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Cohomology and connections on fiber bundles
and applications to field theories

Christian Gross
Fachbereich Mathematik, TH Darmstadt, Germany

~Received 12 March 1996; accepted for publication 4 June 1996!

Given any connection on a fiber bundleB(M ,F,G), we discuss the question which
closed differential forms on the fiberF can be extended to closed forms on the
whole bundleB in a canonical way such that the horizontal parts of the extended
forms are given in terms of the gauge fields. Such questions arise for many models
in theoretical physics such as the skyrmion bundle and related theories with non-
Abelian groupsG. We introduce the notion of aG-transgressive form as a suffi-
cient condition for the form to be extendable to any bundle which comes along with
a given left actionL:G3F→F. Using Lie algebra cohomology we prove that if
the structure groupG of the bundle is semisimple, then every closedn-form,
n<2, on the fiber which is invariant underL is G-transgressive and thus defines a
unique de Rham cohomology class on any bundle which comes along withL.
© 1996 American Institute of Physics.@S0022-2488~96!02011-7#

I. MOTIVATION

In theoretical physics the following general problem quite often occurs: suppose a field theory
is defined for some manifoldF, i.e., we have matter fields described by differentiable maps
f :M→F from space-timeM to the manifoldF. ~Examples are wide-spread, let us only mention
case of Dirac spinors, whereF5C4, or the Skyrme model and related theories, whereF5SUn , cf.
Skyrme,1 Witten,2 and Zahed and Brown.3! For computations one has integrals like the action
integral, where the Lagrangian is combined with the volume form of space-time, but also integrals
over closed differential formsf on F ~i.e., df50), which are integrated over space-time by
means of the pullbacksf !.

Next suppose, we also have a symmetry groupG and we gauge our field theory with respect
to this Lie group. From the mathematicians point of view, one has to construct a fiber bundleB
with base manifoldM , ~global! projectionp:B→M , ~standard! fiber F and structure groupG,
that acts onF via an effective left actionL:G3F→F, cf. Steenrod4 or Kobayashi and Numizu.5

For a coverU5$Ua%aPA of the base manifoldM , we have a bundle atlas$(Ua ,ca)%aPA with
local trivializationsca :p

21(Ua)→Ua3F, local projectionspa5prF + ca ontoF and local in-
jectionsi a,x5(pa,x)

21 of F onto the fiber overx P M , wherepa,x :5paup21(x) :p
21(x)→F. For

everyf P F andg P G defineL f :G→F andLg :F→F by L f(g)5Lg( f )5L(g, f ). Then on every
overlap regionUab5UaùUb the change of bundle charts is given by transition functions
gab :Uab5UaùUb→G, such thatpa,x + (pb,x)

215pa,x + i b,x5Lgab(x)
for all xP Uab .

The bundleB(M ,F,G) is associated to a principal bundleP(M ,G), where the structure group
acts on itself by left multiplication. We will use the same symbolsp, ca , pa , etc., for the
bundlesP andB. On the principle bundle we also have a free right actionR:P3G→P and a
connectionG defined by a connection 1-formvG and its exterior covariant derivative, the curva-
ture 2-formVG. Let e denote the neutral element ofG andsa,e :Ua→p21(Ua)5PuUa

denote

the local sections given bysa,e(x):5ca
21(x,e). ~Recall that a sections obeysp + s5 idM .) Then

the gauge potentials Aa and the gauge fields Fa of the field theory are the local forms on the sets
Ua defined by Aa5sa,e

! vG, resp., Fa5sa,e
! VG.

Now the problem is as follows: since the matter fields now appear as global sections
f :M→B, it is necessary to ‘‘generalize’’ the given closed differential formsf P A(F) to the
bundle case~such that the pullbacksf !f are well-defined!: one needs a closed formc P A(B)
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such thatc reproducesf when restricted to the fibers:f5 i a,x
! c for all a P A and allx P Ua .

Recall that the de Rham cohomology of a manifold denotes the vector space of the closed
forms modulo the exact forms on the manifold, i.e., it denotes the kernel of the exterior derivative
d:A(M )→A(M ),Ap21(M )→Ap(M ) modulo its image. Sinced is a differential operator
(dsd50), all exact forms are closed and thus the vector space of the closed modulo the exact
p-forms is well-defined. This quotient space is called thep-th de Rham cohomology group
Hp(M ) and the~total! cohomology ofM means the direct sumH* (M ):5 % p50

` Hp(M ).
We may reformulate the problem in terms of the de Rham cohomology: Given a cohomology

class@f# P H* (F) we ask whether@f# generates a cohomology class in@c# P H* (B), such that
@f#5@ i a,x

! #@c#. Moreover, we also need a representativec for this generated cohomology class.
The problem of computing the cohomology of a fiber bundle fromH* (M ) andH* (F) is a

delicate mathematical problem. For a trivial bundle, i.e., a direct productM3F, we have the
Künneth formula

H* ~M3F !>H* ~M ! ^H* ~F !.

This formula is based on the fact that we have two global projections prM and prF . Using their
pullbacks we may extend any form onM andF to the bundle. Sinced commutes with pullbacks,
this also holds for the cohomology classes. For a nontrivial bundle we only have one global
projection p, which indeed allows us to lift any form onM and any cohomology class in
H* (M ) onto the bundle.~Nevertheless, the induced homomorphism@p* #:H* (M )→H* (B)
needs not be injective nor surjective.! Yet there is no such mean for forms onF and thus the
situation becomes much more complicated as in the trivial case and leads to the theory of spectral
sequences, cf. Bott and Tu.6 Spectral sequences computeH* (B) from H* (M ) andH* (F). They
also answer the question which closed forms on the fiber can be extended to closed forms on the
bundle and thus generate a unique cohomology class inH* (B) in the manner above. We call these
forms 0-transgressive. Not all closed forms onF are 0-transgressive. In general it will depend on
the structure of the bundle whether a given form is 0-transgressive: obviously for trivial bundles
all closed forms onF are 0-transgressive.

If a form f P A(F) is 0-transgressive, spectral sequences also provide a formula forc ~Ref.
6, Prop. 9.5!. Nevertheless this ‘‘Collating formula’’ involves a partition of unity subordinate to
the given coverU of M . For any such partition the formula gives a different formc within the
generated cohomology class.~Note that, a priori,c is not unique but defined only up to an exact
form onB, whose restriction to the fibers is zero.!

From the physicists point of view, this situation is quite unsatisfactory since a partition of
unity does not bear any physical meaning and there is no reason why one partition — and the
corresponding formc — should be better than another. In fact one would like to obtain a
representativec for the generated cohomology class that can be associated with the physics in
question, that is the gauge potentials and the gauge fields of the field theory.

This takes us back to connections on fiber bundles. Recall that a connection on a fiber bundle
defines global horizontal and vertical projections of vector fields such that theC`(B)-module
D1(B) of the vector fields onB splits:D1(B)5hD1(B) % vD1(B). Once a connection on a
principal bundle is defined viavG, resp., the gauge potentials Aa, it also defines connections on
all associated fiber bundles, cf. Section III.

In addition,G defines lifts of vector fields on the base onto horizontal fields on the bundle and
projections of forms on the bundle. These lifts and projections now can be used to extend forms
on the fiber to the bundle. In fact, for every differential formf P A(F) that is invariant under the
given left actionL ~i.e., Lg

!f5f for all g P G), there exists exactly one vertical form on the
bundle, sayfv P A(B), such thatfvup21(x)5f. From the physicists point of view, this seems to
be a satisfactory generalization, but unfortunately we are not done with that, since the diagram in
Figure 1 doesnot commute.
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Thus although we start with a closed formf, the generated vertical formfv needs not be
closed. In general, we are not able to find a vertical representative for this cohomology class
generated by a 0-transgressive form, but we need to admit horizontal terms. Thus the question will
be whether we can find such a representative where these horizontal terms are ‘‘naturally’’ given
by the connectionG, in fact, by the gauge fields. In that case, we call the resulting form adapted
to G. Those forms are candidates for the desired generalizations of closed forms in field theories.

II. BASIC DEFINITIONS

Let M denote any manifold andV,W finite dimensional vector spaces. Every vector field
X P D1(M ) differentiably associates with everyx P M an elementX x in the tangent space
Tx(M ). Now Dp(M ,V), resp.,Ap(M ,V), denote theC`(M )-modules ofp-linear, resp., alter-
natingp-linear, mapsfp :D

1(M )3•••3D1(M )→C`(M ,V). They associate with everyx P M
an elementfx5(fp)x in Hom(^

pTx(M ),V), resp., in Altp(Tx(M ),V), where Altp(W,V) means
the vector space of all alternatingp-linear maps fromWp to V. The alternations
Ap :Dp(M ,V)→Dp(M ,V) are the canonical projections ofDp(M ,V) ontoAp(M ,V). The exte-
rior product ~or wedge product! of forms will be denoted bỳ : for fp P Ap(M ) and f r

PAr(M ) wehavefp` f r :5Ap1r(fp^ f r) PAp1r(M ).
Also if a bilinear mappingw:V3V→V is given,` extends to an exterior product̀ w of

V-valued differential forms. Forf5f̂ ^v P A(M )^V>A(M ,V) andc5ĉ ^w P A(M )^V,
the exterior product is given by

f`wc:5~f̂`ĉ ! ^ w~v,w!. ~1!

Everything in the sequel will also work for infinite dimensional vector spacesV, if we
considerA(M )^V instead ofA(M ,V). Yet for our purposes, we will restrict ourselves to finite
dimensionalV and identifyA(M )^V andA(M ,V).

As mentioned above, we are heading for differential forms whose horizontal parts are given in
terms of the gauge fields. Let us denote theC`(B)-module of horizontal forms onB by
A(B)h and the vertical counterpart byA(B)v. ~Note that onlyA1(B) splits intoA1(B)h
% A1(B)v, whereasA0(B)h5A0(B)v5A0(B)5C`(B) and forp>2 Ap(B) contains also
‘‘mixed’’ forms, i.e., exterior products of horizontal and vertical forms.! Normally one would try
to split a form into a sumf5( iPIf i , where thef i are given byf i5f i

1 ` f i
2 with f i

1

PA(B)handf i
2PA(B)v.

Yet in our case such a splitting is impossible, since the gauge fields and the gauge potentials
are Lie algebra valued differential forms: Aa P A1(Ua ,g) and F

a P A2(Ua ,g), whereg denotes
the Lie algebra of the structure groupG. In contrast,f P A(F) — and thus alsoc P A(B) —
will be real or complex valued. Thus we need a generalization of the wedge product that combines
g-valued forms with (g^ •••^ g)* -valued forms in order to produce real or complex valued
forms. This is the task of the following definition.

Definition II.1: For x r
s P Ar(M ,Hom(^ sg,V)) andfp P Ap(M ,g), p,r ,s21 P N0 , let

dr1spPD r1sp(M ,V)with

FIG. 1. Exterior derivative and vertical projection do not commute.
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dr1sp~X
1, . . . ,X r1sp!~x!:5@xx~X x

1 , . . . ,X x
r !#s@fx~X x

r11 , . . . ,X x
r1p!

^ •••^ fx~X x
r1~s21!p11 , . . . ,X x

r1sp!]

for all x P M and definex r
s•fp :5Ar1sp(dr1sp) P Ar1sp(M ,V) andx r

0•fp :5x r
0 .

Roughly speaking, the bullet operator means the following: for anyx P M and X i

P D1(M ), xx(X x
1 , . . . ,X x

r ) defines an element in Hom(̂sg,V). Thus we needs vectors ing as
input for this map. But again for anyx P M andY i P D1(M ), fx(Y x

1 , . . . ,Y x
p) defines such a

vector in g. Altogether the combination ofx and s factors f defines an elementdr1sp
sq

P D r1sp(M ,V). Using the alternationAr1sp , we finally obtain a form inAr1sp(M ,V).
Note that this construction works with any finite dimensional vector spaceW instead ofg, and

even with differential formsfp
q P Ap(M ,Hom(^ qX,W)), whereX is another finite dimensional

vector space. In the latter case the construction produces a differential formx r
s•fp

q

P Ar1sp(M ,Hom(^ sqX,V)). Yet we only need • in the way defined above, especially for
V5R,C andx r

s P Ar(M ,Syms(g,V)), where Syms(g,V) denotes the vector space of symmetric
s-linear maps from gs to V, i.e., the image of the canonical symmetrization
Sym:Hom(̂ sg,V)→Hom(^ sg,V).

For vectorsEj P g, j51, . . . ,s, let E1^ •••^Es : Hom(^
sg,V)→V denote the canonical

~evaluation!morphism. For any formx r
s P Ar(M ,Hom(^ sg,V)) definex r

E1 , . . . ,Es P Ar(M ,V) to

be the push-out ofx r
s under this morphism:x r

E1 , . . . ,Es:5(E1^ •••^Es)!x r
s i.e., for allx P M and

X i PD1(M ), i51, . . . ,r ,

~x r
E1 , . . . ,Es!x~X x

1 , . . . ,X x
r !:5~E1^ •••^Es!+ ~x r

s!x~X x
1 , . . . ,X x

r !

5@~x r
s!x~X x

1 , . . . ,X x
r !#~E1^ •••^Es!. ~2!

With this convention we obtain the following lemma:
Lemma II.2: Let p,r ,s21 P N0 . If fp5( i51

m f i
^Ei withf i P Ap(M ) and Ei P g, then

x r
s•fp5 (

i1 , . . . ,i s51

m

x
r

Ei1
, . . . ,Eis`f i1`•••`f i s.

Proof: Takex P M andX i P D1(M ). Then fordr1sp in Definition II we obtain

~dr1sp!x~X x
1 , . . . ,X x

r1sp!:

5@xx~X x
1 , . . . ,X x

r !#~fx~X x
r11 , . . . ,X x

r1p!

^ •••^ fx~X x
r1~s21!p11 , . . . ,X x

r1sp!!

5 (
i1 , . . . ,i s51

m

@xx~X x
1 , . . . ,X x

r !#S ~Ei1
^ •••^Eis

!

•)
j51

s

fx
i j~X x

r1~ j21!p11 , . . . ,X x
r1 jp!D

5 (
i1 , . . . ,i s51

m

@~x
r

Ei1
, . . . ,Eis!x~X x

1 , . . . ,X x
r !#

•)
j51

s

fx
i j~X x

r1~ j21!p11 , . . . ,X x
r1 jp!.
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Thus ifSr1sp denotes the group of permutations ofr1sp elements and (21)r means the signum
of r P Sr1sp , we get

~x r
s•fp!x~X x

1 , . . . ,X x
r1sp!:5@Ar1sp~dr1sp!#x~X x

1 , . . . ,X x
r1sp!

5 (
rPSr1sp

~21!r

~r1sp!! (
i1 , . . . ,i s51

m

@~x
r

Ei1
, . . . ,Eis!x~X x

r~1! , . . . ,X x
r~r !!#

•)
j51

s

fx
i j~X x

r~r1~ j21!p11! , . . . ,X x
r~r1 jp !!

5 (
i1 , . . . ,i s51

m

@Ar1sp~x
r

Ei1
, . . . ,Eis^ f i1^ •••^ f i s!#x~X x

1 , . . . ,X x
r1sp!

5S (
i1 , . . . ,i s51

m

x
r

Ei1
, . . . ,Eis`f i1`•••`f i sD

x

~X x
1 , . . . ,X x

r1sp!,

where the last identity follows immediately from the definition of the exterior product` . h

Lemma II.2 proves that ifp is even, then only the symmetric part ofx r
s counts:

x r
s•fp5(Sym!x r

s)•fp . Thus we may concentrate onx r
s P Ar(M ,Syms(g,V)), in order to con-

struct formsx r
s•F with the 2-forms Fa.

Let Ad!:G3Hom(^ sg,V)→Hom(^ sg,V) denote the right representation induced by the
adjoint action: forK P Hom(^ sg,V), g P G andEi P g, it is defined by

~Ad~g!!K !~E1 , . . . ,Es!:5K~Ad~g!E1 , . . . ,Ad~g!Es!.

A differential form xn
sPAn(F,Hom(^

sg,V)) is called (G-!equivariant if Lg
!xn

s

5 (Ad(g21)!)!xn
s . ~For s50 this obviously means thatxn

0 is invariant underL.! On the other
hand a differential formf P A(F,g) is called (G-!equivariant if Lg

!f5Ad(g)!f, e.g.,vG

P A1(P,g) and VG P A2(P,g) are equivariant, sinceRg
!vG5Ad(g21)!vG, resp.,

Rg
!VG5Ad(g21)!VG. We denote the sets of these equivariant differential forms by

A(F,Hom(^ sg,V))equiv, resp., A(F,g)equiv. They are modules of the exterior algebra
A(P) inv of invariant differential forms.

Lemma II.3: Ifxn
s P An(F,Hom(^

sg,V))equivandfp P Ap(F,g)equiv, thenxn
s•fp is invari-

ant.
For our purposes we also need further operators on differential forms that transform

V-valued forms into Alti(g,V)-valued forms. Recall that for any Lie group actionL:G3F→F,
everyX P g canonically induces a vector fieldLX P D1(F) by (LX) f :5(dLf)e(X), where
(dLf)e :Te(G)→Tf (F) denotes the differential of the mapL

f . The operator2L:g→D1(F) is a
Lie algebra homomorphism, in fact we have

@LX ,LY#5L [Y,X]52L [X,Y] for all X,YPg, ~3!

~Lg!!LX5LAd~g!X for all gPG,XPg. ~4!

Analogously for the right actionR on a principal bundle,R:g→D1(P) is a Lie algebra homo-
morphism, and theRX are the so-called fundamental vector fields onP. Now we may define:

Definition II.4: Let L be a Lie group action of G on F andvn P An(F,V). We define
differential forms Ld

i vn P An2 i(F,Alt i(g,V)), i50, . . . ,n, for all X j P D1(F), Ek P g and f
P F by
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@~Ld
i vn!~X

1, . . . ,X n2 i !~ f !#~E1 , . . . ,Ei !:5
n!

~n2 i !!
vn~L

1, . . . ,L i ,X 1, . . . ,X n2 i !~ f !PV,

where L i :5LEi
. For i.n we put Ld

i vn50. In the case i51 we also define forxn
s

PAn(F,Hom(^
sg,V))

Ld
~xn

s :5Sym!~Ldxn
s!PAn21~F,Syms11~g,V!!.

~Obviously Sym!(Ld
i xn

s)50 for i.1.! Now if ıX :An(M ,V)→An21(M ,V) denotes the
interior product with respect toX P D1(M ), which is given by

~ ıXvn!~Y
1, . . . ,Y n21!:5nvn~X ,Y1, . . . ,Y n21!,

then we have the following relation with regard to our convention~2!:

~Ld
i vn!n2 i

E1 , . . . ,Ei5~ ıL i+ •••+ ıL1!vn .

The following lemma is quite immediate by~4!:
Lemma II.5: For all i<n, the operator Ld

i :An(F,V)→An2 i(F,Alt i(g,V)) is
C`(F)-linear. Forvn P An(F,V) andxn

s P An(F,Hom(^
sg,V))equivwe have

Ld
0 vn5vn , ~Ld

n vn!~ f !5n! @~L f !!vn#e for all fPF, ~5!

Lg
!~Ld

i vn!5~Ad~g21!!!!@Ld
i ~Lg

!vn!#, thus ~6!

Lg
!~Ld

i xn
s!5~Ad~g21!!!!~Ld

i xn
s! and Lg

!~Ld
~xn

s!5~Ad~g21!!!!~Ld
~xn

s!. ~7!

Equation~7! yields thatLd
i vn andLd

~vn areG-equivariant ifvn is invariant underL.

III. EXTENDING FORMS TO THE BUNDLE

If P is a principal bundle with free right Lie group actionR, andL is a left effective Lie group
action ofG on a manifoldF, then the associated fiber bundle with fiberF that comes along with
L is the quotient manifoldB(M ,F,G)5P3GF of the direct productP3F under the free right
action R̃:(P3F)3G→P3F, which is defined by

R̃g~p, f !:5~Rg~p!,Lg21~ f !! for all pPP, fPF.

In fact,P3F is a principal bundle overB with projectionp̃ and fiberG. Every connectionG on
a principal bundle, given by a connection 1-formvG, canonically induces a connectionG̃ on

(P3F)(B,G) by ṽ G̃5prP
!vG. In turn, G̃ defines horizontal lifts of vector fields

L̃:D1(B)→h̃D1(P3F) inv . L̃ is a C`(B)-module isomorphism with inverse morphismdp̃. If
hnat andvnat denote the natural projections of vector fields on the direct productP3F, then we
also have projectionsh, v onD1(B)

h5dp̃hnatL̃, v5dp̃vnatL̃,

so

D 1~B!5hD 1~B! %vD 1~B!.
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This is the induced connection on the associated bundleB, as mentioned above. LetX i

P D 1(B), then for anyvn P An(B,V), n.0, the horizontal and vertical projectionsvnh
P An(B,V)h, resp.,vnv P An(B,V)v, are given by

vnh~X 1, . . . ,X n!:5vn~hX
1, . . . ,hX n!,

vnv~X 1, . . . ,X n!:5vn~vX
1, . . . ,vX n!.

Obviously these projections commute with •, i.e.,

~xn
s•fp!h5xn

sh•fph, ~xn
s•fp!v5xn

sv•fpv.

Recall that, by definition,vG is a vertical form. The exterior covariant derivative of forms on
P is defined bydGf:5(df)h. ThusVG5dGvG5(dvG)h is a horizontal form.

If f is a differential form onF, then prF
!f is a form onP3F, and ifY i are vector fields on

B, then (prF
!f)( . . . ,L̃Y i , . . . ) is afunction onP3F. Now if f is invariant underL, one can

prove that this function is invariant underR̃ and thus defines a map onB. But this defines a form
on B. In fact, we have the following proposition:7

Proposition III.1:f P A(F,V) defines a vertical V-valued formfv on B(M ,F,G) iff f is
invariant under all Lg

! For such af and allY i P D 1(B) then there exists fP C`(B,V) with

~prF
!f!~ . . . ,L̃Y i , . . . !5 fsp̃.

If ha andva denote the local projections of fields and forms induced byG, then this generated
form fv locally is given by

fvup21~Ua!5~pa
!f!va. ~8!

Proposition III.1 is a special case of the following theorem:
Theorem III.2: If xn

s P An(F,Hom(^
sg,V))equiv and f P Ap(P,g)equiv, p P N0 , then

(prF
!xn

s)•(prP
!f) P An1sp(P3F,V) defines a V-valued form on B: for all vector fieldsY i

P D 1(B) then there exists fP C`(B,V) such that

@~prF
!xn

s!•~prP
!f!#~ . . . ,L̃Y i , . . . !

5@~prF
!xn

s!•~prP
!fh!#~ . . . ,L̃Y i , . . . !5 fsp̃.

(prF
!x) defines the vertical and(prP

!f) defines the horizontal part of the form.
The proof of Theorem III.2 relies on Lemma II.3: under the assumed conditions one shows

that (prF
!xn

s) and (prP
!f) are equivariant with respect toR̃, and thus (prF

!xn
s)•(prP

!f) is invariant
by Lemma II.3.

Natural candidates forf P Ap(P,g)equiv arevG andVG. Nevertheless, sincevG is vertical,
Theorem III.2 yields that the generated form onB is zero. ForVG, the generated form is locally
given by

@~pa
!xn

s!va#•~p!Fa!PAn12s~p21~Ua!,V!.

For that reason, we will denote this generated form by (xn
sv)•F or simplyxv•F.

Finally we need to compute the exterior derivative of these generated differential forms. We
thus cite the following theorem from Ref. 8:
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Theorem III.3: Let G be a connection on a principal fiber bundle P(M ,G) and let
B(M ,F,G) be an associated bundle, V any vector space,xn

s P An(F)^Hom(^ sg,V) be
G-equivariant andfn P An(F)^V be invariant under G. Then

d~xn
sv•F!5@~dxn

s!v#n11
s •F1@~Ldxn

s!v#n21
s11•F,

5@~dxn
s!v#n11

s •F1@~Ld
~xn

s!v#n21
s11•F,

d~fnv !5~dfn!v1@~Ldfn!v#n21
1 •F.

Note that the second identity follows from the already mentioned fact that, in combination
with F, only the symmetric part of (Ldxn

s)v counts, cf. Lemma II.2. The last identity is a simple
corollary to the first one, since fors50,G-equivariance means invariance, Hom(^

0g,V)5V, and
x r
0•F5x r

0 by definition.
Theorem III.3 proves that the diagram in Section I does not commute in general. Only for

0-formsf, i.e., functionsf P C`(F,V), we know thatLdf50.

IV. G-ADAPTED AND G-TRANSGRESSIVE DIFFERENTIAL FORMS

Now we are prepared for the notion ofG-adapted differential forms on a bundle:
Definition IV.1: LetG be a connection on P(M ,G) and B5P3GF. A differential formfA

P A(B,V) is calledG-adapted ifx i P An( i )(F,Hom(^
s( i )g,V))equivare given such that

fA5(
i

x iv•F.

It is this splitting into a sum ofx iv•F that we have in mind when we say that a form can be
presented in such a way that all horizontal terms are given by the gauge fields Fa.

We will be concerned with the question whether we can find such aG-adapted representative
for a cohomology class inH* (B) that is generated by a 0-transgressive invariant formf
P A(F). For the physical applications in mind, this concentration on invariant forms is no real
restriction. Recall from the general theory of fiber bundles that, for every bundle over a paracom-
pact manifoldM with a connected structure groupG, this Lie groupG is reducible to its maximal
compact connected subgroupK, i.e.,G may bea priori chosen to be compact. For example, if we
are dealing with electromagnetic interactions, we haveG5U1; if we are dealing with electroweak
interactions within the Glashow, Salam and Weinberg theory, thenG5SU23U1; and for strong
interactions covered by quantum chromodynamics~QCD!, G5SU3. In general, for Yang-Mills
theories we haveG5Un3Un or a subgroupH,G.

For any compact Lie group we have the normalized Haar measurem, and we can project any
form f P A(F,V) onto an invariant formf inv defined by

f inv :5E
G
Lg

!fdm~g!. ~9!

~Analogous projections onto equivariant forms also exist.! On the other hand, ifG is connected,
then all mapsLg are homotopic to the identity mapLe5 idF , which yields that@Lg

!#5 idH* (F) .
Thus, if we denote the cohomology of the invariant closed forms onF modulo the invariant exact
forms byH inv* (F), we have the following proposition:

Proposition IV.2: If G is a compact connected Lie group acting on F, then
H* (F)>H inv* (F), and the isomorphims are induced by the above projection onto invariant forms,
resp., the injection i:A(F) inv→A(F).
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A(F,V) inv contains an important subset, whose elements we will callG-transgressive forms.
Let @r #:5maxzPZ$z<r % for all r P R. Then their definition is as follows:

Definition IV.3: Let L:G3F→F be a left Lie group action. An invariant closed differential
form fn P An(F,V) inv will be called G-transgressive if equivariant differential formsx i

P An22i(F,Symi(g,V))equiv exist for 0< i<@n/2# with

x05fn ,2Ld
~x i5dx i11 for all 0< i<@n/2#21 and Ld

~x [n/2]50. ~10!

Denote the set of all G-transgressive forms on F byA(F,V)G2trans.
Note IV.4: The reader who is familiar with equivariant cohomology will recognize that

G-transgressive forms define equivariant cohomology classes for the givenG-manifold F, cf.
Atiyah and Bott9 or Mathai and Quillen10 and Section VIII.

Recall the definition of the exterior product of vector valued differential forms from~1!. For
Kr P Symr(g,R) andKs P Syms(g,R) we have the symmetric productKr ~ Ks :5Sym(Kr ^Ks).
For any bilinearw:V3V→V this extends to a bilinear mapping on the~infinite dimensional!
vector space Sym(g,V):5 % s50

` Syms(g,V) analogously to~1!, which we also denote by~ . This
in turn defines the exterior product̀ ~ . With respect tò ~ , the setA(F)^Sym(g,V) is an
exterior algebra with subalgebraA(F)equiv̂ Sym(g,V).

Lemma IV.5: d and Ld
~ are skew-derivations of degree1, resp. 21, of the algebras

A(P)^Sym(g,V) and A(P)equiv̂ Sym(g,V). For all an P An(P)^Sym(g,V) and v
PA(P)^Sym(g,V),

d~an`~v!5~dan!`~v1~21!nan`~~dv!,

Ld
~~an`~v!5~Ld

~an!`~v1~21!nan`~~Ld
~v!.

Lemma IV.5 is the main ingredient in the proof of the following proposition:
Proposition IV.6:A(F,V)G2trans is a R-subalgebra ofA(F,V), whenever a bilinear map

w:V3V→V and thus a wedge product̀ w is defined. Iffm and cn are G-transgressive and
x i P Am22i(F,Symi(g,V))equiv, resp.j

i P An22 j (F,Symj (g,V))equiv, are the differential forms
given by (10! for fm , resp.cn , then

zk:5 (
i1 j5k

x i`~j jPAm1n22k~F,Symk~g,V!!equiv

for 0<k<@m/2#1@n/2# (andz [(m1n)/2]:50 if m and n are odd) are the corresponding forms for
fm`~cn .

Proof: ObviouslyA(F,V)G2trans is aR-subspace ofA(F,V). Hence we only have to check
if the zk, for 0<k<@(m1n)/2#, obey the identities ~10! for fm`~cn5fm`wcn

P Am1n(F,V) inv . Obviouslyfm` ~cn is closed andz
05x0 ` ~j05fm` ~cn . By definition of

` ~ , the differential formszk are elements ofAm1n22k(F,Symk(g,V)) and

Lg
!zk5 (

i1 j5k
Lg

!x i`~Lg
!j j5 (

i1 j5k
~Ad~g21!!!!x i`~~Ad~g21!!!!j j5~Ad~g21!!!!zk,

whence allzk areG-equivariant. Next for 0<k<@m/2#1@n/2#21, we obtain from Lemma IV.5,
usingdx05dj050,
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dzk115 (
i1 j5k11

d~x i`~j j !

5 (
i1 j5k11

@dx i`~j j1~21!m22ix i`~dj j #

5dx0`~jk111 (
i1 j5k

@dx i11`~j j1~21!mx i`~dj j11#

1~21!mxk11`~dj0

52 (
i1 j5k

@Ld
~x i`~j j1~21!mx i`~Ld

~j j #

52 (
i1 j5k

Ld
~~x i`~j j !52Ld

~zk.

Analogously, sinceLd
~x [m/2]5Ld

~j [n/2]50,

Ld
~z [m/2]1[n/2]5 (

i1 j5[m/2]1[n/2]
Ld

~~x i`~j j !

5Ld
~x [m/2]`~j [n/2]1~21!mx [m/2]`~Ld

~j [n/2]50.

But @m/2#1@n/2#5@(m1n)/2#, except if m and n are both odd, where
@m/2#1@n/2#5@(m1n)/2#21. In that case, we have just shown that2Ld

~z [(m1n)/2]2150,
whence we may choosez [(m1n)/2]:50. This completes the proof thatfm`~cn is
G-transgressive. h

Now we are ready for the following theorem:
Theorem IV.7: Let G be a connection on a principal bundle P(M ,G) and B5P3GF an

associated bundle with left Lie group action L:G3F→F. Let V denote any vector space. If the
form fnPAn(F,V) inv is G-transgressive and the equivariant formsxn22i

i

P An22i(F,Symi(g,V))equivare given by (10!, then

fn
A :5 (

i50

[n/2]

~xn22i
i v !•FPAn~B,V!

is closed andG-adapted. Its restriction to the fibers isfn , i.e., for anya P A and allx P Ua , we
havei a,x

! fn
A5fn .

Proof: fn
A is obviously adapted toG. Furthermore Theorem III.3 yields

dfn
A5 (

i50

[n/2]

~dxn22i
i !v•F1~Ld

~xn22i
i !v•F

5~dfn!v1 (
i50

[n/2]21

~dxn22i22
i11 1Ld

~xn22i
i !v•F1~Ld

~xn22[n/2]
[n/2] !v•F50,

since fn is G-transgressive. Finally, sincei a,x
! p!Fa50 for all xPUa , we obtain

i a,x
! fn

A5 i a,x
! (x0v)5 i a,x

! (fnv). But naturallyi a,x
! (fnv)5fn . h

Note that the property of beingG-transgressive only depends onL and F. Thus
G-transgressive forms define de Rham cohomology classes on all fiber bundles whereL is the

6384 Christian Gross: Cohomology and connections on fiber bundles and applications

J. Math. Phys., Vol. 37, No. 12, December 1996



action of the structure groupG on the fiberF. In particular, this condition is independent of the
baseM and of the question whether the bundle is trivial or not. Indeed we have the following:

Corollary IV.8: Let L:G3F→F be a left Lie group action. If a formfn P An(F) is
G-transgressive, it is0-transgressive for any bundle B(M ,F,G) that comes along with L. Thus
fn defines a unique cohomology class@fn

A# P Hn(B) with @ i a,x
! #@fn

A#5@fn# P Hn(F), indepen-
dently of the paracompact base M and the transition functions gab .

Proof: By the existence theorem for connections, every principal bundleP(M ,G) over a
paracompact manifoldM admits a connectionG ~Ref. 5, p. 67!. Thusfn

A is well-defined and
Theorem IV applies. h

Corollary IV.9: If G and G8 are two connections on P(M ,G) and fPA(F) is

G-transgressive, then there existsc P A(B) such that the formsfA andfA8 obey:

fA2fA85dc with d~ i a,x
! c!50.

Let us derive the analogue to Theorem IV.7 for 1-dimensional Abelian Lie groupsG like the
electromagnetic structure groupGem>U1>S1. According to the following lemma, we may refor-
mulate the notion ofG-transgressive forms in that case:

Lemma IV.10: If G is Abelian withg5ER, thenfnPA(F,V) inv is G-transgressive iffx i

P An22i(F,V) inv exist for0< i<@n/2# such that withn i :5ıLE
x i the following equations hold:

x05fn ,2n i5dx i11 for all 0< i<@n/2#21 andn [n/2]50. ~11!

Also sinceg>R, we can replace • by the exterior product and as a corollary to Theorem IV.7
and Lemma II.2 we obtain the following.

Theorem IV.11: Let G be a connection on a principal bundle P(M ,G), where G is Abelian
with g5ER, and let B5P3GF be any associated bundle with left Lie group action
L:G3F→F. If fn P An(F,V) inv is G-transgressive andxn22i

i P An22i(F,V) inv are given by
(11!, then withF̃:5 1/Ep!FP A2(B),

is closed andG-adapted. Its restriction to the fibers isfn , i.e., for any xP Ua , i a,x
! fn

A5fn .
Finally, in order to evaluate Theorem IV.11, we note that for any formfPA(F,V), the

vertical projections~8! are given by

fvup21~Ua!5~pa
!f!va5pa

!f1Ãa`pa
!~ ıLE

f! ~12!

with Ãa:5 1/Ep!Aa.7 Hence, since (ıLE
)250, we have (ıLE

f)vup21(Ua)
5pa

!(ıLE
f).

V. SKYRMION BUNDLE AND RELATED YANG–MILLS THEORIES

These results are quite important for the skyrmion bundle in theoretical nuclear physics which
treats interactions of mesons and baryons — described within the~ungauged! Skyrme model1,3—
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with electromagnetic fields.11–13 In order to show this, we need some basic results from current
algebra. Denote the left and right invariant 1-forms on a Lie groupH<Gln(C) by QL

P A1
L(H,h), resp.,QRP A1

R(H,h), i.e.,

Qh
L~h•X!5Qh

R~X•h!5X for all hPH,XPh,

whereh•X andX•h are elements ofTh(H). In the literature, these forms are also called invariant
‘‘currents’’ and we find the notationsh21dh andL for QL, resp.,dhh21 andR for QR. If `
denotes the exterior product of matrix-valued forms with respect to matrix multiplication, then for
allkP N,

and

are well-defined left, resp., right, invariantk-forms onH, and so are

lk
M :5Tr@M•~QL!k#PAk

L~H,C!

and

rk
M :5Tr@M•~QR!k#PAk

R~H,C!,

for any matrixM P Cn3n. Especially forM51, we obtain the bi-invariant

vk :5lk
15rk

1PAk~H,C! inv ,

and one easily checks thatv2k50. Now the Maurer–Cartan identities yield the following.
Lemma V.1: d(QL)2k2152(QL)2k and d(QR)2k215(QR)2k. As a consequence for any ma-

trix M P Cn3n, we have dl2k21
M 52l2k

M , dr2k21
M 5r2k

M hence dv2k2150 and dl2k
M 5dr2k

M 50.
In addition, recall that the cohomology of SUn and Un is generated as an algebra byv3 ,

v5 , . . . , v2n21 for SUn , resp., byv1 , v3 , . . . , v2n21 for Un , cf. Greub, Halperin, and
Vanstone.14

In the ungauged Skyrme model, the meson fields occur as mapsU:M→SUn , whereM
denotes space–time andn denotes the number of flavors inQCD. The configurationU[1 rep-
resents the vacuum. Baryons appear as topological soliton solutions, as ‘‘skyrmions,’’ of these
fields. The number of baryons represented by a given mesonic field configuration is computed by
an integration ofU!v3 over the space manifold~which is compactified at infinity, where the fields
are required to tend to the vacuum value1). Forn>3, the action integral splits into two parts, the
nonamomalous action and the Wess–Zumino term. The latter is an integral over the differential
form v5 .

2
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In order to treat interactions with electromagnetic fields~especially those of magnetic
monopoles,11,12! one constructs a fiber bundleB(M ,SUn ,Gem), cf. Section I. If e denotes the
electric unit charge, then the left action ofGem5 1/e•S1 on SUn is given by the inner automor-
phisms

L~g,U !:5e2 iegQUe1 iegQ ~13!

for g P Gem andU P SUn . Q is then3n-matrix containing the quark charges in units ofe: for
n52,3,

Q5S 2

3
0

0 2
1

3

D , resp.,Q5S 2

3
0 0

0 2
1

3
0

0 0 2
1

3

D .

We putfa:5pa
!f for anyf P A(F,V). Under a change of bundle charts we then have

Ua~x!5L~gab ,U
b!~x!5e2 iegab~x!QUb~x!e1 iegab~x!Q,

and for the canonical vector fieldLE P D1(SUn) induced byE5 1/e P g, we obtain

LE~U !52 i @Q,U# for all UPSUn . ~14!

Now ~12! yields

~dUa!v5dUa2 ieAa@Q,Ua#.

For the invariant formsrk
Q , lk

Q andv2k11, we obtain the following lemma:13

Lemma V.2: For the action given in (13!,

ıLE
v2k1152~2k11!i ~r2k

Q 2l2k
Q !,

ıLE
~r2k

Q 2l2k
Q !50,

ıLE
~r2k11

Q 1l2k11
Q !522i(

j51

k

Tr@QU~QL!2 j21Q~QL!2k22 j11U21#

2 i(
j50

k

Tr@Q~QR!2 jQ~QR!2k22 j2Q~QL!2 jQ~QL!2k22 j #.

In order to define a baryon number and an anomalous action for the skyrmion bundle, we have
to extend the formsv3 andv5 to the bundle. Several approaches ‘‘by trial and error’’ have been
made to ‘‘generalize’’v3 and v5 , cf. Callan and Witten,11 Kaymakcalanet al.,15 or Pak and
Rossi.16 In terms of the language we are using, we would like to obtain differential formsv3

A and
v5
A that are adapted to the Maxwell connection given by the electromagnetic fields. Thus we will

examine whetherv3 andv5 areGem-transgressive.
This is indeed the case. According to Lemma IV.10 we have to findxn22i

i P An(SUn ,C) and
nn22i21
i 5ıLE

xn22i
i that obey~11! for f5v3 , resp.,f5v5 . From Lemma V.2 we conclude that

for f5v2k11 , we have n2k
0 52(2k11)i (r2k

Q 2l2k
Q ). Now Lemma V.1 yields that

6387Christian Gross: Cohomology and connections on fiber bundles and applications

J. Math. Phys., Vol. 37, No. 12, December 1996



r2k
Q 2l2k

Q 5d(r2k21
Q 1l2k21

Q ), sox2n21
1 5(2k11)i (r2k21

Q 1l2k21
Q ). Forv3 we are already done,

since x1
1 is global and vertical due to Lemma V.2:n0

150. For x3
1, again Lemma V.2 yields

n2
25210i 2Tr@Q2((QR)22(QL)2)1QdU21 ` QdU#. One easily verifies that

x1
2510i 2~r1

Q2
1l1

Q2
!15i 2Tr~QdUQU212QUQdU21!1ri 2dTr~QU21QU!,rPR,

is an admissible choice and thatn0
250, thusx1

2 is global and vertical. For physical reasons~parity
invariance15!, we putr50. We thus obtain from Theorem IV.11:13 the following.

Theorem V.3: v3 andv5 are Gem-transgressive and generate de Rham cohomology groups
isomorphic toR for any skyrmion bundle. Representatives for the generated cohomology groups,
that are adapted to the Maxwell connection, are

v3
A5v3v1 ieF`x1

1v

5@v3
a23ieAa`~r2

Q2l2
Q!#13ieF`~r1

Q1l1
Q!,

v5
A5v5v1 ieF`x3

1v1~ ie!2F`F`x1
2v

5@v5
a25ieAa`~r4

Q2l4
Q!#15ieF`$~r3

Q1l3
Q!a

22ieAa`Tr@Q2~~QR!22~QL!2!1QdU21`QdU#a%15~ ie!2F`F`@2~r1
Q2

1l1
Q2

!a

1Tr~QdUQU212QUQdU21!a#.

In fact, one can prove that all differential formsv2k21 areGem-transgressive.
17

In comparison to the literature cited, our formalism has led to quite compact notations for
v3
A andv5

A . This advantage becomes even more obvious when generalizations to other gauge
groups, especially non-Abelian gauge groups, are considered, e.g., instead ofG>S1 and
F5SUn take a Yang–Mills theory whereG5Un

L3Un
R andF5Un with L (gL ,gR)(U)5gLUgR

21. As

a generalization of~14! we have for all (XL ,XR) P un
L

% un
R

L~XL ,XR!~U !5XLU2UXR for all UPSUn . ~15!

Now the gauge fields take their values in un
L

% un
R , i.e., Aa5(AL

a ,AR
a) and Fa5(FL

a ,FR
a)

P A(Ua ,un
L

% un
R) define the connectionG on P(M ,G). In this case, omitting the superscripts

a, we obtaindUv5dU1ALU2UAR , hence

QLv5QL1U21ALU2AR ,

QRv5QR1AL2UARU
21,

v1v5v11Tr~AL2AR!.

Moreover, we haveLdv15Tr(pL2pR) with the projectionspL/R:g5un
L

% un
R→un

L/R. Thus for
any LIE subgroupH,G, the closed invariant formv1 is H-transgressive iff Tr(XL2XR)50 for
all (XL ,XR) P h, e.g., we could choose a subgroup of the diagonalDn5Un

L3Un
L in G such that

gL5gR for all (gL ,gR) P Dn . ~Note that this is the case for the skyrmion bundle.! Or we could
chooseH5SUn

L3SUn
R , resp., a subgroup ofH. In Section VII we will prove that in the latter case,

v1 is necessarilyH-transgressive because SUn
L3SUn

R is semisimple forn.2, cf. Theorem VII.4.
For v3 we obtainLdv353Tr@(QR)2pL2(QL)2pR#, thus

x1
1 :523Tr~QRpL1QLpR!PA1~Un ,Hom~g,C!!
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obeys dx1
152Ldv3 due to Lemma V.1. Omitting the symmetrization~, we compute

Ld
~x1

153Tr(pRpR2pLpL), i.e.,

~Ld
~x1

1!~~XL ,XR!,~YL ,YR!!53Tr~XRYR2XLYL!Þ0.

Thus v3 is not G-transgressive. In fact, take anyx̃1
1PA1(Un ,Hom(g,C))equiv with

dx̃1
152Ldv3 . Then j1

1 :5 x̃1
12x1

1PA1(Un ,Hom(g,C))equiv with dj1
150. SinceH1(SUn)50,

we find j0
1 P C`(Un ,Hom(g,C)) with dj0

15j1
1. In fact, we may choosej0

1 equivariant, because
SUn is compact, analogously to~9!. But then for allX,Y P g,

Ld
~j1

1~X,Y!5~ ıLX
dj0

1!~Y!1~ ıLY
dj0

1!~X!

5LX~j0
1!~Y!1LY~j0

1!~X!

5j0
1~@Y,X# !1j0

1~@X,Y# !50.

Thus (Ld
~ x̃1

1)5(Ld
~x1

1) Þ 0. Sincev3 is notG-transgressive, the generatedG-adapted form

v3
A5v3v1x1

1v•FPA3~B~M ,Un ,G!,C!

is not closed in general:dv3
A5(Ld

~x1
1)v•F5(Ld

~x1
1)•F. Yet if we again restrictL to a subgroup

H,G with generatorsXs5(XL
s ,XR

s), s P I , such that Tr(XL
sXL

t )5Tr(XR
sXR

t ) for all s,t P I , then
Ld

~x1
150 andv3 is H-transgressive. Note that this condition holds for any subgroup of the

diagonalDn and thus for the skyrmion bundle.
Finally, some cumbersome calculations show that the voluminous expressions for the Wess-

Zumino term in Ref. 15,~4.18!, resp., Ref. 2,~24!, are equal to the integral over theG-adapted
differential form

v5
A5v5v1x3

1v•F1x1
2v•FPA5~B~M ,Un ,G!,C!,

where the formsx522l
l P A522l(Un ,Syml(g,C))equiv are given by

x3
1 :525Tr@~QR!3pL1~QL!3pR#,

x1
2 :510Tr@~QR!pLpL1~QL!pRpR#15Tr~dUpRU21pL2d~U21!pLUpR!.

Analogously to the skyrmion case, one may add a term

r @dTr~pLUpRU21!v#•F5rdTr~FLUFRU
21!,rPC,

or exclude it by parity invariance.15 Also in this case, the differential formv5 is not
G-transgressive: we obtainLd

~x1
2510Tr(pLpLpL2pRpRpR), thus againv5 is H-transgressive

for any subgroupH<D. More generally,v5 is H-transgressive if and only if the generators of
H obey Tr(XL

sXL
tXL

y )5Tr(XR
sXR

tXR
y ) for all s,t,yPI , specifically, only if Tr@(XL

s)3#
5 Tr@(XR

s)3# for all s P I , which is the usual condition for cancellation of anomalies on the quark
level.2

Nevertheless note thatdv5
A5(Ld

~x1
2)•F consists of a 6-form on the base. Thus as long as we

stick to space–timeM — or even a five-dimensional extension — this form vanishes andv5
A is in

fact closed. The same holds forv3
A : although it might not be closed on space–timeM , v3

A is
closed, of course, when restricted to three-dimensional space.
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VI. LIE ALGEBRA COHOMOLOGY

Back to the general case, we want to derive which closed invariantn-formsfn on the fiber
F areG-transgressive in the cases wheren50, 1 or 2. To this purpose we need some basic results
on Lie algebra cohomology.

Supposeg is aK-Lie algebra~for K5R,C) and l :g→gl(V) is a ~left! representation ofg on
a ~possibly infinte dimensional! K-vector spaceV. Then Alt(g,V)5 % p50

` Alt p(g,V) becomes a
differential complexCl with the following differential operatordl5(dp

l :Cl
p→Cl

p11)pPN0
: for c

P Cl
p :5Alt p(g,V) andXi P g,

dp
l c~X1 , . . . ,Xp11!:5 (

i51

p11

~21! i11l ~Xi !~c~ . . . ,Xî , . . . !!1(
i51

p

(
j5 i11

p11

~21! ic~ . . . ,Xî , . . . ,Xj21 ,@Xi ,Xj #,Xj11 , . . . !

~wherê indicates that the term is omitted!.
Our definition of dl differs slightly from the definitions in Ref. 14, resp., in Hilgert and

Neeb,18 where analogously to the definition of the exertior derivatived, the second term reads

1(
i51

p

(
j5 i11

p11

~21! i1 j c~@Xi ,Xj #,X1 , . . . ,Xî , . . . ,Xĵ , . . . !.

Obviously both definitions coincide onCl . Nevertheless with our definition not only Alt(g,V)
becomes a differential complex, but also Hom(T (g),V) becomes a complexC̄l with subcomplex
Cl . @T (g) denotes the tensor algebra ofg.# Indeed we can prove — analogously to the proof for
d250 — thatdp11

l + dp
l 50 onC̄l for any representationl :g→gl(V) of g. Now the cohomology of

this complex,Hl
p(g,V):5Hd

p(Cl) is called thepth ~Chevalley! cohomology space ofg with values
in V with regard to l . We put Hl

p(g):5Hl
p(g,K). Analogously, H̄ l

p(g,V):5Hd
p(C̄l) and

H̄ l
p(g):5H̄ l

p(g,K).
Lemma VI.1: Let o:g→gl(V) denote the trivial representation ofg. Then

~1! Ho
0(g,V)5H̄o

0(g,V)5V.
~2! Ho

1(g,V)5H̄o
1(g,V)5$c P Hom(g,V)uc(@g,g#)5$0%<V%5@g,g#', thusd1

o is injective and
Ho
1(g,V)5$0% for all Lie algebrasg with g5@g,g#, e.g.,semisimple Lie algebras.

~3! If a is Abelian, then Ho
p(a,V)5Alt p(a,V) and H̄o

p(a,V)5Hom(^ pa,V).

Moreover, if V is finite dimensional, then Whitehead’s lemmas yield that
Hl
1(g,V)5Hl

2(g,V)50 for any representationl :g→gl(V) of a semisimple Lie algebrag.
Recall that a double complexC* ,* :5 % p,qPN0

Cp,q is a doubly graded differential complex
with two commuting differential operators, a horizontal operatord:Cp,q→Cp11,q and a vertical
operatord:Cp,q→Cp,q11. Every double complex is associated with a singly graded complex
C* by summing along the antidiagonal lines, i.e.,Cn is given byCn5 % p1q5nC

p,q. The ~total!
cohomology of such a double complex is then defined to be the cohomology of the associated
singly graded complex with regard to the differential operatorD5d1(21)pd onCp,q. Note that
indeedD:Cn→Cn11. The alternating sign guaranties thatD + D50.6

Given a Lie group actionL:G3F→F, we want to combine the invariant cohomology on
F with the Lie algebra cohomology ofg. To this purpose, we form the double complex

C* ,* :5A~F ! ^Hom~T ~g!,V!

5 % p,qPN0
Aq~F,Hom~ ^

pg,V!!.
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(21)pd(q) :C
p,q→Cp,q11 is the vertical operator, and for the horizontal operator we have

d:52d(q)
l :Cp,q→Cp11,q. For the representationl :g→gl(A(F,V)) several choices are possible.

e. g., one can take the trivial representationo. Thendo andd obviously commute.
Instead we choosel defined byl (X):52LLX

, whereLX :A(F,V)→A(F,V) denotes the
Lie derivative of forms with respect to a vector fieldX P D1(F). Recall thatLX is given by
LX5dsıX1ıXsd. Since Lie differentiation and exterior differentiation commute,d and d
commute on the double complex and define an operatorD.

With regard to these operators we obtain~Ref. 8, Lemma 3.4! the following.
Lemma VI.2: For allvn P An(F,V) and all i<n11,

Ld
i dvn2~21! idLd

i vn5d i21Ld
i21vn .

A* ,* :5A(F)^Alt( g,V) is a subcomplex ofC* ,* and Ainv*
,* :5A(F) inv^Alt( g,V) and

Aequiv* ,* :5A(F)equiv̂ Alt( g,V) are subcomplexes ofA* ,* , on which the horizontal operators are
given byd52do, resp.,d51do.

Recall that a chain mapf :A→B between two differential complexesA andB is a homomor-
phism that commutes with the differential operators ofA andB: f + DA5DB + f , e.g., all pullbacks
f !:A(M ,V)→A(N,V) are chain maps.

Definition VI.3: For any Lie group action L:G3F→F, the homomorphism
L :A(F,V)→A(F)^Alt( g,V) is defined byLvn :5( i50

n Ld
i vn for all vnPAn(F,V).

The homomorphism Ld* :A(F,V)→Alt( g,V) is given by Ld* v:5(n50
` Ld

n vn for all
v5(n50

` vn withvn P An(F,V).
Let p0 :A(F)^Alt( g,V)→A(P,V) denote the canonical projection. Sincep0 + D5d + p0 ,

p0 is a chain map. Obviouslyp0 + L5 idA(F,V) , thus if L is a chain map, we obtain@p0#
+ @L #5 idH* (P,V) and@L # is injective. Indeed we find the following.

Proposition VI.4:
~1! L is a chain map and induces an injective homomorphism

@L #:H* ~F,V!→HD* ~A~F ! ^Alt ~g,V!!.

~2! Ld
* is a chain map and thus induces a homomorphism

@Ld
* #:H* ~F,V!→Hl* ~g,V!.

Proof:
~1! By Lemma VI.2 we have

D~Lv!5(
i50

n

D~Ld
i vn!5(

i50

n

@d iLd
i vn1~21! idLd

i vn#

5(
i50

n

@Ld
i11dvn1~21! idLd

i11vn1~21! idLd
i vn#

5(
i50

n

~Ld
i11dvn!1~21!ndLd

n11vn1dvn

5L ~dvn!

sinceLd
n11vn50.

~2! follows from Lemma VI.2 if we puti5n11. h

Finally we find the following result with regard to our purposes:
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Theorem VI.5: If the Lie algebrag is semisimple and the formvPA2(F,V) inv is closed,
then there exists a uniquex P A0(F,Alt1(g,V))equiv, such that

dx52Ldv and dx5Ld
2 v.

Proof: By Lemma VI.2,dLd
2 v50 holds. SinceHo

2(g,V)50 by Whitehead’s second lemma,
we findx P A0(F,Alt1(g,V))equivwith dx5Ld

2 v. Lemma VI.1 yields thatd1 is injective, sox is
unique. On the other hand we know fromDLv5Ldv50 that2dLdv5dLd

2 v5ddx5ddx.
Thusdx1Ldv P kerd1 . But d1 is injective. h

VII. G-TRANSGRESSIVE N-FORMS FOR N<2

Now we are prepared to compute which closed invariantn-formsfn , n<2, on the fiber are
G-transgressive.

df050 means thatf0 P C`(F) is locally constant. ObviouslyLd
~f050. So every closed

G-invariantf0 P C`(F) is G-transgressive. Sincef0 is invariant, it is global and vertical. Thus
(f0

A)a5pa
!f0 and @ i a,x

! #@f0
A#5@f0#. This proves the following.

Lemma VII.1: Every closed G-invariantf0 P C`(F) is G-transgressive and thus for anya
P A and xP Ua , @ i a,x

! #:H0(B(M ,F,G))→H inv
0 (F) is surjective.

@Note that this also impliesH inv
0 (F)<H0(F), if we putB:5$x%3F, but this is nothing new.#

Forn51 andf1 P A(F) inv , Lemma VI.2 yields thatdf150 impliesd1
oLdf150, i.e., for all

f P F, @Ldf1( f )# P @g,g#' by Lemma VI.1. Thus for a semisimple Lie algebrag, Ldf150. As a
consequence for any bundleB(M ,F,G) that comes along withL, $pa

!f1%aPA defines a global
vertical form onB. We have proved the following.

Lemma VII.2: If L is a Lie group action of a semisimple Lie group G on F, then every closed
invariant 1-form f1 P A1(F) inv is G-transgressive and defines a unique cohomology class
@f1v#5@$pa

!f1%aPA# P H1(B) for any bundle B(M ,F,G) that comes along with L. Thus for any
x P Ua , @ i a,x

! #:H1(B(M ,F,G))→H inv
1 (F) is surjective.

To show that the condition ‘‘G semisimple’’ is necessary, takeG5S1>R/Z acting on itself
by left multiplication, thus g5R. For every Lie group, the~left! canonical 1-formQL

P A1(G,g), defined byQg
L(X g):5dlg21(X g), is ~left! invariant by definition. SinceS1 is

Abelian, dQL50 in this case. QL is the volume form on S1 and generates
H inv
1 (S1)>H1(S1)>R, cf. Proposition IV.2. Yet (LdQL)(X)5QL(LX)5X for all X P R. Thus

LdQL5 idR andQL is not S1-transgressive.
In fact, take the principal bundlesPm(S

2,S1), m P Z, that classify all fiber bundles overS2

with structure groupS1 according to the Classification theorem~Ref. 4, p. 99!. Form50 we have
the trivial bundleS23S1 and form51 we obtain the Hopf fibering of the 3-sphere,p:S3→S2. For
the de Rham cohomologyH* (Pm) one obtains from the spectral sequence forPm with m Þ 0:

H0~Pm!>R, H1~Pm!50, H2~Pm!50, H3~Pm!>R.

So no @ i a,x
! #:H1(Pm)→H inv

1 (G) is surjective. Moreover, we always haveQLv5vG, even for
m50. SincedvG5dGvG5VG, our canonical construction does not produce closed forms on
Pm , in general.

Finally we consider the casen52 for semisimple Lie groups. Using Theorem VI.5 we obtain
that every closed invariant 2-form onF is G-transgressive. Thus we have the following.

Corollary VII.3: If L is a Lie group action of a semisimple Lie group G on F, then every
closed invariant2-formf2 P A2(F) inv is G-transgressive and defines a unique cohomology class
@f2

A#PH2(B) for any bundle B(M ,F,G) that comes along with L. If x0
1

P C`(F)equiv̂ Hom(g,R) is the unique map with dx0
152Ldf2 and dx0

15Ld
2 f2 according to

Theorem VI.5,thenf2
A is given by
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f2
A5f2v1~x0

1v !•FPA2~B!.

Thus for any xP Ua , @ i a,x
! #:H2(B(M ,F,G))→H inv

2 (F) is surjective.
In view of Proposition IV.2 we thus have proved the following.
Theorem VII.4: If L is a Lie group action of a semisimple Lie group G on F, then every

closed invariantfn P An(F) inv , n<2, is G-transgressive and defines a unique cohomology class
@fn

A# P Hn(B) for any bundle B(M ,F,G) that comes along with L. For any xPUa ,
@ i a,x

! #:Hn(B(M ,F,G))→H inv
n (F) is surjective.

If in addition, G is compact and connected, then Hinv
n (F)>Hn(F). Thus for every bundle

B(M ,F,G), Hn(B) contains a subgroup isomorphic to Hn(F) for n<2.
Theorem VII.4 applies to QCD, whereG>SU3 and to Yang–Mills theories with

G,SUn3SUn .
This theorem is sharp in the sense that it does not hold forn53, e.g., takeG5S3>SU2 acting

on itself by left multiplication. Then the volume form onS3 is closed and invariant and generates
H3(S3)>R. If this form wereG-transgressive, then for all principal bundlesP(M ,S3), the coho-
mology groupH3(P) would contain a subgroup isomorphic toR, independently ofM and the
transition functionsgab . Yet we know thatS7 is a principal bundle overS4 with fiber S3, and
H3(S7)50. Thus the volume form onS3 cannot beG-transgressive.

VIII. FINAL REMARKS

According to Corollary IV.8, everyG-transgressive form is 0-transgressive for all bundles
with fiber and left actionL. The reverse is also true for compact connected Lie groups. This can
be proved, e.g., in terms of universal bundles, the Weil algebra and the equivariant cohomology of
theG-manifold F.9,10 In fact,G-transgressive forms are exactly those forms onF that generate
equivariant cohomology classes~but not every equivariant cohomology class is generated by a
form onF). Now there is a natural isomorphism between this equivariant cohomology and the de
Rham cohomology of the universal bundle for the given left actionL, which yields that equiva-
riant cohomology classes define de Rham cohomology classes on all bundles that come withL.

We have not used these notions here for several reasons: First of all, we did not want to
restrict ourselvesa priori to compact connected Lie groups, where equivariant cohomology is
usually settled. Second, we were not interested in the whole cohomology of the bundles~resp., the
whole equivariant cohomology!, but only in those cohomology classes that have their origin in
forms onF. And last, for the applications in theoretical physics, we were interested in explicit
formulas for the generated differential forms and not in a more abstract notion like the Weil
algebra.

For non-compact Lie groups the reverse of Corollary IV.8 is false, e.g., takeG5R and define
L:R3Rk→Rk by L(r ,vW )5vW 1rzW with zW P Rk. Then all formsfn with constant coefficients are
closed and invariant. Because every bundle with structure groupR ~even more general, with
G>Rm) is trivial, every fn defines a closed form prRk

! fn on the bundle. Butfn is not

G-transgressive, in general, e.g., forf1 P A1(R
k) defined byf1(vW )(xW ):5^vW ,zW& for all xW P Rk and

vW P TxW(R
k), whereLdf1(xW )5 idR Þ 0. Thusf1 is notG-transgressive.
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