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for all ¢* € A(U, x F,V) and (X', F*) € T,(Uy) & T¢(F). Here A* € A;(Ua,9)
mean the LIE algebra valued gauge potentials, which one obtains from the con-
nection 1-form w* € A;(P,g) as pullbacks A* := a;,ewr under the local sec-
tions g e: Uy = 7~1(U,) defined by o,.(z) := ¥ (z,€).

Instead of (2), we would like to obtain a handier formula for these local
projections, which is merely expressed in terms of the involved forms ¢ and A®.
Especially if ¢ is a (pullback of a) form on F, this is indeed possible. Moreover, we
will also be able to give a formula for the exterior derivative d(¢v). Such formulas
are quite essential if one tries to combine the DE-RHAM cohomology of a fiber
bundle with connections on that bundle.

For any X € g, let Lx € D'(F) denote the induced vector field on F' that
is given by (Lx); := (dL)e(X) and let £:g — D'(F) denote the LIE algebra
antihomomorphism defined hereby. Then £ o A® maps vector fields on U, to
vector fields on F. For a n-form ¢ € A,(F,V), we may decompose (pri ¢)v"
according to (2) into a sum of differential forms x; € A,(Ua x F,V),1=0,...,n,
such that x; acts on n —1 vertical fields and 7 horizontal vector fields via £ o A“.
The forms x are obtained from ¢ in two steps: using a product of 7 maps L,
we first transform ¢ into a (n — ¢)-form Li¢ € A,_i(F,Alt;(g,V)). Then we
combine that form with 4 factors of A® in such a way that for any X € D'(U,)
the maps pry; [A%(X)] € C®(U, x F, g) serve as input for the maps in Alt;(g, V).
The resulting form will be denoted by [pri(L.¢)] e (pr;, A%).

Such a construction is possible for all LIE groups that act on a differentiable
manifold from the right or the left. Thus we will choose the general framework of
LIE transformation groups in the sequel. For notational convenience, we will recall
the basic definitions from differential geometry for LIE group actions. Then we
introduce the operators L. and R: for a left, resp., right action and compute, in
how far they commute with exterior differentiation d of forms, interior products 2
with respect to a vector field X and LIE differentiation Ly, which is given by
Ly = tx od+ doiy. The operator e has already been discussed in detail
in [1], thus we only recall its definition and main properties for our purposes.
Finally we introduce operators ® and ® , [such that (pry #)v* is indeed given by
(pry ¢) © (prg;, A*)] and compute the exterior derivative of w, © 8, resp., w, @ 0.

2. Basic definitions

Let us first recall some of the definitions we have already used above, accord-
ing to HELGASON [3] and KOBAYASHI, NUMIZU [4]. For any vector spaces V
and W, Alt;(W,V) and Sym,(W,V) denote the vector spaces of all alternat-
ing, resp., symmetric p-linear maps from W? to V. For convenience we de-
fine Sym*(W,V) = @2, Sym:(W,V) by Symt(W,V) := Sym,(W,V) and
Symj (W, V) := Alt, (W, V).

If f:M — N is differentiable, we denote the differential of f at z € M
by dfs. We have [df.(X:)]lg = Xz(go f) for all X, € T,(M), g € C°(N). If in
addition, f is a diffeomorphism then for X € D*(M) the push-out f,.X € D'(N)
is defined by (f,X)s(z) = df;(X;) for all z € M.

For a € A,(N,V),r € Nand X; € T,(M), the pullback f*a € A.(M,V) is
defined by (f*a):(X1,...,X;) = asm)(dfz(X1),...,df=(X;)). For @ € C(N,V)
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Lemma 2.4.  A(P)g_equiv @ W is @ A(P)g_iny-module with d(A(P)g-_cquiv ®
W) C »A(P)g—equiv®W and A(P)eqniv®w C -A(P)g—equiv®W = -A(P)Ge—equiv®w
for all vector spaces W . If G is connected then A(P)equiv@W = A(P)g-equiv®W .

It is an elementary result in differential geometry (e. g., cf. [4, p. 34]) that

(Law)(P',..., P") = X(w(PY,..., P") = Sow(Ph,. ., [X,P,..., P")

=1

for all X,P* € D!(P) and w € A(P)® V. This yields the following corollaries:

Corollary 2.5. If w € Ay(P)goinv @V, then for all X € g and P* € D'(P)

Sx(w(Pl, cas ,Pn)) = Zw(’Pl,. NN [Sx,'Pi],. . .,P").

1=1

Corollary 2.6. Let x3 € A,.(P)® Hom(®’g,V) be g-equivariant. Then for
alpe P, P € D(P) and X,E; € g:

(Lsx x3)(PY -, PPN B2 ® - ® Es) =
{SX(X:;(pI’ Tt Pn)) - ZXZ(,P17 trt [SX) pi]) rety Pn)}(p)(El ® ttT ® Es)

= Sgn(S)ZX:(Plv- .. :Pn)(p)(El Q- ® Ej—l ® [Xa EJ] ® Ej+l - Q Es)'

i=1

3. Mapping invariant forms onto equivariant forms

Now everything is prepared for the definition of the operators Si which map V-
valued forms onto Alt;(g,V')-valued forms:

Definition 3.1.  Let S be a LIE group action of G on P and w, € A (P, V).
We define Siw, € A,_i(P,Alt;(g,V)), ¢ < n, for all P’ € D(P), Ex € g and
p€ P by

(Siwn) (P, PPN Bs -, Bi) = 2ownl S, 8, P, P (p) €V,

where §' := Sp,. Thus Siw, € A,_i(P) ® Alti(g,V) if w, € A,(P)®@ V. For
1 > n we put Siwn—O

The factor c= ), is inherited from the definition of the interior product with
vector fields: recall (Siw,,)n_, "Bi ¢ Au_i(P,V) for Ej € g from (3), then we have

(Sicon) B = (1510 - 0 151 Yo ®
If {Ek} is a base for g, we obtain for w € A,(P) and v € V:
[SH@BUI(PL. .., PP™) = 2 S(8H. .., S P, PP )R Bh -\ B )b o]

ky < <k;
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Lemma 3.2. For all i < n, S: A (P,V) = A._i(P,Alti(g,V)) is C®(P)-
linear. For w, € A.(P,V), x2 € A.(P,Alty(g,V)) and i + 7 < n, we have

80w, = w,, (Sdwn)(p) = nt[(S?)*'wn)e forall pe€ P, (9)
Si(Aws) = A(Siwn)  for all A € Hom(V,W), (10)
Sy(Sewn) = (Ad(g*"O))[Si(Sjwa)],  thus (11)
Si(Sixs) = (Ad@®ON)(Sixs), i Spxn = (AdG®) ). (12)

Let f57: Altiy;(g, V) — Alti(g, Alt;(g,V)) denote the injection defined by
[P @N By B)(Frso o Fy) = By By By F) for a € Al (g, V).

Then .. . . .. - .
I (SHwn) = (=1)7S8,(Siwn)- (13)

Lemma 3.3.  For all 1 < n we have:

S AP,V )iny) € An_i(P, Alti(g, V))equivs
Si(An(P)inv &® V) g An—i(P)equiv ® Alt:(ga V)?
Si(An(P)goinv ® V) € Ani( P)g-cquiv ® Alti(g, V).

Proof. (12) yields that Siw, is G-equivariant if w, is invariant under S. Now
the operators S! only depend on the restriction of S to G, x P. Thus Lemmas 2.2
and 2.4 prove that Siw, is g-equivariant if w, is g-invariant. (]

Let us compute in how far the operators S: commute with the exterior
differentiation, interior products with vector fields and LIE differentiation.

Lemma 3.4. Let S be a LIE group action of G on P. For all wn € A.(P)®V,
i<n+1 and Ey € g we have  {Si(dw,) — (—1)d(Siw,)}202F =

i 1S (Leseo JIEL Ej. im1 . \BiyesBj o By Bkl B
= ~ 3 (=1 {[Si Lsswn) I + sg(S) 2(5 1) BBl Br BB

j=—’1 k=j+1

= —-Z( 1 { Ls; St— wn)}n+,i:

E;,...E; : i EyyeosByy B ExlyenEi
PB_sgn(S) 30 (S wnymyiog BBkl

k=j+1

where — indicates that the term is omitted.

Proof. From (8), the fact that d commutes with the push-outs (E; ® --- ® E).
and the identities (5) we get by induction:

{Si(dwn ) — (1) d(S'Wn)}n.ﬁl’, = - g(-—l)j(zs.' 0---0Lgj 00151 )wy

= Z —~1)/(- - -oigro- - -)(Lgswn ) — Z( 1)”Z(zsso---0230--~Oz[sj§k]°'"Ozsl)wn

k=1

Interchangmg j and k in the last sum and [S7, S*] = sgn(5)Sig,,z,) yield the first
equation. The second is proved analogously. =
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Proof. Let [Fy, Ej] = Zd""gci,E with structure constants cl;. Then by
definition, 8, Ag ¢ = zd'mﬂak ANy ® BBl = Tinidichbt Ao, ® E; =
>4™9(9, Ay ¢) ® E;, thus

dim g dim 9 . . dim ) Edlm g 7 _7 N .
Xrlz.(gq/\g¢p an]/\ 0 Ag¢p) —z &l Xn /\9 /\¢ = /\0 /\qb
J=1 1,k,1=1 k= 1

We will divide the computation of the exterior derivatives into two steps:

Proposition 5.3. Let S be a LIE group action of G on P, 6, € Ay (P,g),
¢, € AP @) and x° € A.(P) @ Hom(®’g,V) g-equivariant. Then for all
i<n+1 with £ = (—1)1!

{[d(Six3) — (—1)'Si(dx3)]is, €6, 0 b, =

= sgn(S){ — (3),{(Sxa)niist 46,) (0,75 6,)}" 09, +

+(;')f,:i(—nw(k-”{u(s:‘-*xn e T Lt R R TS ) TS
=1

Proof. With the notation of the previous lemma, we evaluate the left side using
(14). Then by Corollary 3.5,

dim g
Ell ..... Ey

Z {d S‘Xn ( 1)3S:(dx7i) bl —i i+5/\.../\0(’;‘/\¢£€+1/\__,/\¢g+, —

i its 1+Jdlmg o1 s\BtpeoBie BBy ) By 0l A it
=sgn(S) D D (—1)H D (ST )t A NOFAGIFTA- -
1=1 k=3+1 l ll+5
dimg o~
- —sgn(s) Y ) e > (st g P B BB BB
7=1 k=341 B P
/\0’1 ...0;1'...0‘*.../\0“Aa‘j/\glk/\¢16+1 /\.../\¢1i+s
dimg
E E,,E.,E,E yeousdS
+ sgn S)Zf‘ 3 Z( 1)qp(k 1) Z(St 1 ped n:l_‘ t Lol BBy} ks p
=1 ll ----- ll+.’
/\0'1 ...0q1‘.../\,9“;/\¢‘-'+1 /\---/\Géfl\gb:j’f"/\---/\qﬁg’fs
dimg
F, E H DT
_Sgn(S)Z Z ek—]"'l Z S% -1 s)n:}l_‘ b ‘$+3 /\
=1 k=j+1 ... l.+a—1
NGB A - NBE=2 A (B Ag 0)" A Gl A-- o At
dimg
E, . .E B ,,...,E,
+sgn(S Zel—J Z( lqp(k 1) Z (Sz 1 s n-tl o 1t 1¢+s/\
=1 119 .lt-l-s—

0;1 N 0;'—1 A ¢:’ N ¢p)‘-‘+k—1 A A ¢:’i+s—1,

by (34). Since 3> Y 0k-i+ = (i), and -3 =({),, all follows from (26). .
i=1

J=lk=3+41












