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Preface

This dissertation is inspired both from mathematics and physics. It deals with one of
the links of both sciences: the notion of a fiber bundle. All field theories in theoret­
ical physics are based on fiber bundles. E. g., electromagnetism can be modelled by
a principal S^bundle and a MAXWELL connection on it. This bundle also allows for
the description of magnetic monopoles, which have gained greater significance nowa­
days in grand unification theories. For another example, take the skyrmion bundle
in theoretical nuclear physics. As a generalization of the ungauged SkYRME model,
the skyrmion bundle is associated with the monopole bundle and treats interactions
between mesons, baryons and electromagnetic fields. In both cases the structure
group S1 of the bundle is abelian. Yet in YANG-MlLLS theories also fiber bundles
with non-abelian structure groups such as SUn are considered. This is the setting
for the dissertation in hand. It generalizes the results on S1-bundles to fiber bundles
with non-abelian structure groups and combines the cohomology of a bundle with
connections given on it.

There are many parallels between the definition of a fiber bundle and that of
a manifold. Manifolds are generalizations of the Euclidean spaces. E. g., the n-
sphere Sn , the prototype for a manifold, locally looks like (an open subset of) Rn ,
but globally has a nontrivial structure. Analogously for fiber bundles: these are
generalizations of direct products of manifolds. Locally a bundle B looks like the
direct product Ua x F, where the Ua are subsets of the base manifold M  covering
M = (Jq Gj4 Ua , and F  denotes the fiber. Globally a bundle will be more complicated,
only the trivial bundle also is a global direct product M x F.

Thus in contrast to M x F, where two projections prw : M  x F M  and
prF : M x F —> F  are given, we have only one global projection ir. B M  from a
bundle onto its base space, whereas projections onto the fiber are merely defined
locally: 7ra : Tr- 1 ((70t) —> F. For every bundle we have a bundle atlas — cf. again
the analogy to manifolds — that consists of charts V’a:7 r~1(^a) —> Ua x F, i. e.,
diffeomorphisms with p r^  =  7r|uQ and prF o^ a  =  7ro .

The global structure of a fiber bundle can be determined if one knows how to
change from one bundle chart to another. For every point x in an overlap re­
gion UQ(j := Ua  C\ Up, this change of the bundle chart defines a diffeomorphism of
the fiber go /?(x) := 0 a |r-»(r) 0  (0z?|r-i(x))_ 1 : F —> F. At this point Lie  theory is
involved. Bundles are equipped with a structure group G, i. e., a LIE group with a
left action L:G  x F —> F. Since L is required to be effective, we may think of G
as of a subgroup of the group of all diffeomorphisms of F. With his identification
all transition functions are supposed to be differentiable maps ga p: Uap —> G. The
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structure group G and the maps ga p indeed determine the structure of the bundle,
e. g., if G consists of just one element then the bundle is necessarily trivial.

For a principal fiber bundle, G = F and the left action is simply multiplication A
with elements from the left. Thus given any fiber bundle one can construct the
so-called associated principal bundle by replacing F by G and L by A. Vice versa,
given any principal bundle P and a left action L: G x F —> F , one can construct an
associated fiber bundle with fiber F.

The concepts of the structure group and the associated bundles become more
apparent for the prototypes of nontrivial bundles, the MOEBIUS band and the
KLEIN bottle. Physically, the MOEBIUS band consists of a strip of paper whose
ends are glued together after a 180° flip of one end. Thus its base is a 1-sphere S1

and its fiber is an interval. Everything stays the same for the KLEIN bottle, only
that its fiber is not an interval but another S1. Thus the KLEIN bottle is a cylinder
whose ends are glued together after a 180° flip of one end. (That this construction is
impossible in threedimensional space and thus the KLEIN bottle cannot be embed­
ded into R3 as a manifold, shall not bother us here.) Both examples are associated:
their structure group is isomorphic to Z2 and consists of the identity transformation
of the fiber and the 180° flip. Thus the fibers of their associated principal bundle P
consist of just two elements and P is a two-fold cover of its base space S1.

In order to illustrate the notion of the so-called DE Rh a m  cohomology of a mani­
fold, we have to introduce vector fields and differential forms. A vector field X  asso­
ciates with every point x on a manifold M  an element Xx  in the tangent space Tx (M )
of the manifold in the point x € M ■ The set of vector fields will be denoted by

A p-form is an alternating p-linear map d>p : • •x© 1(Af) —> C°°(Af).
The set of p-forms on M  will be denoted by >1P(M) and the set of all forms on M
by A(M ) :=■ © ^i0 4̂p (Af). Besides these formal definitions it is quite instructive
to think of forms as of integrands of integrals over submanifolds of M : p-forms are
integrands of integrals over p-dimensional submanifolds. E. g., for a n-dimensional
oriented manifold we have its volume form dV € A n (M) with Vol(Af) =  f M  dV.

From vector analysis the notions of the gradient, the rotation and the divergence
of a vector field may be familiar, as well as the theorems of Ga u s s , STOKES, etc.,
connected with these operations. Using forms we can present all these theorems in
a very compact way. We have an operator d: A (M ) —> A (M ), A p - i(M ) —> A P(M),
the so-called exterior derivative of forms, and if dM  denotes the (n — 1 )-dimensional
boundary of a n-dimensional manifold M  and u? is a (n — l)-form on M , then

Just as d(dM) = 0, i.e., the boundary of a boundary of a manifold is empty, d
is a differential operator, i. e., cP := d o d = 0. The forms in the kernel of d
are called closed forms, and the forms in the image of d are called exact forms.
d2 = 0 yields that all exact forms are closed and that the vector space of the closed
modulo the exact p-forms is well-defined. This quotient space is called the p-th
DE R h a m  cohomology group HP(M) and the (total) cohomology of M  means the
direct sum W (M ) := ® ~ O HP(M).
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Although the DE Rh a M cohomology is defined by differential geometric means,
it is a topological invariant: whenever two manifolds are homeomorphic, their coho­
mology is necessarily isomorphic. Thus the cohomology can be used to distinguish
manifolds and it is quite important to know a manifolds cohomology. Especially for
bundles, the question arises whether the cohomology of a bundle can be computed
from H’(Af) and H'(F').

Every differentiable map f : M —> N  between two manifolds M and N  canoni­
cally induces a homomorphism on the forms in the opposite direction, the so-called
pullback f*: A (N ) —> A(M ). Thus using the pullback it* we may lift every form w on
the base space onto the bundle. We may think of as of being invariant along the
fibers. Jr also induces a homomorphism in cohomology [tt'] : H~(M) —> For a
direct product Af x F this also works for H '(F) and leads to the KUNNETH formula

H‘(M  x F) = H‘(M) ® H ’(F).

For a nontrivial bundle the situation becomes much more complicated and leads to
the theory of spectral sequences. Spectral sequences compute H‘(B) from H ‘(M)
and H*(F). They also answer the question which closed forms on the fiber can be
extended to closed forms on the bundle. We call these forms O-transgressive.

This exactly is a problem that occurs quite often in theoretical physics if one tries
to “gauge” a theory that is defined for a manifold F. One constructs a fiber bundle
with gauge (resp., structure) group G, fiber F  and (mostly) space-time as the base
manifold. For computations it is then necessary to “generalize” the given closed
differential forms d> € ^4(F) to the bundle case: one needs a closed form € A(B)
such that 1(1 reproduces d> when restricted to the fibers: i(z) =  <t> f°r  all x  € M.

As mentioned, spectral sequences tell us for which forms <j> such a tp exists. If
this is the case, they also provide a formula for such a Nevertheless this formula
involves a partition of unity subordinate to the given cover {t/ajoe/i of M. For any
such partition the formula gives a different form within the generated cohomology
class. (Note that, a priori, V’ is not unique but defined only up to an exact form
on B, whose restriction to the fibers is zero.)

From the physicists point of view, this situation is quite unsatisfactory since a
partition of unity does not bear any physical meaning and there is no reason why
one partition — and the corresponding form — should be better than another. In
fact one would like to obtain a representative tp for the generated cohomology class
that can be associated with the physics in question, that is the gauge potentials and
the gauge fields of the field theory.

This takes us to the notion of connections on fiber bundles. Again we start with
the case of a direct product Af x F. Here for every tangent space, a horizontal
direction (tangential to Af) and a vertical direction (tangential to F) are given
naturally and we thus have canonical horizontal and vertical projections of vector
fields: T>l (M x F )  = hT>l (M x F)®v‘D1(M xF ). For a fiber bundle, only the vertical
direction tangential to the fiber is given naturally. Every local bundle chart defines
another horizontal direction. The definition of a global horizontal complement to
the vertical space thus requires an additional structure, and this is exactly w'hat a
connection T is: it defines global horizontal and vertical projections of vector fields
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such that = h'D1(B) ® vP*(B). On a principal bundle, such a connection
is closely related to the gauge potentials and the gauge fields (cf. below). Once
such a connection is defined on a principal bundle, it also defines connections on all
associated fiber bundles.

In addition, a connection defines lifts of vector fields on the base onto horizontal
fields on the bundle and projections of forms on the bundle. These lifts and pro­
jections now can be used for the desired extensions of forms to the fiber. In fact,
for every differential form d> G -A(F) that is invariant under the given left action L,
there exists exactly one vertical form on the bundle, say <£v € such that
0 v |t -»(x ) =  <t>- From the physicists point of view, this seems to be a satisfactory
generalization, but unfortunately we are not done with that, since the following
diagram does not commute:

</> i---------------------------------------------- d>v

d<t> i---------------------~(dd>)v /  d(d>v).

Thus although we start with a closed form </>, the generated vertical form <pv
needs not be closed. In general, we are not able to find a vertical representative for
this cohomology class generated by a O-transgressive form, but we need to admit
horizontal terms. Thus the question will be whether we can find such a representative
where these horizontal terms are “naturally” given by the connection T, in fact, by
the gauge fields. In that case, we call the resulting form adapted to T. Those forms
are candidates for the desired generalizations of closed forms in field theories.

So much for a general introduction into the main topics of this dissertation. We
proceed as follows:

In Chapter 1 we introduce tensor fields and differential forms on manifolds. To
this purpose we first present some elementary results on modules and algebras,
and on their homomorphisms and derivations. Then the wedge product of forms
and their exterior differentiation d are defined. In the second section we extend
these operations to vector valued forms. We introduce pullbacks and push-outs
and examine the interior product of forms with respect to a vector field and the
LIE differentiation of tensor fields.

The third section is devoted to the “bullet operator” of forms, % •  a general­
ization of the wedge product. We discuss elementary properties of this new operator
such as associativity and its behavior under pullbacks and push-outs. The examina­
tion of expressions x*(V>+VO a n d d(x 9 <l>) will then lead us to what we call “triangle
operators.” In the next section we discuss differential forms on LlE groups, introduce
invariant vector fields and forms and derive the Ma URER-Ca r t a N identities.

Finally we examine LlE group actions S  on manifolds in Section 1.5. We gener­
alize the notion of invariant forms and define equivariant forms and the vector fields
that are induced by elements of the Lie  algebra. With the aid of these induced
vector fields, the expressions Ŝ d> and <j> © 0 for differential forms V> and 0 are
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introduced. We prove some quite voluminous formulae on their exterior derivative,
in order to prepare several theorems in the following chapter.

Chapter 2 treats fiber bundles and connections on them. In the first section
we give the basic definitions for principal and associated bundles, list several ex­
amples, discuss sections of bundles and cite the main theorems on the triviality
of bundles from literature. Next we introduce connections on principal bundles in
the second section and examine the connection 1-form o>r  and its exterior covari­
ant derivative, the curvature 2-form Q . These take us to the structure equations
and BIANCHI’S identities. We also introduce pseudotensorial and tensorial forms as
equivariant, resp., horizontal equivariant forms and compute their exterior covariant
derivative. Section 2.2 closes with the examination of the gauge potentials A® and
the gauge fields F® for a cover il  =  {t/o }c>€>4 °f the base manifold. The forms A®
and F® are pullbacks of wr , resp., Qr  under local sections. We derive the equations
of motion for these forms.

The third section then defines connections on associated bundles. To this pur­
pose, we use the lifts of vector fields in order to gain global expressions for the
projections of fields and forms. These then enable us to determine which forms on
the fiber can be naturally extended to the bundle. In fact, these will be invariant
forms and “bullet combinations” of equivariant forms with pseudotensorial forms on
the principal bundle. In addition, we introduce the covariant derivative of sections
in a vector bundle.

For the sake of completeness we then digress to linear connections of a manifold
in Section 2.4. Treating tensor fields as sections in the tensor algebra bundle of the
manifold, we obtain the covariant derivative of tensor fields. We define the torsion
and the curvature field and prove BIANCHI’S identities and the structure equations
for linear connections. In particular, we discuss the most important example of a
linear connection, the Le v i-Civ it a  connection on pseudo-Riemannian manifolds.

Since very often bundles are defined merely by a bundle atlas and transition
functions for the change of bundle charts, there is a need for the local evaluation of
connections. This is done in Section 2.5: we prove several formulae for the behavior
of fields and forms under a change of bundle charts and for their local projections.
In combination with our results in Section 1.5, these formulae then enable us to
compute the exterior derivative of the extended forms from Section 2.3. Finally we
specialize to bundles with abelian structure groups and — even more specially —
with one-dimensional abelian structure groups. The results give new insights into
the treatment of the skyrmion bundle.

In Chapter 3 we introduce differential complexes and their cohomologies, as
well as spectral sequences to compute the latter. Especially, we develop spectral se­
quences of fiber bundles and combine their cohomology with connections. As always,
we start with the very definitions of complexes, subcomplexes, double complexes and
augmented complexes in Section 3.1. We also illustrate the significance of homotopy
operators which provide sufficient conditions for two cohomologies to be isomorphic.
In Section 3.2 we then give a survey over the DE Rh a M cohomology In
particular, we compute / f ’ (Rn ) and //*(§”). Moreover, we specialize to the subcom­
plexes of invariant, resp., equivariant forms and their cohomologies resp.,
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f /‘quiv(M), and derive first results on the DE Rh a m cohomology of a Lie  group G.
The third section is devoted to the Lie  algebra cohomology It will prove

a great help in computing indeed, H'(g) = H ’(G) for compact connected
Lie  groups G with LIE algebra g. We also cite the definition of primitive elements
in the exterior algebra of the dual g* for reductive Lie  algebras, that enable us to
compute H'(G) for the classical LIE groups.

In the next section we examine the CECH-DE Rh a m complex G(ll, A) for a
cover 11 of a manifold M . The generalized MAYER-VlETORlS principle proves that
H'^M} = Hd (C(!l1.,A)). Then we introduce spectral sequences in the following
section to compute the cohomology of a double complex like G(U,>t). We also give
the notion of transgressive and O-transgressive forms and show that the latter are
exactly those closed forms on the fiber that define a cohomology class in H ’(B').

In Section 3.6 we then combine the cohomology of a fiber bundle with a given
connection T. To this purpose we introduce T-adapted and G-transgressive forms
and examine whether a cohomology class can be represented by a form that is
adapted to T. We prove that every G-transgressive form is O-transgressive and
that the generated cohomology class can be represented by a form adapted to T.
Moreover, this holds for any bundle that comes along with the given left action of
the structure group G on the fiber F. As a corollary for semisimple LIE groups G,
we prove that every closed invariant n-form on the fiber is G-transgressive for n < 2.
This yields that for any bundle B(M ,F,G ) the cohomology groups Hn (B) contain
subgroups isomorphic to H^V(F). Finally we apply our results to the skyrmion
bundle and to the non-abelian YANG-MlLLS theories.

This dissertation continues the research presented in our theses for a mathematics
and a physics degree. The former [1] dealt with the mathematical treatment of
electromagnetism via differential forms. We also examined the principal S’-bundle
and the Ma x w e l l  connection on it that allow for the description of magnetic
monopoles. In our thesis for a physics degree [2] we presented the skyrmion bundle
and computed its homotopy and cohomology groups.
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C h a p te r 1

F oundations of Fields and  Form s

1.1 Tensor A lgebra and  G r a s s m a n n  A lgebra
There are several ways of introducing vector fields, tensor fields and differential
forms on a finite dimensional manifold M . E. g., one can define them as sections
in (tangent, cotangent, etc.) bundles over M. Instead, according to HELGASON, we
introduce them  as derivations (cf. [3, p. 8]):

D efin ition  1.1 Let A and B be algebras over a field K. We call a map
a derivation of A into B along an algebra homomorphism h: A —> B if

(Vx,y<=; K, f i g  e  A) D (xf+ yg ) = xD (fi)+yD (g], D (fg) = (D/)/i(<z)+/i(/)(£>5).

A map D: A —> A is called a derivation of A if it is a derivation along the identity
morphism idA:A —> A. We denote by der/,(A, B), resp., derA the set o f all deriva­
tions o f A  into B along h, resp., derivations of A. I f  Z{A) denotes the center o f A,
then derA  is an Z(A)-module, where for all f  € Z(A), g G A and D, D' € derA

( fD )g  := f(D g ), (D  + D')g := Dg + D'g.

Moreover, derA  is a LIE algebra with commutator [D, D’] := D oD' — D 'oD  € derA.
Analogously, for graded A = A-, (w ^ e r c  f g t  A + s if f  E Ar and g € A s t)

a linear mapping S: A —> A is called a skew-derivation of A  if for all f  G Ar, g € A

S (fg )  = (S f)g  + ( - lY f ( S g ) .

A (skew-)derivation S  o f A =  ® ^-0 Ar is of degree k G Z, if  S: A- —> A+fc for all r.

For all fig(=  Z(A) and D, D' G derA  we have Dg, D 'f  G Z(A) and

[fD ,gD '\ = fg[D , D'] + f(D g)D ' -  g(D f f)D .  (1)

L em m a 1.2 Let A be a graded algebra, D, D' derivations of degree k, resp., k' and
S , S' skew-derivations o f degree k, resp., k ' .

1. [£>, Z)'] is a derivation of degree k 4- k '.

1
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2. [D, S'] is a skew-derivation of degree k + k', if k is even.

3. [S, S'] is a derivation of degree k + k', if k and k' are even.

4- S  o S' + S' o S is a derivation of degree k + k', if k and k! are odd.

Definition 1.3 For any real C°°-manifold M, means the algebra of all dif­
ferentiable maps from M to R (equipped with pointwise addition and multiplication).

LetT>l (M) := derC 0O(Af), its elements (X , y ,  Z , . . . )  are ca//ed(contravariant)
vector fields on M . For every x G M, X  G P^A f) defines an element X x  6 TX(M)
of the tangent space of M at x by Xx ( f)  := A’(/)(x) € R for all f  G C°°(Af).

l?i(Af) denotes the dual of it is the C°°(M)-module of covariant vec­
tor fields on M. By tensor fields of type (r, s) (r, s > 0) we mean the elements
of 7^(Af), which denotes the C°°(M)-module of all C°°(M)-multilinear mappings
of nr=i x  to (where we put T ^ M )  := C°°(M)). De­
fine 7X(Af) := Tr0 (M), DS(M) := C?(Af), T>(M) := ® ~ = 0 2 ;(M ), P*(AL) :=

andV .(M ) := © ~ 0 ^ (M ) .

The last definitions are legitimate because of the following lemma (cf. [3, p. 12]):

Lem m a 1.4 D \M )  and Di(M), resp., 2X(Af) and are dual to each other.

T>(M) can be given a tensor product structure: let a G DP(M), b G Ds
r (M),

X \ y  G P ’(Af) and X„ y ,  € ©i(M). Then a ® b G T>^(Af) is defined by

(a ® b) (x x , . . . ,  x p , y . , . . . ,  >;; x 1, . . . ,  x q , y , . . . , y ) :=
= a (x l , . . . , x p - x l , . . . , x q)b (y 1. . . . , y r - , y \ . . . , y y  (2)

This turns T>(M) into an associative algebra over the ring C°°(Af), the so-called
mixed tensor algebra over M, with subalgebras 7?’ (M) and P.(Af). Lemma 1.4 also
yields that T)r

s (M) and Hom(DS(M), Dr (M)) are isomorphic for all r ,sG  No-

Definition 1.5 For any p G N, A P(M) C l?p(Af) denotes the submodule of all al­
ternating C°°(M)-p-linear maps fr o m Y l^ D 1 (Af) to (i. e. of all alternating
C°°(M)-linear maps from'Dp (M) to its elements are called p-forms on M.
Aq(M) := CCO(M) and A(M ) := ©JXo-4p(Af), we call its elements (exterior) dif­
ferential forms on M .

For any vector spaces V, W  let Altp(V,lV) denote the vector space of alter­
nating p-linear maps from V p to W and Alt(V, IV) := © “  0 Altp (V, W ), where
Alto(V, IV) := W . Then a) G A P(M) defines an element ux  & Altp(TI (M). R)
for all x G M and for X ' G D l (M) we have w (X l , . . . ,  X p)(x) = wx (X £ ,. . . ,  X p ).

For differential forms we have two important mappings: the wedge product and
the exterior differentiation. We will introduce the former in a more general setting:
Let A be an associative, commutative algebra over Q and E  an A-module. For any
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permutation p € Sp , p € N, with (—1)** =  sgn(p) we have an obvious representation
on 0 P E, resp., f[p E: for e; G E define

p: ® p E -> ® PE: p(ev ® • • • ® ep ) := ep- l(1 j ® • • • ® ep-i(p ).

For p € No , consider the linear transformation 2l? : 0 P E -> ® p E given by

2to := id A, 2lp : = i ^ ( - l ) pp, p > 1, (3)
P' p6$P

(here we need Q in the domain of scalars, the rest holds for any commutative ring)
and extend 2lp naturally to an A-linear map 2l̂ E J; T (E) —> T (E )  (where 7”(E) :=
®£10 ® a E denotes the tensor algebra of an A-module E). Then 2(2 = 21 and
2lp op =  p o2 lp = (—l)p2lp for any p € Sp . We put f\p (E) := 21p ((g>p E), A(E) :=
2l(T(E)), thus 21 is a projection of T (E ) onto A(^), called alternation. If N  denotes
the kernel of 21 then 21(a) + N  = a + N  for all a G 7”(E) and although 21 is not an
algebra endomorphism, N  is a (two-sided) ideal in T (E ) generated by {e® e|e G E}.
This yields

2t(a®6) =  2l(2l(a) ® 21(b)) for all a ,b e T ( E )  (4)
( /  21(a) ® 21(b) in general), so the algebra T (E )/N  is defined. (If A is just a
commutative ring, /\(E) := T (E )/N  by definition.)

D efinition 1.6 For any a,b G /\(E) the wedge or exterior product is defined by

a Ab := 2l(a ® b).

Thus A makes the following diagram commutative, where ®jv denotes the mul­
tiplication on the quotient ring:

®jv
T {E )/N  x T (E )/N  ------------------ -  T (E )/N

21 x 21 21

A(^) x A(^) -------- - ------- - A(#)

This turns A(#) — T (E ) /N  into an associative algebra over A: the exterior algebra
or Gr a s s m a n n  algebra of E. If E is generated by n elements then /\P(E) =  {0} for
p > n, cf. BOURBAKI, [4, III, p. 80].

N ote 1.7 Everything works well not only on T (E ), but also on its completion
T (E )  := n ^ o ® P E, where we get the associative algebra A(^) — T (E )/N .

Definition 1.8 For any associative, commutative algebra A and any A-module E
we define the symmetrization & analogously to 21 by dropping (—l)p in (3). The
symmetric algebra S(E) =  ® ^ 0 Sp (Efi which is defined by SP(E );=  6 p ((gip E),
S(E) := 6 (T (E )), is a commutative algebra with S(E) =  T (E )/k e r6 , since the
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two-sided ideal ker© =  T (E )' < T (E ) is generated by {e ® /  — f  ® e |e ,/  G E}.
If A is just a commutative ring, one defines S(E) := T (E )IT (E } '. The symmetric
product will be denoted by

a V t := 6 ( a ® 6 )  for all a,&GS(E).

Analogously to Definition 1.5, for any vector spaces V, W , SymJ?(V, W) denotes
the vector space of symmetric p-linear maps from Vp to W and Sym(V, IV) :=

oSym^V, W), where S y ^ V ,  W) := W .
For convenience we define Sym', S' and &  for q = ±1 by Sym+  := Sym,

Sym” := Alt, S+  := S, S~ := A and 6 +  ■— 6~  := 2L

We collect some elementary results on tensor products and homomorphisms from
[4, II and III]. Let E ‘ =  Hom(E, A) denote the dual of the A-module E.

Lemma 1.9 (Universal properties of T (E ), S(E) and fifE)) Let A be a com­
mutative ring, B an A-algebra, E  an A-module and u: E —> B any A-module homo­
morphism. Denote the natural injections of E into A := 7"(E), S(E), resp., A(E)
by iA : E A. For A = S(E) suppose u(e) • u ( f)  =  u (/)  • u(e), and for A = fi(E)
suppose u(e) • u(e) =  0 for ail e , f  G E. Then u extends to a unique A-algebra
homomorphism u a :A  B such that u = uA o í a , *• e., the following diagrams
commute:

t (E)

E --------------► B

If F  is a second A-module and u: E —> F is an A-module homomorphism,
we obtain unique homomorphisms u t '-T(E) —> 7”(F), us:S(E) —> S(F), resp.,
uA: A(E) -> A(F) graded algebras such that the following diagrams commute:

3!u-r 3!us 3!ua7 (E ) ------------- ► T (F ) S(E) ------------- ► S(F) A(£) ------------- - A(F)

P roposition  1.10 Let A be a commutative ring and E an A-module.

1. Any A-module homomorphism u: E  0 P E extends to a unique derivation
DU:T(E )  —> T(E) of degree p — 1.

2. Any A-module homomorphism u: E —> SPE extends to a unique derivation
Du : S(E) —> S(E) of degree p — 1.
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3. Any A-module homomorphism u: E —> /\p E extends to a unique derivation,
resp., skew-derivation Du : A(E) —* A (^) ° f degree p—1 if p is odd, resp., even.

D efinition 1.11 An A-module P is called projective , if for any surjective A-module
homomorphism u: E —> E' and any homomorphism f:P ->  E ', there exists a homo­
morphism g: P E with f  = uo  g.

E -------------------------- -  E'

P is projective iff P is a direct summand of a free module F = P ® F.

Lem m a 1.12 If E is a projective module, thenT(E), S(E) and AfE) are projective,
too. I f  E and F are finitely generated projective modules, then Hom(E, F) is finitely
generated projective, too, thus E~ is finitely generated projective if E is so.

Lem ma 1.13 Let A be a commutative ring and Ei,Fi,G be A-modules.

1. We have canonical A-module isomorphisms

H om (E 0F ,G ) = Hom(E, Hom(F,G)) =  Hom(F, Hom(E, G)),
( E 0 F ) ’ =  Hom(E,F*) =  Hom(F,E*) (G = A).

2. We have a canonical A-module morphism

Hom(Ei, F J  0  Hom(E2 , F2) —> Hom(Ei 0  E2 . Fi 0  F2 ),

which is bijective if any of the pairs (E i ,E 2 ), (E i,F i) or (E2 ,F 2) consists of
finitely generated projective A-modules.

3. The canonical A-module morphism w. Hom(E, G) 0  F —> Hom(E, G 0  F) with
vfy  0  / )  := (e t-> -y(e) 0  / )  is injective if F is projective, it is bijective if E  or
F is finitely generated projective.

4- The canonical A-module morphism 9: E* 0  F —> Hom(E, F) with 0(e* 0  / )  :=
(e i-> e"(e)0 / )  is injective if F  is projective, it is bijective if E or F is finitely
generated projective.

5. The canonical evaluation morphism j e - E  —> E”  is injective if E is projective,
it is bijective if E  is finitely generated projective.

6. The canonical A-module morphism 0' := 0 o (j e  ® Wf ): E 0  F —> Hom(E‘ , F)
is injective if E  and F are projective, it is bijective if E is finitely generated
projective.
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7. The canonical A-module morphism p: E* ® F* —> (E  ® F)* with p(e‘ ® /*) :=
(e ® f  >->• e* (e)/'(/)) is bijective if E or F is finitely generated projective.

For any A-module F, Hom(-,F) is a contravariant functor in the category of
A-modules (T  is a covariant one) and thus defines an alternation and a symmetriza­
tion Hon^©“1, F) =  • o 6* on Hom(T(E), F). So e. g.,

® p E ----- —  ® p E

P P

® p E ----- —  ® p E

Hom(-,F)
Hom(0p F, F)

Hom(®p F, F)

------- — Hom((g)p F, F)

■op
-o6<

- -------  Hom(®p F ,F )

are commutative diagrams for any p 6 Sp . We obtain (cf. [4, pp. 70, 80]):

Hom(6p, F)(Hom(®p F, F)) £  Hom((Sc)í>(F), F).

In the category of R-vector spaces we thus have alternations and symmetrizations
on Hom(T(V), W) with Sym;(Hom(®p V, W)) =  Sym£(V, W) Hom((S<)p (V), W)
for all p € No and vector spaces V, W.

For F  =  A we have a canonical homomorphism J.T \E *) T(E)*. Analogously
to (2), Jp :® p E ' —> ( 0 P F)* is naturally given by

(ej ® ® ep(ei ® • • • ® ep) := e¡(ei) ■ • • e*(ep )

and obeys Hom^©')^, A) o Jp = Jp o (©')£*. By Lemma 1.13, Jp is an isomor­
phism if F  is finitely generated projective. This is the case, if we deal with finite
dimensional vector spaces or, by the following theorem, with vector fields on finite
dimensional manifolds. Then both alternations, resp., symmetrizations coincide:
Hom((6<)£ , A) =  (© ')E '  on T (F ’) and Hom((©<)£ , A)(T(F*)) = S<(F’).

Lem ma 1.14 Let N  € N and suppose that for all i € I , E, are finitely generated
projective Ai-modules such that É, exist with E¡ © F, =  AN . Define A := flic/ »
F  := f[teí F, and E := F, with componentwise multiplication. Then E is a
finitely generated projective A-module with E Q E = AN .

Proof. «/cfl.e/F, © flie /F , -> n«ez(F< © F,), [(e,),g/, (e,)i€jr] ([e„e,]),6 z is an
isomorphism of A-modules. □

T heorem  1.15 (Swan’s theorem ) For every n-dimensional paracompact mani­
fold M , is a finitely generated projective -module. As a consequence

T).(M) = ® T(T>i(M)).
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Proof. For connected Mq, see GREUB, HALPERIN, VANSTONE, [5, I p. 107]; tracing
their proof shows that one can always choose N = n(n +  1) vector fields generating
©’(Mo). On an arbitrary paracompact manifold M  =  U,g/Mi this holds for any
component M,, such that we may find C°°(Mt )-modules ©(M,) with ©’(M,) ©
©(M,) = C ^ M ,)" . Since C°°(M) =  IL6 /C°°(Mi) and ©‘(M) =  R ie z ^ iM ), the
statement follows from Lemma 1.14. □

N ote 1.16 Some remarks on topological properties of manifolds: by definition every
finite dimensional manifold M is locally compact and locally arcwise connected.
The latter ensures that the connected and the arcwise connected components are
identical, thus M  is connected iff it is arcwise connected.

For connected M, it is equivalent to say that M satisfies the second axiom of
countability (i. e. has a countable basis), that a Riemannian metric on M exists, that
M is metrizable or that M is paracompact, cf. KOBAYASHI, NOMIZU, [6, p. 271].
This yields equivalence also for manifolds with countably many components.

So in the general case, the second axiom of countability implies the other three
properties. These are equivalent for finite dimensional manifolds: every metrizable
topological space is paracompact, every paracompact manifold admits a Riemannian
metric using the partition of unity subordinate to the atlas of M, and the Rieman­
nian metric in turn guaranties a metric d, on each component M, C M . Combined
with the discrete metric between the components we obtain a metric on M: by the
axiom of choice, we may pick c, 6 M, for all i G I and define for x, € M,-, y, € Mj:

di(xi,yi), if i = j ,
di(xi, Ci) + d^yj, Cj) + 1, if i /  j .

For fields we denote Ap := QlJ’d**) _  Hom(2lp C°°(M)). Then

A P(M ) = AP(VP(M)) = / \ P A i(M ) for all p > 1, (5)

thus every p-form on a paracompact manifold can be represented as a sum of wedge
products of 1-forms. A(M ) = A(T>.(M)) =  /\(©i(M)) is the GRASSMANN algebra
of the manifold M .

For all f ,g  G C°°(M), a r G A r (M), (3S G A $(M) and X' G ©’(M) we have

f  A a r = Qr A f  =  / - a r , f A g  = f g  and (6)

a r M3t ( X ', . . . ,X '+ ')  = 12 ( - i r ( M ^ , - , ^ ) ) ) .
(r  + S)! p€Sr+.

•(/3s(A'̂ r+’),...,A’p(r+*))). (7)
Analogous formulae hold for a) A ••• A otrk ,h  G N with and p G Sr , where
r := £ i =1 r,-; using the cycle r = (123- • • (r +  s))3 G £•+» with (—1)T =  (—l) r * one
proves (for any A-module E)

ar Aj9s = (-l)r*£Aar . ’ (8)
Obviously, (7) also holds for the exterior product of alternating maps a r G Altr (V, R)
and G Alts (V, R), where V is a finite dimensional vector space.

4^,%) :=
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Definition 1.17 Let p 6 No, ui G >lp (Af), X ' G ©‘(Af). Then on A P(M) the
exterior differentiation d:A(M ) —> .A(Af) is defined by (~ denotes omission)

p + i __
(p + l)< M * ‘, - - - , * p + 1) = ^ ( - l ) ’+ 1 A’*(w(A’1, . . . ,A ’’, . . . , ^ p + 1))

i= l
p p+1 __  ___

+ E (9)
t = i  j = i + i

By the following proposition d is a differential operator, cf. [3, p. 20]:

Proposition 1.18 d is a R-linear mapping with the following properties:

1. d(Ap(M)) Ç Xp + 1 (Af) for all p G No ,

2. f e A o ( M )  => d f(X ) = X ( f )  for all X

3. <P := do d = 0,

4- d(ap Au) = dap A u> + (—l)pa p A duj, if  ap G A P(M), w € >4(Af).

These properties define d uniquely.

According to Definition 1.1, d thus is a skew-derivation of A (M ) of degree 1.
Before we concentrate on the GRASSMANN algebra and introduce vector-valued

forms, we close this section with a remark on derivations of the mixed tensor algebra.

Definition 1.19 For a finitely generated projective A-module E the mixed tensor
algebra T*(E) is defined by

oo
7?(E) =  ®  77(E) and Ts

r (E) =  E <8 • • • ® E ® E" ® ® E ’ .
r ,.= o ' ;  ' '  ;  '

(We have proved that T '(E )  = [77(E)]“ J  For all k < r ,l < s 6 N, A-module
homomorphisms C f'.T fiE ) —> TfTi(E ) are uniquely defined by the requirement that
for all e* G E, ej G E*

C ffe1 ® • • • ® er ® e\ ® - • • ® e“) := e’ (e*) - e1 ® • • • ek • • - ® er ® ej ® • • ■ e’ • • • ® e*.

Ci is called the contraction of the ¿-th contravariant and the Z-th covariant index.
der 77(E) denotes the LIE subalgebra of all derivations of the mixed tensor algebra
that preserve type and commute with all contractions, i. e. for all D G der 77(E);

D (K ® K ')  =  (D K )® K ' + K ® (E E ')  for all K, K ' G T ;(E ), (10)
D(77(E)) Ç 77(E) and D o C  = C o D  for all contractions C■ (11)

der 77(E)o denotes the LIE subalgebra of all D G der 77(E) with £)|a  = 0.

We then have the following proposition (cf. [6, p. 25]):
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Proposition  1.20 For any finitely generated projective A-module E the restriction
map |g: der 7L*(B) —> End(E') is an isomorphism o/LlE algebras.

Proof: (cf. [6, p. 25]). Obviously |k  is a homomorphism of Lie  algebras. Let
D £ der7?(E )0 and B := D\e - E -> E. Then for all e € E and e* € E*,

0 =  D(e*(e)) =  C(D(e ® e’)) =  C[(De ® e’) + (e ® De*)] = e'(Be) + (De*)(e),

and thus D|e - =  — B*, where B* is the transpose of B. Since T '(E }  is generated
by A, E  and E ‘, D is determined by its restriction to A, E and E~ and thus |#
is injective. Conversely, given any B € End(B), we define D|a  = 0, D\e  = B  and
D|e - =  — B ' and extend D to a derivation of 7?(B) by (10). The existence of D is
then a consequence of the universal factorization property of the tensor product. □

Corollary 1.21 The restriction map |v:der7L*(V) —> End(V) is an isomorphism
for any finite dimensional vector space V .

Proof. (10) yields DI =  0, thus D|k  =  D l^ v )  =  0.

1.2 V ector Valued D ifferential Form s
For any real vector space V  the algebraic tensor products

C°°(Af)®V, DP(M )® V, D .(M )® V , Xp(M )g V  and A (M ) ® V

are C°°(M)-modules (trivial in the second factor). Let

C°°(M,V), DP(M,V), D.(M ,V), A P(M ,V) and A (M ,V )

denote the C°°(M)-modules of all weakly differentiable maps from M  to V and of
the corresponding V-valued covariant fields and forms on M: contains
all maps f  : M —> V with w o f  € C°°(M) for every linear functional u>: V —> R,
A(M , V) contains all alternating C°°(A/)-linear maps a:D*(Af) —> C°°(Af, V), etc.
The canonical embedding i: C'OO(M) ® V —> C°°(Af, V), defined by [i(/ ® v)](:r) ■=
f(x )v  E V  for all f  € C°°(Af), x € M  and v € V, is injective and induces canonical
embeddings of D.(Af) ® V into D«(Af, V), resp., of A(M ) ® V  into A(M , V).

A := Hom(2lD1(M \  V)) defines the alternation A: D.(Af, V) —> A(M , V).
If V =  Rn with its natural differential structure then C°°(M, V), resp., A(M, V)
exactly contain the differentiable maps from M  to V , resp., differential forms on
M with values in V  and the embeddings are bijective. This enables us to identify
A (M )& V  with -4(M, V), etc. We also identify A(M . R) and A(M }, etc. For infinite
dimensional V the tensor products represent only the submodules of those maps f ,
resp., forms a, where /(M ), resp., a(D*(M)) spans only a finite subspace in V.
Omitting i we write:
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D efinition  1.22 For X ,X '  g © '(M ), f  g C°°(M), u> g A P(M ), x g M  andv  g V
define

X ( f® v )  := X f ® v ,  ( /® v ) (x )  :=  / ( z ) v g V ,
d(w ® v) := du> ® v, (u> ® v)(A’1 , . . . ,  X p ) :=  iv(A’1 , . . . ,  X p ) ® v,

( u ^ v ) x ( X ^ , . . . , X p ) :=  (w®v)(A’1, . . . ,A ’”) ( i)  =  u;x ( X f , . . . , X p ) 0 v  g V.

For bilinear <f>: V  x W  —> Z  define A$: (>l(M )®Vj x (A (M )® W ) —> (A (M )® Z ) by

(a  ® v) (/? ® w) := (a  A ¡3) ® <Z>(v,w) for all a , (3 g .A(M), v g V ,w g M ''.

For a bilinear mapping <f>: V  x V  -> V , we will use Ay rather than A^ and for a
LIE algebra g the notation As  will imply d ^X jZ )  :=  [X, V].

Ay turns A(M') ® V  into a (non-associative) algebra. We immediately get:

L em m a 1.23 Let a r g  A r (M ) ® V , (3S g >1S(M ) ® V , <j>: V  x V  —> V bilinear.

1. I f  <p is associative then Ay is so, too.

2. I f <f> is commutative then a r  Ay (3, =  (—l) r , /3s Ay a r .

3. I f  d> is anticommutative then a r Ay (3S =  (—l) r ,+ 1 /3s  Ay a r .

If A is an algebra and .: A x V  —> V  is a (left) representation on a vector space V
with respect to the multiplication in A (i. e., </>(a,6).v =  a.(b.v) for all a,b g A,
v g V), then for all a , (3,7 g A (M }

[(a® a) AA(,3®fe)] A .(7® v ) =  (a® a) A.[(/?®6)] A.(7®«)] =  (a  f\(3 A7)® [(<Z>(a, £>).v].

We will use A. for the wedge product of gl(Rn )-valued and R evalued forms.
As a special case of A  ̂ for A =  R, A (M , V) also is an >4(M)-bimodule; denote

this module multiplication with A, too. Using the C°°(M)-module structure of
C°°(M, V), we get formulae like (6), (7) and (8) for a r g A r (M , V), [3S g A S(M )
and vice versa, etc. For ,4(M ) ® V  we have

(a  ® v) A (3 =  (a  A /3) ® v =  a  A (/? ® v) for all a ,(3 g A (M ), v g V. (12)

T h e o re m  1.24 On a finite dimensional paracompact manifold M we have the fol­
lowing C°°^M^-module isomorphisms for any vector space V:

S  © .(M )® C °°(M ,V ) =* T (D 1(M ))® C 0O(M ,V ),
4 (M ,V ) “  A (M ) ® V) S  /\(D i(M ))® C °°(M ,V ).

I f  A  is an associative algebra with unit 11 we get A {M ) ® A = /\ a (.4i (M ) ® A).
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Proof. By Sw a n ’s Theorem 1.15 there exists a C°°(Af)-module P(M ) such that
P 1(M )® P (M ) =  C'00(M)N . Let »: P ‘(Af) ->  C°°(M)N  and p: -> D l (M)
be the module homomorphisms with p o i =  idpi(M) and fix a basis for

with dual basis {ej}J = i ... n - For j  < N  let cuj := e? o i G P^A f), define
à G Homcoo(Af)(®p [C'00(Af)A ],C 00(Af, V)) for any a G P p (Af, V) by 5 := ao®pp and
let a-'1 := a(F J1 0  • • • 0  E») € C°°(M, V) for all j, < N. Then a = Y^[...jp = l 0

whence a = a o 0 ’’i =  J2n-.jp= iw j i ® ‘ ®u ’jP ®a '’1 Jf € ® p Pi(A f)0
V). The reverse direction is trivial, so V) = 'D.(M) 0  C°°(M, V).

From this the statement for A(M , V) follows immediately; the last is a consequence
of a =  ll̂ 1) 0  • • • 0  11« ® a for any a G A and any s E N. □

Lem m a 1.25 Proposition 1.18 holds for A(M ) 0  V as well, not only for A in the
sense of (12) but also for and Ay: whenever Ay is defined, d is a skew-derivation
of degree 1 of A (M ) 0  V.

Definition 1.26 (Pullbacks and push-outs) I f f  :M  —> N is differentiable, we
denote the differential of f  at x e M by dfx . We have [d/r (A’I )]£ = Xx (go f )  for all
X x G TX(M ), g G

F ora  G 'Dr (N .V ),r  G N and X, G TX(M), the pullback f*a  G A r (M ,V) is
defined by ( / ‘a ) ^ , . . . ,  X r ) = a / ( x )(dfx (X t ) , . . .  ,dfx (X r )). Fora G C ~(N ,V )
we have f*a := a o  f ,  linear extension defines the pullback on P_(X, V). Obvi­
ously f* (A (N ,V ))  C A(M , V) and — if we insert P.(Af) 0  V into T>.(M,V) —
f'i 'D ^ N )  0  V) C P .(M ) 0  V and f*(A (N ) 0  V) C A (M ) 0  V.

If f  is a diffeomorphism then for X  G P*(Af) the push-out f*X  G P X(N) is
defined by = dfx (Xx ) for all x G M.

Analogously, every linear map F .V  —> W  defines a pullback F* =  Hom(7”(F), Z):
Hom(T(W), Z) -> Hom(T(V),Z): for K  G Hom(®p W, Z),p  G N and X, e V  we
have F*K(X l , . . . , X p ) := X (F (X ,) , . . . ,  F(X P)), so F*(M t(W ,Z)) C Alt(V,Z).
Fo = Hom(T(Z), F): Hom(7"(Z), V) -> Hom(T(Z),W) is defined by FOK = F o K ,
so F0(Alt(Z, V)) £  Alt(Z,W).

Finally F defines the push-out Fi,:'D.(M,V) —> by F*j j  =  F  o u>.
Again F*(A(M ,V)) C A(M , W) and F*(P.(Af)0 V) C T>.(M)®W, where we have
F*(a 0  t>) = a 0  F(v) for all a G 'D.(M), v G V .

N ote 1.27 There seems to be an ambiguity in the definition of dfx  for x G M  and
f  G C°°(Af) 0  V: dfx  can be interpreted as differential dfx :Tx (M ) -> T/(x j(V) and
as value of the 1-form df G A ifM )  0  V in x G M  in the sense of the Definitions 1.5
and 1.22. But if we naturally identify the tangent spaces of V with V: Tv (V) = V
for all v e V ,  the ambiguity vanishes, since we have for the differential

dfx (Xx ) = X x ( f)  =  X (/)(x) = d/(X)(x) G V for all X  G ^ (M ) . .

Pullbacks and push-outs obey ( /  o 5)* =  /* 0 5*, ( /  o g)* = g* o /*, which one
may prove using the chain rule d (f  o g)x = dfg(x ) o dgx . We have, cf. [3, p. 24]:
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Lemma 1.28 I f f  : M —> N is a diffeomorphism then is an
isomorphism o/LlE algebras, so

Al*, >’] = If**, f*y] for all x , y e  v \M ) .

Lemma 1.29 I f f  : M —> N is differentiable, F: V —> IV and G: X  —> Y  linear,
a, f i e  A ( N ) ® V , jE  A (N ) ® W, w G A (N ) and K  G Hom(T(lV),X) then

1. f* and F* commute: f*(Fi,a) =  F*(/’a), analogously F*(G0 K) = G0(F*K\,

2. f* and F, commute with d: d ( f 'a )  — f*(da), dfF^a) = FJda);

3. f*(w A a) =  ( / ’w) A ( f ‘a), F,(iv A a) = w A (F*a);

4- f*(a  A  ̂7) = (J‘a) A  ̂(/*7), for any bilinear </>: V x W —> Z;

5. f*(a  Ay f3) = (f*a) Ay (/*/?), i- e., f* is an algebra homomorphism;

6. F*(a Ay (3) = (F^a) Ajy (F*/?), if in addition F o <f>v = d>w o (F  x F), thus F„
is an algebra homomorphism, if F is one.

Lem ma 1.30 For every differentiable map m: Pi x P2 —> X  the mappings m p :=
P2 —> N and mq := m(-,q): Px —> N are differentiable for all p G Pi, q G P2 .

Identifying T(pjfiP i x P2) and Pp(Pi) © T,(P2), we have

dmM (X, V) =  (dmp ) , ( r )  + (dm’)p (X) for all X  G Tp (Pi), Y  G Tg(P2). (13)

For differentiable f:M  —> P\, g: M —> P2 and h = m o (f,g): M —> N this yields

(h*w)x  = for all x G M, a> G Ai(N , V). (14)

Analogously to Definition 1.19 we define contractions of tensor fields:

Definition 1.31 For all k < r ,l< sE N , C°°(M)-linear maps Cf:'Dr
s (M )—̂Tys Z[(M)

are uniquely defined by the requirement that for all X 1 G TPfiM}, G 1 \(M )

■.= y f ix k\ x v® --x ^ ---® x T®yx® --y l --®ys .

Ci is called the contraction of the fc-th contravariant and the /-th covariant index.

Definition 1.32 For each X  G P J (M) the interior product with respect to X ,
ix-T>.{M, V) —> T>_(;Vf, V), T>P(M, V) —> DP_X(M, V), is defined in the following
way: for each u p e D p(M, V) and y  G D ^M ),

( ^ p) ( y ,..., y ^ 1) := p up(x , y l , . . ., y - 1).

Thus i x f  = 0 for all f  G C°°(M, V) and we may write ixu p = p C{{X ® cup ).

Obviously t^ (P p (.W) ® V) C Dp_!(A/) ® V, ix (A p(M ,V)) C A P_X(M ,V ) and
l x (A p(M) ® V) C A p_i(M) ® V and one easily proves:
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Lem m a 1.33 For all X , y  G D l (M) and f  G the interior product satisfies:

1. tx  is a skew-derivation of degree —1 of A (M ) (and of A(M ) 0  V , whenever
Ay is defined): it even is C°°(M)-linear and obeys

ix(a P Aw) = ix<*p -|- (—l) pop Ai^w, if aP € A P(M), w £ A(M);

2- l x+y = l x  + ty, t/x  = f  ■ tx;

3. ix ° iy  = —iy ° ix , thusix is a differential operator on A(M ), resp., A(M )®V:
(ix)2 = ix ° ix  =  0.

Definition 1.34 A one-parameter group of (differentiable) transformations on a
manifold M is a mapping < :̂R x M —> M with tp(t,x) — Vt(x )> where <pt : M —> M
is a diffeomorphism for all t G R and satisfies Vt+s = Vt ° Vs for all s ,t G R.

A local one-parameter group of local transformations is defined in the same
way, except that Vt(x ) defined only for t in a neighborhood of 0 and x in an open
set U G M .

For such one-parameter groups one proves [6, pp. 12 -  16]:

P roposition  1.35 Every one-parameter group of transformations <p on M induces
a vector field X  € D l (M) by:

Xx ( f)  := ^ / ( ^ ( t ,  x))|t=o for all f  G C°°(M), x € M.
at

For all x € M the orbit ipx : R —> M is then an integral curve of X , i. e., X ^ ttX) is
tangential to p>x  for all t G R. We have XV1(x ) = dip3(Xx ) for all s € R, x € M and

[Af! y] I  = l im |{ J I - ( ( ^ J ^ ) J  =  lim |{ ((¥3_t ) ^ ) x - ^ }  for all y  G P*(M).

Analogous statements hold for local one-parameter groups of local transformations
with induced vector field X  G DX(U).

Proposition  1.36 For every X  G D '(M ) and every x G M there exists a neigh­
borhood U of x, e > 0 and a local one-parameter group of local transformations
<p:] — e, e[ xU  —> Af which induces X .

X  G P ^A f) is called complete if there exists a global one-parameter group of trans­
formations that induces X . On a compact manifold every vector field is complete.

Let Diff(Af) denote the group of diffeomorphisms of the manifold M. For any
f  G Diff(Af) and x G M , dfx :Tx (M) —> T j ^ M )  is a linear isomorphism and
induces an isomorphism of the tensor algebras f x :T(T x (M)) —> T(T/(x )(Af)). We
thus get an algebra automorphism f  :D(M) D(M) defined by

( fK ) x  := f f - l { t } (K f - 1{x}) for all K  G V(M ), x G M. (15)

f  preserves type and commutes with contractions (cf. [6, p. 28]). For u? G D,(M)
we have foj =  (y - 1 )*w, so f(A (M )) = A(M ).
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Definition 1.37 Let be the (local) one-parameter group of transformations gen­
erated by a vector field X  € D ^M ) according to Proposition 1.36. Then the LIE dif­
ferentiation Lx'-'D(M) —> D(M) with respect to X  is defined by

(LX K}X := lim|{ATx -  (£ K ) X} = - ¿ ( ^ K ) x | t= o for all K  €  D(M), x e M.

LX K  is called the Lie  derivative of the tensor field K  with respect to X . Defining
fyfptK) € P(M ) pointwise for all x € M , we thus have L%K = —■¡¡¡(tptK)\t= o-

Lx (oj ® v) := L xu ® v = [-^(ç?7^)h=o] ® v for all u  v e V  (16)
at

defines the Lie  differentiation on 7?*(M) ® V.

The following propositions hold [6, pp. 29 -  35]:

Proposition 1.38 For all X , y  e the Lie  differentiation satisfies:

1. Lx is a derivation of D(M), thus it is linear and obeys

L x(K  ® K') = (LX K) ® K ' + K ®  (LX K') for all K, K ' e D(M);

2. Lx preserves type: Lx^T^^M)) C TF(M) and commutes with contractions;

3. [Lx,Ly] = L[x,yj and L^x+^y = ^Lx + pLy for all X,p e R, which means
that {L xlX  € D^M )} is a LIE subalgebra of derD(M);

4- Lx f  = X f  for all f  e  C°°(M), Lx y  = [X, >];

5. i f u £ V n (M )® V , A 'e  D],(M) =  Hom(Dn (M ),D '(M )) a n d y  eP *(M ),

( L ^ x y , . . . ^ )  = ^ ( w ( X . . . , y * ) ) - £ w (X ... ,[A r ,y ] ,. . . ,y * ) , (i?)
i=i

(Lx K )(y \ . . . ,y * )  = [A’, / f ( y , . . . , y i )j-¿A X 3> l, . . . , [ * , y y ) ; (18)
i=i

6. =  t[;v,y] o n  D.(M) ® V, thus Lx commutes with ix-

Lx(A(M ) ® V) C A(M) ® V, since Lx commutes with alternations, cf. (17).
For u  e A(M) ® V  we deduce from (17) and (1) that for all f  e C°°(M):

Lfx& = f  ■ Lxu + df A ix w.

Moreover, since d and Lx  commute and we have (cf. Lemma 1.2)

Proposition  1.39 For every X  E Lx is a derivation of degree 0 of A(M)
(and of A (M ) ® V, whenever Ay is defined), which commutes with d and ix- Con­
versely, every derivation of degree 0 of A(M ) commuting with d is equal to Lx for
some X  E D r (M).

Finally, the homotopy identity Lx = d o i x  + ix  o d holds on A(M ) ® V.
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Using Lx = d o i% 4- ix 0  d one easily proves:

Lemma 1.40 Let f : M - + N b e a  diffeomorphism. Then on A(M~) 0  V we have

ix ° f* = f* 0 l hX, do f*  = f*od, L xo f*  = L j,x  for all

Recall that every tensor field S G P |(A f) can be viewed as a linear endomorphism
of D*(M). Analogous to Proposition 1.20, S  uniquely defines a derivation S' of
2?(M) with the following properties:

1. S' G der'D(Ai), i. e., S' preserves type and commutes with contractions;

2. $ '( /)  =  0 for all /  G C°°(M), thus S' G derP(M )? ;

3. [S'(A')](w) =  S (X ,u )  for all X  G w G Pj(Af);

4. {S'|5 G P}(M )} is an ideal in derT>(M).

Proposition 1.41 Every derivation D G derl?(A/) can be decomposed uniquely as:

D = Lx  + S',

where X  G P 1(Af) and S  G P}(M). Two derivations Di,D? G derP(M ) coincide
iff they coincide on C ”(M ) and P 1(Af).

1.3 Bullets and Triangles

Definition 1.42 For any x* € ^ r ( Af, Hom(®5 IV, Z)), where s G N, r G No, and
Fj G Hom(®? V, IV), j  =  1 , . . . ,  s, we define xf*... F ‘ G Hom(®J? V, Z)) by

... F‘ =  [(Ft 0 -  ■ ■ 0  F,)*]*x’

Thus if x ’ G A r (M) 0  Hom((g)i  IV, Z) then x F 1 F * €= A r (M) 0  Hom(®s’ V,Z).

Since (Fi 0  • • • 0  Fs ) G Hom(0s’ V, (gf IV), x F‘ F’(X * ,...,  X r ) is well-defined
according to Definition 1.26. It is multilinear in Fj-. for all X,p G K and all j  < s

Fi,...,XFj+iiFf.... F, . p  p  p  Fi,...,F'.....F, .
X r 1 = W ....  .......  ’ + F X r  1 - (19)

D efinition 1.43 Forx* €.Ar(M, Hom(®s IV, Z)) anddfy EAp (Af)0Hom(Q9 V, IV),
p, q, r, s-1 G No, let dr

sq
+sp G U + ip (M, Hom(®s’ V, Z)) with dr

sq
+sp( X \ . . ., ;T+^)(x) :=

[xx(a ?, - - •, * ; ) ]  o [ ^ ( ^ r + l , • - -, 0  • ■ • 0  . . . , ¿ T ^ ) ]

for all x G M and define Xr • '= Ar +sp(dr+ sp) G A r+ ^M , Hom(®5’ V, Z)).
X° • <Pp ■— Xr a n d linear extension defines x  • 4>p 6 X(Af,Hom(7”(V),Z)) for all
XE  4(M ,Hom(T(JV),Z)).



16 CHAPTER 1. FOUNDATIONS OF FIELDS AND FORMS

Roughly speaking, the bullet operator means the following: for any x € M  and
X ' g P r (Af), Xx(X*, . .  . ,X ')  defines an element in Hom(®’ W, Z). Instead of using
s vectors in W  as input for this map, we may also use s maps in Hom(®’ V, W) as
input to obtain an element in Hom (05q V, Z). But again for any x E M  and y  g
©’(Af), > J? ) defines such a map in Hom(®? V, W). Altogether the com­
bination of x  and 5 factors d defines an element ds

r
q
+sp g P r+ 3 p (M, Hom(®s<' V, Z)).

Using the alternation A r+ sp , we finally obtain a form in A r+,P(M, Hom(®5’ V, Z)).

Lemma 1.44 For p ,q ,r ,s—1 gN 0 and <p’ =  F  <£’ ® F, g A>(Mj ® Hom(®’ V, W),

X r*d p = £  a  A </>'*.

Thus if Xr € -4r (Af )®Hom((g)s W, Z) then also x**dp € A r+ sp(M )®Hom(®5? V, Z).

Lemma 1.45 For p,q, r, s — 1 g No, p odd, and dp = d' ® Fi> w e  ha v e

x ’r • d'P = 12 £  x ^ 1’... F'm  a d ^  A • • • A (20)
1<«1<—< i 5 <m  pES,

1<»1 'p £ S s

£ ( - i ) '  x ^ 1’... )  A d»’1 A ••• A</>i j .

Thus Xr*d>p — 0 ifs> m ; i fV  andW  are finite dimensional and s > dim IV(dim V)’,
t/ien x ' • dp =  0 for all dp € A P(M) ® Hom (05 V, IV).

Proof. d' A d ' =  0, because p odd, and dimHom((g»’ V, W) = dim W(dim V)1 . □
Recall Sym' from Definition 1.8. If x G A(M , Syrn^lV, Z)) (e. g., if x =  Xr w *̂ h

s = 0,1), it is quite natural to ask for a resulting form x • dp € A(M , Sym'(V, Z)).
We can achieve this by (Symc )*(x • dp) according to Definition 1.26. Define

£ := c’+ 1 ( - l ) p =  ±1, (21)

then the following lemma holds:

Lemma 1.46 For p ,q , r , s - l  g No , dp
q = Z,?=i d''® F, g Ap(M) ® Hom(®’ V, W)

and Xr G A r (M, Sym3(W, Zf), we have

(Sym<9)*(xr • dp) = £  (S y m 'J^ x * 1' ■’F“ ) A dij A • • • A d i s ,
«1..... «>=1

if ( - l ) p =  <’+1 = -1  : =  s’ £  ( S y m ^ x r - ... * ')  A A • • ■ A

if s > 1 and £ =  —1 :
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P roo f. The first equation is trivial from Lemmas 1.44 and 1.29.3. Now for s >  1,
</>'' A • • • A <t>'3 A • • • A <t>'k A • - • A </>'• =  (— 1 A • • • A <f>'k A ■ • • A <j>'3 A • • • A <j>'‘ and

.... A ... "* ... F - )  =  t
t + 1 (Sym ;,).(xF "  ■F '*....f i ’' " F " )  (22)

yield (Sym 'i )*(Xr’1’ J *' ’ ) A </>'* A • • • A <f>'3 A • • • A <£’* A • • • A <t>'‘ =
= t  (Sym’j^ ix f* 1 Ffc F’’ F ’ ) A <j>'x A - • • A 4>'k A • • • A <t>'3 A ■ • • A <p'‘. (23)

Thus evaluating *n  (20) proves the rest. □
Let us derive some properties of the bullet operator. First we will look for

associativity and its behavior under pullbacks and push-outs.

P ro p o s itio n  1.47 Let € A t (M, Hom(®u X ,Y ) ) ,  x* € A -(M ) ® Hom(® s W, X)
and € A P(M ) ® H om (0 ’ V, IT) for p ,q ,r ,s ,t.,u  G No- Then

<  • ( t f  •  =  ( - l ) p r5^  «  • Xr) •  e  X i + u r + u j p (Af, Hom(®“4’ V, Y )) . (24)

P roo f. Let Xr — XJ  ® Gj and d>’ =  £ £ 1  </** ® Fi- By Lemma 1.44 we find

= È  E  ^ ! °( F , n ® ®F ,,1 ) ... A
i n . . . .  . ù u = i

AyJ1 A <£‘H A - • • A d>‘” A • • • A x Ju A <£'*“ A • • - A </>*’“,

while («“ •% ’) =  £  £  (K
G« , ’G^ ) f in ....F i«>... F i>«... F1*“ a

Jl =  l  <11 , . . . , ù u = l

AXix A • • • A x Ju A d>’“ A - • • A <f',x A • • • A <£**“ A - - - A

Now x ix A d>*“ A A A • • • A x J“ A d>'lu  A • • - A =
=  ( _ 1 )prs(i+2+-■■+(«-!)) A  . . .  A  x Ju A A • • • A <p*sl A • • • A <jS*lu  A • • • A </>*•“
=  (—l) p r* ( ' x J l A • • - A x Ju A <p’u  A • • • A 0’’1 A • • • A </>'"“ A • • - A

On the other hand (F i n  ® • • • ® F, „ ® • ■ • ® F,lu ® ® Fi s a )* o (Gn  ® • • • ® G„)* =
[Gj, o (F t l l  ® ® F t>1) , . . . ,  G]u o (F t lu  ® • • • ® F ,,„)]*, so both «-expressions are
identical for each set of indices. □

C oro lla ry  1.48 I f  k  G A (M , Alt(X, Y)). then fo r p .q ,r  or s even, esp. q = 0:

K • (Xr •  =  (« •  Xr) •  <i>p- (25)

P roof. Whenever for a «“ in (24) p r s - ^  is odd, r + sp and sq are even and
u > 1, thus the left side of (24) vanishes by Lemma 1.46. □

L em m a 1.49 L e tM ,N  be C°°-manifolds and V ,W ,Y , Z  vector spaces.
1. I f  f :  M  —> N  is differentiable and x  €  A (N , Hom(7"(lV), Z)) then

(V ^  G A (A r)® H om (0’ V, W)) /* (x . ^ ’) =  ( /* x )* ( /* ^ )  € X (M ,H om (T(V ),Z));
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2. I f  A : W  Y  is linear and x  € A(M, Hom(T(Y), Z)) then

(V ^  G =  l(A*)*x]»0’ e  A(M ,Hom(T(V),Z)),

(V0P € AP(M) 0  W ) x  • (M > ) =  [(¿‘U ]  • 0p e  A(M, Z);
3. I f B :Y  —> Z linear and x  € A(M, Hom(T(lV), V)) then

(Vd>’ GAp(M)0Hom(®’V,lV))(Bo)w(x«<p’) =  [(Bo)*xW’ € A(M ,Hom(T(V),Z)),

iy e p G AP(M) 0  IV) b*(x • Op) = [(BoKx] • op e  A(M, z ).
Analogous results hold for (anti)symmetrized forms in A(M , Sym^IV, Z)), etc. I f  in
1. we have x  6 A(N)®  Hom(T(lV), Z), the result will be in A(M )0Hom(T(V), Z),
etc.

Proof. 1. follows from Lemmas 1.29 and 1.44; 2. and 3. are easily proved directly
or by Proposition 1.47: let aj := 1 ® A € Ao(M) 0  Alt^lV, V), then [(A0)*d>’] =
aj • c>’ and [(A’),x] =  X •  a oi analogously with fej := 1 0  B  G A0 (M) 0  Alt^K, Z),
[(Bo)*x] — • X> which is well-defined in this special case. □

Obviously x • 4>p is «4(M)-linear only in x- If X £ A(M , Hom(®s W, Z)), then

X « ( / ^ )  =  / 3 ( X - ^ )  for all /G C ~ (M ). (26)

We would like to give an expression for x • (d’p + d’p)- First we observe that every
Xr € A-(M, Sym'(lV, Z)) naturally defines

Xr '"" € Ar (M, Sym<4,(lV, Sym^IV, Z))) for all s', s" G No , s' + s" =  s. (27)

For any such combination of s' and s", x* • (d’p +  ^ p ) will contain terms, where s'
factors of d>p and s" terms of d’p serve as input for x*- In order to cover this situation,
we need the following two definitions.

D efinition 1.50 For any x* ’s" .Ar (M, Hom(0s’ IV', Hom(®5 'IV", Z))), where
s',s"  G N .r G  No, and Gt G Hom(®’ V, IV'), i =  l , . . . , s ' ,  H} G Hom(0« V, IV"),
j  =  l , . . . , s " ,  we define:

X?‘... := [(Gi 0  • • • 0  G » * ] * X r e  A (M , Hom(®3'’ V, Hom(®s" IV", Z)))
x f 'H 1... H ‘" ■= [((Hl® • • • 0 e Ar (M, Hom(®s ' IV', Hom(®5"’ V,Z)))

I fX r 's" € Ar (M) ® Hom(®5' IV',Hom(®’" IV",Z)) then X r ' € A (M ) ®
Hom(®s’ V, Hom(®*"lV", Z), Xr ’H ' ... H ‘"e Ar (M)®Hom(®s'W ', Hom(®s"’ V, Z)).

D efinition 1.51 For every Xr 's" € Ar (M, Hom(05'IV ', H om (03" IV", Z))) and
d’p -^p(Af) ® Hom(®’ V, IV'), where p,q ,r,s',s" G No, let Z' := Hom(®5" IV", Z)
and Xr ■= Xr i t" € Ar (M, Hom(®s ' IV', Z')), and define

Xr 's" < d>J := Xr • € Ar+ ,'P(M, Hom(®s '’ V, Hom(®’" IV", Z))).

Be € A P(M) ®Hom(®’ V, IV") and j; IV' -> [Hom(®s ' IV', Z) -> Z] the eval­
uation morphism. Define Xr 's" ►d’p € Ar+ ,"P(M, Homt®3' IV', Hom(®5 "’ V, Z))) by

fiw 1 ® • ■ • ® ws )*(x* ► d’p) ■= b(w l  0  • * • ® u>s ')*Xr ; i"] • d’p for all w' G IV'.
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Thus for x  € A r (M , Hom(® s W, Z)), the direction of the triangle operators
indicates whether the second form is used as input for the first s ' or the last s"
factors in Xr(^?> • - -, Afj) € Hom(®5 W, Z).

L em m a 1.52 Using the notation of the previous definitions, we have

m  G G ■*" m
X r :3" ^ ^ P = E  Xr’>...  if  <¡>1 = ^ ® ^

n. - j>=i j=i

X ^ ’ > ^  =  E  A -’ -AV-*'" =
fci... fc,w=l k=l

Xr ^ ' ^ p  e  A + i 'P(Af)®Hom(<g)s '’ V,Hom((g)s" W ", Z)) and x f € A + i"p (M)8
Hom((g)s ' IV', Hom(®’"’ V, Z)) if  X r ’a" G A r (M ) ® Hom(®’' IV', Hom(® s" W ", Z)).

L em m a 1.53 Let X r’*" > <£p< a n ^ V’p» defined as before. Then

=  ( - l ) p'p"s '4" (x f ;s" > ^ ) ^ ^  € A + s<pW (M ,Hom (® ” V,Z))

For x ‘ G A r (M , Sym'(W, Z)) with Xr ,s" f r o m  (27),

(Syn> :,).((x:'^  «  4 )  ► v;..) =  ( S y m y . [ ( x f ► 4 )  < m

P roof. W ith the previous notation, the first two terms are both equal to

Xr a  d>" A - • • A <&•' A V»‘‘'+» A • • • A

(S y m ^M x ?* ... G i*',H i”+ l ... H i' )  =  <(’+ 1 ) i 's" ( S y m : , ) ^ ’̂ 1....H '" G" C '" )

from (22) proves the second equation. □

P ro p o s itio n  1.54 For p ,q ,r ,s  € No , let d>p,^p 6 -4P( Ai) ® Hom(®’ V, W) and
X* € A (M ,Sym '(W z, Z)). Define I  as in (21). Then (Sym'Q).[Xr • (^p +  V^)] =

k=0 k=0
=  ¿ ( ;) .(S y m '„ ) .[ (x Î i- ^ i > ’) » .^ l  =  ¿ ( - i r - > ( : ) / (S ym y.[(x5»-‘ ^ ÿ ; ) ^ ] .

t=0 k=0

C0z =  G-fc)z‘ w ^ e n e v e r  (Synis? ),[Xr*(<Pp+V’p)] is nonzero according to Lemma 1.J6,

, . z x z . z . iO , if s even and k odd,
GJ/ — v J +  w  ’ w ^ e \k)_ I  e ls e  (f°r  r  G R, [r] :=  m^x{z <  r } /
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Proof. The equations are trivial for s =  0 and s =  1, so assume s >  1. Let
0J =  Z X i ® ?i and 0 ’ ® F,. Then with x ‘>... *■ :=  (Syn£,)*(x*‘

(Sym 'g ) ,(x X d > ’ +  ^ ) )  =  52 Xr* ** A ^ ’1 +V’” )A ---A(d>’J + 0 ” ), and

(S y m ^ )* ( (x ^ fc< ^ ) > ^ ]  =  52 X r ’• A ^ M A ••• A< '̂k A V’,*+I a  ••• A #* .

We proceed by induction on s. Thus (Sym'g)*(Xr •  (o? +  V’p)) =

=  ¿ ( S y m 'ç ).(Sym ^_1)g) . ( x r 1:F‘' • (<^ + ^p)) A (<t>" +

«3 = 1
s—1 m

=  52  ( \ ! )z 52 X r... . A </>’* A • • • A 4>'k A 0**+1 A • • • A V’’’-1  A (</>** +  V’**)

=  £  [ ( V l  +  ^ f c 1!)/! £  X?... ‘’ A0*‘ A - . - A ^ A # ^ 1 A - - - A ^ \
k=o n ... i,=i

where we have used (23). Recursion +  £s~k proves the formulae

for Lemma 1.53 and interchanging cty and finally yield the rest. □
We will also need a formula for the exterior derivative of x ’ •  d>q-

P roposition  1.55 L e tty  £  .4p(M)®Hom(®’ V, W ) and X
s
r G A (Af)® Sym ç

s (W, Z)
fo r p, q, T, s €  No . Define as in Proposition 1.54. Then d[(Sym’g )*(x*«^p)] =

=  (Sym '„).|(dx):+ 1  • « I  +  ( - 1 ) '  (:) , (Syn>‘„ ) . | ( x ^ - ‘ •< W M  ► î ;|
=  (Sym y.[(< /x):+ , • ¿ ’ ] +  (;) (  (Syn>i,).[(x;-,;1  «  i j )  ► ( < J -

Proof. W ith the notation of the previous proof, Lemmas 1.46, 1.25 and 1.29 yield

4(SymS,)*(x; •  <^)] =  52  dxi1... ‘' A ^ A - A # '  +
«I... »3=1

s  m
+  52  52 (—l) r+ p (-’- 1 ^x’»... ’• A <$>'' A • • • A A d(f>'] A A • • • A <p's =

j = l  i i , . . . . t ,= l

=  (Sym ^)4(dx)’+ l  • <t>pq] +  ( - l ) r  è  £  f-'- 1  X?... *• A dd>*1 A <f>i2 A • • - A

j = i  «1.....>«=i

=  (Sym<s ,)4 (d x ):+ 1  •  <t>pq] +  ( ~ l ) r  Q) £  x ’1’ A d tp  A d>'2 A • • • A 0” ,
»1«.=1

where we used (21) and (22) in the second step. Lemma 1.53 proves the rest. □
Proposition 1.55 also holds for ix  instead of d, and for L x, if one drops (—l) r .

Tracing the previous proof we get for the general case:
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Corollary 1.56 Ifd>a G >4p(A/)®Hom(0’ V, W) andX * G -4r (Af)®Hom((g)s W, Z),

= (dx yr+1.4>'p + ( - i y ^  (28)
3=0

1.4 D ifferentia l Form s on L ie  G roups
We only consider finite dimensional Lie  groups G and their Lie  algebras g =  L(G).

D efinition 1.57 For any Lie  group G with multiplication p :G x G  —> G, p(g,h) =
gh, inversion g-.G -*G , g(g) = g~l , neutral element e and g = L(G) =  Te (G) let

1. Xg : G —> G, Xg (h) = pg(h) = gh be the left multiplication with g € G,

2. pg : G -4 G, pg (h) = pa (h) = hg be the right multiplication with g € G,

3. Ig: G -4 G, Ig(h) = ghg-1 be the conjugation with g € G,

4- Ad:G -> Aut(g),Ad(g) = (dlg )e : g -> g, Ad(g)X =  dXg dpg- ^ X )  and

5. ad =  d(Ad)e :g —4 gl(g), ad(X)(F) = [X, V] be the adjoint actions.

Definition 1.58 For any Lie  group G let D$(G) C T)l (G) for S  = L, R defined by

K (G )  := {A’ g ©1(G)|(V5 g G)(As )*X = X},
Pk(G) == {X G © 1(G)|(VgGG)(p ff)+X = X}

denote the LIE subalgebras of left, resp., right invariant vector fields on G.

Lem m a 1.59 For X  € g define £ x  G D ^G ) and R x  G 'Dr (G) by

(£ X )g := dXg (X ), resp., (R x )g = dpg (X) for all g t G .

Then £: g -4 ©¿(G) and —R: g —> ©^(G) are Lie  algebra isomorphisms with
g*£x =  —R-x and

(VX, V e g )  [£x ,£y] = £[x.r], = ^[y,x] = — ̂ [x.y],
(Vg G G, VX G g) (pg- \ y £ x  = £xd(g)x, (Xg^Rx = Rxd(g)x,

© l(G )n© )J(G) = £({X G g| Ad(G)X = X}) =  £(L(Z(G))),

where Z(G) denotes the center of G.

Proof, go Xg = pg-x eg, thus = dpg-idge (X) = dpg- ^ - X )  = - ( R X )g- ^
[£x,£y] = £[x,yj is just the definition of the commutator in g =  L(G). By
Lemma 1.28 =  [-g,£x,-r?*£y] =  gt [£x ,£y] = g^£[x,Y] = — R[xy]-
As Xg and ph commute, (pg- i \ X  G ^¿(G ) for all X  G ©¿(G), g G G and
(Xg y y  G ^ ( G )  for all y  G ©^(G). Now £ - 1((pff-.)*£x ) = (ps -)*£x (e) =
dps -!(g)dAs (e)X = Ad(g)X and R ^ ^ X ^ R x )  = (Xg y R x (e) = Ad(g)X. From
this the last claim follows immediately because Ad(g)X =  X <=> /a(exp(iX) =
exp(tX) for all t G R <=> X G L(Z(G)). □
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Definition 1.60 For any Lie  group G let A S (G ,V )C A (G ,V ) for S  = L ,R  with

A L (G,V) :=  {wG ^(G,V )|(V gGG ) A;u> = u>},
A r (G,V) := {w€X(G,V)|(V 5 € G )p ;w  =  w} and
A \G ,V )  := A l (G ,V )O A r (G,V)

denote the vector spaces of left, right, resp., bi-invariant V-valued differential forms
on G. The submodules A S (G) ® V and A \G )  ® V are defined analogously.

Note 1.61 By Lemma 1.29 we have d(A$(G) ® V) C -4p + 1(G) ® V and if Ay is
given, -4S (G) ® V are subalgebras of -4(G) ® V . If G is compact with normalized
Ha a r  measure p and u> G A(G, V) we have projections u> •-> u>s  G A S (G,V) (note
(ws )s  =  u s ):

■■= ix* u d p (g ), u;R  := i  p*u; dp(g). (29)
J G JG

For X i , . . . ,  X p € Tg (G) we have

(Vu» G-4p (G, V)) û X ^ . - M  = u;e ((dXg-l )9 X u ...,(dX g- l )gXp),
resp., (Vo;G ^ ( G ,V ) )  ^ ( X ^ . . .  ,X p ) =  ^ d p ^ X , , . . . ,  (d p ,^ g X J .

Thus u?e determines w € A S (G, V) completely, which yields the following lemma:

Lemma 1.62 Alt(g, V) -> A S (G,V), Altp (g, V) -> A$(G, V):we •-> w are iso­
morphisms of vector spaces and A S (G, V) = A S (G) ® V, Ap(G, V) = -4p (G) <8 V .
Also A \G ,V )  = A ^G ) ® V. For V = R, the functions are isomorphisms of
graded algebras.

Corollary 1.63 If g,h  6 G and K  G Altp (g, V) we have = (—l)p^ f l(K),

p ^ L (K) =  ^ ( A d « 1)**) and X*if>R (K) = ^(A d(g)*K );

especially for K  := Ad(/i) G Aut(g) this means =  —V’f i(Ad(/i)),

p;V’L (Ad(h)) = ^ L (Ad(/i5 - 1)) and A ^ f l(Ad(A)) =  ^ (A d ^ g ) ) .

Corollary 1.64 For every bi-invariant u  G -4; (G,V), we have du; = 0.

if1: Alt(g,V)i n v := {K  G Alt(g,V)|(Vg G G) Ad(g-J )*K = A'} -> -4'(G,V)

is an isomorphism of vector spaces, resp., of graded algebras i fV  = R.

Proof. Corollary 1.63 yields t)*uj = (—l)pu for w G A?(G, V). Since d commutes
with pullbacks, du; G -4p + 1(G, V) and du; = ( - l ) ”dg*u; = ( - l ) pg*div = — du;. □

Definition 1.65 ©^(Af,) := dXg-i(Xg ) G g for all g G G defines the unique left
canonical 1-form =  ^ L (idg) G ^[(G .g) with =  idB. In analogy QR  =
V»H (ids ) G A R (G,g) is defined by QR (Xg) := dpg-i(X g ). Obviously QR  = Ad(g) o
for all g G G and thus QR  =  Ad »QL .
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Corollary 1.63 yields that rj*QL — —QR , p'g QL =  V’£'(Ad(p~1)), Aj0R  =  t£f i(Ad(g))
for all g G G. From these we can recover the relations in Corollary 1.63 using
Lemma 1.49 and (26) because

tf>s (/<) =  (1® K ^ e s  G AS (G,V) for all 7<GAlt(g,V). (30)

Note that for any linear A: V —> IV, Lemma 1.49.3 combined with (30) yields

A ^ S (K) =  A*[(l ® K) •  0 s ] =  [1 ® (AOK)] •  0 s  =  0 s (Ao R) G AS (G, W). (31)

Lemma 1.66 I f h :G - *H  is a LIE group homomorphism, then

h'Qs
H =  dheQG , h * ^ „s (K Y  =  ^ d h ' e K) for all K  G Alt(f), V).

Proof. Because Xh(g ) o h =  h o Xg for all g G G,

(h*QH
L )g =  (dXh[g]^ h{g)dhg =  dhe(dXg - ') g =  dhe o (©¿)5 .

Pa(s ) o h =  h o pg proves the result for S  =  R, the rest follows from Lemma 1.49. □

Definition 1.67 For any differentiable map f :M  G we call f*Q L G Ai(M,g)
the left and f*Q R  G ^4i(A/,g) the right differential of f .

So f *G R =  (Ado/) •  f*Q L , f *Q L =  (Ad0770/) •  f*Q R . Lemma 1.66 yields:

Corollary 1.68 If h:G —> H is a L1E group homomorphism, then for every differ­
entiable f  : M G and every K G Alt(f), V) we have

(h o f ) * e s
H =  dK o /*eg, {h o / r ^ ( R )  = r e s

G {dh'e K) e a (m ) ® v.

Definition 1.69 For any f ,g :M  —> G we define f  ■ g ,f~ l :M  -> G “pointwise”:
f  ■ g :=  p o ( f ,g ) ,  f ~ l  : = g o f .

Theorem 1.70 For all differentiable f ,g :M  —» G and all h G G we have

(/•< 0 V (A d (A )) =  (A d oA og- l ) . / * ^ ( A d ( ^ ) )  +  g‘ ^(A d(/i)),
( / •< O « (A d (/i))  =  / * 0 R (AdW ) +  (AdoZfco / ) . g ‘ ^(A d(A )),
( / - ^ ( A d ^ ) )  =  - (A d o A o /) ./*V > L (Ad(M) =  - / ’ ^(AdCh)),
( / - ‘ ^ ( A d i A ) )  =  -(A doZfco/-1) . / * ^ ^ / » ) )  =  - / ^ ( A d ^ ) ) ;

( / p ) * e L  =  (Adog-l ) . r G L +g^QL ,
(f-g Y & R  =  / * 0 R +  ( A d o / ) . 5 ‘ 6 « ;

( / - ’ ) * e L  =  —(Ado/) • / * e L =  - f *Q R ,
( f - l Y&R =  _ (A d o /- ‘ ) » f 'Q R  =  - f * e L .

Proof. To prove Theorem 1.70 directly, observe that (13) for m =  p yields the
generalized product rule d (/ • g~)x  =  (dps (x ))j(x )dfx  +  ( d X j^ ^ d g x  for all x G M.
On the other hand, Theorem 1.70 immediately follows from Corollary 1.105, which
we will state below. □
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Corollary 1.71 For all differentiable f,g: M —> G and all K  G Altp (g, V) we have

= (1 ® K ).[(A d o 5 - 1 ) . / * e L + s * e i '],
( f g ) * ^ \ K )  = (1 ® K) 9 [f*QR  + (Ad o f) .g 'O *],
( f~ l )y>L (K) = i - i y r ^ K ) .

Proof. The first two equations follow from the results for Qs  in connection with
Lemma 1.49 and (30); Corollary 1.63 and f~ l = go f  yield the third one. □

Corollary 1.72 Let c: M  -> {c} C
K e  Alt(g,V);

G be constant then for all f : M  —> G and

(c f y e L  = (xc o f) * e I ' = r e L ,
( J - Cy Q R  = (pc o f)*Q R  = f*&R ,

( c - f ) ^ L (K) = r ^ K ) ,
( f c ) ^ R (K) = f ^ R (K),

( f  c y e L =  / > : e L =  / V u d t c - 1))
(c f )* e R  = f*A:OR = /*^(A d(c));
( / • C)V ( /< )  =  /V ( A d ( C- 1)*Ji),
(c • f)*QR  =  /* 0 f i(Ad(c)*/f).

Corollary 1.73 For all differentiable f,g: M -» G and K  G Alt(g, V) we have:

(VK) f*ipL (K) = g*x/>L (K ) <=> f*QL = g*GL <=> f  ■ g~l locally constant,
(YK) f* ^ R (K) = g*il>R (K) <=> f*QR  = g*QR  <=> / - 1  • g locally constant.

Proof. Again we only show the former equivalences proving A ==> B => C => A.
Firstly, A => B  is trivial. For B => C, Theorem 1.70 yields

( /  • g~1)*OL =  (Ad og) o f*O L  +  (g"1^  =  (Adog) o ( p e L -  g’0 £ ) =  0,

if =  g’0 L . Thus d ( f ■ g- 1 ) =  0, so /  • g- 1  is locally constant. Finally, if
h := f  • g- 1  is locally constant, i. e. dh = 0, then h*OL =  0 and f*i/>L (K) =
(h ■ g)*^L (Az ) = g*V’L (A') by Theorem 1.70, which proves C => A. □

Lem m a 1.74 For any differentiable f  : M —> G and g-valued forms a>,d> E A(M ,g),

(A do/) • (u> Ag <t>) = [(Ado/) «id] A0 [(Ado/) • <£],
d[(Ado/).^>) =  (A d o /) . ( /* 0 £  Ae ^ + d d ).

Proof. This is a corollary to Lemma 1.96 below. □
Suppose $: G —> A is a homomorphism of a group G into the multiplicative

semigroup of an algebra A. Then $(G) C A is a group and we thus can define
$ - 1 : G -» $(G) analogously to Definition 1.69 by 4>- 1  =  <> o t/g  = rfo(G) o $.

Lem m a 1.75 Let G be a Lie  group, A an algebra and 4>: G -> A a C°°-homo-
morphism into the multiplicative semigroup of A. Then S 9  := (d^ e )^Os  G >ts (G, A)
with S f  = d$ e for S  = L, R, and L9  = 4>-1  • /?* =  </$• $ - 1 .
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Proof. By Lemma 1.29 X'g L* = (d$>e )*(A;0L ) =  (d$e)*0L = L* and p*R* = R*
for all q EG . For the last assertions confer Note 1.27 and observe L* = d$,odXG_, =

0  =  ^ (s ) - 1  ‘ ^ 9  a n d =  ^P*(5)-1 0  d$9 ~  ¿$9 ’ ^G?)- 1  because 4> is
a homomorphism and multiplication in A is linear and thus may be identified with
its differential. □

Lemma 1.75 applies to representations G —> 0 1 (0 )  (cf. Definition 1.85). If we
take A =  End(C”) then L* = $*Og i(C") ' s  tbe a n ^ = $ ’®Gi(C") *s  r 'ght
differential of $ by Lemma 1.66. If G < Gl(Cn ) and $ is the embedding, we shall
write L = U~l dU, R = (dU)U-1 and A:(X(Af)®A) x A) -> (4(M )®  A)
for the wedge product induced by multiplication ■ in End(C”). In that case we have
liz(G) =  U • g =  g • U for all U € G. So for X  E P ! (G) we have Xu = UX  with a
suitable X  € g and Lu(Xv ) = U~l Xv  = X , resp., Ru(Xu) = X v U~l = Ad(tZ)X G
g. Physicists call L and R left, resp., right invariant currents .

Every Q G End(C") defines a linear form Trq on End(Cn ) by Trq(C7) := Tr(Qt/’).
For a G A(M , End^C1)), let a k := a A • -  A a . Then S k G (G, EndiCT1)),

k

XQ
k -.= (TrQ )*£‘ =  Tr(Q£fc) G Xf(G,C), pQ

k := (Tr<?)wt f  =  Tr(Q/?fc) G Xf(G,C)

with dXG = Tr(QdLk ), dp® = Tr(QdRk ) by Lemma 1.29. For Q = Il we have the
bi-invariant

:= Aj =  pi = Tr(£*) = Tr(7?fc) G XftG.C). (32)

Lem ma 1.76 If k,l G N, a G A2k-\(M, End(Cn )), then Tr(a2 i) = 0, especially

Tr[(£*)2/] =  Tr(f?*)2'] =  0 G 4 2 /(G,C)

for any representation $: G —> G1(C"), and thus w2i = 0.

Proof. Let r  = (12.. .2/(2fc — I))2*- 1  G S2«2*"1) with ( -1 ) T =  -1 . Then Tr(a2 i) =
— Tr(a2') o r ,  being a form, but Tr(a2 i) = Tr(o2 i) o r  by symmetry of the trace. □

Let ¿/(g) =  T(g)/JM the universal enveloping algebra of g, where J m is the ideal
generated by (HlLGERT, NEEB [7, p. 167])

M =  {a G 7(g)|a  =  X  ® Y  -  Y  ® X  -  [X, V]; X, Y  G g}.

For g /  0, ¿/(g) has an infinite base, dimg < Ko yields dim//(g) = No (Po in c a r £-
BlRKHOFF-WlTT theorem in [7, p. 170]). If a :g  —> ¿/(g) means the canonical
embedding, using the associative bilinear mapping given on ¿/ := ¿/(g), we define
(a*a)* := cr*a Au • • • A  ̂ A(M ) ® ¿/(g) for all a  G A{M, g). This yields
(S*)fe =  (d$)*(<7x0 s )* by Lemma 1.29, where d$'://(g) —> End(C") is the unique
algebra homomorphism with d^'oa = and d$ '(l) = 1 that exists by the universal
property of Z/(g) (cf. [7, p. 167]):

Lem m a 1.77 For an associative algebra A with unit H let Al ;c  denote the LIE al­
gebra one obtains from A defining [A, B] := A • B — B • A for all A ,B  € A. Then for
any Lie  algebra homomorphism t t: g —> Atie , there exists one unique homomorphism
of associative algebras 7r':T/(g) —> A with t t1 o a = ir and 7r'(l) =  11.
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Thus for a representation 7r:g —> gl(C”) =  End(C"), the universal property of
¿/(g) yields a unique algebra morphism 7r':T/(g) -» End(Cn ) “extending t t .” Then
there is a unique morphism 7r* =  id ®tt ': A(M ) ® ¿/(g) —*■ A(M ) ® End(C”) of asso­
ciative .4(Af)-algebras (with the algebra multiplications Ay, resp., A = AEnd(O))-

In order to achieve such an associative wedge product for g-valued forms, one
needs to embed g into ¿/(g) since A0 is not associative. Moreover, the following
lemma yields that (ap A0 a p )A0 a p and a p A0 (ap A0 a p ) are zero for all a p G .4p(Af,g).

Lemma 1.78 Let a r G A r (M,g), ßs € A s {M,gß,^t G A t(M, g) then

(a r  A8 /?,) A0 7, + ( - l ) r ( , + t ) (/3, A8 7t) A0 a r + ( - l ) ‘( r+ s )(7t A0 a r ) A0 ß, = 0,
resp., (a r A0 ßs ) A0 -  a r A0 (ßs A0 7 J  =  ( - l ) t s (a r  A0 7 J  A0 ßt .

Proof: straightforward by Lemma 1.23 and JACOBI identity, cf. [1, p. 43]. □
We already know that G A S (G ,V) yields du € A S (G ,V) since d commutes

with pullbacks. One quickly verifies using (17) that if S x  = E x, resp., Sx = Hx
for X  G g denotes a left, resp., right invariant vector field, then also 25̂ 0? and

G A S (G, V). Thus Lemma 1.62 yields that t$x , L$x  and d induce operators
i^, Lx  and ds  on Alt(g, V}, such that the following diagram

i v L v ds
Alt(g, V) ---- —  Alt(g,V) ---- —  Alt(g,V) -------- -  Alt(g,V)

ÿ s i/>s

A S (G,V) - .4S (G,V) L S x  • A S (G,V) — —  ,AS (G,V)

commutes. We write sgn(S) = and obtain:

Proposition  1.79 For X , X, G g, p G No and K  G Altp (g, V), we have

( l iA 'X X ! , . . . ,^ ^ )  =  pK (X ,X 1 , . . . ,X p_1), (33)
(L iX )(X 1, . . . , X p ) =  s g n (S )É x (X 1, . . . , [X ,X t] , . . . ,X p ), (34)

(ds X)(X 15 . . . ,X p + 1 ) =

E ( - i ) i + j AX[xt- , x ^ x H . . . , x - , . . . , ^ , . . . , x P + 1). (35)
P ‘ 1 i=l j=i+l

The following identities hold for any X, Y  G g:

d5 °d5  =  =  Ls
x  = ds oix +ix ods , [Lx,ty] = *pr,y]» Ly] =  L$x  yj.

Proof. (33) is obvious. Using left, resp., right invariance we only need to prove
V’5  0  Lx  = Lsx  o V>s  and o ds  = d o at e. Now for any K  G Altp (g, V),
V’s (Af)e (X1, . . . ,X p ) = [^s (X )(5 x ,,.. .,5 x p)](e) and these maps are constant on
G, whence A’(^ s (A')(<S%1, . . .  ,<Sxp)) = 0 for all X  G TA(G) follows. So the corre­
sponding terms in (17) and (9) vanish and we obtain (34) and (35) from [<$x,<Sy] =
— sgn(S)5[x,y]- The rest is immediate by the properties of d, i$x  and Lsx - □
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D efinition 1.80

Alt(0 , V)B_inv := {K  e  Alt(0 . V)|(VX € 0 ) LX
L K = LX K = 0},

A $ (G, V)B_inv := {W G ^ S (0 ,V )|(V X G 0 ) ¿ 5 ^  =  0).

We call the elements of A S (G, V)B-inv 0-invariant forms on G.

By definition of L x , the restricted map ifs : Alt(0 , V)B_;nv —> A S (G, V)B_jnv is an
isomorphism of vector spaces. Observe that for any K  G Alt(0 , V) and X, € 0 ,

_ i p+i
(<is K)(X 1, . . . , X p + , ) = 5 7— r ; I 2 ( - l ) i ( L iK ) ( X „ .. . ,X i , . . (36)

¿\P ' L) i=l
So ds (Alt(0 , V)e -in v) = 0. We obtain the following generalization of Corollary 1.64:

P roposition  1.81 For every g-invariantw G A S (G, V), S = L, R, we have da> = 0.
Every bi-invariant form is ^-invariant: >ts (G,V)inv < A S (G, V)B_jnv and analo­
gously Alt(0 ,V)inv <  Alt(0 , y ) 9_in v . I f G is connected, all these vector spaces are
isomorphic.

Proof. The first statement has just been proved. The others are corollaries to
Proposition 1.93 and Lemma 1.98 below. □

If K  obeys A'([X,Y]) = [X(X), K (Y)\ for all X ,Y  G 0, Proposition 1.79 yields

Corollary 1.82 I f G is a Lie  group and K  G End(0 ) then

<WS (K)) =  s g n (S )^ s (K )A B 0 s ( X ) € 4 2
s (G,0 ),

d ( a ^ S (X)) =  s g n i S ^ i X j A w a ^ X j G X f i G ^ C o ) ) .

Proof. Again, we only need to prove the identities at e. Now K  € End(0 )
yields 2(<ty s (A'))e(X1,X 2 ) =  sgn(S)^s (X)([5X l,5x 2])(e) = s g ^ S ) # ^ ,  X2]) =
sgn(S)[A(Xi), A'(X2 )] = sgn(S)(V-’s (A) AB V’s (A))e (Xi, X2). The second equation
follows from <r,(|a A0 a) = cr^a a*a G A 2(M ) ® ¿/(0 ) for all a  G A-^M, 0 ). □

Taking K  =  idB we obtain

Corollary 1.83 (M aurer-Cartan identities) I f G is a Lie  group, then

dQs  =  sgn(S)|© s  AB 0 s  e  A f(G ,g),

d(a*0s ) =  sgn(S)a*0s  Aw ct, 6 s  G-4f(G,W(0 )).

Lemma 1.29 yields dL = —L A L, dR  = + A A R, and by Lemma 1.25 we get:

Corollary 1.84 For I G No and G < G1(C”), the left and the right differential obey
the following rules:

dL2l+1 = - L 2,+ 2, dR2l+1 = R2l+ 2, dL2l+2 = dR2l+2 = 0,
d(UL2h) = UL2 ,+ \  d ^ U ’ 1 ) = - L 2 l+ lU~\ d(UL2l+1) = d ^ L ^ U - 1 ) =  0.

Thus dw2;+i =  0, =  — A^+ 2 , dp^i+ l = p^+ 2 , dÂ (+2 =  p^+ 2  = 0. (37)
Analogous relations hold for the left and right differentials of any f  : M -+ G.
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1.5 Lie Transformation Groups
Recall the notation of S p and Sg from Lemma 1.30 and f  from (15).

Definition 1.85 By a left, resp., right LIE transformation group of a manifold P
we mean a L1E group G acting on P from the left, resp., right, and this action S :G x
P —> P (where S := L, resp., S := R) is differentiable. Then by Lemma 1.30 all Sg
and S p are differentiable for all g € G, p G P. The function S  will also be called a
LIE group action on P. I f  P is a vector space and the action is linear, we speak of a
representation ofG. The trivial action meansthe natural projection pr P : G x V  —> V.

An action is called effective if Sg =  idp only for g = e. In that case G may
be thought of as a subgroup of Diff(P). An action is called free if (in addition)
Sg (p) = p only for g =  e for all p G P, i. e., if for the pre-images Up€P(^P)- 1 (p) =
{e} holds. Finally, G acts transitively if for all pi,p? G P there exists g G G with
Sg (pi) = p2- In that case, P is called a homogeneous manifold of G.

A tensor field K  G T)(P) is called invariant (under S), if (Sg )*K = K for
all g G G. A vector field X  & D l (P}, resp., a differential form u  G A (P ,V), is
invariant if (Sg)*X = X , resp., S*uj =  w for all g G G. Denote the sets of these by
2?(P)in v , T)'(P]in v , resp., A(P, V)in v .

For any subgroup H < G, we define D(P)n-inv, resp., A(P, V)n-inv to be the
sets of those tensor fields, resp., forms that are invariant under the restriction of S
onto H x P . Especially we will use this notation for Gj-invariant forms, where G\
is the connected component of the neutral element in G.

Via A and p every Lie  group acts freely and transitively on itself, and Ad is a
representation of G on p (resp., the underlying vector space) from the left.

For any action of a group G on a manifold P and all g G G, p G P, we have

Lp o Pg =  LL (9 'p \  resp., Rp o Xg = R r ^ -  (38)
Lp oXg = Lg o L p , resp., Rp o pg = Rg o Rp . (39)

For any vector field X  G D 'fP ), Lemma 1.40 yields that on A(P) ® V:

ix  o S* = S* o i{Sg),x, doS* = S*od, Lx  o S* — L(Sg^ x .

Thus ^4(P)inv and -4(P)inv ® V are subalgebras of A(P), resp., A(P) ® V (when­
ever Ay is defined), with d(.4(P)inv) C -4(P)inv. Analogous statements hold for
A (P )H _inv and ^4(P)//_in v® V, which are modules of A (P ) in v . Obviously >t(P)inv C
-A(P)w-inv and A(P, V)inv C A(P, V)w-inv for any subgroup H < G.

Lem m a 1.86 Any Lie  group action S  defines a Lie  group action S  o g on the
opposite side by (S o g)g := Sg-t for all g EG.

N ote 1.87 If S and S' are two commuting LIE group actions of G on P, i. e., if
Sg (Sh(p)) = Sa(S'(p )) for all g,h  G G and p G P, and if Sg (po) — S'(po) for a
Po € P and all g G G, then at least on the orbit Sg (Po) =  S'g (Po), the two actions S
and S' act from opposite sides.
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Proof. E. g., if S = L, then 5 'ALj(po) =  LiS'gh(po) = LiLg Lh (po) = L tLg S'h (po) =
LiS'h Lg (j>0 ) = LiS'h S'g (po) = S'h Sg Li(po), so S' acts from the right. □

Lem ma 1.88 If S:G  x P —> P is a Lie  group action then S*: G x P r (P) -4 P*(P),
s* o i? : G x A(P, V) -4 A(P, V), S': G x A(P, Hom(T(g), V)) -4 A(P, Hom(7"(g), V))
and S": G x A(P, g) -4 A(P, g) defined by

($*),(*) := ($,)** for all X
(S*orf)g [w) := for all u> eA(P,V),

S'g M  ■■= (Ss -.)*(Ad($,8 n (S ))*)*X for all X  € A(P, Hom(T(g), V)) and

S"(<p) ■■= for all p U ( P .g ) ,

are all representations of G on the same side.

Thus push-outs preserve the side while pullbacks change them.

D efinition 1.89 Let S, S ' be two actions of G on spaces X , resp., X ' on the same
side. A mapping f  : X  —> X ' is called G-equi variant, if

S
G x X  -------------------------- -  X

i d x /  f

S'
G x X '  -------------------------- ► X '

commutes, i. e., if S'(g, /(x )) =  f(S (g ,x f)  for all x € X  and g EG.
If S  is a LIE group action on a manifold P, then — referring to the right ac­

tion Ad* on Hom(T(g), V) — we call the differential form x  € A(P, Hom(T(g), V))
G-equivariant, if x  is invariant under S '. Analogously, ip € A(P, g) will be called G-
equivariant if tp is invariant under S". We denote the sets of these invariant forms
by A(P, Hom(7”(g), V))equiv, resp., A(P, g)equiv They are modules over j4(P)inv.

Thus io 6 A(P, V) (with V  g) is G-equivariant iff it is invariant under S.
Definition 1.89 should be compared to Note 1.87: R and Ad* are actions on the same
sides, while IP and (Ad*)* are commuting representations on A(P, Hom(T(g), V))
on opposite sides. Analogous statements hold for L and (Ad or;)*, resp., L* and
((Ad or/)*)*.

Lem m a 1.90 Let S:G  x P  -4 P be a Lie  group action and L'\ G -4 Gl(IV) be a left
representation. I f <pr 6 A r (P, VK) and X  € A(P, Hom(T(lV), V)) are equivariant in
the sense that Sg '-pr = L'(g~ssn^ ) ^ r and Sg X  =  (^(fl58"̂ 5 ^)*)*^ f o r  9 G, then
X »V r is invariant. E. g., i f  x  A(P, Hom(7"(g), V))equiv and g>r G A(P,g)eqUiv
then x  • <pr is invariant.
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Proof. S;(x • <Pr) = (S;%) • (S*Vr) = X • [(l'($w ’(S ))*)*SjJ<pr ] =  X • where the
first equality follows from Lemma 1.49.1 and the second from 1.49.2 □

The forms ¡pr  and x  are also called pseudotensorial forms of type (£', W), resp.,
of type ((L' o 17)*, Hom(7”(W), V)), cf. Definition 2.46.

If G is compact with Ha a r  measure p we have a projection onto G-equivariant
forms defined in the following way (cf. Note 1.61):

Xequiv : =  I  ( A d ( r S8n(S))’ )* S ;x < W  fo ra llx e 4 (P ,H o m (T (0 ),V)),(4O)
JG

Xequiv := [  A d ^ ^ S f r d ^ g )  for all <pGX(P,0 ). (41)
JG

If G is a L1E transformation group of P then every X  G 0 induces a one-parameter
group of transformations on P by <p(t,p) := S(e t X ,p). Thus Propositions 1.35,
1.38.4, 1.38.6 and 1.39 yield, analogously to Lemma 1.59:

Lem ma 1.91 Let G be a Lie  transformation group of P with LIE group action
S = L, resp., S = R. Every X  G 0 induces Sx  € T>l (P) by (<$x)p := (dSp)e (X), so

(Sx )p ( f)  =  (dS ')e (X )(/) =  A /(S e.x(p))|<=0 for all f  G C ~(P), p G P,
at

[5x. n  =  lira |{ J ' , - ( ( S . . x ) . n )  = Um |{ ( ( $ . - x ) □ > ) , - «  for o i ly  e T>‘(P'I .

7£:0 —> D l (P) and — C:g —> P X(P) are LIE algebra homomorphisms and

[£x ,£ y \ = C[Y,X} = —£ {X X } for all X ,Y  G 0,
(P s -i)*7^x = R,xd(g)x, (Lg)*£x = £-xd(a)x for all g E G, X  G 0.

For the interior product and the LIE differentiation, we get for all X ,Y  G 0:

[■ i 'ix > ^ S y ] ~  s g n ( ‘̂ )^ '5 [x ,y ] ’ l ^ x » ^ !  =

l^ S x ’ ^ y ]  s 6 n ( ‘̂ ) z 5[y,x]’ ^ 5 x  *Sx 0  d A do lsx -

D efinition 1.92 We call a tensor field K , resp., a differential form w 0-invariant if
Lsx K  =  0, resp., Lsx w = 0 for all X  G 0. Analogously, oj will be called horizontal
if isx io = 0 for all X  G 0. Denote their sets by P (P )B_in v , _4(P)B_in v , resp., A(P)h
and let X(P)/iB_inv := ,4(P)g_inv Cl A(P)h.

The notion of “horizontal” forms will become apparent in Section 2.2.

P roposition  1.93 -4(P)g_in v , A(P)h and A{P)hg_mv are graded subalgebras of
A(P) with d(>l(P)g_inv) C .4(P)B_inv and d(>l(P)/i0_inv) C A (P)hB_in v . Analogous
statements hold for A (P )B- m v ® V and Ay, etc.

■A(P)inv ® V C ^4(P)B_inv 0  V = A (P )g i- inv ® V for every vector space V. If G
is connected then A (P ) inv ® V = >l(P)B_inv ® V.

Proof: use Lemma 1.91 and the fact that ix  and Lx are (skew-)derivations of A(P).
The last statements follow from Gi = (exp©), cf. [5, II p. 126]. □
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Lem m a 1.94 S:g —> D ^ P ) induces a G-equivariant C°°(P)-module homomor­
phism S':C°°(P,q ) —> C°°(P)«S(g) C P ^ P )  (with respect to S" and S*J. I f G acts
effectively on P then S  is injective. IfG  acts freely on P then even (dSp )e is injective
for all p G P, thus X  /  0 yields (Sx)p /  0 f o r  P € P; for every basis { E ,¿ ¡ m j
/o rg , {<$£,-}i... ,dimg is then a basis for the free C°°(P)-module C 0o(P)«S(g) and the
induced S ' is an isomorphism of free C°°(P)-modules.

Proof. Assume that G acts effectively. Let X  G g and suppose (<Sx)p(/)  = 0 for
all f  G C°°(P) and all p G P. For p = S(es X ,ff)  this yields ^ /( S e(«+J)x(p'))|t=o =
^ /(S e«x(p'))l<=s =  0 f°r  a ll f  € C°°(P), p' G P  and s G R- Thus S(e t X ,p') = ff for
all p' G P  and t G R, and thus X  = 0 since S  is effective. Analogously for a free
action, one proves injectivity of (dSp )e for all p G P using (Sx)$(e,xiPj =  dSe,x(Sx)P
from Proposition 1.35. But then all Se , are independent over C°°(P), since they are
independent for all p € P. □

Observe that, with respect to Lemma 1.59, we have changed the notation for £
and 1Z, because in general we do not get invariant vector fields on P. Note that on G
itself, where R9 = Aa , the results for R  in Lemma 1.91 (resp., for £ in Lemma 1.59)
yield for all X. Y  G g:

[X, Y] =  (Rx , R y ]. =  lira '-{Y  -  (U ,x ).R y).}  =  Km 1{Y  -  Ad(e - « ) Y }. (42)
l—HJ t *— J

N ote 1.95 Just as Ad: G —> Gl(g) induces the representation ad: g -> gl(g) in (42),
every representation L': G —> G1(V) of a Lie  group G induces a representation I' =
dL'e :g —>• gl(V) such that ¿ 'oexpX  =  el'x  for all X  G g. Thus any (left) linear
action L induces a bilinear mapping I: g x V —> V with /[x.r] =  [ix J r ]  and we obtain
I by

t(X ,v )  = (d£’),(X) = K m |{£(e 'x ,v) -  »} =  lim |{ v  -  £ ( e - x ,v)} (43)

for all X  G g, v G V. Analogous statements hold for right representations R: the
left action R o g  induces a Lie  algebra homomorphism — r1: r[* yj = [ry,rx], where

r(X ,v) =  (d(R o g)v )e( - X )  = lim |{ P (e tX ,v ) - v }  = l im |{ v -  P(e"‘x ,v)}. (44)

From this point of view, 1Z and — £: g —> P J (P) = der C°°(P) are the (infinite
dimensional) representations induced by the Lie  group representations (P*)' and
(£’ o rj)': G —> Aut(C°°(P)). Note that exp o Ad(g) =  Ig oexp yields for s = I, resp.,
s = r, and all g G G, X  G g, v G V the following relations:

s(X ,S(p,v)) = S(5 , 5 (Ad(5
5̂ s ))X,u)), S(g,s(X ,v)) =  s (Ad(5 - s‘"<s >)X,S(5 ,v)).

Identifying L and resp., R and R', we thus get the following lemma:

Lem m a 1.96 Let S:G  —> G1(V) be a representation and s:g X V V be the
induced bilinear map according to Note 1.95. Then for any differentiable f: M G
and forms u? G -4(Af, g) and G >l(Af) ® V,

( S o f ) ' ( U A,<l>) =  [(Ad o / - ‘< ^ ) .  a,] A j ( $ o /).<£], (45)
d [ ( S o / ) . $  =  ( 5 o / ) * ( r e S A ^  + d0). (46)
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Proof. Only (46) still needs to be proved. For S =  L, observe that for all g 6 G,
L o X3 = X'L{g} o L with X'L (g}: G1(V) -> G1(V): A L(g) o A. For X  € D*(M) and
x € M, this yields [d(Lof )]A(x) = dL f [x )odXf ^ { f* Q L )x X x  =  A'£ (/(a ;))oZ/ o (/’0 L )x A'r
with I' from Note 1.95, and thus [d(L o f  )]•</> = { L o f ) »  {f*QL  Ai <t>). Analogous
arguments hold for S = R. □

Generally, for a left representiation L: G —> G1(V) and induced representa­
tion Z:g gl(V) we compute analogously to Proposition 1.93, cf. [5, II p. 128]:

Proposition 1.97 If a differential form x  € A{P)® V is G-equivariant in the sense
that S*x = L{g~ Sgn ŝ ')*x f o r  9 € G> ^ e n

Lsx X =  -sgn(S)Z(X)*x for all X  6  g,

i. e., x is g-equivariant. Forms are g-equivariant iff they are Gi-equivariant, thus
if G is connected, g-equivariance is equivalent to G-equivariance.

We will denote the vector space of g-equivariant forms by Ag_equiv(P) 8  V. It is
a A0-inv(P)-module.

Recall Ls :g x Alt(g, V) —> Alt(g, V) from Proposition 1.79. We will use Ls  also
for the corresponding map Ls -.g x Hom(7”(g),V) —> Hom(7”(g), V), that is defined
in total analogy to (34).

Lemma 1.98 According to Note 1.95, LL , resp., LR  are the bilinear mappings in­
duced by (Ad orf)*, resp., (Ad)*:G x Hom(T(g), V) —> Hom(7"(g), V).

Proof. For X, Et e  g and K £ Alt,(g, V), A d ^ 5 )4* )* A'|,= 0](Ei 8  • • • 8  E t ) =

= ^[K iA die’^ ^ J E j  0  • ■ • 0  Ad(eS8n<s )tX )E s )]|f= o

= s g n ( S ) A '( E 1 0  • • • 0  0  {^-[Ad(et X )EJ ]|<=0} 0  Ej + l  ® ■•■&£,)
j=i

= sgn(S)£  K{Ei ® • • • ® Ej-a 0  [X,E,] 0  Ej+ l  ® ---® E s )
j=i

= (L^Ar)(E1 0 - - - 0 E J )b y (42 )and (34 ). □
Let us now return to the induced, complete vector fields 5%. (16) and (17) yield:

P roposition  1.99 Let w £ A n {P) 0  V, X  £ g  and £>' £ TA(P). Then

d n
SX {U {T>\. . . ,P")) =  [ - ( ( S etx)*u,)|,= o](P? ■ ■ • ,P ”) +  £ u ; ( P ] . . . ,  [5 x ,P ’], • ■ ■,?").

Corollary 1.100 If uj  £ A„(P)0_inv 0  V, then for all X  £ g

5 x M P 1 , - . , P ’‘)) =  ^ W(P 1, . . . , [ 5 x ,P i] , . . . ,P " ) .
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Lemma 1.98 proves the following corollary to Propositions 1.97 and 1.99:

Corollary 1.101 Let y* € A n (P) 8  H om (0 i g, V) be g-equivariant. Then for all
p G P, P* G P ^ P )  and X , Ei G g:

( ^ x x :) (P 1, . . . , P n )(p )(P i® ” - ® P J  =
= { 5 x (x :(P 1, • - -, P n )) -  E x i ( P ‘, . . . .  [5x, P*],. . . ,  P n )}(p)(E! 8  ■ • - 8  E,)

= sgn(S) ¿  Xn(P’> • • • ,P n )(p)(£i 8  • • • 8  Ej-r ® [X, E J  ® Ej+ 1  ® • • • ® Es ).
j=i

Definition 1.102 Let S be a Lie  group action of G on P and wn G A n (P, V). We
define S,u)n G A n _,(P, Alt,(g, V)), i < n, for all V? G P ^ P ) ,  Ek G g and p G P by

[(S X X P 1 , . . . ,  P — XpiKEn.. .» E,) := ^ ( S 1, . . . , S ', P 1, . . . , P " -)(p )  G V,

where S ' := S e ,. Thus S',wn G A n _i(P) ® Alt,(g, V) if  wn  G A n (P) 0  V. For i > n
we put S'9wn = 0.

S'9wn is well-defined: since g is finite dimensional, Alt,(g, V)* = A' 0 8  V" by
Lemma 1.13, so every <p G Alt,(g, V)* may be written as A • • • A E*) 0  vj!
with v'k G V  and N  =  (d7 B). But [((EjA-• •AEi )0v)-o(S;wn )(P 1, . . . ,  P " -’)](p) =

= V [(S X )(P 1 . . .  ,P ’’-)(p)](E 1, . . . ,  E.) =  ^ [ v - o Ww(S i. . .  ,S ‘P * . . .  ,P n-')](p),

so wn G A n (P, V) yields p  o ( S X X P 1, . . . ,  P "” ) G C°°(M) for all (p G Alt,(fl, V)*.
If {Efc} is a base for g, we obtain for w G A n (P) and v G V:

[S;(u>0v)](Pj. . . ,  p ”- )  = . . . ,  5*; P \ . . . , P n - ')0 [(E fclA. • ■ AEfc.) u].

Lem m a 1.103 For all i < n, S*,: A n {P, V) -> A n -i(P, Alt^g, V)) is C°°(Pyiinear.
Forwn G A n (P, V), Xn € An(P, Altj(g, V)) and i + j  < n, we have

S°.^n  = u;n , (Siwn )(p) =  n![(Sp )*wn]e for all p G P, (47)
S*(A*wn ) = (A0)* (S ^ n ) for all A G Hom(V, IV), (48)

= (Ad(s ‘'"is > )* ) .[ s ; (^ n )], thus (49)

s ; ( s ‘x n‘ ) = H s ^ x t  =  <Aa(a “ n ,S |)-).x;. (so)

Let f ' ,J: Alt,+ j(g, V) <—> Alt,(g, Altj(g, Vj) denote the injection defined by

[ f ^ a ^ E i , . . . ,  Ei)(Fu . . ., F J  := a(E 15 . . . ,  Eb  F t , . . . ,  F5) for all a G Alti + j (g, V)

(cf. the canonical isomorphism from Lemma 1.13.1). Then

= ( - i ^ s x s : ^ ) .  (si)
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(50) yields that S,uJn is G-equivariant if wn is invariant under S, thus restriction
of S to Gi x P proves that S\wn is g-equivariant if u>n  is g-invariant.

Theorem 1.104 Let S be a Lie  group action of G on P, S' a representation of
G on V on the same side and co E A n (P ,V) with Ŝ u> = (SjJ*w for all h € G. If
g: M —> G and f : M - > P  are differentiable, then [S o (g, /) ] ’wn =

E 7 i —  S ',.  IT (SM  • 9*ej] = Y .  —  is; • /*(SX)1 • 3-&C-
i=0 t=0 l -

Proof. Let A* E D1 (M) and x € M. Then by (13) [So(g, /)]*a;n (A'1, . . . ,  A’n )(x) =

= wS(9<.)./(«))(- ■ ■ > . .)
= . ‘M ’i + «'(s,- (.) o s/ w ),w w : ,  ■. ■)
= s;<.)»["«.)(■ ■ • .<Mi + • ■ •)]
= Sw’ lE  (?)E

1  i= 0  p g S „ J

= ¿¿s;(z)O { E
• = 0  p £ S „

= E  o {[r(Sia.).  p-eat*1,..., A-")(x)}
:=O

= { E  • IP(s;u.). <reg]} (at  ‘, . . . ,  *-)(*)■

In the third step we used (39) and Definition 1.65, then antisymmetry of w, linearity
of S' and finally Definition 1.43. Now the other equality follows from (25). □

Suppose that under the previous conditions, (Sp )*w is independent of p E P.
Then by (38), (Sp )*u> E An (G, V) is invariant: (Lp )*u> =  resp., (Rp )*u; =

for a K  E Altn (g,V). Moreover, (39) in combination with (31) yields
(S ')0/ i  = Ad(g- s s n S )*R', so for the i = n term in Theorem 1.104 we get from
(47) and Lemma 1.49 (—S := R for S — L, and vice versa):

s'3 •  [F (s?» n ) .  <re£] =  [ni ® ((s ;)o k )] .  g *oG
s  = [(ni ® (Ad o g -  **a S y K ] .  g *eG

s

= n\g*ip~S (K).

The i =  0 term reads S'g • f*w, so for w E Ai(G,g) we obtain

Corollary 1.105 Let L ,R :G  x P —> P be a left, resp., right action of G on P
and f : M —>P and g: M —> G be differentiable; K  E Alti(g.g) be invertible and
w E A i(P,g). Then A'(Adog)A'- 1  E Ao(M, Alt^g.g)) and we have

1. I f (Lp )*w =  ?pR (A') and L*u = K  Ad(c)K- 1  o w for all p E P, c E G, then

[L o (g, /)]*w  = R(Ad Og)K~ l .  ffw  +  5 *V>f i(K).
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2. I f  {Rp }*uj = and R*cu  = K  Ad(c 1)/C 1 ow for all p E P, cG G, then

[Ro(g,f)]*uj = A (Ad or? o g)K~' • f 'w  + g*i/>L (K).

Proof. If K  G Alti(g.g) is invertible, S'g = K  o Ad(p-SK n(s l) o K~*. □
Corollary 1.105 gives a proof for Theorem 1.70 above: put P = G and K  =

Ad(/i), resp., K  = id0 and observe that ( /  • / - 1 )* =  e* =  0, where e: M  —> {e} C G
is the constant map onto the neutral element.

Recall (Siu»n)n-i E ‘ A n -i(P, V) for Ek € g from Definition 1.42. We have

(SlWn)nLi ’£ ‘ =  (l$i o • • • O 15 1 )wn . (52)

Lem ma 1.106 Let S  be a Lie  group action of G on P. For all u>n € A n {P} ® V,
i < n 4- 1 and Ek € g we have {Si(dwn ) — (—l)'</(SiWn)}n+i2E i =

= + w >(s) t  ( s ; - u , . f c F ... - * }
J=1 k k=j+l }

=  - ¿ ( - 1 ) 4 ... B ' — sgn(S) ¿  (S i-’^ f c F ... tE- E ‘)... M .
j=l k k=j+l }

Proof. Since doix + ix od = Lx  and = l [A',y] for all X , y  £ T>l (P), we get by
induction: {S';(</wn ) - ( - l ) , d(Siw„)}f4.'ilfi = - E j= 1 (-l) j(» s .o -■ o£ s ,o - • Oi5 i)wn

t i j-1
=  -  • •°*S °- • -)(i S>Wn)-12(_ 1 )i  Z \ lS>O- • -Oisio- • -O I(5^ ‘]°- • -O*Sl)Wn.

j= l j=l k—1

Interchanging} and k in the last sum and [<SJ , <Sfe] =  sgn(S)S[E^Efc] from Lemma 1.91
yield the first equation. The second is proved analogously. □

If Xn -^n(P) 8  Hom(0s g, V) is g-equivariant, Corollary 1.101 yields

....E i+ '  =  Sgn(S) ¿ ( S T 1* :)* « .... ........[^.E.+ d.....E.+ . >

fc=l

(we again identify Hom(®,+ s  g, V) and Hom(lg)1 g, Hom(®s g, V))). Thus we have:

Corollary 1.107 For all g-equivariant y’ G A n (P') ® Hom(®s g, V) and i < n 4-1,

{ ( S to : ) ]  -  =

= -»»>($)£ e  ( - i m - ' x i f c F ... .............& + i .
j=l k=j+l

Thus for g-invariant ujn , dian =  0 yields d(S»wn ) = 0, too.

Analogously one proves:
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Lem m a 1.108 I f  wn € 4̂n (P) ® V and i < n, then for all X  G D ^ P ) and Ek € 0

-  M S w . ) f t r *  = ¿ ( - W . ’ , (>iw.1" " ) f c  ...*■
j= l

I fX  = S x  with X <E 9, we get [S'.(.S j^ n ) f e . f  =  A

|S;(£ J x u,.) -  =  -  sgn(S) t ( S X ) f l ; £ '.
j=l

Lem m a 1.109 Let x„ 6 -4n (P, Hom(g, V)) and {Et}fc=i,...,dimg ¿e a basis for g.
Then for 0q = £ * T  0* ® E k € A (P , g) and d>p = ¿ £ 7 ’ </>'’ ® E, € A p(P, g),

dimg dimg
Xn •  («. A , < M  =  £  X? A («, A, W  =  V  x f ‘ & l  A 9$ A </„. (53)

j= l k,l=l

Proof. Be [Ek , E;] =  X,j^iB c k i^ j w *th structure constants c{(. Then by Defini­
tion 1.22, 0, AB d>P = E tZ Bi M J, ® [Ek, EJ =  E S * ’ i cj, 0g

fc A <t>p‘ ® E>, thus

dim g dimg dimg <pdim (  , „

X>(Ö,A#^P)=  52 x fJA(0,A0<>py = 52 c ’k i X n 3 ^ ^ ^  52 Xn 1 "  } A e k
q A<t>p

l .
j = l  j ,k , l= l  k ,l= l

where we used Lemma 1.44 and (19). □

P roposition  1.110 Let S  be a LlE group action of G on P, 0q € .4Q(P : g), <j>p G
A p(P. g) and x„ € A n (P) ® Hom(®3 g, V) Q-equivariant. Then for all i <  n + 1
with f. = ( -1 ) ’- 1

{ [« s ix :)  -  ( - l y s i c M X .  •* ’ • } ' • =

= sga(s){ -  (i) i {[(s i‘ "xy i.'iiü 1-<»,]l '‘-«(9,A9«,)}‘

Proof. With the notation of the previous lemma, we evaluate the left side using
Lemma 1.44. Then by Corollary 1.107,

dimg
E  M s ^ : ) - ( - i ) i s : ( « ) } f l ; : ; E ' - * 'A - - A 9 ; .A ^ .A . . .A ^ -  =

h .

= sgn(S) ±  £  (-1 )* > e ’ ( S i - x i Ä i i  'W  ■■■■E ' - A - A ^ * ' A- ■ •
j=l fc=j+ i I1..-A+.
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=  - s g n ( s ) t  ±  ....**....A

j = i  fc=j+i g.....zi 4 ,

A «;■ A • • • e',‘ ■ • • $  ■ • • A flj A e‘‘ A «;• A ■ A ■ • • A $ * •

+ s g n ( S ) E r - >  ¿ ( - i ) ” “ ->  E ' ( s ; - x : f c 5 ’- * * * “ •i - ^ . A

5=1 *=1 *1 <•+•

=  - 3 g n ( S ) t  ±  e - ’»  £  ( s ; - x : ) S i L f ' - iE '.....a “ -A
5=1 fc=5+l li,...^i+ ,_ i

A 0‘q> A - - - A A (0, As  0,)'-* A A • • • A t y - '

+  s g n (S )£ f l->  ¿ ( - l ) . r t ‘-»  £ *  ( S i - x : ) f ; ' i l f ' - ' iE '.....* - A

5=1 fc=l h .....Zi + ,_ i

A e‘q' A • - - A 0 '- ’ A A - ■ • A (0, Afl A • • • A <#+-»,

by (53). Since £  =  (Ï) and £ £ '“■’ =  (¡1 , all follows from Lemma 1.52. □
5 = i* = 5 + i w /  5=1 V ' t

Corollary 1.111 Suppose 0 G A i(P , g) and y ’ G A n (P) ® Sym'(g, V) in Proposi­
tion 1.110, then with f. =  ç(—l) p for all i < n + 1

{ [¿ ( s ix : ) ] '“ ■< «}’ •  a . -  ( - i ) i { [s i(^ x :) ] '“ «  «}* •  =

=  -  sgn(S) © { [ (S T ’x X ? « 1 -»»]■“ -< (fl A, «)} ' .  <t,„

+  s g n (S ) i( ;) ( {[(S ;- , x ;) ” I ; '  ■»«]'■' 1 •< (9 A, ÿ ,)} ' ' o , .

P roof: immediately from Lemma 1.53 and £ £ = 1 €fc-1  =  (i)z - □

D efinition 1.112 Let S  be a LIE group action of G on P. Then for ujn G A n (P, V)
and 0 € A ^ P ,  g) we define

u,n © 0 :=  £  A— ----- ( 5 X )  .  0 G A n (P, V).
1=0 ’ •

Analogously, for f : M  —> P and 6 G A i(M , g), resp., linear A: V —> W  we write

(/* W n) © 0  := £  / * ( S X )  » 0 G A (M , V), resp ,
i=O l -

(A * O © 0  :=  ¿ Ù - ^ ^ A 4 ( S Î u > n ) .0 ] G  A r\P ,W ), etc.

i=o l -

Thus the result from Theorem 1.104 may be written as

[5 0  (5, Z )N n  =  (S ' • f*wn ) © g*e^ . (54)
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T h eo rem  1.113 Let S  be a Lie  group action o f G on P, 0 E ,Ai(P, g), <j>p E
Ap(P,q) and Xn € A n (P) 0  Sym'(g, V) g-equivariant. I f  f. :=  ç ( - l ) p , then

4(x: © e w t] -  i m  © =
= {[(S.xy © «]'“ ■< (d> -  sgn(S) I « A, »)}' .

+(-i)"Q, [<xl © «)'»- ■« w> -  sgn($)s a , m \ - '  .

Proof. By linearity of d and • in its left argument we obtain for the left side

n n+1
E  F F  ■'{[(six'.)“ -« «] • m  -  E  F 2  {[«imi” ■««}•*> =
:=0 i=0

= È F F  «) •  h +(;), Ê  F F ( «  w r «  »]“-■■«
1=0 i=0

n n+1
- E • *> -  E  FFlWx:)]*-« «} • ht=l .=0

by Proposition 1.55. W ith Corollary 1.111 we get

n n+1
E  F F  W S a’ ’. ) “’ -< «1 •  «>. -  E  F 2  « « ’.(-'xO )“’ -> «}•«■ .=
i=0 i=0

= - E  F i r t i lF ’x;)1-2̂ 1 •« fl*» •< (sgn(S) i e a , « » .
t=2

n+1
+(:)< E  F ^ iK F ’x:)'-1“ « a *»-* « (sgn(s)« a , 4 ,,) } .  4>„.

t=l

Finally we put all together and use Si+ 1 Xn =  (— l ) ’^i(^»Xn) fr o m  (51). □
For Xn € ^ n (F )  0  H o m (0 s g. V), the letst term in Theorem 1.113 reads

É ( - l )”+ , , |‘ - , , {[(( x :  © 4  «,]■»-* 4  (d? , -  sgn(S)S A, .  4 r }

as a consequence of Proposition 1.110, cf. (28). In any case we get the following

C oro lla ry  1.114 I f  S  is a Lie  group action of G on P, x„ € ,4n (P)®Hom (® s g, V)
g-equivariant, and 0 E .4 i(P .g), <pp E y4p (P ,g) with d<f>p = sgn(S) 0 AB </>p , then

d[(X ;  © 0) •  d>P] =  [(dx’n) © 0] •  4>P +  { [(5 .x :) © 0]1 *  (¿0 -  sg n (S )p  Ae 0 ) / .  d>p .

Now suppose, 0 is a pullback of an invariant 1-form on G. Then Corollary 1.82,
resp., the M a ü RER-Ca RTAN identities 1.83 give

C oro lla ry  1.115 Let S  be a Lie  group action of G on P, f  : P -> G differentiable,
K  E End(g) and x ’n € -4n(P) ® Hom(® s g, V) g-equivariant.
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1. I f x s
n € An (P) ®Sym'(g,V) and <t>v G >tp (P,g), then

< 4 (x :© /W 0 W P] = [(dx3n )© /V (^ )]^ P
+ ( - i ) B ( ; \  [(Xn e r ^ W Y ' ’- 1 ◄(¿/>P - s g n ( S ) / W O

4 (x ‘ ® r © s w P] =  [ m © r © s ]» ^ P

+(-i)n (;)z [(*» © r e 5)11” * ◄ (^ P -  sgn(s)r©s a 0 ¿ p -

2. Forth 6  >lp(P,g) withd<h = sgn(S)/’V>S (R)A0<?p , e. g. forth  = d(J*d>s (K)),

d[(x:©r^s w )« ^ ]  =
4(x:© r© s w P] = [ m © r © s ] ^ P-

Finally, in the case s =  0, Theorem 1.113 yields
Corollary 1.116 If S  is a Lie  group action of G on P and wn  € >U(P) ® V is
g-invariant, then for all 6 G Ai(P, g)

d(u>n © 0) =  (du;n ) © 0 + [(S.u>n ) © 0]1 ◄ (d0 — |  sgn(S) 0 A0 0).
For any f : P  —> G, K  G End(g), especially K  =  id0 , we thus obtain

d(u>n  © / V ( K ) )  =  (du>n ) © /* 0 S (AO, d(u>n  © f G s ) =  (du>n ) © f*Q s .

In the next chapter we will be interested especially in the case where th =
d& — |sgn(S)fl A0 0. Using Lemma 1.23.3 and 0 A0 (0 A0 0) = 0 from Lemma 1.78
one easily checks that this yields dth =  sgn(S) 0 A0 th- Thus Corollary 1.114 reads

d[(x’„ © V  • fa] = [(¿Xi) © 0] • fa + [(5.x:) © *] • fa-
Now S,Xn € .An-i(P, Hom(g, Hom(®3 g, V))) =  A n -i(P , Hom((g)3+1 g, V)). Since
fa has even degree, only the symmetric part of Hom(®s+ I g, V) counts (e.g., confer
Lemma 1.44). So [(S.x^) © 0] *fa  =  Sym# [(S.x:) © #] »fa = [Sym*(S.x£) © #] •& ,
because © only acts on A(P) and commutes with any operation on Hom(®s+1 g, V).
This leads to the following definition:
Definition 1.117 For x n

s  € A n (P, Hom(®3 g, V)) and any LIE group action S of
G on P , we define

S.v x : := Sym*(S.x;) € A -i(P ,S y m ,+ 1 (g, V)).
Corollary 1.118 If S is a L ie  group action of G on P, x n

s  € An (P)®Hom(<g>s g, V)
g-equivariant, 0 G Ai(P, g) and h  = d0 — |  sgn(S)0 A0 0 G ^ ( P j S), then

4(x: © 0) • fa] = [ m  © 0] • fa+ [(s.vx:) ©#]•&.
Extend the symmetric product V in Sym(g,R) =  S(g’) to Sym(g, V), whenever

a bilinear map tf>: V  x V —> V  is given. Equip A(P) ® Sym(g, V) with the gradation
induced by .A(P), then we obtain from Lemma 1.33.1 and (52):
Lemma 1.119 S f  is a skew-derivation of degree —1 o/X (P)equiv ® Sym(g, Iz ) and
-4(P)®Sym(g, V). E. g. for all a n G >Ln (P)®Sym(g, V) andu  G >4(P)®Sym(g, V),

Sf(otn  Av  w) =  (S fa n ) Av u> + (—l)n a n Av  (S^w).



C h ap te r 2

P rincip les of B undles and
P rin c ip a l B undles

Fiber bundles are generalizations of the direct product of two given topological
spaces. Their concept is crucial for a lot of applications in mathematics and physics,
reaching from differential geometry, topological algebra and Lie  groups to gauge
theories in theoretical physics. As already mentioned in the preface, the definition
of a bundle is analogous to the one of a manifold: we have a bundle atlas consisting
of charts which enable us to describe the bundle locally as a direct product of the
base space and the fiber, while the global structure of the bundle may be more
complicated. In contrast to a global direct product, only one global projection
exists: the one onto the base, whereas projections onto the fiber typically only exist
locally.

2.1 Basic D efinitions
For our purposes, we only consider bundles that consist of C°°-manifolds. The
following definition is due to STEENROD (cf. [8, p. 7]) and POOR (cf. [9, p. 1]):

Definition 2.1 A (fiber) bundle B(M ,F,G ) consists of

1- a C°°-manifold B called the bundle (manifold),

2. a C°°-manifold M called the base (manifold),

3. a C°°-manifold F called the (standard) fiber,

4- a left L ie  group action L:G  x F —> F : if L is effective, G is called the
(structure) group of the bundle,

5. a C°°-projection t t: B -> M of the bundle onto the base,

6. a bundle atlas {(i7a , V>o )}q ga  bundle charts (t/ajV’o), where 11 = {Ua }a eA
is an open cover of M and ^ a -^~ x(Ua ) Ua x F:b>-+ (t t(6), 7ra (i>)) are local
trivializationsfi. e. diffeomorphisms) with local projections tto : 7r- 1 (C7o ) —> F
onto the fiber (we write Ua i ...Qn := Ua i A - • • Q Uan for all € A),

40
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7. a family {gßa - Ua g -> G | a, ß € A, Ua 0 /  0} of differentiable transition func­
tions g0 a , such that =  70Q |{r }x r  holds for all x € Ua 0  0, where
Tpo  = ° = Ua 0  x F -> UQ0 x F .

Two bundles B  and B' will be identified, if they have the same bundle manifold,
base, fiber, group and projection and their bundle atlases are compatible to each
other in the sense that for all x 6 UQ A U0

gß^(x) := (V’ßk-»({«})) ° (^a|»-i({x)))- 1

coincides with the operation of an element of G and the map gß^: Ua OU0  -> G so
obtained is C°°. Briefly, we identify two bundles if the union of the two bundle atlases
is again a bundle atlas. Thus we may regard a fiber bundle to be equipped with a
“maximal” bundle atlas and assume that all Ua in 11 are Euclidean neighborhoods
in M. In view of this maximal atlas, the original bundle atlas is sometimes called a
pre-atlas, but we will not make this distinction.

Definition 2.2 Two bundles B and B' having the same base, fiber and group are
said to be equivalent if there exists a fiber preserving diffeomorphism B —> B' in­
ducing the identity on M .

N ote 2.3 Even in the general case when B, M, F are just topological spaces, many
topological properties of M and F carry over to B: If M and F are HAUSDORFF then
B  is HAUSDORFF, the same holds for (local) compactness, (local) connectedness,
arcwise connectedness and the axioms of countability (first axiom: every point has
a countable basis for its neighborhoods, second axiom: a countable basis for the
topology exists), cf. [8, p. 13]. We also deduce that B is a manifold if M and F are
manifolds and that B is paracompact if M and F are paracompact (cf. Note 1.16).

Recall Definition 1.69. By construction, the transition functions ga 0  obey

ga sluaßy -g0-rlua9y = ga-rlu^ for all a,/3,7 e  A, where Ua0-, 0 (55)

From (55) we easily deduce gaa  = e and ga 0  = (g0 a )~l for all a ,ß  G A.

N ote 2.4 The transition functions ga 0  are crucial for the global structure of the
bundle. If M  with an open cover 11 =  {Ua }a ^A and the fiber F are given then the
ga 0  define the whole bundle up to equivalences (cf. [8, p. 14]):

Theorem  2.5 (Existence theorem ) I f L:G  x F —> F is a left LIE group action,
11 = {1/q }<»€A is an open cover of a manifold M and {ga 0}a,0&A is a family of C a ­
rnaps ga 0 : Ua 0  -> G such that (55) holds, then there exists a bundle B(M , F, G) with
these transition functions gQ 0. Any two such bundles are equivalent.

Well-known examples for bundles are the MOEBIUS band and the KLEIN bottle.
The tangent bundle of a manifold M  consists of all tangent vectors at all points
in M, where M  is the n-dimensional base manifold, R" is the fiber and Gl(Rn ) is
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the group of the bundle. Analogously we have the cotangent bundle that
consists of all cotangent vectors at all points in M. and its dual T*(M) are
vector bundles: the fiber is a (finite dimensional) vector space and the group action
is linear. Given two vector bundles E,(M, V, G1(V)), i = 1,2, one can define the
tensor product bundle (Ej ® E2)(M, Vi ® V2 ,G1(Vi ® V2 )) and the homomorphism
bundle Hom(Ei, E2)(M,Hom(Vi, V2),Gl(Hom(Vi, V2))) =  Ej ® E2 in a natural way.
(Ei © E2)(Af, Vi © V2 , Gl(Vi © V2 )) is called the WHITNEY sum of Ei and E2 .

One also has algebra bundles, where the fiber is an algebra and G consists of
algebra isomorphisms. Examples are the tensor algebra bundle 0  E(Af, 0  V, G) and
the exterior algebra bundle f\V ,G ), cf. [9, pp. 23 -  24].

D efinition 2.6 (Cross-)sections are C°°-maps a: M  B :x  >-> <t (i ) G 7r- 1 ({z}).
Thus it  o a =  id,w. Their set is denoted byVB.

Normally only local sections exist: we have tra<y: Ua  ir~1(Ua '):x ^ “ '(i,! /)
fixing y £ F, but for vector bundles global sections always exist, e. g. the “zero
section.” The sections of T(M ), resp., T'(Af) are exactly the vector fields, resp.,
the 1-forms on M. That D1(Af) and Di(Af) are C°°(Af)-modules also follows from:

Lem m a 2.7 If E is a vector bundle over M then PE  is a -module. For
f  G a G TE and x G UQ we have V’a [(/<r)(x)] = (x, f(x)ira (a(x)).

D efinition 2.8 The trivial bundle or product bundle M x F is the direct product
of the two manifolds with natural projection prw : M  x F —> M , H = {M } and trivial
group G = {idf-}.

For any finite dimensional V, the C°°(Af )-module V) = contains
the sections of AT*(Af) ® (M x V) =  Hom(AT(M), M  x V).

Whenever the group of the bundle consists of the identity alone, then the bundle
is equivalent to a trivial bundle (cf. [8, p. 16]). We will also say that a bundle with
group G is equivalent to the trivial bundle, if it is equivalent to a bundle with this
group G such that for this bundle all gap =  e.

Analogously, if H < G, we say that the group G of a bundle B can be reduced
to H, if B is equivalent to a bundle, where all gap take their values in H.

Let B i(M i,Fi,G ) be a fiber bundle and F2 be a submanifold of Fp Suppose
G may be reduced to a subgroup H where F2 is invariant under H: there exists
A' C A such that H' = {Ua }a eA' covers Mi and for all a,/3 in A' with Ua p /  0, gap
maps into H. Then f a l ({x} x F2) -  4>p\{x] x F2) for all a, (3 G A! and x G Ua p-
Let B2 C Bi denote the union of all subspaces 0 “ '({ i}  x F2) for all a G A' and
x  6 Af2 , where Af2 is a submanifold of Mi- Then B2 is a submanifold of B\ and the
functions V’a 1 |(i/onM2)xF2 determine a bundle structure for B2 with fiber F2 , base Af2
and restricted bundle charts. If H does not act effectively on F2 , the group of B2 is
a factor group H' of G (cf. [8, p. 24] versus [9, p. 6]).

Definition 2.9 B2 (Af2 , F2 , H') is called a subbundle of Bi(Mi, F\,G).



2.1. BASIC DEFINITIONS 43

Some examples: For every submanifold Mz of M, [it~1{M')](M l , F,G) is a sub­
bundle of B^M, F, G); it is equivalent to the trivial bundle if M' = U £ 11.

Consider the projection it : B -> M  and recall Definition 1.26: since it is not a dif-
feomorphism, a map itir:'D1(B) -> P*(Af) is not defined, yet it induces a mapping of
the tangent bundles dit:T(B) -> T (M ). We may reduce the group of T(B) to those
tangent space isomorphisms induced by (fiber preserving) bundle diffeomorphisms.
Then

V(B) := (ifrr)-1 (0) =  (J  kerd^  =: (J  Vt (B) G T(B)
b£B !>6jB

defines a subbundle of T(B) consisting of all vectors tangent to the fiber. This
subbundle is called the vertical bundle V(B), its sections are named vertical vector
fields, their set is denoted by uD^B). This, in turn, defines a subbundle V(B)X

of T*(B) consisting of all covectors cotangent to the base. Finally this defines
A V(B)X ® (Af x V) as a subbundle of AT*(B)® (M x V) for any finite dimensional
vector space V. Its sections are called horizontal V-valued forms on B, and their
set is denoted by A (B , V)h.

Definition 2.10 By a principal bundle P(Af, G) we mean a bundle, where G — F
acting on itself by left multiplication. In addition we have a free fiber preserving
right LIE group action R:G  x P —> P defined by

R(g,p) := V’a 1(7r(p),’Ta(p) • i?) for all p e P , g e G ,  where ?r(p) € Ua ,

which is independent of the choice of a since left and right multiplication commute.

Given any bundle B(Af, F, G) one can construct the associated principal bundle P
by taking M  = U q 6 4  Ua , the structure group G and the maps ga p but choosing G
as fiber (cf. Note 2.4). E. g., the principal bundle associated with the tangent
bundle T(Af)(Af, Rn , Gl(Rn )) is the so-called frame bundle with Gl(Rn ) as
fiber. Its sections differentiably associate with any point x € M  a basis for the
tangent space TX(M).

As another example for principal bundles, take G =  S1 = R /Z  and choose
M — S2 with cover £1 = {[/+,{/_}, where f/+  and U- cover the northern, resp.,
southern hemisphere and the intersection U+ -  is a ring S*x]—e, e[. We define
g~+,g+-:U+- —> G by g_+ — —g+-  := m • prS i with m 6 Z. Together with
g++ = g—  =  0, these functions ga p obey (55) and thus define a unique (up to
equivalences) principal bundle Pm (S ^S 1). One can show ([1], [2]) that the bun­
dles Pm and P_m are isomorphic (via reflecting S2 at its equator) and that

Po =  S2 x S 1, Pi =  S3 , Pm  = S3/Z |m | for m > 1, (56)

with the finite subgroups Z|m | of S1, which itself is a closed subgroup of S3 =  SU2-
The quotient map 7r:S3 —> S2 =  S3/S ’ is known as the HOPF fibering of the S3 .

Definition 2.11 Two bundles having the same base and group are said to be asso­
ciated bundles if their associated principal bundles are equivalent.
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Lemma 2.12 Any bundle and its associated principal bundle are associated. Equiv­
alent bundles are associated. In addition, if two associated bundles have the same
fiber and the same action of the group on the fiber, then they are equivalent. Being
associated is an equivalence relation on the set of all fiber bundles.

Proof: [8, p. 43] □
Instead of defining general bundles first and then specifying to principal bundles,

we can also start with the latter. [6, p. 50] gives the following equivalent definition:

Definition 2.13 A principal bundle P(M, G) consists of

1. a C°°-manifold P called the bundle (manifold),

2. a C°°-manifold M called the base (manifold),

3. a Lie  transformation group G called the group of the bundle, acting on P
from the right, such that this action R:G x P  —> P is free, M is the quotient
manifold P/G and the canonical projection it: P —> M is C°°,

4- a bundle atlas {(Ua , i]>a)}atA with bundle charts (Uo , V>Q), where 11 =  {Ua }a e4
¿s an open cover of M and ^ a :iT~l {UQ} —> Ua x G:p i-> (?r(p), 7rQ(p)) are local
trivializations (i. e. diffeomorphisms) with local projections 7ro :7r- 1 (Uo ) —> G
onto the group satisfying 7ro (R(g,p)) =  7ra (p) • g for all p € P, g 6 G.

For all x € Ua 0  0 and p 6 rr" 1 ({x}), we have 3po (x) =  ^ (p )  • 7ra (p)- l
? since

M ^ S iP ) )  ■ *a(R(g, p))- 1  =  M p ) • 7TQ(p)- 1  for all g EG.

Lemma 2.14 IfU a 0  /  0 and ao g , a0 h denote local sections on Ua , resp., Up then

(h~i gS ag,aB th\ua^  for all g , h t G ,
thus aa ,e \ua? = E o ( ^ 0 ,a 3 ,el[/0/9).

Proof. For x G Ua 0  and g,h  G G, cto ,9(x ) =  ^ - ‘(x,^) =  g) =
^ 0 \ x ,g 0 a (x)g) = ^ 0 \x ,h h ~ l g0 a (x)g) = R(h~xg0 a {x)g,(r0 ,h (x)). □

Definition 2.15 The trivial principal bundle M x G  is the product m anifoldM xG
with projection p rW) 11 = {M } and Rg (x,h) := (x,hg) for all x € M and g,h e G .

Proposition 2.16 Let G be a LIE group and H a closed subgroup of G. Then H
acts on G on the right by multiplication and G(G/H, H) is a principal bundle.

Proof: [6, p. 55] □
The following definition of associated bundles is also due to [6, p. 54]:
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Definition 2.17 Let be a principal bundle and L.G  x F —> F be a left
LIE group action of G on a manifold F. We define a free right LIE group action R
of G on the product manifold P x F as follows:

Rg (p ,f)  ■■= (Rg (p),Lg- ^ f ) )  for all p t P J t F , g E G .

The quotient space P Xq  F by this action R can be endowed with a differentiable
structure such that t t: P x q F M , which is induced by 7roprP : P x F  M , becomes
C°°. We call P Xq  F the fiber bundle with fiber F associated with P. If (Ua ,^ a )
is a bundle chart for P and p € 7r- l (i/a ), then (Ua ,t fa ), where 0 o ((p, f)G) :=
(t t(p), ¿(tto (p ), /) )  for all f  € F , is a bundle chart for the associated bundle P Xq F.

Both definitions of associated bundles are equivalent: for any bundle B(M, F, G)
with associated principal bundle P(M, G), we have B(M, F, G) =  P(M, G) Xq F.
We will denote the canonical projection by if: P x F —> B. Definition 2.17 yields:

ir o i  =  7r o prp , 7ro o if =  L o (7ra  o prP , prp ). (57)

Lemma 2.18 If B = P  x q  F is associated with the principal bundle P^MyG) then
(P x F)(B ,G ) is a principal bundle over B with right action R, cover t t~*11 of B
and local trivializations

t a : * - \U o ) x F ^ n ~ l (Uo ) x G  :

so x G -> ir~l (Ua ) x F  : (h,p) -> W>?(*(b),g), ¿ (s ’ 1, ̂ (6 ))).

The following diagram commutes for every g € G:

Let P(M, G) be a principal bundle and H a closed subgroup of G. In a natural
way, G acts on G/ H on the left and H acts on P on the right. So the associated
bundle P x G  (G /H) and the quotient space P /H are well-defined and the following
propositions hold ([6, p. 57]):

Proposition  2.19 For every closed H < G and any principal bundle P(M,G),
we can identify P x G (G /H) with P /H  by mapping every element {p^gH^G into
Rg(p)H. Thus P /H  is a manifold and P(M ,G) is a principal bundle P(P /H ,H )
over P !H with group H and canonical projection t t: P  P /H .
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P roposition  2.20 The structure group G of P(M,G) is reducible to a closed sub­
group H iff PIH  =  P x g  (G/H) admits a cross-section a: M P /H .

Taking H = {e} we get the following corollary (cf. [8, p. 36]):

Corollary 2.21 (Cross-section theorem ) A principal bundle P(M ,G) is equiv­
alent to the product bundle M  x G iff it admits a cross-section.

Since associated bundles have the same transition functions, one deduces:

Corollary 2.22 A bundle B(M , F,G) is equivalent to the product bundle M x F iff
the associated principal bundle P(M,G) admits a section. The group of B(M, F,G)
is reducible to a closed subgroup H iff a section a: M P/ H exists.

Thus in order to decide whether a given bundle is trivial or not one can construct
the associated principal bundle and look for sections there.

P roposition  2.23 Every bundle B(M, Rm ,G), m  6 No, over a paracompact base
manifold M admits a section.

Proof, using the axiom of choice: [6, pp. 58 -  59]. □
Every Lie  group G that consists of a finite number of connected components

— i. e., G/Gi is finite, — is diffeomorphic to a direct product K  x m € No,
where K  is a maximal compact subgroup of G, cf. HOCHSCHILD, [10, p. 180]. If G is
compact then m =  0, if G is connected then K  is connected, too. Now the following
theorem is an immediate consequence of Corollary 2.22 and Proposition 2.23:

T heorem  2.24 Let B(M, F,G) be a bundle over a paracompact manifold M. If
G/Gi is finite then G is reducible to a maximal compact subgroup K .

Corollary 2.25 Every bundle B(M, F, G) over a paracompact manifold M is equiv­
alent to a trivial bundle if G = Rm , m € No-

As we have seen, triviality of a bundle B(M, F, G) only depends on the triviality
of the associated principal bundle P(Af, G), and we have found a criterion that
depends on G. It is only natural to ask for another criterion that depends on the
base manifold M. To this end, we recall the definition of a homotopy:

Definition 2.26 Two (C°°-)maps fa: M —> N, i =  1,2, between manifolds M and
N are said to be homotopic: fa ~  / 2 , if a (C°°-)map F: M x [0,1] —> N, called
homotopy, exists such that

F(x,0) = /i(x ), F(x ,1) = / 2(i ) for all x € AL.

M and N  are said to be of the same homotopy type, if f:  M —> N and g: N  —> M
exist with go f  ~  id.v and f  o g ~  idjy. M is called contractible if it is of the same
homotopy type as a single point. In that case, id^f is homotopic to a constant map.
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Definition 2.27 Be B(N ,F ,G ) a fiber bundle and f : M  N  differentiable. Then
the pullback bundle or induced bundle (f*B)(M ,F ,G ) is defined by

f*B  = {(x,&) e  M  x B|t t(6) = f(x )}  C M  x B

with induced projection prM \f*B: f* B  —> M and fiber F. If {(Ua , ¡l>a )}a eA is
a bundle atlas for B then is a bundle atlas for f*B , where
tb'a (x,b) := (x ,7to (6)) for all x € M, b € B .

Thus the following diagram commutes:

P f M 7T

f
M -------------------------- - N.

Lemma 2.28 Let f : M  —> N  be differentiable and B and B' be bundles over N.

1. If B andB' are equivalent, resp., associated, then f*B  and f*B ' are equivalent,
resp., associated.

2. If B is a principal bundle, so also is f*B . R'-.G x f*B  —> f 'B  defined by
R'g (x,b) := (x, Rg (b)) is the induced free right action on f*B .

3- If B, B' are vector bundles, resp., algebra bundles, so are f* B  and f*B ' and
we have f*(B  © B') = f*B  ffi f*B ', f* (B  ® B') =  f*B  ® f*B ', etc.

4- If cr: N  B is a section of B then f*a  = a o f  is a section of f*B .

5. If M = N and f  = idjif, then B and f*B  are equivalent.

6. I f f  is constant, then f*B  is equivalent to a trivial bundle.

7. If g: P —> M is differentiable, then ( f  o g)r B = g*f*B.

E. g., if B(M ,F,G ) with projection n: B —> M  is associated with the principal
bundle F(M, (?) then ir*P according to Lemma 2.28.2 is equivalent to the principal
bundle from Lemma 2.18. Now the following theorem holds ([8, p. 53]):

Theorem 2.29 Let B (N ,F ,G ) be a bundle and M a paracompact manifold. If
fi- M  —> TV, i =  1,2, are homotopic C°°-maps then f fB  and f^ B  are equivalent.

Corollary 2.30 Every bundle over a contractible, paracompact base manifold is
equivalent to a trivial bundle.

Proof: immediate from idw ~  c, with constant c, and Lemma 2.28.3 and 2.28.4. □
We close this section with the notion of the square of a bundle ([8, p. 49]).
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Definition 2.31 The square of a bundle B(M , F,G) is defined to be the pullback
bundle ir*B = {(£>, b') € B  x B |t t(6) =  with base B, fiber F and group G. The
square of B  admits a natural cross-section f :B -+  ir*B, f(b) = (&, b).

If B = P is a principal bundle then t t’P =  P x G by the Cross-section theorem.
The trivialization ifi't ir*P —> P  x G is given by V’/ - 1 (p,p) =  (p; R(iLP))-

2.2 Connections on Principal Bundles
Every bundle chart for a fiber bundle B also induces a local trivialization of the
tangent bundle of the given bundle: every tangent space splits into the direct product
of a horizontal and a vertical subspace: 7f>(B) = Hb(B) © Vb(B). Only the latter,
consisting of all vectors tangential to the fiber, is given naturally and thus globally,
as we have shown. Fixing global horizontal subspaces requires a new structure — a
connection—  on the bundle. Yet before we define connections on principal bundles,
let us give the notion of fundamental vector fields.

Lem m a 2.32 If R means the right LIE group action on a principal bundle P{M,G}
and g =  L(G), then (dRp )e :g —> Vp(P) is a linear isomorphism for all p € P
and every X  € g induces a vector field R x  € vD ^P) by (Rx)p •= (dR?)e(X).
R- g —> D 1(P) is an injective LIE algebra homomorphism with

= R[x ,y ], (Rg-i)*R x  = ^Ad(g)x, for all g G G, X ,Y G g ,
[7£x,y] =  lm g|{y-((R e«x)*y)}  fora ll y  G D ’iP ), N e g .

( R x W )  = lim |{ /(R (e t X ,p)) -  /(p)} for all f  € C°°(P), p € P, X  € g.

R  induces a isomorphism R': C°°(P,q ) —> vD ^P) of C°°(P)-modules; for every ba­
sis {E,}i= i...dimp/org, {R-Ei }«=i,...,dim a is a basis for the free C°°(P')-modulev'Dl (P').

Proof. Since n o R p = ?r(p): G M is constant for all p € P, one has dir odRp = 0.
So (dRp )e maps into Vp(P). Anything else follows from Lemmas 1.91 and 1.94: just
observe that for every p £ P a (EUCLIDEAN) open neighborhood W  exists such that
vD^lV) and C°°(W)R(g)|w C vT>l (W) are both free modules of the same rank.
Thus they are equal and we get v'D1{P) = C°°(P)R(g) = R ’(C°°(P) ® g). □

Definition 2.33 R x  is called the fundamental vector field corresponding to X  € g.

Definition 2.34 A connection T on P(M,G) associates with every p E P a hori­
zontal subspace Hp (P) < Tp (P) such that

1. Tp(P) = Vp (P) ® Rp(P) with pointwise projections vp :Tp(P) —> Vp (P) and
hp:Tp(P) -> Hp (P);
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2. vertical and horizontal projections v, h of vector fields exist with:

v :P 1(P )-> v © 1(P) =  v (P 1( P ) ) C P 1(P) : X  vX , (vX)p := vpX p

h:V l (P) -> hV l (P) := h (V \P ))  Ç D \P )  : X  hX, (hX)p := hpX p-

3. (R g^H ^P ) = Hr m (P) for a l l p e P , g e  G.

~f(P(M,G)) denotes the set of all connections on P(M ,G).

We also have (Rg )i,Vp (P) = VR(g ,p)(.P), so instead of 3. we could as well require
that v, h commute with all (R9 )*:

v o (Rg)* = (Rg )t  o v, h o (P 9 )„ =  (R9)* o h, for all g 6 G.

Lemma 2.35 For every X  E g and all y  G /iD ^P) we have € liD ^P).
If y  is invariant, resp., g-invariant then [R.X:J'] = 0.

Proof. By definition of a connection, (Re.x ),y  G hD ^P ) for all y  G /iD1 (P) and
all t G R. Thus [Rx, T1] € h P 1(P) by Lemma 2.32. For the second statement, recall
Definition 1.92 and LR x y  =  [R xi^] from Proposition 1.38.4 □

In the language of vector bundles, Definition 2.34 is equivalent to ([9, p. 276]):

Definition 2.36 A connection T on a principal bundle is a vector subbundle H(P')
o fT(P ) such that

1. H(P) is complementary to the vertical bundle: T(P) = H(P) ® V(P),

2. H(P) is homogeneous: (R g^H ^P ) = Hr (9,p)(P) for all p £  P, g £  G.

H(P) is called the horizontal bundle, /iP l (P) contains its sections, the horizontal
vector fields. Thus the C x (P)-moduleV l (P) splits in toV l (P) = hD l (P )® vV \P ).

Definition 2.37 Every connection T defines a connection 1-form u r  G A (P ,0 ) by

a>r (X)(p) =  cur (vX)(p) =  (dRp y \ v pX p ) for all X  G P*(P).

wr  is well-defined: we havewr  =  R ,~1ov. Obviously wr o/i = 0 and = 0 L

for all p G P, since for X  G D l (G) and g G G, ](RP)*wr (Âf)](g) = ^ ( g p )[(dR”)gXg] =
^ ( 9 ,P) [ ( ^ (ff’p ))e(dAs - t )9A’ff)] = (dXg-t )gXg = (OL (*)](g) by (38). Define

A (P(A f,G )) := |u>G A (P ,g )

Then one quickly verifies using Lemma 2.32 and the homogenity of H^P):

Proposition 2.38 ( f  wr ): 7 (P(.W, G)) -> A^(P(M ,G )) is bijective.

l o o R! =  idcoo(p 0) and
= Ad(g- 1 )*u; for all g G G
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For the inverse mapping, define T by its projections:

v := R ' o id, h := idpi(p) —R ' o a> for all € A^(P(M , G)).

Then v o v = v and v o (P s )* = R ' o Ad(g- 1 ) o u  =  (Rs )* ° TL' o u  = (Rg )+ o v.
So every u> 6 A-,(P(M, G)) defines a connection T with o^/iD ^P)) = 0, and then
u> =  oA Proposition 1.97 yields for every w € A ï (P(Af, G)) and X  Ç. g:

Lr x w  = -  ad(X)^j, i-nx tjü = X.

There are several ways how connections on principal bundles induce connections
on other principal bundles. We only state (cf. [6, p. 81]):

P roposition  2.39 Let f:P '(M ',G ) —> P(Af, G) be a G-equivariant mapping of
principal bundles, i. e., f  o R'g = Rg o f  for all g € G (recall Definition 1.89/
then f*üü G A-,(P'(M ',G)) for all u> G Ay(P(M, G)), thus every connection I  on P
induces a unique connection T' =  f*V on P', such that f„ maps horizontal subspaces
o fV  into horizontal subspaces ofV. In particular:

1. I f f:  M' —> M is differentiable, then every connection on P(M ,G) induces a
connection on the pullback bundle f*P(M'G).

2. Let U be open in M and ¿:t t - 1 (U) -> P(M, G) denote the embedding. Then
i*uo G A^(ir~l (LTf) for all a> G -4^(P( Ai, G)). Thus every connection T on P
induces a connection fj[/ on ~- 1 (U).

3. Let f  :P(M ,G ) —» P'(Af',G) be a G-equivariant diffeomorphism of principal
bundles, then every connection V on P induces a connection T-̂  on P' since

o>G >L,(P(M, G)) <=> ( / - ‘fw G

Definition 2.40 For any connection T G 7(P(AL, G)), we denote the set of all
horizontal G-invariant vector fields by Dr (P(M ,Gf) := hT)l (P)in v , i. e.,

L f(P(M ,G ))-.=  { y z 'D l ( P ) \ y  = h y  and (Rg \ y  = y  for all g (=G}.

Recall [Kx.y] =  0 for all y  G ^ ( A f C ) )  and X  G g from Lemma 2.35.
Dr (P) is a C°°(Af )-module, where scalar multiplication with f  G is under­
stood to be multiplication with ir*f, since R*g o t t * =  7r* for all g G G. This module
is isomorphic to as the following proposition shows (cf. [6, p. 65]):

P roposition 2.41 IzP ^A f) —> Dr (P(Af, G)), where LX  G hT^ÇP) is uniquely
defined by dnp (LX )p = X T(P) for all p G P, is an isomorphism of C°°(M)-modules.

=  h[LAf,Ly] for all X , y  G D^Af). We call LX  the (horizontal) lift of X ,
with inverse morphism 7r* and Lp:T ^ p)(M) —> Hp (P) denotes the local inverse of
the differential dirp .
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Thus every connection T defines a C°°(M )-isomorphism Lr : 7?1 ( A/) —> A.23*1 (P ) in v .
Remember that 7 (P(AL, G)) and A >(P(Af, G)) are in bijective correspondence by
Proposition 2.38: does such a bijection exist for connections and lifts, too? To be
precise: does every L E Homc< „(m ) ( P ‘(M ),© 1 (P ) inv ) with 7r*oL =  idpi(Af) uniquely
define a connection on P  such that L maps onto hT>l (P )m v? This is indeed true: for
all p 6 P, L defines horizontal subspaces Hp (P) :=  (LTr (pj(M ))p complementary
to Vp(P) and homogeneous with regard to (Ra )*. Thus the horizontal projection is
given by h := [Lit *], where [Ltt*]:P 1(P ) —> P*(P) is defined by [Ltt,]p  := Lpd rp .
Obviously h is pointwise well-defined and commutes with all (R3 )*. We only have
to look for differentiability. But this holds, because it holds locally on every bundle
chart where we can trivialize our bundle. This proves:

P ro p o s itio n  2.42 The mapping that assigns a lift to every connection T on P:

(T L r ) :7 (P (M ,G )) -> {L E HomC oo(M )(P 1 (A f),P 1 (P ) in v)|7r* o L =  ido . (M )}

is bijective. For the inverse mapping, h := [Ltt*], and the connection 1-form u;r  is

o>r  =  n '~ l  o v  =  (idpi( P )  -  [Lt t*]) =  R '- 1  -

D efin ition  2.43 For any connection T E 7 (P(M , G)) and any E A 3(P, V),
•s > 0, where V  is a vector space, we define horizontal and vertical projections wt h,
resp., w ,v € A 3(P, V) by

u)s h {X l , . . . ,  X*} := uja ( f i X \ . . . , h X s ), for all

:= l j , ( v X \ . . . , v X s ), for all A* E P ^ P ) .

A(P,V)fi C A(P, V) and A (P ,V )v  C A (P ,V ) (with A o(P ,V )h  := A o(P ,V )v :=
Ao(P, V) =  C°°(P, V )) denote the C°°(P)-submodules of A(P , V) that contain these
horizontal, resp., vertical V-valued forms.

The following lemma justifies our previous Definition 1.92 of horizontal forms:

L em m a 2.44 cj E -4(P, V) is horizontal iff in x w = 0 for all X  E 0.

P roof. Since hTZx = 0, one implication is obvious. So suppose w E A S(P, V), s > 0
(for u  E Ao(P, V) there is nothing to prove), and in x w = 0 for all X  E 0- Then
for p E P , X ' E P * (P ) and any wr : wp hp ( . . . ,  X l

p , . . . )  = u p ( . . . ,X 'p -  vp X £ ,...)  =
w p(- . . ,  X'p -  • • •) =  w p(- • • > • - •) by multilinearity of u?p . □

L em m a 2.45 I f  T E 7 (P (M , G)) then A ^ P ,  V) =  A (P , V)h  © A i(P, V )v and

1. the projections o f forms commute with A^r for a  E A (P )  ® V, /3 E A (P) ® W

( a  A *  fi)h = ah  A $  fih, ( a  A d  3)v = av  A ^  fiv;
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2. h and v commute with •, ◄ and ►: e. g. for x  € -4(P,Hom(T(VU),Z)),
</>’ € A r (P) ® Hom(<g)’ V, W)

(X • <̂ r)/ l =  xh • <i>rh, (x • </>r)U =  XV •

3. h and v commute with the right action on P:

R*g o h = ho R'g, R*g o v = v o R*g , for all g € G, and thus
Lt zx  oh  = ho Lnx , Lnx  o v = v o Lnx , for all X  E g.

Definition 2.46 Let P(M ,G) be a principal bundle and L:G x V —> V a (left)
representation of G on a vector space V . Then a pseudotensorial form of type (L, V)
is a V-valued form w E A(P) ® V such that

R*gu  = (L3- i )*w for all g E G .

If uo is horizontal, it is called a tensorial form of type (L, V). Let A p (P, L ,V ) and
A T (P, L, V) denote the sets of pseudotensorial, resp., tensorial forms of type (L,V).
For V = g, we put Ap (P,g) := A p (P, Ad,g) and A T (P, g) := A T (P, Ad. g).

A p (P, L, V) and A T (P, L,V) are C°°(M)-modules in the above sense. If Lq is
the trivial representation of G on V , then a tensorial form of type (Lo, V) is just a
pullback 7r*<p with p E A{M) V . Let E(M, V, G) be the vector bundle associated
with P with left action L. A tensorial r-form p  of type (L, V) may be regarded as
an alternating G°°(Af)-linear map <p:Dr (Af) —> TE  uniquely defined by

v(A’1 , . . . ,A ’r )o7T =  7ro(idp,<p(Ut1,...,L A r r )). (58)

In particular, a tensorial 0-form of type (L, V), i. e., map f  : P —̂ V  with /(R s (p)) =
Lff-i(/(p)), can be identified with a cross-section f  : M —> E, cf. [6, pp. 75 -  76].

Recall that in the sense of Section 1.5, pseudotensorial forms of type (L, V) are
exactly the G-equivariant forms in A(P)® V with regard to R and L; tensorial forms
are those where in addition, in x w =  0 for all X  E g. For the induced representation I
according to Note 1.95, we have

Ltcx u; = for all X  E g

and all pseudotensorial forms u>, cf. Propositions 1.93 and 1.97.

Lemma 2.47 1. The definitions of A(P, V)h, A p (P, L, V) and A T (P, L, V) are
independent of T E q(P(M, G));

2. A -,(P(M ,G ))C  A f(P ,g);

3. A T (P ,L ,V ) = A p (P ,L ,V)h;

4- d(Ap (P, L, V)) C Af+ 1 (P, L, V).
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Lemma 2.48 A p (P ,L ,V ) = A T (P ,L ,V ) for all (L ,V ) iff S  = {0}, i. e., iff G is
discrete; in that case A (P fm v ® V = A(M ) ® V = A^P/G) ® V.

Proof. For 0 / X  G g, we have 0 /  TZx € ©’(P). Take its dual px € >li(P)
(cf. Lemma 1.4). Then u  px ® X  G .4i(P,g) with uh  =  0. On the other
hand, if g =  {0} then every u  E A(P, V) is horizontal according to Lemma 2.44
and Lemma 2.47.3 applies. Finally A (P )m v  <3 V = A p (P, Lq,V) = A T (P, Lq,V) =
A(M ) ® V. □

Definition 2.49 For any connection T G 7(P(M , G)) and vector space V , the exte­
rior covariant differentiation dr : A (P )® V  —> A (P )h® V  is defined by dr ip := (dip)h.

Lemmas 1.25 and 2.45 and Corollary 1.56 prove:

Lemma 2.50 For any connection T € 7(P(Af, G)) and p ,q ,r,s  G No, w e  have

1. dr  o R*g = R*g o dr  for all g ^ G ,  thus dr (A p (P, L, V)) C A f+ l(P, L, V);

2. dr  o 7r* = 7r* o d (with d on A(M ) ® V);

3. for all a r G <4r (P) ® V , (3 G >l(P) ® IV and bilinear <fi. V  x W —> Z,

dr (a r A, /?) =  (dr a r ) Ad  0h  +  ( - l ) r a/i A, (dr £),

analogous statements hold for A, Av, etc.;

4- for all Xr € -Ar (P) ® Hom(®s W, Z) and <fqp G A P(M) ® Hom(®’ V, W ),

5=0

Corollary 2.51 If a bilinear <f:VxV —> V, resp., the induced linear <f':V®V —> V is
G-equivariant in the sense that for a left representation L: G xV  —> V and all g G G,
v,w £ V, 0(L(^,v),L(g,w)) = <j>'(L(g, v ® w)) = L(g,<j>'(v ® IV)) =  L(g,<p(v,w))
holds, then dr  is a skew-derivation of A T (P, L ,V ) with regard to A<$ of degree 1.
Examples are A(P.g') with regard to Ag and A(P, Lq, V) with regard to any Av-

Lemma 1.90 yields:

Lemma 2.52 Let L*: Hom(7- (IV), V) —> Hom(T(W), V) be the representation that
is induced by a left representation L:G x W  —> W , i. e., (L*)g := (Lg )* for all
g EG. Then

•: A p (P, L*, Hom(T(lV), V)) x A p (JP, L, W ) -> A p (P, Lo , V) for all r G No and
•:X T (P,L*,Hom(T(lV),V)) x A p (P ,L ,W ) -> A r (P, Lo , V) = ^ A (M )  ® V.

Definition 2.53 Qr  := dr u r  G ^2 (P,g) is called curvature 2-form for T.
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Lemma 2.54 Let f: P '(M ',G ) —> P(M ,G) be a G-equivariant mapping of principal
bundles, let T € -y(P(Af, G)) and f*L be the induced connection on P '. Then

1. f*q> £ A p (P', L, V) for all G A p (P, L, V),

2. f* y  G A T (P', L, V) for all y> G A T (P, L, V),

3. f*(dr <p) =  d^*r (/*<p) for all q> G A p (P} ® V, thus Q^'r  =  /*Q r .

Analogous statements hold for Tier and from Proposition 2.39.

Proposition 2.39 and Lemma 2.54 show that any connection F on a principal
bundle induces connections (F|t -> (£/„))*“ on Ua  x G for every bundle chart fUa ,i^a}-
Thus a closer look on connections on trivial principal bundles is worth-while.

Lemma 2.55 Let u?r  € A~fM  x G) be a connection 1-forrn on the trivial bundle,
z e M ,  g , h e G ,Y  E g  and € T{x ,g}(M  x G) =  TX(M) ® Tff(G). Then

1- (^r)(x.S) =  (0, dxg (y)), dRh (x x , y g ) = (x x , dP h (yg )),

= dxg - i(y 9 ), ^ K }(x x ,dP h (y g )) = M (h - l )[^ XJl}( x x , y a )],

3. (VQ G -4T (.tfxC ,g)) Q(i ,5 )( ...,(* ¿ ,3 * ),...)  =  Ad(5 -*)[Q( l .e )( . . . , ( ^ ,0 ) , ...)],

4. (Vç, € A T (M x G, L, V)) ¥>(„)(..., ( ^ ,  y j , . ..) = Lg-i [<p(x ,e)( . .., (Xx , 0),...)].

Proof. d R ^ ’̂ Y  =  (0, Y )  and the definition of a principal bundle yield 1., while 2.,
3. and 4- follow from the properties of connection 1-forms and tensorial forms. □

Recall the notation of (local) sections aa y. Ua  —> 7r- , (t/Q), x i/>~l (x,e). For a
trivial bundle M  x G we have <*>(x,e)(- • • » (A^, 0 ),...)  = (ct*u;)i (. . . ,  X x , . . .) for any
w G >4(Af x G, V). If u>r  is a connection 1-form then Lemma 2.55.2 yields

“ (r„ ) ( ^ . y , )  = Ad(9 - 1)[14 „ )(À’1 ,0) +  ü,[„ ) (0,d/>,-.(J's ))]

=  Ad(9 - ‘) [(a > r ),(A-,)] +  dX,-, (y ,).

Thus <7*u?r  determines u)r  completely (analogously for tensorial forms) and we get:

P roposition  2.56 Let ( i,g )  e M x G, X ^  G TX(M) and jXO e TS (G).

1. a*: A^(M  X G) —> Ai(M , g) is bijective and for all u? € A ^(M  x G)

"(x ,9 )(Xx , y g ) = A d i g - ^ a ^ X ^  + d X ^ y , ) ,
i. e. u  =  (AdoT? oprG )e (p r^ a * w )- |-p r^ 0 £';

2. ff*:AT {M  x G.g) -> <4(M,g) is bijective and for all fl G A f(M  x G,g)

^x .5) ( - . . , ( ^ , y g) ,. . .)  =  Ad(g-*)[(<n)I ( . . . X ,  ■••)],
i. e. fl =  (Ad OT) o prc ) • (pr^ cr^Q);
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3. <r*: A T (Af x G, L, V) —> .4( Af)® V is bijective and for all p G A T (M  x G, L, V}

= Ms-1 , i«^)z(...,
i. e. <p = (Lorjo  prG ) • (pr^ a*<p).

(Note that we have identified L.G  x V  —> V and L:G  —> G1(V)J

Definition 2.57 The canonical flat connection on the trivial bundle M  x G is the
connection V with wr  = prG 0 L . A connection T on any principal bundle P(M,G)
is called flat, if for every x G M a bundle chart (Ua ,x^a ) with x € Ua  exists such
that ivr |,-i( t/o ) =  prG 0 L =  7r;0L .

T heorem  2.58 Let T be a connection on P(M ,G) and l:g x V —> V be the bilinear
mapping induced by L:G  x V —> V according to Note 1.95. Then for m  G N

(V<p € A T (P, L, V)) <f<p = dp +  wr  A/ <p, (59)
(Y<peAT (P ,L ,V ))  (dr )2>  = Qr  Ai (Qr  A, • • • A, (fír  Aty) • • -), (60)

m
(V<p G A p (P, L, V)) (dr )2m + 1<p =  Qr  Al (Qr  A( -  Af (n r  Atdr y>) • • •), (61)

m
(Vy> G A p (P, L, V)) (dr )2m<p =  Qr  A, (Qr  At • • • Af (Qr  Ai(dr )2<p) • • •)■ (62)

m — 1

Proof. To prove (59), we show for all <p G A ,(P , L, V), p G P and X ' G Tp(P) that

(dr <p),(Xl , . . . , X r + 1 ) = d<pp (X l , . . ., X r + 1 ) +  (<Z A, <p)p ( X \ . . . ,  X r + 1 ).

3 cases have to be distinguished: (i) All X 1 are horizontal. This is trivial, (ii) At least
tw’o X ‘,X J ,t j ,  are vertical. This is trivial, too, since all terms are zero. (For d<pp
use Definition 1.17 with fundamental vector fields and observe that

= ^[u rx<,u rx'] € lp(P)-) So only (iii) remains, where X* 6 Hp (P),
i =  l , . . . , r  and X r+ 1  G Vp (P). Let X’ G Dr (P(Af,G)) with X'p = X \  i =  1 ,... ,r
and A = up X r+1 G 0, such that = X r + 1 . The first term is zero, thus
by Definition 1.17 and because [7?.̂ , X ’] =  0 by Lemma 2.35 we have to prove
(IZa U ^ X 1, X r )) = —l(A, <pp( X \ . . . ,  X r )). Lemma 2.32 yields

( ^ ) P^ ( X \ . . . ,  X 9) =  lim |{[<p(X\. . . ,  X r )](R(e'x , p)) -  [<p(X\. . . ,  X')](p)}

=  lim . . . , X9](p) -  ^ (X * , . . . , X ')}

= . . . ,  X '))  -  <pp( X \ . . . ,  X ')}.

Since I w’as suppose to be induced by L, (43) proves our claim.
For (60) and (61) for tp € A f\P , L, V), observe (dr )2<p = dr wr Anph—uShAitfip =

Of Ai<p. Now the equations follow' by induction because (dr )'<p € A T (P, L, V) again.
Finally the equations for <p G A p (P, L, V) result from dr ip G A T(P, L, V). □
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Theorem  2.59 (C a rta n ’s s tru c tu re  equation  and B ianchi’s identity)
Let T be a connection on P(M ,G) and m € N, then the following equalities hold:

structure equation: Qr  =  +  |w r  A0 uT;

B ia n c h i’s  identity: dr fir  =  dQr  +  wr  A0 Qr  = 0;
for all ip € A T (P,g) : dr <p =  dip +  w r  A 0 <p,

(dr )2>  =  n r A , ( - - - ( n r A8 y ) - ) > (dr )2 m + 1 <p =  p r  A , ( - - - ( n r A8 dr y> )--).

m m

Proof: analogous to the proof of Theorem 2.58, cf. [6, pp. 77 -  79]. Nevertheless
observe that the last equations are just a corollary to Theorem 2.58. □

Suppose T is the canonical flat connection on M  x G. Then the structure equation
yields il r  = prG (0 L +  | 0 L A0 QL ). Since (prG oore)’ = 0, Proposition 2.56.2 yields
that Qr  = 0 and thus 0 L + j© 4  A0 QL =  0. So the Ma URER-Ca RTAN identities are
just a corollary to CARTAN’S structure equation.

The curvature 2-form vanishes not only for the canonical flat connection. Indeed,
we have the following theorem (cf. [6, pp. 92 -  93]):

Theorem  2.60 A connection T in P(M ,G) is flat iff its curvature 2-form van­
ishes identically. If in addition M is paracompact and simply connected, then P is
isomorphic to the trivial bundle and T is isomorphic to the canonical flat connection.

For a connection T on any principal bundle we define for every bundle chart

A“ := ^ > r U-.( l/o ) ) e  Ai(UQ,g), F“ := < e(ilr | , - i ( l /a )) G A 2(Ua ,g). (63)

Then by Proposition 2.56, the collection of A° and FQ determines u?r  and Qr :

!»-»(%) =  (Ad or; o TTc) • (tt*A“) + 7r*0L , (64)
^ r |ir-»(Ua) =  (Ado/J O 7TO) • (7T*F°). (65)

T heorem  2.61 Let cur  G >L,(P(Af, G)) and {(Ua ,il>a)}aeA be a bundle atlas for P,
then for all a, fl G A with Ua p := Ua  D Up ±  0:

F° = dAa  + |A ° A 0 Aa , dFQ =  —A° A0 Fa  (66)

A“ |ua9 =  (Ad oW ) .A * |a<, , +  <&,©* =  ( A d o ^ ) .( A * |Uo, - £ /}e L ); (67)
Fa k # =  ( A d o ^ . F ^ .  (68)

Vice versa, if for a bundle atlas {(Ua ,rpQ)}Q eA  on the principal bundle P(M,G) a
family {A° G Ai(Ua , 0)}a gA is given such that (67) holds, then there exists one
unique cur  G A,(P(Af, G)) such that Aa =  f£ >e(wr |,r- i ^ j )  for all a  6 A.

Proof. (66) follows from Theorem 2.59 (observe that conversely by Lemma 1.74,
(66) yields the structure equation and BIANCHI’S identity); (67) is a consequence of
Corollary 1.105 with K  =  id0, f  = <rp,e \ual) and g = gpa , since (Rp )*a>r  = 0 L  and
R£wr  =  Ad(p- 1 ) owr  for all p € P and all g G G. Finally (68) can be deduced from
(65) and the fact that gpa (x) =  7Fp(p) • ^ ( p ) - 1  for all p G 7r- 1 ({a:}). □
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N ote 2.62 It might seem that aa<e is not the most general choice for the definition
of pullbacks A°, resp., F" on the base manifold. Indeed, one can develop generalized
relations analogous to the upper equations of Theorem 1.70 for local sections <ra ,ha
with ha  G G. Yet this is not necessary if we equip P with a maximal bundle atlas,
since then every section <rQ,ha can be viewed as a section aa »,e : Ua ' —> îr- 1 ({7c,«), where
Ua ' = Ua  and ira > = ph -i o 7ra , cf. [1, p. 53].

N ote 2.63 The notation of A ° and Fa  is adapted to the physics literature. There
the A ° are called gauge potentials (resp., gauge potential 1-forms) and the F° are
named gauge fields (resp., gauge field 2-forms). Theorem 2.61 tells us how local
gauge potentials and fields transform into each other whenever they define a global
connection. For this, Theorem 2.61 is a fundamental result for all field theories in
theoretical physics, e. g. for electromagnetism and YANG-MILLS theories, and the
equations of motion of this field theory are contained in (66).

Theorem 2.61 is a first result in the direction how only locally defined forms have
to patch in order to build up a global form on the bundle. If M  is paracompact, we
can prove a further result in this direction (cf. also Proposition 2.114 in Section 2.5):

D efinition 2.64 Let F be a connection on a principal fiber bundle P (M ,G ) over a
paracompact base manifold M . Let {p-J-yeA denote a partition of unity subordinate
to il. For all a € A , we define C° G --4i(t(a,0) by

Ca := A a - Y , P ^ a QL )- (69)
"rCA

Although not mentioned explicitely, every statement on {C°}a gA in the sequel
will imply that M  is assumed to be paracompact. Theorem 2.61 yields:

Corollary 2.65 Let T G q(P(M, G)), where P is a principal bundle over paracom­
pact M ; {(Ua ,iba)}aeA be a bundle atlas fo r P. Then for all a ,0  G A with Ua 0  0

œ u ^ i A d o ^ . c ^ .  (70)
As a consequence, |-4f(P, g)| = |A,(P(A/, G))| — G))|.
Proof. From (55) and Theorem 1.70 we conclude that

£  =  EL P-N&rf ’ =  EL /M(A d  °3ap) • 9*0&L  +
76A  -y€A -yeA

=  (Ad oga 0 ) • [ £  Py(g*0 OL )] + ^ O0 L (12 P^-
-ygA -ygA

Now (X,-t£AP~f) = 1 and (67) yield (70). Via (69), every family {A° G A i(U a , 0)}o € a
that obeys (67), defines a family {C° G A.i(Ua , 0)}q ç a  that obeys (70), and vice
versa. By Proposition 2.56 such a family {C° G >li(i/a,0)}a6A uniquely defines a 1-
form 7 G A f(P ,g )  with C" =  a* eq and 7 |T-i(ua ) =  (Ado7jo7r0 )«(7r*Ca ). Combined
with Proposition 2.38, this yields the last statement. □

Since 0 G A T (P, 0), we obtain the following important result:

Theorem  2.66 (E xistence theorem  for connections) I f  P (M ,G ) is a princi­
pal bundle over a paracompact manifold M  then P admits a connection.
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2.3 Connections on Associated Bundles
Every connection on a principal bundle induces connections on all associated bun­
dles. In the literature ([6, pp. 87 -  88], [9, p. 290]) we find the following definition:

Definition 2.67 Every connection F on a principal bundle P(M ,G) induces split­
tings T(B) = H(B) © V(B) on any associated bundle B(M , F,G) = P x q  F . Let
îr: P x F —> B be the natural projection then H(B) := 7r,(f/(P) x  {0}). Since h
and v on D l (P) commute with all (Rg)*, they induce horizontal and vertical projec­
tions h:D l (B) —> hD ^B ), resp., v.TA(B) —> v P ^B ) for any associated bundle B.

Yet from this approach the projections of the vector fields cannot easily be read
off. So we choose a slightly different approach in order to get formulae for h and
v. The next observation on the natural connection Fnat on trivial bundles is quite
trivial:

Lemma 2.68 We have natural lifts L^a t , L ^ : P 1 (P) —> P*(P x F) on the product
manifold P x F with (prF ), o L£a t =  idpi(p) and (prF ), o L"a t =  idpi(p), which are
injective homomorphisms of C°°(P)-modules, resp., Cx (F)-modules and LIE alge­
bras and obey (Rg )* o L£at =  L£a t o (P 3 )* and (Rg)* o L"at =  L£at o (Lff-i).. If
if- P —> P  x F and ip : F —> P  x F defined by ij(p) =  ip ( /)  =  (p-,f)> denote the
natural injections then (Lja tA')(pj )  =  (dif)pX p and (L"a tJ ) ( p>/) = (dzP)/> / for all
PE P, f  e F, X  e  D '(P ) and T>l (F).

We also have natural projections of vector fields hn a t, un a t: P 1 (PxF ) —> P 1 (PxF)
with P ’(P x F) =  /in a tP 1(P  x F)ffi vnBtP 1(P  x F) as a C°°(P x F)-module and
hm t o L£a t =  vn a t o L£at =  0, resp., hniit o L“ ‘ =  0, vn a t o Lja t = L™‘.

Since prP  oRg = Rg o prP  and prF  oRg = L3- i o prF  for all g € G, we have

hn*  o (Rg ), = (Rg ), o /i"a t =  (Rg ), o /i"“ , hn at o R ' o (prp)* = L"a‘ o R ',
vn a to (P g ). = ( L g - x ^ o v ^  = (Rg ) ,o v M t , vn a‘ o ^ 'o ( p r F )* = - L ^ o r ' ,

where R and L denote the actions on P x F  naturally induced by R and L:

R - . G x P x F ^ G x F ,  R (g ,p ,f) = (R (g ,p),f),
l - .G x  P x F ^ G x F ,  t(g ,p ,f)= (p ,L (g ,f) ) .

h and v induce projections h' and v' on hn a tP 1(P x  F) such that /i'oL"at = L£a toh,
v'oL"at = L ja t ov. Also a C°°(P x F)-linear extension of u>£on hn&tD l (P x F) exists,
which we denote by u>r . Then v' = R ' ou r  and R ' = hnMR'. Note that the splitting
of T(P  x F) into H(P x F) = H(P) x {0} and V(P x F) = V(p) x {0} © {0} x T(F)
corresponds to projections hpx F  := h' o /inat and vF x F  = idi>i(px F ) —h' o hnat with

hpxF O (Rg), = (Rg ), o hp x F , vpx F  o (Rg), = (Rg), o vpx F .

Yet these are not the only projections given on P  x F. Recall that P  x F  is a
principal bundle over B  (Lemma 2.18) equivalent to ir*B. Now every connection T
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on P induces a connection f  = ptp T on P x F according to Proposition 2.39 since
prp is G-equivariant. We have o f  =  ptp wr  =  ü r  o /inat € - A ^ P  x F)(B, G)) with

7?.*ô;r  =  Ad(<j *)*wr , ü r  oR.' = idc°o(PxF,0) •

f  defines projections and lifts on (P x F)(B, G), let us denote them by h, v, L. Then
v := TZ'ouj^ = R.'ocur o/inat =  'R.'R./ - 1 ov'ohnat and h =  idpi(pXF) —R 'R '- 1  ov'o/in a t.
Thus h o L"at =  L"at and v o L"a t =  0. As for any connection on a principal bundle,
we have

h o (̂ Rg )* = (Rg )w o h, v o (Rg )* = (Rg \  o v.

Lemma 2.69 Let T € 7(P(Af, G)), then the various projections on P l (P x F) obey

/lpx F OV = v o hp-xf =  0, hpxF oh = ho  hpXF = hpxF,
VpxF0 V = V 0 I’PxF =  v, vpxF o h = h o vpXF = h — hpxF =  y n a t 0  h,

/ln a t OV = v' 0 hn a t , v o hn a t =  v, t o h 'o h n*  = 0,
hn* o h  = h' 0 /in a t , h o h M t = hn a t - v , h o h n i t oh  =  hn a toh,
vn a tov = v -  v' 0 hn a t , h o v n a t =  un a t , v o v n a t =  0.

By Lemma 2.69, hn a t, hpXF and vpXF also act on P r (P  x F) and

'pf(PxF) =  ^P x F lpr(FxF) =  ’̂ pr(pXF) - U p x F lpr(px p)-

But L:TN(B) —> TF (P x F) is a C°°(B)-module isomorphism according to Propo­
sition 2.41, with inverse morphism tt*. This defines the projections h, v on LN(B)

h = ît J ip x f L  =  O n a tL, v =  7r*vpx F L =  7r*vn a tL, so P*(B) =  hT>l (B)®vD l (B).

Finally note that hL£a tL = h V ^ h L  = hh'hn M Ln
h

M L = /i'/in a tL£a tL = by
Lemma 2.69 and (Rg )*L"a tL =  L"a t(Rs )wL = LjJa tlL, so L£a tL: P^A f) —> P ^(P  x F)
and the horizontal lift L :P 1(Af) —> P 1 (B) is well-defined by

L := if* o L£a t oL, i. e. L o L  =  L£at o L.

This is illustrated by the following commutative diagram:

P F (P  x F )’----------- -----------------^ ( B )

t r l

P r (R)  ----------- -----------------P ^ M )
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hL = 5fw/in a tL“a tL =  L proves that L maps into hD1 (B), so hb = Lj, o dirt. Also

£ [£ * ,£ ? ]  = 5f*/in a tA[LtY,LL3 ;] =  ^ h ' h ^ L ^ L X , LX“ ILJ>] = tt./i 'L H L * , U?]
= =  £,L£a tL[A’,y ] =  £ [* , y].

We have thus proved the following analogue to Proposition 2.41:

Proposition  2.70 The horizontal lift £ :D 1(M) -> hT)l (B) is an injective homo­
morphism of C°°(Mymodules with ir* o £  = idpi^w) and = £[<¥, for
all X , y  E D*(M). £  is uniquely defined by £ £  = LJ^L: D*(Af) -> hM tT^(P  x F).

Now what happens if B =  P? One would expect that h = h and £  =  L, and
this is indeed true. We have the following commutative diagram:

Pr P 7T
rr

P -------------------------- ► M

On the left, (P  X G)(P, G) is a trivial principal bundle with projection ptp and right
action p = id xp. It is the trivialization of the square of P, which is the bundle on
the top of the diagram. We can identify n and R o t p g , where t p g - P x G —> G x P  is
the natural morphism exchanging P and G. Thus d7f(p,9)(Ps , X g ) = dRg 'Pp -}-dRpXg .
We will prove £  = L, then Proposition 2.42 yields that both connections T and P
on P coincide. For every X  E D ^M ) and all p E P we have

(7r*LZa tLA')p = d7f(R(SiP)iS- I)((LA’)f i(Sip) ,0s -i) =  dRg- i(L X )R (giP) = (LA")p,

since (Rs -i),LAf = L X  for all g E G. Thus £  = L.
The following lemma in the spirit of Proposition 2.39 is quite obvious:

Lem m a 2.71 Let r  be a connection on B(M , F,G) induced by T on the associated
principal bundle P(M ,G). Every embedding i:U —> M and every fiber preserving
diffeomorphism of bundles f:B (M ,F ,G ) —> B '(M ', F',G) induce connections P|i;
on 7r- 1 (U), resp., f-̂  on B '. For every bundle chart (Ua ,d>a) the induced connec­
tion ( f  on Ua x F coincides with the connection induced by (T|uo )*“ on Ua  x G.

Projections of forms on associated bundles are defined as in Definition 2.43:

Definition 2.72 For any connection T E 7(P(Af, G)) and any w, E A t (B ,V ),
s > 0, where B is an associated bundle B(M , F,G) = P Xq  F  and V is a vector
space, we define horizontal and vertical projections ws h, resp., a>sv E A S(B, V) by

u t h(X l , . . . , X ‘) := u ,(h X l
1 . . . ,h X t ), for all &  e V l (B),

u t v ( X \ . . . , X ’) := u , ( v X \ . . . , v X s ), for all X 'e V ^ B ) .

A (B , V)h Ç A (B , V) and A (B , V)v Ç A (B , V) (with A q(JB, V)h := A 0 (B, V)v :=
Ao(B, V) =  C°°(B, V)) denote the C°°(B)-submodules of A (B , V) that contain these
horizontal, resp., vertical V-valued forms.
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Lemma 2.73 I fV E  and B = P X q  F is an associated bundle then

1. A l (B ,V ) = A 1(B ,V )h ® A 1(B ,V )v  and

2. the projections of forms commute with A^: for a € A (B ) ® V, (3 € .4(B) ® W

(a A<t> (3)h = cih 0h, (a A  ̂0)v = av  A  ̂(3v-,

3. h and v commute with •, ◄ and ►: e. g. for x  6 -4(B, Hom(7”(W ),Z)),
<t>qr & Ar(B') ® Hom(<8>? V, Wz )

(x • (X • <i>r)v =  XV • <£’v.

The theory of fiber bundles is very often concerned with the problem how to
“lift” or “extend” something that is defined on the base Af, resp., the fiber F to the
bundle B(Af, F, G). “Something” can mean a vector field, a differential form or, as
we will see in the next chapter, a cohomology class. For the trivial bundle M  x F
with G =  {e} we can solve this problem using the natural projections prF  and
prF , resp., the natural injections i f  and ix  for f  € F  and x E M. For arbitrary
bundles only one global projection t t  is given naturally and we only have “global”
(with regard to F) injections zo>x on every bundle chart. These enable us to define a
vertical bundle V(B) and a global horizontal lift of differential forms fr*: A(M , V) —>
A(B, V). We have seen that it requires a connection as an additional structure to
define H(B) and horizontal lifts of vector fields on M onto the bundle.

Now we will be concerned with the “dual problem” to extend forms on the
fiber to the bundle. Locally we can achieve this using the pullbacks ir* of the local
projections onto the fiber, but normally for <j> € A(F, V), {?*<£ € 4(7r- 1 (Uo ), V)}o 6 j4
will not define a global form since in general i (uofl)) In order
to investigate how a given connection will define global forms, we can compute Tpa
and evaluate the projections of fields and forms locally. Let us postpone this access
to the problem to Section 2.5. For now, we will again take the detour over P x F
in order to derive global expressions for the extended forms.

But before note the following: in contrast to M  we have an additional structure
on F  even for “trivial bundles” , namely the effective left action L: G x F —> F.
Recall that even if G /  {e}, we call a bundle B  trivial, if we can find a (pre-
)atlas for B such that all ga g = e for all Ua g /  0. On the other hand, we equip
B with a maximal atlas, cf. Note 2.62. Now observe that even for such a trivial
bundle, the injections tQiX define a global vertical vector field i^y  € x F) by
(: *y)(x,/) : =  (.dia ,x)jyj (if and) only if y  E D l (F) is invariant under L. This is due
to the following lemma:

Lemma 2.74 y  € D*(F) defines a vertical vector field i^y  = € D*(B),
such that locally =  (¿V’J 1)(x,/)(0I , > /) on ^ ( U a ) ,  i f f y  is invariant.

Proof. We already saw that 7f*L"a t>’ defines a section of t t*T(B). A section of
7r’T(B) is a section of T(B) iff it is invariant under all R*g . But this is the case



62 CHAPTER 2. PRINCIPLES OF BUNDLES AND PRINCIPAL BUNDLES

iff = (Bg-: ),L"a t3' =  L"a t(Lj)*y for all g G G. Since L"at is injective
and ft7?,L"a ty  =  7r*/in a tL"a tJ ? =  0, this yields our assertion. That =
(dV’a O l r Vj) holds for all x € UQ and f  € F , now follows from vertically and
(57): dira d n ( L r ) {p,f}y f  = dL ' dna dprP (L“ ‘){ p J }y J + dL„a{p}y f  = y L M p ) ,f y □

So the situation for M  and F  is not totally dual but involves L, and it is no
surprise that, given a connection, we can only extend invariant forms <f> G A(F, V)
naturally onto the bundle. To see this, we observe that the only canonical way, how
a differential form <p G A (F ,V ) acts on vector fields y  € P ’(B) is via

(pr> 0 )(.. . ,  t y ..) = f  g C°°(P x F, V).

This defines a form on B  if and only if we find f  G C°°(B, V) for any y  € P ! (B),
such that f  = f  o îf. We note that the resulting form will be vertical since

(prF )X v y  =  (prF )Xif*vn a tL y  =  (prF ),vn a tL y  = (prF ) X y .

Proposition 2.75 d> G A(F, V) defines a vertical V-valued form on B(M, F, G) iff
<p is invariant under all L*. For such a d> and all y  6 P ! (B) then there exists
f  G C°°(B, V) with

(prF  </>)(.. , ,L y , . . . )  = f  on.

Proof. According to the previous discussion, d> defines a form on B if and only if
(prF <£)(... X y , . . .)  G C°°(P x F,V) is invariant under all FCg , i. e., if and only if
rçi(pr> d»)(..., L y ,...)] = (Â; P rF  ¿ ) ( . .., (B9- ) X y • •) =  (prF  l * . ^ .  . ,  iL y ,...)
for all g 6 G and y  G P 1 (B). Obviously this relation holds if d> G A(F, V)
is invariant. So let us assume, that <f> is not invariant. Then we find g G G,
f  € F and X ' G P 1 (F) such that (£*<£)/(. • -,* /,• •• )  =  • • ,dLgX 'j,...)  /
4>f(.. . ,  X },. . .). Since only X} are involved, we may assume that all X ' are invariant
and thus define 7f,L"a t /V‘ G P*(B) by Lemma 2.74. For these vector fields on B we
compute L i,L "a t^ ’ =  h L ^ X { = hvn^ L ^ X '  = vn a tL^a tAf =  L^a tA” and thus
( ^ l pr‘r < . . ) L U ^ i , - ) ( p , / )  = /  ^ ( . . . ,  X } ,...)  =
(prF  <£)(.. ._,L7r,L"a tX ', . .  So (prF  0 )(.. .  ...)  is not invariant
under all R*g . Verticality was already proved above. □

Similar arguments hold for ç> G A (P ,V ) acting on y  G P 1 (B) via

(prF  </>)(... , î , y , ...)  G C°°(P x F, V).

The resulting form will be horizontal because (prF )XÂ =  (prF )X- Moreover, only
<ph is of interest: (prF )X  = (prF )*/in a tX  = (prF ),h'/in a tL = /i'(prF )X , thus

(prj, d>y.. . X y , • • •) =  (pr p #»)(• -. X y , - - -)•

Proposition 2.76 <t> G >1(F, V) defines a horizontal V-valued form on B(M , F, G)
iff <f>h =  îr*ç>, G A(M , V). For such a <j> and all y  G P 1 (B) we then have

(p4  0)(... X y ,...) = (i?v)(-.., y , . . °  îr-
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Proof. We already saw that only <ph matters and that the resulting form is horizon­
tal. Now = n*<p iff R*g(<j>h.) = <bh for all g G G, and analogously to the previous
proof we can show- that this suffices to define a form on B. But then

(Prp ̂ )( ..., £ y ,...) = (%*?»(..., Ly,...) = (*V)(-.., Ly,...) o i.

On the other hand, if there exists g G G with Rfoh. <f>h, we can find invari­
ant vector fields in Dr (F), i. e. X 1 G such that d>/i(.. . ,  LAf',. ..)  o Rg
<j>h(.. . ,  LA?,...). So (prP  <£)(..., ¡LLA”' , ...)  o Rg = , LA"',. ..)  o prP  oRg =
d>/i(...,LA’',. . .)o /? g oprP  /  d>/i(...,LA’*,...)oprP  =  (prP  <£)(..., LLA?,...). Thus
(prP  <£)(..., LLA’*,...)  does not define f  G C°°(B, V). □

As a simple example that only the horizontal part of <p € A (P ,V ) counts and
needs to be invariant, we compute

(Prp wr )(iy) = d? (iLy = f ' - 1 o u l j  = o. (71)

Theorem  2.77 I f  x  G -A(F, Hom(7"(0), V))«juiv and d> G y4f(F,0) =
r  € No, then (prP x) • (prP <£) € A (P  x F, V) defines a V-valued form on B: for all
vector fields y  € D '(B ) then there exists f  G C°°(B, V) such that

l(Pr F x) • (Pfp <£)](• • • > L y , . . . )  =  [(pr> x) • (prP  d>h)](.. . ,  L y’, . . . )  =  /  o n.

(prP x) defines the vertical and (prP  d>) defines the horizontal part of the form.

Proof. Analogously to the previous proofs, we must show that for any y  G D’(B),
[(Pr F x) • (Pr p d)](- ■ •, L y , . . . )  G C°°(P x F, V) is invariant. Again this means that
(Pr fX) • (prpd>) 6 A (P  x F, V) is invariant. prP oLg-i =  Rg o prF  and prP oI?g =
Rg o prP  yield that prp  x  and prP  <p are C-equivariant. Now Lemma 1.90 applies. □

All of these results are just special cases of the following theorem. If we replace 0
by any vector space W  with a left representation L', we may prove in total analogy
for pseudotensorial forms of type (L', W) on P:

Theorem  2.78 Let V, W be vector spaces, L ':G x W  —> W  a left representation and
</> G A f(P ,L ', W), r  G No . I f x  € A(F, Hom(T(W), V)) obeys L*X  =  ((^-i)*)*X
for all g G G, then (prP x) • (prpd*) € A (P  x F, V) defines a V-valued form on B:
for all vector fields y  G D ^B ) then there exists f  G C°°(B, V) such that

[(Pr F x) • (Pr p d>)](-- - ,L>y, . . . )  =  [(prP x ) « ( p r p ^ ) ] ( - . . ,L y , . . . )  = f  on.

(Pr F x) defines the vertical and (prP  </>) defines the horizontal part of the form.

Note that — since P x F  is a principal bundle over B —  Theorem 2.78 also
is a consequence of Lemma 2.52 (to be exact: for x  € -4(F) ® Hom(7”(W), Vj C
A(F, Hom(7"(W), V)), but Lemma 2.52 may be generalized). The conditions on
and x  mean pr> G A f(P  xF , L', W) and pr> x € >1P (F x F, (L')*, Hom(T(lT), V))
and then [(pr*F  x) • (prP  d>)]h 6 A T (P  x F, Lo , V) = t fM (B ) ® V.



64 CHAPTER 2. PRINCIPLES OF BUNDLES AND PRINCIPAL BUNDLES

We are also interested in the exterior derivative of these forms <p € .4(B) ® V
generated e. g. by o € >1(F) ® V, and how far dtp differs from the form generated by
dtp. Since d commutes with if*, we can look at the forms ir*<p € A T (P  x F,L0 ,V),
and from (59) we know that ¿(ir’ip) =  d̂ (7t*<p). Thus if <£ G A?(P, L ',W ) obeys
dr 0 =  0 (e. g. for Qr ), we deduce from Lemma 2.50.4 7r*d<p =  ¿[(prj- x) •  (ptp <t>)]h =
dr [(pr|-x)h] • (prj> d>). We will show in Section 2.5 that

4(P r r  x) • (Pr p Or )]£ =  [(pr> dx) • (pr> Qr )]A + [(pr>(£.x)) • (prj, ilr )]fi,
= [(Pip d x) • (Pr p n r )]h +  Kpri-(^X)) • (Pip ftr )K

resp., d(prp <f>)h =  (prjr d<t>)h + (prp(L.<p) • (prj> flr ))h,

for all G-equivariant x € A (F ) ® Hom(7”(W), V), resp., invariant <t> G A(F) ® V
(confer Theorem 2.120).

Note 2.79 We again consider the case B = P. Now y  G P ’(G) in Lemma 2.74
is invariant iff y g =  dA3 (X) for all g £ G and X  G g But then (i»y)^-*(Xt3) =
( C U 0 x . W )  =  ( T i x U n s o  the vector field generated by y  = Ex €
©},(G) is the fundamental vector field R x-  Recall that the connection 1-form u>r

and the left canonical 1-form ©^ £ ^ ( G )  are connected via (flp )‘wt' =  0 L for all
p € P- According to Proposition 2.75, 0 L defines a vertical g-valued 1-form “©¿v”
on P. Since QL v is vertical, we may compute it by evaluating (QL v)(Rx)- Now
(pr‘G e L )(L ftx) =  ( p r ^ X U X x )  =  (pr£ ©£ )(L“ SCx) =  0 L (£x) =  X . Thus
OL v =  wr . Finally we can recover Qr  G A ^ P ,  g) using Theorem 2.77 with x :=
Ad or; G C°°(G, Hom(g,g))equiv since pr^AdoT?) • (prpQ r ) = 7r’Qr , cf. (65) and
Corollary 2.118 below.

Given a connection on a bundle B(M, F.G) and a (G°°-)curve r: [0,1] —> M,
there exists a unique horizontal lift r*: [0,1] -> B for every b G t t -  1 ({‘r (0)}) such
that f*(0) =  6, t t o t ” =  t  and (d f’)r = o(dr) r : R -> for all r  G [0,1]
([6, p. 88]). Then r*(l) G ?r- l ({T (l)})- By varying b G ^ - 1 ({T (0)}) w e  obtain a
bijection f j: fr- 1 ({T (O)}) —* t t - 1 ({r(l)}), the so-called parallel displacement of the
fiber t t ~ *({T (0)}) along the curve r. Its inverse is f° =  pj, where p(r) := r ( l  — r).
For principal bundles we have t f  o Rg = Rg o t f  for all g E G, r, s G R ([6, p. 70]).

Lemma 2.80 I f B = P x F is associated with P(M,G) and r*: [0,1] —> P is a
horizontal lift of a curve r: [0,1] -> M, then for all f  G F , r ’ =  ir oi} o r ’: [0,1] -> B
is the unique horizontal lift to B with r"(0) =  7r(r*(0), /) .

Proof, dr; =  d5f o (di o LT.(r ) o drr = dn o o Lr .(r ) o drr = L~(T.(r ) o drr
and 7T 0 f  * =  7? O 7F O ¿y O 7* = 7F O pip Oly O 7" =  7T O 7* =  7 is obvioUS. O

Let a: M —> B  be a section of B. By Lemma 2.28.4, a*y G r<r*T(B) is a section
of the pullback bundle cr'T(B) for every y  G TA(B) =  TT(B). We also observe that
for all X  G — although a*X V l (B) — <r*X G Fa,T(B ) is well-defined
by cr+Xlx) = dax X x  for all x G M . —* r<r*T(B) is a natural injective
C°°( M )-module homomorphism with tt. ct* = idpij^j. If T is a connection on B then
ct*T(B) = a*H(B) ® a*V(B) by Lemma 2.28.3, thus we can decompose every a ,X
into a horizontal and a vertical part.
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Definition 2.81 A section a: M —> B is said to be parallel with respect to a given
connection on B(M , F.G} if = cr*oL:P1(Af) —> T'a*H(B), resp.,dax  = La ^ :  for
any curve r: [0,1] —> M  the parallel displacement of cr(r(0)) along r gives <r(r(l)).

For the trivial bundle P x F it is obvious that for every f  € F the natural
injection if  is parallel with respect to Tnat on P  x F.

If E  is a vector bundle over M , every connection T on E defines covariant deriva­
tives of sections a: M —> E  in the following way: we already saw that a naturally in­
duces G r<r*T(jE) for every A1 G P 1 (Af). By projection onto the vertical bundle
we get v(a^X) G Ta^V(E). Now since E{M, Rn ,G) is a vector bundle, we can iden­
tify the fiber Rn and its tangential space and (<7’V(E))(Af, Rn , G) = E(M. Rn ,G).
Thus v(a*Af) defines a section G TE.

Definition 2.82 I f E(M, Rn , G) with G < Gl(Rn ) is a vector bundle, a: M —> E
a section and X  G then the section Vx<r: Af —> E is called the covariant
derivative of a in the direction of X  with respect to the given connection T.

Lem m a 2.83 a G TE is parallel with respect to T iff X  % a =  0 for all X  G P ’(Af).

Proof. By definition, a is parallel iff o„X G VePH^E) for all X  G thus iff
v fa X )  = 0 for all X  G P 1 (Af). □

The covariant derivative V^cr can be visualized locally in the following way
(cf. [6, p. 114]): Let r: [0,1] -> Af be any (parametrized) curve with r(0) =  x and
f(0) =  dro(^) = Xx . Then (V /ftr)(i) = V^cr =  V^ojcr, where

V f(1 |a := Jim i[ f ;+ ,(a(r(i + A))) -  a(r(f))|.
n— n

(Recall that tj+ h : i - 1 ({r(t + h)}) —> 7r- 1 ({r(t)}) denotes the parallel displacement
of the fiber.) Again it becomes appearant that a  is parallel if = 0 — and
thus f/+A(<r(r(i + h))) =  a(r(i)) — for all curves r  and t G [0,1].

Remember that T is a C°°(Af )-module by Lemma 2.7.

P roposition 2.84 V :P 1(Af) x TE  -4 PE, S7(X,tr) := is C°°(M)-linear in
its first argument and ^-linear in its second argument. For all X , y  G P^A f), all
sections a, a' G TE and all f ,g E  C°°(M) we have

^ U x +sy}a  =  f ^ xCr + 9 ^ x a  (72)
V,r(<T 4- a') = X x a + (73)

V x (fa )  = f V x a + ( X f ) a  (74)

Proof. (72), (73) are clear. ^ h [ f ^ t + h))a(r(t + h))] = f(r(t+ h))t}+ h [a(r(t+h))]
yields V f p)(/<r) =  /( r( t) )V ^ f)CT + [T(t)](/)a(r(t)), and this yields (74). □

We already saw in (58) that any section cr of E(Af, V, G) can be identified with
a tensorial 0-form f  : P(M ,G) —> V  of type (L ,V). Now covariant differentiation
corresponds to Lie  differentiation on the following sense (cf. [6, p. 116]):
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Proposition 2.85 I f a: M —> E is a cross-section and f:P (M ,G ) —> V is the
corresponding function of type (L ,V ) defined by a o n =  5r o (idp ,/) according to
(58), then L ^ x f is the function of type (L ,V ) that corresponds to i. e.

o 7t  = 7t o (idp, Ll a ’/ )  = Jr 0  (idp, LA'(J)) for all A” G D^Af).

Proof, a o 7r = ü o (idp, / )  yields o tt* =  tt* o (L"a t + L"at o /*), thus

va, = 7f*vn‘Î X  =  7rwvn a th(L"a tL + L™7,L)
=  7r*(vn a tLL + L”a7 ,L ) = 7f*(vn a t/in a tLL + L“ 7*L) = 7rXüa7 X -

This yields (V^o) o tt = (va,X) o tt =  (if*L"a7*LA’) ot t  =  if o (idp, LA’(/)). □

2.4 Linear Connections
Throughout this section, M  will be of dimension dim M — n, so Rn is the standard
fiber of T (M ) and G = G1(R") acts on Rn by (matrix) multiplication • (instead of L).
Recall that the bundle associated with T(Af) is the bundle of linear frames L(M).

D efinition 2.86 A linear connection of a manifold M is a connection on L(AT).

Every tensor field K  G Dj(Af) is a section in the vector bundle <g)^T(M) —
and every V-valued w € D,(Af) 0  V  is a section in T(Af) 0  (Ai x V). A linear
connection defines covariant derivatives and for all X  G D 1(Af). Simi­
lar to the properties of Lie  differentiation (cf. Proposition 1.38) w'e obtain for the
covariant differentiation from Propositions 2.84 and 2.85 ([6, p. 132]):

Proposition 2.87 The covariant differentiation x D(Af) —> D(Af) de­
fined by a linear connection of M satisfies:

1- = f V x K  + g ^ x K  for all f ,g  G C°°(AL), X , y  G

2. x is a type preserving derivation of D(M) commuting with contractions;

3. V x f  = X (f}  for all f  G X  G

4- V x ( fK )  = f V x K  + ( X f )K  for all f  G C°°(AL), X  G ^ ( M ) ,  K  G D(Af).

Analogous to Proposition 1.41, we have for a linear connection (cf. [6, p. 124]):

P roposition  2.88 Let M be a manifold with a linear connection. Every deriva­
tion D of T>(M) into the mixed tensor algebra 7?(Tr(Af)) at x G AL with respect
to the restriction map |{r }:D(AL) —> T~(TX(M)), that preserves type and commutes
with contractions can be uniquely decomposed into

D = Vx +  S  o |{x },

where X  G TX(M) and S  G End(Tr (Af)) (cf Corollary 1.21/
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Observe that, in contrast to LIE differentiation Lx  with respect to a vector
field X , covariant differentiation V% is defined even for a vector at a point i  € M.

Definition 2.89 For a linear connection T of a manifold M we define the covariant
differential V r :P (M ) -> P(.W ),P;(M ) -> P ]+ 1 (M) for K  € T^(Af) by

(V r K ) ( X \ . . . , X s ,X ) .=  (V x K )(X 1 , . . . , X ‘') for all X t X*

(Recall =  Hom(Ps (M),7?r (M )).) Restriction to the fibers defines local co­
variant differentials V r

x -.rj(T x {M)) -> T:(T x (M )),T f(T z (M)) -> Tf+ l(Tx (M)).

Similar to (17), the following proposition holds ([6, pp. 124 -  125]):

Proposition 2.90 If K  G T^(M) and X .X ' . y  € P 1(Ai) then

(Vr lf)(Â’1, . . . ,Â ” ;Â’) =  V^(AT(A’1, . . . ,A ’, ) ) - ^ A " ( A '1 , . . . , V ^ ‘, . . . ,A ” );
i= l

( (v r )2 tt)G ¥1, . . .  - x - y }  =

As an immediate consequence of Lemma 2.83, we have

Lemma 2.91 A tensor field K  on M is parallel with respect to T iff V 1 K  = 0.

By Propositions 1.41 and 2.87.3, the operation of Vx  on D(Af) is completely
determined by its operation on P*(Af). We know that (72), (73) and (74) of Propo­
sition 2.84 (with <r := V  £ ^ ’(Af)) hold for any covariant differentiation defined by
a linear connection. For the reverse we have [6, p. 143]:

Theorem  2.92 Any map x T>\M) -> (X ,y )  satisfy­
ing (72), (73) and (74) for E := T(M ), uniquely defines a linear connection T such
that Vx y  is the covariant derivative of y  in the direction of X  with respect to T.

Definition 2.93 The canonical 1-form 0 € >li(L(M ),Rn ) on the frame bundle or
solder 1-form is uniquely defined by

0(yp )) = n^yp for all y  e  p 1 (£(M)), p  e  L(M)

with the projections it : L(M) —> M  and jr: L(M) x Rn -> T (M ).

Obviously 0 is horizontal and ir o (idf,^ ,0(L A ’)) =  X  for all X  G T)X{M) and
lifts L :P l (Af) —> 7?r (L(M)) (0 is independent of T). Comparison with (58) yields:

Lemma 2.94 The canonical 1-form 0 on L(M) is the unique tensorial 1-form of
type (Gl(Rr‘),R n ) that corresponds to idpi(M): P*(Af) —■> TT(M ).
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Definition 2.95 For any linear connection of M  we define P : R r‘—>/iPL(£( Af)) by

P p (v) := l^>(u )]p : =  Lp (7r(p,v)) for all v G Rn , p G L(M).

P(v) € h.Dx (L(Mf) is called the standard horizontal vector field corresponding to
v G Rn . Unlike the fundamental (vertical) vector fields, the standard horizontal
vector fields depend on the choice of the connection.

Definition 2.96 A geodesic is a parametrized curve r:]a,6[—> M, where —oo <
a < b < oo, such that the tangent vector field X  G P 1 (r(]a, 6[)) along the curve
defined by X r ^  := r(t) is parallel along r: = 0, resp., r(s) = tf(r (t))  for all
t ,s  G]a,6[.

N ote 2.97 Geodesics and standard horizontal vector fields are closely related. Geo­
desics are exactly the projections onto M  of integral curves of standard horizontal
vector fields. This proves that a unique geodesic exists for any initial point x q  G Af
and tangent vector Xo G TIO(Af) [6, p. 139].

Lem ma 2.-98 1. All Pp :R n —> TP(L(M)) are injective linear mappings: thus
P(v) never vanishes for v /  0;

2. 0(P(v)) = v for the canonical 1-form 0 on L(M) and all v G Rn ;

3. P  is equivariant: (RgfiP^v) =  P(<?- 1  • v) for all g G Gl(Rn ) and v G Rn .

Proof. 1., 2. are obvious, (dRg )PLp(Tt(p, v)) = Lf l(3>p)(7r(jRs (p), g~x ■ v)) yields 3. □
The conditions 0 o P  =  idgn and wr o P  =  0 determine P :R " —> T>X(L(M))

completely. The situation is analogous to Lemma 1.94 and Lemma 2.32: the in­
duced P ': C°°(L(.W), R n ) -> /iP l (L(Af)) is a Gl(Rn )-equivariant isomorphism of
C'°°(L(iVf))-modules, for every basis {e,},=i...n  for Rn , {P(e,)}i= i(„.jn is a basis for
the free C°°(£(Af))-module /iP 1(L(Af)). This proves (cf. [6, p. 122]):

Proposition 2.99 For any connection on L(M fiM , Gl(Rn )), then2 +n vector fields
in { P i e , ) , ^ , } , - ^ ! ...n , where { e j t = i... n is a basis for Rn and a
basis for gl(Rn ), form a basis for the free C°°(L(M))-module ©’(¿(Af)).

Lem m a 2.100 For X  G gl(Rn ), v G Rn and X v = X  - v G Rn we have

[P x ,P(v)] =  P(Xv).

Proof. Since all P p are linear by Lemma 2.98.1, we obtain

['Kx,P(v)] =  lim |{P (v) -  P (e - t Z  • v)} =  P(lime_»0 |{ v  -  e~tX  ‘ v})

from Lemma 2.32 and Lemma 2.98.3. But lim yiv — e~tX  • vl = X v. □
t-H> ‘ 1 ■*

Definition 2.101 0 r  := dr 0 is called torsion 2-form of the linear connection T.
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Lemma 2.102 Let P ( v i )  and P ( v 2 ) be standard horizontal vector fields on L(M).

1. If the torsion form  0 r  vanishes then [P (v i) , P ( u 2 )] is vertical.

2. If the curvature form fir  vanishes then [P(vi),P(v2)] is horizontal.

Proof. Since 0(P(v,)) =  v,- are constant, 0([T’(vi),P(v2)]) =  -2d0(P(v1),P (v 2)) =
—20 r (P(i>1),P (v 2)) =  0. Thus [P(vi),P(v2)] is a vertical vector field. Analogously,
using wr (P(vi)) =  0, one proves the second claim. □

As a corollary to Theorem 2.58 and Theorem 2.59 we get:

Theorem  2.103 (S truc tu re  equations and B ianchi’s identities)
Let r  be a linear connection of M , then the following equalities hold:

structure equations: Qr  = du?r  + |w r  Ap u>r , 0 r  =  d6 + <̂r Ai0-,
BIANCHI’S identities: dr Qr  =  dQ1 + wr  As  fir  = 0, dr 0 r  = Qr  A/ 0.

Definition 2.104 For every linear connection T of a manifold M with torsion 2-
form 0 r  € >4^(L(Af),Rn ) and curvature 2-form Qr  € -4j(L(M ),gl(Rn )) we define
the torsion (tensor field) T € D2 (Af) and the curvature (tensor field) R 6 D^(Af) by

T (X , y )  o 7T =  % o (idL (M ), 20 r (LA’, L J)) € Vir*T(M) for all 6 P*(M),
R (* ,y )0  7T = ? o ( id L (M ),2n r (L.¥,Ly)) € r7r*End(T(2W))/or a l lX ,y

with projections ir: L(M) x Rn —> T(Af) and %: L(Af) x gl(Rn) —> End(T(M)).

Thus |T  and |R  are the alternating C°°(Af )-linear maps 0 r : 7?2(Af) —> T T (M )
and Qr :D 2(Af) —> TEnd(T(M)) according to (58) and thus for all X , y  E

T (X ,y )  =  -T (J> ,X ) 6 P ’(M), R (* ,y )  = -R(ZAT) G D}(Af).

We can also express T and R in terms of covariant differentiation and reformulate
B ia n c h i’s  identities (cf. [6, p. 133 -  135]):

Theorem  2.105 For any linear connection of M and all X , y ,Z  € ^ (A f) ,

T (* ,y )  =  v x y - v y x - [ x , y ] ,  (75)
R (X ,y )Z  = [Vx ,V y ] Z -  V [ x y ] z .  (76)

If & denotes the symmetrization in X , y , Z  then BIANCHI’S identities take the form

& { R ( x , y ) z - T ( T ( x , y ) , z ) - ( v x T ) ( y ,z ) }  = 0,
6 { (V ^ R )(y ,2 ) +  R(T(Af,y),Z)} =  0.

In particular, if the torsion vanishes then 6 { R (A \  y'jZ } = 0, (5 { (V _ rR )O ’, Z)}  =  0.

Recall the alternation A:7?.(M) ® V -> >l(Af) ® V. We state (cf. [6. p. 149]):
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Proposition 2.106 I f  the torsion vanishes then dw =  A(Vu>) for all w 6 .

The most important example for a linear connection is the Le v i-C iv it a  con­
nection on pseudo-Riemannian manifolds. Recall:

Definition 2.107 (Af,g) is called a pseudo-Riemannian manifold if M is a mani­
fold and the so-called pseudo-Riemannian metric g € 6 D 2 (M) is nondegenerate for
all x € M. I f in addition g is positiv definite, we call (M, g) a Riemannian manifold
and g a Riemannian metric.

Theorem  2.108 Every pseudo-Riemannian manifold (M, g) admits a unique linear
connection T of M such that

1. the torsion vanishes: 0 r  =  0, resp., T =  0, and

2. g is parallel with respect to T: V r g =  0.

T is called (pseudo-)Riemannian connection or LEVl-ClVITA connection.

Proof: cf. [6, p. 160]. Existence: define N 'xy  for all X , y  G by requiring

2 g (v n ? ,z )  = x ( ^ y , z ) )  + y ( ^ x , z ) ) - z ( ^ x , y ) )
+g( [X, >>], Z)) + g([Z, * ] ,? ) )  + g([Z, J ] , * ) )  (77)

for all X ,y ,  Z  G ©’(M) (g is nondegenerate!). One checks that T is well-defined
since the conditions of Theorem 2.92 are satisfied, that T vanishes and g is parallel.

On the other hand, one easily verifies that V^g = 0 and VyA’—[Af, y] =  0
yield (77), which proves uniqueness of T. □

A few remarks on the local behavior of linear connections: Local evaluation
of T on a chart U of the manifold with local coordinates {®*}i=i,...,n  and vector
fields {3, =  as a basis for defines CHRISTOFFEL’S symbols by

v a .a, =  £ r i A  w i t h  r^G C°°(cz). (78)
fc=l

CHRISTOFFEL’S symbols do not define a tensor field. If we define the components T£
of the torsion tensor by T(<?,, dj) = then (75) yields T-) =  T- — T*,-.
Geodesics x:]a,b[—> U are subject to the system of differential equations

xfc+ £ r ‘ i ’P ,  fc =  l , . . . , n ,
«J=i

as evaluation of V ~x using (78) and x k = £"=1 shows.
For the Le v i-C iv it a  connection on a pseudo-Riemannian manifold with g|u =

E"j=i g«j dx'dx3 and gtJ =  gJ t , we have

+ d i&k -  dkgij), so r£  =  r*,- and T*, = 0.
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Note 2.109 On pseudo-Riemannian manifolds, additional important linear map­
pings of forms — besides their exterior differentiation d —  exist: for 0 < p < n we
have the HODGE star operator *: A P(M) —> A n- P(M ) (on oriented manifolds): if
dV € An^M) denotes the volume form on M  and ((,)) denotes the scalar product
of forms induced by g then * is uniquely defined by a  A (*/?) := {{a,/3))dV for all
a ,(3 G A P(M \  Then *1 = dV, *dV = sgn(g) • 1 and * * a  =  (—l)fr- p >p sgn(g)a.

The co-differentiation d:A p(M) —> A p-i(M )  on pseudo-Riemannian manifolds
with d2 =  0 is given by da := — (—l)n <p - 1 ) sgn(g)*d*a and is well-defined even if M
is not orientable. Finally the LAPLACE-BELTRAMI operator A: A P(M ) —> A P(M),
is defined by A := (d +  5)2 =  dd + 6 d, cf. [1], [9].

2.5 Local E valuation  of C onnections
Since we will be concerned with fiber bundles in general from now on, we will
distinguish between tt and t t , h and h, L and L, etc., only where necessary, but use

M —> B, etc., for convenience.
For many applications of fiber bundles, that involve numerical calculations, it

is necessary to have coordinate functions for the bundle. Yet in most cases it is
very difficult, if not impossible, to find global coordinates for a bundle. Especially
in the case of Theorem 2.5 the bundle is given only by its bundle charts and their
transition functions. Thus we are left with coordinate functions that are defined
only locally on every bundle chart and we have to conclude every global property
from the local ones and their interplay.

This illustrates the need for the local computations in this section. The situa­
tion is analogous to the situation for manifolds, where we have to decide from the
transformation laws for functions, vector fields and tensor fields, whether a given set
of locally defined fields or forms defines a global field, resp., form. For bundles we
will have to compute the change of bundle charts to decide whether a set of fields
or forms given for the local trivializations Ua  x F defines a global field or form on
the bundle B.

Also, it will be one of our aims in this section to give local representations for
the generated V-valued forms on B in Proposition 2.75 and Theorems 2.77 and
2.78. For this purpose we need to evaluate the local connections on Ua x F that are
induced by T due to Lemma 2.71 and thus to compute the local projections of fields
and forms.

We start our local evaluations by computing the change of bundle charts. Defi­
nition 2.1 yields for all x € Ua 0 , f a  € F  that T0 a : Ua 0  x F —> Ua 0  x F  is given by:
( * ,/”) ■- Te a ( z , n  = = ( x , i t o . ( x ) , / ”)), thus

Jo . = (pre.,. L  0 t o .  °  Pr L'.„, ptf-)) =  i  » t o .  0  p tp.a , (79)
with the induced action L on Ua 0 x F  from Lemma 2.68 (P  := Ua 0 ). This yields:
Lemma 2.110 Let a: M —» B be a section and define sa := 7ra  ocr|K-i([/Q): Uo —> F,
i. e., V>o (<7(z)) = (x, s°(x)) for all x € Ua . Then

^k-i(U o a) =  L o (g0 a , 5“|,-i(uojS)). (80)
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Vice versa, if for a bundle atlas {(Ua ,iha )}aEA on the fiber bundle B(M .F,G) a
family {s°: Ua —> F}q 6 j4 is given such that (80) holds, then there exists one unique
section a: M  —> B such that sa = irQ ° 1 (£/o ) f o r  all a  E A.

(13) in Lemma 1.30 yields that (dT0 a )[x j )  = dLgfia(x ) + dISx 'O dgpQ dprU a?, resp.:

Lemma 2.111 For x G Ua 0 0 and f  G F let (X, F) G TX(M) © Tf(F). Then

(dT0 a \ x J ] (X , F) =  (X, dLg sa (x )(F) + dL ' dg0 a (X)).

Thus i f y  G T>'(B) with [ W 4 > W ) W )  =: (X (®J o ) , F(“ J O )), then
X ( ^ )  = X M -)  a n d  F (x^) = d L

a^ ( F ( x j ^  + dL ^dg 0 a [X[x J a ) ) (8 1 )

for all x EU a 0 ^ d ,  f a G F  and f °  = L(g0 o ( x ) , f a ) G F.

(81) corresponds to the following transformation rule for 1-forms u> E A i(B ,V )
with [(^ -‘rcuk -,(CZo)](x, / “) =  Mfz,/ - ) + < /« )  G H o m ^ M ), V)©Hom(7}.(F), V):

< / • )  = L gffa (x)^(x j0) for all x G UQ0 and
P(x,fo} =  + QpaW  )** f̂z,p) =  °

cf. (14). In the general case, (81) yields (T0 aw0 )(x j a) ( .. . ,  (X a , F®)|x j o j , • - -) =

■ ■ > (X®, dL5 4 a ( l )(F “) +  dL^dg0 a { X % J B ) , . . .) for all u? G A(Ua 0  x F, V).

In order to get handier expressions independent of ( z , / ) ,  we need to specialize.
Suppose L*gw =  (¿j),w  for all g G G with a representation L': G —> G1(V). Then we
may apply Theorem 1.104 on (79) and from (54) we get:

Proposition 2.112 I f L' is a representation of G on V and co0  G A n (Ua 0  x F, V)
obeys L'w0  = (L'g \ u 0  for all g E G, then

T 0a“n = [(£' 0 90a 0  Pr l/a/j) • wj] © (.900 0  P ^ y ^ Q ^ .

Corollary 2.113 If X  G A n (F, Hom(T(0 ), V ))« ^  then
T 0a(Pr*F X) = [(Ad og0 a  o p r ^ )  • (pr> x)] © (g0 a  o p r^J*© ^.

U<i> G A n (F, V) inv then T^a (pCF f>) = (pr> </>) © (g0 a  o p r ^ J ’0 ^ .

For p G A(M , V) we obviously have ^ ( ( p r ^ ^ ) »  =  (prU a0Yp.
For a tensorial form ip G A T (P, L, V) on a principal bundle P(M, G), we define

analogously to (63) for every bundle chart

Pa :=<e(<Plx-«(i/a ))G A(Ua ,V ). (82)

Then Proposition 2.56.3 yields that the collection of P° determines <p completely:

‘/’br-HUa) =  (L°7?0 7ro )»(7T*P0'), (83)
and by (59) and Lemma 1.96 we get for the exterior covariant derivative

¿r ¥’k-'(u a ) =  ( I  o rj o 7rQ) • [jr*(<fPa  + A® A/ P®)].

Similar to Theorem 2.61 we now derive from rj o ir0  o aa<e = ga0-.
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Proposition 2.114 Let p  G A T (P(M, G), L, V) and {(Ua , ̂ a )}aeA be a bundle
atlas for P, then for all a,/3 G A with Uap 0:

P“U ,  =  ( i o ^ ) « P a k fi. (84)

Vice versa, if for a bundle atlas {(Ua , il>a )}aeA on the principal bundle P(M,G)
a family {PQ € A(Ua , V)}a g4 is given such that (84) holds, then there exists one
unique p G A T (P, L ,V ) such that P“ = <7aie(«̂ |5r-i(iza )) for all a G A.

Proposition 2.114 should be compared to Lemma 2.110: {Pa }oej4 defines an
alternating C°°(Af)-linear map p:T>r (M) —> TE(M , V,G) by na

Otp\*-i(ua ) = P° for
all a G A and p  is exactly the map associated with p  according to (58).

Further note that (67) can be deduced from the transformation rule for 1-forms
above. For principal bundles it reads for x G Ua p and gp = gpa • ga  G G:

^ “z .so ) =  A S 3 a ( x ) ^ « ^ ) ’  F “ x > S a ) =  L ^z .g g ) +  ( 8 5 )

For w =  u>r , (64) yields rfx g a}  = Ad(pj‘)(A“) and <tfx ga} =  O£o =  Now
with ga =  e and thus gp = gpa , (85) yields

a ; -  Mf„) =  4 , m .I + & (/> .)* < „ .>  =  Ad(9.fl)( Ax) + s5 .e f f c .

The local evaluation of u?r  takes us to the computation of the local projections.
v = R 'o u r  and w£j.ff)(X,G) = Ad(g- 1 )A“(X) +  dAs -i(G) for all x G Ua , g G G and
(X, G) G Tx (Ua ) 0  TS(G) induce on every Ua x G projections

v(Vff)(X, G) =  (0, (dp5 )e A?(X) + G), h ^ ( X ,  G) =  (X, -(dp 5 )eA:(X)).

The horizontal lifts La : P ^I/o) —> T)l {Ua  x G) are thus given by

L ^ )(X) =  (X ,-(d P fl)eA:(X)). (86)

In order to compute v° for associated bundles, we first need the connection on
P x F for our construction in Section 2.3. By Definition 2.17,

(dR^P )e (Y) =  ((d/?”)e (y ),-(dL - f)e (y)) for all p G P, f  G F  and Y  G g,

thus ( d ^ ^ ) ) : ( y )  =  (0, (dAs )e (y), - (¿ ¿ ')e (y ) )  g Tx (ua ) © t / g ) © 77(F).
With from above, v(“ g ; ) (X, F, G) =  (d& x '3 '/ } )°w?x  g }(X,G ) yields

^ ./)(A, F, G) =  (0, (dPg )eA?(X) + G, —(dL^)e [Ad(g- 1 ) A“(X) + dAfl-. (G)]),

G) = -(dp s )e Ar“(X), +(dL / )e [Ad(p- 1 )A“(X) + dXg-> (G)] + F).

A little computation then shows using d5r(X, G, F) =  (X, (dLf )gG + (dEs )/F )

Q . F) = (X, - ( Jp,). A ;(X), + ( « , . , ) , ( ( « / ) .  a ;(X) +  F]). (st )

Now we obtain from v = 7?vn a tL the following lemma (omitting “zS”):
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Lem m a  2.115 Every connection T on an associated bundle B = P(M,G) Xq  F,
that is defined by a collection of Aa  € Ai(Uo ,0) according to Theorem 2.61, induces
the following projections for all x G Ua , f  G F and (X, F) € Tr (Ua ) ® Tf(F):

=  («. (<U ').A ;(X) + F), h ^ X ,  F) = (X, - (d i 'J .A J fX )) . (88)

The horizontal lifts L“ :D 1(UO) —> T^lfJa x F) are thus given by

L?x .n (X) =  (X ,-(< U ').A ;(X )).

Observe that for B  =  P, we indeed recover the original connection. Our result
is no less than surprising since replacing dpg by dL f  is the only canonical way to
generalize a connection on Ua  x G to associated connections on Ua  x F.

Let us note in passing a formula for the local covariant derivatives of sections of
vector bundles. With the notation of Lemma 2.110 we obtain from Lemma 2.115
( ^ o )a(x)[v(a^)]ff(r) =  v ^ , a (x}}(Xx ,ds°x X x ) = ( 0 ,^ (3 “) +  (<UZ)e A ;(* x )) for any
X  G D’(AL), and with I from (43), Definition 2.82 yields:

:= 7ro  o =  A R/Js“) +  I o (A“(A’|t / a ) ,S
a ). (89)

One easily checks that the V ^sa  transform according to (80) and thus these local
covariant derivatives define a global unique section VX (J by Lemma 2.110.

Finally we compute the local projections of forms. Lemma 2.115 yields

W -  • •, (X‘. f ) ,  •• •) =  < / ) ( ■ .  - . (0, (d i ') .A :(X ‘) +  F ) , ...)

for all u>° e  M lia  x F, V) and (X‘, F )  e T,(U„) ffi T ,(F). For 1-forms w“ =  (1° + ¿°
with p°x  /y T x (M) —> V  and d>°x  f yT fiF ) —> V as above, this yields

=  0, («"■>“)(.,/) =  C / 1  +  ( ( ¿ W . / > )  o AS-

Naturally, (ptyQ fi)va =  0 holds for any p G A(UO, V). One also easily proves:

Lem ma 2.116 I f </> G >Li(F, V) then on every local trivialization Ua  x F:

(pr> <fi)va  = (pr> d>) © (Pr Go A°).

Thus for all x G Ua , ¿X^l(Pr F 0)u °] =  & restriction to the fibers reproduces

Now we can evaluate Propositions 2.75, 2.76 and Theorems 2.77 and 2.78 on the
bundle charts. For 6 G A p (Ua x G, L', IV) one derives using (86) and (87) that

((l>r«.xo)**X- • ■ F ) , ...)  = ^ , ( . . . ,  L ^ X ' ) , . . .)

Since we already proved invariance under Rj, we may restrict ourselves to g =  e. If
we define P° = cr* e<j>h G A(UO, IV) as in (82), then (83) yields

( ^ ) (x,3 )( . . . ,  L^.S )(X’) , ...)  =  P“( . . . , X ’„ ..).
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So the horizontal part (prp <fi) of the form in Theorem 2.78 is locally just (pr[- P a ),
resp., (ir*P“).

Analogously for the vertical part (prpx)> again (87) and (88) yield that it is
locally given by (p?px)va , resp., (ira x)va . So our results take the following form
(again omitting for convenience):

Theorem  2.117 Let V be a connection on a principal fiber bundle P(M ,G) with
associated bundle B(M, F, G), V, W  any vector spaces and L'-.G xW  —> IV a left rep­
resentation. Letva  denote the local vertical projections of V-valued forms induced by
T onUa xF , resp., 7r~l (Ua ) for all a G A. Then for any family {Pa G A(Ua ,W }}aE A
with P“|uotf = (^ / o Sa3)*P3 |t/Qi f o r  QU a, (3 £ A with UQg /  0 (such that this family
defines a pseudotensorial form of type (Z/, IV) according to Proposition 2.114) and
any % G A(F, Hom(T(W), V)) that obeys L*x = ((£'_>)*)*% for all g € G,

^ a {[(prrX > 3 ] •((p r t/fl)*P/3)} =  [(pff-x)«“] •  ((PQ;O)*P"), resp.,

[(^X )^] • ( r ’P0 ) =  ((^X)v°] •  (ir*Pa ),

for all a, (3 G A with Uap 0, where we omitted the restriction onto Ua g. Thus
{[(7raX)u “] • (tt’P“) € -4(7 r - 1 (£4»), VOJaeA defines a global form “xv  • P ” on B.

Corollary 2.118 For any G-equivariant x  € A(F, Hom(T(0), V)) and a ,(3 G A

[(»3x)»9l»(’r*F9)} = [to)v"] • ("T"),
IWx)»9] • (’ -c9)} = K»:x)v"l« (»*C"),

where we omitted the restriction onto Uap /  0- Thus {[(7r*x)v°] • (7r*F°)}a e 4 and
{[(7raX)u °] • (7r*C“)}QGA define global forms “xv  • F ” and “xv  • C ” on B.

Corollary 2.119 If G .4(F, V) is invariant then {(prp<£)v° € A(Ua  x F, V)}a g A,
resp., G -4(7r_ 1 ({7a ), V)}o g 4 defines a global form <fiv G A (B , V). If <j> is
invariant and locally vertical, then is global.

The opposite is not true in general, as the case of a trivial bundle with LIE group
G {e} shows, where every invariant </> G -4(F, V) defines a global but not neces­
sarily vertical form 7r*d> on the bundle (all in Corollary 2.113 vanish). Nev­
ertheless, the canonically generated form due to Proposition 2.75 is always vertical.

Finally, from Lemma 2.116 and Corollaries 1.114, 1.116 and 1.118 we obtain:

Theorem  2.120 Let L be a connection on a principal fiber bundle P(M ,G) and let
B(M, F, G) be an associated bundle, V any vector space, x„ € y4n (F)®Hom(®5g, V)
be G-equivariant and d>n G -4n (F) ® V be invariant under G. Then

« » • F )  = [(¿xM;+ , .F  + [( i.x > ffi.F ,
= ( ( « > ] : « •  f  + ((£ M » k i, . f ,
= (ddn)v + • F.
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2.6 B undles w ith  A belian  S tru c tu re  G roup
As already stated in Lemma 2.68, the left action on the fiber L: G x F -> F naturally
induces a left action on the product manifold L : G x P x F - > P x F ,  that is trivial
in the factor P. Thus, besides H’, we also have a G-equivariant (with respect to L"
and C °^P  x F)-module homomorphism £'-.C°°(P x F ,g) —> D’(P x F) with
(LS)»R' =  R/L’-i and (Rg )*£' = £'FCg-\. In addition, prP oLs  = prP  yields

(Ls )*ov =  vo(Lg)* =  v (L9 )*oL =  /io (L s )* =  (La ) * - v ,
( I 3 ) ,o v nat =  una‘ o(L g )*, (!,)*<> A“ 1 =  hn at o (Lg )*.

prP oL^’D = p yields hnM £ ' =  0, thus £':C°°(P  x F, g) —► «“‘‘© '(P  x F).
Now L defines an action on the quotient manifold P x q  F  iff L^-i o Rg o Lh € Rg

for all g,h e  G, where Rg  := {Rg € Diff(P x F)} s € g - Thus Lg  < NDif[(pXF)(RG)'
Lg  needs to be a subgroup of the normalizer of Rg  in Diff(P x F). Even if G is
abelian and R acts freely, this does not hold automatically, as the example of the
action of Z4 on R3\ { “axes”} by —rotations around different axes shows.

In our case (Lh-i o Rg o LA)(p ,/) = Rg (p, Lgh- lg - ih (fY), thus

L defines an action L:G  x B —> B <=> L c  =  {¡dr},

where G' means the commutator subgroup in G. This is equivalent to the require­
ment that G acts effectively only through its largest abelian factor group G/G '.
Since we require G to act effectively itself, this means G is abelian.

N ote  2.121 According to the structure theorem for abelian LIE groups [7, p. 228],
a connected Lie  group G is abelian iff it is isomorphic to g/kerexp, thus iff G is
isomorphic to Rm x (S1)” = Rm x (Rn /N n ) where m ,n  € No- Thus for any abelian
Lie  group we will write the group operation additively, with neutral element 0, and
we will identify all tangent spaces TS(G) with To(G) in a natural way, such that
dXg = dpg-.Th^G) —> Th+g (G) becomes the identity morphism for all g,h  G G.

In that case, Lg o if =  tt o Lg and tt o Lg = tt (and thus tt o Lb =  5r(&)), because

7roL3 o7r =  iro7roL s  =  7ro prP  oLg = tt o prP  =  5r o 5r

and rr is surjective. Since (Ls )* commutes with h and (for abelian G) commutes
with (Rs )*, it defines an action on Dr (P  x F), i. e., (LS)*L =  L(LS)*. This proves

(La ) , o v = v o (Ls )*, (Lg )„ oh = ho (Lg \ ,

because (Ls ),h = (L3 )*7r*/in a tL = 3r*(L#)*An a tL = 7f*/in a t(L3 )*L = li(La )*. Finally
(LS)*L =~7f*(Lg )»ILha tL = L and the horizontal lifts L are L-invariant. h£' =  0,
because £': C°c (B,g') —> vD ^B), since 5r, o dLb = 0 and Vt(B) is the kernel of dTrb.
It is quite obvious that L coincides with the following locally defined action:
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Lemma 2.122 For abelian G, we have a left action L of G on the whole bundle:

L(g,b) := 0 a l (i(&), L(g,ira (b'))) for all b 6 B ,g E G, where 7r(6) E Uo ,

is then well-defined and fiber preserving: 7r(Z(5,6)) =  5r(6).

We thus get another diagram that commutes for every g E G:

Note 2.123 Suppose f  :B(M ,F,G') -> B '(M ',F ’,G) is a fiber preserving bundle
diffeomorphism between two bundles with left actions L, resp., L‘ of the abelian
LIE group G and T is a connection on B  induced by T on P(Af, G), such that
(Z3)* o h = h o (Zs )* for all g E G. By Lemma 2.71, I' induces a connection T' = P
on B'. For this new connection, h', v' and (Z^)* need not commute on 'Di (B').
As an example, take f  = id: M  x R —> M x R and actions L, L’: R x R —> R with
L(r, s) =  ers and L'(r, s) =  r  + s. Then h'(Xx , y s ) = (Xx , —sA x X x ) with A 6 >4i(Af)
and (L'T\ h \ X x , y s ) = (Xx , - s A x X x ), while h \L 'M X x ,y ,)  = (Xx , - r s A x Xx ).

Analogous to Proposition 2.39, it is sufficient for commutativity of h', v' and L'g
that f  is G-equivariant. In fact, if B  and B' are associated bundles over M and
f  is G-eqivariant and induces the identity on Af, then F and T induce the same
connection f '  on B'(M ,F ',G ).

For abelian G, the adjoint action on g is trivial, which makes life easier in most
cases. Let us specialize our results: the discussion following Definition 2.46 shows:

Lemma 2.124 If G is abelian then 7r*:>t(Af,g) -> A t (P,q) is an isomorphism of
C°°(M}-moduls and GRASSMANN algebras, commuting with exterior differentiation.

From Theorem 2.58 and Theorem 2.59 we immediately get

Theorem 2.125 If G is abelian and o f  E A Y(P(Af,G)) then we have:

structure equation for abelian G: Qr  = dr cor  = cEir -,
BIANCHI identity for abelian G: dr fir  =  dQ.v  =  0;
for all g> E A T (P, L, V) : dr <p = dg>, (dr )m <p = 0, m > 2;
for all a E A p (P, L, V) : (dr )m a  =  0, m > 3.
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Theorem 2.61 and Corollary 2.65 yield (we have g0 a QL = dg0Q, cf. Note 2.121):

T heorem  2.126 Let G be abelian, G >L,(P(Af, G)) and {(Ua , ^ a )}a eA a. bundle
atlas for P, then for all a ,0  G A with Ua 0  := Ua C\U0  /  0 and for all x  G Ua 0 :

F° =  dA°, dFa = 0; (90)
= ^ 0 \uag -  dga 0 -, (91)

= F ^ .  (92)
Ca k fl =  O’k , -  (93)

Vice versa, if for a bundle atlas {(Fa , ̂ a )}a e A  on the principal bundle P(M ,G) with
abelian G a family {A“ € Ai(Ua ,g)}a EA w given such that (91) holds, then there
exists one unique u r  € >L,(P(Af, G)) such that Aa = cr*,e(wr U-i(t/a )) for all a € A.

Thus for abelian G, the collection of FQ defines a global 2-fbrm F € A2 (M,g); if
M  is paracompact then the collection of C° defines a global 1-form C € A i(M ,g).

Finally let us treat the one-dimensional case, g =  R. So G = D x Gi with a dis­
crete abelian subgroup D and Gj =  S1 or Gi =  R. Recall from Corollary 2.25 that if
G is connected, nontrivial bundles only exist for G =  S1, e. g. for the electromagnetic
gauge group Gem =  Ui =  S1.

So suppose g =  ER, then the antisymmetry of differential forms yields that
Lld> =  0 for all <j> G An (F, V). Thus Lemma 2.116 reads (prF 4>)va  =  (prpd>) —
( - l ) n [pr>(I.d>)] • (pr£Qi, A°) = (pr>d>) +  | ( p r ^  A°) A (pCF icE <fi). Analogously,
Corollary 2.113 takes the form T ^prJ- <f>) = (pr£ </>) +  ^(pryofl dg0 a ) A (ptp icBd>) if
<P € A(F, V)inv. In that case, since L,(L,<£) = 0 by (51), tcB 4> is vertical and global
(it is invariant because Ad is trivial). Also recall that dicE<t> + icB d<t> = LcB d> = 0 if
d> is invariant. Thus Corollary 2.119 and Theorem 2.120 prove:

T heorem  2.127 Let T be a connection on P(M,G) with abelian G, g = ER — R,
B(M ,F,G ) an associated bundle and V any vector space. For any <j> G A n (F, V)
with L*<f> = o for all g G G define v G An _i(F, V) by u = ic.B d>, i- e.

^ y } , - - - , y } - l )-= n -d > A d L ^E ),y l
} , . . . , y f - 1) for all f  G F, J* G P ’(F).

For any Ua  €11 denote d>a := 7r*d>, i f  := ?r*i/. Then on all Ua 0  /  0

d>° = + ^=iCdga 0  A i/0 , <f>a v = <pa  + T;7r*AQ A i/a = <fP + -^ t t 'A^ A v0  = (fPv,
E E E

va  = va v = v0  = iA v .

Thus <pv and zz define global vertical invariant V-valued forms on B. The same holds
for (d<p)v since dq> is also invariant, and we have

d(d>v) = (dd>)v + —7r*F A i/, where (d<f>a )v = dd>a — ^-Tt*Aa  A di/*.
E

Note that g =  R alone does not imply that G is abelian. G =  S1 >« Zj with
(Gff) • (r \ e ) =  (r — r ',g) for r, r' G S 1 and g e G Z2, is a simple counterexample,
where Ad((0, </)) =  — ide , and thus i/ in Theorem 2.127 would not be invariant and
global for this Lie  group G.



C h a p te r 3

C om bining Cohom ologies of
C om plexes w ith  C onnections

In this chapter we will introduce several cohomologies, not only the well known
DE RHAM cohomology but also LIE algebra cohomology, the (trivial) CECH coho­
mology and the combination of the latter with the DE Rh a m  cohomology of the
CECH-DE Rh a m  double complex. Another example for a cohomology is the integer
valued so-called singular cohomology. For the purpose of covering them all we will
introduce cohomology and the underlying differential complex in a broader version.

3.1 C om p lexes and  D ou b le  C om p lexes
We start this section with the basic definitions and conclusions, cf. BOTT, Tu, [11].

D efinition 3.1 A (differential) complex C = with, a differential operator D
is a direct sum of modules (resp., merely abelian groups) C', ii €  Z with homomor­
phisms De C' -> C'*+ 1 , where Dl+ \ o Z?, = 0, resp., D2 = Or

--------C'

For any complex with a smaller set of indices, e. g. {C‘}ieNo> o n e  c a n  a dd a n  infinite
number of copies C' := C° for i < 0, combined with the zero map on C°, to get a
differential complex in the above sense.

A chain map f:  A —> B between two differential complexes A, B is a homomor­
phism that commutes with the differential operators of A and B: f  o Da = Db  o  f .

D efinition 3.2 An element c in a differential complex C is said to be closed, if
De = 0. c is said to be exact, if there exist a € C, such that Da = c. Since
D2 = 0, every exact element is closed: imD,_i C kerD,-. Now the cohomology of
the complex C is defined to be the direct sum of modules :=  ® i e z ^ '( ^ )
abelian cohomology groups

H'(C) := kerD ./im  D,_i.

Its elements are denoted by [c] =  c +  D(C) € where c € C.

79
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N ote 3.3 If the differential operators “descent” , i. e., D .̂ C' -> C*- 1 , we speak of
the homology H,(C) of the complex C. If the C l are merely abelian groups, one
also speaks of a differential graded group C and calls D a (co-)boundary operator,
cf. SPANIER, [12]. A chain complexis a differential complex in which the differential
operator is of degree —1 and a co-chain complex is a complex in which D is of
degree +1. The elements of C are called (co-)chains, closed elements are also called
(co-)cycles and exact elements are called (co-)boundaries.

Lem ma 3.4 Every chain map f  : A -> B induces a homomorphism of cohomolo­
gies [/]: H’(A) -» by [/][a] := [/(a)].

Proof. Since f  commutes with Da , it maps (co-)cycles onto (co-)cycles and maps
(co-)boundaries onto (co-)boundaries. □

Definition 3.5 Let f : A —>B and g: B A be two chain maps with f  o g =  idß.
If a homomorphism K: A —> A, A' —> A'~l obeys

g o f - i d A  = ±(D A K ± K D A ), (94)

then K  is called a homotopy operator for f  and g and (94) is called a homotopy
identity.

Lem m a 3.6 I f K  is a homotopy operator for f  and g then = H‘(B).

Proof. On the one hand, [/] o [g] =  [idß] = id/j.(ß), on the other hand for any
combination of signs, ±(D A K ± KD A ) maps closed elements of A onto exact ele­
ments of A. This proves [<?] o [/] = [id^] = id#.(4) and so [/] and [<7] are inverse
isomorphisms. □

Thus L = ± D K  ±  K D  yields [£] = 0. For the reverse we have:

Lem m a 3.7 Suppose L .A —̂ A  is a chain map with [£] = 0 and every module A'
decomposes into A' = ker Di ® B'. Then a homomorphism K: A —> A, A' —> A'-1

exists such that the homotopy identity L = DK + KD holds. E. g., K  is given by

A'lkerD, : =  DD\ 0  L|kerD,> ^ I b ‘ : =  O'

where D ^ .im D i -> B' = im£>, for all i 6 Z.

Proof. [£] = 0 means L(kerDt ) C imD,_i. Since D|ß. is an isomorphism, K  is
well-defined. Let m = a< +  6, € A' with a< 6 ker D, and 6, e B'. Then

( D ^ K  + KD,){a'i + = D i - t K ^  + KDitbi) = L ^ d - D ^ L D ^ b i )  = L ^  + bi),

beause £ is a chain map. □
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D efinition 3.8 A sequence of abelian groups Ai with homomorphisms A ,—» A,+ i,

------> A-i ^4 A, A i+ l ^4  • • ■,
is said to be exact a t A, if  kerfi =  im /,_ i. For an exact sequence, ker/, =  im /,_i
for all i. A short exact sequence is an exact sequence o f the form

0 — > A —4  B - 4  C — > 0. (95)

L em m a 3.9 Any differential complex {C’)ieN0 c a n  be turned into a complex C =
© ,g Z C" by putting (C - 1 ,Z)_i) :=  (kerD 0 , j )  and (C ',D i) := ({0},0) for i < —1,
where j: ker Do —> C° denotes the injection. The resulting sequence

is then exact at all C ' fo r i < 0.

Figure 3.1: Commutative diagram for the exact sequence of differential complexes

D D D

f g
U • Æ 1 * ’ D ’ - u

D D D

f g
0 -------------- - / 1* -------------- -  £?■ -------------- -  c -------------- - 0

D D D

The following proposition is an important tool in cohomology theory.

P ro p o s itio n  3.10 Any short exact sequence (95) of differential complexes, in which
the homomorphisms f , g  are chain maps, produces a long exact sequence of coho­
mology groups

■ • • H '(A ) M  M  H ’(C ) H*+ 1 (A) M  .

In this sequence [/i and [9] are the naturally induced homomorphisms and the con­
necting homomorphism [D] is obtained as follows (cf. the commutative diagram in
Figure 3.1): For any closed c € C ', there exists b € B' with g(b) — c since g is
surjective. Next g(Db) = De =  0, thus Db =  / ( a )  with a G Al+ 1 , because o f the
exactness o f the short sequence at B . Now [£)] is well-defined by [D][c] :=  [a].
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Proof. First of all, since f(D a) = Df(a) = DDb = 0 and f  is injective, Da = 0. To
prove that [D] is well-defined, we must show that [D]DC =  DA. Thus let c G C ~ l .
Then we find b, b' € B with c = g(b), De = p(fe') and thus g(b' — Db) = 0. Exactness
of (95) at B yields that there exist a, a' G A with b' — Db + /(a )  and Db' = f(a')
(recall p(D6') =  D2c = 0). On the other hand, Db' = Df(a) = f(Da), so a' = Da
since f  is injective. This proves [D][Dc] =  [Da] = [0]. Now we check that the
resulting sequence is exact:

1. Exactness at H‘(A): [f][D][c] = [/][a] = [Db] = [0], so im[D] C ker[/]. Let
[/][a] =  l / ( a )l = [0]- Then we find b G B with /(a ) = Db. We put c := g(b)
and find De = Dg(b) = g(f(a)) =  0, thus [a] = [D][c] and ker[f] C im[D].

2. Exactness at H'(B): [q][/][a] = k(/(a))] =  [0] proves im[/] C ker[d. Let
[5 ][b] = [0] =  DC. Then we find c G C with g(b) = De and b' G B  with
g(b') = c. This yields g(b— Db') = 0 and we find a G A such that /(a ) =  b—Db'.
Thus b = db' +  /(a )  G [/(a)] =  [/][a] and ker[p] C im[/].

3. Exactness at H'(C): [D][p][b] = [D][</(i>)] = [0] since Db =  0, so im[p] C
ker[D]. Let [D][c] = [0]. Then c = g(b) with Db =  /(0) =  0. Thus [c] =  [g][b]
and ker[D] C im[</]. □

D efinition 3.11 By a subcomplex C  we mean a submodule C  C C, such that
D C  C C'. A filtration of C is a sequence of subcomplexes Ci

C = Co D G  D C2 □ • • • -

Then C becomes a filtered complex with associated graded complex

G C t= ($ C PICp + i.
p = 0

We define a filtration for negative indices by putting Cp := C for p < 0. The module

A := ® C P
P6Z

is a complex with differential operator D, too, and if it A —> A denotes the inclu­
sion Cp+i —> Cp , p G Z, then the quotient of this map

B t=  A/i(A) = ® C p /C p+1p=0

is nothing but the graded complex GC associated with C , equipped with the differential
operator induced by D.

The combination of two complexes with index sets No and commuting differential
operators results in a double complex, where one operator acts horizontally and the
other acts vertically:
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Definition 3.12 A double complex or doubly graded complex C*’* := ®Pi9€No Cp,q

is the direct sum of modules Cp,q, p.q € No . for which commuting differential op­
erators 8(py.Cp,q —> Cp + 1’’ and d(qy.Cp’q -> Cp,q+1 exist. We can turn any double
complex into a singly graded complex C by summing along the antidiagonal lines

Cn := ®  Cp'q
p+q=n

and introducing a new differential operator D(n y C n —> Cn+1 by

D := D’ + D", D1 :=  J, D" := (—l)pd on Cp 'q.

The cohomology Hq (C) is called the total cohomology of the double complex.

Note that the alternating sign guaranties that D2 = S2 + Sd — d6 + <P = 0, so D is
indeed the base of a cohomology Hq (C). E. g., a D-closed element i  E C, D$ = 0
looks like in Figure 3.2: $  = 0j + 02 +  03 with d<t>i =  0, + D"d>2 = b<t>\ + d<p2 =  0,

+ D"03 = ¿02 — d<i>3 =  0 and ¿03 =  0.

Figure 3.2: D-closed and Z)-exact elements in a double complex

Analogously, 4» =  0i + 02 + 03 is a D-exact clement of C, if there exists a co­
chain E = + £3 + £4 with D=. = 0 , i. e., 0 = d£i, 0i =  ¿£i + d£2 , 02 = —
03 = ¿£3 + d£3 and 0 = S%4 .

In view of Definition 3.1, we could turn C’ “ into a double complex with index
sets Z by putting Cp q := Cp,° for q < 0, resp., Cp,q := C°’q for p < 0, combined
with zero maps Sp and dq for p, q < 0. Nevertheless it is more useful to enlarge C*'*
analogously to Lemma 3.9, cf. Lemma 3.13 below.

For the double complex C*'" := ® p .,6n0 C p,’> t ii e  sequence

C, := $ $ < ? ■ ’ , p e z
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is a filtration of C along the columns of C with associated graded complex

B = & C p /C p + ï = ®
p^L p£L

+ Cp+i (96)

We recognize the differential operator on B induced by D is just (—l)p d, since
Cp —> Cp+ i is zero on B.

Figure 3.3: Two filtrations of a double complex O'*'“

We can as well introduce a filtration of C along its rows:

© © C 'P J , 9 É Z , thus
j>? P>o

b ' =  © c ; / c ; + l  =  e  ( © £ ” ’ ] +  c ; + 1

?GZ <?£Z \p > 0  /
(97)

then 6 is the differential operator on B' that is induced by D. Figure 3.3 illustrates
these two filtrations of the double complex C.

Every double complex can be naturally augmented by an extra column and an
extra row: every row of C*’’ can be augmented on the left by injecting the kernel of
Sot C°-" —> C 1 *. Then by definition the resulting sequence

0 — > kerio C0’’ C1’’

is exact at ker 60 and C°’*. Obviously ker<50 = H°(C"'“). We can also augment every
column of C ’’’ at the bottom by injecting kerD£ = ker do and obtain a sequence

0 — > ker do C''° C*’1 ,
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that is exact at ker do and C*'°, cf. Figure 3.4. Since 6 and d commute, we have
Jod9c, = dqSoCg = 0 for cq € ker, 6q. Thus keri0 becomes a differential complex with
restricted operator d, and is becomes a chain map because is o d = d o is = D o is
by exactness at C°'~. Analogous conclusions for ker do prove:

Lemma 3.13 The additional column kerJo — and row kerdo =
of an augmented double complex C"'“ are single complexes with operators d, resp., 6.
The inclusions is and id are chain maps with respect to D and induce morphisms

[if]: tf;(kerJ0 ) -> H D’ (C), resp., (»¿]: HJ(kerd0 ) -> #£>(£)•

Figure 3.4: The augmented double complex

<1

0 ~ k e r 2 ¿o
|d

0 — keri ¿o
k  .

0 — ker0 ¿o

c 0 2 C1’2 C 2,2

c 0 1 c 11 c 2 t

c°-° C*'° C2’°

\id jid P

ker0 do — kerj do — ker2 d0 — ■
t t t
0 0 0

Analogously to Lemma 3.9, we have turned C ''' into a double complex ® p.,ezCp'g

with (Cp,’,<5p ,d ,) :=

(ker ¿0 , if, d,) for
(ker do, ¿p , id) for
(ker<5o A kerdo, is, id) for
({0},0,0) for

P = -1 ,9  > 0,
9 = - 1 ,P >  0,
P =  -1 ,9  = -1 ,
p < — 1 or q < —1.

An important observation on the relationship between //¿(ker ¿o), (ker do) and
//¿(C) is the following (cf. [11, p. 97]): If all rows of an augmented double complex
are exact then [¿¿] is an isomorphism, and vice versa for the columns of C'-‘ and
[id]. Moreover, we can prove:

Proposition 3.14 If the rows of an augmented double complex are exact at Cp '1
for all p, q with n — l < p  + q < n , then

[is]:H ^ker6 o )^H n
D (C)



86 CHAPTER 3. COMBINING COHOMOLOGIES WITH CONNECTIONS

is an isomorphism. If the columns of an augmented double complex are exact at Cp,g

for all p, q with n — l < p  + q < n ,  then

[ijz ttftkerdo)-*  W

is an isomorphism.

Proof. [i$] is surjective: Let a =  £"=oa « with a > € and Da = 0. Thus
6n an  =  0. By ¿-exactness we find c ^  E Cn - 1 ,° with ¿n _ic„_i =  an . Now a ^  :=
a — Dcn-i £ [a] € H^(C) is a representative of [a] with lowest component removed.
By induction we proceed to a representative £ [a] with a n̂ - 1 ) G C0 ,n . Now
£)a (n -i) =  (J yields aln - 1 l G kern 5o and [ij][a(n ~ 1l]d = [â n - 1 ^D =  [a]-

[ij] is injective: Suppose [ii][a]d = [0]d  for a G kern ¿0 . Then a = Db with
b = 52?=o &»> h  G C‘, n - 1 ~’. Thus ¿n_i&n -i =  0, and as before we can shorten b
by subtracting D-co-boundaries to obtain b̂ n ~2  ̂ G C0 ,n -1  with Db n̂ ~2  ̂ = a, i. e.,
dn-i6("- 2 l =  a and ¿oM71-2) = 0. Thush^”- 2 ! G kern _i ¿o and [a]d =  [0]̂  G Hj(ker50)-

Analogous arguments hold for [¿j] using the exactness of the columns. □

3.2 D e  R h a m  C ohom ology
The most important example for a cohomology with regard to our purposes is the
DE RHAM cohomology of a manifold. Let us assume from now on that M  is para­
compact. We already stated in Proposition 1.18.3 that the exterior differentiation of
forms is a differential operator. Thus the GRASSMANN algebra A(M ) is a complex:

Definition 3.15 The (real-valued) DE Rh a m cohomology of a n-dimensional man­
ifold M is defined to be the ^.-vector space

H '(M ) := H2(A(My) = (J) HP(M), where /7P(M) = kerdp /im d p_i.
p=0

Analogously, for every vector space V, A(M ) ® V is the differential complex for the
V-valued DE RHAM cohomology H~(^M) ® V. Especially H '(M , C) =  H*(M) 0  C
denotes the complex-valued DE R h a m  cohomology.

Obviously HP(M) = {0} for p > n, since then A P(M) = {0}. The dimen­
sions of the vector spaces are known as BETTI numbers bp(M) := dim« HP(M)-, the
EULER characteristic x(Af) denotes their alternating sum:

x(M ) := £ ( - l ) ’6p(M) =  £  i p(M).
p=0 p=0

Since d commutes with pullbacks (cf. Lemma 1.29.2) we obtain:

Lem m a 3.16 Every C°°-map f : M —>N induces a chain map f* :A (N ) —> A(M )
which in turn induces [/*]: H~(N) —> H’(M).
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Corollary 3.17 I f a : M  —> B is a section of a bundle B, then ir* is injective and
a* is surjective. Thus [iv*]:H‘(M ) -> H ’(B) is an injective homomorphism, while
[ct*]: H '(B ) —> H ‘(M) is a surjective homomorphism.

Proof. By definition of a section, ir o u  =  id.w- Thus a* o tt* = id^ = id^.w) and
[ct*] o [t t*] = idH «(M)-

From the homotopy identity in Proposition 1.39 we obtain immediately:

Proposition 3.18 For every X  G P l (Af), [£*]: H‘(M) —> H“(M) is the zero map.
Every derivation of A (M ) of degree 0 that commutes with d, induces 0 on

We will prove that H '(M  x R) =  for any manifold M. Consider the
maps pr w: .M x R -> M  and i r : M  —> M  x R for any r  G R- Since ir  is a section,
prM  oir =  idAi proves i* o pr*v  = id>(A /), but obviously prj^oi; idy»(W xR)- Yet if
we find a homotopy operator for i* and p r^ , our result will follow from Lemma 3.6.

For this purpose, let p  denote the one-parameter group of diffeomorphisms p t
of M  x R with t') := (x, t' +  t), let T  G T>l (M  x R) denote the induced vector
field and dt the corresponding 1-form.

Definition 3.19 We define the integral operator fr :D .(M  x R) —> P.(Af x R) of
degree 0 for r  6 R and w G T).(M  x R) pointwise by

( j  w)(x,t) := y  =  y  W(x  t>ylt' for all x € M, t,t 'G R -

The last identity holds under natural identification of the tangent spaces T(x t )(M  xR)
and T̂ x  t,^M  x R). Linear extension defines f r on D.(M  x R )g  V.

E. g., by evaluation on every chart Ua  x R of M x R one proves:

Lemma 3.20 For every w € A(M ) g  V and r € R we have

y  = [dt A (pr^  = (dt A cu)(x ,r]

L r w =  w, whereas [ / Lju;](x ,t) = W(x,t) — u (»/)>

Proposition 3.21 K r := f r o tr is a homotopy operator for i* and p r^  for all r € R:

dKr + Kr d = idX(M) “  Pr Af °»*-

Thus [¿’] =  [pr^f] 1 and we have H~(M) = H*(M x R) for every manifold M.

Theorem  3.22 (H om otopy axiom  for th e  de R ham  cohomology)
Homotopic maps induce the same map in cohomology.
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Proof: cf. [11, p. 35]. Let fo, f i : M - + N  be two homotopic maps. By Defini­
tion 2.26, we find a map F: M  x R -> N  such that f j  = F  o ij, j  = 0,1 (we put
F (x ,t) = /i(x ) for t > 1 and F (z ,t)  =  /o(x) for t < 0). Due to Proposition 3.21,
[*ol =  [*ib a n d  thus [/J] =  [tg] o [F*] = [i*] o [F*] =  [/;]. □

Corollary 3.23 Two manifolds of the same homotopy type have the same DE Rh a m
cohomology.

Since the differential of a constant map c: M —> N  is zero and thus c*w = 0 for
all a> € Ap(N) with p > 1, we get:

Corollary 3.24 For any contractible manifold M , H’(M) = H°(M) = R.

Here we used the fact that for any manifold M,

H°(M) =  { /  e  C°°(M) | f  locally constant} S  R’, (98)

where i is the number of components of M,cf. Corollary 3.28 below. This proves:

Corollary 3.25 (Poincare lemma)

For all n > 0 ,p > 0 :  H°(Rn ) *  R, Hp (Rn ) =  {0}.

An important tool for the computation of the DE Rh a m  cohomology is the
MAYER-VlETORIS sequence. It allows one to compute the cohomology of the union
of two open sets U, V  C M.

Definition 3.26 For M = U U V with open U, V, the MAYER-VlETORIS sequence
reads

0 — > A(M ) (W  A(U) © A (V ) - U  A(U  A V) 0, (99)

where |u and |y are the restriction of forms and 6 is the difference of the restricted
forms, i. e., ¿(a,/3) := ftunv -  aluny.

P roposition 3.27 The MAYER-VlETORIS sequence is exact and thus induces a
long exact MAYER-VlETORIS sequence in cohomology:

--------> H '(M ) — > H \U ) © H'(V) —4 H \U  A V) —> H'+ l(M ) — >•••.

Proof: straightforward, cf. [11, p. 22] and Proposition 3.10. Proposition 3.27 also
is a corollary to Theorem 3.70 below. □

Thus if U A V = 0, H’(M) =  H’(t/) © H ‘(V) for all i € No . This proves

Corollary 3.28 If M = with Mi open in M, then H*(M) = Yhei H ’(MX).
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As a second example, we compute //*(Sn ) for n > 1 (H"(S°) =  H°(S°) = R2 due
to (98)). Let = R” cover the northern, resp., southern hemisphere such that
U\ A U? — S’*- 1  x R. where Sn - 1  is the equator. Thus = H°(Ui) = R by the
P o in c a r e  lemma, while H'(Ui A i/2 ) = / / '(S ’1 -1 ) by Proposition 3.21. For S 1 the
induced exact sequence reads

0 — ► ^ ( S 1) — > R © R  A  R ® R  — > / / ‘(S1) —> 0 — ► •••.

Now [5]((r, s)) =  (s —r, s —r), thus im[6] = R. This proves / / “(S1) = ker[<5] =  R (we
already knew that from (98)) and /Zl (S’) = cokerfJ] = R. All higher cohomology
groups vanish. For Sn , n > 1, the sequence reads

0 — > / f 0 (Sn ) —4 R ® R  A  //«(S’- 1) — > / / ‘(S’1) —> 0 — > •••

0 A  / / ’’" ‘(S’*"1) —> / / p (Sn ) —» ( ) — > •••

for p > 2. //°(S") S  H°(Sn - 1 ) S  R yields / / ’(S’*) =  0, and from / / ’’(S’*) S
/ / p - ’(Sn - ’) we obtain by induction:

Lemma 3.29 (De R ham  cohomology of the  spheres)

For all p ^ O :  //°(S°) = / / n (S°) = R2, HP(S°) =  {0};
for all n > 0 ,  0 / p ^ n :  //°(S n ) = / / n (Sn ) = R, / / p (Sn ) =  {0}.

Obviously, the long MAYER-VlETORIS sequence is quite efficient if the covering
sets U, V and U Cl V are diffeomorphic to Rn . This leads to the following definition:

Definition 3.30 An open cover H = of an n-dimensional manifold M is
called a good cover if all finite intersections Uao..ar — Uao 0  Ua i A • • • A Ua p , p € No
are diffeomorphic to Rn . If the set of indices A is finite, U is called a finite good
cover.

The following two propositions on good covers hold, cf. [11, pp. 42 -  44]:

P roposition  3.31 Every paracompact manifold M has a good cover, if M is com­
pact it has a finite good cover.

P roposition  3.32 I f a manifold M has a finite good cover then its DE Rh a m  co­
homology is finite dimensional.

Proof. One proceeds by induction on the cardinality p of the finite good cover.
The case p = 1 follows from the POINCARE lemma. If M is covered by p + 1
open sets Uo , . . . ,  Up , then M = Uo U V where V := U*=1 Uk- Obviously Uo , V
and Uq A V  = Ui=i ^0* have finite good covers of cardinality < p. By induction

H ’(V) and H’(Uq A V) are finite dimensional. But now the Ma YER-
VlETORIS sequence yields that H'(U  A V) is finite dimensional, too. □

We state some more general results on the DE Rh a m  cohomology from [11], [5]
and Sp iv a k , [13, p. 8-48].
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T heorem  3.33 (Poincare duality) I f M  is an n-dimensional, compact and ori­
entable manifold, then

HP(M) *  Hn ~p (M).

T heorem  3.34 Let M be a n-dimensional paracompact connected manifold. If

M compact, orientable => Hn (M) = R,
M  compact, non-orientable => Hn (M) = {0},

M non-compact => H n (M) = {0}.

T heorem  3.35 (K iinneth  form ula for th e  de R ham  cohomology) If the
manifolds M , N  are paracompact and H~(M) or H ’(N) is finite dimensional, then

H '(M  x N) = H ’(N) i. e. HP(M  x N) =* ®  [Hq(M) ® H r (N)].
l + r =P

The KUNNETH formula is a consequence of the fact that we can extend all forms
on M , resp., N  to M  x N  by using p r^  and pr^. Since d commutes with pullbacks,
prjju; A ptjy a  is closed iff w € A P(M) and a € A q(N) are closed, and it is exact
if in addition w or a  is exact. Since for bundles we only have one projection, it is
no wonder that the KUNNETH formula does not hold in general. The computation
of the cohomology of a bundle is much more complicated and involves spectral
sequences. We will postpone this to Section 3.5. Nevertheless the product relation
for the EULER characteristics that can be deduced from the KUNNETH formula, also
holds for fiber bundles B(M, F,G), cf. [11, p. 182]:

X(M x N) =  x(M)X (N) and x(B) =  x(Af)x(F). (100)

Let C“ (Af) denote the algebra of all C°°-maps on M  with compact support.
C^°(Af) is a C°°(M)-module. Then we may define A (M )C as exterior algebra of
all forms with compact support: A(M )C = C“ (M) ®R A(M ). Like A(M ), also
A (M )C is a complex and defines the so-called compactly supported cohomology, resp.,
compact cohomology H '(M ) analogously to the DE Rh a m  cohomology. For compact
manifolds M, both H^(M) and H’(M) obviously coincide.

Although H'^M) and H*(M) are defined similary, they differ significantly on
non-compact manifolds. In general, pullbacks f* :A (N ) —> >4(Af) do not map
A (N )C onto A (M )c . On the other hand, every inclusion j:U  -> M  defines a push-
out j*:X(I7)c -> A(M )C by extending compactly supported forms on U by zero to
compactly supported forms on M . As a consequence, we get a short exact Ma y e r -
VlETORIS sequence in the opposite direction (cf. [11, p. 26]),

0 <—  A (M )C <A- A(U)C © A (V )C A(U  O V)c <—  0,

where i(w) =  ( +j*u>) and s =  (ju)* +  (jv)*. Thus the induced long exact
sequence is also reversed. One has isomorphisms HP(M  x R) =  HP~1(M) and a
POINCARE lemma H”(Rn ) =  R, H p (fRn ) = {0}, p ^ n ,  which illustrates that H*(M)
is not invariant under homotopy equivalence, cf. [11, p. 39]. Since the spheres are
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compact, //*(§”) = ff‘(Sn ). Similary to H*(M), if M has a finite good cover,
H’(M) is finite dimensional. We also have a KUNNETH formula for the compact
cohomology ([5, 1 p. 211]):

H*(M xN )= * HC'(M )  ® Hc’ (/V) i. e. HP(M  x 2V) S  Q  [H’(Af) ® H e
r (N)].

g+r=p

The compact cohomology is of interest, since for arbitrary orientable n-dimensional
paracompact manifolds M, the POINCARE duality reads

H”(Af) =  [H*~P(M')]‘,

(here ’ denotes the dual) even if is not finite dimensional (cf. [5,1 pp. 14,198]).
Note that H p (Af) =  [Hn ~p (M )]* does not hold in general: If M consists of countably
many components, M  = (j1=1Af,, then HP(M) is the direct product HP(M) =
n,=i # p(Aft ), but Hp(M) is the direct sum HP(M) =  © “ j HP(M,)

To conclude this section, suppose a LIE group action S  is given on a manifold P.
Since d and S* commute on A (P ) ® V  for all g € G, all S* are chain maps on
X(P) ® V and we have:

Definition 3.36 >4(P)in v® V and y4(P)p_inv ® V =  >l(P)Gi-inv® V are differential
complexes and define the (G-)invariant cohomology H ‘n v(P) ® V, resp., g-invariant
cohomology H*_inv(P) ® V.

Analogously, for any representation S' of G on V , the (G-)equivariant, resp.,
^-equivariant forms with regard to S and S' constitute a differential complex and
define the equivariant cohomology H ’quiv(P) ® V , resp., g-equivariant cohomol­
ogy ^J-eqUiv(^) ® V. Examples are He*quiv(P,g) and He'quiv(P) ® Hom(T(g), V).

For connected G, obviously H^V(P) ® V = Hj_in v(P) ® V and H ^ ^ P )  ® V =
® Since the inclusions t:-4(P)g_inv —> .A(P), etc., are chain maps,

we have natural homomorphisms

M0_inv: H k_-m v(P) ® V -> H k (P) ® V, etc., for all k G No ,

but in contrast to i, these homomorphisms need not be injective, as the example
G = R acting on itself by translations L t (x) = x + t shows: the 1-form dx is invariant
and generates H ’nv(R) = R, but H ’(R) =  {0}, since dx = d ids with ids £ C°°(R)inw

If G is compact with Ha a r  measure p, then the projections p: A(P) —> >t(P)fl-inv
onto (g-)invariant forms, resp., onto (g-)equivariant forms analogous to (29), (40)
and (41) defined by integration over Gi, resp., G, are chain maps and thus define
surjective homomorphisms

[p]fl_in v :/7A(P ) ® V -> 7 f < n v (P)® V , etc., for all k € No .

Also from p o i = id on >l(P)inv, resp., y4(P)0_in v , etc., and thus [p] o [:] = id, we
conclude that the induced homomorphisms [i] are all injective if G is compact.

For every g € Gi, Sg is homotopic to Se = idp: if r: [0,1] Gi is an arc con­
necting r(0) =  e and r( l)  =  g, then F := So (r x idp): [0,1] x P P is a homotopy
connecting idp and Sg . By Theorem 3.22, [S*] = id#.(p). So [t]8-inv[p]0-inv[u>] =  [w]
for all u> G A(P'). We have proved:
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Proposition 3.37 For any Lie  group action S:G  x  P —> P , where G is compact,
H s - in v a n d [p ] e _ i n v  are inverse isomorphisms and thus for all vector spaces V

Hk (P) ® V Z  H k_-m v(P) ® V for all k €  N o .

The morphisms [*]i n v : H *n v ( P ) ® V  - >  H‘(P)® V, [ i ] ^ :  H ^ P ) ® V  -> H’(P)®V
and [tjg -eq u iv i t tg '-e q u iv i-P )  ®  V' - >  H '(P) ® V are injective.

If in addition G is connected, this yields H~(P) ® V = H'n v(P) ® V.

For P = G we will use Hl[G) for the invariant cohomology with respect to the
left multiplication, i. e., the cohomology of the differential complex A L (G). Anal­
ogously, Hr (G) and H](G) will denote the cohomologies of 4̂f l(G), resp., A \G ).
Proposition 3.37 yields (cf. [5, II p. 163]):

T heorem  3.38 I f G is a compact connected L IE  group then

A '(G ) = H;(G) 3  HUG) s  HUG) a  H-(G).

Proof. Corollary 1.64 yields that every bi-invariant form is closed. Thus -4Z(G) =
Hf(G). All other isomorphisms are immediate consequences of Proposition 3.37 with
regard to the various actions: For the bi-invariant forms, note that these are exactly
the forms that are invariant under L: G x G —> G1(G), where L(aj>)(g) — agb~l (and
if G is compact and connected, then G x G is so, too). □

3.3 L ie  A lg e b ra  C o h om ology

As another example for a cohomology of a differential complex, we will treat LIE al­
gebra cohomology, as in [5] and [7]. Suppose g is a K-LlE algebra (for K = R,C)
and l-.g -> gl(V) is a (left) representation of g on a K-vector space V. Recall
Alt(g.V) = Altp (g, V) from Definition 1.5: Altp (g, V) is the vector space of
alternating p-linear maps from gp to V. Alt(g, V) becomes a complex Ct with the
following differential operator d' =  (dj,: Cf —> Cf+ 1 )p €N0: for c € Cf and Xi e g,

P+ 1 _
d‘c ( X „ . . . ,X ,+ 1 ) := £ ( - l ) '« / ( X i )(c(Xl , . . . , X f , . . . , X „ 1))

i=l
p p+1 __

+ E  E ( - l y c i x , , . . . , X i,. . . , x ^ , [X „X ,],x j + 1 , . . . , x p + 1 ).

Our definition of d ( differs slightly from the definitions in [5] and [7], where
analogously to (9) the second term reads

p p+ i

1=1 J=i+1

Obviously both definitions coincide on Cf. Nevertheless with our definition not
only Alt(g, V) becomes a differential complex, but also Hom(7”(g), V) becomes a
complex C; with subcomplex C/. Indeed we can prove:
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Proposition 3.39 For any representation l:g -> gl(V) of g, dj,+1 o d ? = 0  on Ci-

Definition 3.40 H;
p (g,V) := //¿(G ) is called the p-th (CHEVALLEY) cohomology

space of g with values in V with regard to I. We put Hf(g) := Hf(g, K).
Denote the trivial representation by o:g -> gl(V). Then 5p (g) := diniR H£(g) is

called p-th BETTI number of g.
Analogously, ¿^(g, V) := /^ (g ) ■= K) and 6p (g) := d im R ^(g).

We will mainly be concerned with Hp (g, V) for p < 2. Evaluation of d p for these
cases yields for X , Y, Z  G g:

(dgc)(X) =  Z(X)c for all c G = V,
(d 'c )(X ,y ) =  Z (X )c (y )-Z (r)c (X )-c ([X ,r] )  foraUcGZ7j =  Hom(g,V),

(d 'c)(X ,y ,Z ) =  l (X )c (Y ,Z ) - l(Y )c (X ,Z )  + l(Z )c(X ,Y )

-c([X , y], Z) + c(X, [y, Z]) -  c(Y, [X, Z]) for all c G C ,.

Definition 3.41 We define Sym(g, V)0_inv analogously to Alt(g, V)0-in v . Then
Kg G Sym2(g, K)0_inv , where k b denotes the KILLING form of g:

Kg(X,Y) = Tr(ad(X) o ad(y)).

Recall that a LIE algebra s is called simple, if it is not abelian and its only ideals
are {0} and s. A Lie  algebra is semisimple, if it is the direct sum of simple L ie  alge­
bras. Thus if [g, g] denotes the commutator ideal in g, we have [s,s] =  s for semisim­
ple L ie  algebras. Semisimple L ie  algebras have non-degenerate KILLING forms.

g = a® s is called reductive, if a is abelian and s is semisimple. As an important
example, gl(C”) = Z(gl(C")) ® sl(C”) is reductive. A real Lie  algebra is called
compact, if a (negative or positive) definite g-invariant scalar product s exists on g,
i. e., a definite s G Sym2(g, R)0_inv. Compact Lie  algebras are reductive, compact
Lie  groups have compact L ie  algebras, cf. [7].

Lemma 3.42 1. H°(g, V) =  7^(g, V) = V.

2. H*(g,V) =  H\{g,V) = [g ,g f  = {c G Hom(g, V)|c([g,g]) = {0} < V}, thus
dj is injective and H](g, V) =  {0} for all Lie  algebras g with g = [g.g],
e. g. semisimple LIE algebras.

3. If a is abelian, then H£(a, V) = Altp (a, V) and TT’Ja , V) = Hom(®p a, V) and
thus bp (a) = and bp (a) = (dim a)p for all p G No .

Proof, dg = 0 yields 1. and proves that /fj(g,V ) =  kerdj/im dg = kerd,.
(djc)(X, y ) =  c([X, y]) yields 2., and 3. follows from d° =  0 for abelian g. □

D efinition 3.43 Let l:g —¥ gl(V) be a representation of a K-LlE algebra g on a
vector space V . Then V is a g-module with X  ■ v := Z(X)v for all X  G g, v G V .
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1. A subspace V  < V  is called a g-submodule if X  • v for all X  € 0, v € V.

2. V  is called simple if {0} and V are its only submodules.

3. V is called semisimple if it is the direct sum of simple submodules.

Thus a Lie  algebra s is simple iff it is not abelian and it is a simple s-module
with respect to the adjoint representation; s is semisimple iff it is semisimple as a
5-module and s does not act trivially on any submodule.

For semisimple LIE algebras, we state the following results:

Theorem  3.44 (W eyl’s theorem ) I fV  is finite dimensional and I: s -> gl(V) is a
representation of a semisimple K-LlE algebra s, then the 5-module V is semisimple.

Proof: cf. [7, p. 149]; in fact, it involves WHITEHEAD’S first lemma below. □

Theorem  3.45 Let 5 be a semisimple K-LlE algebra and Its gl(V) a represen­
tation of 5 on a finite dimensional vector space V = Vj ® • • ■ ® Vn with representa­
tions Lt5 —> gl(Vi) on the simple s-modules V,. Then the following results hold:

1. H?(s, V) =  Vit ® • • • © Vim , where Vi} are those (one-dimensional) submodules
with =  0 for j  = 1 ,.. .  ,m , thus i>o(s) = 1;

2. Wh it e h e a d ’s first lemma: H)(s, V) = {0}, thus 6o(s) =  0;

3. Wh it e h e a d ’s second lemma: H((s, V) = {0}, thus i>o(s) =  0.

Proof: kerf, <j V  yields T; for WHITEHEAD’S lemmas see [7, pp. 160 -  161]. □
Let us determine how the LIE algebra cohomlogy is related to the invariant co­

homology of the corresponding Lie  group. We know from Lemma 1.62 and Proposi­
tion 1.79 that the differential complexes A S (G, V) are isomorphic to Alt(g, V) with
induced differential operator ds . Observe that ds  and d° differ only by constants,
thus they induce the same cohomology and we obtain that both

^ s ]:h ;(0 ,v )-> h ;(g ,v ), s  = l ,r ,
are isomorphisms. Recall Proposition 1.81: w € >4S (G, V)0-inv yields du> = 0
since by (36), ds  is zero on Alt(g, V)s -inv = Alt(g, Vjcj-inv- Thus we may write
#j(fl>y)inv =  Alt(g, V)inv and H '(g, V)8-inV =  Alt(g, V)fl_inv. Now Theorem 3.38
proves:

Theorem  3.46 1. For any (real) Lie  group G, H*(g) = H£(G) =  H‘R (G).

2. I f G is connected, then Alt(g, R)8_inv = Alt(g,R)inv = ff;(g) inv.

3. For compact connected G, Alt(g,R)inv =  H;(g) =  >4/ (G) =  Hj(G) = H'(G).
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We want to generalize Theorem 3.45 (for trivial representations) to reductive
Lie  algebras, according to [5, III].

For the direct sum g © f) of two LIE algebras we have a natural isomorphism
Alt(g, K) ® Alt(f), K) -> Alt(g © i), K), c ® d •-> c A d. Identifying these algebras we
get for the operators of Proposition 1.79 for X  G 0, Y  € I):

= Lxb®  c +  b® LyC, for all b € Alt(g, K),c € Alt(I),K),
ds (6®c) =  ds b ^ c  + ( - l ) p b ^ d s c, for allfe G Altp (g,K),c G Alt(f),K).

These relations are the main ingredients in the proof of (cf. [5, III p. 183]):

Proposition 3.47 (K unneth  form ulae for th e  Lie algebra cohomology)

H0*(gffifj) =  H0’(g) ® Ho*(b), (101)
Alt(g © fj, K)0efj_inv = Alt(g, K)0_inv ® Alt(fj, K)b_inv , i. e. (102)

Ho (s ® b)s®f)-inv = Ho (g)B-inv ® Ho (fj)fj_jn v- (103)

For any reductive Lie  algebra g =  a © s and any finite dimensional vector
space V, Alt(g, V) and Hom(g, V) are semisimple g-modules with respect to the
representations LL  ([5, III, p. 188]). In particular, Alt(g, V) decomposes into

Alt(g, V) =  Alt(g, V)0_inv © L$ (Alt(g, V)) (104)

and we obtain projections q: Alt(g, V) -> Alt(g, V)0_in v . Moreover, we get:

Theorem  3.48 //g  = o© s is a reductive Lie  algebra and V is finite dimensional,
then the natural injection i: Alt(g, V)B_jnv —> Alt(g, V) induces an isomorphism

[»]: Alt(g, V)0_inv -> WJ(g, V), c M- c + im d".

Proof: cf. [5, III p. 189]: kerd0 = Alt(g, V)0_in v @inido and imd° =  ¿g(kerd°). □

Proposition 3.49 We have a linear map p: Sym2(g, V)B-inv Alt3 (g, V)B_inv de­
fined by

p(s)(X, Y, Z) := - d 2s(X, Y, Z) = s([X, Y], Z)
I f  HJ(g) = H^(g) =  {0} then p is a linear isomorphism.

Proof: cf. [5, III p. 181]. □
Thus if 5 is simple, the KILLING form Kt  defines a non-zero element p(«$) €

Alt3(s, K)s_inv , namely

p(K,)(X, Y, Z) = Tr(ad([X, Y]) o ad(Z)).

So i»s(s) > 1 and the KUNNETH formula implies 63(5) > m  for a semisimple LIE al­
gebra s = Si © • • -ffism . On the other hand for simple s suppose s G Sym2(s, K)s_in v -
Since k s  is non-degenerate, we may define G Ends_mod(s) by

s(X, Y) =  k8(0X, Y) for all X, Y  G s.
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In fact, s-invariance of s and k s  yields th o ad X  =  adX  o for all X  6 s. Thus for
every eigenvalue A € K of Vs {0} /  ker(V> — A id) os. This implies ker(0 — A id) =  s,
so =  Aid and s =  Ak s , which in turn yields 63(5) =  1.

For K = C, the condition A € K is automatically fulfilled. For K =  R, observe
that is self-adjoint to k s . If k s is negative definite, it defines a scalar product and
then has only real eigenvalues. (A positive definite k s  would mean {0} =  [s,s] =  s,
cf. [7, p. 256].) But k s  is negativ definite iff s is compact. We have proved:

P roposition 3.50 For every semisimple5 = Si®- • -®sm with simple 5,, 63(5) > m.
IfY. — C or 5 is compact, then bz(5) = m.

Definition 3.51 For a reductive Lie  algebra g, let (dpe )*: Alt(g, K) -> Alt(g®g, K),
where [(d/ie)*( A')]( . . . ,  (X’, V’), . . . ) :=  K ( .. . ,X* +  Y l , ...) , denotes the pullback of
dpe : g®0 -> g, (X, Y) X  + Y  (cf. Definition 1.26/ I f  it Alt(g, V)0_inv -> Alt(g, V)
and q: Alt(g@g, K) -> Alt(g, K)0-inv ® Alt(g, K)0_jnv are defined by (102) and (104),

7g := q o (dpe )* o i: Alt(g, V)0— inv Alt(g,K)0 —inv 0  Alt(g, K)0 —inv

is called co-multiplication map for g. Let Alt+ (g, V) := Altp (g, V).

For k € K =  Alto(g, K)0-inv obviously 7e (fc) = k = l ® k  = k ® l .  On
Alt+ (g, K)0_jn v , the algebra homomorphism 70 takes the following form:

Lemma 3.52 Let g be reductive. For all K  € Alt+ (g, K)0_in v ,

70(X) = K  0  1 + 1 0  K  + K', K 'e  Alt+ (g, K)0_inv 0  Alt+ (g, K)0_inv .

Proof: (cf. [5, III pp. 193,201].) Write 70(A") = 01  + 1 0  K2 + K ' with K2, K2 €
Alt(g,K)0_in v . Then for all X* 6 g, Xi(. , . ,X ’, . . .) =  7 0 (K )(.. . ,  (X’,0 ),...)  =
K(. . . ,X ‘, .. .) .  Thus Ki = K  and analogously K2 = K. □

Definition 3.53 Let g be a reductive Lie  algebra. K  € Alt+ (g, K)0_inv is called
primitive if

70(X) = /C 01  +  1 0  K
The primitive elements form a graded subspace PB = P’ of Alt(g, K)0_in v , called
the primitive subspace, r := dim PB is called the rank of g.

Lem ma 3.54 1. K  A K  =  0 for all K  £ PB.

2. The homogeneous primitive elements of Alt(g, K)0_;nv have odd degree.

3. If K i , K p are linearly independent homogeneous primitive elements, then
A Ap 0.

Proof: cf. [5, III pp. 201,202]. 1. is a consequence of 2. □
Note that the exterior product K\ f\ K 2 of two primitive elements is not primitive

since 70(Xi A X2 ) =  (A\ AX2)0 1  + 10(A i AK2 ) + Xi 0 X 2 — A2 0  Ai. Nevertheless
Lemmas 1.9 and 3.54.1 yield that the inclusion map h: PB —> Alt(g, K)0_inv extends
to a unique algebra homomorphism hA: A PB -> Alt(g, K)0_inv of degree 0, if A A0 is
given the gradation induced from that of PB.
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Theorem 3.55 For a reductive n-dimensional LIE algebra g,

/ \  Alt(g, K)g-inV

is an isomorphism of graded algebras. Thus Alt(g, K)B_inv and H'(g') are exterior
algebras over graded subspaces with odd gradation. If r =  dim Pg is the rank of g
and gj, j  = 1 , . . . ,  r are the odd degrees of the homogeneous elements in Pg , then

'¿,gj = n, x(g) =  =  0 a n d  = i fn > o .
j=i p=o p=o

For n =  0, obviously x(o) =  i>o(p) =  1, since bp (g) = 0 for all p > 0.

Proof: cf. [5, III pp. 202,203]. □

Theorem  3.56 Let g = a©5 (where a is abelian and5 = Si©- • -@5m with simple s,)
be a reductive LIE algebra over C or let g be compact. If a = dima, then

Mo) = 1, M g) =  a, ¿>2(0) =  Q  ’ M o ) =  (3 ) +  m ' M o ) =  (4 ) +  m a -

Thus for any real compact connected LIE group G =  (S1)“ x Gi x • • • x Gm  with
simple Gi,

H°(G) = R, H '(G) = R a , H 2(G) =  r ("), H3(G) ~  R(‘)+ m , H4(G) S  RW+ m o .

Proof: The first statement follows from Lemma 3.42.3, Theorems 3.45 and 3-55
and the KUNNETH formula. For the second statement, Theorem 3.46.3 applies. □

Examples are the classical Lie  groups: the special orthogonal groups SOn + 2,
the special unitary groups SU„+i and the symplectic groups Spn are all compact
connected semisimple for n > 0 and thus have trivial #*((7), 772(G) and H4 (G).
Nevertheless note that this result only holds for the DE RHAM cohomology, but in
general not for the integer valued singular cohomology H'(G, Z). [2] contains tables
for the singular cohomology of the classical Lie  groups, which illustrate that torsion
elements may well appear in H2(G,Z). In fact we have H2 (SOn+2, Z) = Z2.

Our results prove that the primitive subspaces are the keys to the DE Rh a m co­
homology of any LIE group G. According to Corollary 3.28, H ’(G) =  flic/ #*(<-0),
where |Z| is the number of components of G. Now <7j is diffeomorphic to K  x Rm ,
where K = expt is the maximal compact connected subgroup of Gi, resp., G. Thus

= H~(K) by the KUNNETH formula and the POINCARE lemma. Since f is
reductive, Theorem 3.46, resp., Theorem 3.48 proves that /7*((7i) =  Alt(t, R)t-inv-
Finally Theorem 3.55 shows:

Corollary 3.57 If K  = expt denotes the maximal compact connected subgroup of
a real L1E group G then H*(G) =  n«g/(AA)- I f K  = {1}, x (^ ) =  KL otherwise
X(G) = 0.
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Corollary 3.58 For any principal bundle P(M ,G) with K  =  {1}, x(P} =  jZ| •
x(M), otherwise x(P) =  0-

Proof: immediate by (100). □
So let us compute PB for the classical Lie  groups. For G < G1(C") recall the

bi-invariant G -4Z(G,C) from (32). By Corollary 1.84, resp., Proposition 1.81
all ¡¿G are closed, but due to Lemma 1.76, 0 only for odd k. Let :=
(w a-i)e G Alt2/_1(g,C)inv- Then for all X, G g < gl(C”)

^ i_1(X1, . . . ,X 2i_1) =  — 52 ( - l ) 'T r ( X , ( 1 ) o . . . o X ,<«_!)), \ < l < n .
>' pes2'- 1

In addition we define the so-called skew Pfaffian Sf for g =  so2 m . If (,) denotes the
inner product in R" then

X G son iff (Xx,y) = —(i,X y ) for all x, y G Rn .

(,) extends to an inner product in all spaces Ap Rn . Let ¡3: A2 Rn —> son be the
canonical isomorphism defined by

[/3(i Ay)](z) := (x ,z)y  -  (y ,z)x  for all x ,y ,z G R n .

Its inverse a: son —> A2 Rn is given by

(q (X), x A y) = (X x ,y ) for all X G son , x, y G Rn .

Finally let E G A” Rn denote the unique unit vector in A" Rn which represents the
orientation. Then for n = 2m the skew Pfaffian Sf2m_i G Alt2m_i(so2m . R)so_inv is
given by Sf2m_i(X 17 . . . ,  X2m_j) =

(2m — 1)' q (^ p(i)) A a (l^p(2), ̂ p(3)]) A ■ • • A a([Xp(2m_2), Xp(2m_i)]))

for all X{ G so2 m . Now the following theorem holds (recall from Proposition 3.50
that a reductive g is simple if i>i(g) = 0 and 63(g) =  1), cf. [5, pp. 253 -  269]:

Theorem  3.59 1. The elements $ 2/l^ \  1 < I < n form a basis for Pgi(K»)- Pi
particular, gl(K”) has rankn.

2. The elements $ 2'- i  \  2 < I < n form a basis for Pj(K"). In particular, sl(Kn )
has rank n — 1 and is simple for n > 0.

3. The elements , 1 < I < m form a basis for Pso2m +1- In particular,
so2 m + i has rank m and is simple for m > 0.

4- The elements 1 < I < m — 1 and Sf2 m + i form a basis for PSO2m. In
particular, so2m has rank m and is simple for m > 2.
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5. The elements 1 < I < n form a basis for PsP n . In particular, spn has
rank n and is simple for n > 0.

6. The elements z;$2(-i> 1 < / < n f o r m  a  ^a s i s  f o r  particular, un has
rank n.

7. The elements 2 < I < n form a basis for PSUn. In particular, sun has
rank n — 1 and is simple for n > 1.

In particular, Theorem 3.59 yields that the DE Rh a m cohomology of the real
LIE groups Gln , Sl„, SO„, Spn , Un and SUn are isomorphic to exterior algebras over
certain u>2/-i, resp., i '^ i - i ,  and eventually ^ z (Sf) € A'(S02m)-

Finally, given a Lie  group action S: G x P P, we will combine the g-invariant
cohomology on P with the LIE algebra cohomology of g. To this purpose, we form
the double complex

C*’* := >4(P) 0  Hom(7”(g), V) =  ®  A q(P) ® Hom(®p g, V).
p.g€No

(—l)pd(7j: Cp 'q —> Cp,q+1 is the vertical operator, and for the horizontal operator
we have > Cp+1,q. For the representation /:g —> gl(.4(P) 0  V) several
choices are possible. E. g., one can take the trivial representation o. Then d° and d
obviously commute.

Instead we choose I defined by i(X) := sgn(S)Lsx  and define 8 := sgn(S)d \
Since Lie  differentiation and exterior differentiation commute, 5 and d commute on
the double complex and define an operator D on the associated single complex.

As in Section 3.1 we augment this double complex by an extra column kerdo and
an extra row kerdo. Let P = j ^ /P ,  with components Pi, then one easily verifies

kerio =  X (P)0_inv ® V, H;(kerd0 ) =  # 0’_in v(P) ® K
kerd0 S  n H o i"(T (0 ),V), //;(kerdo) V )’

•6 i ¿ez

Moreover, for the various subcomplexes we obtain:

Lemma 3.60 For a Lie  group action S of G on P, let P = j 16/Pi a n d P/G  =
UjgjiP/GJj with components Pi, resp., (P/G)j, where |/ | =  |J | • |G /Gi|.

1. A*'" := A(P) 0  Alt(g, V) is a subcomplex of C*'* with

ker do =  X (P)0_inv ® V, Hj(ker d0) = H0‘_inv(P) ® K
kerdo S  J ]  A l t (9- H  ^*(kerdo) *  V).

»€/ ¿6/

2- A 8-inv := -4(P)0-inv ® Alt(g, V) and A*^equir := ® Alt(g, V) are
subcomplexes of A ' " with 8 =  sgn(S)d°, resp., 6 = — sgn(S)d° and

kerdo =  4 (P ) 0_inv ® V, PJ(kerdo) = H;_in v(P) 0  V,
kerdo =  I ]  A l t (9’ V )> ^ ’(kerdo) *  V ^

i e i i e i
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3. A ‘f v :=  X(P)inv 0  Alt(g, V) and A^*uiv :=  «4(P)eqUiv 0  Alt(g, V) are subcom­
plexes o f ¿¡iinv, resp., A'^equiv with 6 = ± sgn(S )d° and

kerJ0 = <4(^)inv 0  V,
kerdo — J I  Alt(g, V),

j€J

/ / ;(k e rJ 0 )= H * n v (P )® V ,
H;(kerdo) =  I I # ; ( 9 . n

C oro lla ry  3.61 I f  all components Pi of P  are diffeomorphic to R n  then

h -d (c - )  a  n ^ ( 9 , n  h u a - )  n  f f ;(9 . v ) .
« € / i e i

For compact G, also Hp(Ag'fin v) =  Hie/ — # d (A“’*). For semisimple G,

= h d‘ (a ^ , )  a  ¡ < 2 ,
H ^ A - ' )  a  H M A - ,.) a  H U P ) ® v ,  ¡ < 2 .

P roo f. For the first statem ent use Proposition 3.14 and the PoiNCAR.6 lemma; for
compact G, Proposition 3.37 applies. For the last statements use Theorem 3.45 and
again Proposition 3.14. □

L em m a 3.62 For all ion  € >ln (P) 0  V  =  -4n(P) 0  Alt0 (g. V) and i < n +  1,

S'9<fajn — (—l f d S 9a>n  =

P ro o f. This is an immediate consequence of Lemma 1.106. □

D efin ition  3.63 We define the homomorphism S .A (P )  0  V —> A (P )  0  Alt(g, V)
by Swn  := ££_0 S ,u n  fo r all wn  € A n (P) 0  V.

The homomorphism S^: A (P ) 0  V  -> Alt(g, V) is given by S^w := E^=o •5'^n
for all w -  with wn G -An (P) 0  V.

Let pq:A(P) 0  Alt(g, V) —> A (P ) 0  V  denote the canonical projection onto
■4(F) 0  Alto(g, V). Since p0 o D = d o po, p0 is a chain map. Obviously po o S =
id><(P)8V5 thus if S is a chain map, we obtain [po]°[S] =  idH-(P)®v and [S] is injective.
Indeed we find:

P ro p o s itio n  3.64 1. S is a chain map and induces an injective homomorphism

[S]: H \P )  0  V  H B M (P) 0  Alt(g, V)).

2. S 9 is a chain map and thus induces a homomorphism

[S ; ] :H - ( P )0 V - > P ;( g ,V ) .
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Proof. By Lemma 3.62 we have £>(Sui) = 52 D(S't u n ) =  52[<5tSiWn+(—l)'dSiu>n ] =
t=0 ¿=o

¿[S ;+1dwn + (-l)*dS;+ 1u;n + (-lydSlWn] =  £ (S :+ 1 <k>n) + ( - l ) n dS.n + 1u;n +  dun  =
¿=0 *—0
S(dwn ) since S"+ 1wn = 0. 2. follows from Lemma 3.62 for i =  n +  1. □

We may also restrict S to A (P)B-inv 8  V. Then by (50), imS C A’2equiV and
S induces an homomorphism [S]: H’(P)e- m v  8  V -+ Hp(A (P)B_equiv 8  Alt(g, V)).
Since also i: A { P \- \nv ® V -> A (P)B_equiv 8  Alt(g, V) is a chain map, we obtain a
chain map S — i (with p0 o (S — i) = 0) and an induced homomorphism

[S] -  [»]: R*(P)B-inv 8  V H D‘ (A(P)e- ^  8  Alt(g, V)).

Theorem 3.65 If g is semisimple and w E ^ (P ^ -in v  8  V is closed, there exists a
unique x € Ao(P)B_equiv 8  Alti(g, V), such that

dx = — S.u> and 8x — S2l j .

Proof. By Lemma 3.62 8S2u  =  0. Since H^(g, V) =  0, we find x  € Ao(R)s -equiv 8
Alti(g, V) with &x — Lemma 3.42 yields that ¿i is injective, so x  >s  unique.
On the other hand we know from DSai = 0 that —8S,uj  = dS^cJ = d8x =  <^X- Thus
dx +  S.u» E kerJp But ¿i is injective. □

3.4 T he Ce c h -d e  R h a m  Com plex
As further examples for differential complexes we will discuss the CECH complex
and the resulting CECH-DE Rh a m  double complex. Let M  be any (paracompact)
manifold with a cover U = {C7a }o eA, where A is countable and ordered. Recall that
we have defined Ua o ..^p := Uao A Ua i A • • • 0 UQp. Let Ha0 Ua o , FU «» and
IL»0<~<oP Uao -aP denote the (disjoint) direct products of these open sets.

C ° : = n ^ « o ) ,  C * :=  n  A i/a o a J  and C” :=  R  W .,...o„)
Q 0 cro<c*l Q o<""< c*p

mean the products of the GRASSMANN algebras of these open sets. We denote the
components of the elements € Cp by wQ0...ap  E A(i7O0...Qp). We will also allow
indices a, in arbitrary order (even with repetitions) subject to the convention that
the forms wO0...Op are totally antisymmetrical with respect to these indices.

Definition 3.66 The CECH complex A) := © pgN0 Cp equipped with the
following differential operator 8: Cp —> Cp + 1 , w >-> 8uj :

p+ i
( ^ O a o — O p + i • 1 )  ^ a o —O ; ■ o p + 1 Q p + i

J= O

Lemma 3.67 82 = 0.
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Proof. (<Pw)ao ;..a F + a=  E J <i( - l ) , ( - l ) ^ a o ...5 ;...i ...ap+2 +
52j<j(—1)’(—l) J - l u ; ao- a.-a'j -ap+a =  w here w e  have omitted the restrictions. □

8 is the generalization of 8 in (99) to the case of countably many open sets.
Obviously kerJ0 — A(M ). If we identify ker<50 and A(M ) then the injection j  in
Lemma 3.9 is just the restriction of forms r: A(M ) -> C°, u h  ( ... ,w|uQ, ...). Let
C*ug(il, A) denote this augmented CECH complex.

D efinition 3.68 Let M be a paracompact manifold with a cover U =  {i/a }a e A and
let {pa }a eA denote a partition of unity subordinate to 11. Then we define a homotopy
operator K: C;ug(H, A ) -> C;ug(U, <4)CP(U, >1) -> >4), K u with

(Â  w )a o ...<Jp_ 1 :— P a  O ^aao-.-ap -i-

a £ A
(105)

Lemma 3.69 K obeys the homotopy identity K8 + 8K = idc;ug(u,A)-

Proof. (K8u + 8K u)ao...ap = £ o 6 4  pa  (<ta)a a o ...a „ + n = o ( - l ) ’(^ )a o -  ■■■<>, =
(52a Pa)a>aQo...Qp XZt,a( 1) +  Pa ̂ aao— a,— ap d" 52i,a(~ 1) Pa ^aao-St-ap ^ao—ap’ □

Just as in Proposition 3.27, we obtain that the cohomology of the CECH complex
consists only of H$(C*(il,A)) = ker50 — A(M ), resp., H$ (C*ug(ll, >1)) =  0:

T heorem  3.70 (G eneralized M ayer-V ietoris sequence) L etr:A (M ) —> C°
denote the restriction of forms, w >->(... ,w|uQ, . ..) . Then the sequence

0 — > A(M ) -L+C° - ^ C 1 - ^ C 2 • • •

is exact and thus H°(C‘(H,A)) =  ker<50 = A(M ) and Hf(C*(il,A)) = 0 for i > 0.

Proof. Lemma 3.69 yields that idH;(c;og(u,A)) =  ii d c;Bg(u.A)] =  0. □
If we also consider the exterior differentiation of forms, then we obtain the CECH-

DE R h a m  complex:

Definition 3.71 The CECH-DE Rh a m  complex is the double complex

C-’’(1L,A):= ®  C P ( U , A )  with C p ( i l , A ) : =  J ]  A ( ^ o - - o p ) >
P»Q€No Oro<—<Orp

where 8 is the horizontal operator and d is the vertical operator.
We obtain the associated singly graded complex C(1L,A) with differential opera

tor D = 6 +  (—l)p d by summation along the antidiagonal lines:

C (il,A )n := ®  C p ( U , A ) -
p+?=n

T heorem  3.72 (G eneralized M ayer-V ietoris principle) For any manifold M
with a countable cover 11, the restriction map r:A(M ) —> C(ll, A) is a chain map
and induces an isomorphism of cohomologies:

[r]:H \M ) -> H»(C(1LAY), Hn (M) -> HD
n (C(il,A)).
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Proof. This is a consequence of Proposition 3.14 and Theorem 3.70. □
The inverse map [r]—1 is less intuitive. We need a chain map /:C (H . A) —>

A(M),C(iL,A)n -> A (M ), that tells us how to “collate” together the components
of a ¿ECH-DE RhaM co-chain into a global form on M. Such a f  with [/] = [r]- 1

is given by the following formula, cf. [11, p. 102]:

Theorem 3.73 (Collating form ula) Let K  be the homotopy operator defined in
(105). For a = £ ”= o a. G C(U, A ” with a, G C’(H, A - i )  and Da = (3 =  "̂=0* A
with fii G C*(U, A + i-i)j

n n+1
/( a )  :=  -  E  K (-D "K Y ~ 1l3i G C°(ll, A )

!=0 :=1

is a global form on M (resp., the restriction of such a form to the open sets Ua ).
f  o r  = idA (M y and idc(u,A) —r o f =  DL + LD, where the homotopy operator
L:C(iLA) -> C(il, A ,  C(U, A n -> CUM)*1- 1 , a •—> is given by

(Lafi := E  K (-D " K ) j - i-  1a j 6 C ’( i l , A . i . i ) .
>=«+i

Figure 3.5 illustrates how the components 03 and /?4 of a, resp., /3 = Da are
sent to C°(U, A n ). In order to obtain a global form on M , all components o, and 3i
have to be treated in this manner.

Let us now enlarge the CECH-DE R haM complex as in Lemma 3.13. By Theo­
rem 3.70, we have ker60 — A(M ). For the additional row, kerdo obviously consists
of all locally constant maps on the sets UQo .a p - We denote the complex kerdo by
C(M,R), cf. Figure 3.6.



104 CHAPTER 3. COMBINING COHOMOLOGIES WITH CONNECTIONS

Definition 3.74 The cohomology W*(ll, R) := Hj(C(U, R)) of the differential com­
plex C(H, R) := kerdo is called CECH cohomology of the cover 11.

The CECH cohomology of a cover 11 is a purely combinatorial object. Note that
the argument for the exactness of the generalized Ma YER-Vie t o r is  sequence breaks
down for the complex C(H, R), because the elements of C(H, R) are locally constant
functions so that partitions of unity are not applicable and K  in (105) is not defined
for C(H,R).

Figure 3.6: The augmented CECH-DE Rh a m  complex
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T heorem  3.75 If Ml is a good cover of M , then the DE Rh a m  cohomology and the
CECH cohomology of Ml are isomorphic:

H‘(M) *  H\M l,R).

Proof. If 11 is a good cover, then all sets Uao -ar  are diffeomorphic to RdimAf and thus
the columns of the augmented CECH-DE Rh a m  complex are all exact. The rows
are exact by Theorem 3.70. Now Proposition 3.14 yields that both cohomologies are
isomorphic to H'D (C(M,, >4)). □

Corollary 3.76 The CECH cohomologies H'(M.,^V) are the same for all good cov­
ers Ml of a manifold.

As a consequence, one can compute the DE RHAM cohomology of a manifold M
using purely combinatorical considerations by computing the CECH cohomology of
a good cover of M, cf. [11] and [2].
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3.5 Spectral Sequences of D ouble Com plexes
D efinition 3.77 A spectral sequence is a sequence of complexes {E r }rGN0 with dif­
ferential operators Dr , where every E r is the cohomology of its predecessor:

E r + l  = H'D r(E r ).

I f Er  becomes stationary, i. e., ET = Er +i for all r > R, we denote E r  by Ex  and
say that the spectral sequence converges to some filtered complex H i f  Eoo = GH.

We obtain the spectral sequence of a double complex £*•* by putting Eq = B =
GC from  (96) and defining Dr to be the differential operator induced by D on E r , so
Er+i = H^ffErY We say that an element (3 € C '-' lives to E r , r  >  0, i f  it represents
a cohomology class [Z?]r  € E r , resp. equivalently, if  (3 is D-closed in Eq , E \ , . . . ,  E r _\:

=  0, i =  0, —1.

Lem m a 3.78 {3 G C ’’" lives to E r , r > 0, iff (3 is d-closed and we have a “zig­
zag” E =  fo +  ô  +  • • • +  6—i of elements & € C*'" with £0 := (3 and (cf. Figure 3.7)

D'^i = = - D"£i+ 1 , i =  0 , . . . ,  r  -  2.

Now Dr [/?]r  =  [¿fr-i]r =  [x]r> so Dr  is given by 6 at the end o f the zig-zag.

Thus like C~'* every E r is a double complex, too: E r  = © Pi,g No and Dr
shifts the bidegrees by (r, —r  +  1): Dr : E™  —> £p+r -«~r +1. Obviously

Ei =  Hd (C) and E 2 =  ^ ( / /¿ ( C ) ) .

The spectral sequence of a double complex computes the total cohomology of
the double complex. We have, cf. [11, p. 165]:



106 CHAPTER 3. COMBINING COHOMOLOGIES WITH CONNECTIONS

Theorem 3.79 Given a double complex C''" = ® p ,9g n 0 Cp 'q there is a spectral
sequence {E r , Dr }r e^o converging to the total cohomology H ^ C )  such that each

=  ®p,5gNo Ep,g has a bigrading with:

D : Ep,q —> E p+ r'q~r+ 1 .

The first terms of this sequence are

E£q = B p q , E pi g = H™(C) and E™ = Hp 'q(Hd(C)).

Furthermore, the associated graded complex of the total cohomology is given by

G H ^ C )=  $  E£’(C).
p+?=n

Naturally, we can also use the filtration given by (97). Then we obtain a second
spectral sequence {£ ', Z)'}r e N0 that converges to H^(C) with

(E;)”-’ =  (B')p,’> (£()”■’ =  H ^ (C ), (£ ')”•’ =

and Dr’: (E'r )p 'q -> (E'r )p- r + l’q + r.

Let us compute these two sequences for the CECH-DE-R.HAM complex 67(11, A).
For the second sequence, Theorem 3.70 yields

(E ()^  =  /  l f  P = 0  thus (E'2 )p 'q = (  if P =  0
( 0  else, 2 ( 0  else.

Since E2 consists only of one column, we obtain Z>2 =  0. Thus E2 becomes stationary
and the analogon of Theorem 3.79 for the second sequence proves

Hn {M ) S  H ^(C(U,>1)) for all n G No ,

which gives an alternative proof of the MAYER-VlETORIS principle 3.72.
On the other hand, if 11 is a good cover and thus all Uao...ap are contractible, we

obtain for the first sequence:

i C '(U, R) if ,  =  0 f H’ (U,R) if ,  =  0
( 0 else, 2 1 0  else.

Again Z>2 =  0 and Dr =  0 for all r  > 2, since E2 consists of only one row. Thus
E^ — E q o  becomes stationary and Theorem 3.79 proves (cf. Theorem 3.75):

B n (U, R) S  BJ(C(U, >1)) =  H n (M ) for all n G No .

Now we are prepared for the definition of the spectral sequence of a fiber bundle.
For a bundle B(Af, F, G), if 11 is a good cover of M, ir_ 1 ll  is a cover of B and for
all Ua o ...ap we have n~ \U ao . .^ )  *  R” x F, so Hq(ir~1(Uao...a p )) Hq(F) by the
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POINCARÉ lemma. We form the following double complex, the so-called CECH-
DE Rh a M complex for the bundle B:

c -'-ît t - ^ M )  =  Q  with C”(7r-1i i , A ) =
P>?6No ao< —<<»p

Theorem 3.72 yields that H5(C(7r- 1 il, .4)) =  H~(B). According to Theorem 3.79,
there is a spectral sequence converging to H^(C(7r- 1 ll, ^4)) with Ei term given by

Er = Hr(c(7r-iu,>i))= n  H q^ - \ u a o ...a p) ^  n  H<w -
C tQ < " '< O lp  O l0 < " -< O lp

Recall that the projection t t  induces a homomorphism [%*]: —> H '(B). Thus
one would expect that not only H ’(F) but also H"(M) entered into this spectral
sequence for H "(B \ Indeed, if H '^F) is finitely generated and in addition M
simply connected or B = M  x F , then one can prove that for the Ei term, EJ’’ =

= H r (M) ® W’(F) holds, cf. [11, p. 170]. This proves

T heorem  3.80 (Leray’s theorem  for the  de R ham  cohomology) Suppose
B(M , F, G) is a fiber bundle and 11 =  {UQ}ae ? i is a good cover of M then there is a
spectral sequence converging to H*(B) with E\ term

£?■•= n  a n  «'<«)■
a o < - < a p  c»o<—< o ip

I f H’(F') is finitely generated and in addition M simply connected or B = M  x F,
then

Ep 'q = Hp (M, H’(F)) S  HP(M} ® Hq(F).

Thus it is possible to compute the cohomology of a bundle from the cohomology
of the fiber, whenever a good cover of the base is given. Further note that Le r a y ’s
theorem proves the KÜNNETH formula, because all forms in E2 are closed global
forms on M x F  for which d = 6 = 0 and thus Z)2 =  0. So E2 becomes stationary,
which proves Theorem 3.35.

Recall once more that any closed form on the base can be extended to the
bundle B  and defines a cohomology class of B. Using the spectral sequence for B,
we are now able to answer the analogous question, which closed forms on the fiber
can be extended to B and which of these extended forms are closed, too, and thus
define a cohomology class of B.

D efinition 3.81 A closed differential form <f>q €  A q(F), resp., its cohomology class
W  e  H '(F ) -  E°," is called transgressive if it lives to the Eq+ l term of the
spectral sequence in Theorem 3.80. We call a transgressive form O-transgressive if
Dq + l[<̂g]q+i =  0, i. e., if it lives to Eq+z. Denote the set of transgressive, resp.,
O-transgressive forms by -4(F)tr ans, resp., .4(F)o_trans-

Transgressive forms on connected fibers represent forms on the bundle because
of the following theorem [11, p. 247]:
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Theorem  3.82 Let B(M ,F,G ) be a bundle with connected fiber F . Then a differ­
ential form <b G A,(F) is transgressive iff it is the restriction of a G -A.q(B] with
dib = ir*T for some r  G 4̂g + 1(A/).

Note that if d>q and d>' are transgressive with connected fiber,

d(V>9 A V’O =  ir*r A ip' + (—l j ’V’g A tt*t ' £ tt*(4(A/))

in general. Thus >t(F)trans is only a vector space but not a R-subalgebra of A(F).
We find t/> and t  using the Collating formula: first we take a zig-zag E = Co + - . •+

f,q according to Lemma 3.78 (where q = r  — 1). Now d \ = db£q = 6d^q = ±56Cg-! —
0, thus the components of y are locally constant on 7r- 1 (t/a0 ...Op) =  Uao ap x F, and
because F is connected we have x  = ^*(3 with 3 G C’+ 1 (il,.4o), cf. Figure 3.8. Now
Theorem 3.73 yields

0  := /(E )  =  ¿ ( - D " 2 < ) ‘(1 - K ( - D " / < ) ’7r*/?G A (B )  and (106)
t=0

dij> =  ( -D " /f) ’+ 17r*̂  =  7T*r, where r  =  G 4 , + 1 (M).

Closed forms on F  transform into closed forms on B  as follows: [y]g+i = 0 <=>
3x' =  Co +  Ci +  • • • +  Cg : ^ 'q =  0 <=> 3^ =  /(S ') ■ dip =  0. If any closed
form <p lives to £<*>, then the result [<̂]oo € if5(C(7r- 1 U, >1)) is unique. But then the
DE Rh a m cohomology class [iy] G H~(B) is unique, too. Thus we get — even if F
is not connected:

Corollary 3.83 For any closed <f> G A q(F), there exists a closed i[> G A q{B) such
that <j> is the restriction of iff <fi is O-transgressive. In that case [0] is unique.
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As a consequence, -4(F)0-trans is a R-subalgebra of -4(F).
Let us apply spectral sequences to the special unitary groups SUn . To this

purpose, we note that SUn acts on the unit sphere S2"- 1  in C” by multiplication. For
en , the stabilizer subgroup is SUn - i ,  thus SUn is a principal bundle P(S2 n - 1 ,SUn-i)
for n > 2 (apply Proposition 2.19 with P  := {x} x G = G). We want to prove that
H"(SUn ) is isomorphic to the exterior R-algebra over the volume forms dV2i-i of
S2 /- 1 , 2 < I < n, cf. Theorem 3.59.7.

For SU2 — S3 there is nothing to prove. Suppose the statement is true for
SUn_j. We compute the spectral sequence {Er }r e ?,’o for P(S2 n - 1 ,SUn -i). Due
to Le r a y ’s  theorem, EJ’’ — Hp (S2 n - 1 ) ® FP(SUn_i), since S2"-1  is simply con­
nected and H'(SU„_i) is finitely generated. Thus E2 consists only of two nontrivial
columns, namely for p =  0 and p = 2n — 1. Thus D2(dV2i-C) =  0 for all I < n.
(We identify dV-y-i on S2 !-1  and the generated forms on SUn - i  for convenience.)
Analogously Dr (dV2i-i) = 0 for all r > 2. Thus all dVaz-i are O-transgressive and
define cohomology classes in B 2Z-1(SUn ). Since >4(SUn _1)0-tranS is a R-subalgebra
of -4(SUn - i) , the same holds for all products of the forms for I < n. Finally
dVin-i represents a cohomology class in H 2 n - 1 (SUn ), because it is a form on the
base. Since E2 consists only of elements that represent products of dV2i-i, I < n,
the desired result follows by induction.

3.6 Cohomology and Connection on Bundles
In the previous section we have developed spectral sequences in order to compute
the cohomology of a fiber bundle from the cohomologies of the base and the fiber.
We found that only transgressive forms on the fiber can be extended to B  and only
O-transgressive forms <f>n € A n (F) define cohomology classes in Hn (B). Nevertheless
recall from the definition of the homotopy operator K  in (106) — confer (105) —
that for any such </>n , the Collating formula generates a form 0 n on B  that depends
on a partition of unity given on the paracompact manifold M .

Now suppose a connection is given on B. Especially for applications in physics
one would like to obtain forms that are adapted to this connection and do not depend
on an arbitrary physically meaningless partition of unity. So the question not only
is whether <pn defines a cohomology class [tl>n ] € Hn (B), but whether we can find a
representative d>„ G -4n (B) for this class [V>n] =  [d>„], such that is adapted to the
given connection.

At this point we should say what we exactly mean by “adapted to a given
connection.” According to Proposition 2.75, any invariant <j>n E •An (F') can be
naturally extended to B  and defines a vertical form there. Yet this form <pn v €
A n (B} will not be closed in general: if d<i>n = 0 we know that d(</>n v) = (L.d>n )v • F
from Theorem 2.120, where L,d>n € Xn _i(F) ® Hom(g, R) is equivariant.

Thus we are led to equivariant forms x 6 -4(F, Hom(T(g),R)eqUiv. By Theo­
rem 2.77, x can be extended to B, whenever a pseudotensorial 0  € -4^(F, g) is
given. Then (pr£ x) • (prpV’) € A (P  x F) defines a form “xv • A(B), where
the vertical part is given by (p tpx) and the horizontal part is given by (prp^)-
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The only pseudotensorial forms xb € A p (P ,q ) given naturally by a connection T
are wr  and Qr . Yet recall from (71) that wr  produces only zero. This justifies our
following definition (as in Corollary 2.118, we will use the notation x v  • F instead
of xv •  ilr ):

Definition 3.84 Let P be a connection on P(M ,G) and B = P x q F. A differential
form <bA  G A (B ,V ) is called adapted to T i f x ' t  A(F, Hom(7”(g), V))equiv are given
such that

<£A = 12, X'v  •  F.

For convenience we further define (recall [r] := max{z < r )  for all r € R):

D efinition 3.85 Let L.G  x F —> F be a left LIE group action. An invariant closed
differential form <j>n G >tn (F)inv 0  V will be called G-transgressive if equivariant
differential forms x* € >tn -2i(F)equiv 8  Sym,(g, V) exist for 0 < i < [n/2] with

X° — <bn, —L ,x ' = dx'+1 f o r  0 < i < [n/2] — 1 and L'fx^’1̂  = 0- (107)

Denote the set of all G-transgressive forms on F by -4(F)G_trans 8  V.

Using the fact that d and L* are skew derivations of -4(F)equiV 8  Sym(g, V) of
degree 1, resp., —1 (cf. Lemma 1.119), one proves:

P roposition  3.86 -4(F)G-trans 8  V is a ^.-subalgebra of A(F) 8  V, whenever Ay
is defined. I f  <f>m  and V’n are G-transgressive and x’ G A m -2i(F}e<Vi\v 8  Sym,(g, V),
resp., G •4n-2j(F)equiv 8  Sym^g, V) are the differential forms given by (107) for
d>m , resp., 0 n , then

Ck :=  12 X' Av  ff G A m + n_2fc(F)equiv 8  Symfc(g, V), 0 < k < [m/2] +  [n/2],
¿+j=fc

(and (Km +")/2l ■- 0 if m and n are odd) are the corresponding forms for <bm  Av  V’n-

Now we are ready for the following theorem:

T heorem  3.87 Let T be a connection on a principal bundle P(M,G) and B =
P Xg  F an associated bundle with left L ie  group action L: G x F —> F . Let V denote
any vector space. If </>n £ A (F )inv8V  is G-transgressive and the equivariant forms
Xn-2i e  -^^¡(Fjequiv 8  Sym,(g, V) are given by (107), then

[n/21

1=0

is closed and adapted to T. Its restriction to the fibers is f>n , i. e. for any x € M,
i*a ^  = 4>n-
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Proof. <t>n obviously adapted to T. Furthermore Theorem 2.120 yields:
[n/2]

¿ ¿ n  =  £  ( d X n - 2 i ) V  *  F  +  ( l , X n - 2 i ) V  *  F

t= 0
[ n /2 ] - l

=  ( * ) » +  £  +  +  ) i ’ * F  =  o ,

■=0

since <pn is G-transgressive. Finally, since t* »*F® =  0 for all x € UQ (resp.,
t*prpQ r  =  0 for all p G P), i*tX<PA = *o,z(x°u ) = i*aiX(<Pnv). By Lemma 2.116,

=  <^n. □

Note that the property of being G-transgressive only depends on £, G and F. G-
transgressive forms define DE RHAM cohomology classes on all fiber bundles where
L is the action of the structure group G on the fiber F. In particular, this condition
is independent of the base M  and of the question whether the bundle is trivial or
not. Indeed we have:

Corollary 3.88 Let L: G x F —> F be a left Lie  group action. If <bn G >ln (F) is G-
transgressive, it is ^-transgressive for any bundle B(M, F,G) that comes along with
L. Thus <pn defines a unique cohomology class [¿A ] € Hn (B) with [:* ][<2„] =  [<£n] €
H n (F), independently of the (paracompact) base M and the transition functions ga g.

Proof. By Theorem 2.66, we find a connection T on P(Af, G). Thus is well-
defined and Theorem 3.87 applies. Uniqueness follows from Corollary 3.83. □

C orollary 3.89 If T and F  are two connections on P(M ,G) and <p G -A(F) is
G-transgressive then there exists ip G ,A(.B) such that the forms <£A  and <pA ' obey:

<pA  — <pA = dip with d(i*a ^ip) =  0 for all x G Ua -

Let us compute the cases where n =  0, 1 or 2.
d<po = 0 means that <p0 G C°°(F) is locally constant. Obviously L,<Pq = 0. So

every closed G-invariant <po G G°°(F) is G-transgressive. Since <po is invariant, it is
global and vertical. Thus (<£A )° = ~'e>o and [ i * = [<£o]- This proves:

Corollary 3.90 For any x G Ua , [ t j j :  H°(B(M, F, G)) -> H°n v(F) is surjective.

(Note that this also implies H°n v(F) < H°(F), if we put B := {i} x F, but this
is nothing new.)

For n =  1 and pi G -4(F)mv- Lemma 3.62 yields that dcpi = 0 implies d^L,(pi = 0,
i. e. for all f  G F, (£.<£i(/)] G [g,g]x  by Lemma 3.42. Thus for a semisimple
Lie  algebra g, L,<pi =  0. As a consequence for any bundle B(M, F, G) that comes
along with L, {'T*<£1}a 6 4 defines a global vertical form on B. We have proved:

Corollary 3.91 If L is a Lie  group action of a semisimple Lie  group G on F,
then every closed invariant 1-form <pi G >ii(F)inv is G-transgressive and defines a
unique cohomology class =  [{7Ta î}agA] € H \B )  for any bundle B(M ,F,G)
that comes along with L. Thus for any x G Ua , [iXx]: B 1(B(M 1F,G)) —> H)n v(F) is
surjective.
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To show that the condition “G semisimple” is necessary, take G =  S1 =  R /Z
acting on itself by left multiplication. Then g = R and the (left) canonical 1-form QL

is invariant. Since S1 is abelian, dQL = QL A0 QL = 0. 0 L is the volume form on
S1 and generates //¡^(S 1) = T/^S1) =  R, cf. Proposition 3.37. Yet (L ,0 L )(X) =
0 L (£x) = X  for all X  G R. Thus Z .0 L =  idR and 0 L is not S ’-transgressive.

Recall the principal bundles Pm (S^S 1) from (56). For their DE Rh a m  cohomol­
ogy one obtains from the spectral sequence for Pm with m  /  0, cf. [2, p. 72]:

H°(Pm ) = R, H l (Pm ) = 0, H 2 (Pn ) = 0 ,  # 3 (Pm ) =  R.

So [*a J : H 1(Pm ) —> Hin v(G) is never surjective. Moreover, recall from Note 2.79,
that QL v = uT, even for m =  0. Since duT = df^F =  flr , our canonical construction
does not produce closed forms on Pm , in general.

Finally we consider the case n =  2 for semisimple Lie  groups. Using Theo­
rem 3-65 we obtain that every closed invariant 2-form on F  is G-transgressive. Thus
we have:

Corollary 3.92 If L is a Lie  group action of a semisimple Lie  group G on F ,
then every closed invariant 2-form <p2 € ^ ( F ’jinv is G-transgressive and defines a
unique cohomology class [<£2] € H 2(B) for any bundle B(M ,F,G ) that comes along
with L. I f Xo € G^iFjequiv ® Hom(g, R) is the unique map with dxl = —Z.d>2 and
6X0 =  ^.^2 according to Theorem 3.65, then <£2 is given by

=<P2V + (X ^ )* F € > 1 2(B).

Thus for any x Ç. Ua , [ i j J :  H 2(B(M ,F,G )) —> H?n v(F) is surjective.

In view of Proposition 3.37 we thus have proved:

Theorem  3.93 If L is a L ie  group action of a semisimple Lie  group G on F, then
every closed invariant <pn G A n (F)m v , n < 2, is G-transgressive and defines a unique
cohomology class [<p„] G H n (B) for any bundle B(M ,F,G ) that comes along with
L. For any x G Ua , [i* J :  Hn (B(M, F,Gf) —> H*n v(F) is surjective.

If in addition, G is compact and connected then H?n v(F) = Hn (F), thus for every
bundle B(M, F,G), H n (B) contains a subgroup isomorphic to Hn (F) for n < 2.

In the following section we will show that the closed invariant 3-form w3 on SUm
is not SUm -transgressive if we define L to be left multiplication. Thus Theorem 3.93
does not hold for n =  3.

In Corollary 3.88 we have proved that any G-transgressive form is O-transgressive
for all bundles with fiber and left action L. We presume that the reverse is also true
for compact LIE groups: if a cohomology class in H^V(F), resp., the corresponding
closed invariant form <f>n  generates closed forms G A n (B) and thus cohomology
classes in H n (B) for all bundles B  with fiber F and left action L such that </>n is the
restriction of to the fibers, then <j>n is necessarily G-transgressive. Yet we are not
able to prove this conjecture at the moment. Our conjecture is based on the following
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observation. If </>n G -4n(F)inv then we obtain for (6<bn)a 0  = — ”’X<£n)|c/oa in
the CECH-DE RHAM double complex using Corollary 2.113:

(¿4>n)a 0  =  ¿ 2  — ------[p rf-(L ^n)] •  (g0 a  o p r ^ ) * © 1 .

i=i

We concentrate on the term where i =  1. If </>n lives to E2 for any bundle tha t comes
along with L, we can find differential forms â 0  G A(Ua 0  x F) such that

dta 0  G ( - l ) n ( £ .^ )  •  ( ^ a e L ) +  X F) - (A - .(F )  A A ( ^ ) ) ,
i=2

where we have omitted the pullbacks pr£- and pr^^. Since this is supposed to hold
for any transition functions ga 0  it looks as if this condition requires the existence of
a x 1 € A n- 2 (F, Hom(g, R)) with dx1 = —L,d>n . In that case the forms £a 0  are given
by £a 0  =  (—l)n x ’ • (g0 a ®L )- Analogously by concentrating on those forms where
the factor in >1(F) has highest degree, one should be able to prove the existence of
all forms x' >D (107).

Yet for G = R the conjecture is false. Define L: R x Rfc —> R fc by L(r, v) = v + rz
with z G R*. Then all forms <£n with constant coefficients are closed and invariant.
Because every bundle with structure group R is trivial, every <£n defines a closed
form p r^  <£n on the bundle. But L,d>i 0 in general, e. g., for G >ti(R*) defined
by d>i(v)(x) •— (v, z) for all i  G R fc and v G 7£(Rfc), where L,d>i(x) = ids. Thus <pi
is not G-transgressive.

According to Corollary 2.25, every bundle with G =  Rm is equivalent to the
trivial bundle and thus our condition is automatically satisfied. For this reason, we
can only expect to prove the reverse of Corollary 3.88 for compact L ie  groups.

Finally let us derive the analogon to Theorem 3.87 for one-dimensional abelian
L1E groups G (cf. Theorem 2.127):

Lem ma 3.94 IfG  is abelian with# = ER, then<j>n € .4(F)inv®V isG-transgressive
X' € A n - 2>(E)inv ® V exist for 0 < i <  [n/2] such that with v' := tcB X'

following equations hold:

X° — d>n, —u' = dx'+ l for all 0 < t< [ n /2 ]  —1 and i/l" 2̂l =  0. (108)

T heorem  3.95 Let L be a connection on a principal bundle P(M 1 G), where G
is abelian with g = ER, and let B = P X q  F be any associated bundle with left
LIE group action L:G  x F  -> F . I f <pn € A n (F)inV ® V is G-transgressive and
Xn-2i €  <4n -2.(E)inv ® V are given by (108), then with F := ¿?r*F G A 2 (B ),

[n/2] [n/2]
¿n =  E  (xj.-2,«) A F A - - - A F  =  E  F A - - - A F A(y L,.-v ) € A n (B) ® V

i=0 , i=o ,

is closed and adapted to T. Its restriction to the fibers is <t>n , i- e. for any x G
= d>n.
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3.7 Skyrmion Bundle and Yang-Mills Theories
As an application for the presented ideas, that combine the cohomology of a fiber
bundle with connections on the bundle, we present the skyrmion bundle in theoret­
ical nuclear physics, as discussed in detail in [2] and [14]. To this purpose, let us
first introduce the ungauged SKYRM E model, that treats the purely hadronic case.

The SKYRME model[15] in theoretical nuclear physics is an effective field theory
modelled to describe the low energy limit of quantum chromodynamics (QCD) and
related to QCD by its underlying “chiral” symmetry, cf. below. Let Np denote the
number of flavors in QCD and let X a , 1 < a < Np — 1 denote generators of su/vf ,
i. e., X a = ~ (X a y  G C ^ x7Vf and Tr(Xa ) =  0. Then defined by

t / = ex p (5 > °X a ),
a

the meson fields 7ra € C°°(Af) generate differentiable functions U: M  —> SU/vF from
space-time M to the special unitary group SUjvF . The vacuum is represented by
the unit matrix 11 G SUatf . Requiring 7r“(r) —> 0 and thus t/(r) —> 11 for r —> oo one
can compactify EUCLIDIAN space R3, resp., space-time R4 , so that the meson fields
constitute functions

U: R (t) x S3 -> SUjvf , resp., U: S4 -> SU.vF .

The SKYRME model requires the knowledge of the homotopy groups of SUm ,
which we have not introduced so far. For n G No , let ?rn (SUm ) denote the n-th
homotopy group of SUm . Its elements are the equivalence classes of homotopic maps
from Sn to SUm . Homotopy groups are topological invariants. They are abelian for
n > 2. BOTT’s periodicity theorem yields that

rr2n(SUm ) = 7T2n(Um ) =  0, 7T2n+l(SUm ) = 7T2n .f.l(Um ) = Z, rtl >  R G N. (109)

[16] exhibits explicit representatives for the elements of rr2n + i(SUm ), m > n < 3.
Recall the left and right invariant currents L,R  G -Ai(SUn , End(Cn )) and the

differential forms A^. p® and from Section 1.4 (cf. (32)). For coordinates
0 < ^ < 3, we have L = Y ^ ^ L ^ d x 11 with := U~l d^U (and analogously :=
d^U i / - 1 ). The meson fields obey the field equations derived as EULER-LAGRANGE
equations from a lagrangian £(U,dU) by variation of the action integral T(I/) =
fs ,£ d V .  The latter splits into two parts: the nonanomalous action

r (  f l  3 1 3  \
r N^(t/) =  E  Tr(L„ £ > ) + — £  T r(|i„ , £')) dV, (110)

® \  M=O M,1/=O /

where f r  is the pion decay constant and a - 2  a coupling constant, and the WESS-
ZUMINO term [17] (Nc is the number of colors in QCD)

<u i >
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that describes the anomalous processes of QCD. Now >ts(SU2, C) = 0 so the Wess
ZUMINO term only contributes to the total action for Np > 3. In that case one uses
7r4(SUjvF ) =  0 and extends U to a differentiable map U': D5 -> SU3 from a five
dimensional disk D5 whose boundary dD 5 is space-time S4.

The action is invariant under all chiral transformations U i-> giUg- 1  with
9L,gR € SUn f - This symmetry is spontaneously broken: the vacuum state is only
invariant under diagonal SUn f  transformations U VU V - 1 . (One can add further
chiral invariant terms of fourth order to the nonanomalous lagrangian. cf. [14])

1 3 1 3

£ o T r( { £ „ ,^ } { iM " } ) +  T '(d ,L ,9 “L'), (112)

with coupling constants f 2 and g2 and anticommutator braces {,}, or — in order
to take the finite pion mass M* into account — a mass term, breaking the axial
symmetry

f̂ 2
T Mr

2
( C / - H ) ,  resp., f 2 M 2

Tr(M,(f/ +  C/ t _ 2 . ]1))
z 2(mu  + mj)

for .Np = 2, resp., 3, where Af? =  diag(mu ,m j, m s ) is the quark mass matrix, and
mu, mj, m s denote the masses of up, down, and strange quarks, respectively.

Baryons appear as topological soliton solutions — as “skyrmions” — of the
meson fields. (Topological soliton solutions mean solutions of the field equations
that carry nontrivial topological invariants.) The number B  of baryons described
by a given mesonic field configuration U can be computed by an integration over
the space manifold:

<1 1 3 )
jss 24t f2

Compactification of space-time is crucial for the existence of nontrivial soliton solu­
tions. Normally there is no guarantee that the integral in (113) is an integer, but
for spheres we have the following theorem (cf. BOTT, SEELEY [18, p. 237]):

Theorem  3.96 For every continuous map i / :S 2 n -1  —> Um the integral

is an integer. The assignment [i7] ►-> n(i/): 7r2n -i(U m ) —> Z is an isomorphism for
m >  n.

Recall from Theorem 3.59 that znu>2n-i are the generators of the real valued
DE RHAM cohomology of SUn - By Theorem 3.96 we are able to identify the nor­
malized forms ( ¿ J  (2n-\y. u 2n-i with the generators of the integer valued co­
homology H‘(Um ,Z). resp., H‘(SUm ,Z ). At any time t the meson fields form
C°°-functions U(t, ):S3 -> SUA > and thus represent elements of the homotopy
groups 7r3(UjvF ) =  Z for NF  > 2. Although these fields need not be constant in
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time, continuity forces them to change only within their equivalence class of homo-
topic functions. Thus the integer characterizing the homotopy class is a topological
invariant, the “topological charge”, that can be interpreted as the number of baryons
and be computed by (113).

The vacuum map represents the zero element, and so B(U = 11) = 0. For proton
and neutron we have B = 1, for their antiparticles B = — 1. Annihilation of proton
and antiproton corresponds to the “addition” of their maps within the homotopy
group and generates a mesonic field of topological charge B =  0.

We only note that the topological quantization of the coupling constant A =
in (111) is also a consequence of Theorem 3.96, and of the requirement that for any
extension U' the result has to be unique.

So much for the ungauged SKYRME model. Now we want to treat interactions
with electromagnetic fields. We already stated in the previous chapter (cf. Note 2.63)
that the electromagnetic gauge potentials A“ = A“dz“ and the gauge fields
FQ = |  F“pdz“ A  dxV  can conveniently be described by a so-called MAXWELL
connection on a principal bundle P(Af, Gem), where Gem = 2gd  • S1 = Ui is the
electromagnetic gauge group, e and go denote the electric, resp., magnetic unit
charge, we have 2ego = 1. The forms A° and F° determine the connection 1-
form wr , resp., the curvature 2-form ilr  according to (64) and (65). Recall that Gem
is the only possible choice for a connected Lie  group that allows for the existence
of nontrivial bundles and, on the other hand, guaranties that the F° define a global
real valued form (cf. the discussion that followed Theorem 2.126).

If we are interested in the special case of a single magnetic monopole that rests
in the origin of the space manifold such that M  =  R (i) x R£> x S2, then we obtain a
countable number of nonequivalent principal bundles, characterized by the magnetic
charge m € Z of the monopole:

Pm (R(t) x R+r) x S2, Gem) S  Pm (S2, Gem) x R (t) x R+r ) , m  6 Z,

where Pm (S2, Gem) = Pm (S2,S 1) is the only topologically interesting part. In fact,
the principal bundles Pm (S2,S ‘) are the bundles we listed in (56).

The electromagnetic gauge field F (sometimes also called Fa r a d a y  2-form F) is
connected with the electric and the magnetic field in the following way, cf. EGUCHI
ET AL. [19], Na s h , Se n  [20] or Ab r a h a m  ET a l . [21]: Recall from Note 2.109 that
on the pseudo-Riemannian manifold M (equipped with the LORENTZIAN metric
of signature (+ ------)) we have the HODGE star operator *:Xp(Af) -> A - P(M)
and the co-differentiation ¿:X p(Af) —> >lp_1(M), which is a differential operator on
A(M). If we define

electric 1-form E,

magnetic 1-form B,

source 1-form J,

El" = E p = o E m̂ 5Em := (0 ,E ),
Bl" =
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then F =  |[(E  A dt -  dt A E) +  *(B A dt — dt A B)] and Ma x w e l l ’s  equations

=  0, V x B - ^ E  = 4jt j,
V • B = 0, V • E =  47rp,

simply read dF = 0 and <5F =  —4ttJ. The continuity equation V • j  + -ft p = 0 reads
3J = 0 and is a consequence of 32 =  0.

Now we construct a bundle B(M, SUjvF , Gem) associated with P(M, Gem) in order
to treat interactions between electromagnetic fields and meson fields: meson fields
are considered as global sections in this associated “skyrmion bundle” B. The left
action of Gem on SUjvF is given by the inner automorphisms

L(g,U) := e-'C3QUe+ie3Q,

which do not affect the vacuum state being diagonal symmetry operations. Q is the
Nf x Nf-matrix containing the quark charges in units of e (again Np = 2, resp., 3)

Q = i  -3 o \ , resp., Q =  I 0
3  - 1i  

u
0

v 3 /  \  0 0

From a physical point of view it is obvious that any coupling between baryons and
electromagnetic fields has to involve these charges. From a mathematical point of
view we observe that Q's eigenvalues A, € R obey the conditions A, — X} € Z and
gcd{A, — A;} =  1, which guarantee that the action is well-defined and effective.
Under a change of bundle charts we have

Ua (x) = L(ga 0 ( x \U 0 (x)) = e~ie3^ Q U0 (x) e+ie^ ( l >Q .

So not only vacuum U =  11 is a global section but every I/(i) =  e'x ^ Q with a
differentiable map M  —> S 1. Observe that if we include SU^F into CAt x 'Vf , then
L also defines a representation of Gem on the vector space For the induced
representation 1:2ppR —> CNf x N f  according to (43) we obtain

l(X ,U ) = LX {U) = -ieX [Q ,U \ for all X  G 25 d R, U € CHf %Nf . (114)

Evaluation of our results in Section 2.5 (e. g., confer (89) and Lemma 2.116) yields

dU° = l(ga(3,dU0  — icdga 0 [Q,U0]),
(dU°}h = ie A“ [Q, U°], (dU°)v =  W a -  ie A° [Q, Ua ] and

-ieX°[Q ,U ].

Moreover, since the forms p f , A? and u k are invariant, we obtain the following
lemma from Theorem 2.127:
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Lemma 3.97 p fv , Xfv, u>2/+iu > P? + a n ^ p2i ~ 2̂1 f o r  € No are global vertical
forms on B, and we have:

(P21 ~  A«)“ =  (P?i ~  ^21)̂  =  (P21 ~  ^2i}a v ->
(p? +  A?)° =  (pf + A?)* =  (p? + A?)%,
(P? +  A?)° =  ( ^  + X ^ - 2 i e d g a Q ^ T r[Q 2(R2 - L 2) + Q d U ^ Q d U ] 3 ,

(P3 + A?)“v =  (p? +  A?)“ -  2ie A“ A Tr [(?2(R2 -  L2 ) + Q dU' A Q d u ]° ,

(p?/+1 + A2+ 1 )° =  (pg+ 1  +  A?I + l) '  -  2ie dga 0  f\ £ ' =1 T r (Q U L ^ Q L 21- 2^ ) 0

- i e  dga 0  A Y ^ o Tr(QR2’QR2l~2’ -  QL2 ]QL2l~2 j)0 ,

W2/+l ~  W2/+l — ( ^  + l)^6 A (pjj — A^)^,
w 2i+iu  =  2̂1+1 ~  + l)*e  A" A (P21 — Â ()°.

For calculations we need the action integral and the topological charge. Both
consist of forms on B, whose pullbacks by the mesonic sections U:M —> B  are
integrated over space-time, resp., the space manifold only. For the nonanomalous
action, our task is easy: we replace the partial derivatives by covariant derivatives.
Defining £“ := (Ua YV °U a , we get for the lagrangian from (110) and (112):

f2 3 _ _ I 3 _ _ _ _
£»4(A) = - y S T r ( i , i ^ )  + —  £ T r ( ( £ „  £.]!!> ,£-])

1 3 . . .  l 3
+ 757J E  Tr({L„ £.}(£», £ ' ) ) + ^  £  Tr(V„£. V -£-),

M,̂ =0 M.̂ =0

where we omitted the index a since covariant derivation yields €
C°°(B). A mass term may also be included ([MS ,Q] = 0). Combined with the
pullback of the volume form 7r*dV 6 A»(B)/i we get

r N 4 ((7,A) =  [  U*(£n a (A) ir*dV) = i  £ N A (U,A)dV. (115)
JM

For the anomalous action and the topological charge, the old difficulty arises that
we have to extend the forms u>3 and to the bundle. Several approaches “by trial
and error” have been made to “generalize” w3 and w5 , cf. Ca l l a n , WITTEN [22],
Ka y ma k c a l a n  ET AL. [23] or PAK. Ro s s i [24). In terms of the language we are
using, we would like to obtain differential forms and u 5

A that are adapted to
the Ma x w e l l  connection. Thus we will examine whether the forms u>3 and w5 are
Gem-transgressive.

This is indeed the case. According to Lemma 3.94 we have to find xk-2t
-4„(SUn f ,C) and i<-2i-i =  l c2 iD X'n -2i that obey (108) for <■> =  u>3 , resp., <j> =  w 5-
From Lemma 3.97 we conclude that for d> = u}2i+i, wehavez/°z =  ~(2Z4- l)i(p§ — A$).
Now (37) yields that p^-A ^ =  d(p?/_1+A?(_1), so x L -i =  (2/+l)f(pLi+A?i-i)- For
w3 we are already done, since is global and vertical due to Lemma 3.97: i/q =  0.
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For X3, again Lemma 3.97 yields z/2 =  —10i2 Tr [Q2 (R2 — L2) + Q dlH /\ Q dU~\.
One easily verifies that
X2 = 10i2( p f  + A f ) +  5i2 Tr(QdU QU' -  QUQ dU') + ri2dTr(QU*QU), r € R,

is an admissible choice and that Pq = 0, thus x? is global and vertical. For physical
reasons (parity invariance, cf. [23]), we put r  =  0. We thus obtain from Theo­
rem 3.95:

Theorem 3.98 +>3 and uz5 are Gt m -transgressive and generate cohomology groups
isomorphic to R for any skyrmion bundle. Representatives for the generated coho­
mology groups, that are adapted to the MAXWELL connection, are

u»3 =  W3V +  ie F A x}u =  [u>3 — 3te A° A — A^)] + 3teF A (pf + Af),
>̂5 = + ie F A X3V +  (ie)2F A F A x?t> =  [0*5 — 5ie A“ A (p? — A^)]

+5ie F A {(pf +  A3 )° -  lie  A a A Tr[Q2(fí2 -  L2 ) +  Q dW  A Q dU]°}
+5(ie)2 F A F A [2(pf +  A?2)“ +  Tr(Q dU QU' -  QUQ dLr t )a ].

Analogous to (113), the integral over u>A computes the number of baryons in the
skyrmion bundle:

B A (U) = / U*o>A ,
v ’ Js3 24ir2 3 ’

whereas the integral over is the WESS-ZUMINO term for the skyrmion bundle

completing T(U, A) =  En a (U, A) +  Twz(U, A) with T ^a (,U, A) from (115). Note
that Theorem 3.96 does not apply any more for the skyrmion bundle, so there is
no guarantee that BA (U) is an integer nor that it is conserved. This allows for the
treatment of baryon number violating processes within the skyrmion bundle, such
as the monopole induced proton decay, where the topological charge may vanish
through the monopole singularities of the manifold, cf. [2], [22] and CHEMTOB [25].

Finally let us compute the cohomology for the bundles Bm (M, SU/vF ,G em) =
Bm (S2, SUjvF , Gem ) x R(() x R£) as an application of spectral sequences. We have
H’(Bm (M,SUjvF ,Gem)) =  Dr'(B m (S2,SUjvF ,G em )), and since S2 is simply con­
nected, Le r a y ’s theorem yields

E r ’ = Kp (S2) 0 H ’(SUNF ) = (  f°J P  =  0 , 2 ’
v v F ( 0 otherwise.

We want to prove E2 = Ex . Because Ej only consists of the two columns we merely
have to show D2 = 0. Thus let us compute the zig-zag for the generators W21+1 of
H'(SUn f ). Using the local trivializations we inject iv2i+i into C0(7r- 1 il, Au+i), so
Co in Figure 3.7 is given by (£0 )a  =  ^21+v Now for Ua p 0 by Lemma 3.97

(¿£o)aP =  (̂ 21+1 ~ 2̂1+1)1̂ 0)3 — (21 + l)ie dpo p A (pg; — Â ¡),

= d[(ll + l)ie dgPa 7\ =  (d&)a p, where
(6)«P := i'ed5 po A (x L i) a / 3  := (2/ +  l)»e dgOa A (p«_, + A « ,, ) ^ .
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Here a//3 indicates that one may use both trivializations. Using Lemma 3.97 again
and dgya  = dgy 0  + dg0 a  on Ua 0 y  /  0 we have

(*& )•* =  [(6Vv -  (£1)07 +  = i e  d 9iP A [(Xaz-iV’ -  (Xfl-i)“]
= (2/+l)(ie)2 dgy 0  A dga0  A [ ^ - ^ ( Q R ^ Q R 21^ - 2 -  QL2 jQL2l~2 i~2)

+ 2 ^ ' = Tr(Q[/£2 j- 1QL2' - 2 j- 1i / t )j = ( - d e 2)a3-y with

(C2)o ^  =  (ie)2 dgy 0  A dg0 a  A (x’l-a)“7377,

and for X2<-3 € -42/-3(SUjvF ) we may take using Corollary 1.84:

X22 i-3 = (2/ + 1)[2(/£-3 + C 3 ) + ^ T t {QR2^ Q R 21- 2^-2+ Q L2’~' Q L2t~2^ 2)

+ £ '1 *  Tr{QUL2 j- xQL2l- 2 i~2U  ̂+ QU L2 j~2QL2l- 2 j~l U ^ .

We terminate at this point, so whenever 6£i =  0, w2n-i lives to
Eoo- In any event this is the case if for our cover dgy 0  A dg0 a  = 0 for all combinations
of a, 3 and 7. E. g., this holds for the special case of a single monopole, where we
only have two nontrivial transition functions g+_ = — g_+ . We have found:

T heorem  3.99 The cohomology of the skyrmion bundle Bm (M, SUjyF , Gem ) is inde­
pendent of the monopole charge mgo, but isomorphic to the cohomology ofM  xSU,vF :

/ / fc(Bm (M,SUN F ,G em )) = 0  H”(M) ® H’(SUjvr ), k € No .
P+9=*

The same holds for all skyrmion bundles of manifolds, where a good cover 11 =
{Ua }aeA exists such that dgy 0  A dg0 a  =  0 for all a ,0 ,^  € A.

Applications to non-abelian YANG-MlLLS theories are also possible. E. g., in­
stead of G = S1 and F =  SUn  take G = U„ x UR and F = Un with /'(J £ ,SR)(t/) =
giJJgR1. As a generalization of (114) we have for all (%£, X r ) € u£ © u„:

/((Xl , X r ), U) = £(x l .X r ){U) = X L U -  UXr  for all (XL , X r ) G u j ® u*

Let AQ = (A£, Ar ) and Fa  =  (F£, F^) € A(Ua , u„ © uR ) define the connection T on
P(M, G). Then the covariant differentiation is given by V Mi/ = d^U+A l ,^U—UAr ^
and analogously dUv = dU + A l U — UAr , so

Lv = L + A l U — A r , Rv  = R + A l  — U Ar U  ̂ and wiv = a>i + Tr(Ai — A r )

since =  Tr(?r£ — t t r) with the projections nL lR : 0 =  u„ © u^ —> u ^ R . Thus
for any Lie  subgroup H < G, the closed invariant form wi is //-transgressive iff
Tr(Xr, — X r ) = 0 for all (X l ,X r ) G fj. E. g., we could choose a subgroup of the
diagonal Dn  =  U„ x in G such that gL  = gR for all (gL,gn) G Dn . (Note that
this is the case for the skyrmion bundle.) Or we could choose H = SU„ x SUR ,
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resp., a subgroup of H. Since SU^ x SU„ is semisimple for n > 2, the form u>i is
then necessarily H-transgressive by Theorem 3.93.

For W3 we obtain L ,u 3 = 3Tr(T?2 7rL — L2 ttr ), thus

x} := -3T r(fo rL +  LirR ) G A (U n , Hom(g, C))

obeys ¿xl =  — £«<*>3 due to Corollary 1.84. Omitting the symmetrization V, we
compute £*Xi =  3Tr(7rR 7rR  — 7rL 7rL ), i. e.,

(¿rxl)((xL ;XR),(yL ,yft)) = 3Tr(xf lyfi -  x l y l ) *  o.
Thus ui3 is not G-transgressive. In fact, let x] G Hom(g,C))equiv with
¿x{ =  -L.W3- Then := X* -  xl € Ai(Un , Hom(g, C))equiv with dQ = 0. Since
£P(SUn ) = 0, we find G C°°(Un , Hom(g, C)) with dQ =  ¿J. In fact, we may
choose fo equivariant, because SUn is compact, cf. (40). But then for all X. Y  G g,

% * ( * ,  y )  =  (:£ x ^ ) ( y )  +  M ' ) ( X )  = (LC x $ )(Y )  +  ( £ ^ ) ( X )
= £ X (&)(Y) +  £y(& )(X) =  ei([y, X]) +  e*([X, y]) = 0.

Thus (¿i'x i) = (£■• Xi) /  0- Since «3 is not G-transgressive, the generated form

u;* = w3v + x k » F G 4 3(B(M,Un ,G),C)
is not closed in general: cfa:* =  (£^Xi )u *F =  (£^Xi)*F. Yet if we again restrict L to
a subgroup H < G with generators X a = (X£, X£), cr G I, such that Tr(X£X£) =
Tr(X£X£) f°r  a d o’, t  G I, then L^x\ =  0 a n d <¿3 is H-transgressive. Note that
this condition holds for any subgroup of the diagonal Dn and thus for the skyrmion
bundle.

Finally, some cumbersome calculations show that the voluminous expressions for
the anomalous action Twz(U, .4/,. Ar ) in [23, (4.18)], resp., [26, (24)] are equal to
the integral over

<4 = W  +  X3V •  F +  x?v • F G A(B(.W, U„, G), C),

where the differential forms X5-21 •^5-2/(Un ,Sym ; (g,C))equiv are given by:

X3 ■= -S T riB 3^  +  L3 t t r ), i. e., X3 • F =  - 5  Tr(R3 FL  + L3 Fr ) and
X? := 10Tr(/?7rt 7r£' +  £ 7rf i7rR ) + 5Tr(dB7rR i/ t 7rL -d(C / t )7rL i/7rf l).

Analogously to the skyrmion case, one may add a term

r [dTr(7TL UKR U1)v] • F =  r dTr(FL U Fr U*), r G C,

or exclude it by parity invariance, cf. [23]. Also in this case, w5 is not G-transgressive:
we obtain Z^Xi =  10Tr(%L 7rL 7rL — ~R 7rR irR ), thus again u>5 is H-transgressive for
any subgroup H < D.

Nevertheless note that div* = (L,X i) • F consists of a 6-form on the base. Thus
as long as we stick to space-time M —  or even a five-dimensional extension —
this form vanishes and tv* is in fact closed. The same holds for u* : although it
might not be closed on space-time M, u* is closed, of course, when restricted to
three-dimensional space.
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List o f Sym bols

der/>(A,B), der A: sets of derivations. 1
Z(A): center of the algebra A .......... 1
[•,■]: commutator in a Lie algebra.. . .  1
Af, N, P: C°°-manifolds.....................2
C°°(Af), P(Af), T>‘(M ), P .(A i) ....... 2
X , y ,  Z: vector fields..........................2
Xx : value of X  at x ............................. 2
TX(M): tangent space of M at x ....... 2
a 0  b: tensor product of tensor fields. 2
A(M ), A P( M ) ...................................... 2
V, W , Z: vector spaces........................2
Alt(V,W), Altp (V,lV)..........................2
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