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Cohomology and connections on fiber bundles
and applications to field theories

Christian Gross
Fachbereich Mathematik, TH Darmstadt, Germany
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Given any connection on a fiber bundéM,F,G), we discuss the question which
closed differential forms on the fibd¥ can be extended to closed forms on the
whole bundleB in a canonical way such that the horizontal parts of the extended
forms are given in terms of the gauge fields. Such questions arise for many models
in theoretical physics such as the skyrmion bundle and related theories with non-
Abelian groupsG. We introduce the notion of &-transgressive form as a suffi-
cient condition for the form to be extendable to any bundle which comes along with
a given left actionL:GXF—F. Using Lie algebra cohomology we prove that if
the structure groups of the bundle is semisimple, then every closedorm,

n<2, on the fiber which is invariant undéris G-transgressive and thus defines a
unique de Rham cohomology class on any bundle which comes alonglLwith

© 1996 American Institute of Physid$0022-24886)02011-7

I. MOTIVATION

In theoretical physics the following general problem quite often occurs: suppose a field theory
is defined for some manifoldr, i.e., we have matter fields described by differentiable maps
f:M—F from space-timeM to the manifoldF. (Examples are wide-spread, let us only mention
case of Dirac spinors, wheFe=C*, or the Skyrme model and related theories, wheteSU,, cf.
Skyrme! Witten? and Zahed and Browf). For computations one has integrals like the action
integral, where the Lagrangian is combined with the volume form of space-time, but also integrals
over closed differential formgb on F (i.e., d$=0), which are integrated over space-time by
means of the pullbacks".

Next suppose, we also have a symmetry gr@upnd we gauge our field theory with respect
to this Lie group. From the mathematicians point of view, one has to construct a fiber indle
with base manifoldV, (globa) projection7:B— M, (standargl fiber F and structure groufs,
that acts orF via an effective left actioh.: G X F—F, cf. Steenrofior Kobayashi and Numizu.

For a coveril={U_,},. Of the base manifoldM, we have a bundle atlgfU,,#,)}.ca With
local trivializationsy, : 7~ (U ,)—U XF, local projectionsr,=prg © i, onto F and local in-
jectionsi, x=(,.,) ~* of F onto the fiber ovex € M, wherem,, : =T ol m1(x) 7~ Y(x)—F. For
everyf e F andg e G defineL":G—F andLy:F—F by Lf(g)ng(f):L(g,f). Then on every
overlap regionU,;=U,NU; the change of bundle charts is given by transition functions
Uap Uap=U,NUz—G, suchthatr, yo (mgy) 1=, x°i5x= Lo, 00 forallx e U,g.

The bundleB(M,F,G) is associated to a principal bundM ,G), where the structure group
acts on itself by left multiplication. We will use the same symbeals ,, 7,, etc., for the
bundlesP andB. On the principle bundle we also have a free right ackbRPXG—P and a
connectionl” defined by a connection 1-form' and its exterior covariant derivative, the curva-
ture 2-formQ'. Let e denote the neutral element 6f and o, o:U,— 7 *(U,) = P|Ua denote
the local sections given by, o(X):= ¢, (x,e). (Recall that a sectionr obeysm ° o=id),.) Then
the gauge potentials Aand the gauge fields*Fof the field theory are the local forms on the sets
U, defined by A=c, (0", resp., E=0o, Q.

Now the problem is as follows: since the matter fields now appear as global sections
f:M—B, it is necessary to “generalize” the given closed differential forghs= . Z(F) to the
bundle casésuch that the pullbacks" ¢ are well-definegl one needs a closed forgh € . Z(B)
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6376 Christian Gross: Cohomology and connections on fiber bundles and applications

such that) reproducesp when restricted to the fibergi=i’, ,4 foralla € Aand allx e U, .

Recall that the de Rham cohomology of a manifold denotes the vector space of the closed
forms modulo the exact forms on the manifold, i.e., it denotes the kernel of the exterior derivative
d:.Z(M)—.Z(M),. 7, 1(M)—.7,(M) modulo its image. Sincel is a differential operator
(dOd=0), all exact forms are closed and thus the vector space of the closed modulo the exact
p-forms is well-defined. This quotient space is called fh¢h de Rham cohomology group
HP(M) and the(total) cohomology ofM means the direct sud*(M):=& ;_HP(M).

We may reformulate the problem in terms of the de Rham cohomology: Given a cohomology
clasq ¢] € H*(F) we ask whether¢] generates a cohomology clasg ifil € H* (B), such that
[¢]=[i, ][ ¢]. Moreover, we also need a representaipvéor this generated cohomology class.

The problem of computing the cohomology of a fiber bundle fidi(M) andH* (F) is a
delicate mathematical problem. For a trivial bundle, i.e., a direct prollUxtF, we have the
Klnneth formula

H* (MXF)=H*(M)®H* (F).

This formula is based on the fact that we have two global projectiopsapd pg. Using their
pullbacks we may extend any form d&h andF to the bundle. Sincd commutes with pullbacks,

this also holds for the cohomology classes. For a nontrivial bundle we only have one global
projection 7r, which indeed allows us to lift any form oM and any cohomology class in
H*(M) onto the bundle.(Nevertheless, the induced homomorphiga* :H* (M)—H*(B)

needs not be injective nor surjectiveXet there is no such mean for forms éhand thus the
situation becomes much more complicated as in the trivial case and leads to the theory of spectral
sequences, cf. Bott and PuSpectral sequences compiité (B) from H* (M) andH* (F). They

also answer the question which closed forms on the fiber can be extended to closed forms on the
bundle and thus generate a unigue cohomology clalds {iB) in the manner above. We call these
forms O-transgressive. Not all closed formsfrare O-transgressive. In general it will depend on

the structure of the bundle whether a given form is O-transgressive: obviously for trivial bundles
all closed forms orF are O-transgressive.

If a form ¢ e .Z(F) is O-transgressive, spectral sequences also provide a formula(Ref.

6, Prop. 9.5. Nevertheless this “Collating formula” involves a partition of unity subordinate to
the given covetl of M. For any such partition the formula gives a different fognwithin the
generated cohomology clagdlote that, a priorig is not unique but defined only up to an exact
form on B, whose restriction to the fibers is zero.

From the physicists point of view, this situation is quite unsatisfactory since a partition of
unity does not bear any physical meaning and there is no reason why one partition — and the
corresponding formyy — should be better than another. In fact one would like to obtain a
representativey for the generated cohomology class that can be associated with the physics in
guestion, that is the gauge potentials and the gauge fields of the field theory.

This takes us back to connections on fiber bundles. Recall that a connection on a fiber bundle
defines global horizontal and vertical projections of vector fields such thaCtti8)-module
7*(B) of the vector fields orB splits: #}(B)=hZ*(B) @ vZ*(B). Once a connection on a
principal bundle is defined via', resp., the gauge potentials‘ Ait also defines connections on
all associated fiber bundles, cf. Section IlI.

In addition,I" defines lifts of vector fields on the base onto horizontal fields on the bundle and
projections of forms on the bundle. These lifts and projections now can be used to extend forms
on the fiber to the bundle. In fact, for every differential fogme . Z(F) that is invariant under the
given left actionL (i.e., L;q§=¢ for all g € G), there exists exactly one vertical form on the
bundle, saypv e .4(B), such thatﬁvl,n.fl(x): ¢. From the physicists point of view, this seems to
be a satisfactory generalization, but unfortunately we are not done with that, since the diagram in
Figure 1 doeshot commute.

J. Math. Phys., Vol. 37, No. 12, December 1996



Christian Gross: Cohomology and connections on fiber bundles and applications 6377

¢ - Qv

dg (dg)v # d(gv).

FIG. 1. Exterior derivative and vertical projection do not commute.

Thus although we start with a closed forgn the generated vertical formhv needs not be
closed. In general, we are not able to find a vertical representative for this cohomology class
generated by a 0-transgressive form, but we need to admit horizontal terms. Thus the question will
be whether we can find such a representative where these horizontal terms are “naturally” given
by the connectior’, in fact, by the gauge fields. In that case, we call the resulting form adapted
toI'. Those forms are candidates for the desired generalizations of closed forms in field theories.

II. BASIC DEFINITIONS

Let M denote any manifold an®,W finite dimensional vector spaces. Every vector field
2 e Z4M) differentiably associates with every e M an element#’, in the tangent space
T«(M). Now Z,(M,V), resp.,.7,(M,V), denote theC*(M)-modules ofp-linear, resp., alter-
natingp-linear, mapsp, : 7(M) X - - - X Z1(M)—C*(M,V). They associate with every e M
an elemenip,= () in Hom(® P T,(M),V), resp., in Alt(T,(M),V), where Alt,(W,V) means
the vector space of all alternating-linear maps fromWP to V. The alternations
Ap:Zp(M,V)— Z,(M,V) are the canonical projections 6f,(M,V) onto. Z,(M,V). The exte-
rior product (or wedge produgtof forms will be denoted by\ : for ¢, € .Z,(M) and ¢,
e . Z(M)wehavep, N\ ¢ :=Ay, ((Dp® b;) € . Zpi (M),

Also if a bilinear mappingp:VXV—V is given,/\ extends to an exterior product , of
V-valued differential forms. Fop= ¢p@v e .Z(M)@V=._4(M,V) andy=¢yo@w € .Z(M)QV,
the exterior product is given by

BN\ = (SN ® (v, W). (1)

Everything in the sequel will also work for infinite dimensional vector spa¢esf we
consider.Z(M)®V instead of #(M,V). Yet for our purposes, we will restrict ourselves to finite
dimensionalV and identify. Z(M)®V and. Z(M,V).

As mentioned above, we are heading for differential forms whose horizontal parts are given in
terms of the gauge fields. Let us denote B&(B)-module of horizontal forms orB by
.#(B)h and the vertical counterpart byZ(B)v. (Note that only.Z,(B) splits into.Z,(B)h
@ .71(B)v, whereas 7y(B)h=.74(B)v=.7y(B)=C"(B) and forp=2 .7,(B) contains also
“mixed” forms, i.e., exterior products of horizontal and vertical forjnsormally one would try
to split a form into a sum¢=23;_,¢;, where the¢, are given byd;=¢* N\ ¢? with ¢}

e .Z(B)handg? e . Z(B)v.

Yet in our case such a splitting is impossible, since the gauge fields and the gauge potentials
are Lie algebra valued differential forms®A .Z,(U,,g) and F € .Z,(U,,g), whereg denotes
the Lie algebra of the structure gro@ In contrast$ € .Z(F) — and thus als@y € .Z(B) —
will be real or complex valued. Thus we need a generalization of the wedge product that combines
g-valued forms with ®---®g)*-valued forms in order to produce real or complex valued
forms. This is the task of the following definition.

Definition 11.1: For x; € .4,(M,Hom(®°%g,V)) and dp € 7p(M,g), p,r,s—1 e Ny, let
di1sp€ Zr4sp(M,V) with

J. Math. Phys., Vol. 37, No. 12, December 1996



6378 Christian Gross: Cohomology and connections on fiber bundles and applications

Arosp( 2L o 2T () =[x 25, o 210 (2T 2P
® @y (TP L2 o)

forallx € M and definee ¢, =A, sp(drrsp) € Zrisp(M,V) andyle gy :=x?2. _

Roughly speaking, the bullet operator means the following: for ang M and .2
e 7AM), Xx(.%;l(, ... .2 defines an element in Hord(g,V). Thus we need vectors ing as
input for this map. But again for any e M and %/ € Z4(M), ¢(Zs, - .., %) defines such a
vector in g. Altogether the combination ofy and s factors ¢ defines an eIemendjfﬂsp
€ Zr.s(M,V). Using the alternatior, . ¢,, we finally obtain a form in7Z, , s((M,V).

Note that this construction works with any finite dimensional vector spéaestead ofg, and
even with differential formsﬁg € Zp(M,Hom(®9X,W)), whereX is another finite dimensional
vector space. In the latter case the construction produces a differential ﬁrmg
€ Zr4sp(M,Hom(®°9X,V)). Yet we only need « in the way defined above, especially for
V=R,Candy; € .7,(M,Sym(g,V)), where Synyg,V) denotes the vector space of symmetric
s-linear maps from g° to V, ie., the image of the canonical symmetrization
Sym:Hom(®3g,V) —Hom(®°%g,V).

For vectorsgj € g, j=1,... s, letE;®---®Es: Hom(®%,V)—V denote the canonical
(evaluation morphism. For any forny; € ..%,(M,Hom(®°g,V)) define)(rEl """ Fs e A#(M,V) to
be the push-out of; under this morphisrrp'(rEl’ o Fs, =(E1® --®Ey),x; i.e., forallx e M and
2'e M), i=1,...r,

(XU B (2L 2 = (B ®E e (XKLL, 2T
=[(XD(Z%s -+ 2 PNEL® - ®Ey). 2
With this convention we obtain the following lemma: '
Lemmall.2: Letpr,s—1 e Ny. If $,=3{L,¢'®E; with¢' e .Z,(M) andE e g, then

Ei ..... Ei H H
X?od,p:i 2 Xt s/\¢I1/\.../\¢Is_

Proof: Takex e M and.Z"' € Z*(M). Then ford, , s, in Definition Il we obtain

(drsspx(Z5, oo 273°P):
=X L5 - 2N 2 2P

Q- - .®¢X(!%';+(S*l)p+1’ o '.%.;+sp))
m
= 2 Ixx(2L, .. 2D (Ej.®@---®F)
[T |S=1 1 s

= 3L

S
lic pr+(j—1p+1 T +]
.Hl G2 TUTIREL gy,
&
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Thus if S; , 5, denotes the group of permutationsref sp elements and- 1)” means the signum
ofp € S 15p, Weget

(er'(f’p)x(%‘)lw o “%i;JrSp)::[Ar+sp(dr+sp)]x(5éq>%a e 1‘%‘;+Sp)
m

E‘, (-7 Ei ..., E .
= 2 rspn, 2 LG g ]
€>r+sp L s=

S
T Slizet+i-ve+n) 0 ertip)y
j=1
m
— E A Bip- B g is 21 TSP
_i | 1[ r-%—sp()(r ®P1IR - ®P's) (A, AR
1o s~
m
=l X 1eri1 """ S ANGIA-Ais| (2L, 2T,
ERERE, s=

X

where the last identity follows immediately from the definition of the exterior product [
Lemma 1.2 proves that ifp is even, then only the symmetric part off counts:
Xr* #p=(Sym.x;)* ¢, . Thus we may concentrate aif € .4,(M,Symy(g,V)), in order to con-
struct formsy;*F with the 2-forms E.
Let Ad*:GXHom(®3g,V)—Hom(®°%g,V) denote the right representation induced by the
adjoint action: folk e Hom(®5g,V), g € G andE; € g, itis defined by

(Ad(9)*K)(Eq, ... ,Eg):=K(Ad(Q)E,, ... ,AdQ)E).

A differential form xje.Z,(F,Hom(®%,V)) is called @G-)equivariant if Lgx;

= (Ad(g™Y*).x5. (For s=0 this obviously means tha{tﬂ is invariant undel..) On the other
hand a differential form¢ e . #(F,g) is called G-)equivariant ifL*¢=Ad(g),#, €.g., 0"

e 71(P,g) and Q' e _7,(P,g) are equivariant, sinceng%:Ad(gfl)*wF, resp.,
RyQ'=Ad(g™").0Q". We denote the sets of these equivariant differential forms by
A(F,HoM(®°g,V))equiv: resp., . Z(F,g)equyv- They are modules of the exterior algebra
2(P);n Of invariant differential forms.

Lemma I1.3: Ify;, € .Z,(F,Hom(®°g,V))equvand ¢, € Zy(F,g)equiv: thenxpe ¢, is invari-
ant.

For our purposes we also need further operators on differential forms that transform
V-valued forms into Alt(g,V)-valued forms. Recall that for any Lie group actibnGXF—F,
every X e g canonically induces a vector fielty e Z*(F) by (%y)s:=(dLN(X), where
(dL":Te(G)— T (F) denotes the differential of the mag. The operator #:g— Z*(F) is a
Lie algebra homomorphism, in fact we have

[%X1ZY]:%[Y,X]: - '%[X,Y] for all X,Yeg, (3)
(Lg)wZx=%pdqgx forall geG,Xeg. (4)

Analogously for the right actiof® on a principal bundle2:g— Z*(P) is a Lie algebra homo-
morphism, and the”Zy are the so-called fundamental vector fieldsRinNow we may define:

Definition 11.4: Let L be a Lie group action of G on F and, € .Z,(F,V). We define
differential forms lgw,, € . Z,_i(F,Altj(g,V)), i=0,...n, forall .23 ¢ ZYF), E, € gand f
e F by

J. Math. Phys., Vol. 37, No. 12, December 1996



6380 Christian Gross: Cohomology and connections on fiber bundles and applications

A A ! A .
[(Lewn) (2L, ... . 2" ) (f)](E4, ... ,Ei):=mi—i)!wn(;%’1, A2 2 () eV,

where :%":=:%;Ei. For i>n we put li.wn=0. In the case #1 we also define fory;
€. Z,(F,Hom(®°%g,V))

Lexp:=Sym(Lex;) €. Zn-1(F,Sym,1(g,V)).

(Obviously Sym(Li.Xﬁ)ZO for i>1) Now if 1,:.7,(M,V)—_7,_1(M,V) denotes the
interior product with respect t&” e Z*(M), which is given by

(I,l'wn)((?/lr LRC 1lf//nil)::nwn(*%‘!(f2/ly EC 1(?/n71)1
then we have the following relation with regard to our conventi@n
(Lo@n)pty  F1=(1gie - o1 1)y
The following lemma is quite immediate ky):

Lemma I1.5: For all in, the operator li.:.//}n(F,V)—>.,/én_i(F,AIti(g,V))is
C”(F)-linear. Forw, € ..%,(F,V) andy; e An(F,HOoM(®°g,V)) equivWe have

Lewr=w,, (Lgw,)(H=n![(LH*w,].forall feF, (5)
Ly(Lewn)=(Ad(g™Y)*).[Le(Lywn)], thus (6)
Ly(Lexn) =(Ad(g™H)").(Lexy) and Ly(Lgxn)=(Ad(g™H").(Lgxp)- (7)

Equation(7) yields thatl lyw, andL gw, are G-equivariant ifw, is invariant undet_.

lll. EXTENDING FORMS TO THE BUNDLE

If P is a principal bundle with free right Lie group acti®& andL is a left effective Lie group
action of G on a manifoldF, then the associated fiber bundle with filbethat comes along with
L is the quotient manifold(M,F,G) =P X sF of the direct producP X F under the free right
actionR:(PXF)XG—PXF, which is defined by

Ry(p.F):=(Ry(p).Lg 1(f)) forall peP,feF.

In fact, PXF is a principal bundle oveB with projection7 and fiberG. Every connectiod’ on
a principal bundle, given by a connection 1-ford, canonically induces a connectidh on
(PXF)(B,G) by @'=priw’. In tun, T defines horizontal lifts of vector fields
T: A4(B)—~hZPXF);y. L is a C*(B)-module isomorphism with inverse morphistr. If
h"andv"® denote the natural projections of vector fields on the direct proBucE, then we
also have projections, v on Z*(B)

h=dzh"l, y=d7v",
SO

7Y(B)=hZ}(B)ov 7 ¥(B).

J. Math. Phys., Vol. 37, No. 12, December 1996
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This is the induced connection on the associated buldleas mentioned above. Let™
e 7Y(B), then for anyw, e .7,(B,V), n>0, the horizontal and vertical projections,h
€ 7n(B,V)h, resp.w,v € .%,(B,V)v, are given by

wh(2Y, . 2 i=w,(h2t, . ha2),
ow(2Y, . 2 =w,(0 2t 2.
Obviously these projections commute with e, i.e.,

(Xﬁ'(ﬁp)h:){ﬁh'(ﬁph’ (Xf]'(ﬁp)U:XﬁU"ﬁpU-

Recall that, by definitione' is a vertical form. The exterior covariant derivative of forms on
P is defined byd" ¢:=(d¢)h. ThusQ'=d"w'=(dw")h is a horizontal form.

If ¢ is a differential form orF, then pf¢ is a form onPXF, and |f2/1 are vector fields on
B, then (pEo)( . .. ,Eﬁ//i, ...) is afunction onPxXF. Now if ¢ is invariant undet, one can
prove that this function is invariant undBrand thus defines a map & But this defines a form
on B. In fact, we have the following proposition:

Proposition Ill.1: ¢ € 4(F,V) defines a vertical V-valued fordv on B(M,F,G) iff ¢ is
invariant under all Ly For such a¢ and all 7' e Y(B) then there exists £ C*(B,V) with

(preg)( ... Ly, .. )=tO7.

If h* andv ® denote the local projections of fields and forms induced pyhen this generated
form ¢uv locally is given by

¢U|w—l(ua):(772¢)va- (8

Proposition Ill.1 is a special case of the following theorem:

Theorem 111.2: If x; € 2n(F,HOM(®°g,V))equv aNd ¢ € . Zp(P,@)equiv: P € No, then
(PEXD) *(Pred) € Znisp(PXF,V) defines a V-valued form on B: for all vector fields'
e 7}(B) then there exists £ C*(B,V) such that

[(praxS)e(prad)]( ... LY, ...)
=[(prexd)e(pragh)1( ... Ly, ... )=tO7.

(prix) defines the vertical anfpri¢) defines the horizontal part of the form.

The proof of Theorem I11.2 relies on Lemma 11.3: under the assumed conditions one shows
that (pEx;) and (pb¢) are equivariant with respect ®, and thus (grx;)e(pre¢) is invariant
by Lemma I1.3.

Natural candidates fap e . Z,(P,g)equyv are ' andQ'. Nevertheless, since' is vertical,
Theorem 112 yields that the generated form Bris zero. ForQQ', the generated form is locally
given by

[(maxn)v1e(7F) €. Znos(m H(U,), V).
For that reason, we will denote this generated form p§uv{+F or simply yveF.

Finally we need to compute the exterior derivative of these generated differential forms. We
thus cite the following theorem from Ref. 8:

J. Math. Phys., Vol. 37, No. 12, December 1996



6382 Christian Gross: Cohomology and connections on fiber bundles and applications

Theorem 111.3: Let I be a connection on a principal fiber bundle(®,G) and let
B(M,F,G) be an associated bundle, V any vector spagg, € . 7,(F)®Hom(®%g,V) be
G-equivariant andp,, € .Z,(F)®V be invariant under GThen

d(xpveP) =[(dx)v 15, 1*F+[(Lexp)v]s ieF,

=[(dx)v 13, *F+(LexDv1 I°F,

d(¢pn)=(dp)v+[(Ledn)v]i_*F.

Note that the second identity follows from the already mentioned fact that, in combination
with F, only the symmetric part ofL(¢ x3)v counts, cf. Lemma I1.2. The last identity is a simple
corollary to the first one, since fee=0, G-equivariance means invariance, Haaflg,v)=V, and
x2+F= x? by definition.

Theorem 111.3 proves that the diagram in Section | does not commute in general. Only for
0-forms¢, i.e., functionsp € C*(F,V), we know that. ¢ »=0.

IV. '~ ADAPTED AND G-TRANSGRESSIVE DIFFERENTIAL FORMS

Now we are prepared for the notion bfadapted differential forms on a bundle:
Definition 1V.1: Letl" be a connection on M,G) and B=PXsF. A differential formg”*
e .Z(B,V) is calledl'-adapted ify' e .7 (F,Hom(®g,V)).qare given such that

¢A=2 Xiv'F.

It is this splitting into a sum of¢'veF that we have in mind when we say that a form can be
presented in such a way that all horizontal terms are given by the gauge ffelds F

We will be concerned with the question whether we can find suckadapted representative
for a cohomology class iH*(B) that is generated by a O-transgressive invariant fagm
e .Z(F). For the physical applications in mind, this concentration on invariant forms is no real
restriction. Recall from the general theory of fiber bundles that, for every bundle over a paracom-
pact manifoldM with a connected structure gro@ this Lie groupG is reducible to its maximal
compact connected subgrol{p i.e., G may bea priori chosen to be compact. For example, if we
are dealing with electromagnetic interactions, we h@weU, ; if we are dealing with electroweak
interactions within the Glashow, Salam and Weinberg theory, GersU, X U, ; and for strong
interactions covered by quantum chromodynani@€D), G=SU;. In general, for Yang-Mills
theories we hav&=U,Xx U, or a subgrougH <G.

For any compact Lie group we have the normalized Haar measuasd we can project any
form ¢ € _#Z(F,V) onto an invariant formp,,, defined by

doui= | Lysanto). ©

(Analogous projections onto equivariant forms also exidn the other hand, i6 is connected,
then all mapd._ 4 are homotopic to the identity map,=idg, which yields that[La]zidH*(F).
Thus, if we denote the cohomology of the invariant closed formE omodulo the invariant exact
forms byH? (F), we have the following proposition:

Proposition 1V.2: If G is a compact connected Lie group acting on then
H* (F)=H;,(F), and the isomorphims are induced by the above projection onto invariant forms,

resp., the injection:i Z(F)w—.#(F).
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2(F,V); contains an important subset, whose elements we will@aHansgressive forms.
Let[r]:=max.y{z=<r} for allr € R. Then their definition is as follows:

Definition 1V.3: Let LGXF—F be a left Lie group action. An invariant closed differential
form ¢, e .7Z,(F,V), Wil be called Gtransgressive if equivariant differential formg
€ 7n-2i(F,Sym(g,V))equiv€Xist for O<i<[n/2] with

X°= ¢, —Lgx'=dy " forall 0<i<[n/2]—1 and Lgx"2=0. (10)

Denote the set of all @ransgressive forms on F byZ(F,V)g_ trans-

Note IV.4: The reader who is familiar with equivariant cohomology will recognize that
G-transgressive forms define equivariant cohomology classes for the Giwaanifold F, cf.
Atiyah and Bott or Mathai and Quilletf and Section VIII.

Recall the definition of the exterior product of vector valued differential forms febmFor
K, € Sym(g,R) andKg e Symy(g,R) we have the symmetric produ€t \/ Kg:=Sym(K,®Ky).
For any bilineare:VXV—V this extends to a bilinear mapping on tfiafinite dimensional
vector space Sym(V):= & ._,Symy(g,V) analogously td1), which we also denote by . This
in turn defines the exterior product ,. With respect to"\ |, the set Z(F)®Sym(g,V) is an
exterior algebra with subalgebra/(F)equi® Sym(g,V).

Lemma IV.5: d and | are skew-derivations of degreg, resp. —1, of the algebras
2Z(P)®Sym(g,V) and . Z(P)equv®Sym(g,V). For all a, € .7Z,(P)®Sym(g,V) and o
e. Z(P)®Sym(g,V),

d(ay/\,0)=(dan)\ o+ (—1)"a,/\ (dw),
L\./(an/\\/w) = (L\./an)/\\/w-i- (- 1)”an/\\/(L\./w).

Lemma IV.5 is the main ingredient in the proof of the following proposition:

Proposition 1V.6:.Z(F,V)s_wans iS @ R-subalgebra of Z(F,V), whenever a bilinear map
¢:VXV—V and thus a wedge product ,, is defined. If¢, and ¢, are G-transgressive and
X' € Am—2i(F,Sym(g,V))equiv: '€SP.£' € . Zn_2j(F,Sym(g,V))equiv» are the differential forms
given by (0) for ¢,,, resp.¢,, then

&= 2 XNALE € Amin-ak(F,Symd,V)) equiv

7=k

for 0O<k<[m/2]+[n/2] (and {[(M*M/2: =0 if m and n are odd) are the corresponding forms for
¢m/\\/‘/’n .

Proof: Obviously. Z(F,V)s_ansiS @R-subspace ofZ(F,V). Hence we only have to check
if the ¢ for O<k<[(m+n)/2], obey the identities(10) for ¢m/\,,¥hn=bm/\,¥n
€ Amen(F,V)iny . Obviouslye, /\ i, is closed ang®= x° N\ &%= ¢y /\ | 4, . By definition of
/\ \,, the differential formg* are elements ofZ, ., o(F,Sym(g,V)) and

L§§k=i+12:k Lgxi/\vl-§§j=i+]2:k (Ad(g™H") XA (Ad(g™H)"). & =(Ad(g™H)"). L5

whence allZ* are G-equivariant. Next for 8&k<[m/2]+[n/2]— 1, we obtain from Lemma IV.5,
usingdx®=d&%=0,
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dzk+1=i+2+l d(x'/\, &)

= > [N E+(—1)M 2y de]

i+j=k+1
=dx°A 8T D [ TIA (D), dET
i+j=k
+(—1)ka+1/\\/d§0

== 2 [Lex'A\ 8+(—1)™A Lgé]

i+j=k

== 2 LeA &)=L

i+j=

Analogously, since. gx[™? =L g&"2=0,

LY 2]+ [n/2] = LY (VAL &
ol i+j:[n%]+[n/2] o(X/vE)

— L\./X[mlz]/\\/f[nlz] + ( _ 1)mX[m/2]/\\/L\./§[n/2] =0.

But [m/2]+[n/2]=[(m+n)/2], except if m and n are both odd, where
[m/2]+[n/2]=[(m+n)/2]—1. In that case, we have just shown thatgZl(M*M/2~1=(,
whence we may choosg!(™*™/4:=0. This completes the proof thatp,/\ ¢, is
G-transgressive. O

Now we are ready for the following theorem:

Theorem IV.7: LetT" be a connection on a principal bundle(M,G) and B=PXsF an
associated bundle with left Lie group action®@XF—F. Let V denote any vector space. If the
form  ¢ne.Zy(F,V)inn is G-transgressive and the equivariant formsy,_,;
€ #n—2i(F,Sym(g,V))equivare given by 10), then

[n/2]

¢ﬁ:=i§0 (Xh_siv)*Fe. Zy(B,V)

is closed and -adapted. Its restriction to the fibersds, i.e., foranye € Aand allx € U,, we
havei}, 5= ¢n.
Proof: ¢ﬁ is obviously adapted tb'. Furthermore Theorem 111.3 yields

[n/2]
dg= 2 (dxn-z)v*F+ (Lexn-2)v°F

[n/2]-1
=(dg)ot 2 (dxn 52+ Léxn-20)vF+ (Lexi Fpuz)v*F=0,

since ¢, is G-transgressive. Finally, sincd) ,7m*F*=0 for all xeU,, we obtain

5 xbh=15(x°0) =i x(dnv). But naturallyi’, ,(¢nv)= . O
Note that the property of beings-transgressive only depends dn and F. Thus
G-transgressive forms define de Rham cohomology classes on all fiber bundleslwisetiee
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action of the structure grou@ on the fiberF. In particular, this condition is independent of the
baseM and of the question whether the bundle is trivial or not. Indeed we have the following:
Corollary IV.8: Let LGXF—F be a left Lie group action. If a formp, € .7Z,(F) is
G-transgressive, it i®-transgressive for any bundle(®l,F,G) that comes along with LThus
¢y, defines a unique cohomology cldssh] € H"(B) with[i% [ ¢h1=[¢n] € H"(F), indepen-
dently of the paracompact base M and the transition functiogs. g
Proof: By the existence theorem for connections, every principal buRdM,G) over a
paracompact manifold¥ admits a connectio’ (Ref. 5, p. 67. Thus ¢} is well-defined and
Theorem IV applies. O
Corollary IV.9: If ' and I'" are two connections on M,G) and ¢e.#(F) is

G-transgressive, then there existse . #(B) such that the formg” and ¢A' obey:

"= N =dy with d(i ) =0.

Let us derive the analogue to Theorem IV.7 for 1-dimensional Abelian Lie grGulis: the
electromagnetic structure gro@=U,;=S". According to the following lemma, we may refor-
mulate the notion ofs-transgressive forms in that case:

Lemma IV.10: If G is Abelian with=ER, then ¢,e.4(F,V);,, is G-transgressive iff'
€ %n-2i(F,V)iny exist foro<i=<[n/2] such that withw':=1,,_x' the following equations hold:

¥°=¢,,— v =dy *forall 0<i<[n/2]—1 and"d=0. (11)

Also sinceg=R, we can replace ¢ by the exterior product and as a corollary to Theorem V.7
and Lemma 11.2 we obtain the following.

Theorem IV.11: LetT" be a connection on a principal bundle(M,G), where G is Abelian
with g=ER, and let B=PXgF be any associated bundle with left Lie group action
L:GXF—F. If ¢y € .Z4(F,V)iny is G-transgressive ang,,_,; € .7Z,_5i(F,V)iy are given by
(1), then withF: = 1/E 7*F € ..Z,(B),

[n/2}
$n=2 (Xp-20)FN\- - NF
i=0 w—}
1

{n/2}

=2 BN AFA(Xo=y0) €. 4,(B,V)
=0 ,
i

is closed and-adapted Its restriction to the fibers i, , i.e., forany xe U,, i;,xqs’;: bn -
Finally, in order to evaluate Theorem IV.11, we note that for any fabm.Z(F,V), the
vertical projectiong8) are given by
bvl 10, = (Thp)V =T+ AT ) (12)

with A = 1/E 7*A~.” Hence, sincelQE)zzo, we have (;_@)v| -1y )= T5(15.8).

V. SKYRMION BUNDLE AND RELATED YANG—-MILLS THEORIES

These results are quite important for the skyrmion bundle in theoretical nuclear physics which
treats interactions of mesons and baryons — described withifutigaugedl Skyrme modét® —
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with electromagnetic field5-*3In order to show this, we need some basic results from current
algebra. Denote the left and right invariant 1-forms on a Lie grétgGl,(C) by O
e . 75(H,h), resp.OR e .Z}(H,p), i.e.,

0:(h-X)=0f(X-h)=X forall heH,Xeb,

whereh- X andX- h are elements of ,(H). In the literature, these forms are also called invariant
“currents” and we find the notationa~1dh andL for ®, resp.,dhh™! andR for R, If A
denotes the exterior product of matrix-valued forms with respect to matrix multiplication, then for
allk e N,

(OLYk: =LA .. AO e AL(H, O™
e—  —

k

and

(OR:=@FN. . . NOR e A (H,C)
nmn—,  o——

k

are well-defined left, resp., right, invariakiforms onH, and so are
M =TrM-(0Y%] e. Zk(H,C)
and
pr :=THM-(0R)K] e Z3(H,C),
for any matrixM e C"*". Especially forM =1, we obtain the bi-invariant
o =M= pie AdH, Oiny

and one easily checks that,,=0. Now the Maurer—Cartan identities yield the following.

Lemma V.1: g@4)% 1= — (@)% and O®R)%~1=(®R)?*. As a consequence for any ma-
trix M e C™", we have d5_,=—\%, dpX_,=p hence dvy_;=0 and d\ 3 =dpX =0.

In addition, recall that the cohomology of $ldnd U, is generated as an algebra by,
ws, ..., wo,_1 for SU,, resp., byw,, wsz, ..., wy,_1 for U,, cf. Greub, Halperin, and
Vanstone:*

In the ungauged Skyrme model, the meson fields occur as tdapt— SU,, where M
denotes space—time amddenotes the number of flavors @CD. The configuratiolJ=1 rep-
resents the vacuum. Baryons appear as topological soliton solutions, as “skyrmions,” of these
fields. The number of baryons represented by a given mesonic field configuration is computed by
an integration ofJ* w5 over the space manifolgvhich is compactified at infinity, where the fields
are required to tend to the vacuum vale For n= 3, the action integral splits into two parts, the
nonamorgalous action and the Wess—Zumino term. The latter is an integral over the differential
form ws.
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In order to treat interactions with electromagnetic fiel@specially those of magnetic
monopoles!!3 one constructs a fiber bund®(M,SU,,G.,), cf. Section I. Ife denotes the
electric unit charge, then the left action Gf,,= 1/e-S! on SU, is given by the inner automor-

phisms
L(g,U):=e"'€9QueTie9Q (13

forg e GgnandU e SU,. Q is thenX n-matrix containing the quark charges in unitseoffor
n=2,3,

2
- 0 0
2 3
- 0
3 0 L 0
= , resp., Q= —=
Q 1 p.,Q 3
0o -=
3 1
O 0 —=
3

We put¢®: =, ¢ for any ¢ e .#(F,V). Under a change of bundle charts we then have
U%(X)=L(9up ,UP)(x)=e €950 B(x)eT1e%ps™Q
and for the canonical vector fieldg e Z*(SU,) induced byE= 1/e e g, we obtain
Ze(U)=—i[Q,U] forall UeSU,. (14
Now (12) yields
(dU%)v=dU*—ieA[Q,U*].

For the invariant formgQ, A and w1, we obtain the following lemm&
Lemma V.2: For the action given ilJ),

@2 1= — (2K+D)i(pF— A5,

'%E(P(zgk_)\(zgk)zov

k
I%E(p2Qk+l+ )\2Qk+l): _2ij21 Tr[Qu(@L)Zi‘lQ(L)2k—21+1u—1]

k
—i 3 TIQORIQOR 2 -Q(0h)7Q(eh)* 2],
=

In order to define a baryon number and an anomalous action for the skyrmion bundle, we have
to extend the forms s and w5 to the bundle. Several approaches “by trial and error” have been
made to “generalize”w; and wg, cf. Callan and Witterf! Kaymakcalanet al,*® or Pak and
Rossi'® In terms of the language we are using, we would like to obtain differential fmﬁnand
w5A that are adapted to the Maxwell connection given by the electromagnetic fields. Thus we will
examine whethew; and ws are Ggrtransgressive. _

~ Thisis indeed the case. According to Lemma IV.10 we have to¥ipd; e . Z,(SU,,C) and
V1= %EXIn—Zi that obey(11) for ¢= w3, resp.,¢p=ws. From Lemma V.2 we conclude that
for ¢=wys1, We have 15,=—(2k+1)i(pS—1S). Now Lemma V.1 yields that
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P AF=d(pF_ 1+ A5 1), SOx7n-1=(2k+1)i(pF_1+\F_1). For ws we are already done,
since x; is global and vertical due to Lemma V.24=0. For x3, again Lemma V.2 yields
v3=—101°TI Q3((®R)?— (04)?) + QdU ! A QdU]. One easily verifies that

X2=102(p® +1¥) +5i2Tr(QdUQU 1~ QUQAU 1) +ri 2dTH(QU 1QU),r e R,

is an admissible choice and tl“é= 0, thusxi is global and vertical. For physical reasgpsirity
invariance®), we putr=0. We thus obtain from Theorem IV.1#the following.

Theorem V.3: w3 and ws are Ggprtransgressive and generate de Rham cohomology groups
isomorphic toR for any skyrmion bundle. Representatives for the generated cohomology groups,
that are adapted to the Maxwell connection, are

wh=wgv+ieF \xlv

=[w§—3ieA*A\(pS—A)]+3ieFA(pR+AD),

we=wsv +ieF/\xiv + (ie)?FAF A x2v
=[wZ—5ieA*A\(pF—A\Q]+5ieFA{(p3+1D*
— 2ieAATIQA((OR)2— (01)2)+ QdU LAQdUI* +5(ie)2FAFA[2(p + 1)«
+Tr(QdUQU 1—QuUQdU ).
In fact, one can prove that all differential forms,_; are Goyrtransgressivé’
In comparison to the literature cited, our formalism has led to quite compact notations for
w@ and wé. This advantage becomes even more obvious when generalizations to other gauge
groups, especially non-Abelian gauge groups, are considered, e.g., inste@d=9f and
F=SU, take a Yang—Mills theory whei® = U X Uf andF = U, with L 4,(U)=g.Uggr". As
a generalization ofL4) we have for all K, ,Xg) € U @ u}

'%(XL,XR)(U):XLU_UXR for all UESUn. (15)

Now the gauge fields take their values ifj @ uY, i.e., A*=(A% A% and F=(F* F)
€ (,%(Ua,uh ® u,Ff) define the connectioh on P(M,G). In this case, omitting the superscripts
a, we obtaindUv=dU+A U—-UAg, hence

OLlv=0"+U 1A U-Ag,
ORv=0R+A —UARU 1,
w0 = (1)1+ Tr(AL_AR).
Moreover, we havé gw;=Tr(m — 7g) with the projectionsr'/R:g=u- @ u}?—u:/R. Thus for
any LIE subgroupH <G, the closed invariant fornm, is H-transgressive iff TiX, —Xg) =0 for
all (X_,XRr) € b, e.g., we could choose a subgroup of the diag@hak Uhx Uh in G such that
g.=9g for all (g, ,9r) € D,. (Note that this is the case for the skyrmion bund@r we could
chooseH = SUhX SU,Ff, resp., a subgroup &f. In Section VII we will prove that in the latter case,
w1 is necessaril\H-transgressive because $KJSU§ is semisimple fon>2, cf. Theorem VII.4.
For w; we obtainL gw;=3TH (OR)27t—(O®4)27R], thus

Xi:=—-3TrOR7 + 0 7R) e 7, (U,,Hom(g,C))
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obeys Xm —Lews due to Lemma V.1. Omitting the symmetrizatiop, we compute
L.)(1 3Tr(wRaR—7mt7mh), ie.,

(Lex1) (XL, XR),(YL,YR)=3Tr(XgYg—X_Y.)#O0.

Thus w3 is not G-transgressive In fact, take anyje. q’l(Un,Hom(g C))equv With
dyi= L.w3 Thenél:=Xi—xie. /1(Un,Hom(g C)) equiv With dé1=0. SinceH(SU,)=0,
we find go e C*(U,,Hom(g,C)) with dgo gl In fact, we may chooseo equivariant, because
SU, is compact, analogously {@). But then for allX,Y e g,

Le&1(X,Y)=(15,,d&)(Y)+ (15, dé5)(X)
= Zx(E)(Y)+ Zy(£5)(X)
=&3([Y, XD+ E(X YD) =

Thus (I_V'ﬁ (L.Xl) # 0. Sincew; is notG-transgressive, the generatéendapted form
= w3y + xiveFe. 73(B(M,U,,G),C)

is not closed in generatlw3 (Le Xi)v-F (L.Xl) *F. Yet if we again restrict to a subgroup
H <G with generatorX?= (X{ ,Xg), o € |, such that TiKX[) = Tr(XgXg) forall o, 7 € 1, then
L.)(1 0 and w3 is H-transgressive. Note that this condition holds for any subgroup of the
diagonalD,, and thus for the skyrmion bundle.

Finally, some cumbersome calculations show that the voluminous expressions for the Wess-
Zumino term in Ref. 15(4.18), resp., Ref. 2(24), are equal to the integral over theadapted
differential form

wé= w5V +X%U'F+X§U'FE 25(B(M,U,,,G),0),
where the forms('ls_2I € 25 2(Un,Sym(g,())equivare given by
X3:= 5T (OR)37-+(0"4)37R],
x2:=10T{(OR) w7t + (04 #RaR+ 5T dU#RU L7t —d(U Y 7wtu #F).
Analogously to the skyrmion case, one may add a term
rldTr(7* U U~ Yu]eF=rdTr(F_ UFRU 1) reC,

or exclude it by parity invariancE. Also in this case, the differential formws is not
G-transgressive: we obtaing y5=10Tr(m- 7t 7t — 7R#R7#R), thus againws is H-transgressive
for any subgrougH<D. More generallyws is H-transgressive if and only if the generators of
H obey TrXUX[X!)=Tr(XgXgXg) for all o,r,vel, specifically, only if TF(X)3]
= Tr[z(X§)3] forall o € I, which is the usual condition for cancellation of anomalies on the quark
level:

Nevertheless note thdtw5 (L.Xl) F consists of a 6-form on the base. Thus as long as we
stick to space—tim&1 — or even a five-dimensional extension — this form vanishesafh in
fact closed. The same holds fexé: although it might not be closed on space-tiivie w’; is
closed, of course, when restricted to three-dimensional space.
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VI. LIE ALGEBRA COHOMOLOGY

Back to the general case, we want to derive which closed invanidatms ¢,, on the fiber
F areG-transgressive in the cases whare0, 1 or 2. To this purpose we need some basic results
on Lie algebra cohomology.

Supposgy is aK-Lie algebra(for K=R,C) andl:g—gl(V) is a(left) representation of on
a (possibly infinte dimensionalk-vector spacé/. Then Alt(g,V)= & gZOAItp(g,V) becomes a
differential complexC, with the following differential operatod':(d'p:CF—>C,"“)pE\O: for c
€ C|pZ=A|tp(g,V) andX; e g,

p+1 p pt+l
dpC(Xq, o Xpi1)i= ;1 (=) H(X)(e( ... X, .. .))Jri:Z1 ,-:i2+1

(=D Xy oo X1 X X1 X1y )

(wheré€ indicates that the term is omitted
Our definition ofd' differs slightly from the definitions in Ref. 14, resp., in Hilgert and
Neeb!® where analogously to the definition of the exertior derivativehe second term reads

p p+1
+> Zl(—l)”ic([xi,x,-],xl,...,x,...,xj,...).

=15+

Obviously both definitions coincide o@,. Nevertheless with our definition not only Adi(V)
becomes a differential complex, but also Hori{@g),V) becomes a comple®, with subcomplex
C,. [.7(g) denotes the tensor algebragi Indeed we can prove — analogously to the proof for
d’=0 —thatd'p+1 ° d'p=0 onC, for any representationg— gl(V) of g. Now the cohomology of
this complexHP(g,V): =H{(C)) is called thepth (Chevalley cohomology space af with values
in V with regard tol. We put HP(g):=HP(g,K). Analogously, HP(g,V):=H}(C,) and
HP(g):=HP(g.K).

Lemma VI.1: Let og—gl(V) denote the trivial representation gf Then

(D Ho(g,V)=Hg(g,V)=V.
(2) H(g,V)=HX(g,V)={c e Hom(g,V)|c([g.g])={0}<V}=[g,g]*, thusdS is injective and

H2(g,V)={0} for all Lie algebrasg with g=[g,g], e.g.,semisimple Lie algebras.

(3) If a is Abelian, then j(a,V)=Alt,(a,V) and Hj(a,V) =Hom(®Pa,V).

Moreover, if V is finite dimensional, then Whitehead's lemmas vyield that
H|1(g,V)= H|2(g,V)=0 for any representation g—gl(V) of a semisimple Lie algebrg.

Recall that a double comple®* *:= & p,quOCp'q is a doubly graded differential complex
with two commuting differential operators, a horizontal operatgP9— CP*19 and a vertical
operatord:CP9—CP9*1 Every double complex is associated with a singly graded complex
C* by summing along the antidiagonal lines, i@ is given byC"= & ,, ,—,CP9. The (total)
cohomology of such a double complex is then defined to be the cohomology of the associated
singly graded complex with regard to the differential oper&er 5+ (—1)Pd on C”9. Note that
indeedD:C"—C""1. The alternating sign guaranties tftat D=025

Given a Lie group action.:GXF—F, we want to combine the invariant cohomology on
F with the Lie algebra cohomology @f. To this purpose, we form the double complex

C**:=_7(F)®@Hom(.7(g),V)
=®pqeny Zq(F,HOM®Pg,V)).
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(- 1)pdf :CP9—CP9%1 js the vertical operator, and for the horizontal operator we have
or=—dg Cp ‘4, CP*T14, For the representatidng—gl(.#(F,V)) several choices are possible.
e. g, one can take the trivial representatimnThend® andd obviously commute.

Instead we choosk defined byl (X):=—L Ly wherelL ,-:. Z(F,V)—.Z(F,V) denotes the
Lie derivative of forms with respect to a vector field € Z*(F). Recall thatL ,- is given by
L ,=dO1,+1,0d. Since Lie differentiation and exterior differentiation commuéeand d
commute on the double complex and define an opefator

With regard to these operators we obtéRef. 8, Lemma 3.1the following.

Lemma VI.2: For allw, € .%,(F,V) and alli=n+1,

Ledw,—(—1)'dLgw,=6_1LY ‘.

A**:=_Z(F)®Alt(g,V) is a subcomplex ofC** and A;)* :=.Z(F);®Alt(g,V) and
qujlv' @/(F)equ“,@Alt( g,V) are subcomplexes @&&**, on which the horizontal operators are
given by 6=—d°, resp.,6=+d°.

Recall that a chain mafi A— B between two differential complexésandB is a homomor-
phism that commutes with the differential operatoré&\aindB: f - Do=Dg° f, €.g., all pullbacks
f*.. 4(M,V)—_#(N,V) are chain maps.

Definition VI.3: For any Lie group action IGXF—F, the homomorphism
L:.#(F,V)—. Z(F)®Alt(g,V) is defined by w,: == Lgw, for all o,e.7Z,(F,V).

The homomorphism g:. 4(F,V)—Alt(g,V) is given by lgo:=2,_Lew, for all
0=3]_ o, Witho, € .Z,(F,V).

Let po:. Z(F)®Alt(g,V)—.4(P,V) denote the canonical projection. Singge D=d ° pg,
Po is @ chain map. Obviouslyp, ° L=id ,¢ vy, thus if L is a chain map, we obtaifipy]

o [L]=idy(p,v) and[L] is injective. Indeed we find the following.

Proposition VI.4:

(1) L is a chain map and induces an injective homomorphism

[L1:H*(F,V)—>HE(A(F)®Alt(g,V)).
(2) Lg is a chain map and thus induces a homomorphism

[Lel:H*(F,V)—H[(g,V).

Proof:
(1) By Lemma VI.2 we have

D(Lw)= ED(L.wn) 2[5L.wn —1)'dLgw,]
—2 [Lg *dan+(—1)dLig twn+(—1)'dLgw,]

_2 (Ll+ldwn)+( 1)ndLn+1w +d(1)n

=L(dw,)
sinceLg 'w,=0.
(2) follows from Lemma VI.2 if we put =n+1. ([

Finally we find the following result with regard to our purposes:
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Theorem VI.5: If the Lie algebrag is semisimple and the form e.#4,(F,V);., is closed,
then there exists a unique e . Zo(F,Alt;(g,V))equiv» Such that

dy=—Lew and sy= Lz.w.

Proof: By Lemma VI.2,5L2.w=O holds. Sincd—lf,(g,V)=0 by Whitehead’s second lemma,
we findx e . Zo(F,Alt1(g,V))equivWith ox= Lz.w. Lemma VI.1 yields thab, is injective, soy is
unigue. On the other hand we know frobL w=Ldw=0 that—5L.w=dL2.w=d5X=5d)(.
Thusdy+Lew € kers;. But 8, is injective. O

VIl. G-TRANSGRESSIVE N-FORMS FOR N=<2

Now we are prepared to compute which closed invaneafdrms ¢,,, n<2, on the fiber are
G-transgressive.

déo=0 means thatpy, € C*(F) is locally constant. Obviously ¢ #,=0. So every closed
G-invariant¢y € C”(F) is G-transgressive. Sincgy is invariant, it is global and vertical. Thus
(¢6)“= o and[i’ I #51=[ ¢bo]. This proves the following.

Lemma VII.1: Every closed G-invariagt, € C”(F) is G-transgressive and thus for amy
e Aandxe U,,[i%,]:H%B(M,F,G))—HJ,(F) is surjective.

[Note that this also impIieBIi?“,(F)sHO(F), if we putB:={x} X F, but this is nothing new.

Forn=1 and¢; € . #(F);,, Lemma VI.2 yields thatl¢p, =0 impliesd;L ¢ #, =0, i.e., for all
feF,[Ledi(f)] € [g,g]" by LemmaVI.1. Thus for a semisimple Lie algely;d_¢ ¢;=0. As a
consequence for any bundB(M,F,G) that comes along with., {7}, ¢}, defines a global
vertical form onB. We have proved the following.

Lemma VII.2: If L is a Lie group action of a semisimple Lie group G qnten every closed
invariant 1-form ¢, e .Z4(F),, is G-transgressive and defines a unique cohomology class
[prw]=[{7rd1}aca]l € HY(B) for any bundle BM,F,G) that comes along with LThus for any
x € U, [ih J:HY(B(M,F,G))—H; (F) is surjective.

To show that the condition G semisimple” is necessary, také=S'=R/Z acting on itself
by left multiplication, thusg=R. For every Lie group, the(left) canonical 1-form®"

e .71(G,g), defined by@é(,,%'g):=d>\E71(,,%'g), is (left) invariant by definition. Sincé&? is
Abelian, d®-=0 in this case. is the volume form on S' and generates
Hi (SH=HY(SYH =R, cf. Proposition IV.2. Yet L ¢®")(X)=0"(%y)=X for all X € R. Thus
Le®L=id; and®" is not St-transgressive.

In fact, take the principal bundleB,,(S?,S%), m e 7, that classify all fiber bundles ovéf
with structure groug! according to the Classification theoréRef. 4, p. 99. Form=0 we have
the trivial bundles?x St and form=1 we obtain the Hopf fibering of the 3-sphereS3— 2. For
the de Rham cohomology* (P,,) one obtains from the spectral sequenceRgrwith m # O:

Ho(P)=R, HYP,=0, H*P,)=0, H3P,)=R.

So no[i%  J:HY(Pn)—Hr(G) is surjective. Moreover, we always ha®@"v=w', even for
m=0. Sincedo'=d"w'=Q", our canonical construction does not produce closed forms on
P, in general.

Finally we consider the case=2 for semisimple Lie groups. Using Theorem VI.5 we obtain
that every closed invariant 2-form dn is G-transgressive. Thus we have the following.

Corollary VII.3: If L is a Lie group action of a semisimple Lie group G on then every
closed invarian®-form ¢, € .Z5(F);. is G-transgressive and defines a unique cohomology class
[#5]eH?(B) for any bundle BM,F,G) that comes along with L If x3
e C*(F)equw®Hom(g,R) is the unique map with gf= —Le ¢, and x;=Lg ¢, according to
Theorem VI.5,then ¢ is given by
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dh=pv+(xav)*Fe. 75(B).

Thus for any xe U, [i;yx]:Hz(B(M,F,G))—>H§W(F) is surjective.

In view of Proposition IV.2 we thus have proved the following.

Theorem VII.4: If L is a Lie group action of a semisimple Lie group G on then every
closed invariantp,, € .Z,(F)n, N<2,is G-transgressive and defines a unique cohomology class
[¢ﬁ] e H"(B) for any bundle BM,F,G) that comes along with L For any xeU,,
[i%J:H"(B(M,F,G))—Hj,(F) is surjective.

If in addition, G is compact and connected, ther} iF)=H"(F). Thus for every bundle
B(M,F,G), H"(B) contains a subgroup isomorphic to"tF) for n<2.

Theorem VII.4 applies to QCD, wher&&=SU; and to Yang—Mills theories with
G<SU,XSU,.

This theorem is sharp in the sense that it does not hold 68, e.g., takes = S%=SU, acting
on itself by left multiplication. Then the volume form &1 is closed and invariant and generates
H3(S®)=R. If this form wereG-transgressive, then for all principal bundieéM,S3), the coho-
mology groupH3(P) would contain a subgroup isomorphic & independently oM and the
transition functionsy, ;. Yet we know thatS” is a principal bundle oveg* with fiber S°, and
H3(S8")=0. Thus the volume form of® cannot beG-transgressive.

VIII. FINAL REMARKS

According to Corollary IV.8, everys-transgressive form is O-transgressive for all bundles
with fiber and left actiorL. The reverse is also true for compact connected Lie groups. This can
be proved, e.g., in terms of universal bundles, the Weil algebra and the equivariant conomology of
the G-manifold F.%1° In fact, G-transgressive forms are exactly those formsFothat generate
equivariant cohomology classélsut not every equivariant conomology class is generated by a
form onF). Now there is a natural isomorphism between this equivariant cohomology and the de
Rham cohomology of the universal bundle for the given left actipnvhich yields that equiva-
riant cohomology classes define de Rham cohomology classes on all bundles that come with

We have not used these notions here for several reasons: First of all, we did not want to
restrict ourselves priori to compact connected Lie groups, where equivariant cohomology is
usually settled. Second, we were not interested in the whole cohomology of the badfesthe
whole equivariant cohnomologybut only in those cohomology classes that have their origin in
forms onF. And last, for the applications in theoretical physics, we were interested in explicit
formulas for the generated differential forms and not in a more abstract notion like the Weil
algebra.

For non-compact Lie groups the reverse of Corollary IV.8 is false, e.g.,Gak& and define

L:RXR*=RK by L(r,v)=v+rz with z € R¥. Then all formsg, with constant coefficients are
closed and invariant. Because every bundle with structure gfbodpven more general, with
G=R™ is trivial, every ¢, defines a closed form @mﬁn on the bundle. Butg, is not

G-transgressive, in general, e.g., tor e . Z;(R¥) defined by, (v)(x):=(v,z) forallx e RXand
v e TH(R9), whereL.d;l(i):idR # 0. Thus¢, is notG-transgressive.
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