ∈ [0, T ]. Note that this requires a certain regularity of the
given right-hand side g. This notion allows to formulate system (6.15) as operator DAE,

u̇ + Ku + C∗uλ = F in V∗,(6.16a)

Bu = G in Q∗(6.16b)

with initial condition as in (6.15c).

Remark 6.25. For sufficiently regular data and a consistent initial value, system (6.15)
has a unique weak solution u ∈ W 1;2,2(0, T ;V,V∗B), see [DPVY13]. The properties of
the constraint operator B and its Fréchet derivative then imply the unique solvability
of the corresponding operator DAE (6.16) for F ∈ L2(0, T ;V∗). The solution satisfies
u ∈W 1;2,2(0, T ;V,V∗) and λ ∈ L2(0, T ;Q).

We claim that system (6.16) fits the framework of Section 6.2 for nonlinear constraints.
For this, we show that Assumption 6.16 is satisfied. The splitting of V is given by the
trace-free functions V1 := VB and its orthogonal complement V2 := Vc. Furthermore,
the Fréchet derivative Cu exists for all u ∈ V and is also continuous in u, since the trace
operator is continuous and β is continuously differentiable. It remains to check whether
the Fréchet derivative

C2,ū :=
∂B
∂u2

(ū) : Vc → Q∗, v 7→ β′(γū) · γv,

gives a homeomorphism along the solution of the Stefan problem. For this, the key prop-
erty is the fact that the trace operator is a homeomorphism as mapping from Vc to Q∗,
see Lemma 7.1 below. We denote the continuity constant by Ctr and estimate

‖C2,uv‖Q∗ ≤ ‖β′(γu)‖Q∗Ctr‖v‖.
Note that ‖β′(γu)‖Q∗ is finite for u ∈ V because of the Lipschitz continuity of β′. Finally,
the boundedness of the inverse operator follows from the inverse trace theorem [Ste08,
Th. 2.22] and the assumption that 1/β′(γu) ∈ Q∗. In summary, we have shown that the
theory and regularization procedure of Section 6.2 is applicable to the regularized Stefan
problem (6.15) if we formulate the boundary condition as nonlinear constraint.
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7. Regularization of Second-order Operator DAEs

This section is devoted to the regularization of second-order operator DAEs. Again
we consider dynamical systems of semi-explicit structure but here, the equations are of
index-3 type. By this we mean that a suitable semi-discretization leads to DAEs of index
3 as shown in Section 9 below.

Nevertheless, we can apply similar techniques and follow the same ideas as in Sec-
tion 6 with regard to the inclusion of dummy variables. Note that we do not consider
the general case here. Instead we focus on a particular application from elastodynamics
where the constraints are given on the boundary, i.e., the constraint operator equals the
trace operator γ from Section 3.1.4. Such systems arise in the field of flexible multibody
dynamics [Sha97, GC01, Bau10, Sim13], where deformable bodies are coupled as in
the theory of multibody systems [RS88]. Common examples are given by the slider crank
mechanism [Sim96] or the pantograph and catenary system [AS00].

Note that the considered approach also fits to a more general coupling of a flexible
body with any other dynamical system as long as the coupling is modeled by Dirichlet
boundary conditions. Thus, the presented framework may be used to model multi-physics
applications, i.e., the coupling of systems including different kinds of physics such as
chemical reactions, fluid flows, or electromagnetics. A simple model of a flexible body
coupled with a mass-spring-damper system is given in [Alt13b].

The results of this section are published within Sections 2 and 4 of [Alt13a]. The
therein used notation was adapted to the notation presented in Part A.

7.1. Equations of Motion in Elastodynamics. Before we formulate the equations
of motion in the abstract setting as operator DAE, we review the governing equations for
elastic media. Within this section, Ω ⊂ Rd denotes a domain with Lipschitz boundary,
cf. Section 3. Furthermore, ΓD ⊆ ∂Ω denotes the Dirichlet boundary and ΓN = ∂Ω \ ΓD

the Neumann boundary. Note that we do not consider the pure Neumann problem, i.e.,
ΓN = ∂Ω, since this would exclude the considered coupling throughout the boundary. In
this case, the coupling takes place through the velocities which requires a different model.

7.1.1. Principle of Virtual Work. The equations of elastodynamics describe the evolu-
tion of a deformable body under the influence of applied forces based on Cauchy’s theorem
[Cia88, Ch. 2]. We consider the theory of linear elasticity for homogeneous and isotropic
materials, i.e., we assume small deformations only. Note that the regularization performed
in Section 7.2 can also be applied to the nonlinear case. However, the existence and unique-
ness results of this section as well as the analysis performed in Section 11 is restricted to
the linear case.

The deformation of the domain Ω is described by the time-dependent displacement
field u(t) : Ω→ Rd with t ∈ [0, T ]. We define the linearized strain tensor ε(u) ∈ Rd×dsym by

ε(u) :=
1

2

[
∇u+ (∇u)T

]
.

Furthermore, Hooke’s law [Sad10, Ch. 4.2] states that the stress tensor σ(u) ∈ Rd×dsym

depends linearly on the strain tensor and the material constants λ and µ, the so-called
Lamé parameters,

σ(u) := λ trace ε(u)Id + 2µε(u).

Therein, Id denotes the d× d identity matrix. Let ρ ∈ R>0 denote the constant density of
the material and n the outer normal vector along the boundary. Then, the corresponding
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initial-boundary value problem in strong form with prescribed Dirichlet data uD and
applied forces β and τ reads

ρü− div(σ(u)) = β in Ω,(7.1a)

u = uD on ΓD ⊆ ∂Ω,(7.1b)

σ(u) · n = τ on ΓN = ∂Ω \ ΓD.(7.1c)

with initial conditions

u(0) = g, u̇(0) = h.(7.1d)

For the formulation in operator form, we need the weak formulation which is obtained
by the introduction of test functions and integration by parts. This then leads to the
so-called principle of virtual work (in the reference configuration). With the notation of
Section 3.1.3 for Sobolev spaces, we set

V :=
[
H1(Ω)

]d
, VB :=

[
H1

ΓD
(Ω)
]d
, H :=

[
L2(Ω)

]d
.

We denote the norms in V and H by ‖·‖ := ‖·‖V and | · | := ‖·‖H. With the inner product
for matrices, A : B := trace(ABT ) =

∑
i,j AijBij , we define the symmetric bilinear form

a(u, v) :=

∫
Ω
σ(u) : ε(v) dx.

This then defines a linear operator K : V → V∗, given by

〈Ku, v〉V∗,V := a(u, v).(7.2)

By Korn’s inequality [BS08, Ch. 11.2], a is a coercive and bounded bilinear form on VB if
ΓD has positive measure, i.e., if we are not in the pure Neumann case. Since ε(·) vanishes
for constant functions, a cannot be coercive on the entire space V. Obviously, the operator
K inherits the properties of the bilinear form a.

The weak form (in terms of the space variable) of system (7.1) with homogeneous
Dirichlet boundary conditions uD = 0 has the form: Find u(t) ∈ VB such that for all
t ∈ [0, T ] it holds that

(ρü, v)L2(Ω) + a(u, v) = (β, v)L2(Ω) + (τ, v)L2(ΓN) for all v ∈ VB.(7.3)

Note that the Dirichlet boundary condition on u is taken into account by the fact that we
search u(t) within the space VB. Thus, we also assume the initial data to satisfy g ∈ VB
and h ∈ VB. The inclusion of inhomogeneous Dirichlet boundary conditions is part of
Section 7.1.2.

Before discussing the inclusion of Dirichlet boundary conditions in detail, we shortly
review the concept of damping or dissipation. In many applications one has to include
dissipation such as friction to the mathematical model in order to obtain reasonable re-
sults. Often viscous damping [Hug87, Ch. 7.2] is considered which corresponds to a
generalization of Hooke’s law.

The popular generalization of the mass proportional and stiffness proportional damp-
ing is called Rayleigh damping [CP03, Ch. 12]. This concept combines frequency depen-
dent and independent damping and is widespread in modeling internal structural damping.
Let ζ1, ζ2 ≥ 0 be two real parameters. The first parameter ζ1 regularizes the frequency
dependent damping such that the stress tensor does not depend linearly on the strain
tensor ε(u) anymore. The linear proportionality of the damping and the response frequen-
cies implies that the stiffness proportional damping acts stronger on the higher modes
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of the structure. Unfortunately, this quite common approach has no physical justifica-
tion [Wil98, Ch. 19]. The second parameter ζ2 characterizes the frequency independent
damping. In combination, the Rayleigh damping is given by the bilinear form

d(u̇, v) := ζ1a(u̇, v) + ζ2(ρu̇, v)L2(Ω).

Within this section we allow more general nonlinear damping terms. For this, consider
a mapping d : V × V → R which is linear only in the second component. Based on this
mapping, a nonlinear damping operator D : V → V∗ is defined by

〈Du, v〉V∗,V := d(u, v).(7.4)

Further assumptions will be given in Section 7.3 when the existence and uniqueness of
solutions is analyzed.

7.1.2. Dirichlet Boundary Conditions. It remains to include the inhomogeneous Dirich-
let boundary conditions which are prescribed on ΓD ⊆ ∂Ω. Since we exclude the pure
Neumann case, we assume that ΓD has positive measure. Following the work of [Sim00],
we incorporate the boundary conditions in a weak form, i.e., with the help of Lagrange
multipliers. This then leads to a dynamic saddle point problem.

In text books on numerical analysis of PDEs, one often assumes homogeneous bound-
ary data, since the inhomogeneities may be included in the right-hand side. However, this
approach requires the construction of a function in H1(Ω) with the given Dirichlet data. A
second drawback arises if ΓD is time-dependent, i.e., the position of the constraint changes
with time. Then, also the ansatz space for the solution would be time-dependent.

According to Section 3.1.4 the Sobolev space V has a well-defined trace on ΓD. We
define the space Q by its dual space,

Q∗ := [H1/2(ΓD)]d.

Recall that Q∗ is a Hilbert space. Furthermore, the spaces Q∗, [L2(ΓD)]d, Q form a
Gelfand triple such that the dual pairing 〈·, ·〉Q,Q∗ is densely defined for q ∈ [L2(ΓD)]d and
ϑ ∈ Q∗ by

〈q, ϑ〉Q,Q∗ :=

∫
ΓD

q · ϑ dx.(7.5)

Based on this duality pairing, we introduce the bilinear form b : V ×Q → R by

b(u, q) := 〈q, u〉Q,Q∗ .(7.6)

We emphasize that this definition involves the trace operator γ from Section 3.1.4. Then,
the classical form of the boundary condition u(·, t) = uD(·, t) on ΓD for all t ∈ [0, T ] turns
into

b(u(t), q) =
〈
q, uD(t)

〉
Q,Q∗ ,

for all q ∈ Q and a.e. t ∈ [0, T ]. A subtle but important property of b is the inf-sup
condition, which is discussed within Lemma 7.1 below. Since b involves the boundary
constraint, its analysis is a main part of the existence theory of solutions [Bra07, Ch. 3].
The bilinear form b defines the operator B : V → Q∗, given by

〈q,Bu〉Q,Q∗ := b(u, q).(7.7)

According to Section 3.1.1, the dual operator B∗ : Q → V∗ satisfies

〈B∗q, u〉V∗,V := 〈q,Bu〉Q,Q∗ = b(u, q).(7.8)

We summarize important properties of these two operators (or rather the bilinear form b)
in the following lemma. Therein, we consider the orthogonal decomposition V = VB ⊕Vc,
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i.e., Vc = (VB)⊥V . However, as for the systems of first order in Section 6 the orthogonal
complement could be replaced by any other complement of VB. Furthermore, we introduce
the polar set or annihilator of VB, namely

Vo
B :=

{
f ∈ V∗ | 〈f, v〉 = 0 for all v ∈ VB

}
⊂ V∗.(7.9)

This set should not be mixed up with the dual V∗B which contains all linear and bounded
functionals defined on VB und thus satisfies V∗ ⊂ V∗B.

Lemma 7.1 (Properties of B and B∗ [Alt13a]). Let ΓD have positive measure and
consider the decomposition V = VB ⊕ Vc. Then, the following assertions hold,

(a) B vanishes on VB,

(b) B satisfies the inf-sup condition, i.e., there exists a constant β > 0 with

inf
q∈Q

sup
v∈V

〈Bv, q〉
‖v‖ ‖q‖Q

= β > 0,

(c) B restricted to Vc is an isomorphism,

(d) B∗ : Q → VoB defines an isomorphism,

(e) β‖v‖ ≤ ‖Bv‖Q∗ for all v ∈ Vc,
(f) d

dt(Bu) = Bu̇ for all u ∈ H1(0, T ;V).

Proof. (a) As for first-order systems, VB is expected to be the kernel of B. We show
this be a density argument. Consider an arbitrary v ∈ VB and q ∈ [L2(ΓD)]d. Since v
vanishes on ΓD,

〈q,Bv〉Q,Q∗ = b(v, q) =

∫
ΓD

v · q dx = 0.

For the general case consider q ∈ Q. Since [L2(ΓD)]d is densely embedded in Q, there
exists a sequence {qn} ⊂ [L2(ΓD)]d with qn → q in Q as n→∞. Thus,

〈q,Bv〉Q,Q∗ = lim
n→∞

〈qn,Bv〉Q,Q∗ = lim
n→∞

0 = 0.

(b) The proof of the inf-sup condition can be found in [Ste08, Lemma 4.7] and is a
consequence of Theorem 3.15.
(c) The assertion follows with the help of [Bra07, Ch. III, Th. 3.6]. It requires the
continuity of b, which follows by the trace theorem [Ste08, Th. 2.21], the inf-sup condition
from (b), and a non-degeneration condition of the form: for every v ∈ Vc, v 6= 0 there
exists an element q ∈ Q such that b(v, q) 6= 0. To show the latter, assume there exists a
v ∈ Vc such that b(v, q) vanishes for all q ∈ Q. Thus, v has trace zero on ΓD and hence
v ∈ VB ∩ Vc = {0}.
(d) The claim that B∗ : Q∗ → Vo

B is an isomorphism is equivalent to part (c), cf. [Bra07,
Ch. III, Lem. 4.2].
(e) Since B∗ is an isomorphism, b also fulfills an inf-sup condition of the form

inf
v∈Vc

sup
q∈Q

b(v, q)

‖v‖ ‖q‖Q
= β > 0.

Thus, for all v ∈ Vc the following chain of inequalities holds,

β‖v‖ ≤ sup
q∈Q

b(v, q)

‖q‖Q
≤ sup

q∈Q

‖Bv‖Q∗‖q‖Q
‖q‖Q

= ‖Bv‖Q∗ .
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(f) For every q ∈ Q, the functional B∗q is bounded and thus,

d

dt

〈
q,Bu(t)

〉
Q,Q∗ =

d

dt

〈
B∗q, u(t)

〉
V∗,V =

〈
B∗q, u̇(t)

〉
V∗,V =

〈
q,Bu̇(t)

〉
Q,Q∗ . �

7.1.3. Formulation as Operator DAE. With the preparations from the previous two
subsections, we are able to state system (7.1) with damping and inhomogeneous boundary
conditions in a weak form. First, we consider the weak formulation only in terms of the
space variable. For this, we introduce a Lagrange multiplier λ which has to be an element
of the space Q. The problem then reads: Determine u(t) ∈ V and λ(t) ∈ Q such that for
all t ∈ [0, T ] and all test functions v ∈ V and q ∈ Q it holds that

(ρü, v)L2(Ω) + d(u̇, v) + a(u, v) + b(v, λ) = (β, v)L2(Ω) + (τ, v)L2(ΓN),

b(u, q) = 〈q, uD〉Q,Q∗ .
Remark 7.2. In contrast to the homogeneous case, where we search for u ∈ VB, the

Lagrange multiplier method extends the search space to V. In view of this, the Sobolev
space V is also used as test space in the first equation.

In the following, we derive the corresponding formulation with operators including
time derivatives which are viewed in the generalized sense of Section 3.1.2. In addition,
we have to discuss the Sobolev-Bochner spaces in which we search for solutions (u, λ). For
the right-hand sides, we introduce two linear functionals. With the Dirichlet data uD we
define G ∈ L2(0, T ;Q∗) by 〈

G(t), q
〉

:=
〈
q, uD(t)

〉
Q,Q∗ .(7.10)

As discussed in Section 4.3, we will need G ∈ H2(0, T ;Q∗), i.e., sufficiently smooth bound-
ary data uD. The applied forces β and the possible Neumann data τ are combined within
the functional F ∈ L2(0, T ;V∗), which is defined by〈

F(t), v
〉

:=
〈
β(t), v

〉
V∗,V +

(
τ(t), v

)
L2(ΓN)

.

Finally, we introduce the operatorM : V∗ → V∗ which includes the density ρ of the given
material. Recall that due to the Gelfand triple V, H, V∗ the embeddings from Section 3.3.1
imply for u ∈ H and v ∈ V, that

〈Mu, v〉V∗,V := 〈ρu, v〉V∗,V = (ρu, v)H.(7.11)

Otherwise, the action ofMu is defined as the continuous extension of this map. To ensure
that the introduced operators are defined for the solution, we assume that the deformation
variable satisfies u ∈ H1(0, T ;V) with derivative ü ∈ L2(0, T ;V∗), i.e., we search for
u ∈ W 2;2,2,2(0, T ;V,V,V∗). Note that u̇ ∈ L2(0, T ;H) is not sufficient because of the
damping term. As search space for the Lagrange multiplier we consider λ ∈ L2(0, T ;Q).
Thus, the dynamic saddle point problem of elastodynamics in operator form reads: Find
u and λ such that

Mü(t) +Du̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗,(7.12a)

Bu(t) = G(t) in Q∗(7.12b)

is satisfied for a.e. t ∈ [0, T ] with initial conditions

u(0) = g ∈ V, u̇(0) = h ∈ H.(7.12c)

Remark 7.3 (Initial conditions). The assumed regularity of the solution implies u ∈
C([0, T ];V) and u̇ ∈ C([0, T ];H), see Section 3.3.2. Thus, the initial conditions are well-
posed for g ∈ V and h ∈ H. We discuss the consistency of the initial data in Remark 7.4
below.
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7.2. Extension and Regularization. With the operator DAE (7.12) at hand, this
section is devoted to the regularization of this system which corresponds to an index
reduction in finite dimensions. In Section 9 we will see that a finite element discretization
of (7.12) leads to a DAE of index 3 whereas the reformulated system results in a DAE
of index 1. Since the regularization follows the same ideas as for the first order systems
in Section 6.1, we keep this part short. As before, the reformulation is motivated by the
index reduction technique of minimal extension, see Section 2.3.2.

As a first step, we add the first two time derivatives of the constraint (7.12b). Accord-
ing to Lemma 7.1 (f), these hidden constraints are given by

Bu̇ = Ġ and Bü = G̈.
For this to make sense, we require G ∈ H2(0, T ;Q∗). A sufficient condition is that the
boundary values satisfy uD ∈ H2(0, T ;Q∗) or, equivalently, there exists a function v ∈
H2(0, T ;V) with uD = γv. Thereby, γ denotes the trace operator from Section 3.1.4. The
extended operator DAE reads

Mü(t) + Du̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗,(7.13a)

Bu(t) = G(t) in Q∗,(7.13b)

Bu̇(t) = Ġ(t) in Q∗,(7.13c)

Bü(t) = G̈(t) in Q∗.(7.13d)

Obviously, this system is equivalent to system (7.12a)-(7.12b) under the regularity assump-
tion that G ∈ H2(0, T ;Q∗) and u ∈ H2(0, T ;V). We show that the latter requirement can
be relaxed as in the first-order case. According to Lemma 7.1 we split the deformation u
into

u = u1 + u2 with u1(t) ∈ VB, u2(t) ∈ Vc.
This then implies Bu = Bu2. Furthermore, Lemma 3.47 yields Bu̇ = Bu̇2 and Bü = Bü2.

The second step is to introduce new variables. For this, we define the two dummy vari-
ables v2 := u̇2 ∈ L2(0, T ;Vc) and w2 := ü2 ∈ L2(0, T ;Vc) which yield the two constraints

Bv2 = Ġ and Bw2 = G̈.
Note that because of Lemma 7.1 (b) the three constraints already fix the variables u2,
v2, and w2 in terms of G and its derivatives. Thus, the equation u̇2 = v2 is redundant
and does not have to be added to the system. The same applies for w2. Replacing all
appearances of u̇2 and ü2, we obtain the regularized operator DAE:

Find u1 ∈W 2;2,2,2(0, T ;VB,VB,V∗) as well as u2, v2, w2 ∈ L2(0, T ;Vc) and the multi-
plier λ ∈ L2(0, T ;Q) such that

M(ü1 + w2) + D(u̇1 + v2) + K(u1 + u2) + B∗λ = F in V∗,(7.14a)

Bu2 = G in Q∗,(7.14b)

Bv2 = Ġ in Q∗,(7.14c)

Bw2 = G̈ in Q∗,(7.14d)

is satisfied for a.e. t ∈ [0, T ] with with initial conditions

u1(0) = g0 ∈ VB, u̇1(0) = h0 ∈ H.(7.14e)

Remark 7.4 (Consistent initial conditions). Similar to Remark 6.9 concerning first-
order systems, the reformulation of the operator DAE provides necessary conditions for
the initial data. As discussed in Section 4.3, the initial data in (7.12c) has to satisfy
Bg = G(0). Thus, we obtain the decomposition g = g0 + B−G(0) with g0 ∈ VB and
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B− denoting a right-inverse of B. For h we have, similarly to the first-order case, the
decomposition h = h0 + B−Ġ(0) with h0 ∈ H, cf. Example 6.11. For more regular data
h ∈ V we obtain the same decomposition with h0 ∈ VB.

Remark 7.5. Since u1 is by definition in the kernel of B, we may add Bu1 to equation
(7.14b). Assuming sufficient regularity, we may also add the vanishing terms Bu̇1 and Bü1

to equations (7.14c) and (7.14d), respectively. This will be used for the semi-discretization
in Section 9 and is necessary because of the application of nonconforming finite elements.

7.3. Existence Results and Well-posedness. For the operator DAEs of first order
in Section 6 we have stated results on the equivalence of the original and reformulated
systems. Analogous results apply for the equations of this section. Since we deal here with
a more specific situation where we focus on elastodynamics, we prefer to state an explicit
existence result instead. Thus, we study a precise problem class with nonlinear damping
term for which we prove the well-posedness. To show the existence and uniqueness of
a solution of the regularized operator DAE (7.14), we start with the homogeneous case,
i.e., with G(t) ≡ 0. We then show the existence of a unique Lagrange multiplier and
the remaining variables. Finally, we show that the solution depends continuously on the
data, i.e., on the initial values, the data of the right-hand side and the nonlinearity of the
damping term.

Further existence results for different assumptions were discussed in Section 4.2.2.

7.3.1. Homogeneous Problem. The starting point for the existence and uniqueness of
solutions of the operator DAE (7.14) is the homogeneous problem with uD = 0. Thus, we
consider the following problem: Given initial values g ∈ VB, h ∈ H and a right-hand side
F ∈ L2(0, T ;V∗), determine a function u ∈ H1(0, T ;VB) with ü ∈ L2(0, T ;V∗) such that
for a.e. t ∈ [0, T ] it holds that

Mü(t) +Du̇(t) +Ku(t) = F(t) in V∗B(7.15)

and u satisfies the initial conditions u(0) = g0 and u̇(0) = h0. Recall that equation (7.15)
stated in the weaker space V∗B means that it has to be tested only by functions in VB and
not for all v ∈ V.

As stated in Section 7.1.1 we deal with linear elastodynamics with the operator K
defined in (7.2). Thus, we assume the existence of a positive constant k2 such that for all
u, v ∈ V it holds that

a(u, v) = 〈Ku, v〉V∗,V ≤ k2‖u‖‖v‖.

Furthermore, K is coercive with constant k1 on VB. The operator M involves the density
of the material and is defined in (7.11). It remains to specify the assumptions on the
damping operator D introduced in (7.4). In the following, we assume strong monotonicity
and Lipschitz continuity, i.e., we assume that there exist constants d1, d2 > 0 and d0 ≥ 0
such that for all u, v, w ∈ V it holds that

d1‖u− v‖2 ≤
〈
(D + d0 id)u− (D + d0 id)v, u− v

〉
V∗,V(7.16a)

and

‖Du−Dv‖V∗ ≤ d2‖u− v‖.(7.16b)

Note that the identity map id is used in terms of the embedding V ↪→ V∗ given by the
Gelfand triple V, H, V∗, i.e., 〈idu, v〉V∗,V = (u, v)H. The existence of a unique solution
under the given assumptions is matter of the following theorem.
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Theorem 7.6 (Homogeneous problem [Alt13a]). Consider initial data g0 ∈ VB, h0 ∈
H and F ∈ L2(0, T ;V∗). Then, there exists a unique solution u ∈ H1(0, T ;VB) of equation
(7.15) with initial conditions u(0) = g0 and u̇(0) = h0. Furthermore, the second time
derivative satisfies ü ∈ L2(0, T ;V∗).

Proof. Since M is just a multiplication by a constant, this theorem is a special
case of a theorem in [GGZ74, Ch. 7]. The proof makes use of Korn’s inequality for the
operator K as well as the given properties of D which imply that the operator (D+ d0 id)
is continuous, monotone, and coercive. The condition h ∈ H is justified by Remark 7.3.
The regularity of ü follows from the assumed regularity of the right-hand side F . �

Remark 7.7. Theorem 7.6 can be extended to nonlinear elastodynamics. For details
and assumptions on a possibly nonlinear elasticity operator K we refer to [GGZ74, Ch. 7].
Note that a nonlinear operator is necessary if we model large deformations for which the
assumption that the stress depends linearly on the strain is not reasonable.

Remark 7.8. The corresponding existence result for the damping-free case, i.e., D ≡ 0,
can be found in [Zei90a, Ch. 24].

7.3.2. Existence of the Lagrange Multiplier. The inclusion of arbitrary Dirichlet data
does not include further difficulties. As usual, the general case can be reduced to the
homogeneous case from the previous subsection.

Theorem 7.9 (Non-homogeneous problem [Alt13a]). Let the Dirichlet data on ΓD be
given by uD ∈W 2;2,2,2(0, T ;V,V,V∗). Furthermore, assume that g ∈ V with g = uD(0) on
ΓD, h ∈ H, and F ∈ L2(0, T ;V∗). Then, there exists a unique solution u ∈ H1(0, T ;V) of

Mü(t) +Du̇(t) +Ku(t) = F(t) in V∗B(7.17)

with u(t) = uD(t) on ΓD for a.e. t ∈ [0, T ] and initial conditions u(0) = g and u̇(0) = h.
Furthermore, the second time derivative satisfies ü ∈ L2(0, T,V∗).

Proof. Instead of finding u as stated in the theorem, we consider the equivalent
problem: Find w = u− uD ∈ H1(0, T ;VB) such that

Mẅ(t) + D̂ẇ(t) +Kw(t) = F(t)−MüD(t)−KuD(t) in V∗B(7.18a)

with initial conditions

w(0) = g − uD(0) ∈ VB,(7.18b)

ẇ(0) = h− u̇D(0) ∈ H.(7.18c)

Therein, D̂ denotes the operator defined by D̂ẇ := D(ẇ + u̇D). It is easy to see that D̂
is Lipschitz continuous and strongly monotone with the same constants as D. Thus, we
apply Theorem 7.6 to equation (7.18) which states the existence of a unique solution w and
hence the unique solvability of the original problem (7.17). Note that the special choice
of the initial data in (7.18b)-(7.18c) implies that u satisfies the posed initial conditions.
In addition, we obtain ẅ ∈ L2(0, T ;V∗) and thus, the claimed regularity for u and its
derivatives. �

In view of of the formulation as operator DAE, we follow [Sim00] and show that for
a solution u ∈ L2(0, T ;V) of the non-homogeneous operator ODE (7.17) there exists a
unique Lagrange multiplier λ ∈ L2(0, T ;Q).
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Theorem 7.10 (Existence of the Lagrange multiplier [Alt13a]). Let g, h, F , and uD
be as in Theorem 7.9 and G as defined in (7.10). Furthermore, let u ∈ H1(0, T ;V) denote
the unique solution from Theorem 7.9. Then, there exists a unique Lagrange multiplier
λ ∈ L2(0, T ;Q) such that (u, λ) is a solution of system (7.12).

Proof. Note that u fulfills the desired Dirichlet boundary condition u = uD along ΓD

and thus (7.12b). Since B∗λ vanishes for functions in VB, the given solution u of (7.17)
satisfies

Mü(t) +Du̇(t) +Ku(t) + B∗λ(t) = F(t) in V∗B.
In order to guarantee equation (7.12a) in V∗, λ has to satisfy

B∗λ(t) = F(t)−Mü(t)−Du̇(t)−Ku(t) in (Vc)∗.
The functional on the right-hand side vanishes for all test functions in VB and thus, is an
element of Vo

B. As a result, Lemma 7.1 (d) implies that this equation has a unique solution
λ ∈ L2(0, T ;Q). Thus, the pair (u, λ) solves system (7.12). �

7.3.3. Well-posedness of the Saddle Point Problem. At the end of this section, we state
the main result, namely the well-posedness of the operator DAE (7.14).

Theorem 7.11 (Well-posedness [Alt13a]). Consider F ∈ L2(0, T ;V∗), G from (7.10)
with Dirichlet data uD ∈ H2(0, T ;V), and initial data g0 ∈ VB, h0 ∈ H. Then, prob-
lem (7.14) is well-posed in the following sense. First, there exists a unique solution
(u1, u2, v2, w2, λ) with u1 ∈ W 2;2,2,2(0, T ;VB,VB,V∗), u2, v2, w2 ∈ L2(0, T ;Vc), and λ ∈
L2(0, T ;Q). Second, the map(

g0, h0,D(0),F ,G
)
7→
(
u1, u2, v2, w2, ü1 +Du̇1 + B∗λ

)
is a linear and continuous map of the form

VB ×H× V∗ × L2(0, T ;V∗)×H2(0, T ;Q∗)→
C([0, T ],V) ∩ C1([0, T ],H)× L2(0, T ;Vc)3 × L2(0, T ;V∗).

Proof. Note that uD ∈ H2(0, T ;V) and the trace theorem implies G ∈ H2(0, T ;Q∗),

〈q, G̈(t)〉Q,Q∗ := 〈q, üD(t)〉Q,Q∗ , ‖G̈‖L2(0,T ;Q∗) ≤ Ctr‖üD‖L2(0,T ;V).

Uniqueness: Assume that (u1, u2, v2, w2, λ) and (U1, U2, V2,W2,Λ) are two solutions of
problem (7.14). Equation (7.14b) provides B(u2 − U2) = 0 in Q∗. Using the isomorphism
from Lemma 7.1 b), we obtain u2 = U2. With the same arguments, we achieve v2 = V2

and w2 = W2. With the differences e := u1 − U1 and µ := λ− Λ, equation (7.14a) reads

Më+ D̂ė+Ke+ B∗µ = 0 in V∗

with the operator D̂(ė) := D(ė + U̇1 + v2) − D(U̇1 + v2) and initial conditions e(0) = 0

and ė(0) = 0. Obviously, D̂ is Lipschitz continuous and strongly monotone with the same
constants as D such that Theorem 7.6 is applicable. Thus, testing only with functions
in VB, we obtain by Theorem 7.6 that e = 0. Since D̂(0) = 0, it remains the equation
b(µ, v) = 0 for all v ∈ Vc which implies µ = 0.

Existence: Let P be the projection onto VB, i.e., P : V → VB. Further, let (u, λ) denote
the solution from Theorem 7.10 with initial data u(0) = g0 +B−G(0) = g0 + (id−P)uD(0)

and u̇(0) = h0 +B−Ġ(0). This then implies that u1 := Pu satisfies u1 ∈ C([0, T ],VB) with
u̇1 ∈W 1;2,2(0, T ;VB,V∗). With the help of Lemma 7.1, we define

u2 := (id−P)u = B−G, v2 := u̇2 = B−Ġ, w2 := ü2 = B−G̈.
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The regularity of G, namely G, Ġ, G̈ ∈ L2(0, T ;Q∗), implies that u2, v2, w2 ∈ L2(0, T ;Vc).
Obviously, the tuple (u1, u2, v2, w2, λ) satisfies equations (7.14a)-(7.14d). The initial values
satisfy

u1(0) = Pu(0) = Pg0 = g0, u̇1(0) = u̇(0)− u̇2(0) = h0 + B−Ġ(0)− v2(0) = h0.

Continuous dependence on data: Recall that we use the abbreviations ‖ · ‖ = ‖ · ‖V and
| · | = ‖ · ‖H. Lemma 7.1 (e) implies the estimate

‖u2(t)‖ ≤ 1

β
‖Bu2(t)‖Q∗ =

1

β
‖G(t)‖Q∗ .

Similar estimates for v2 and w2 result in

‖u2‖2L2(0,T ;V) + ‖v2‖2L2(0,T ;V) + ‖w2‖2L2(0,T ;V) ≤
1

β2
‖G‖2H2(0,T ;Q∗).(7.19)

For an estimate of u1, we test equation (7.14a) with u̇1(t) ∈ VB. We omit the explicit
time-dependence and obtain

1

2

d

dt

[
ρ|u̇1|2 + a(u1, u1)

]
+
〈
D(u̇1 + v2)−Dv2, u̇1

〉
= 〈F , u̇1〉 − (ρw2, u̇1)H −

〈
Dv2, u̇1

〉
− a(u2, u̇1)

= 〈F , u̇1〉 − (ρw2, u̇1)H −
〈
Dv2 −D(0), u̇1

〉
−
〈
D(0), u̇1

〉
− a(u2, u̇1).

Recall that d2 and k2 denote the continuity constants of D and K, respectively, and d0,
d1 the monotonicity constants of D. With η(t) := ρ|u̇1(t)|2 + a(u1(t), u1(t)), the strong
monotonicity of D, and the Cauchy-Schwarz inequality we obtain the estimate

η̇ + 2d1‖u̇1‖2 − 2d0|u̇1|2

≤ ρ d

dt
|u̇1|2 +

d

dt
a(u1, u1) + 2

〈
D(u̇1 + v2)−Dv2, u̇1

〉
≤ 2‖F‖V∗‖u̇1‖+ 2ρ|w2||u̇1|+ 2d2‖v2‖‖u̇1‖+ 2‖D(0)‖V∗‖u̇1‖+ 2k2‖u2‖‖u̇1‖.

By Young’s inequality 2ab ≤ a2/c+ cb2 [Eva98, App. B] with appropriate choices of the
constant c > 0, we obtain

η̇ + 2d1‖u̇1‖2 ≤
2

d1
‖F‖2V∗ +

d1

2
‖u̇1‖2 + ρ|w2|2 + (ρ+ 2d0)|u̇1|2 +

2d2
2

d1
‖v2‖2

+
d1

2
‖u̇1‖2 +

2

d1
‖D(0)‖2V∗ +

d1

2
‖u̇1‖2 +

2k2
2

d1
‖u2‖2 +

d1

2
‖u̇1‖2

≤ ρ+ 2d0

ρ
η +

2

d1
‖F‖2V∗ + ρ|w2|2 +

2d2
2

d1
‖v2‖2 +

2

d1
‖D(0)‖2V∗

+
2k2

2

d1
‖u2‖2 + 2d1‖u̇1‖2.

Thus, there exists a generic constant c, such that

η̇(t) ≤ (1 + 2d0/ρ)η(t) + cξ(t)

with
ξ(t) = ‖F(t)‖2V∗ + ‖w2(t)‖2 + ‖v2(t)‖2 + ‖D(0)‖2V∗ + ‖u2(t)‖2.

Thus, by the absolute continuity of η and Gronwall’s lemma [Eva98, App. B] we obtain
that η is bounded by

η(t) ≤ (1 + 2d0/ρ)et
(
η(0) + c

∫ t

0
ξ(s) ds

)
.
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The initial value of η is given by the initial values in (7.14e),

η(0) = ρ|h0|2 + a(g0, g0) ≤ ρ|h0|2 + k2‖g0‖2.
The integral term can be bounded with the help of (7.19). Therewith, the existence of a
positive constant c follows such that for all t ∈ [0, T ] it holds that

η(t) ≤ c
[
‖g0‖2 + |h0|2 + ‖D(0)‖2V∗ + ‖F‖2L2(0,T ;V∗) + ‖G‖2H2(0,T ;Q∗)

]
.

Since the right-hand side is independent of t, we can maximize over t and obtain bounds
for u1 and u̇1 in C([0, T ],V) and C([0, T ],H), respectively,

‖u1‖C([0,T ],V)+‖u̇1‖C([0,T ],H)

≤ c
[
‖g0‖+ |h0|H + ‖D(0)‖V∗ + ‖F‖L2(0,T ;V∗) + ‖G‖H2(0,T ;Q∗)

]
.

It remains to bound ρü1 + Du̇1 + B∗λ in L2(0, T ;V∗). By the definition of the V∗-norm
and equation (7.14a), we achieve

‖ρü1(t) +Du̇1(t) + B∗λ(t)‖V∗

= sup
v∈V

〈Mü1(t), v〉+ 〈Du̇1(t), v〉+ 〈B∗λ(t), v〉
‖v‖

= sup
v∈V

〈F , v〉 − 〈Mw2, v〉 − 〈K(u1 + u2), v〉+ 〈Du̇1 −D(u̇1 + v2), v〉
‖v‖

≤ ‖F(t)‖V∗ + ρ|w2(t)|+ k2‖u1(t) + u2(t)‖+ d2‖v2(t)‖.
Thus, by integration over the interval [0, T ], Young’s inequality, and the estimates for u1,
u2, v2, and w2 from above, we obtain a positive constant c with

‖ü1(t) +Du̇1(t) + B∗λ(t)‖L2(0,T ;V∗)

≤ c
[
‖g‖+ |h|+ ‖D(0)‖V∗ + ‖F‖L2(0,T ;V∗) + ‖G‖H2(0,T ;Q∗)

]
. �

7.4. Influence of Perturbations. As for the operator DAEs of first order, we dis-
cuss the influence of small perturbations in the right-hand side on the solution behavior.
We only consider the regularized system (7.14). The results for the original formulation
(7.12) then follow as in Section 6.1.3 and include derivatives of the perturbations. Let

(û1, û2, v̂2, ŵ2, λ̂) denote the solution of the perturbed problem

M(¨̂u1 + ŵ2) + D( ˙̂u1 + v̂2) + K(û1 + û2) + B∗λ̂ = F + δ in V∗,(7.20a)

Bû2 = G + θ in Q∗,(7.20b)

Bv̂2 = Ġ + ξ in Q∗,(7.20c)

Bŵ2 = G̈ + ϑ in Q∗.(7.20d)

Therein, the perturbations satisfy δ ∈ L2(0, T ;V∗) and θ, ξ, ϑ ∈ L2(0, T ;Q∗). Fur-

thermore, we have perturbed initial data of the form û1(0) = u1(0) + e1,0 and ˙̂u1(0) =
u̇1(0) + ė1,0.

Theorem 7.12. Consider the perturbed problem (7.20) with operators M, D, K, and

B as described in the previous subsections. Then, the solution (û1, û2, v̂2, ŵ2, λ̂) satisfies
with e1 := û1 − u1 the stability estimate

‖ė1‖2C([0,T ];H) + ‖e1‖2C([0,T ];V) ≤ c
[
|ė1,0|2 + ‖e1,0‖2 + ‖δ‖2L2(0,T ;V∗)

+ ‖θ‖2L2(0,T ;Q∗) + ‖ξ‖2L2(0,T ;Q∗) + ‖ϑ‖2L2(0,T ;Q∗)

]
.
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Furthermore, the L2(0, T ;V) errors of û2 − u2, v̂2 − v2, and ŵ2 − w2 are bounded by the
L2(0, T ;Q∗) norm of θ, ξ, and ϑ, respectively.

Proof. We consider the difference of systems (7.20) and (7.14) which yields an oper-
ator DAE for the errors. The bounds for e2 := û2 − u2, ev := v̂2 − v2, and ew := ŵ2 − w2

are obvious because of Lemma 7.1 (c). We proceed as in the proof of Theorem 7.11, i.e.,
we test the first equation of the system by ė1 and use the Gronwall lemma. Testing the
difference of equation (7.20a) and (7.14a) by ė1, we obtain

ρ
d

dt
|ė1|2 +

d

dt
|K1/2e1|2 + 2

〈
D( ˙̂u1 + v̂2)−D(u̇1 + v2), ė1

〉
= 2
〈
δ − ρew −Ke2, ė1

〉
.(7.21)

Considering the damping term, by the properties given in (7.16) we get

2
〈
D( ˙̂u1+v̂2)−D(u̇1 + v2), ė1

〉
= 2

〈
D( ˙̂u1 + v̂2)−D(u̇1 + v2), ė1 + ev

〉
− 2
〈
D( ˙̂u1 + v̂2)−D(u̇1 + v2), ev

〉
≥ 2d1‖ė1 + ev‖2 − 2d0|ė1 + ev|2 − 2d2‖ev‖‖ė1 + ev‖
≥ 2d1‖ė1‖2 − 2d0|ė1 + ev|2 − 2d2‖ev‖‖ė1‖ − 2d2‖ev‖2.

Note that we have used the orthogonality of VB and Vc in the last step which implies
‖ė1 + ev‖2 = ‖ė1‖2 + ‖ev‖2. For the right-hand side of equation (7.21) we estimate by the
Cauchy-Schwarz inequality,

2
〈
δ − ρew −Ke2, ė1

〉
≤ 2‖δ‖V∗‖ė1‖+ ρC2

emb‖ew‖‖ė1‖+ 2k2‖e2‖‖ė1‖.
Therewith, equation (7.21) turns into

ρ
d

dt
|ė1|2 +

d

dt
|K1/2e1|2 + 2d1‖ė1‖2 ≤ 2d0|ė1 + ev|2 + 2d2‖ev‖‖ė1‖+ 2d2‖ev‖2

+ 2‖δ‖V∗‖ė1‖+ ρC2
emb‖ew‖‖ė1‖+ 2k2‖e2‖‖ė1‖.

An application of Young’s inequality then yields with a generic constant c,

ρ
d

dt
|ė1|2 +

d

dt
|K1/2e1|2 ≤ 4d0|ė1|2 + c

[
‖δ‖V∗ + ‖e2‖2 + ‖ev‖2 + ‖ew‖2

]
≤ 4d0|ė1|2 + c

[
‖δ‖2V∗ + ‖θ‖2Q∗ + ‖ξ‖2Q∗ + ‖ϑ‖2Q∗

]
.

The Gronwall lemma [Eva98, App. B] and maximizing over t ∈ [0, T ] then gives the claim,

since k1‖e1‖2 ≤ |K1/2e1|2. �

The corresponding result for the original formulation (7.12) shows that the error in

u1 depends on δ and θ but also on the derivatives θ̇ and θ̈. Thus, the operator DAE
in its original formulation is much more sensitive with regard to perturbations than the
regularized system. This result corresponds to the findings of Section 9 where we show
that a spatial discretization of the regularized system leads to a DAE of lower index. Note,
however, that in the finite-dimensional case with corresponding Hessenberg structure the
error of the differential variable can be bounded in terms of the initial error, δ, θ, and θ̇,
i.e., without the second derivative of θ, see [Arn98b, Ch. 2.3].

As in the section on first-order systems, we give a short overview of the properties of
the regularized formulation in form of a table. Recall that we consider the Gelfand triple
V ↪→ H ↪→ V∗ with V denoting the Sobolev space H1(Ω) in d components. Since the
kernel of the constraint operator B equals the space H1

ΓD
(Ω), which is dense in L2(Ω), we

obtain VB
H

= H. In the following, we use the abbreviations L2(V∗) := L2(0, T ;V∗) and
L2(Q∗) := L2(0, T ;Q∗).
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original formulation regularized formulation

system of equations operator DAE (7.12) operator DAE (7.14)

u ∈W 2;2,2,2(0, T ;V,V,V∗), u1 ∈W 2;2,2,2(0, T ;VB,VB,V∗),
solution spaces λ ∈ L2(0, T ;Q) u2, v2, w2 ∈ L2(0, T ;Vc),

λ ∈ L2(0, T ;Q)

initial conditions and u(0) = g ∈ V, u̇(0) = h ∈ H u1(0) = g0 ∈ VB,

consistency g = g0 + B−G(0), g0 ∈ VB u̇1(0) = h0 ∈ H
spatial discretization leads to DAE of index 3, leads to DAE of index 1,

cf. Section 9 cf. Section 9

‖ė1‖2C([0,T ];H) + ‖e1‖2C([0,T ];V) ‖ė1‖2C([0,T ];H) + ‖e1‖2C([0,T ];V)

perturbations . |ė1,0|2 + ‖e1,0‖2 . |ė1,0|2 + ‖e1,0‖2

+‖δ‖2L2(V∗) + ‖θ‖2L2(Q∗) +‖δ‖2L2(V∗) + ‖θ‖2L2(Q∗)
+‖θ̇‖2L2(Q∗) + ‖θ̈‖2L2(Q∗) +‖ξ‖2L2(Q∗) + ‖ϑ‖2L2(Q∗)

7.5. Applications in Flexible Multibody Dynamics. In contrast to the first-
order case in Section 6, we have considered in this section the reformulation of operator
DAEs of second order for a specific case. More precisely, we have regarded the dynamics
of an elastic body which is constrained at the boundary which is modeled in terms of
Dirichlet boundary conditions. As mentioned before, the regularization also applies for
different choices of the damping and stiffness operators. Even the trace operator could be
replaced by some other constraint operator, cf. Section 6.

In this last subsection of Part B, we discuss further applications and extensions where
the here presented methods apply directly. For this, we remove the restriction of a single
body and consider flexible multibody systems [GC01, Bau10].

Multibody systems in which we allow the single parts to be deformable are called flexi-
ble multibody systems. These systems can be formulated as abstract differential equations
and are currently very popular because of the wide range of applications. These models
are necessary, since the traditional design of machines with a maximization of stiffness
avoids elastic vibrations but leads to a drastic increase of mass and thus, of costs. Mod-
ern mechanisms need lightweight designs and thus, include bodies where the deformation
cannot be neglected anymore. As a result, accurate and meaningful simulations need
to include the vibrations and thus, model the systems in the form of flexible multibody
systems [SHD11].

The presented model of a deformable body can be extended to flexible multibody
systems if the coupling can be expressed in terms of Dirichlet boundary conditions. In this
case, the coupled system can be written in the same structure as a single body constrained
by Dirichlet boundary conditions [Alt13b]. Thus, the presented regularization technique
from Section 7.2 also applies for flexible multibody systems of this form.

Example 7.13 (Slider crank mechanism). One popular benchmark example for multi-
body systems is the slider crank mechanism [JPD93, Sim96]. The simplest model con-
sists of two rods connected by a revolute joint (also called pin joint). As usual, the discrete
model equations yield a DAE of index 3. A possible extension of this model adds flexi-
bility to the system. For this, we replace one rigid rod by a flexible body, cf. [Sim06]
or [Sim13, Ch. 8.2]. An illustration is given in Figure 7.1, in which the rod on the right
(red) is modeled as a deformable body. Details on the modeling part, following the floating
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x

y

Γ0

Figure 7.1. Illustration of the slider crank mechanism from Example 7.13
with a rigid rod (left) and a flexible rod (right).

reference approach, are given in [Sim06]. This then leads to a PDE with a constraint at
the joint of the two rods, i.e., an operator DAE. The constraint may either be modeled by
an inequality or by a nonlinear equation which - in the strong form - reads(

x+ u(x, t)
)T (

x+ u(x, t)
)

= r2.(7.22)

Therein, the function u denotes the deformation along the boundary Γ0 (where it is con-
nected to the rigid rod, see Figure 7.1) and r equals the constant radius of the pin. Thus,
the constraint (7.22) guarantees that the boundary Γ0 of the flexible rod stays in shape of a
circle of radius r. Assuming small deformations, we may neglect the quadratic term. Since
xTx = r2 on the boundary, the linearization of equation (7.22) is given by u(x, t)Tx = 0.
In the weak form, this constraint is given by〈

Bu, q
〉

:=

∫
Γ0

q
(
uTx

)
dx = 0

for all test functions q ∈ Q. For the formulation of the problem as operator DAE, it
remains to find appropriate function spaces V, VB, H, and Q. For this, we set

V :=
[
H1(Ω)

]2
, VB :=

[
H1

Γ0
(Ω)
]2
, H :=

[
L2(Ω)

]2
, Q∗ := H1/2(Γ0).

Note that space Q has only one component whereas the space V is defined in two space
dimensions.



Part

C

The Method of Lines

This part is devoted to justify the presented regularization of operator DAEs in Part B.
We analyse the resulting benefits in the spatial discretized system which is in fact a DAE.
Loosely speeking, we show that the performed reformulation is an index reduction in
the abstract setting. Recall that we have not defined any index concept for operator
equations such that one has to be cautious with the terminology. However, applying the
finite element method within the method of lines as described in Section 5.3, we obtain
a DAE for which the (differentiation) index is well-defined. We show that the DAEs
resulting from the semi-discretization of the regularized operator DAEs turn out to be
of index 1, whereas the semi-discretization of the original equations are of index 2 or 3,
respectively. Thus, the reformulation on operator level positively effects the structure of
the semi-discretized system.

As we have called for a splitting of the ansatz space in the regularization process, we
also need a splitting of the finite-dimensional approximation space. This will mostly result
in nonconforming discretization schemes, since we need to approximate the (orthogonal)
complement of the kernel of the constraint operator.

Similiar as before, this part is divided into sections on first- and second-order systems.
In Section 8, we discuss the regularized first-order operator DAEs from Section 6. Again
we analyse the cases of linear and nonlinear constraints separately and discuss needed
assumptions on the discretization. Afterwards, we focus on the particular example of
flow equations, which includes the Navier-Stokes equations. For this, we provide specific
algorithms which provide the needed splitting of the finite element space. As a numerical
example we consider the Navier-Stokes equations within a cylinder wake. The performed
regularization allows for reliable simulation results also for relatively large errors within
the iterative solver routine solving the resulting algebraic systems.
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The justification of the regularization for second-order operator DAEs is subject of
Section 9. Recall that we consider here the case of elastodynamics with linear constraints
along the boundary. For such systems, spatial discretizations normally lead to DAEs of
index 3 which have the same structure as in multibody dynamics. On the other hand,
the regularized operator DAE yields a DAE of index 1. Finally, we comment on the com-
mutativity of semi-discretization and index reduction for suitable discretization schemes.

8. The Method of Lines for First-order Systems

In this section we determine the index of the semi-discretized systems corresponding
to the operator DAE (6.1) and its regularized versions (6.4) and (6.9). This then shows
one of the achieved benefits resulting from the regularization process. For the example of
flow equations, as introduced in Section 6.3.1, we provide more details for the application
of the proposed method in practice. In particular, we discuss how to find a regular block
of the constraint matrix which corresponds to a splitting of the finite element space. For
this, we consider two specific finite element schemes used in computational fluid dynamics.

The results of this section are published within Section 4 of [AH14] as well as in
[AH13].

8.1. Preliminaries and Notation. In preparation for the index determination of
the semi-discretized systems which occur by the method of lines, we recall the operator
equations of the previous part. In Section 6 we have considered the original system (6.1)
which (in the linear case) has the form

u̇(t) + Ku(t) + B∗(t)λ(t) = F(t) in V∗,(8.1a)

B(t)u(t) = G(t) in Q∗.(8.1b)

Recall that in the case of nonlinear constraints we have to replace B∗ in equation (8.1a)
by the dual operator of its Fréchet derivative along u, namely Cu. For linear constraints,
the proposed regularization results in system (6.4) which has the form

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

)
+ B∗λ(t) = F(t) in V∗,(8.2a)

Bu2(t) = G(t) in Q∗,(8.2b)

Bv2(t) + Ḃu2(t) = Ġ(t) in Q∗.(8.2c)

In the nonlinear case, we have obtained the reformulated operator DAE (6.9), i.e.,

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

)
+ C∗uλ(t) = F(t) in V∗,(8.3a)

B
(
u1(t) + u2(t)

)
= G(t) in Q∗,(8.3b)

Cuu̇1(t)+ C2,uv2(t) = Ġ(t) in Q∗.(8.3c)

For the discretization in space, we consider finite element discretizations as described in
Section 5.1. For the finite element spaces we use the following notation. The finite-
dimensional spaces V1h, V2h, and Qh approximate the Sobolev spaces V1, V2, and Q,
respectively. In the linear case, we use the notion V1 = VB and V2 = Vc. We emphasize
that we do not assume the finite element spaces to be subspaces of the corresponding
continuous space, i.e., we allow nonconforming discretization schemes. Furthermore, we
set Vh = V1h ⊕ V2h as approximation space of V. The dimensions of the finite element
spaces are given by

dimVh = n, dimV1h = n−m, dimV2h = dimQh = m.



8. The Method of Lines for First-order Systems 75

Given appropriate basis functions, we represent the discrete approximations of u1, u2, v2,
and λ by the corresponding coefficient vectors q1 ∈ Rn−m, q2, p2 ∈ Rm, and µ ∈ Rm,
respectively. Furthermore, we denote by q ∈ Rn the vector q = [qT1 , q

T
2 ]T .

Accordingly, the basis functions allow to obtain the finite-dimensional representation of
the operators K and B as well as the right-hand sides F and G, see Section 5.1. We denote
the finite-dimensional representations by K : Rn → Rn, B : Rn → Rm, f : [0, T ] → Rn,
and g : [0, T ] → Rm, respectively. The mass matrix, which corresponds to the identity
operator, is denoted by M ∈ Rn,n.

Remark 8.1. The definition of the discrete operators requires that the continuous
operators can be applied to the basis functions of the discrete spaces. Since we allow
nonconforming discretizations, this is not automatically satisfied and has to be assumed.
Usually, this is no restriction for the standard finite element spaces, since the basis func-
tions are piecewise smooth (w.r.t. the triangulation T ) such that a piecewise application
of the operators is possible.

A reasonable assumption on the resulting mass matrix M ∈ Rn,n is the positive defi-
niteness. In the linear constraint case, where B is a (time-dependent) m × n matrix, we
assume that it is continuously differentiable which corresponds to Assumption 6.2. As
discussed in Section 5.1.3, the given saddle point structure requires stability conditions.
Thus, we assume B to satisfy an inf-sup condition of the form: There exists a constant
βdisc > 0, independent of h and time t, such that

inf
qh∈Qh

sup
vh∈Vh

〈Bvh, qh〉
‖vh‖V‖qh‖Q

= βdisc > 0.

Note that for the results of the following sections it is sufficient to assume a full rank
property of B. However, we strongly encourage to use discretization schemes satisfying
the stronger stability condition to ensure stable approximations of the Lagrange multiplier
λ w.r.t. the discretization parameter h, see also the discussion in [Bra07, Chap. III.7].

We emphasize that there are two possible representations of B which we do not dis-
tinguish in the sequel. First, the matrix representation used above,

B : Rn → Rm,
〈
B(q), ej

〉
:=
〈
B(

∑n

i=1
qiϕi), ψj

〉
.

Therein, ej denotes the j-th cananical basis vector in Rn. Second, B can be the discrete
operator acting on the discrete functions instead of the coefficients,

B : Vh → Q∗h,
〈
Bvh, qh

〉
:=
〈
Bvh, qh

〉
.(8.4)

In the case of nonlinear constraints, we state the above assumptions including the discrete
inf-sup condition on the Jacobian of the constraint operator.

8.2. Linear Constraints. In the case of a linear constraint operator B(t), the semi-
discretization of system (8.1) by finite elements as described above leads to the DAE

Mq̇ + K(q) + BT (t)µ = f,(8.5a)

B(t)q = g.(8.5b)

Therein, q = [qi] ∈ Rn denotes the coefficient vector corresponding to the finite element
discretization of u and µ = [µi] ∈ Rm corresponds to the approximation of λ. Furthermore,
we obtain an initial condition for q(0) ∈ Rn. We show that this DAE has index 2 with the
help of Lemma 2.2. For this, it is sufficient that the matrix BM−1BT is invertible, which
directly follows from the properties of M and B.
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It remains to determine the index of the DAE which results form a spatial discretization
of the regularized operator DAE (8.2). Here we consider two cases. First, the case of
conforming discretizations for which we have V1h ⊂ V1 = VB, V2h ⊂ V2 = Vc, and Qh ⊂ Q.
Second, the more general case where we do not state these assumptions, namely the
nonconforming ansatz.

Remark 8.2. Conforming finite element schemes are naturally more convenient for the
analysis, since properties of the continuous spaces are transferred to the discrete setting.
However, the necessary splitting of V into V1 and V2 demands for approximation spaces
of rather complicated subspaces. Thus, the used discretization schemes are in general of
nonconforming type. Note that Vh = V1h ⊕ V2h still may satisfy Vh ⊂ V. For an example
we refer to Section 8.4 below where the splitting is performed for flow equations.

8.2.1. Conforming Discretization. The assumption V1h ⊂ V1 implies that the basis
functions of V1h vanish under the action of B. Thus, the matrix B(t) has the block
structure B(t) = [0 B2(t)]. Because of the full rank property of B and the dimensions of
V2h and Qh, the matrix B2(t) is square and invertible. The semi-discrete analogue to the
operator DAE (8.2) then reads

M

[
q̇1

p2

]
+ K(q1, q2) +

[
0

BT
2 (t)

]
µ = f,(8.6a)

B2(t)q2 = g,(8.6b)

B2(t)p2 = ġ − Ḃ2(t)q2.(8.6c)

We postpone the proof that this system is of index 1 to the more general case in Lemma 8.3
below.

As a result, we have seen in Theorem 6.8 that the operator DAEs (8.1) and (8.2) are
equivalent but result in DAEs of different index. The semi-discretization of the regularized
operator equation leads to a DAE of index 1 rather than index 2 as for the original formu-
lation. This fact explains why we call the procedure from Part B an index reduction on
operator level. The resulting benefits of the regularized operator DAE (8.2) are strongly
related to the general advantages of a low-index formulation. Recall that the index quan-
tifies the level of difficulty of the numerical simulation due to instabilities resulting from
hidden constraints and needed differentiation steps.

8.2.2. Nonconforming Discretization. As mentioned before, V1h ⊂ V1 may not be a
reasonable assumption for the discretization scheme. In this case, we loose the property
kerB 6⊂ kerB, cf. [GR86, Ch. 3]. Clearly, this also affects the structure of the matrix
B such that we do not obtain a zero-block as in the conforming case. Instead, we assume
w.l.o.g. that the matrix B has the block structure

B(t) =
[
B1(t) B2(t)

]
with a non-singular block B2(t). Note that this is no restriction, since the full rank
property of B implies the existence of a regular block. Thus, the discrete spaces V1h and
V2h can be chosen such that the matrix B has the given block structure. As a result,
we obtain the same structural benefits as before in the conforming case. We consider the
DAE resulting from a nonconforming discretization of system (8.2). For this, we add the
vanishing terms Bu1 and Bu̇1 to the constraints again, cf. Remark 7.5. The resulting
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semi-discrete system has the form

M

[
q̇1

p2

]
+ K(q1, q2) + BT (t)µ = f,(8.7a)

B2(t)q2 = g −B1(t)q1,(8.7b)

B2(t)p2 = ġ −B1(t)q̇1 − Ḃ1(t)q1 − Ḃ2(t)q2.(8.7c)

We show that this DAE (and thus, also system (8.6)) is of index 1.

Lemma 8.3 (Index-1 DAE [AH14]). For a positive definite mass matrix M and a
continuously differentiable constraint matrix B with a non-singular block B2, the DAEs
(8.6) and (8.7) are of index 1.

Proof. Similar to the proof of [KM06, Th. 6.12], we show that (8.7) is of index 1.
The property then follows for system (8.6) as well because it is a special case.

Since the matrix B2(t) is of full rank, equations (8.7b) and (8.7c) yield direct expres-
sions of q2 and p2 in terms of q1 and q̇1. Furthermore, a multiplication of (8.7a) from the
left by BM−1 provides a formula for µ in terms of q1. Here we use the assumptions on
M and B which imply that the matrix BM−1BT is invertible. Finally, inserting all these
expressions into equation (8.7a), we obtain an ODE in q1. Thus, we can solve system (8.7)
without any further differentiation steps. �

Remark 8.4 (Commutativity). The presented regularization process of Section 6 fol-
lowed by a finite element discretization is equivalent to the traditional approach of first
discretizing and then performing the index reduction. Thus, an application of minimal
extension to the DAE (8.5) leads to the index-1 DAE (8.7), assuming that corresponding
discretization schemes are used. For this, assume that the DAE (8.5) results from the
discretization scheme Vh = V1h⊕ V2h, Qh. The assumption on the structure of the matrix
B, namely the invertibility of the B2 block, then implies that the splitting q = [qT1 , q

T
2 ]T

according to Vh = V1h ⊕ V2h satisfies the conditions from Section 2.3.2. Thus, minimal
extension with the dummy variable p2 := q2 yields the index-1 DAE (8.7).

8.3. Nonlinear Constraints. As mentioned before, the assumed properties of B
now pass to the Jacobian of the constraint. For this, we prefer to work with the discrete
operator B in the form of (8.4). Similar to the assumptions on the nonlinear constraint
operator in Assumption 6.16 for the regularization of the operator DAE, we formulate
sufficient assumptions on B which ensure that the semi-discretized system is of index 1.
Also here the assumptions are strongly connected to the implicit function theorem.

Assumption 8.5 (Properties of B [AH14]). Consider uh ∈ Vh such that 〈Buh, ψj〉 =
〈G, ψj〉 for j = 1, . . . ,m. We assume that

(a) there exist subspaces V1h and V2h with Vh = V1h ⊕ V2h, uh = uh,1 + uh,2,

(b) B is continuously differentiable in a neighborhood of uh,

(c) the matrix corresponding to ∂B/∂uh,2(uh) is invertible.

Remark 8.6. In view of Assumption 8.5 with the splitting Vh = V1h ⊕ V2h, we may
assume an appropriate ordering of the basis {ϕi}i=1,...,n of Vh which implies a decomposi-
tion of the coefficient vector q. More precisely, the coefficient vector q ∈ Rn decomposes
into q = [qT1 , q

T
2 ]T with uh,1 =

∑n−m
i=1 q1iϕi ∈ V1h and uh,2 =

∑m
i=1 q2iϕn−m+i ∈ V2h.

To simplify notation, we introduce C as the Jacobian of B, i.e., C := ∂B/∂uh(uh).
Note that the discretization of the Fréchet derivative ∂B/∂u(·) : V → (V → Q∗) equals the
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Jacobian of the discrete operator B. The spatial discretization of system (6.8) then leads
to the system

Mq̇ + K(q) + CTµ = f,(8.8a)

B(q) = g.(8.8b)

Following Lemma 2.2, we note that the invertibility of CM−1CT , which follows from the
full rank property of the Jacobian, implies that the DAE (8.8) is of index 2. The same
discretization scheme with the splitting Vh = V1h ⊕ V2h from Assumption 8.5 and basis
functions as described in Remark 8.6 is applied to system (8.3) and yields

M

[
q̇1

p2

]
+ K(q1, q2) + CTµ = f,(8.9a)

B(q1, q2) = g,(8.9b)

C

[
q̇1

p2

]
= ġ.(8.9c)

It remains to show that this DAE has index 1. This then justifies the regularization
procedure of Part B also for the case with nonlinear constraints.

Lemma 8.7 (Index-1 DAE [AH14]). Let M be positive definite and the nonlinear
function B satisfy Assumption 8.5 along uh which corresponds to the solution q of (8.9).
Then, the DAE (8.9) is of index 1.

Proof. Assumption 8.5 implies that the Jacobian C has the block structure

C =
[
C1 C2

]
with an invertible matrix C2. Because of the implicit function theorem, locally we obtain
from (8.9b-c) expressions for q2 and p2 in terms of q1 and q̇1. Furthermore, a multiplication
of CM−1 from the left to (8.9a) yields an equation for µ in terms of q1 and the right-hand
side ġ. Here we use the full rank property of C which implies that CM−1CT is non-
singular. Finally, we have algebraic equations for q2, p2, and µ and an ODE for q1 without
the application of any differentiation steps. �

8.4. Application to Flow Equations. The dynamics of incompressible flows are
characterized by the Navier-Stokes equations or a corresponding linearized version such
as the Stokes or Oseen equations, cf. Section 6.3.1. In any case, a spatial discretization
by finite elements as described in the first part of this section leads to a DAE of the form

Mq̇ +K(q) +BT p = f, Bq = 0.(8.10)

Due to the large interest in industrial applications, there exist several approaches in the
field of computational fluid dynamics which can be roughly grouped in

• penalty methods [HV95, She95],

• pressure correction or projection methods [GS00], and

• methods using divergence-free discretization schemes.

A summary of those methods can also be found in [Wei96]. All these methods pay special
attention to the treatment of the pressure variable. In fact, all these approaches try to
avoid the instabilities coming form the index-2 structure of the given problem. Recall that
flow equations have a saddle point structure and the pressure takes the role of the Lagrange
multiplier, cf. Section 5.1.3. The first two methods decouple the velocity and pressure
variable. Although this decoupling seems to be computationally beneficial because of the
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splitting into smaller subsystems, the computation of the pressure from the velocity is
ill-conditioned, since it involves a multiplication by the discrete divergence operator. This
includes a factor h−1 where h denotes the spatial mesh parameter. Particularly, this ansatz
is unfeasible if the coupling conditions include the pressure variable as, e.g., in levitated
droplet problems in which one considers the effect of the surface tension on a fluid interface
[BKZ92, EGR10].

The idea of penalty methods is to replace the discrete divergence constraint by Bq =
−λ−1p with a penalty parameter λ � 1. Note that this penalization reduces the index
of the DAE (8.10) to one and yields an ODE for the velocity, namely Mq̇ + K(q) −
λBTBq = f . To gain an approximation of the pressure, one can use the so-called pressure
Poisson equation including the calculated velocity [SH90]. The main disadvantages of this
approach are the degenerating condition number of the resulting algebraic system and the
difficulties for small velocities [HV95]. Furthermore, the method requires a suitable value
for the (heuristic) penalty parameter λ [She95].

Projection methods are based on a guess for the pressure which is used to compute
an approximate velocity update q̃ by equation (8.10). This step needs to be performed
in every time step. Then, one splits q̃ in a discrete divergence-free component and a
complement which results in an incomplete decoupling [Wei97]. Furthermore, this ansatz
calls for boundary conditions for the pressure which are unphysical [GS00].

From a theoretical point of view, a complete decoupling by the use of divergence-
free elements is optimal, since the DAE (8.10) automatically turns to an ODE. Hence,
the discretization scheme would work on the subspace of divergence-free functions and
yield an approximation which satisfies the algebraic constraint a priori. However, these
methods are only rarely used because of the high computational costs. In order to avoid
expensive computations, one may also use quasi divergence-free elements, see e.g. [MS06].
Unfortunately, this ansatz only reduces the size of the algebraic system but does not change
the high-index structure of the DAE. Furthermore, divergence-free methods are restricted
to constraints with a homogeneous right-hand side.

Within this thesis, we propose to combine the index-1 formulation of the flow equations
with a decomposition of the finite element space used for the velocity approximation. This
method does not depend on any heuristic parameter and requires no unfeasible boundary
conditions for the pressure, since the equations are not decoupled. Thus, the pressure
variable p remains part of the system. Furthermore, this approach is consistent with the
infinite-dimensional setting in the sense that it has a valid representation on operator level
[AH13]. Hence, there is no restriction on the size of the time steps.

Recall that the index reduction procedure (in the finite- as well as in the infinite-
dimensional setting) adds the so-called hidden constraint Bq̇ = 0 to the system which
reduces instabilities. This gains particularly robustness w.r.t. perturbations in the right-
hand side as they may appear due to the inexact solution of the algebraic equations. In
addition, we stress the fact that the method does not rely on the vanishing divergence and
allows for constraints of the form Bq = g 6= 0, see Section 6.3.2 for an example.

Throughout this section, we assume the computational domain Ω ⊂ R2 to be con-
nected with Lipschitz boundary. As in Section 5.1, we concentrate on the two-dimensional
case but comment on the extension to three space dimensions. Let T denote a regular
triangulation and E the set of edges, including the interior edges Eint. A number of stable
discretization schemes in the sense of a discrete inf-sup condition were already discussed
in Section 5.1.3. Here, we focus on two examples for which we illustrate how to find the
required decomposition of Vh which satisfies the properties stated in Section 8.2.
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The general advance is to take a stable discretization scheme Vh, Qh and construct
the subspaces V1h and V2h of Vh. In other words, the task is to find a regular block in the
matrix B which equals the discrete divergence operator. Note that the direct approach
using a QR decomposition is not applicable for large systems, since it does not benefit from
the sparsity of B. Instead of such an algebraic approach, we aim to find suitable subspaces
based on the geometry given by the triangulation T . Since the divergence constraint is
not local (as e.g. a constraint on the boundary) the subspace V2h cannot be read off
directly. Since we exclude divergence-free elements in this discussion, the decomposition
of Vh directly leads to discretizations of nonconforming nature.

As discussed in Section 8.2, we desire a splitting of Vh such that the resulting constraint
matrix B has the block structure B = [B1 B2]. Therein, the square block B2 corresponds
to the subspace V2h and is required to be non-singular. The aim of the following subsections
is to find such a decomposition for specific discretization schemes used in computational
fluid dynamics. This then guarantees the applicability of Lemma 8.3 and thus, the index-
1 property of the resulting DAE. As shown in [AH13] this allows to apply half-explicit
discretization schemes, i.e., to discretize the differential part of the system with an explicit
scheme.

8.4.1. Decomposition for Crouzeix-Raviart Elements. The mixed scheme of Crouzeix
and Raviart introduced in (5.8) of Section 5.1.3 is the most popular scheme of nonconform-
ing type. This low-order scheme turns out to provide an efficient tool in computational
fluid dynamics [BM11]. Recall that the ansatz functions of CR0(T ) are edge-oriented, i.e.,
the degrees of freedom are located on the edges rather than to the nodes of the triangula-
tion. The basis functions in two dimensions are of the form [φE , 0]T and [0, φE ]T where
φE denotes a Crouzeix-Raviart basis function. Since we consider the space P0(T )/R for
the pressure approximation, we choose one triangle, namely T0 ∈ T , where the pressure is
fixed. This compensates the fact that the governing equations only determine the pressure
up to a constant.

We define a mapping ι : T \ {T0} → Eint which will provide a suitable way to find
proper basis functions which then span the space V2h. More precisely, the basis functions
of interest are the functions corresponding to the edges in the range of ι. The definition
of ι is part of the following algorithm, see also the illustration shown in Figure 8.1.

Algorithm 8.8 (Mapping ι [AH13]). Step 1: Choose any T ∈ T \{T0} which shares
an edge with T0 and denote this edge by E := T0 ∩ T ∈ Eint. Then, define ι(T ) := E and
TR := T \ {T0, T}. If TR = ∅, then stop.
Step 2: If T from the previous step has an edge-neighbour in TR, then continue with Step
2a. Otherwise, go to Step 2b.

Step 2a: Select such a neighbouring triangle S ∈ TR and set E := T ∩ S ∈ Eint.
Furthermore, set ι(S) := E and TR := TR \ {S}. If TR = ∅, then stop. Otherwise, return
to Step 2 with T := S.

Step 2b: Reset T ∈ T \ TR such that there exists an edge-neighbour in TR and return to
Step 2.

Remark 8.9. We show that Algorithm 8.8 terminates in a finite number of steps.
Step 2a always reduces the (finite) set of triangles TR by one and Step 2b is realizable,
since TR 6= ∅ and the domain Ω is assumed to be connected with Lipschitz boundary.

Algorithm 8.8 provides besides the mapping ι also an order of the triangles in T . For
this, we number consecutively the triangles by their first appearance in the algorithm and
obtain {Tj}j=1,...,|T |−1.
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Figure 8.1. Illustration of Algorithm 8.8, ι(Ti) = Ei for i = 1, . . . , 5. Step
2b of the algorithm is applied once to reset T := T0.

Consider an edge E ∈ range(ι) ⊂ Eint with corresponding Crouzeix-Raviart basis
function φE . The construction given in Algorithm 8.8 then implies that T = ι−1(E) ⊂
suppφE and thus, φE |T is not constant. As a result, ∇φE |T 6= 0 which means that either
∂xφE |T or ∂yφE |T does not vanish. In other words, the divergence of the ansatz function
[φE , 0]T or [0, φE ]T is constant but nonzero. Let ΦE denote one of these two functions
with div(ΦE |T ) 6= 0. Repeating this procedure for all edges in range(ι), we gain the ansatz
space

V2h := span{ΦE | E ∈ range(ι)}.(8.11)

The span of the remaining basis functions of Vh defines the subspace V1h such that we have
found a decomposition of the discrete space Vh. It remains to show that this decomposition
satisfies the requested properties.

Lemma 8.10 (Decomposition for Crouzeix-Raviart [AH13]). The discretization scheme
Vh, Qh from (5.8) with the decomposition Vh = V1h ⊕ V2h defined in (8.11) yields the re-
quired block structure of B, i.e., B = [B1 B2] with a non-singular matrix B2.

Proof. The matrix B2 ∈ Rm,m corresponds to the discrete space V2h and is defined
by

B2,ij =

∫
Ω
χi div Φj dx =

∫
Ti

div Φj dx.

Therein, {Φj}j=1,...,m denote the basis functions of V2h and {χi}i=1,...,m the basis functions
of Qh, i.e., χi = 1 on the triangle Ti and zero elsewhere. Since div Φi 6= 0 on Ti by
construction, the diagonal entries of B2 are nonzero. Furthermore, every column can only
have two entries because of the support of edge-bubble functions. By the construction of
Algorithm 8.8, the second entry can only be above the diagonal and thus, B2 is upper
triangular and non-singular. �

Lemma 8.10 shows that the regularization performed in Section 6.1 together with the
splitting of Vh given by Algorithm 8.8 yields a stable numerical scheme. The proposed
splitting is used in the numerical example in Section 8.4.4 below.

Remark 8.11 (Condition number). The condition number of the matrix B2 obtained
by Algorithm 8.8 and Lemma 8.10 scales as h−1 where h denotes the mesh size. For a
uniform mesh of the unit square where Algorithm 8.8 runs without reset, i.e., without
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entering step 2b, the matrix B2 has the structure

B2 =


h h

. . .
. . .

. . . h

h

 , B2B
T
2 = h


h 1

1
. . .

. . .

. . .
. . . 1

1 h

 .
The eigenvalues of h−1B2B

T
2 are given by

λj = h+ 2 cos
(
jπh2/2

)
, j = 1, . . . , n = 2h−2 − 1.

Hence, a rough estimate of the condition number yields

condB2 =
λmax

λmin
≈ h+ 2

h
≈ 2

h
.

Note, however, that a degeneration of the mesh may lead to large deviations.

Remark 8.12 (Outflow boundary conditions). For flow problems that have an outflow
with homogeneous Neumann or do nothing boundary conditions, the pressure must not be
fixed on T0. In this case, Algorithm 8.8 defines V2h if one starts with a T0 that shares an
edge E0 with the outflow boundary. Then, the inclusion of χ0 leads to a block B2 ∈ Rm,m−1

that is in Hessenberg form with the last column missing and with nonzero entries on the
subdiagonal. Adding the basis funciton ΦE0 to V2h, for which div(ΦE0 |T0) 6= 0, we add
a column that is zero except from the first row’s entry and that makes B2 square and
invertible.

Remark 8.13 (Extension to three space dimensions). As discussed in Section 5.1, the
finite element spaces Vh and Qh of this subsection have a straightforward analogue in
three space dimensions [CR73]. Also Algorithm 8.8 can easily be adapted by the use of
tetrahedra and faces in place of triangles and edges. Hence, the given results also apply
to three-dimensional simulations.

8.4.2. Decomposition for Bernardi-Raugel Elements. As second example we consider
a mixed scheme of conforming type with a continuous approximation of the velocity. The
discrete spaces Vh, Qh of Bernardi-Raugel were introduced in (5.7) of Section 5.1.1. Recall
that the space Vh is composed by hat-functions and vector-valued edge-bubble functions
of the form ΥE := ϕ1ϕ2νE . For the decomposition of Vh we propose to span V2h by a
number of edge-bubble functions. For this, we make again use of Algorithm 8.8 and the
resulting map ι : T \ {T0} → Eint. We define the subspace

V2h = span{ΥE | E ∈ range(ι)}.(8.12)

The complement V1h is defined as the span of the remaining basis functions of Vh. We
show that this decomposition fulfills the desired properties.

Lemma 8.14 (Decomposition for Bernardi-Raugel [AH13]). The discretization scheme
Vh, Qh from (5.7) with the given decomposition Vh = V1h ⊕ V2h defined in (8.12) yields
the required block structure of B, i.e., B = [B1 B2] with a non-singular matrix B2.

Proof. Note that the structure of B2 is as in Lemma 8.10. Thus, it remains to show
that the integral of div ΥE for ΥE ∈ V2h does not vanish. By definition of ΥE , it holds
that

div ΥE = ∇(ϕ1ϕ2) · νE = ϕ1∇ϕ2 · νE + ϕ2∇ϕ1 · νE .
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Hence, for a triangle T with edge E,∫
T

div ΥE dx = ∇ϕ2 · νE
∫
T
ϕ1 dx+∇ϕ1 · νE

∫
T
ϕ2 dx

=
|T |
3

(
∇ϕ2 +∇ϕ1

)
· νE .

Let [xi, yi]
T , i = 1, 2, denote the coordinates of the nodes corresponding to ϕ1 and ϕ2,

respectively. W.l.o.g, we assume that the third node is located in [0, 0]T . Then, the
outer normal vector for E is, up to a constant, given by νE = [y1 − y2, x2 − x1]T . The
hat-functions are defined by

ϕ1(x, y) =
1

d

(
y2x− x2y

)
, ϕ2(x, y) =

1

d

(
− y1x+ x1y

)
with d = x1y2 − x2y1 6= 0, since the triangle is part of a regular triangulation. Thus, we
obtain (

∇ϕ2 +∇ϕ1

)
· νE = −1

d

(
(x1 − x2)2 + (y1 − y2)2

)
6= 0

and therefore the claim
∫
T div ΥE dx 6= 0. �

Remark 8.15 (Extension to three space dimensions). In Section 5.1 we have discussed
the extension of the Bernardi-Raugel elements to the three-dimensional case [BR85]. As
in Lemma 8.14, one can show that the integral of the divergence of the basis functions
does not vanish on certain tetrahedra. The full-rank property of B2 then follows as in the
two-dimensional case.

8.4.3. Further Elements. In Section 5.1.3 we also mentioned the Taylor-Hood approach
with continuous pressure approximation and higher order velocity fields. At this point we
briefly review the decomposition for this scheme and refer to the details given in Section 3.5
of [AH13].

The decomposition is based on the idea of macro elements, i.e., the triangulation is
grouped into sub-triangulations. Each macro element contains exactly one interior node
with all its adjacent triangles. Then, a special algorithm defines a mapping  : N \{v0} →
Eint, where v0 denotes the node where the pressure is fixed, similar to the triangle T0 in the
previous sections. Edge-bubble functions corresponding to the range of  are chosen to span
the subspace V2h. The particular choice depends on the angles between the underlying
edge and the axis of the coordinate system.

The proposed methods based on a splitting of the discrete velocity space Vh also work
with triangulations T containing quadrilaterals. For this, consider a partition of Ω̄ into
convex quadrilaterals. The here presented schemes of Taylor-Hood type and Bernardi-
Raugel have a direct analogon for such cases, see [GR86, Ch. II.3]. The analogue of
the discontinuous approach of Crouzeix-Raviart was introduced by Rannacher and Turek
[RT92] and is given by

Vh = [Q̃1,0(T )]2, Qh = P0(T )/R.

Therein, Q̃1,0 denotes the nonconforming space of piecewise polynomials of partial degree
1 which are globally continuous. This space has one degree of freedom per interior edge
but is, in contrast to the Crouzeix-Raviart element, not piecewise affine. Nevertheless, the
decomposition of Vh works exactly as in the triangular case with the help of Algorithm 8.8.
Note that this nonconforming scheme was found superior over comparable conforming
elements in terms of stability, accuracy, and efficiency [Tur99, Ch. 3.1.1]. The main reason
for this is the given robustness of the discrete inf-sup constant against mesh deformations.
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For more complicated schemes or discretizations of higher order the search of a good
subspace V2h may be very complex. In this case, one may favor to find a splitting of Vh
in an algebraic manner e.g. by methods discussed in [GOS+10].

8.4.4. Numerical Example. We consider the Navier-Stokes equations for the simulation
of a cylinder wake as illustrated in Figure 8.2. We refer to Section 6.3.1 for the system
equations. As boundary conditions we set no-slip conditions at the walls, a parabola as
the inflow profile at the left boundary, and do-nothing conditions at the outflow at the
right. We consider the flow at Reynolds number Re = 60, calculated with the cylinder
diameter and the peak inflow velocity. We consider the time evolution of the flow in the
time interval [0, 0.2], starting with the steady-state Stokes solution.

0 2.2
0

0.15

0.25

0.41

Figure 8.2. Illustration of the cylinder wake with Reynolds number Re =
60 at time t = 0.2, started at the steady-state Stokes solution.

For the spatial discretization, we use Crouzeix-Raviart elements from Section 5.1.1 on
a nonuniform mesh with about 15000 velocity nodes and 5000 pressure nodes. We employ
Algorithm 8.8 with the modification proposed in Remark 8.12 to compute the splitting
Vh = V1h ⊕ V2h that we need for the index-1 formulation.

To account for the included stiffness in the system equations, we consider an implicit-
explicit Euler scheme for the discretization which treats the linear diffusion implicitly and
the nonlinear convection explicitly. We compute the approximation error for various time
step sizes and for various accuracy levels tol for the iterative solution of the resulting
linear systems. Since there is no analytical solution, we take the result of solving the
spatial discretized Navier-Stokes equations with the implicit trapezoidal rule with direct
solves and with step size τ = 0.2 · 2−11 ≈ 10−4 as the reference solution.

The results of the numerical investigation are illustrated in Figure 8.3. They clearly
show the improvements of the index-1 formulation (right) for the pressure approximation.
However, since for the cylinder wake the velocity is not discretely divergence free, i.e.
due to a non-vanishing right-hand side, the poor pressure approximation directly affects
the velocity approximation. As predicted by the theoretical considerations in [AH13], in
the index-2 formulation, a numerical error in the algebraic constraints leads to a linear
growth in the pressure error with decreasing time step sizes τ . A smaller residual in
the continuity equation only postpones this instability. In the index-1 formulation, this
systematic instability is not observed and we obtain the expected linear convergence with
respect to the time discretization for the velocity and the pressure approximation. A
breakdown due to the algebraic error is only observed for a rough tolerance for the linear
solver.

The code used for the numerical investigations is available from the github account
[Hei15]. The finite element implementation uses FEniCS, Version 1.3.0 [LORW12] and
the linear systems are solved with Krypy [Gau14].

https://github.com/highlando/TayHoodMinExtForFlowEqns
https://github.com/andrenarchy/krypy
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Figure 8.3. The evolution of the errors in the velocity (top) and the pres-
sure (middle) or residuals of the constraint (bottom) of the index-2 (left)
and index-1 (right) formulation for varying time discretization parameter
τ and tol for the cylinder wake. The additional data points for the index-1
case are calculated for the much rougher tolerance tol = 3.9 ·10−3. The ad-
ditional data points in the index-2 plots are the results for exact solutions
of the algebraic equations.
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9. The Method of Lines for Second-order Systems

Similar to the previous section, we show that the regularization presented in Section 7
can be interpreted as an index reduction on operator level. For this, we show that a
spatial discretization of system (7.14) by finite elements leads to a DAE of index 1 rather
than index 3 as for the original system (7.12). Furthermore, an appropriate choice of
the finite element spaces results in the commutativity of semi-discretization and index
reduction. Thus, the suggested reformulation of the operator DAE is eligible for adaptive
simulations, since it allows to modify the triangulation as well as the discrete ansatz spaces.
In contrast to the original formulation, changes of the spatial discretization scheme do not
call for another index reduction step afterwards.

The results of this section are part of [Alt13a].

9.1. Recap and Notation. In this subsection we recall the operator equations which
we want to discretize in space and recapitulate the most important properties of the
applied finite element schemes. The dynamics of elastic media from Section 7.1.3 lead to
the operator DAE (7.12) which has the form

Mü(t) +Du̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗,(9.1a)

Bu(t) = G(t) in Q∗.(9.1b)

The regularization procedure of Section 7.2 then results in the extended system (7.14). As
mentioned in Remark 7.5, we do not change the system if we include the vanishing terms
Bu1 and its derivatives. Since we allow nonconforming discretization schemes for which
the discretization of u1 may not vanish under the action of B, we add these terms here.
Hence, assuming sufficient regularity of u1, we consider the operator DAE

M(ü1 + w2) + D(u̇1 + v2) + K(u1 + u2) + B∗λ = F in V∗,(9.2a)

B(u1 + u2) = G in Q∗,(9.2b)

B(u̇1 + v2) = Ġ in Q∗,(9.2c)

B(ü1 + w2) = G̈ in Q∗.(9.2d)

As before, the finite element method based on a triangulation T is used for the spatial
discretization, see Section 5.1. This then leads to finite-dimensional approximation spaces
of V, its subspaces VB and Vc, as well as of Q. As in the previous section, theses spaces
are denoted by Vh = V1h ⊕ V2h and Qh. Thereby, V1h denotes the approximation space of
V1 := VB and V2h of V2 := Vc. Recall that we do not assume the finite-dimensional spaces
to be subspaces of its continuous analogue. The dimensions are given by

dimVh = n, dimV1h = n−m, dimV2h = dimQh = m.

In the sequel, we always assume that the discretization scheme satisfies a discrete inf-sup
condition, see Section 5.1.3. An example of a stable scheme is given in Lemma 5.4.

The spatial discretization turns the operator DAEs (9.1) and (9.2) into semi-explicit
(nonlinear) DAEs in terms of the coefficient vectors w.r.t. a given basis. Let M ∈ Rn,n
be the resulting mass matrix, D : Rn → Rn the discrete damping function, K ∈ Rn,n the
stiffness matrix, and B ∈ Rm,n the constraint matrix, cf. Section 5.1.2. Since the density
ρ is assumed to be positive and the discretization scheme is stable, M is positive definite
and B is of full rank. The discretized right-hand sides are denoted by f , g, ġ, and g̈.
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9.2. Determination of the Index. First, we analyse the index of the DAE coming
from the spatial discretization of system (9.1). Let q = [qi] ∈ Rn denote the coefficient
vector of the finite element approximation of u and µ = [µi] ∈ Rm the corresponding
vector for λ. Then, the semi-discrete problem can be written in the form

Mq̈(t) + D(q̇(t)) + Kq(t) + BTµ(t) = f(t),(9.3a)

Bq(t) = g(t).(9.3b)

In addition, the initial conditions for u and u̇ provide initial conditions for q and q̇.
Regardless of the damping and stiffness terms, this DAE is of index 3. Note that the
DAE has the typical structure of a constrained multibody system because of the positive
definiteness of M and the full rank property of B, cf. Lemma 2.3.

The index-3 property can also be seen by a double differentiation of the algebraic
constraint, namely Bq̈ = g̈. Replacing the algebraic constraint by this derivative, we can
write the DAE in the form[

M BT

B 0

][
q̈

µ

]
=

[
f −D(q̇)−Kq

g̈

]
.

The properties of M and B then imply that the matrix on the left-hand side is invertible.
Thus, the system decouples in an algebraic equation for µ and an ODE in q. One additional
differentiation then provides an ODE for q and µ. Thus, the DAE is of index 3 according
to Section 2.

Second, we analyse the DAE resulting from a spatial discretization of system (9.2).
At this point we need the finite-dimensional approximations V1h and V2h of the spaces VB
and Vc, respectively.

Example 9.1. Consider the stable scheme from Section 5.1.3, i.e., Vh contains the
hat functions and edge-bubble functions at the boundary and Qh is given by piecewise
constant functions along the boundary,

Vh = [S1,0(T )]2 ⊕ [BΓ(T )]2, Qh = [P0(T )|Γ]2.

Then, one possible splitting of Vh is given by V1h := [S1,0(T )]2 and V2h := [BΓ(T )]2.
Since the space BΓ(T ) contains one edge-bubble function per boundary edge, we have
dimV2h = dimQh. We emphasize that neither V1h is a subspace of VB nor V2h is a
subspace of Vc. Thus, we obtain a nonconforming finite element scheme although Vh ⊂ V.

As already mentioned in the previous section, the discretizations of the subspaces
VB and Vc are often of nonconforming type. This may seem contradictory at first but
provides numerical benefits as we reduce the index of the DAE and thus, avoid singularities.
Furthermore, the splitting appears naturally in the sense that uh ∈ Vh is equivalent to the
existence of u1,h ∈ V1h and u2,h ∈ V2h with uh = u1,h + u2,h.

In Section 9.3 we show that this splitting (of the deformation variable) corresponds to
the needed splitting in the minimal extension procedure. Although we do not assume that
V2h ⊂ Vc, we still need that V2h approximates Vc sufficiently well. To be precise, we assume
that the matrix B has the corresponding block structure B = [B1 B2] with an invertible
matrix B2 ∈ Rm,m. This property is crucial to guarantee that the semi-discretization leads
to a DAE of index 1.

Given appropriate basis functions, we represent the discrete approximations of u1, u2,
v2, w2, and λ by the corresponding coefficient vectors q1 ∈ Rn−m, q2, p2, r2 ∈ Rm, and
µ ∈ Rm, respectively. Then, the discrete variational formulation is equivalent to the DAE
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M

[
q̈1

r2

]
+D

([
q̇1

p2

])
+K

[
q1

q2

]
+BTµ = f,(9.4a)

B

[
q1

q2

]
= g,(9.4b)

B

[
q̇1

p2

]
= ġ,(9.4c)

B

[
q̈1

r2

]
= g̈.(9.4d)

We postpone the proof that the DAE (9.4) has index 1 to the following subsection. Therein,
we show that this DAE equals the system one obtains by the application of minimal
extension to the DAE (9.3) which is known to be of index 1. This then justifies the
regularization presented in Section 7 as well as calling this procedure an index reduction
on operator level.

9.3. Commutativity. We apply the index reduction method of minimal extension
from Section 2.3.2 to the DAE (9.3). The aim of this subsection is to show that this leads
to the DAE (9.4) which we have obtained from the spatial discretization of the regularized
operator DAE. This then shows that regularization (respectively index reduction) and
spatial discretization commute if we use assortative finite elements schemes.

Following the procedure of Section 2.3.2, we need to find a transformation of variables
in order to find a regular block of the constraint matrix B. This choice is not unique but
with regard to the previous subsection there is a canonical selection. If we assume that
the basis functions of Vh are sorted such that the first n−m functions form a basis of V1h

and the last m a basis of V2h, then the last m columns of B are linearly independent.
Thus, the partition of variables is simply given by qT = [qT1 qT2 ] with q1 ∈ Rn−m and

q2 ∈ Rm. Next, we add the two hidden constraints corresponding to equation (9.3b), i.e.,

Bq̇ = ġ, Bq̈ = g̈

and introduce the dummy variables p2 := q̇2 and r2 := q̈2. Replacing all appearances of
q̇2 and q̈2, we finally arrive at system (9.4). Thus, the DAE is of index 1, cf. [KM06,
Th. 6.12]. Clearly, the index reduction of the index-3 DAE and the semi-discretization of
the regularized operator DAE only coincide if the underlying bases are equal. This then
shows that the order of semi-discretization and index reduction are permutable as shown
in the commutative diagram in Figure 9.1.

The commutativity of semi-discretization and regularization provides benefits for the
adaptive simulation in the field of elastodynamics or any other physical problem for which
the regularization of Part B is applicable. In a conventional simulation with the method of
lines one would first discretize the operator DAE (9.1) in space which leads to the index-3
DAE (9.3). In order to obtain reasonable results, an index reduction (e.g. by minimal
extension) would be advisable before starting the time integration. Then, every time some
error estimator calls on refining the triangulation for the spatial discretization, the index
reduction has to be repeated. In contrast, using the regularized operator equation (9.2),
we obtain an index-1 DAE for any (suitable) spatial discretization. Thus, the change of
the triangulation during the simulation does not call for additional regularization steps.
Clearly, these lines also apply for the systems of first order analysed in Section 8.
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operator DAE (9.1)
(index-3 type)

operator DAE (9.2)
(index-1 type)

index-3 DAE (9.3) index-1 DAE (9.4)

regularization

from Section 7

index reduction by

minimal extension [KM04]

semi-discretization
by finite elements

(nonconforming)
semi-discretization
by finite elements

Figure 9.1. Commutative diagram showing the reversibility of semi-
discretization and index reduction.

The gained potential for adaptivity is of special interest for the simulation of multi-
physics systems arising from modern automatic modelling tools. Therein, one module of
the big network could be an elasticity model as discussed in this section.





Part

D

The Rothe Method

This part deals with the application of the Rothe method to the regularized operator
DAEs from Part B, i.e., we discretize the operator equations in time. We restrict ourselves
to first-order time integration schemes. Note that high-order schemes may not pay off when
the spatial error dominates. In particular, this is the case in the dynamics of elastic media
[LS09].

We emphasize that the method of lines and the Rothe method are equivalent for linear
problems when corresponding discretizations are used. Nevertheless, the inversion of the
order of time and space discretization simplifies the insertion of adaptive strategies in space
[SB98, CDD+14]. Discretizing in time first, we obtain in each time step a stationary
PDE which allows to use adaptive procedures. In particular, the underlying triangulation
may be changed easily from time step to time step. Clearly, this includes new challenges
such as mesh interpolations which is not topic of this thesis.

The application of the Rothe method for abstract ODEs is discussed is several papers.
In this thesis, we mostly rely on the works [Emm01, EM13] for first-order systems as
well as [ET10a, Rou05] for the applications of second order. The papers [LO93, LO95]
discuss the application of Runge-Kutta methods to parabolic equations. However, these
works mainly work in the framework of semigroups and not in the here presented setting
with Gelfand triples. This then leads - due to the stronger regularity assumptions - to
stronger results than presented here.

In this part, we mainly focus on the convergence of time discretization schemes ap-
plied to the regularized operator DAEs of Part B. For this, the general strategy is to
construct bounded sequences which approximate the solution of the operator DAE and
then use compactness results in the underlying Bochner spaces. Recall the two results
from Section 3.1.6 for a reflexive and separable Banach space V:

(a) If (un) is a bounded sequence in Lp(0, T ;V) and 1 < p <∞, then there exists an
element u ∈ Lp(0, T ;V) and a subsequence which satisfies un′ ⇀ u in Lp(0, T ;V).
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(b) If (un) is a bounded sequence in L∞(0, T ;V), then there exists an element u ∈
L∞(0, T ;V) and a subsequence which satisfies un′

∗−⇀ u in L∞(0, T ;V).

The second step of the Rothe method, the spatial discrization, is then included as a
perturbation of the right-hand side. For this, we analyse the influence of perturbations
for first- as well as for second-order systems.

We emphasize the fact that even the convergence of the Euler scheme without any
spatial error is of practical importance. This then corresponds to the limit case as the
mesh parameter h tends to zero. Results on the convergence then show the consistency of
the discretization scheme to the infinite-dimensional setting and develop a better under-
standing of the scheme.

We maintain the organization of the previous two parts and start with the analysis of
first-order systems before we consider the case of elastodynamics. In Section 10 we apply
the Euler discretization in time whose convergence we then prove. For this, we concentrate
on the linear case and show which techniques from the analysis of operator ODEs can be
preserved. Here we use the regularization of Part B and the splitting of the variable u.
Because of the semi-explicit structure of the equations, this splitting then leads to the
expected results for u. However, the analysis will also show qualitative differences in the
variable u and the Lagrange multiplier λ. Finally, we consider the example of a two-phase
flow from Section 6.3.3 which includes a nonlinear constraint operator.

The section on second-order operator DAEs is again specialized to applications in
elastodynamics. Thus, Section 11 is based on the (regularized) equations from Section 7.
We then analyse the convergence of the time integration scheme from Section 5.2.2.

10. Convergence for First-order Systems

This section is devoted to the convergence analysis of the implicit Euler method applied
to the first-order operator DAEs discussed in Section 6. The temporal discretization then
leads to a stationary PDE which has to be solved in every time step. In order to obtain
convergence results for the Rothe method, we then include spatial errors as perturbations
to the system.

In Sections 10.1-10.4 we focus on the purely linear case, i.e., with a linear constraint
operator B as well as a linear operator K. For this case, we show the convergence of the
Euler scheme and comment on the influence of perturbations in the right-hand sides. This
then shows the advantage of the regularization performed in Part B. Finally, we comment
in Section 10.5 on the nonlinear case by means of the two-phase flow example.

10.1. Setting. Before we apply the temporal discretization to the operator DAE, we
recall the system equations and summarize the assumptions on the operators used in this
section. We restrict the analysis to the linear case with p = q = 2, i.e., we consider linear
operators K and B. Furthermore, we assume these operators to be independent of time.
The time-dependence could be included if the assumptions below hold uniformly in time.
We consider these restrictions in order to focus on the differential-algebraic structure
within the convergence proof. The inclusion of nonlinear operators is then subject of
Section 10.5 as well as Section 11 for second-order systems.

The original linear operator DAE (6.1) from Section 6 has the form

u̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗,(10.1a)

Bu(t) = G(t) in Q∗(10.1b)
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with a consistent initial condition u(0) = g ∈ H and an underlying Gelfand triple V, H,
V∗. As in Part B, VB denotes the kernel of the constraint operator B and Vc a complement
in V on which B is invertible.

If the right-hand side of the constraint vanishes, i.e., G = 0, then the operator DAE
(10.1) reduces to an operator ODE on the kernel of the constraint operator B, i.e., on
the space VB. A typical example are the (Navier)-Stokes equations as already discussed
in Section 6.3. In this case, standard methods for the convergence of time discretization
schemes of operator ODEs can be applied as e.g. in [Emm01].

The regularized formulation presented in Section 6 allows to perform the convergence
analysis similarly also in the non-homogeneous case. Recall that the regularized system
(6.4) is given by

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

)
+ B∗λ(t) = F(t) in V∗,(10.2a)

Bu2(t) = G(t) in Q∗,(10.2b)

Bv2(t) = Ġ(t) in Q∗(10.2c)

with initial condition u1(0) = g0 ∈ VB
H

. The desired solution of system (10.2) should
satisfy u1 ∈W 1;2,2(0, T ;VB,V∗), u2, v2 ∈ L2(0, T ;Vc), and λ ∈ L2(0, T ;Q).

We retain the notion from Section 6 and use the following abbreviations for the inner
product in H and the norms in H and V, namely

(u, v) := (u, v)H, |u| := ‖u‖H, ‖u‖ := ‖u‖V .

The constant of the continuous embedding V ↪→ H, which is implied by the Gelfand
structure, is given by Cemb, i.e, | · | ≤ Cemb‖ · ‖. The setting with the Gelfand triple implies
for the kernel VB that

VB ⊂ V ⊂ H = H∗ ⊂ V∗ ⊂ V∗B := (VB)∗.

Recall that the polar set Vo
B ⊂ V∗, see its definition in (7.9), should be distinguished from

the dual space V∗B.
For the right-hand sides we assume F ∈ L2(0, T ;V∗) and G ∈ H1(0, T ;Q∗) as discussed

in Section 6. As mentioned before, we consider the case with a linear and symmetric
operator K : V → V∗ which is assumed to be positive on VB and continuous, i.e., there
exist positive constants k1, k2 ∈ R such that for all u ∈ VB and v, w ∈ V it holds that

k1‖u‖2 ≤ 〈Ku, u〉, 〈Kv, w〉 ≤ k2‖v‖‖w‖.

Remark 10.1. The given assumptions on the operator K already imply that VB is
a Hilbert space. In many applications, (·, ·) + 〈K·, ·〉 defines an inner product in V. In
this case, we may assume that the splitting V = VB ⊕ Vc is orthogonal w.r.t. this inner
product. This then allows to prove stronger convergence results for more regular data, cf.
Theorem 10.10.

The operator B is assumed to be independent of time and to satisfy Assumption 6.2,
i.e., B is linear, continuous, and there exists a continuous right-inverse B− : Q∗ → Vc with
continuity constant CB− := ‖B−‖. Recall that this also implies that B satisfies an inf-sup
condition with a constant βinf > 0 according to [Bra07, Lem. III.4.2].

In the following subsection, we apply the Euler scheme to system (10.2). The analysis is
then separately performed for the variable in the kernel of B (namely u1) and the remaining
variables u2, v2, and λ. Note that the latter variables correspond to the algebraic variables
in the finite-dimensional DAE case.
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10.2. Temporal Discretization. We denote the discrete approximation of u1, u2,

v2, and λ at time tj = jτ by uj1, uj2, vj2, and λj , respectively. Hence, we consider the
partition 0 = t0 < t1 < · · · < tn = T of the interval [0, T ] with equidistant time step size
τ . For the application of the implicit Euler scheme to system (10.2) we have to replace

the temporal derivative u̇1 by the discrete derivative Duj1 := (uj1 − u
j−1
1 )/τ . This then

leads to the semi-discrete equations which have to be solved for all time steps, i.e., for
j = 1, . . . , n.

We consider first the discretization of the constraints (10.2b) and (10.2c). Therein, we

have to find uj2 ∈ Vc and vj2 ∈ Vc such that for all test functions q ∈ Q it holds that

〈Buj2, q〉 = 〈Gj , q〉, 〈Bvj2, q〉 = 〈Ġj , q〉.(10.3)

Since there exists a right-inverse of the operator B on Vc, we may also write uj2 = B−Gj

and vj2 = B−Ġj . Recall that Ġj cannot be the function evaluation of Ġ at time tj , since
this is not well-defined. Instead, we use integral means over a time interval as introduced
in Section 5.3.2.

Second, we consider the discretization of equation (10.2a). If this equation is only
tested with functions in the kernel VB, then we obtain the following problem: Given

uj−1
1 ∈ H, search for uj1 ∈ VB such that for all v ∈ VB it holds that

(Duj1, v) + 〈Kuj1, v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉.(10.4)

Note that F is not continuous such that F j again cannot equal a function evaluation at
time tj . The piecewise constant approximations of F , G, and Ġ are denoted by Fτ , Gτ , and

Ġτ , respectively. The precise definition is given in (5.12). We emphasize once more that

Ġτ does not denote the derivative of Gτ . In the sequel we assume these approximations to
satisfy

Fτ → F in L2(0, T ;V∗), Gτ → G, Ġτ → Ġ in L2(0, T ;Q∗).
Furthermore, we assume Fτ , Gτ , and Ġτ to be continuous in t = 0. In order to obtain

equation (10.4), we have applied the explicit formulae for uj2 and vj2 given by (10.3).
Finally, the equation for the discrete Lagrange multiplier is given by the discretization of
(10.2a) with test functions in the complement space Vc. The task is then to find λj ∈ Q
such that for all v ∈ Vc we have

〈B∗λj , v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − (Duj1, v)− 〈Kuj1, v〉.(10.5)

Before we use the discrete approximations to construct global approximations in L2(0, T ;V)
and L2(0, T ;Q), we need to discuss the solvability of the equations (10.4) and (10.5). After-
wards, we have to find a priori bounds of the approximations in order to extract converging
subsequences. The final task is then to show that the resulting limits are (in some sense)
solutions of the operator DAE (10.2).

10.2.1. Existence of Solutions. We have already discussed the solvability of the equa-
tions in (10.3) due to the existence of a right-inverse of the operator B. Next, we comment

on the solvability of (10.4) to ensure the existence of the sequence uj1. With the bilinear
form c : V × V → R, given by

c(u, v) :=
1

τ
(u, v) + 〈Ku, v〉,

and the functional F ∈ V∗,

〈F, v〉 := 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉+
1

τ
(uj−1

1 , v),
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equation (10.4) can be written as c(uj1, v) = F (v) for all v ∈ VB. The unique solvability of
(10.4) then follows by the Lax-Milgram lemma [Eva98, Sect. 6.2.1]. The needed properties
of the bilinear form c such as the coercivity on VB follow directly from the assumptions
on K.

It remains to show that equation (10.5) obtains a unique solution λj . Obviously, the
right-hand side defines a functional in V∗. Equation (10.4) even implies that the right-
hand side vanishes for all functions in VB. Thus, the functional is an element of the polar
set Vo

B on which the operator B∗ is invertible [Bra07, Ch. III, Lem. 4.2].

10.2.2. A Priori Estimates. This subsection provides stability or a priori bounds of the

discrete approximations defined above. Since the equation for uj1 comes essentially from
an operator ODE, the given proofs follow the lines of the stability results in [Emm01,
Ch. 4], see also [Tem77, Ch. III.4]. Amongst others, we will make use of the equality

2(Duj , uj) = D|uj |2 + τ |Duj |2.(10.6)

This identity of the discrete derivative follows by a simple calculation and can also be
found in [Emm01, Lem. 3.2.2].

Recall that u0
1 is given and represents the approximation of u1 at time t = 0, i.e., the

initial data g0. However, we do not assume that u0
1 and g0 coincide at this point. In order

to obtain a prioi estimates of the approximation of the differential variable, namely uj1,

we test equation (10.4) by uj1 ∈ VB. Since the Lagrange multiplier is not present in this
equation, we can maintain most of the techniques used for operator ODEs. This then
leads to the following result.

Lemma 10.2 (Stability I). Assume F ∈ L2(0, T ;V∗B) and G ∈ H1(0, T ;Q∗). Then,

the approximations uj1 ∈ VB given by the Euler scheme (10.4) with u0
1 ∈ H satisfy for all

1 ≤ k ≤ n the estimate

|uk1|2 + τ2
k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2 ≤M2(10.7)

with constant M2 := |u0
1|2 + 3

(
‖F‖2L2(0,T ;V∗B) + C2

B−(C4
emb + k2

2)‖G‖2H1(0,T ;Q∗)
)
/k1.

Proof. Using as test function v = uj1 ∈ VB, j ≥ 1, in the Euler scheme (10.4), we
obtain

(Duj1, u
j
1) + 〈Kuj1, u

j
1〉 = 〈F j , uj1〉 − (B−Ġj , uj1)− 〈KB−Gj , uj1〉.(10.8)

Summation over j = 1, . . . , k, together with property (10.6), the Cauchy-Schwarz inequal-
ity, and the continuous embedding V ↪→ H yield

|uk1|2 − |u0
1|2 + τ2

k∑
j=1

|Duj1|
2 + 2τk1

k∑
j=1

‖uj1‖
2

(10.6)

≤ 2τ
k∑
j=1

(Duj1, u
j
1) + 2τ

k∑
j=1

〈Kuj1, u
j
1〉

(10.8)

≤ 2τ
k∑
j=1

(
‖F j‖V∗B + Cemb|B−Ġj |+ k2‖B−Gj‖

)
‖uj1‖.
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By Young’s inequality, the last line is bounded from above by

3τ

k1

k∑
j=1

(
‖F j‖2V∗B + C2

emb|B−Ġj |2 + k2
2‖B−Gj‖2

)
+ τk1

k∑
j=1

‖uj1‖
2.

Thus, by the boundedness of the right-inverse of B, we obtain

|uk1|2 − |u0
1|2 + τ2

k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2

≤ 3τ

k1

k∑
j=1

(
‖F j‖2V∗B + C2

B−C4
emb‖Ġj‖2Q∗ + C2

B−k2
2‖Gj‖2Q∗

)
.

Finally, property (5.13) for the right-hand sides implies that

|uk1|2−|u0
1|2 + τ2

k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2

≤ 3

k1
‖F‖2L2(0,T ;V∗B) +

3

k1
C2

B−C4
emb‖Ġ‖2L2(0,T ;Q∗) +

3

k1
C2

B−k2
2‖G‖2L2(0,T ;Q∗). �

For the discrete derivative of uj1, namely Duj1, we obtain the following bound.

Lemma 10.3 (Stability II). Consider the same assumptions as in Lemma 10.2. Then,

there exists a positive constant c such that the approximations uj1 given by (10.4) satisfy

τ

n∑
j=1

‖Duj1‖
2
V∗B
≤ cM2.(10.9)

Proof. From equation (10.4) we obtain for j ≥ 1,

‖Duj1‖V∗B := sup
v∈VB, ‖v‖=1

∣∣〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − 〈Kuj1, v〉
∣∣

≤ ‖F j‖V∗B + CB−C2
emb‖Ġj‖Q∗ + k2CB−‖Gj‖Q∗ + k2‖uj1‖.

Thus, with Young’s inequality and Lemma 10.2, the summation over j yields

τ

n∑
j=1

‖Duj1‖
2
V∗B
≤ 4‖F‖2L2(0,T ;V∗B) + 4C2

B−(C4
emb + k2

2)‖G‖2H1(0,T ;Q∗) + 4τk2
2

n∑
j=1

‖uj1‖
2

(10.7)

≤ 4k1

3
M2 +

4k2
2

k1
M2. �

Remark 10.4. Assume that (·, ·) + 〈K·, ·〉 defines an inner product in V with which
the decomposition V = VB ⊕ Vc is orthogonal. If we assume more regularity of the given
data in the form of F ∈ L2(0, T ;H∗) and u0

1 ∈ VB, then we even obtain the estimate

τ
n∑
j=1

|Duj1|
2 ≤M2

reg

(
‖u0

1‖, ‖F‖L2(0,T ;H∗)
)
.

This estimate can be obtained by testing equation (10.4) by Duj1 ∈ VB. Note that this
equals the result in Lemma 10.3 but in a stronger norm. We will see in the sequel that
this difference is crucial in view of the Lagrange multiplier.
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10.3. Global Approximations and Convergence. The stability estimates of the
previous subsection are the basis for the proof of convergence of the Euler scheme. With
this, we can prove that the global approximations of u1, u2, v2, and λ, which we define
within this subsection, are uniformly bounded.

10.3.1. Definition of U1,τ , U2,τ , and V2,τ . With the discrete approximations given by
the Euler scheme (10.3)-(10.5) we define piecewise constant and piecewise linear functions

on the interval [0, T ]. Given uj1, j = 1, . . . , n, we define U1,τ , Û1,τ : [0, T ]→ VB by

U1,τ (t) :=

{
u0

1 if t = 0,

uj1 if t ∈]tj−1, tj ]
, Û1,τ (t) :=

{
u0

1 if t = 0,

uj1 + (t− tj)Duj1 if t ∈]tj−1, tj ]
.(10.10)

One aim of this section is to show that the sequences U1,τ and Û1,τ converge to the solution
of the operator equation (10.2) as τ → 0. For this, we have to show the uniform bound-
edness of the sequences in order to obtain a converging subsequence, see also [Emm01,
Ch. 4].

Lemma 10.5 (Boundedness of U1,τ and Û1,τ ). Assume F ∈ L2(0, T ;V∗B), G ∈ H1(0, T ;Q∗),
and u0

1 ∈ VB. Then, the sequences U1,τ and Û1,τ are uniformly bounded in L∞(0, T ;H)

and L2(0, T ;VB). Furthermore, the sequence of derivatives
˙̂
U1,τ is bounded in L2(0, T ;V∗B).

Proof. The boundedness in L∞(0, T ;H) and L2(0, T ;VB) follows directly from (10.7)
together with u0

1 ∈ VB. The details can be found in [Emm01, Lem. 4.2.1]. The bounded-

ness of
˙̂
U1,τ follows from the second stability estimate (10.9), namely,∥∥ ˙̂

U1,τ

∥∥2

L2(0,T ;V∗B)
=

n∑
j=1

∫ tj

tj−1

‖Duj1‖
2
V∗B

dt = τ

n∑
j=1

‖Duj1‖
2
V∗B
≤ cM2. �

With the shown boundedness of U1,τ and Û1,τ in Lemma 10.5, by Theorem 3.31 we
obtain that there exist weakly convergent subsequences in L2(0, T ;VB). Furthermore, the
estimate (10.7) implies that∥∥U1,τ − Û1,τ

∥∥2

L2(0,T ;H)
≤ τ

n∑
j=1

∣∣uj1 − uj−1
1

∣∣2 ≤ τM2 → 0.

Thus, the limits coincide in L2(0, T ;H) and the continuous embedding V ↪→ H implies
that the same is true for the limit in L2(0, T ;VB). We denote the joined limit of U1,τ and

Û1,τ by U1, i.e., U1,τ , Û1,τ ⇀ U1 in L2(0, T ;VB). Note that the result is true for the entire
sequence, since the considered linear operator DAE has a unique solution.

Next, we consider the approximations of u2 and v2. For this, similar as before, we
define the piecewise constant functions

U2,τ (t) := uj2 if t ∈]tj−1, tj ], V2,τ (t) := vj2 if t ∈]tj−1, tj ](10.11)

with a continuous extension in t = 0. Note that this definition implies that U2,τ = B−Gτ
and V2,τ = B−Ġτ . Thus, with the help of Lemma 5.9, we obtain that

U2,τ → U2 := B−G, V2,τ → V2 := B−Ġ in L2(0, T ;Vc).

The embedding H1(0, T ;Q∗) ↪→ C([0, T ];Q∗) implies additionally that U2 satisfies the
consistency condition U2(0) = B−G(0). In the case of sufficiently regular data, for which

Ġ(0) is well-defined in Q∗, we also obtain the consistency condition corresponding to the

hidden constraint, i.e., V2(0) = B−Ġ(0).
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10.3.2. Definition of Λτ . As global approximation of the Lagrange multiplier we define
Λτ : ]0, T ]→ Q by

Λτ (t) := λj if t ∈]tj−1, tj ].(10.12)

Therein, λj denote the discrete approximations of the Lagrange multiplier from equa-
tion (10.5). The desired boundedness of Λτ in L2(0, T ;Q) requires a uniform upper bound
of

‖Λτ‖2L2(0,T ;Q) =

∫ T

0
‖Λτ (t)‖2Q dt = τ

n∑
j=1

‖λj‖2Q.

With the inf-sup condition of the operator B, by equation (10.5), we can estimate

βinf‖λj‖Q ≤ sup
v∈V

〈B∗λj , v〉
‖v‖V

≤ ‖F j‖V∗ + Cemb|B−Ġj |+ k2‖B−Gj‖+ ‖Duj1‖V∗ + k2‖uj1‖.

Thus, we can only show the boundedness of Λτ if we find an estimate of τ
∑n

j=1 ‖Du
j
1‖2V∗ .

This, however, is problematic since the Lemmata 10.2 and 10.3 only provide estimates of

τ2
∑n

j=1 |Du
j
1|2 and τ

∑n
j=1 ‖Du

j
1‖2V∗B . As a consequence, we are not be able to show the

convergence of Λτ to the solution of the operator DAE (10.2).

Remark 10.6. The lack of convergence of the Lagrange multiplier is a regularity
problem. In the finite-dimensional setting, this difficulty does not occur, since all norms
are equivalent. In addition, the application of B requires a certain regularity whereas in
the discrete setting the discrete analogon of B equals a matrix whose application is always
possible. Note that the additional regularity assumptions in Remark 10.4 would suffice to
prove the boundedness of the sequence of Lagrange multipliers and thus, the existence of
a weak limit Λ ∈ L2(0, T ;Q).

One possible way out, without assuming more regular right-hand sides, is to consider
solutions of (10.2) in the weak distributional sense, see Section 4.3. We follow [EM13]

and show the convergence (of the primitive) to the tuple (u1, u2, v2, λ̃) which solves the

operator DAE in a weaker sense. For this, we define the primitive Λ̃τ ∈ AC([0, T ];Q) by

Λ̃τ (t) :=

∫ t

0
Λτ (s) ds.(10.13)

The formulation of (10.5) with the primitive has the advantage that the problematic term

including Duj1 drops out. First, we consider an equivalent form of equation (10.5) in terms
of U1,τ , U2,τ , V2,τ , and Λτ , namely

〈B∗Λτ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉 − (
˙̂
U1,τ , v)− 〈KU1,τ , v〉(10.14)

for a.e. point in time. Integrating this equation over [0, t], we obtain the equation for the
primitive of the Lagrange multiplier,

〈B∗Λ̃τ , v〉 = 〈F̃τ , v〉 − (B− ˜̇Gτ , v)− 〈KB−G̃τ , v〉 − (Û1,τ , v)− 〈KŨ1,τ , v〉+ c(v).(10.15)

Therein, F̃τ , G̃τ , ˜̇Gτ , and Ũ1,τ denote the primitives of Fτ , Gτ , Ġτ , and U1,τ , respectively.
Furthermore, the term c(v), which occurs because of the integration step, is constant in
time and equals c(v) = (u0

1, v). In contrast to the Lagrange multiplier Λτ , we can prove

an a priori bound of the primitive Λ̃τ independent of the step size τ .

Lemma 10.7 (Boundedness of Λ̃τ ). Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗), and

u0
1 ∈ VB. Then, the sequence Λ̃τ is bounded in C([0, T ];Q).
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Proof. We make use of the inf-sup condition of the operator B and, by equation
(10.15), we obtain the estimate

βinf‖Λ̃τ‖C([0,T ];Q) = βinf max
t∈[0,T ]

‖Λ̃τ (t)‖Q

≤ max
t∈[0,T ]

sup
v∈V

〈B∗Λ̃τ (t), v〉
‖v‖

(10.15)

≤ max
t∈[0,T ]

[
‖F̃τ (t)‖V∗ + Cemb|B− ˜̇Gτ (t)|+ k2‖B−G̃τ (t)‖

+ Cemb|Û1,τ (t)|+ k2‖Ũ1,τ (t)‖+ Cemb|u0
1|
]
.

The properties of the Bochner integral from Section 3.2 and the Cauchy-Schwarz inequality
yield, together with Lemma 10.2, the estimates

max
t∈[0,T ]

‖F̃τ (t)‖V∗ ≤
∫ T

0
‖Fτ (t)‖V∗ dt

(5.13)

≤ T 1/2‖F‖L2(0,T ;V∗),

max
t∈[0,T ]

|B− ˜̇Gτ (t)| ≤ CembCB− max
t∈[0,T ]

‖ ˜̇Gτ (t)‖Q∗
(5.13)

≤ CembCB−T 1/2‖Ġ‖L2(0,T ;Q∗),

max
t∈[0,T ]

‖B−G̃τ (t)‖V ≤ CB−

∫ T

0
‖Gτ (t)‖Q∗ dt

(5.13)

≤ CB−T 1/2‖G‖L2(0,T ;Q∗),

max
t∈[0,T ]

|Û1,τ (t)| ≤ max
j
|uj1|

(10.7)

≤ M,

max
t∈[0,T ]

‖Ũ1,τ (t)‖ ≤
∫ T

0
‖U1,τ (t)‖ dt ≤ τn1/2

( n∑
j=1

‖uj1‖
2
)1/2 (10.7)

≤ T 1/2k
−1/2
1 M.

Thus, ‖Λ̃τ‖C([0,T ];Q) is uniformly bounded in terms of T , the initial data, and the right-
hand sides. �

A direct consequence of Lemma 10.7 is the existence of a weak limit Λ̃ of a subsequence
of Λ̃τ , i.e.,

Λ̃τ ⇀ Λ̃ in Lp(0, T ;Q)

for all 1 < p < ∞. In the following subsection we analyse in which sense the obtained
limits U1, U2, V2, and Λ̃ solve the operator DAE (10.2).

10.3.3. Convergence Results. In the subsections above we have only assumed u0
1 to be

bounded. In order to show that the obtained limits solve the operator DAE (10.2), we
assume in the sequel that u0

1 = g0 ∈ VB. Note that this assumption could be weakened

to u0
1 → g0 in VB as τ → 0. Since Gτ → G and Ġτ → Ġ in L2(0, T ;Q∗) as shown in

Section 5.3.2, we know that the limits U2 and V2 solve equations (10.2b) and (10.2c). The
following result is devoted to the behavior of the limit U1.

Theorem 10.8. Assume F ∈ L2(0, T ;V∗B), G ∈ H1(0, T ;Q∗), and u0
1 = g0 ∈ VB.

Then, the weak limit U1 ∈ L2(0, T ;VB) of the sequence U1,τ solves equation (10.2a) in V∗B,
i.e., for test functions in VB. Furthermore, U1 has a generalized derivative which satisfies
U̇1 ∈ L2(0, T ;V∗B).

Proof. As in [Emm01, Ch. 4], we consider equation (10.4) in terms of the global
approximations, for which we know the existence of (weak) limits. Thus, for test functions
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v ∈ VB, we consider the equation

d

dt
(Û1,τ , v) + 〈KU1,τ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉.

In order to show that U1 solves the operator DAE, we advance to the limit τ → 0. For
this, we consider the integral formulation with Φ ∈ C∞0 (0, T ) and integrate by parts,∫ T

0
−
(
Û1,τ , v

)
Φ̇(t) +

〈
KU1,τ , v

〉
Φ(t) dt

=

∫ T

0

〈
Fτ , v

〉
Φ(t)−

(
B−Ġτ , v

)
Φ(t)−

〈
KB−Gτ , v

〉
Φ(t) dt.

With the limit functions U2 and V2 from Section 10.3.1 and the convergence of Fτ shown
in Section 5.3.2, the right-hand side converges for τ → 0 to∫ T

0

〈
Fτ , v

〉
Φ(t)−

(
B−Ġτ , v

)
Φ(t)−

〈
KB−Gτ , v

〉
Φ(t) dt

−→
∫ T

0

〈
F , v

〉
Φ(t)−

(
V2, v

)
Φ(t)−

〈
KU2, v

〉
Φ(t) dt.

Furthermore, the weak convergence of U1,τ and Û1,τ in L2(0, T ;VB) is sufficient to obtain∫ T

0
−
(
Û1,τ , v

)
Φ̇ +

〈
KU1,τ , v

〉
Φ dt −→

∫ T

0
−
(
U1, v

)
Φ̇ +

〈
KU1, v

〉
Φ dt.

As a result, the obtained limit U1 ∈ L2(0, T ;VB) satisfies

d

dt
(U1, v) + (U2, v) + 〈K(U1 + U2), v〉 = 〈F , v〉(10.16)

for all v ∈ VB. Next, we show that U1 has a generalized derivative. From the definition

of Û1,τ in (10.10) we know that its time derivative equals Duj1 for t ∈]tj−1, tj [. Further,

recall that d
dt Û1,τ is bounded in L2(0, T ;V∗B) due to Lemma 10.5. Thus, there exists a

subsequence which weakly converges to a limit V1 ∈ L2(0, T ;V∗B). For every Φ ∈ C∞0 (0, T )
and v ∈ VB this limit satisfies the equality∫ T

0

〈
U1(t), v

〉
Φ̇(t) dt = lim

τ→0

∫ T

0

〈
Û1,τ (t), v

〉
Φ̇(t) dt

= lim
τ→0
−
∫ T

0

〈 ˙̂
U1,τ (t), v

〉
Φ(t) dt = −

∫ T

0

〈
V1(t), v

〉
Φ(t) dt.

This shows that U̇1 = V1 ∈ L2(0, T ;V∗B) in the generalized sense. As a result, U1 solves
equation (10.2a) if tested only with functions in VB. Finally, we have to check whether U1

satisfies the stated initial condition U1(0) = u0
1 = g0 ∈ VB. Since U1 ∈W 1;2,2(0, T ;VB,V∗B)

and Û1,τ ⇀ U1 as well as d
dt Û1,τ ⇀ U̇1 = V1, for Φ ∈ C1([0, T ]) with Φ(T ) = 0 and

arbitrary v ∈ VB, we derive that

0 = lim
τ→0

∫ T

0

〈 ˙̂
U1,τ − U̇1, v

〉
Φ dt

= lim
τ→0
−
∫ T

0

〈
Û1,τ − U1, v

〉
Φ̇ dt−

(
Û1,τ (0)− U1(0), v

)
Φ(0)

= −
(
g0 − U1(0), v

)
Φ(0).
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Since VB is dense in HB := VB
H

, this implies U1(0) = g0 in HB. Finally, the injectivity of
the embedding VB ↪→ HB yields U1(0) = g0 also in VB. �

It remains to analyse in which sense Λ̃ from Section 10.3.2 solves the operator DAE.
We show that this only holds in the weak distributional sense, see Section 4.3 for the used
terminology.

Theorem 10.9. Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗), and u0
1 = g0 ∈ VB.

Then, for any sequence of step sizes with τ → 0 the sequence Λ̃τ converges weakly to Λ̃ in
L2(0, T ;Q) such that (U1, U2, V2, Λ̃) solves system (10.2) in the weak distributional sense.

Proof. We have already seen that the boundedness of the sequence Λ̃τ shown in
Lemma 10.7 implies the existence of a weak limit Λ̃ in Lp(0, T ;Q). Thus, for all Φ ∈
C∞0 (0, T ) and v ∈ V, we obtain that∫ T

0

〈
B∗Λ̃τ , v

〉
Φ̇ dt →

∫ T

0

〈
B∗Λ̃, v

〉
Φ̇ dt.

Considering equation (10.14) and test functions Φ ∈ C∞0 (0, T ), we obtain by the integra-
tion by parts formula

−
∫ T

0

〈
B∗Λ̃τ , v

〉
Φ̇ dt =

∫ T

0

[〈
Fτ , v

〉
−
(
B−Ġτ , v

)
−
〈
KB−Gτ , v

〉
−
〈
KU1,τ , v

〉]
Φ+
(
Û1,τ , v

)
Φ̇ dt.

Since we already know that U2 = B−G and V2 = B−Ġ, we may pass to the limit as in the
proof of Theorem 10.8 and obtain the equation

∫ T

0
−
(
U1, v

)
Φ̇ +

(
V2, v

)
Φ +

〈
K(U1 + U2), v

〉
Φ−

〈
B∗Λ̃, v

〉
Φ̇ dt =

∫ T

0

〈
F , v

〉
Φ dt.

(10.17)

From Theorem 10.8 we know that U1 satisfies the initial condition such that (U1, U2, V2, Λ̃)
by (10.17) solves the operator DAE (10.2) in the weak distributional sense defined in
Section 4.3. �

Summarizing the above, we have seen that the approximations of u1, u2, and v2 given
by the implicit Euler scheme converge weakly to the solution of the regularized operator
DAE (10.2) whereas for the Lagrange multiplier we only obtain the convergence in a
weaker sense, namely in the weak distributional sense. To obtain the convergence of the
sequence Λτ one may either use a time discretization of higher order or assume a higher
regularity of the given data. For completeness we state the following result with additional
regularity assumptions as in Remark 10.4. Since the argumentation for the convergence
is as before, merely with stronger norms, we leave out the proof.

Theorem 10.10 (Convergence for additional regularity). Let the decomposition V =
VB⊕Vc be orthogonal w.r.t. the inner product (·, ·) + 〈K·, ·〉 and assume F ∈ L2(0, T ;H∗),
G ∈ H1(0, T ;Q∗), and u0

1 = g0 ∈ VB. Then, the (weak) limits U1 ∈ L2(0, T ;VB), U2,
V2 ∈ L2(0, T ;Vc), and Λ ∈ L2(0, T ;Q) solve the regularized operator DAE (10.2). In

addition, we have U̇1 ∈ L2(0, T ;H).

To obtain conclusions on the convergence of the Rothe method, we have to include spa-
tial discretization errors as well. For this, these errors may be interpreted as perturbations
of the right-hand sides.
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10.4. Influence of Perturbations. In this subsection we consider the semi-discrete
version of system (10.2) with additional perturbations in the right-hand sides. We show
that these perturbations can then be interpreted as the errors coming from a spatial
discretization. Note that we still assume the operators to satisfy the assumptions from

Section 10.1. The differences of the exact and perturbed solution (ûj1, û
j
2, v̂

j
2, λ̂

j), namely,

ej1 := ûj1 − u
j
1 ∈ VB, ej2 := ûj2 − u

j
2 ∈ V

c, ejv := v̂j2 − v
j
2 ∈ V

c, ejλ := λ̂j − λj ∈ Q

satisfy the equations

Dej1 + ejv + K
(
ej1 + ej2

)
+ B∗ejλ = δj in V∗,(10.18a)

Bej2 = θj in Q∗,(10.18b)

Bejv = ξj in Q∗.(10.18c)

Therein, we assume perturbations δj ∈ H∗ and θj , ξj ∈ Q∗. We analyse the positive effects
of the regularization from Part B in terms of perturbations. Furthermore, we assume the
spaces VB and Vc to be orthogonal w.r.t. the inner product defined by (·, ·) + 〈K·, ·〉.
This property is needed to obtain an estimate of the Lagrange multiplier in terms of the
perturbations. For the remaining variables it is sufficient to assume δj ∈ V∗.

Remark 10.11. If we assume that the perturbations are of the same order of magnitude
for each time step, i.e., δj ≈ δ ∈ H∗, θj ≈ θ ∈ Q∗, and ξj ≈ ξ ∈ Q∗ for all j = 1, . . . , n,
then we may summarize, e.g.,

τ

n∑
j=1

‖δj‖V∗ ≈ τn‖δ‖V∗ = T‖δ‖V∗ .

Remark 10.12 (Index-2 formulation). If we consider the index-2 type formulation
instead of the regularized operator DAE, then equation (10.18c) has to be replaced by

BDej2 = Dθj . Thus, the perturbation ξj has to be replaced by the discrete derivative of
θj which then leads to an additional 1/τ term in the error estimates.

10.4.1. Error Analysis. By equations (10.18b) and (10.18c) we directly obtain the
estimates

‖ej2‖ ≤ CB−‖θj‖Q∗ , ‖ejv‖ ≤ CB−‖ξj‖Q∗ .(10.19)

With the same calculation as in Lemma 10.2, i.e., testing equation (10.18a) by ej1, we
obtain for k = 1, . . . , n the estimate

|ek1|2 + τ2
k∑
j=1

|Dej1|
2 + τk1

k∑
j=1

‖ej1‖
2

≤ |e0
1|2 +

3τ

k1

k∑
j=1

(
‖δj‖2V∗ + k2

2C
2
B−‖θj‖2Q∗ + C2

B−C4
emb‖ξj‖2Q∗

)
.(10.20)

Since we have assumed δ ∈ H∗, cf. Remark 10.4, we obtain an additional result if we test

(10.18a) by Dej1, namely

|Dej1|
2 + 〈Kej1, De

j
1〉 = 〈δj , Dej1〉 − (ejv, De

j
1) + (ej2, De

j
1).

Note that we have used here the assumed orthogonality of VB and Vc w.r.t. (·, ·) + 〈K·, ·〉.
Using the equality 2〈Kej1, De

j
1〉 = D〈Kej1, e

j
1〉+ τ〈KDej1, De

j
1〉, cf. equation (10.6), and the



10. Convergence for First-order Systems 103

Cauchy-Schwarz inequality, we further obtain

2|Dej1|
2 +D〈Kej1, e

j
1〉+ τk1‖Dej1‖

2 ≤ 2‖δj‖H∗ |Dej1|+ 2Cemb‖ejv‖|De
j
1|+ 2Cemb‖ej2‖|De

j
1|.

Next, we apply Young’s inequality on the right-hand side and get

|Dej1|
2 +D〈Kej1, e

j
1〉+ τk1‖Dej1‖

2 ≤ 3‖δj‖2H∗ + 3C2
emb‖ejv‖2 + 3C2

emb‖e
j
2‖

2.

A summation for j = 1, . . . , k and a multiplication by τ finally leads to

k1‖ek1‖2 + τ
k∑
j=1

|Dej1|
2 + τ2k1

k∑
j=1

‖Dej1‖
2

≤ k2‖e0
1‖2 + 3τ

k∑
j=1

(
‖δj‖2H∗ + C2

emb‖e
j
2‖

2 + C2
emb‖ejv‖2

)
.(10.21)

For an estimate of the Lagrange multiplier ejλ we use equation (10.18a) and the inf-sup
property of B to obtain

βinf‖ejλ‖Q ≤ sup
v∈Vc

〈B∗ejλ, v〉
‖v‖

≤ ‖δj‖V∗ + k2‖ej1‖+ k2‖ej2‖+ C2
emb‖ejv‖+ Cemb|Dej1|.

Combining this estimate with the results in (10.19) and (10.21), we obtain with a generic
constant, which we express with the relation symbol ., that

τβ2
inf

k∑
j=1

‖ejλ‖
2
Q

(10.19)

. τ
k∑
j=1

(
‖δj‖2V∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
+ τ

k∑
j=1

(
‖ej1‖

2 + |Dej1|
2
)

(10.21)

. ‖e0
1‖2 + τ

k∑
j=1

(
‖δj‖2H∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
.(10.22)

We summarize the results of this section in a theorem. For this, we define similarly as in
Section 10.3 piecewise constant functions E1, E2, Ev : [0, T ]→ V and Eλ : [0, T ]→ Q by

E1(t) = ej1, E2(t) = ej2, Ev(t) = ejv, Eλ(t) = ejλ(10.23)

for t ∈]tj−1, tj ].

Theorem 10.13. Consider system (10.18) where the operators K and B satisfy the
assumptions stated in Section 10.1 and with perturbations δj ∈ H∗ and θj, ξj ∈ Q∗ which
are all of the same order of magnitude as in Remark 10.11. Furthermore, let VB and Vc be
orthogonal w.r.t. the inner product (·, ·) + 〈K·, ·〉 and let the initial error satisfy e0

1 ∈ VB.
Then, E1, E2, Ev, and Eλ from (10.23) satisfy

‖E1‖L2(0,T ;V) . |e0
1| +
√
T
(
‖δ‖V∗ + ‖θ‖Q∗ + ‖ξ‖Q∗

)
,

‖E1‖L∞(0,T ;V) . ‖e0
1‖+
√
T
(
‖δ‖H∗ + ‖θ‖Q∗ + ‖ξ‖Q∗

)
,

‖E2‖L2(0,T ;V) .
√
T‖θ‖Q∗ , ‖Ev‖L2(0,T ;V) .

√
T‖ξ‖Q∗ ,

βinf ‖Eλ‖L2(0,T ;Q) . ‖e0
1‖+
√
T
(
‖δ‖H∗ + ‖θ‖Q∗ + ‖ξ‖Q∗

)
.

Proof. By (10.19) we directly obtain

‖E2‖2L2(0,T ;V) = τ

n∑
j=1

‖ej2‖
2 . τ

n∑
j=1

‖θj‖2Q∗ ≈ T‖θ‖2Q∗ .
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The result for Ev follows accordingly. The two estimates for E1 are implied by (10.20),

‖E1‖2L2(0,T ;V) = τ
n∑
j=1

‖ej1‖
2 . |e0

1|2 + τ
n∑
j=1

(
‖δj‖2V∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
and (10.21),

‖E1‖2L∞(0,T ;V) = max
k
‖ek1‖2 . ‖e0

1‖2 + τ
n∑
j=1

(
‖δj‖2H∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
.

Finally, by (10.22), we gain the result for the Lagrange multiplier in the same manner. �

10.4.2. Spatial Discretization as Perturbation. In Theorem 10.13 we have shown that
the convergence of the semi-discrete solution is maintained when the perturbations tend
to zero as τ → 0. In order to solve the semi-discrete equations (10.3)-(10.5), we need a
spatial discretization which again produces numerical errors. In the sequel we show that
this discretization error can be seen as perturbation of the semi-discrete system.

Remark 10.14. We emphasize that we have not proven any order of convergence
for the Euler discretization. Thus, we cannot provide specific requirements on the needed
accuracy of the spatial discretization. This, however, is essential for efficient computations
to ensure that the discretization in space is neither too fine, i.e., too expensive, nor too
coarse.

Let (uj1, u
j
2, v

j
2, λ

j) denote the (exact in space) solution of the semi-discretized operator
DAE as discussed in Section 10.2. Solving the PDEs by a conform finite element scheme,

we obtain fully discrete approximations (uj1,h, u
j
2,h, v

j
2,h, λ

j
h). Thereby, the index h denotes

that we have applied a discretization scheme based on a triangulation with mesh parameter
h. These approximations are given by the discrete variational problem(

Duj1,h, vh
)
+

(
vj2,h, vh

)
+
〈
K
(
uj1,h + uj2,h

)
, vh
〉

+
〈
B∗λjh, vh

〉
=
〈
F j , vh

〉
,〈

Buj2,h, qh
〉

=
〈
Gj , qh

〉
,〈

Bvj2,h, qh
〉

=
〈
Ġj , qh

〉
for all discrete test functions vh ∈ Vh ⊂ V and qh ∈ Qh ⊂ Q. For the error analysis of the
spatial discretization error, one often looks at the residuals which are given as functionals
of the form〈

Resj1, v
〉

:=
〈
F j , v

〉
−
(
Duj1,h, v

)
−
(
vj2,h, v

)
−
〈
K
(
uj1,h + uj2,h

)
, v
〉
−
〈
B∗λjh, v

〉
(10.24a)

=
(
Dej1, v

)
+
(
ejv, v

)
+
〈
K
(
ej1 + ej2

)
, v
〉

+
〈
B∗ejλ, v

〉
,〈

Resj2, q
〉

:=
〈
Gj , q

〉
−
〈
Buj2,h, q

〉
=
〈
Bej2, q

〉
,(10.24b) 〈

Resjv, q
〉

:=
〈
Ġj , q

〉
−
〈
Bvj2,h, q

〉
=
〈
Bejv, q

〉
.(10.24c)

Therein, we use the abbreviations ej1 := uj1 − u
j
1,h, ej2 := uj2 − u

j
2,h, ejv := vj2 − v

j
2,h, and

ejλ := λj − λjh. Note that the residuals vanish on the discrete test spaces, which is also
known as the Galerkin orthogonality.

Considering the definition of the residuals in (10.24), we note that they may be in-
terpreted as the perturbations δj , θj and ξj from the beginning of Section 10.4. From

this definition, we directly see that Resj1 ∈ V∗ as well as Resj2, Resjv ∈ Q∗. Thus, we may

apply the results from Section 10.4.1 for the errors ej1, ej2, and ejv. However, in order to
obtain the corresponding results for the Lagrange multiplier from Theorem 10.13, we need
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Resj1 ∈ H∗. This assumption is certainly not given for all kinds of discretizations but may
be reached with an appropriate discretization scheme of higher order.

Remark 10.15. For spatial discretizations of nonconforming type, i.e., Vh 6⊂ V, we

may have ej1 := uj1 − u
j
1,h 6∈ VB. In this case, the achieved perturbation results from the

previous subsection are not applicable and a different treatment is necessary.

10.5. Nonlinear Constraints. In this final section on first-order systems, we con-
sider the operator DAEs from Section 6.2 with a nonlinear constraint operator B. To show
general results on the convergence of the Euler scheme for this case, one would need spe-
cific assumptions on the constraint operator such as weak-weak continuity or the strong
convergence of U1,τ in the energy norm. However, it is not clear whether these assumptions
are reasonable or realistic in applications. In order to stay within a reasonable framework,
we consider here the example of the regularized Stefan problem from Section 6.3.3.

The equations of motion are given in system (6.15). Written as operator DAE with
the spaces

V := H1(Ω), H := L2(Ω), V1 := H1
0 (Ω), V2 :=

[
H1

0 (Ω)
]⊥V , Q∗ := H1/2(∂Ω),

we obtain system (6.16) which has the form

u̇ + Ku + C∗uλ = F in V∗,(10.25a)

Bu = G in Q∗.(10.25b)

According to Section 6.2 and equation (6.9), the regularized operator DAE has the form

u̇1 + v2 + K(u1 + u2) + C∗uλ = F in V∗,(10.26a)

Bu2 = G in Q∗,(10.26b)

C2,uv2 = Ġ in Q∗(10.26c)

with initial condition

u1(0) = g0 ∈ V1.(10.26d)

The solution (u1, u2, v2, λ) should satisfy u1 ∈ W 1;2,2(0, T ;V1;V∗), u2, v2 ∈ L2(0, T ;V2),
and λ ∈ L2(0, T ;Q). Note that we have needed u1 ∈ H1(0, T ;V1) in the general case of
Section 6.2. This is not necessary here, since the nonlinear constraint operator B vanishes
on V1 such that u̇1 ∈ L2(0, T ;V∗) is sufficient. However, we stay with the assumption that
the initial data g0 is given in V1. The included operators B : V → Q∗ and K : V → V∗ are
given by 〈

Bu, q
〉
Q∗,Q =

∫
∂Ω
β(u)q dx,

〈
Ku, v

〉
V∗,V =

∫
Ω
∇β(u) · ∇v dx.(10.27)

The nonlinear enthalpy-temperature function β : R→ R was assumed to be strictly mono-
tonically increasing and continuously differentiable with β′ ≥ ε > 0. Furthermore, there
exist positive constants c and C such that sign(s)β(s) ≥ c|s| −C. As a result, the inverse
of β satisfies ∣∣β−1(s)

∣∣ ≤ c−1|s|+ c−1C(10.28)

and ∣∣β−1(x)− β−1(y)
∣∣ ≤ max

ξ∈R

1

β′(β−1(ξ))
|x− y| ≤ 1

ε
|x− y|.(10.29)

As in Section 6.3.3 we need some additional assumptions for the analysis of the Euler
scheme. We assume that β′ and β−1 are Lipschitz continuous and a bound of the form
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‖1/β′(γu)‖Q∗ ≤ Cβγ for a.e. t ∈ [0, T ] and u denoting the solution of the Stefan problem.
These assumptions on the enthalpy-temperature function imply several properties of the
operator B and its Fréchet derivative Cū : V → Q∗,

Cū :=
∂B
∂u

(ū) : V → Q∗, Cūv := β′(γū) · γv.

Recall that γ denotes the trace operator from Section 3.1.4. The restriction of Cū to the
subspace V2 is again denoted by C2,ū.

Lemma 10.16. Consider the operator B : V → Q∗, its Fréchet derivative Cū : V → Q∗,
as well as K : V → V∗ from (10.27) with the enthalpy-temperature function β. Furthermore,
let UM ⊂ V denote the ball with functions satisfying ‖u‖L∞(Ω) ≤ M and M large enough
such that the solution of the regularized Stefan problem (10.25) satisfies u(t) ∈ UM for a.e.
t ∈ [0, T ]. Then,

(a) the Fréchet derivative Cū is continuous with constant Ctr‖β′(γū)‖Q∗,
(b) along the solution of the Stefan problem u, the operator C2,u has a continuous

inverse, i.e., there exists a constant CC2inv such that ‖C2,u
−1q‖ ≤ CC2inv‖q‖Q∗,

(c) the operator K is monotone and positive on V1, i.e., we have k1‖u‖2 ≤ 〈Ku, u〉
for all u ∈ V1, and

(d) there exists a constant k2 > 0 such that for all u ∈ UM and v, w ∈ V it holds that∫
Ω
β′(u)∇v · ∇w dx ≤ k2‖v‖‖w‖.

In particular, the operator K is continuous in UM with constant k2.

Proof. (a) Since ū ∈ V implies β′(γū) ∈ Q∗ by the assumed Lipschitz continuity of
β′, for v ∈ V we obtain

‖Cūv‖Q∗ = ‖β′(γū) · γv‖Q∗ ≤ ‖β′(γū)‖Q∗‖γv‖Q∗ ≤ ‖β′(γū)‖Q∗Ctr‖v‖.
(b) The inverse of C2,ū is given by q 7→ γ−1

(
1

β′(γū)q
)

where γ−1 : Q∗ → V2 denotes the

inverse trace operator, cf. Section 3.1.4. This operator is linear and from the continuity
of the inverse trace operator, cf. Theorem 3.15, we obtain

‖C2,u
−1q‖ ≤ CinvTr‖1/β′(γu)‖Q∗‖q‖Q∗ ≤ CinvTrCβγ‖q‖Q∗ =: CC2inv‖q‖Q∗ .

(c) The monotonicity of the operator K follows from the (strict) monotonicity of β. For
this, we may define w ∈ V pointwise by u or v such that〈

Ku−Kv, u− v
〉

=

∫
Ω
β′(u)∇u · ∇(u− v)− β′(v)∇v · ∇(u− v) dx

≥
∫

Ω
β′(w)∇(u− v) · ∇(u− v) dx

≥ ε
∣∣∇(u− v)

∣∣2 ≥ 0.

Also the positivity on V1 follows from the strict monotonicity of β, namely〈
Ku, u

〉
=

∫
Ω
∇β(u) · ∇u dx =

∫
Ω
β′(u)∇u · ∇u dx ≥ ε|∇u|2.

For u ∈ V1 the term |∇u| is bounded (up to a constant) from below by ‖u‖. Thus, there
exists a positive constant k1 such that the right-hand side is bounded by k1‖u‖2.
(d) By the definition of the set UM we obtain∫

Ω
β′(u)∇v · ∇w dx ≤ ‖β′(u)‖L∞(Ω)‖v‖‖w‖.
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Thus, the claim follows with k2 := β′(M) <∞. �

10.5.1. Temporal Discretization. For the discretization we consider again the regular-
ized version of the operator DAE (10.25). Thus, we apply the implicit Euler scheme to

system (10.26), where we search for approximations uj1, uj2, vj2, and λj of u1, u2, v2, and
λ at time t = tj , respectively. Throughout this section, we assume that the discrete ap-

proximation is close enough to the exact solution in the sense that uj1 + uj2 ∈ UM with the
set UM introduced in Lemma 10.16. Furthermore, we have to assume that

‖1/β′(γuj2)‖Q∗ = ‖1/β′(β−1(Gj))‖Q∗(10.30)

is uniformly bounded, i.e., the property from Lemma 10.16 (b) also applies along the

discrete solution uj1 + uj2.
The semi-discrete system for one time step of the Stefan problem has the form

Duj1 + vj2 + K(uj1 + uj2) + C∗ujλ
j = F j in V∗,(10.31a)

Buj2 = Gj in Q∗,(10.31b)

C2,ujv
j
2 = Ġj in Q∗.(10.31c)

Note that we write Cuj and C2,uj for the Fréchet derivative of B at uj1 +uj2 for the purpose
of notation. The unique solvability of system (10.31) and thus, the existence of a discrete
approximation is shown in the following lemma.

Lemma 10.17. With the assumptions introduced in this subsection, system (10.31) has

a unique solution (uj1, u
j
2, v

j
2, λ

j) for each time step j = 1, . . . , n.

Proof. Equation (10.31b) is uniquely solvable, since β is injective and the trace
operator is invertible as operator from V2 to Q∗. The invertibility of C2,uj leads to a

unique solution vj2. Next, consider equation (10.31a) restricted to test functions in V1.
With the operator A : V1 → V∗1 ,〈

Au, v
〉

:=
1

τ

(
u, v
)

+
〈
K
(
u+ uj2

)
, v
〉

we may write this equation in the form Auj1 = F̂ j := F j − vj2 + uj−1
1 /τ . The continuity

assumptions on K imply that A is hemicontinuous. Furthermore, A is strongly monotone
because of Lemma 10.16 (c) and the fact that |∇ · | is equivalent to ‖ · ‖ for functions
in V1. This also implies the coercivity of the operator, cf. [GGZ74, Ch. III, Rem. 1.4].
Finally, the Browder-Minty theorem [GGZ74, Ch. III, Th. 2.1] yields the existence of

a solution uj1. The uniqueness follows again from the strong monotonicity of A. If we
consider equation (10.31a) tested by functions in V2, we obtain a unique solution λj again
by the invertibility of C2,uj . �

To obtain an estimate of uj2 we consider equation (10.31b). Let |∂Ω| denote the (d−1)-
dimensional measure of the boundary. Then, the Lipschitz continuity of β−1 and properties
(10.28) and (10.29) yield the estimate

‖uj2‖
(10.31b)

≤ CinvTr

∥∥β−1Gj
∥∥
Q∗

(10.28),(10.29)

≤ c
(
‖Gj‖Q∗ + |∂Ω|1/2

)
.

Note that c denotes here a generic constant and that the proof of this estimate uses the
definition of the Q∗-norm as given in Lemma 5.11. By the second constraint (10.31c) and
Lemma 10.16 (b) for the discrete solution, we calculate

‖vj2‖ ≤
∥∥C2,uj

−1Ġj
∥∥ ≤ CC2inv‖Ġj‖Q∗ .
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Note that we have used here that the discrete solution is closed enough to the exact
solution in the sense that (10.30) is uniformly bounded.

To obtain a stability estimate of uj1 we proceed similarly as in the linear case in

Section 10.2.2 and test equation (10.31a) by uj1. Note that in this example the operator K
is nonlinear such that slight modifications are necessary as shown in the following lemma.

Lemma 10.18. Assume F ∈ L2(0, T ;V∗1 ), G ∈ H1(0, T ;Q∗), u0
1 ∈ H, and the operators

B and K from (10.27). Furthermore, let the discrete approximation satisfy uj1 + uj2 ∈ UM
for all j = 1, . . . , n with the set UM introduced in Lemma 10.16. Then, there exists a
positive constant c such that for all 1 ≤ k ≤ n it holds that

|uk1|2 + τ2
k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2 ≤ |u0

1|2 + c
[
‖F‖2L2(0,T ;V∗1 ) + ‖G‖2H1(0,T ;Q∗) + T |∂Ω|

]
.

Proof. Since we mainly follow the lines of the proof of Lemma 10.2, we only stress

the differences compared to the linear case. Applying the test function v = uj1 ∈ V1, j ≥ 1
in equation (10.31a), we obtain(

Duj1, u
j
1

)
+
〈
K(uj1 + uj2), uj1

〉
=
〈
F j , uj1

〉
−
(
vj2, u

j
1

)
.

Although the operator K is nonlinear, we may split〈
K(uj1 + uj2), uj1

〉
=

∫
Ω
β′(uj1 + uj2)∇uj1 · ∇u

j
1 dx+

∫
Ω
β′(uj1 + uj2)∇uj2 · ∇u

j
1 dx.

As in Lemma 10.16 (c), a lower bound of the first term is given by k1‖uj1‖2. For the second

term we apply Lemma 10.16 (d) which yields an upper bound of the form k2‖uj2‖‖u
j
1‖.

Thus, we obtain the overall estimate

D|uj1|
2 + τ |Duj1|

2 + 2k1‖uj1‖
2 ≤ 2‖F j‖V∗1 ‖u

j
1‖+ 2C2

emb‖v
j
2‖‖u

j
1‖+ 2k2‖uj2‖‖u

j
1‖.

Up to the constants, this estimate is as in the linear case. Thus, we may again sum over
j = 1, . . . , k and use the Cauchy-Schwarz inequality which then finally leads to a constant
c > 0 such that

|uk1|2 + τ2
k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2 ≤ |u0

1|2 + c
[
‖F‖2L2(0,T ;V∗1 ) + ‖G‖2H1(0,T ;Q∗) + T |∂Ω|

]
.

Note that we have used here the estimates of uj2 and vj2 from the beginning of this subsec-
tion as well as property (5.13) for the right-hand sides. �

Remark 10.19. Analog to Lemma 10.3 in the linear case, with the same assumptions

as in Lemma 10.18, we obtain the boundedness of τ
∑n

j=1 ‖Du
j
1‖2V∗1 .

10.5.2. Convergence Results. We define the global approximations U1,τ , Û1,τ : [0, T ]→
V1 and U2,τ , V2,τ : [0, T ] → V2 as before in Section 10.3.1 and Λτ : [0, T ] → Q as in

Section 10.3.2. Furthermore, Fτ : [0, T ] → V∗ and Gτ , Ġτ : [0, T ] → Q∗ are defined as in

Section 10.2, i.e., as piecewise constant approximations of F , G, and Ġ, respectively.
Then, system (10.31) can then be expressed in the form

˙̂
U1,τ + V2,τ + K

(
U1,τ + U2,τ

)
+ C∗UτΛτ = Fτ in V∗,(10.32a)

BU2,τ = Gτ in Q∗,(10.32b)

C2,UτV2,τ = Ġτ in Q∗.(10.32c)
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Again we use the short notation CUτ and C2,Uτ for the Fréchet derivative of B in U1,τ +U2,τ .
As a first result, we show that U2,τ and V2,τ converge to the solution of the constraint
(10.26b) and its derivative, respectively.

Theorem 10.20. Assume G ∈ H1(0, T ;Q∗) and U2,τ , V2,τ given by equations (10.32b)
and (10.32c), respectively. Then, U2,τ → U2 and V2,τ → V2 in L2(0, T ;V2) where U2

and V2 solve the equations BU2 = G and C2,U2V2 = Ġ in Q∗, i.e., equations (10.26b) and
(10.26c).

Proof. By the definition of the operator B and the approximation of the right-hand
side Gτ , we have

BU2,τ = β
(
γU2,τ

)
= Gτ → G in L2(0, T ;Q∗).

It follows from Lemma 5.11 that also β−1Gτ → β−1G in L2(0, T ;Q∗). The linearity of the
inverse trace operator then gives U2,τ = γ−1(β−1Gτ ) → U2 := γ−1(β−1G) in L2(0, T ;V2).
For the second claim we have by assumption

C2,UτV2,τ = β′(γU2,τ ) · γV2,τ = Ġτ , C2,U2V2 = β′(γU2) · γV2 = Ġ.

Using the continuity of the inverse of C2,U2 from Lemma 10.16 (b), we obtain∥∥V2,τ − V2

∥∥
L2(0,T ;V)

≤ CC2inv

∥∥C2,U2V2,τ − C2,U2V2

∥∥
L2(0,T ;Q∗).

The triangle inequality then leads to∥∥V2,τ − V2

∥∥
L2(0,T ;V)

.
∥∥C2,U2V2,τ − C2,U2,τV2,τ

∥∥
L2(0,T ;Q∗) +

∥∥C2,U2,τV2,τ − C2,U2V2

∥∥
L2(0,T ;Q∗)

=
∥∥(C2,U2 − C2,U2,τ )V2,τ

∥∥
L2(0,T ;Q∗) +

∥∥Ġτ − Ġ∥∥L2(0,T ;Q∗).

The second term tends to zero as τ → 0, since Ġτ → Ġ in L2(0, T ;Q∗). For the first term
we estimate the operator norm of C2,U2 − C2,U2,τ by the continuity of the trace operator,

sup
v∈V

1

‖v‖
∥∥C2,U2v − C2,U2,τ v

∥∥
Q∗ ≤ Ctr‖β′(γU2)− β′(γU2,τ )‖Q∗ .

Thus, the strong convergence U2,τ → U2 and Lemma 5.11 together imply that V2,τ → V2

in L2(0, T ;V2). �

In the remaining part of this subsection we analyse the limiting behavior of U1,τ

and Û1,τ . As in the linear case, we show that there exists a common limit function
U1 ∈ L2(0, T ;V). Because of the nonlinearity of the operator K, the challenge is then to
show that K(U1,τ +U2,τ ) converges to K(U1 +U2). For this, we follow the procedure used
in the proof of [ET10b, Th. 5.1].

By the stability estimate of Lemma 10.18 we obtain the boundedness of the sequences
U1,τ and Û1,τ in L∞(0, T ;H). The same lemma also implies the boundedness of U1,τ in

L2(0, T ;V1). Note that Û1,τ is only bounded in L2(0, T ;V1) if we assume additionally that
u0

1 ∈ V1. The uniform boundedness and Theorem 3.31 then imply the existence of weakly
converging subsequences. By the estimate∥∥U1,τ − Û1,τ

∥∥2

L2(0,T ;H)
≤ τ

n∑
j=1

∣∣uj1 − uj−1
1

∣∣2 ≤ τM2 → 0.

we conclude as in Section 10.3.1 that that limits of U1,τ and Û1,τ coincide. Therein, M
denotes the upper bound from Lemma 10.18. Assuming u0

1 ∈ V1, we have

U1,τ , Û1,τ ⇀ U1 in L2(0, T,V1).
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At the end of this section we will show that the limit U1 solves the operator DAE (10.26).
Since the solution is unique according to Remark 6.25, we do not need the restriction to
subsequences. Also the derivatives d

dt Û1,τ are uniformly bounded in L2(0, T ;V∗1 ) by the
stability estimate in Remark 10.19. Thus, there exists a weak limit which we denote by
V1 ∈ L2(0, T ;V∗1 ). Exactly as in Theorem 10.8 one can show that V1 equals the derivative

of U1 in the generalized sense, i.e., U̇1 = V1 ∈ L2(0, T ;V∗1 ).
In the following calculation we mainly need two equations. First, the semi-discrete

system given by the Euler scheme, i.e., equation (10.32a), tested by functions in V1,

˙̂
U1,τ + V2,τ +K

(
U1,τ + U2,τ

)
= Fτ in V∗1 .(10.33)

Second, we consider the limiting equation for τ → 0. Note that Lemma 10.16 (c) implies
that K(U1,τ +U2,τ ) is bounded in L2(0, T ;V∗) such that there exists a weak limit a which
satisfies (up to a subsequence) K(U1,τ +U2,τ ) ⇀ a in L2(0, T ;V∗). The resulting equation
then reads

U̇1 + V2 + a = F in V∗1 .(10.34)

Using equations (10.33) and (10.34) as well as the integration by parts formula, we obtain
the following lemma.

Lemma 10.21. Consider the assumptions from Lemma 10.18 with u0
1 ∈ V1 in addition.

Then, it holds that U1(0) = u0
1 and lim infτ→0〈 ˙̂

U1,τ , U1,τ 〉 ≥ 〈U̇1, U1〉.

Proof. We omit to give the proof here, since it can be found in the proof of [ET10b,
Th. 5.1]. However, the details can also be found in the proof of Lemma 7.1 where a similar
result for the second-order case is given. �

With this result and the convergence of U2,τ and V2,τ from Theorem 10.20, we are able
to state the following convergence theorem.

Theorem 10.22. Assume F ∈ L2(0, T ;V∗1 ), G ∈ H1(0, T ;Q∗), u0
1 = g0 ∈ V1, as well

as uj1 + uj2 ∈ UM with the set UM introduced in Lemma 10.16. Then, the weak limit
a ∈ L2(0, T ;V∗) equals K(U1 + U2) and thus, U1, U2, and V2 solve equation (10.26a) in

V∗1 , i.e., they satisfy U̇1 +V2 +K(U1 +U2) = F for all test functions in V1 and U1(0) = g0.

Proof. We make use of the monotonicity of the operator K, see Lemma 10.16 (c),
which means that 〈K(U1,τ + U2,τ ) − Kw,U1,τ + U2,τ − w〉 ≥ 0 for any w ∈ L2(0, T ;V).
With this, by equation (10.33) tested by U1,τ , we obtain that

0 ≥
〈 ˙̂
U1,τ + V2,τ −Fτ , U1,τ

〉
+
〈
K
(
U1,τ + U2,τ

)
, w − U2,τ

〉
+
〈
Kw,U1,τ + U2,τ − w

〉
.

The application of the limes inferior then yields the estimate

0 ≥
〈
U̇1 + V2 −F , U1

〉
+
〈
a,w − U2

〉
+
〈
Kw,U1 + U2 − w

〉
(10.34)

=
〈
a,w − U1 − U2

〉
+
〈
Kw,U1 + U2 − w

〉
.

Note that we have used the strong convergence of U2,τ , V2,τ , and Fτ as well as Lemma 10.21.
Following the so-called Minty trick [RR04, Lem. 10.47], we first set w := U1 + U2 + sv
with s ∈]0, 1] and an arbitrary function v ∈ L2(0, T ;V). This then gives the estimate

s
〈
K
(
U1 + U2 + sv

)
, v
〉
≥ s

〈
a, v
〉
.

Dividing by s and making the same ansatz for w := U1 + U2 − sv, we obtain〈
K
(
U1 + U2 + sv

)
, v
〉
≥
〈
a, v
〉
,

〈
K
(
U1 + U2 − sv

)
, v
〉
≤
〈
a, v
〉
.
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In the limit s → 0, we then conclude that a = K(U1 + U2), since v was arbitrary. Thus,
the limiting equation (10.34) turns into

U̇1 + V2 +K(U1 + U2) = F in V∗1 .
Finally, U1 satisfies the initial condition due to U1(0) = u0

1 = g0, see Lemma 10.21. �

Remark 10.23 (Lagrange Multiplier). As in the linear case, we are not able to bound
the approximation of the Lagrange multiplier independently of the step size. Due to the
nonlinearity we cannot even prove the convergence in the weak distributional sense. The
reason for this is the dependence of C∗u on the solution of the operator DAE and hence,

the dependence on time. Thus, one may only prove the convergence of
∫ T

0 C
∗
UΛ dt.

10.5.3. Influence of Perturbations. Let (ûj1, û
j
2, v̂

j
2, λ̂

j) denote the solution of a per-
turbed problem with perturbations δj ∈ H∗ and θj , ξj ∈ Q∗ of the right-hand sides.
Then, the differences

ej1 := ûj1 − u
j
1, ej2 := ûj2 − u

j
2, ejv := v̂j2 − v

j
2, ejλ := λ̂j − λj

satisfy the system

Dej1 + ejv + K(ûj1 + ûj2)−K(uj1 + uj2) + C∗uje
j
λ = δj in V∗,(10.35a)

B(ûj2)− B(uj2) = θj in Q∗,(10.35b)

C2,uje
j
v = ξj in Q∗.(10.35c)

The impact of these perturbations is analyzed in the following theorem. Therein, we use
again the abbreviation a . b for the existence of a positive constant c ∈ R such that
a ≤ cb.

Theorem 10.24. Consider perturbations δj ∈ H∗ and θj, ξj ∈ Q∗ which are of the
same magnitude, i.e., δj ≈ δ, θj ≈ θ, and ξj ≈ ξ for all j = 1, . . . , n. Furthermore,

assume τ ≤ 1/2. Then, for all 1 ≤ k ≤ n it holds up to a term of order o(maxj ‖ej2‖) that

‖ek2‖ . ‖θ‖Q∗, ‖ekv‖ . ‖ξ‖Q∗, and

|ek1|2 + τ2
k∑
j=1

|Dej1|
2 . 4T |e0

1|2 + T4T
[
‖δ‖2H∗ + ‖θ‖2Q∗ + ‖ξ‖2Q∗

]
.

Proof. We start with the estimates of ej2 and ejv. By Lemma 10.16 (b) and (10.35c)

we directly obtain that ‖ejv‖ ≤ CC2inv‖ξj‖Q∗ . For an estimate of ej2 we proceed as in
Section 6.2.3, i.e., we use the definition of the Fréchet derivative. Therewith, we get

‖ej2‖ ≤ CC2inv

∥∥C2,ue
j
2

∥∥
Q∗ ≈ CC2inv

∥∥B(ûj2)− B(uj2)
∥∥
Q∗ = CC2inv‖θj‖Q∗

up to a term of order o(‖ej2‖). Next, we test equation (10.35a) by ej1 which leads to

2
(
Dej1, e

j
1

)
+ 2
〈
K(ûj1 + ûj2)−K(uj1 + uj2), ej1

〉
= 2
〈
δj , ej1

〉
− 2
(
ejv, e

j
1

)
.(10.36)

By (10.6) we can write the first term as 2(Dej1, e
j
1) = D|ej1|2 + τ |Dej1|2. The second term

is bounded from below by Lemma 10.16,〈
K(ûj1 + ûj2)−K(uj1 + uj2), ej1

〉
=
〈
K(ûj1 + ûj2)−K(uj1 + uj2), ej1 + ej2

〉
−
〈
K(ûj1 + ûj2)−K(uj1 + uj2), ej2

〉
≥ ε
∣∣∇(ej1 + ej2)

∣∣2 − k2

∣∣∇(ej1 + ej2)
∣∣‖ej2‖.
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Thus, by Young’s inequality, we can bound this term from below by − 1
4εk

2
2‖e

j
2‖2. In

summary, equation (10.36), together with the Cauchy-Schwarz inequality, leads to the
estimate

D|ej1|
2 + τ |Dej1|

2 ≤ 1

2ε
k2

2‖e
j
2‖

2 + 2‖δj‖H∗ |ej1|+ 2Cemb‖ejv‖|e
j
1|.

Another application of Young’s inequality and a multiplication by τ then yields the exis-
tence of a positive constant c such that

|ej1|
2 − |ej−1

1 |2 + τ2|Dej1|
2 ≤ τc

(
‖δj‖2H∗ + ‖ej2‖

2 + ‖ejv‖2
)

+ τ |ej1|
2.(10.37)

With aj := (1− τ)j , we estimate

aj |ej1|
2 − aj−1|ej−1

1 |2 + τ2aj−1|Dej1|
2 = aj−1

(
(1− τ)|ej1|

2 − |ej−1
1 |2 + τ2|Dej1|

2
)

(10.37)

≤ aj−1τc
(
‖δj‖2H∗ + ‖ej2‖

2 + ‖ejv‖2
)
.

Because of the assumption 0 < τ < 1, the coefficients satisfy 0 < aj < 1 as well as aj > ak

for j < k. Thus, the summation of the latter estimate yields

ak|ek1|2 − |e0
1|2 + τ2

k∑
j=1

aj−1|Dej1|
2 ≤ τc

k∑
j=1

(
‖δj‖2H∗ + ‖ej2‖

2 + ‖ejv‖2
)
.

Finally, a division by ak and the assumptions on the perturbations yield (up to terms of
higher order)

|ek1|2 + τ2
k∑
j=1

|Dej1|
2 ≤ a−k|e0

1|2 + a−kcT
[
‖δ‖2H∗ + ‖θ‖2Q∗ + ‖ξ‖2Q∗

]
.

It remains to show that a−k ≤ 4T . For this, note that τ ≤ 1/2 implies n ≥ 2T and that
the monotonicity of the sequence (1 + x/n)n for n > −x gives

ak = (1− τ)k = (1− T/n)k ≥ (1− T/n)n ≥ (1− T/2T )2T = 4−T . �

Note that Theorem 10.24 does not include any statement about the influence of the
perturbation on the Lagrange multiplier. As discussed in Remark 10.23, this is caused
by the included nonlinearity. Furthermore, we have assumed δj ∈ H∗ in contrast to the
linear case in which δj ∈ V∗ has been sufficient, cf. Section 10.4.1.
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11. Convergence for Second-order Systems

In the simulation of flexible multibody systems the Rothe method has not established
itself yet [LS09]. Instead, the method of lines is preferred which leads to very large
DAEs. However, discretizing in time first allows adaptive procedures, especially in the
space variable, since the underlying grid may be changed easily from time step to time
step. The practical application of the Rothe method in view of flexible multibody dynamics
is discussed in [LS09]. Therein, the same operator DAE as in Section 7 is used but without
the damping term and only in its original form of index-3 type.

Within this section, we analyse the convergence of the Rothe method for the second-
order operator DAEs introduced in Section 7. For the temporal discretization we restrict
ourselves to the implicit method introduced in Section 5.2.2. Note that high-order schemes
in time often do not pay off, since the spatial error dominates.

For the a priori estimates and the resulting convergence proofs, we apply the standard
techniques as used in [ET10a] for abstract ODEs of second order. For this, we construct
piecewise constant and linear (in time) approximations of the variables of interest. The a
priori estimates then show the boundedness of the approximation independent of the step
size such that a weakly convergent subsequence can be extracted.

11.1. Setting and Discretization. We retain the setting and notion from Section 7,
i.e., we consider the Sobolev spaces

V :=
[
H1(Ω)

]d
, VB :=

[
H1

ΓD
(Ω)
]d
, H :=

[
L2(Ω)

]d
, Q∗ := [H1/2(ΓD)]d

and use for the inner product in H and the norms in H and V the abbreviations

(u, v) := (u, v)H, |u| := ‖u‖H, ‖u‖ := ‖u‖V .
Throughout this section, we only consider equidistant time steps with step size τ .

Furthermore, uj denotes the approximation of u at time tj = jτ . For the discretization
we use the scheme introduced in the end of Section 5.2.2, i.e., we replace u̇ and ü by the
discrete derivatives u̇(tj) ≈ Duj and ü(tj) ≈ D2uj . Recall that this scheme is based on
the Euler scheme and is fully implicit. Applied to the regularized operator DAE (7.14),
the first equation turns to

ρ

τ2

(
uj1 − 2uj−1

1 + uj−2
1

)
+ ρwj2 +D

(1

τ
uj1 −

1

τ
uj−1

1 + vj2
)

+K
(
uj1 + uj2

)
+ B∗λj = F j .

(11.1a)

This equation has to be solved for j = 2, . . . , n and is still stated in the dual space of V
and thus, equals a PDE in the weak formulation. The three constraints (7.14b)-(7.14d)
result in

Buj2 = Gj , Bvj2 = Ġj , Bwj2 = G̈j in Q∗.(11.1b)

As discussed in Section 5.3.2, the definition of the right-hand sides F j , Gj , Ġj , and G̈j has
to be clarified, since we only assume F ∈ L2(0, T ;V∗) and G ∈ H2(0, T ;Q∗). Furthermore,

we define the piecewise constant approximations Fτ , Gτ , Ġτ , and G̈τ as in (5.12) for which

we assume that Fτ → F in L2(0, T ;V∗) as well as Gτ → G, Ġτ → Ġ and G̈τ → G̈ in
L2(0, T ;Q∗).

Remark 11.1 (Special case G ≡ 0). Consider the case where G vanishes on [0, T ] and

thus, uj2 = vj2 = wj2 = 0. Then, the problem reduces to an operator ODE and (11.1a)
reads

ρ

τ2

(
uj1 − 2uj−1

1 + uj−2
1

)
+D

(1

τ
uj1 −

1

τ
uj−1

1

)
+Kuj1 = F j
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with test functions in VB.

In this section on second-order operator DAEs, we remain with the given framework
on linear elasticity with nonlinear damping term as discussed in Section 7. Thus, we
consider a linear and symmetric stiffness operator K : V → V∗. The operator is assumed
to be positive on VB and bounded, i.e., there exist positive constants k1 and k2 such that
for all u ∈ VB and v, w ∈ V it holds that

k1‖u‖2 ≤ 〈Ku, u〉V∗,V , 〈Kv, w〉V∗,V ≤ k2‖v‖‖w‖.(11.2)

Note that the symmetry of the operator implies that we may write 〈Ku, u〉 = |K1/2u|2.
The nonlinear damping operator D : V → V∗ is assumed to be Lipschitz continuous and
strongly monotone, i.e., there exist constants d0, d1, and d2 such that for all u, v ∈ V it
holds that

‖Du−Dv‖V∗ ≤ d2‖u− v‖, d1‖u− v‖2 − d0|u− v|2 ≤ 〈Du−Dv, u− v〉V∗,V .(11.3)

Furthermore, we may assume w.l.o.g. D(0) = 0, see [ET10a, p. 181], and thus,

‖Du‖V∗ ≤ d2‖u‖, d1‖u‖2 − d0|u|2 ≤ 〈Du, u〉V∗,V .

Remark 11.2. Because of the continuous embedding V ↪→ H, we have | · | ≤ Cemb‖ · ‖.
In the case d0C

2
emb < d1, we can write

〈Du, u〉V∗,V ≥ d1‖u‖2 − d0|u|2 ≥
(
d1 − d0C

2
emb

)
‖u‖2.

Thus, we may assume either d0 = 0 or d0C
2
emb ≥ d1.

Before we derive stability results for the discrete approximations, we have to discuss
the solvability of the semi-discrete system (11.1).

Lemma 11.3. With the assumptions introduced in this subsection, system (11.1) has a

unique solution (uj1, u
j
2, v

j
2, w

j
2, λ

j) for each time step j = 2, . . . , n if the step size satisfies
τ < ρ/d0.

Proof. The invertibility of the trace operator for functions in Vc implies that the

equations in (11.1b) give unique approximations uj2, vj2, and wj2. Consider equation (11.1a)
restricted to test functions in VB. We define the operator A : VB → V∗B and the functional

F̂ j ∈ V∗ by

Au :=
ρ

τ2
u+D

(u− uj−1
1

τ
+ vj2

)
+Ku, F̂ j := F j +

ρ

τ2

(
2uj−1

1 − uj−2
1

)
− ρwj2 −Ku

j
2.

Then, equation (11.1a) can be written in the form Auj1 = F̂ j in V∗B. The operator A is
continuous and for the monotonicity we obtain by (11.2) and (11.3),〈

Au−Av, u− v
〉
≥ ρ

τ2
|u− v|2 +

d1

τ
‖u− v‖2 − d0

τ
|u− v|2 + k1‖u− v‖2

=
(
d1/τ + k1

)
‖u− v‖2 +

(
ρ/τ2 − d0/τ

)
|u− v|2.

This shows 〈Au − Av, u − v〉 ≥ k1‖u − v‖2 for τ < ρ/d0 and thus, the existence of a

solution uj1 ∈ VB due to the Browder-Minty theorem [GGZ74, Ch. III, Th. 2.1]. The
strong monotonicity of A also implies the uniqueness of the solution. Finally, the unique
solvability for λj follows from Lemma 7.1 (d). �
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11.2. Stability and Convergence. As for first-order systems, we use the approxi-
mations from system (11.1) to define global approximations and show the uniform bound-
edness. In order to avoid too long terms for the discrete derivative, we use the abbreviation

vj1 := Duj1 =
uj1 − u

j−1
1

τ
.

Furthermore, we assume u1
1 and v1

1 to be the fixed initial data of the semi-discrete solution,
i.e., approximations of the initial data u1(0) = g0 and u̇1(0) = h0. Clearly, this also defines
u0

1 which - in the limit - coincides with u1
1.

In the sequel we will take several times advantage of the equality

2(a− b)a = a2 − b2 + (a− b)2.(11.4)

11.2.1. Stability Estimate. As in Section 10, we need a stability estimate which is given
in the following lemma. Note that this includes a step size restriction due to the nonlinear
damping term.

Lemma 11.4 (Stability). Assume right-hand sides F ∈ L2(0, T ;V∗), G ∈ H2(0, T ;Q∗)
and initial approximations u1

1 ∈ VB, v1
1 ∈ H. Let the approximations uj1, uj2, vj2, and wj2

be given by the semi-discrete system (11.1) and let the step size satisfy τ < ρ/8d0. Then,
there exists a constant c > 0 such that for all k ≥ 2 it holds that

ρ
∣∣vk1 ∣∣2 + ρ

k∑
j=2

∣∣vj1 − vj−1
1

∣∣2 + τd1

k∑
j=2

∥∥vj1∥∥2
+ k1

∥∥uk1∥∥2 ≤ c 28d0T/ρM2(11.5)

with the constant

M2 = |v1
1|2 + ‖u1

1‖2 + ‖F‖2L2(0,T ;V∗) + ‖G‖2H2(0,T ;Q∗).

Proof. Equation (11.1b) directly leads to the estimates

‖uj2‖ ≤ CB−‖Gj‖Q∗ , ‖vj2‖ ≤ CB−‖Ġj‖Q∗ , ‖wj2‖ ≤ CB−‖G̈j‖Q∗ .(11.6)

The rest of the proof mainly follows the ideas of the proof of [ET10a, Th. 1] although a
different time discretization scheme is used. We consider the case d0 > 0. The proof with
d0 = 0 works in the same manner but with less difficulties. In the semi-discrete setting we

test equation (11.1a) with the discrete derivative vj1 ∈ VB, j ≥ 2. This leads to

ρ
〈
Dvj1, v

j
1

〉
+
〈
D
(
vj1 + vj2

)
, vj1
〉

+
〈
Kuj1, v

j
1

〉
=
〈
F j , vj1

〉
− ρ
〈
wj2, v

j
1

〉
−
〈
Kuj2, v

j
1

〉
.(11.7)

For the terms on the left-hand side, we estimate separately

ρ
〈
Dvj1, v

j
1

〉
=
ρ

τ

〈
vj1 − v

j−1
1 , vj1

〉 (11.4)
=

ρ

2τ

[∣∣vj1∣∣2 − ∣∣vj−1
1

∣∣2 +
∣∣vj1 − vj−1

1

∣∣2],
for the damping term〈

D
(
vj1 + vj2

)
, vj1
〉

=
〈
D
(
vj1 + vj2

)
−Dvj2, v

j
1

〉
+
〈
Dvj2, v

j
1

〉
(11.3)

≥ d1‖vj1‖
2 − d0|vj1|

2 − d2‖vj1‖‖v
j
2‖

≥ d1‖vj1‖
2 − d0|vj1|

2 − d1

6
‖vj1‖

2 − 3d2
2

2d1
‖vj2‖

2,

and finally for the stiffness term〈
Kuj1, v

j
1

〉
=

1

τ

〈
Kuj1, u

j
1 − u

j−1
1

〉 (11.4)

≥ 1

2τ

∣∣K1/2uj1
∣∣2 − 1

2τ

∣∣K1/2uj−1
1

∣∣2.
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For the right-hand side of (11.7) we obtain with the Cauchy-Schwarz inequality, followed
by an application of Youngs inequality,

〈
F j , vj1

〉
−ρ
〈
wj2, v

j
1

〉
−
〈
Kuj2, v

j
1

〉
≤ ‖F j‖V∗‖vj1‖+ ρ|wj2||v

j
1|+ k2‖uj2‖‖v

j
1‖

≤ 3

2d1
‖F j‖2V∗ +

d1

6
‖vj1‖

2 +
ρ2

4d0
|wj2|

2 + d0|vj1|
2 +

3k2
2

2d1
‖uj2‖

2 +
d1

6
‖vj1‖

2.

Summarizing, we multiply (11.7) by 2τ and use the above estimates to obtain

ρ
[
|vj1|

2 − |vj−1
1 |2 + |vj1 − v

j−1
1 |2

]
+ τd1‖vj1‖

2 − 4τd0|vj1|
2 +

∣∣K1/2uj1
∣∣2 − ∣∣K1/2uj−1

1

∣∣2
≤ τ

[
3

d1
‖F j‖2∗ +

3k2
2

d1
‖uj2‖

2 +
3d2

2

d1
‖vj2‖

2 +
ρ2

2d0
|wj2|

2

]
.

(11.8)

With the estimates of uj2, vj2, and wj2 from equation (11.6) we can bound the right-hand

side of the latter estimate by cτ(‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗). Therein, c > 0
denotes a generic constant which depends on CB− , ρ, d0, d1, d2, and k2.

Before we sum over j and make benefit of several telescope sums, we have to deal with

the term 4τd0|vj1|2 on the left-hand side of (11.8). For this, we use arguments which are
used to prove discrete versions of the Gronwall lemma [Emm99]. With κ := 4d0/ρ and
aj := (1− κτ)j , we estimate

ρ
[
aj |vj1|

2 − aj−1|vj−1
1 |2 + aj−1|vj1 − v

j−1
1 |2

]
+ τd1a

j−1‖vj1‖
2 + aj

∣∣K1/2uj1
∣∣2 − aj−1

∣∣K1/2uj−1
1

∣∣2
= aj−1

[
ρ(1− κτ)|vj1|

2 − ρ|vj−1
1 |2 + ρ|vj1 − v

j−1
1 |2 + τd1‖vj1‖

2

+ (1− κτ)
∣∣K1/2uj1

∣∣2 − ∣∣K1/2uj−1
1

∣∣2]
≤ aj−1

[
ρ|vj1|

2 − ρ|vj−1
1 |2 + ρ|vj1 − v

j−1
1 |2 + τd1‖vj1‖

2 − 4τd0|vj1|
2

+
∣∣K1/2uj1

∣∣2 − ∣∣K1/2uj−1
1

∣∣2]
(11.8)

≤ aj−1τc
(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)
.

Note that we have used the fact that, due to the assumption on the step size τ , 0 < aj < 1
for all j ≥ 1 and κ ≥ 0. The summation of this estimate for j = 2, . . . , k then yields

ρak
∣∣vk1 ∣∣2 + ρ

k∑
j=2

aj−1
∣∣vj1 − vj−1

1

∣∣2 + τd1

k∑
j=2

aj−1‖vj1‖
2 + ak

∣∣K1/2uk1
∣∣2

≤ ρa1
∣∣v1

1

∣∣2 + a1
∣∣K1/2u1

1

∣∣2 + τc

k∑
j=2

aj−1
(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)
.
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Finally, we divide by ak and use the estimates aj > ak for j < k and a−k ≤ 4κT , cf. the
proof of Theorem 10.24. This then leads to the final result

ρ
∣∣vk1 ∣∣2 + ρ

k∑
j=2

∣∣vj1 − vj−1
1

∣∣2 + τd1

k∑
j=2

∥∥vj1∥∥2
+ k1

∥∥uk1∥∥2

≤ 4κT
{
ρ
∣∣v1

1

∣∣2 + k2

∥∥u1
1

∥∥2
+ τc

k∑
j=2

(
‖F j‖2V∗ + ‖Gj‖2Q∗ + ‖Ġj‖2Q∗ + ‖G̈j‖2Q∗

)}
.�

11.2.2. Definition of Global Approximations. In this section, we define the global ap-
proximations of u1, u2, v2, and w2. First, we define U1,τ , Û1,τ : [0, T ]→ VB by

U1,τ (t) := uj1, Û1,τ (t) := uj1 + (t− tj)vj1
if t ∈ ]tj−1, tj ] for j ≥ 2 with U1,τ ≡ Û1,τ ≡ u1

1 on [0, t1]. By the stability estimate

(11.5) of Lemma 11.4 we directly obtain the boundedness of U1,τ and Û1,τ in L∞(0, T ;VB)

uniformly in τ . Thus, there exists an element U1 ∈ L∞(0, T ;VB) with U1,τ , Û1,τ
∗−⇀ U1 in

L∞(0, T ;VB) as well as U1,τ , Û1,τ ⇀ U1 in L2(0, T ;VB). Note that the limits of the two
sequences coincide, again because of Lemma 11.4, since∥∥Û1,τ − U1,τ

∥∥2

L2(0,T ;H)
=

n∑
j=1

∫ tj

tj−1

∣∣(t− tj)Duj1∣∣2 dt ≤
n∑
j=1

τ3
∣∣vj1∣∣2 ≤ cτ2M2 → 0.

In an analogous way, we define the piecewise constant functions U2,τ , V2,τ , W2,τ : [0, T ]→
Vc. We set

U2,τ (t) := uj2, V2,τ (t) := vj2, W2,τ (t) := wj2
if t ∈ ]tj−1, tj [ for j ≥ 1 with a continuous extension in t = 0. By equation (11.1b) we

have BU2,τ = Gτ , BV2,τ = Ġτ , and BW2,τ = G̈τ . Thus, Lemma 5.9 implies that

U2,τ → U2, V2,τ → V2, W2,τ →W2 in L2(0, T,V)

where U2, V2, and W2 solve the equations BU2 = G, BV2 = Ġ, and BW2 = G̈, respectively.
This means nothing else than the (strong) convergence of U2,τ , V2,τ , and W2,τ to the
solutions of (7.14b)-(7.14d).

Finally, we define two approximations of the velocity in form of a piecewise constant
and a piecewise linear approximation, namely

V1,τ (t) := vj1, V̂1,τ (t) := vj1 + (t− tj)Dvj1
if t ∈ ]tj−1, tj ] for j ≥ 2 with V1,τ ≡ V̂1,τ ≡ v1

1 on [0, t1]. An illustration can be seen in
Figure 11.1. For the piecewise constant approximation, by Lemma 11.4, we obtain the

t1 t2 t3

V1,τ

V̂1,τ

Figure 11.1. Illustration of the global approximations V1,τ and V̂1,τ of u̇1.
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estimate

‖V1,τ‖2L2(0,T ;V) =

∫ T

0
‖V1,τ (t)‖2 dt = τ

n∑
j=1

∥∥vj1∥∥2
(11.5)

≤ τ‖v1
1‖2 + cM2.

Thus, for v1
1 ∈ V we have found a uniform bound which implies the existence of V1 ∈

L2(0, T ;VB) with V1,τ ⇀ V1 in L2(0, T ;VB). In the same manner we obtain a bound of
the piecewise linear approximation, since∥∥V̂1,τ

∥∥2

L2(0,T ;V)
= τ‖v1

1‖2 +
n∑
j=2

∫ tj

tj−1

∥∥vj1 + (t− tj)Dvj1
∥∥2

dt ≤ 4τ
n∑
j=1

∥∥vj1∥∥2
.

As before, we show that V1,τ and V̂1,τ have the same limit V1. For this, by Lemma 11.4
we calculate that∥∥V̂1,τ − V1,τ

∥∥2

L2(0,T ;H)
=

n∑
j=1

∫ tj

tj−1

∣∣V̂1,τ (t)− V1,τ (t)
∣∣2 dt ≤ τ

n∑
j=2

∣∣vj1 − vj−1
1

∣∣2 ≤ τcM2 → 0.

The agreement of the limits in L2(0, T ;V) then follows from the assumed embedding
V ↪→ H due to the Gelfand triple. In the following we show that the limit function V1

equals the derivative of U1 in the generalized sense. For this, we use the limits Û1,τ ⇀ U1

and V1,τ ⇀ V1 in L2(0, T ;VB). Note, however, that d
dt Û1,τ = V1,τ a.e. but not in the

interval [0, τ ]. Applying the integration by parts formula with an arbitrary functional
f ∈ V∗B and Φ ∈ C∞0 (0, T ), we may write∫ T

0

〈
f, U1

〉
Φ̇ dt = lim

τ→0

∫ T

0

〈
f, Û1,τ

〉
Φ̇ dt = − lim

τ→0

∫ T

0

〈
f,

˙̂
U1,τ

〉
Φ dt

= − lim
τ→0

∫ T

0

〈
f, V1,τ

〉
Φ dt−

∫ τ

0

〈
f, v1

1

〉
Φ dt = −

∫ T

0

〈
f, V1

〉
Φ dt.

Note that the integral over [0, τ ] vanishes in the limit, since the integrand is bounded in-
dependently of the step size. As a result, the limit function U1 has a generalized derivative
and U̇1 = V1 ∈ L2(0, T ;VB).

Finally, we mention that also D(V1,τ + V2,τ ) gives a uniformly bounded sequence in
L2(0, T ;V∗) due to the continuity of the damping operator D. Thus, there exists a weak
limit a ∈ L2(0, T ;V∗) with

D(V1,τ + V2,τ ) ⇀ a in L2(0, T ;V∗).

One aim of the next subsection is to show that a equals D(V1 +V2). Before we pass to the
limit and analyse the behavior of the (weak) limits, we summarize the convergence results
of this subsection:

Assume right-hand sides F ∈ L2(0, T ;V∗), G ∈ H2(0, T ;Q∗) and initial approximations
u1

1, v1
1 ∈ VB. Then, we have

U1,τ , Û1,τ ⇀ U1, V1,τ , V̂1,τ ⇀ V1 in L2(0, T ;VB),(11.9a)

U2,τ → U2 = B−G, V2,τ → V2 = B−Ġ, W2,τ →W2 = B−G̈ in L2(0, T ;Vc),(11.9b)

D(V1,τ + V2,τ ) ⇀ a in L2(0, T ;V∗).(11.9c)
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11.2.3. Passing to the Limit. In order to pass to the limit for τ → 0 it is beneficial to
rewrite the semi-discretized equation (11.1a) in terms of the global approximations from
Section 11.2.2. The space of test functions is still restricted to the space VB in order to
remove the Lagrange multiplier from the system. The semi-discrete system has the form

ρ
( ˙̂
V1,τ +W2,τ

)
+D

(
V1,τ + V2,τ

)
+K

(
U1,τ + U2,τ

)
= Fτ(11.10)

for a.e. t ∈]τ, T ]. Writing equation (11.10) in its actual meaning with test functions v ∈ VB
and Φ ∈ C∞0 (0, T ), cf. Section 4, and applying the integration by parts formula once, we
get

∫ T

0
−
〈
ρV̂1,τ , v

〉
Φ̇ +

〈
ρW2,τ , v

〉
Φ +

〈
D
(
V1,τ + V2,τ

)
, v
〉
Φ +

〈
K
(
U1,τ + U2,τ

)
, v
〉
Φ dt

=

∫ T

0

〈
Fτ , v

〉
Φ dt.

Passing to the limit for τ → 0, we then obtain by the achievements of the previous
subsection, see the summary in (11.9), that

∫ T

0

〈
ρV1, v

〉
Φ̇ dt =

∫ T

0

〈
ρW2 + a+K

(
U1 + U2

)
−F , v

〉
Φ dt.

Recall that a denotes the weak limit of D(V1,τ + V2,τ ) in L2(0, T ;V∗). This implies that

V1 has a generalized derivative V̇1 ∈ L2(0, T ;V∗B) which satisfies the equation

ρV̇1 + ρW2 + a+K(U1 + U2) = F in V∗B.(11.11)

The remaining part of this section is devoted to that proof that the weak limits U1, U2,
V2, and W2 solve the operator DAE (7.14a) in V∗B. With equation (11.11) at hand, it
remains to show that a equals D(V1 +V2). In order to show this, we give two preparatory
lemmata.

Lemma 11.5. At the final point in time, the sequence V̂1,τ satisfies V̂1,τ (T ) ⇀ V1(T )
in H. Furthermore, we obtain the estimate

lim inf
τ→0

〈 ˙̂
V1,τ , V1,τ

〉
≥
〈
V̇1, V1

〉
.

Proof. The proof follows the ideas of the proof of [ET10b, Th. 5.1] adapted to the

given operator equation. First we show that V̂1,τ (T ) ⇀ V1(T ) in H as well as V̂1,τ (0) =

V1(0). Because of the stability estimate in Lemma 11.4, the final approximation V̂1,τ (T ) =
vn1 is uniformly bounded in H. Thus, there exists a weak limit ξ ∈ H which satisfies

vn1 = V̂1,τ (T ) ⇀ ξ in H.
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Through the integration by parts formula and with w ∈ VB and Φ ∈ C1([0, T ];R), we
obtain

ρ
(
V1(T ), w

)
Φ(T )− ρ

(
V1(0), w

)
Φ(0)

=
〈
ρV̇1, wΦ

〉
+
〈
ρV1, wΦ̇

〉
(11.11)

=
〈
F − ρW2 − a−K(U1 + U2), wΦ

〉
+
〈
ρV1, wΦ̇

〉
(11.10)

=
〈
F − Fτ , wΦ

〉
− ρ
〈
W2 −W2,τ , wΦ

〉
−
〈
a−D(V1,τ + V2,τ ), wΦ

〉
−
〈
K(U1 + U2)−K(U1,τ + U2,τ ), wΦ

〉
+
〈
ρV1, wΦ̇

〉
+
〈
ρ

˙̂
V1,τ , wΦ

〉
=

〈
F − Fτ , wΦ

〉
− ρ
〈
W2 −W2,τ , wΦ

〉
−
〈
a−D(V1,τ + V2,τ ), wΦ

〉
−
〈
K(U1 + U2)−K(U1,τ + U2,τ ), wΦ

〉
+ ρ
〈
V1 − V̂1,τ , wΦ̇

〉
+ ρ
(
V̂1,τ (T ), w

)
Φ(T )− ρ

(
V̂1,τ (0), w

)
Φ(0)

→ ρ
(
ξ, w

)
Φ(T )− ρ

(
v1

1, w
)
Φ(0).

Thus, we have vn1 = V̂1,τ (T ) ⇀ ξ = V1(T ) in H and V (0) = v1
1. Note that at this point we

need that the embedding VB ↪→ H is dense. A direct consequence of the weak convergence
is that |V1(T )| ≤ lim infτ→0 |vn1 |. With the calculation

〈 ˙̂
V1,τ , V1,τ

〉
=

n∑
j=1

〈
vj1 − v

j−1
1 , vj1

〉
≥ −1

2

n∑
j=1

(∣∣vj−1
1

∣∣2 − ∣∣vj1∣∣2) =
1

2
|vn1 |2 −

1

2
|v1

1|2

we finally conclude

lim inf
τ→0

〈 ˙̂
V1,τ , V1,τ

〉
≥ 1

2
lim inf
τ→0

(
|vn1 |2 − |v1

1|2
)
≥ 1

2

∣∣V1(T )
∣∣2 − 1

2

∣∣V1(0)
∣∣2 =

〈
V̇1, V1

〉
. �

Remark 11.6. The fact that V̂1,τ (T ) ⇀ V1(T ) in H and V̂1,τ (0) = V1(0), as shown
in Lemma 11.5, implies with the integration by parts formula that for w ∈ VB and Φ ∈
C2([0, T ];R) it holds that

lim
τ→0

〈 ˙̂
V1,τ , wΦ̇

〉
= lim

τ→0
−
〈
V̂1,τ , wΦ̈

〉
+
(
V̂1,τ (T ), w

)
Φ̇(T )−

(
V̂1,τ (0), w

)
Φ̇(0)

= −
〈
V1, wΦ̈

〉
+
(
V1(T ), w

)
Φ̇(T )−

(
V1(0), w

)
Φ̇(0) =

〈
V̇1, wΦ̇

〉
.

The following lemma contains a similar result as in Lemma 11.5 for the stiffness oper-
ator K.

Lemma 11.7. The sequences U1,τ , U2,τ , and V1,τ satisfy the estimate

lim inf
τ→0

〈
K(U1,τ + U2,τ ), V1,τ

〉
≥
〈
K(U1 + U2), V1

〉
.

Proof. Because of the linearity of K and the strong convergence of U2,τ it is suffi-
cient to analyse the limes inferior of 〈KU1,τ , V1,τ 〉 and show that lim infτ→0〈KU1,τ , V1,τ 〉 ≥
〈KU1, V1〉. For this, we proceed as in the proof of Lemma 11.5.

Lemma 11.4 implies the boundedness of Û1,τ (T ) = un1 in V such that there exists

an element ξ ∈ VB with Û1,τ (T ) ⇀ ξ in VB. We show that K1/2ξ = K1/2U1(T ) and

K1/2u1
1 = K1/2U1(0). Using the limit equation (11.11) and the semi-discrete equation
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(11.10) with test functions w ∈ VB and Φ ∈ C2([0, T ];R), we obtain〈
KU1(T ),w

〉
Φ(T )−

〈
KU1(0), w

〉
Φ(0)

=
〈
KU̇1, wΦ

〉
+
〈
KU1, wΦ̇

〉
(11.11)

=
〈
KU̇1, wΦ

〉
+
〈
F − ρW2 − a−KU2 − ρV̇1, wΦ̇

〉
(11.10)

=
〈
F − Fτ , wΦ̇

〉
− ρ
〈
W2 −W2,τ , wΦ̇

〉
−
〈
a−D(V1,τ + V2,τ ), wΦ̇

〉
−
〈
KU2 −KU2,τ , wΦ̇

〉
− ρ
〈
V̇1 − ˙̂

V1,τ , wΦ̇
〉

+
〈
KU̇1, wΦ

〉
+
〈
KU1,τ , wΦ̇

〉
.

Passing to the limit with τ → 0, we make use of Remark 11.6 which implies that the term
including V̇1 vanishes. In addition, we use the fact that, passing to the limit, we may
replace U1,τ by Û1,τ since they have the same weak limit. Thus, another application of
the integration by parts formula then leads to〈

KU1(T ), w
〉
Φ(T )−

〈
KU1(0), w

〉
Φ(0) =

〈
Kξ, w

〉
Φ(T )−

〈
Ku1

1, w
〉
Φ(0).

Since 〈K·, ·〉 defines an inner product in VB, we conclude that U1(T ) = ξ and U1(0) = u1
1 in

VB. As a result, we obtain K1/2un1 ⇀ K1/2ξ = K1/2U1(T ) in H and K1/2u1
1 = K1/2U1(0).

Since U1,τ and V1,τ are both piecewise linear, as in the proof of Lemma 11.5, we may
calculate that〈

KU1,τ , V1,τ

〉
=

n∑
j=1

〈
Kuj1, u

j
1 − u

j−1
1

〉
≥ 1

2

〈
Kun1 , un1

〉
− 1

2

〈
Ku1

1, u
1
1

〉
+ τ
〈
Ku1

1, v
1
1

〉
=

1

2

∣∣K1/2un1
∣∣2 − 1

2

∣∣K1/2u0
1

∣∣2 + τ
〈
Ku1

1, v
1
1

〉
.

Note that the term τ〈Ku1
1, v

1
1〉 vanishes as τ → 0, since u1

1 and v1
1 are fixed. By the

property |K1/2U1(T )| ≤ lim infτ→0 |K1/2un1 | we finally summarize the partial results to

lim inf
τ→0

〈
KU1,τ , V1,τ

〉
≥ lim inf

τ→0

1

2

∣∣K1/2un1
∣∣2 − 1

2

∣∣K1/2u1
1

∣∣2
≥ 1

2

∣∣K1/2U1(T )
∣∣2 − 1

2

∣∣K1/2U1(0)
∣∣2 =

〈
KU1, U̇1

〉
=
〈
KU1, V1

〉
. �

With the previous two lemmata we are now able to prove that the limit of the damping
term equals the damping operator applied to the limit functions.

Theorem 11.8. Assume right-hand sides F ∈ L2(0, T ;V∗), G ∈ H2(0, T ;Q∗) and
initial approximations u1

1 = g0, v1
1 = h0 ∈ VB. Then, we have a = D(V1 + V2) and thus,

the (weak) limits U1, U2, V2, and W2 solve the operator DAE (7.14a) for test functions
v ∈ VB.

Proof. Again we follow the ideas of [ET10b, Th. 5.1] where a first-order system is
analyzed. We consider the semi-discrete equation (11.10) tested by V1,τ and subtract the
term 〈D(V1,τ + V2,τ ) − Dw, V1,τ + V2,τ − w〉 with w ∈ L2(0, T ;V), which is non-negative
because of the monotonicity of the damping operator. This then leads to

0 ≥
〈
ρ

˙̂
V1,τ , V1,τ

〉
+
〈
ρW2,τ , V1,τ

〉
+
〈
K
(
U1,τ + U2,τ

)
, V1,τ

〉
−
〈
Fτ , V1,τ

〉
+
〈
D
(
V1,τ + V2,τ

)
, w − V2,τ

〉
+
〈
Dw, V1,τ + V2,τ − w

〉
.
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The application of the limes inferior on both sides in combination with Lemmata 11.5 and
11.7 then leads to

0 ≥
〈
ρV̇1, V1

〉
+
〈
ρW2, V1

〉
+
〈
K(U1 + U2), V1

〉
−
〈
F , V1

〉
+
〈
a,w − V2

〉
+
〈
Dw, V1 + V2 − w

〉
.

Note that we have used the fact that the sequences V2,τ and W2,τ converge strongly in
L2(0, T ;V) and that a equals the weak limit of D(V1,τ +V2,τ ). Rearranging the terms and
applying the limit equation (11.11), we then obtain〈

Dw,w − V1 − V2

〉
≥

〈
ρV̇1 + ρW2 +K(U1 + U2)−F , V1

〉
+
〈
a,w − V2

〉
(11.11)

= −
〈
a, V1

〉
+
〈
a,w − V2

〉
=

〈
a,w − V1 − V2

〉
.

Following again the Minty trick as in the proof of Theorem 10.22, i.e., choosing w :=
V1 + V2 + sv with an arbitrary function v ∈ L2(0, T ;V) and different signs for s, we

conclude that a = D(V1 + V2). Thus, with V1 = U̇1 the limit equation (11.11) turns to

ρÜ1 + ρW2 +D(U̇1 + V2) +K(U1 + U2) = F in V∗B.

It remains to check whether U1 satisfies the initial conditions. Note that U̇1(0) = V1(0) =
v1

1 = h0 was shown within the proof of Lemma 11.7, whereas U1(0) = u1
1 = g0 was proved

in Lemma 11.5. �

11.2.4. Lagrange Multiplier. In this subsection we analyse the limiting behavior of the
Lagrange multiplier. Recall that the approximation of the Lagrange multiplier, namely
λj , is given by equation (11.1a), i.e.,

ρDvj1 + ρwj2 +D
(
vj1 + vj2

)
+K

(
uj1 + uj2

)
+ B∗λj = F j in V∗.

In terms of the global approximations from Section 11.2.2 and with Λτ (t) := λj for t ∈
]tj−1, tj ], this equation can be written in the form

ρ
( ˙̂
V1,τ +W2,τ

)
+D

(
V1,τ + V2,τ

)
+K

(
U1,τ + U2,τ

)
+ B∗Λτ = Fτ in V∗.(11.12)

As in Section 10 for first-order systems, we are not able to find a uniform bound of Λτ
in L2(0, T ;Q). This is caused by the missing upper bound of τ

∑n
j=1 ‖Dv

j
1‖2V∗ . Hence,

we show that the primitive of Λτ , namely Λ̃τ , converges to the solution of the considered
operator DAE in a weaker sense.

In order to obtain an equation for Λ̃τ , we have to integrate equation (11.12) over the
interval [0, t]. For an arbitrary test function v ∈ V, this then leads to the equation〈

ρ
(
V̂1,τ + W̃2,τ

)
, v
〉

+
〈
D̃, v

〉
+
〈
K
(
Ũ1,τ + Ũ2,τ

)
, v
〉

+
〈
B∗Λ̃τ , v

〉
=
〈
F̃τ , v

〉
+
〈
ρv1

1, v
〉

with F̃τ , Ũ1,τ , Ũ2,τ , and W̃2,τ denoting the primitives of Fτ , U1,τ , U2,τ , and W2,τ , respec-
tively, and 〈

D̃(t), v
〉

:=

∫ t

0

〈
D
(
V1,τ (s) + V2,τ (s)

)
, v
〉

ds.

Note that the term ρv1
1 = ρV̂1,τ (0) is independent of time and occurs due to the integration

of
˙̂
V 1,τ .

As for first-order systems, we are now able to bound Λ̃τ in C([0, T ];Q). Because of

(5.13), Fτ is bounded in L2(0, T ;V∗) which implies that its primitive F̃τ is uniformly
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bounded in C([0, T ];V∗). Furthermore, we have shown in Section 11.2.2 the boundedness

of U1,τ , U2,τ , and W2,τ in L2(0, T ;V). Thus, the primitives Ũ1,τ , Ũ2,τ , and W̃2,τ are
bounded in C([0, T ];V). With the Cauchy-Schwarz inequality, we calculate

max
t∈[0,T ]

∣∣〈D̃(t), v
〉∣∣ (11.3)

≤ d2

∫ T

0
‖V1,τ (s) + V2,τ (s)‖‖v‖ ds ≤ d2T

1/2‖V1,τ + V2,τ‖L2(0,T ;V)‖v‖.

The boundedness of V1,τ +V2,τ in L2(0, T ;V) was already shown in Section 11.2.2. Finally,
the estimate

max
t∈[0,T ]

|V̂1,τ (t)| ≤ max
j
|vj1|

(11.5)

≤ ce2d0T/ρM

shows with the inf-sup constant β from Lemma 7.1 the boundedness of

∥∥Λ̃τ
∥∥
C([0,T ];Q)

≤ 1

β
max
t∈[0,T ]

sup
v∈V

〈
B∗Λ̃τ (t), v

〉
‖v‖

.

As a result, there exists a limit function Λ̃ ∈ Lp(0, T ;Q) such that

Λ̃τ ⇀ Λ̃ in Lp(0, T ;Q)

for all 1 < p <∞. This then leads to the following convergence result.

Theorem 11.9. Assume right-hand sides F ∈ L2(0, T ;V∗), G ∈ H2(0, T ;Q∗) and

initial data u1
1 = g0, v1

1 = h0 ∈ VB. Then, the weak limit Λ̃ of the sequence Λ̃τ in
L2(0, T ;Q) solves together with U1, U2, V2, and W2 system (7.14) in the weak distributional
sense, meaning that for all v ∈ V and Φ ∈ C∞0 (0, T ) it holds that∫ T

0
−ρ
〈
U̇1, v

〉
Φ̇ +

〈
ρW2 +D

(
U̇1 + V2

)
+K

(
U1 + U2

)
−F , v

〉
Φ−

〈
B∗Λ̃, v

〉
Φ̇ dt = 0

as well as BU2 = G, BV2 = Ġ, and BW2 = G̈. Furthermore, U1 satisfies the initial
conditions U1(0) = g0 and U̇1(0) = h0.

Proof. Considering once more equation (11.12) and integrating by parts, for all v ∈ V
and Φ ∈ C∞0 (0, T ) we obtain∫ T

0
−ρ
〈
V̂1,τ , v

〉
Φ̇+

〈
ρW2,τ +D

(
V1,τ +V2,τ

)
+K

(
U1,τ +U2,τ

)
−Fτ , v

〉
Φ−

〈
B∗Λ̃τ , v

〉
Φ̇ dt = 0

By the weak convergence of Λ̃τ , we conclude that∫ T

0

〈
B∗Λ̃τ , v

〉
Φ̇ dt →

∫ T

0

〈
B∗Λ̃, v

〉
Φ̇ dt.

The convergence of all the remaining terms - also for test functions v ∈ V - as well as the
satisfaction of the initial conditions was already shown in Theorem 11.8. �

In summary, we could prove the strong convergence of u2, v2, and w2, the weak
convergence of the differential variable u1, and the convergence in the weak distributional
sense of the Lagrange multiplier λ. This result emphasizes that the Lagrange multiplier
behaves qualitatively different than the deformation variables.
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11.3. Influence of Perturbations. As for first-order systems in Section 10.4, we
analyse in this subsection the influence of perturbations in the right-hand sides. For this,
we consider δj ∈ V∗ as well as θj , ξj , ϑj ∈ Q∗. As before, we indicate the solution of the
perturbed problem by ·̂. The differences of the exact and perturbed solution are denoted
by

ej1 := ûj1 − u
j
1, ej2 := ûj2 − u

j
2, ejv := v̂j2 − v

j
2, ejw := ŵj2 − w

j
2.

The initial errors in u1
1 and v1

1 are denoted by e1
1 and ė1

1, respectively. Considering only
test functions in VB, these errors then satisfy the equation

ρDDej1 + ρejw +D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
+K

(
ej1 + ej2

)
= δj .(11.13a)

Furthermore, ej2, ejv, and ejw satisfy in Q∗ the equations

Bej2 = θj , Bejv = ξj , Bejw = ϑj .(11.13b)

Equations (11.13b) directly lead to the estimates

‖ej2‖ ≤ CB−‖θj‖Q∗ , ‖ejv‖ ≤ CB−‖ξj‖Q∗ , ‖ejw‖ ≤ CB−‖ϑj‖Q∗ .

From equation (11.13a) we obtain an estimate of the resulting error ej1. For this, we may

follow again the lines of Lemma 11.4 and test the equation by Dej1. The only difference
takes place is the estimate of the damping term for which we obtain here〈
D
(
v̂j1+v̂j2

)
−D

(
vj1 + vj2

)
, Dej1

〉
=

〈
D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
, Dej1 + ejv

〉
−
〈
D
(
v̂j1 + v̂j2

)
−D

(
vj1 + vj2

)
, ejv
〉

(11.3)

≥ d1

∥∥Dej1 + ejv
∥∥2 − d0

∣∣Dej1 + ejv
∣∣2 − d2

∥∥Dej1 + ejv
∥∥∥∥ejv∥∥.

Following the remaining parts of the proof of Lemma 11.4, for k ≥ 2 we then yield an
estimate of the form

ρ
∣∣Dek1∣∣2 + ρ

k∑
j=2

∣∣Dej1 −Dej−1
1

∣∣2 + τd1

k∑
j=2

∥∥Dej1 + ejv
∥∥2

+ k1

∥∥ek1∥∥2 ≤ ce4d0T/ρM2
e .

Note that the calculation includes a restriction on the step size. The constant Me then
includes the initial errors as well as the perturbations. More precisely, assuming pertur-
bations of comparable magnitude as in Remark 10.11, we have

M2
e = |ė1

1|2 + ‖e1
1‖2 + T

[
‖δ‖2V∗B + ‖θ‖2Q∗ + ‖ξ‖2Q∗ + ‖ϑ‖2Q∗

]
.(11.14)

Summarizing the estimates of this subsection, we obtain the following theorem.

Theorem 11.10. Consider system (11.1) with the operators K, D, and B from Sec-
tion 11.1 and perturbations δj ∈ V∗ and θj, ξj, ϑj ∈ Q∗ which are all of the same order
of magnitude. With the constant Me from (11.14) and a sufficiently small step size τ the
errors ek1, ek2, ekv, and ekw then satisfy

‖ek1‖2 + ‖ek2‖2 + ‖ekv‖2 + ‖ekw‖2 ≤ ce4d0T/ρM2
e .

As already seen in the previous sections, estimates of the Lagrange multiplier are more
involved. Only in the linear case of first-order systems in Section 10.4 we were able to
bound the error in the Lagrange multiplier in terms of the perturbations. For this, we have

assumed δ ∈ H∗ and an orthogonality which ensures that Dej1 only appeares in the weaker
norm of the space H instead of V. Such an assumption seems unfeasible here because of
the nonlinear damping operator. As a consequence, we are not able to provide comparable
results for the present nonlinear case.



12. Summary and Outlook

Within this thesis we have introduced a regularization technique for semi-explicit op-
erator DAEs as they appear in the dynamics of fluid flows or elastodynamics. We have
shown that this reformulation does not change the solution set and that it can be seen as
an index reduction (as known for DAEs) on operator level. Besides the well-posedness of
the resulting operator DAE, the advantages of the regularization in terms of the numerical
simulation have been displayed in detail.

Following the method of lines, i.e., discretizing in space first, we have obtained a DAE
which is of lower index compared to the DAE we would get from the spatial discretiza-
tion of the original equations. As known from the theory of DAEs, a lower index implies
more robustness in terms of perturbations. The numerical example stresses the obtained
robustness of the regularized system as we could gain a stable approximation of the pres-
sure variable with relatively large errors within an iterative solver routine. Finally, we
have observed that a semi-discretization of the regularized operator DAE leads to the
same index-1 DAE as an application of minimal extension to the DAE resulting from the
original operator DAE. Thus, the use of the regularization process facilitates the imple-
mentation of adaptive schemes as the index remains one, independent of the underlying
finite element mesh. This means that an adaptation of the mesh does not call for another
index reduction step.

Applying the method of Rothe, i.e., discretizing in time first, we have obtained a
sequence of stationary PDEs which have to be solved in every time step. Due to the absence
of the time-dependence, the underlying DAE structure looses its visibility. Nevertheless,
the regularized operator equations are less sensible to perturbations in the right-hand sides.
Note that this is of enormous practical importance, since spatial discretization errors may
be interpreted as such perturbations. Furthermore, we have proved the convergence of the
Euler scheme for first-order operator DAEs in the linear case. For a second-order system,
as it appears in the dynamics of elastic media including a nonlinear damping term, we
have proved the convergence of an analogous time integration scheme.

As the field of operator DAEs is wide and still not well-understood in several aspects,
there remain many open problems. Linked to this thesis, the regularization procedure may
be extended to further applications such as electromagnetics or generalized to a larger
class of systems. In particular, this may contain coupled systems which maintain the
semi-explicit structure if the coupling is realized with the help of the Lagrangian method.
Since the system structure has been crucial for the regularization process, more general
systems may call for different strategies.

Also in the analysis of temporal discretization schemes for operator DAEs there exists
a great potential for improvements. One may apply other discretization schemes such as
Runge-Kutta schemes in order to obtain the convergence of the Lagrange multiplier not
only in the weak distributional sense. Furthermore, it would be preferable to detect the
order of convergence of the discretization scheme in order to implement efficient simulation
tools. For this, the accuracy of the spatial discretization has to be adjusted to the estimated
error of the temporal discretization.
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abstract DAE, 27
abstract function, 11
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backward Euler scheme, see also implicit Euler
scheme

Bochner
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weak distributional sense, 28
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Rayleigh, 60
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discrete derivative, 94, 115
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dual operator, 12
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flexible multibody systems, 71
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Hölder inequality, 19
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index reduction, 9
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Lamé parameters, 59
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method of lines, 36
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