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Abstract. For any Lie group action S: G x P -> P , we introduce C°°(P)~
linear operators SJ , that transform n-forms un € -4n (P, V) into (n—z)-forms
S\wn  € An -j(P, Alt,-(g, V)). We compute the exterior derivative of these
generated forms and their behavior under interior products with vector fields
and Lie differentiation. By combination with Lie algebra valued forms 0 G
j4i (P, 0) and <f>p G -4p(P,fl), we recover V-valued forms w © 0 G w4n (P, V),
resp., (xn©ö)«<^p for Xn € A n (P, Hom(0s g, V)) and compute their exterior
derivative. The derived formulae play an important role for local evaluations
of connections on fiber bundles.
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1. Motivation

Let P(M , G) denote a principal bundle with base manifold M  = pro­
jection %: P —> M , L i e  group G, right action R :P  x G —> P and local trivializa-
tions 7F- 1 ([/a ) —> Ua  x G with local projections 7ra  = prG o0a . Recall that any
connection T on P  defines horizontal and vertical projections of vector fields, not
only on F , but also on every associated fiber bundle B(Af, F, G) =  P Xg  F  with
fiber F  and left action L:G  x F  —> F , such that the vertical fields are tangential
to the fiber. We thus obtain projections A, v of differential forms via

J u1v ( ...,X ',.. . ') - .=  U ( . . . , v X i , . . . )  (1)

for all V-valued forms w E A (B , V ) . If we compute the vertical projections locally
on the bundle charts Ua  x F , we obtain with LA G  —> F  defined by I /(g )  :=
L (g ,f)  and its differential (dL^)e :g —> 7 /(F ) at the neutral element e E G:

, (X \ ^ ) ,  ■ ■ ■) =  ^ , n ( . . . .  (0, +  F -),. . .)  (2)
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for all E A(Ua x F,V) and (X*, F ‘) G Tx (Ua ) $  Tf (F). Here A" E A ^ U ^ q )
mean the LIE algebra valued gauge potentials, which one obtains from the con­
nection 1-form cur  6 <4i(P,5) as pullbacks Aa  := <7*eu?r  under the local sec­
tions aa te: Ua -> 7T- 1 (l/Ä) defined by cra>e(x) :=

Instead of (2), we would like to obtain a handier formula for these local
projections, which is merely expressed in terms of the involved forms </> and A0 .
Especially if is a (pullback of a) form on F , this is indeed possible. Moreover, we
will also be able to give a formula for the exterior derivative </(</>«). Such formulas
are quite essential if one tries to combine the DE-Rh a m cohomology of a fiber
bundle with connections on that bundle.

For any X  E fl, let £ x  € denote the induced vector field on F  that
is given by (£ x ) f  •= (d£^)e (X) and let £ :g  —> T>X(F) denote the LlE algebra
antihomomorphism defined hereby. Then £  o A“ maps vector fields on Va to
vector fields on F. For a n-form </> E A n (F, V), we may decompose (prp</»)vQ

according to (2) into a sum of differential forms Xi € A n (Ua x F, V ), i =  0 , . . . ,  n,
such that Xi acts on n — i vertical fields and i horizontal vector fields via £  o A ".
The forms x &T e  obtained from in two steps: using a product of i maps £ ,
we first transform </> into a (n — z)-form E A n -i(F, Alti(fl, V )). Then we
combine that form with i factors of A® in such a way that for any X  E
the maps pryQ[A"(A')] E C°°(Ua  x F,fl) serve as input for the maps in Altt-(fl, V).
The resulting form will be denoted by [prp(£*</>)] • (Pr A®).

Such a construction is possible for all Lie  groups that act on a differentiable
manifold from the right or the left. Thus we will choose the general framework of
LIE transformation groups in the sequel. For notational convenience, we will recall
the basic definitions from differential geometry for LIE group actions. Then we
introduce the operators L\ and for a left, resp., right action and compute, in
how far they commute with exterior differentiation d of forms, interior products ix
with respect to a vector field X  and Lie  differentiation L x , which is given by
Lx = 'l x  0  d + d o tx- The operator • has already been discussed in detail
in [1], thus we only recall its definition and main properties for our purposes.
Finally we introduce operators © and © , [such that (prj. <fyva  is indeed given by
(prp </>) © (prj7Q A“)] and compute the exterior derivative of u>n © 0 , resp., cun ® 0.

2. Basic definitions
Let us first recall some of the definitions we have already used above, accord­
ing to HELGASON [3] and KOBAYASHI, Nu miz u  [4]. For any vector spaces V
and W , Altp (W,V) and Symp (PV, V) denote the vector spaces of all alternat­
ing, resp., symmetric p-linear maps from W p to V . For convenience we de-
fine Sym± (TV,V) := by Sym^IV.V) := S y m ^ V )  and
Sym-(VK,V) := Altf (JV,V).

If f: M  —> N  is differentiable, we denote the differential of f  at x E M
by dfx . We have [^(A ^)]^ = X x (g o / )  for all X x  E TX(M ), g E If in
addition, /  is a diffeomorphism then for X  E the push-out f*X  E T)1 (N)
is defined by (/*A’)/(a.) =  dfx (Xx ) for all x E M .

For a  E Ar(N, V), r E N and Xi E TX(M ) , the pullback f*a  E Ar(M , V) is
defined by . ,X r ) =  a ^ d f ^ X ^  . . . ,d/x (Xr )). For a E C°°(N,V)
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we have f* a  := a  o f , linear extension defines the pullback on A (N ,V ). If we
insert A (M ) 0  V  into A(M , V) in a natural way, then obviously f*(A (N ) 0  V) C
A (M ) 0  V . (If V  is finite dimensional, we will identify A (M ) 0  V  and X(Af, V).)

Let 7~( V) denote the tensor algebra of V . Then every linear map A: V —> W
defines a pullback A*: Hom(T(W), Z) —> Hom(T(V), Z): for K  G Hom(®p W, Z),
Xi G V  we have A*ApG, . . . ,  Xp ) =  K ( A ( X i A ( X P)) , so A*(Sym± (W, Z)) C
Sym± (V, Z ). A also defines a push-out A*: A(M , V) —> >l( AL, TV) by A*w =  Aoul
Again A*(.A(M) ® V) C A(M ) 0  W , where we have A*(a 0  v) = a ® K{y') for
all a € .4(M ), v € V . For an example, let Ej G W , j  =  l , . . . , s  and let
Ei 0  • • • 0  Es : H om (0 s W ,V) —>• V denote the canonical evaluation morphism.
For any differential form Xr € .4r(Af, Hom(®s W, V)) define x E1’'"'E t €
to be the push-out of Xr under this morphism: x ^ 1'" '^3 '■= (Ei 0  • • • 0  Ea\ x s

r i
i. e., for all x G M  and X 1 G i = 1 , . . . ,  r ,

(X?‘ ■ • •, := (E, ® ■ • • »  E.) O (x ’M X i , X ' ) .  (3)

In the sequel, G will always mean a Lie  group with Lie  algebra g, left
and right multiplication X,p:G —> G and inversion g:G —> G. For S  = L ,R
let S: G x P —> P  denote a left, resp., right Lie  group action. We identify S
with S: G —> Diff(P). Also for notational convenience, we always write G on the
left, even if S  denotes a right action. In that case, we put sgn(S) := 1, whereas
sgn(S') := —1, if S  denotes a left action. Since S  is differentiable, all maps
Sp : G -> P , p G P , resp., Sg '. P -> P , g G G, defined by S p (g) := Sg (p) := 5(^,p),
are differentiable, resp., diffeomorphisms.

G is called a LIE transformation group of the manifold P . If P  is a vector
space and the action is linear, we speak of a representation of G, e. g., the adjoint
action Ad: G —> Gl(g) is a left representation. The trivial action means the natural
projection prP : G x V —>• V.

An action is effective if Sg =  idP  only for g = e. In that case G may be
thought of as a subgroup of Diff(P). An action is free if (in addition) Sg (p) — p
only for g = e for all p G P . Via A and p every Lie  group acts freely on itself.

w G A(P, V) is called G-invariant or simply invariant if S*w = co for all
g G G. Denote their set by X(P, V)in v - Analoguosly for any subgroup H < G,
we define A(P, V)p _inv to be the set of H -invariant forms, 1. e., those forms that
are invariant under the restriction of S  onto H  x P . Especially we will use this
notation for Gc -invariant forms, where Ge is the connected component of e G G.

•4(P)inv and A (P )m v ® V  are graded subalgebras of -4(P), resp., A(P)®  V
(whenever a wedge product Ay of V-valued forms is given by a bilinear map­
ping m: V x V —> V), with d(X(P) inv) C v4(P)in v . Analogous statements hold
for A (P )n^iav and -4(P)p _inv <0 V , which are modules of A (P )m v- Obviously
-4(P)inv C >l(P)H-inv and A(P, V)inv Q A(P, V)H _inv for any subgroup H < G.

Lemma 2.1. I f  S :G xP —tP  is a Lie  group action then S*:G xE 1 (P) —>PX(P ) ,
5*07?: GxA(P, V) A(P, V), S , :GxX(P,Hom (T(g), V)) -> 4 (P , Hom(T(fl), V))
and S": G x A(P, g) —> -4(P, g) defined by

(S*)g (X ) := (Sg )*X for all X  G P X(P),
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( 3 * 0 ^ )  -.= (S„-.)*u> for all u>eX (P,V ),
s'a M  := ( W W 1" " )* ) .*  x e A ^ H o n i ( T ( B ) , n )  «-nd

S ^ )  := (Ss - .) ‘ Ad(S - ’' “'s ’U  for all r e A (P ,S ),

are all representations of G on the same side.
Let S', S' be two actions of G on spaces X , resp., X ' on the same side. A

mapping / :  X  —> X ' is called G-equivariant, if

S
G x X  -------------------------- - X

id x f  f

S'
G x X '  -------------------------- - X '

commutes, i. e., if S'(g, /(# )) = f(S (g ,x f)  for all x G X  and g G G.
If S  is a Lie  group action on P and J? is a right representation on W ,

then a differential form u> G A(P, W) is called G-equivariant, if S*x — #(<7s®n(S))*X
for all g G G (resp., if S*x = L{g~Sgn(s ))*x f°r  a  representation L). Thus
— referring to the right representation Ad* on IV = Hom(T(fl), V) — we call
X € A(P, Hom(7”(fl), V)) G-equivariant, if x  is invariant under S'. Analogously,

E A(P,g) will be called G-equivariant if ip is invariant under S " . We denote
the set of equivariant forms by A(P, fV)equ;v . It is a module over A (P ) in v .

If G is compact with HAAR measure p we have projections onto invariant
and G-equivariant forms defined in the following way:

^inv

Xequiv

^equiv

:= /  dp(g) for all u  G A(P, V),
JG  a

:= I  (Ad(<T s^ T \ S * g x  dp(g) for all X  € A(P, Hom(7'(p), V)),
J G

:= [  for all
J G

As already introduced in the previous section, every X  G 0 induces a
canonical complete vector field Sx  6 by (<Sx)p := (dSp )e(X ) , so

(Sx)p(f) = (dS’M X X n  = ^ /(S « « (p )) | t= „ for all f  e C“ (P), p € P,
at

[Sx,y)p = = l i m l { ( ( S . - . x f o r  a l ly  e P '(P ) .
l t“>U J

—> P 1(P) and — —> P X(P) are Lie  algebra homomorphisms and

[ ^ x 5 ^ y ]  =  ^ p r .y ],

(Rg-i'fk'R'X =  R kd(g)X i

[ £ x , £ y ]  =  ^[Y,X\ — -^ {X ,Y }

{L a \ C x  =  Cxd{g)x f°r  ah
for all X , Y  E fl,

g E G, X  G 0-

Obviously S  — C,"R, only depends on the restriction of S  onto Ge x P . For all
forms w G ■A(l’) <8> V we have L$x w — [^((S e»x)*w)|t=o] and for all X , Y  E 0:

— sgn(5')L5[Jt yj, [L x̂ , d] 0, (4)
[htfjfjiSy] =  q<Sx>̂ y] =  ®ga(^)*£[y,xp *̂ x 0  d T do iSx- (5)
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We call a differential form u> € -4(P) ^-invariant if L$x a> =  0 for all X  € 0.
Analogously, w will be called horizontal if tsx w = 0 for all X  E 0. Denote their
sets by >t(P)0 _in v , resp., A(P)h  and let v4(P)h0_inv := .4(P)0 -inv A A(P)h.

The notion of “horizontal” forms is due to the fact that for a principal
bundle P(M , G ), the horizontal forms in the sense of (1) are exactly those forms cu
with iitx w = 0 for all X  E fl with respect to the free right action R on P .

Since i# and Lx are (skew-)derivations of >l(P) and Ge = (expg), we get:

L em m a 2.2. <4(P)0 _in v , A(P)h and A (P)hg _inv are graded subalgebras of
A(P) with d(A(P)ß-in v ) Q X (P)0 _inv and d(A(P)ha - m v) Q A (P )h g - in v . Analo­
gous statements hold for A (P )g- m v <g> V and Ay, etc.

A(P)inV 0  V  C ^4(P)0 —inv ® V = A(P)o e-mv ® V for every vector space V .
I f  G is connected then A(P) inv ® V  =  v4(P)0 _jnv ® V .

Lem m a 2.3. <S:g —> P 2(P) induces a G-equivariant C°°(P ) -module homo­
morphism S': C^^P, ff) —> C°°(P)S(g) C P J (P) (with respect to S" and S*). If
G acts effectively on P then S  is injective. I f  G acts freely on P then even
(dSp )e is injective for all p € P , thus X  0 yields (<$x)p 0 for all p E P ; for
every basis { E i}i,dim 0 for fl, {5^}^... dim0 is then a basis for the free C°°(P)-
module C'oo(P)<S(g) and the induced S ' is an isomorphism of free C°°(P) -modules.
Proof. Assume that G acts effectively. Let X  € fl and suppose (<$x)P( /)  =  0 for
all f  E C°°(P) and all p 6 P . For p = S(es X ,p') this yields ^ f ( S e(t+3)x(p, '))\t=o =
£ f ( S e t x (P y)\ t= s = 0 for all f  E C°°(P), p’ € P  and s E R . Thus S(e t X ,p') = p'
for all p' E P and t E R , and thus X  =  0 since S  is effective. Analo­
gously for a free action, one proves injectivity of (d5p )e for all p G P using
(<^x)s(e^,P) =  dSesx (S x )P • But then all Se , are independent over C'00(P), since
they are independent for all p E P . ■

Finally we need the notion of g-equivariant forms. Just as Ad: G
Gl(g) induces the representation ad:g —> gl(g) with ad(X)(K) = [X, F], every
representation S'.G —> G1(W) of a Lie  group G induces a representation s =
dSe‘.% -> gl(W) of fl such that S  o expX = esX  for all X  E fl. We will
identify s with the corresponding bilinear mapping s:g x W  W  given by
s(X, w) := := (dPw )e(X). From this point of view, R  and £ :g  —> ^ ( P )  —
der C°°(P) axe the (infinite dimensional) representations induced by the LIE group
representations Ä* and £*: G —> Aut(C°°(P)).

Let ad*: fl x Hom(T(fl), V) —> Hom(T(fl), V) denote the bilinear mapping
induced by Ad*. Then for X ,X i E fl, p E No and K  E H om (0p fl, V), we have

p
( ^ x K )(X 1, . . . , X r ) = ^ K ( X l , . . . , [ X ,X i } , . . . ,X p ). (6)

1=1

If S  is a L ie  group action of G on P  and S'\ G —> Gl( W) is a representation,
then a differential form X E A (P) ® W  will be called Q-equivariant if

Lsx X = sgn(S)sgn(S')s'(X)*x for all X  E fl. (7)

Thus x  € v4(P) ® Hom(T(fl), V) is g-equivariant if Lsx X — f°r

X G fl. We will denote the vector space of g-equivariant forms by X (P)0- equiv® IF .
Analogously to Lemma 2.2 we obtain:



6 Gr o s s

Lemma 2.4. y l ( P ) s _ e q u iv 0  W  is a A ( P ) g _ in v  -module with d ( A ( P ) g _ e quiv ®

W )  C  ^ ( F j g - e q u iv ® ^ 7  and X ( P ) e q u iv 0 W  Q A(P) W  ~  > l ( P ) G e -equiv 0  W7

for all vector spaces W . I f G is connected then ^ 4 ( P ) e q u iv 0 W  =  - 4 ( P ) f l - e q u i v 0 W .

It is an elementary result in differential geometry (e. g., cf. [4, p. 34]) that

(w ) ( p \ . . . ,  p ”) =  w 1, . . . .  p ”)) -  E ~ ( p ‘, . . . ,  [x, p i , ..., p ”)
i=l

for all X,P* G ^ ( P )  and cu € >l(P) 0  V. This yields the following corollaries:

Corollary 2.5. If tu G ytn (P ) fl_inv 0  V , then for all X  € 0 and P ’ G ^ ( P )

. ,P")) = E ^ P 1, . . . ,  [S x ,P i , . . .  ,P").
1=1

Corollary 2.6. Let x n
s  € A (P )  0  Hom(05 0, V) be g-equivariant. Then for

all p e P , P i 6 D l (P) and X, Ei G 0:

(UxXSMP1, • • - ■ P")(p)(ft ® ■ ■ • ® E,) =

= W * ,  ■ ■ ■ ,?"))-'£ , £ ( ? ' ,  ■ ■ •, l$x, P ’], ■ ■ ■, P " ) } « ^  ® • • • ® E.)
z=l

= sg n ^y ^X n C ^ 1»’--^ n )(p)(E i 0 - - - 0 P j - i  0  [X ,£J 0  £ j+ i 0 - - - 0 P s ).
j=i

3. Mapping invariant forms onto equivariant forms

Now everything is prepared for the definition of the operators S’ which map V -
valued forms onto Alt2(fl, V )-valued forms:

Definition 3.1. Let S  be a LIE group action of G on P and cun  G Xn (P, V).
We define S*wn  G A -i(P , Altt (f l, V )), i < n, for all P’ G ^ ( P ) ,  Ek G 0 and
p G P  by

[ ( S X ) ( P \ . . .  ,P n -'£)(p)](P1 , . . . ,  Ei) -.= ^ c u ^ S 1 , . . .  , S \ P \  . . . , P n - ‘)(p) G V,

where S ’ := S e z - Thus S‘cun G Xn-t-(P) 0  Altt (0, V) if tun G u4n (P) 0  V. For
i > n we put S’u>n = 0.

The factor is inherited from the definition of the interior product with
vector fields: recall (Siu?n )^L’- '’E ’ G A n -i(P ,V ) for Ek G 0 from (3), then we have

= (>S‘ ° ' ' ' O (8)

If {Pfc} is a base for g, we obtain for co G A n (P) and v G V:

[SIM M KP,1. • •, • • •, p \ • • •, P n - ‘>  K ^a- ■ • KEkt h  4
ki<-<ki
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Lemma 3.2. For all i < n, S,: Xn (F, V) —> A n -i(P, Alt,(g, V)) is C°°(P)-
linear. For wn G >ln (P, V), y® G A n (P, Alts (g, V)) and i + j  < n, we have

S°.un = u>„, (S>„)(p) =  n! for all p 6 P, (9)
S;(A^>„) = A.(S’X )  for all AeHom(V,W '), (10)
S J ^ X )  =  (Ad(p’'"<s >)*).[S:(Sa*u>„)h thus (11)
s ' M x ü  =  ( A d ^ ’n m y ,  ■/ (1 2 )

Let f l 'i\ Alti+ j(g, V) Alt,(g, Altj(g, V)) denote the injection defined by

Ei)(F l y . . ., F>) := a(F 1 ? . . . ,  E iy Fi y . . ., F J  for a € Alti+> (0 , V).

Then
= (-IJ-’S ^ S ^ ) .  (13)

Lemma 3.3. For all i < n we have:

Si(A (P,V )in.) C >l„_,(P, Alt;(B , V))«,uiv,
SJ(A.(P)m. ® V) C 4„_ i (P)„„ i v ® Alt,(g, V),

s : ( A ( P ) 8-i„v®V) c  A.-.(-P)e —equiv ® Alt,(0 , V).

Proof. (12) yields that S'Wn is G-equivariant if u)n is invariant under S. Now
the operators only depend on the restriction of S  to Ge x P . Thus Lemmas 2.2
and 2.4 prove that S‘u>n is ß-equivariant if a>n is ß-invariant. ■

Let us compute in how far the operators 5 ’ commute with the exterior
differentiation, interior products with vector fields and Lie  differentiation.

Lemma 3.4. Let S  be a LIE group action of G on P . For all u»n 6 v4n (P)®V,
i < n + 1 and Ek 6 0 we have {S*,(dwn ) — (— =

=  .....E ' + s g n ( S )  E  ( S i - M S i - F ..... I £ j '& 1 ..... E ' }

7=1 fc=j+ l

=  .....£ ’ - s g n ( s )  £  ( s : - M f + r : F ..... ...................E ' }

7=1 k - j+ 1

where indicates that the term is omitted.
Proof. From (8), the fact that d commutes with the push-outs (Pi <8> ■ ■ • 0  F t )*
and the identities (5) we get by induction:

{ s ;(< L > „ )  -  ( - i M S X H & ' i - f '  =  -  E ( - i y ( w  o ■ • ■ o l s , o  ■ ■ • o  1 S , ) U .
7=1

» i J - l
= ~ ■ • ° ^ ° ‘ ' -)(L 5iWn ) - J 2 ( - l ) J • •O?[<SJj5*]O- • -OlS l)ujn .

j= l  j = l  fc=l

Interchanging j  and k in the last sum and [5J , 5 A] — sga.(S}S\Ej,Ek] yie ^  ^he first
equation. The second is proved analogously. ■
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if x ; e A .(P ) 0  Hom(®Ä0, V) is 0-equivariant, Corollary 2.6 yields

K ~ ‘( ... *»’ = sgn(S) ... E ’... ...............
k=l

(we again identify Hom(0’+ s 0, V) and Hom(®‘0, Hom(0s 0, V))). We obtain:

Corollary 3.5. For 0-equivariant Xn G A n (P )® Hom(0s 0, V) and i < n + 1,

{ [•W Z J l -  =
: i+s

= » g n (S )£  £  ... .............E ,+ '.
J=1 fc=j+l

Thus for 0 -invariant wn , da)n = 0 yields d(St <+in ') = 0, too.
Analogously one proves using ix  o iy = —tx  o iy and [Lx,ty] =

Lemma 3.6. For all cun 6 A n (P) ® V , X  € P X(P), Ek € g, and i < n,
[ S ' . ( ^ ) ] E ‘. ^ E- =  ( - i ) M k ) f c £

..E | -

J=1
I f X  = S x  with X  € B, we get [Sj(! S x w „ ) f c f ’ = (S;+ 1w„)JE L’;"'R ,

K (L s ^ „ )  -  LS x ( .$ > „ )& - Ei = - s g n ( S ) f  ( S X f c  Ä E ' ]... E .
J=1

4. Mapping equivariant forms onto invariant forms
For our purposes we also need operators in the opposite direction, that produce
V -valued forms from Hom(7”(0), V )-valued and 0-valued forms. This can be done
in a very general way and does not require a LIE group action (cf. [1]). Given
forms Xr € A r (P, H om (0 s W, V) and </>p =  0  Ei G A P(P) 0  W  with
p, r, s — 1 G Nq , we define a V -valued form Xr • «A» in  the following way [recall (3)]:

m
X‘,*<t>P = Y  Xr’' ... (14)

Thus if Xr A r (JP) 0  Hom (0 s W,V) then also Xr • d’p € 4̂r +sp(P) 0  V. Linear
extension defines the operator • for x € A(P, Hom(7”(W), V)). Note that if
Xf € A r (P, Syrn'(W, V), < =  ± , with s > 1 and <;(—l)p = —1 then Xr • d’p = 0.

Since • behaves well under pullbacks and push-outs, one easily proves that
• maps equivariant forms onto invariant forms (cf. [1, Lemma 7.1]):

Lemma 4.1. Let S:G  x P —> P be a Lie  group action and L:G  —> G1(W)
be a left representation. I f <pr € A r (P,W ) and x  £ A(P, Hom(7~(lV), V)) are
equivariant (i. e., S*<pr = L(g~ssn^)*<pr  «nd S*x = (■f'(sFSgn̂ )*)*X f o r  9 G
G), then x * T r  is invariant. E. g., if x  G »4(P, Hom(T(0), V))equiv and <pr  G
A r (P, 0)equiv then x  • Tr is invariant.

Analogously, if x  and <pr are both g-equivariant then x 9 (Pr is 0 -invariant.
We are interested especially in the case where x n

s  =  and we combine
both operators in the following form:
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Definition 4.2. Let S  be a LIE group action of G on P. Then for €
A n (JP, V) and 0 G .4i(P, g) we define

© 0 := £  ----- (<$X) • 0 e A ^ P ,  V).
i=0

Analogously, for f :M  —> P and 0 G Ai(M ,g), resp., linear A: V —> W  we write

( /V .)© 0  .-= £  ’’ r ( 5 > „ )  .  0 e A (M , V), resp.,
i=o

\ n  ( _ iy ( w - t )
(A,w„)®0 := ----- M S X M e A m  etc.

fcO l!

Linear extension defines u  © 0 for w G A (P ,V ).
Due to Lemmas 3.3 and 4.1, u>© 0 is (g-)invariant if uj  is (g-)invariant and 0

is (g-)equivariant. w© 0 is the differential form that one obtains if wp , p € P , does
not act on the tangent vectors A’J G Tp(P) themselves but on X? + (dSp )e0p (Xp).
Indeed, we have:

Lemma 4.3. Let p G P and <T‘ € D : (P ) . Then

(o © « ),(.. . ,  x ; , . ..) =  u>p ( . . . ,  x ;  + ( d s ^ x ' i ...). (15)

Proof. Let w e  A„(P,V). Then w ,(.. . ,  AJ +  ( d S * ) .^ ^ ) .  • • ■) =

=  E  (“) £  ^  » M d s ^ x ^ ,  ■ ■ ■, ( d s ^ x ^ ,  x * + l \ . . . , A7<">)
»=o peSn

®—0 p£Sn

= E  ^ ^ [ ( S X )  .«)(a *,..., a ;)  = (w ©e)p ( A j , . . . , x ^ .  ■
i=0

Lemma 4.4. For all u> G A(P, V ), <j> G Ai(P,&) and horizontal 0 G *4i(P,fl),

[(o> © 0) © </>] = uj  © (0 -|- </>). (16)

Proof. If 0 is horizontal then 0p (dSp }e = 0 for all p G P . Thus for all
vector fields X*, Lemma 4.3 yields [(w © 0) © </>]p ( . . . ,  X*,. ..) = wp ( . . . ,  X? +
(dsp )e4)p ( x * W d s ^ ^ ^  ...)  = ^ p (. . . ,x ;+ (d s p)e (d>p +
DP)(X ‘), .. .)  = [w© (« +  « . .  ■

Again for S = L ,R , let 0 s  G >li(G,0) denote the left, resp., right canonical
1-form on the Lie group G that is given by 0 s  =  ^ s (idg ), where ips : Alt(g, V) —>
A(G, V’)jnv (invariance with respect to left, resp., right multiplication) means the
isomorphism that is inverse to the evaluation at e; i. e., 0 ^ (A'j) =  dXs -i(X g ) and
Q*(Xg ) = dpg -i(X g ) for ali g G G and Xg G Tg (G). We thus have 0 R =  A d .0 L ,
i. e., 0 R  = Ad(<jr) o 0^ for all g € G. If f:  M G is differentiable, f*QR  =



10 Gr o s s

(Ad of) • f*QL  and f*QL = (Ad 0 / x) • f*QR , where f  1 := g o f: M —> G . Also
with the constant map 1 € C°°(G):

i/?s (k') = (l®  K )* Q S  e A (G ,V ) inv for all #G A lt(g ,V ). (17)

Let us first give an application of © . Suppose S  is a LIE group action of
G on P and a? € <4n (jP, V)in v - For any differentiable g :M -+ G  and f : M ^ P
one would like to compute [S o (g, /)]*u. Then in order to split this form into its
portions that belong to /* , resp., g*, one needs © . In fact, the following holds:

Theorem 4.5. Let S  be a Lie  group action of G on P , S' a representation
of G on V on the same side and w € A (P ,V ) be equivariant. I f g: M  —> G and
f : M - ^ P  are differentiable, then S'g G A(M , Gl(IV)) and

[S o (g, = S' .  (/*w  ® S *6g) =  (S‘ .  J ’u) ® g*ea
s . (18)

Proof. Let X* € and x G M . Then {[S o ( j , / M ( -  • • , • • •) =

— (g(x),f(x))(• • • ■> f(x)4fx 4" (dS^ ’ * •)
= , d f ^  + d(S3 - . ( l )  o S ^ ^ d g z X - , ...)
=  % )  o , d f ,x ‘ + ( d s ^ u g *e s

a - ) ,x ^ ...)]
= % )  ° [(/*« © g"9 s

G u . . , x ‘, . ..)] = [ s ; .  (/*w  ® /0 g ) |„ ( . ■

Corollary 4.6. I f S  be a LIE group action of G on P and cu G A(P, V) is
invariant then for any differentiable g: M —> G and f : M - ± P

[S o (S ,/)]*w  =  /*o> ©<,*©§. (19)

Suppose that under the conditions of Theorem 4.5, (S'p )*cvn is indepen­
dent of p G P . Then (Sp )*wn G A n {G, V) is invariant: (£p )*u? =  '<pR (K),
resp., (Rp )*co = t/>L (K) for a K  G Altn (g, V). Moreover, we find (5')*7T =
Ad(g- s s n 5 )*Ä', so for the i = n term in the definition of © in Theorem 4.5 we
get from (9) with —S := R  for S  = L, and vice versa:

■ W ( S > . )  •«*©§] = g ^ - s m -

The z = 0 term reads S'g • /*o>, so for iv G ^4i(G,g) we obtain

Corollary 4.7. Let L,R-.G x P —> P be a left, resp., right action of G on P
and f : M —>P and g: M —> G be differentiable; K  G Alti(g,g) be invertible and
w G >li(P,g). Then K(Adog)K~1 G Ao(M, Alti(g,fl)) and we have

1. If (LP)*w = f R (K) and L*w = K  Ad(c)/C- 1  ow for all p G P , c G G, then

(Z O (9 ,/)]*u  = K(Ad Og }K -1 .  + g ^ R (K).

2. I f (Rp )*io = i/>L (K) and R?c uj — _fifAd(c~1)Ar - 1 bu? for all p G P , c G G, then

[Ä o (g, /)]*u, = tf(Ad og-‘)K - 1 .  f* ^  + 9 ^ L m .
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For P = G and L — A, resp., R = p, Corollary 4.7 gives a proof for the
formulas for ( /  • g)*Qs  and ( / - 1 )*0S : put K = idfl and observe that ( f  • / - 1 )* =
e* =  0, where e: M  {e} C G is the constant map onto the neutral element.
Then Corollary 4.7 yields:

( /• s )* 0 L = (Ado9 - 1) . r © t  +  )7*0L ,
= r e R  + ( A d o / ) . s ‘0 n ,

( r i )*eL = - (A d o /) . /* © 1  = - r e " ,
( / - 1)*®« = - (A d o /- 1) . / * 0 «  =  - r e L .

We already stated another application of ® in Section 1.: if T is a connec­
tion on a principal bundle P(M, G) and B(M.> F: G) is an associated fiber bundle
with a left L ie  group action L:G  x F —>• F (we also use L for the natural exten­
sions to the bundle charts Ua x F ) ,  then for any </> G A(F, V), the local vertical
projections of prF  </> G <A(UQ x F) are given by

( p r ^ ) v “ =  ( p r ^ )  © (p r^ A “). (20)

This follows immediately from Lemma4.3 and u ^ j^ X , K) = (0, Y + (dZ/)e A£(X))
for all (X, V) € Tx {Ua ) ffi T f(F ). If 0 is invariant, then one easily computes that

W r f ?  ® v °] =  (pr> <A) © [(p r^ A d G r1)^ « )]. (21)

Let Uap := Ua nUp 0  and := (0 /? |^ ) - 1 )o (t/>a \ua ß ) denote the maps
for the change of bundle charts. If gpa* Uaß —> G are the transition functions, then
the maps Tßa are given by

Tßa = ( p r ^ ,  L o (gß a  o p r ^ ,p r F )) =  L o (gß a  o p r ^ , i d ^ x F ). (22)

For computations on fiber bundles one needs to know how differential forms trans-
- form under such a change of bundle charts, e. g., in order to check whether a

collection of local forms defines a global form. In view of this question we obtain
from (19) for <p G >l(F, V)in v :

r )3a(prF <£) =  (Pr F <A) © (ffOa o pryQ/J)*0L - (23)

Recall from the theory of connections that the gauge potentials A” transform
according to A" =  (Ado^0|ff) • A10 +  g*pa QL , where we omitted the restriction
to Ua ß. In fact this is a consequence of Corollary 4.7.2 for üj  = u?r , K  = ids
and f  = <jp<e because aQ,e = R ° (gpa,<rp,e)- Further observe that in view of
Lemma 4.4, (gpa  °PTua ß )*®L  and (p r^  A“) are both horizontal. Although due to
(21) for invariant </> € -A(F, V), the vertical form (prF  (/>)va  needs not be invariant
and thus Corollary 4.6 does not apply, one quickly checks tracing the proof of
Theorem 4.5, that

^ [ ( P r j . « ^ ]  = [ ( p r J .^ O K p r ^ /A d f ^ J .A ^ J I O ^ o p r ^ ) * © 1

= [(prj <f) © [pr^„((Ad Oga ß ) .  A” +  J^© *)] =  (prf-

We have thus proved
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Theorem 4.8. I f  € A{F,V) is invariant, {(prp</>)v“ € A(Ua x F, V)}a e 4,
resp., {(7T*</>)va  G V)}Qgj4 defines a global form <t>v G A (B , V ). I f </>
is invariant and locally vertical, then is global.

Generalizations of this theorem to combinations of equivariant differen­
tial forms as in Lemma 4.1 are possible. E. g., if x £ A(F, Hom(T(g), V)) is
equivariant and F" G AfiJJa, g) denote the local gauge fields that are obtained
from the curvature 2-form Qr  as F“ := <7* eQr , then {[(7r*x)«a ] • (?r*Fa ) G
X(7F- 1 (t7a ), V)}a g j4 defines a global form x v  • F  011 the bundle B , cf. [2]. Lo­
cally this form is given by

|(pr*f  x)«"] .  (p rj. F“) = l(pr*F  4>) © (pr&. A»)] .  (p rj. F“). (24)

5. Differentiation of the combined forms
From the previous applications it should be clear that it is important to control
interior products, L ie  derivatives and above all, the exterior derivatives of the
differential forms Xr • a nd © ö. E. g., one is interested in the exterior
derivative d(</>v) from Theorem 4.8 if </> is closed. Thus the computation of
d(cun © 0) and, more generally, of d[{%* © • </>p] will be the main task of this last
section. Unfortunately, the most general formulas turn out to be quite voluminous.
For this reason, we will then discuss the important special cases.

We need to generalize • to give formulas for Xr • (^p +  ’/’p) a n ( I ^(Xr •<£?),
cf. [1], First we observe that Xr € Ar{P, Sym'(g, V)), <; = ± , naturally defines

Xr ’s" E A r (P,Sym ',(g,Sym ^g, V))) for all s',s" G No , s' + s" = s. (25)

For any such combination of s' and s", Xr •  (^p +  ^p) w iU contain terms, where
s' factors of and s" terms of serve as input for Xr • order to cover this
situation, we need the following two definitions.

Generally, for Xr',s" € A (F , Hom(®s'g , Hom(®s" g, V))), s', s" G N, r G
No, and any E{ G g, i = 1 , . . . ,  s', we define

X r'... := |(E1 ® ■ • - ® G A,(P, B , V))).

[Thus if x ’r ''“ G A (P )® H om (® s' f l,Hom(® , " 0 , V)) then x? '... G A (P )®
Hom(0 s g, Z).] For any such differential form Xr ,s" an< l a n Y <Ap € Ap(P)®Q, let
V  ■= Hom(0s / g, Z) and x? := Xr’s" € A (P,H om (® aZ g, V ')), and define

Xr ’s" ◄ </>P ■= Xr • h  e A + yp(P, Hom(®s" g, V))).

If fip = 52 ® Bj € Ap(P) 0  W  then we obtain
j=i

X’ -- ^ t^ r = E  X > ...  (26)

which shows that Xr ’s" ◄ <t>P E Ar+ t>p (P) ® Hom(®s"g, V)) if Xr ,'s" A (P )  0
Hom(®s ' g, Hom(®s” g, V)).
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We also introduce generalizations (0  of the ordinary binomial coefficients:

A J 0, if s even and k odd,
k)_  =  l (i*/?])’ e l s e  (f o r  r  €  K ’ M := (2 7 )

Thus Q)±  = as before. Now if Xr € A r (P, Sym^g, V)) and £ := c ( - l ) p

then Xr • (</>p + typ) can be written as
s

x : .  + «  = e  ( : ) / x ^ - ‘ •< m  = n u  © /x * * - 1 «  w  • 4>r -
fc=0

If Xr e  X r (P)®  Sym^ß, V) we obtain for d(x* •<&>), ^ x { X r * ^  and La-(x " • </>P):

<i(x- =  (< w + , • + (-1 )” © , w » - 1 « m + i ]  • (28>

u ( x > «  = ( • x x ) : - i« ^  + ( - i ) r  (29)

L * ( x > «  =  (Lm M +  © ( (30)

Note that whenever x? • Ap 0- © , — (*) ■ If X) € ^ r (P)®Hom(®s 0, V), we get

s -1

</(x) •<)>„) =  (dX - ) .  &  + ( - i r  s t - i r i i x f - ^  .  <t>r , (3i)
1=0

s —1

>x(x: • <m  = (■«:)• + (- i r £ ( - 1  m ; 1” *« • ^,(32)
J=o

s —1

^ ( x ‘ • M  = ( w : )  • d>p + E ( - i ) J '’[(x?;" ' ’ -  ^ ) 1!‘^ ' 1 -  Lx^p] • h -  (33)
>=o

Now for the operator © : if 0 is horizontal one quickly verifies analogously
to the proof of Lemma 4.4 that is x (<jJ © 0) = (isx <A) © 0. Thus we have:

Lemma 5.1. I f Xr £ A ’(P) ® Sym'(g, V) and 0 is horizontal then

*SX [(Xr® 0)*</>p\ = [ f e x ) r - l®  0 M p  + ( - i ) r  (J), [(Xr® ö )ri<S" X

If Xr € •A-(P) 0  Hom(®Äfl, V) and both 6 and <pp are horizontal then

2<$x[(Xr ® ö ) • </>p] = [ k x ) ‘- l  ® 0] • ^P-

Recall Ay from Section 2. and let Afl denote the exterior product for g-
valued differential forms which is induced by ad: g x g —> g .

Lemma 5.2. Let Xn € >U(P, Hom(g, V)) and {Ek}k=i,... ,dim baszs for *
Then for S, = flj ® Ek  e A ( P ,0 ) and d>p = S t ” 9 <!>p ® E< € Ap(P,g),

dim g dim g

X* • («, Ag d>p) = E x ?  A (e, Ag = E  X ?‘1E,! A e* A <h‘p. (34)
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Proof. Let [Efc,E/] =  Z)j=i0 rfa Ej with structure constants <fk l . Then by
definition, 0, A, A <f>r‘ 0  [Et , E,] = =:
^ im s (ö,A s ^ y » E J , th US

dim g dim g dim g y^dim  ß J

M M )  = E 4 1x £-a ^ a^ = E x ^ -  ’ao,‘ a ^ .  ■
j —1 k tl= l

We will divide the computation of the exterior derivatives into two steps:

Proposition 5.3. Let S  be a Lie  group action of G on P , 0q G A q(P,Q),
<pp G .4p(P,g) and x n

s  G >4n (P) ® Hom(0s g, V) q -equivariant. Then for all
i < n + 1 with I = (—1)?-1

(M w  -  4  «,}• • =
= *gn(s){ -  ( O / K s r 'x n i r + t f x ^ ’^ t^ A ,« ,) } -  ><t>r  +

fc=l

Proof. With the notation of the previous lemma, we evaluate the left side using
(14). Then by Corollary 3.5,

dim g
E  { < < (5 ix o -( -n , 5 ;(dx ;)}„«-; i ' ' ' '* 'A ---A ^ A ^ « A .- .A ^ -  =

= *gn(S) £  £  ( - I ) ' « ... [E'^ * ' ... £ ,-A . ■ -AÖJ A. •.
j= l  k = j+ l  h .-J id -s

= -sgn(S ) t  t  ... ........A

j = l  fc=j+l

A 0*1 A • • • 0,J • • • 0,* • • • A 0'* A dfl  A 0q
lk A </#+1 A • • • A

+ sgn(S) ±  ±  (-1  ... E“’ ... E ,'+‘ A
3—1 k ~ l

A0'1 A • ■ • •• A 0fl  A ^ +1 A • • • A 0fl  A 0p
l i+k A • • • A

1 fl p  p  . p  p

= - 8 gD ( s ) L  e  t k - ,+ 1  E  ■...-+- a
j = l  Iczzj+1

A 0'1 A • • • A 0^-2 A (0, Afl 0,)G- 1 A A • ♦ • A

+ s g n ( S ) £ f ^ £ ( - l ) ^ - »  ( S ^ x t ^ f “-'iE‘.... E l,+ i A
j  1 k—1 Zi i

A 0g1 A • • • A 0J-1 A A • • • A (0, Ao A • • • A ^ + s"1,

by (34). Since £  £ £ fc_J’+1 =  fl) and — fl) > follows from (26). ■
j= ifc= j + i  W z  j = l  \M r
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Corollary 5.4. Suppose 0 € «4i(P,g) and Xn € Xn(^)®Sym'(fl, V) in Propo­
sition 5.3, then with t  =  <;(—l)p /or all i < n +  1

M s x j r  ■« e y  • -  ( - ly n s ic d x jo r -  «  «}•.  =
= -  sgn(S) © { [ ( S r 'x X + Ä ' *  X (« Aa  9)}’ .

+  sgn(5) i «  0]1!-  «  (» A, 'M } - 1 .

Proof. This follows from (— l)r(fc-1)[[(,5‘- 1 x.)J(“1
1
:®t.^9]k~1’a_A+1<?ip]1's~̂ <(9Ag<̂ p) =

Theorem 5.5. Lei S be a Lie  group action of G on P , & € -4i(P,g), <bp €
■4P (P>fl) f ln d  Xn £ -4n (P) ® Sym*(g, V) q -equivariant. I f  I  ■.—q(.—i y , then

d((x; © 9) • M  -  IW „) © 9] • <bP =
= {[(S.XJ) © 9)1* -  -  sgn(S) 1 0 A. «)}■ .  * ,

+ (-1 )"  (;), (Cd © 9)1;s-1  *  -  sgn(S) 0 A„ M r '  •

Proof. By linearity of d and •  in its left argument we obtain for the left side

n n+1
E  F F  4 ( ( 5 X ) i!'  -  E F  W x i ) ] ’* « 9 } . ^  =
t~0 :=0

= E  F F  m . d r ’« »1 • ^ + (;), E  ‘F F F P C d r *  «11’ ’ 1«
t~0 t=0

n n+l
-  E •»} • -  E  t F {[£ (< 'x ::)i i“-««} • <bP

i=l :=□

by (28). With Corollary 5.4 we get

n n+1
E  ^ ^ F  (d (5 ix :) '!'  ■<»] • h  -  E  W x : ) ! “'  =
1=0 t=0

ft+1
=  -  E  ^ { ( ( F F r 2^ 1 «  9(1;'  X (sgn(S) i  9 A, 9)} .  f>,

i=2
n+1

+ (:) , E  ^ F l K F ’x : ) - 15 X •< (sgn(S)9 Ag O  .
t = l

Finally we put all together and use 5 +̂ 1 Xn =  (“ iF^G&Xn) fr°m  (13). ■

For Xn £ •^n(F’) ® Hom(®s fl, V), the last term in Theorem 5.5 reads

E f - l ) " 4* “1’^  ® 9)‘- ‘;- ‘+ * «  & ]“- *  f  &>, -  ^ ( S ' )  9 Ag « r ‘ •  M
*!=1

as a consequence of Proposition 5.3, cf. (31). In any case we get the following
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Corollary 5.6. I f  S  is a LIE group action of G on P , y® € Xn (J°)fl-equiv ®
Hom(®s 0, V), and 0 e 4 i(P , ß), fa G A p (P,g) with dfa =  sgn(S)0 A0 fa , then

<*[(x’ ® «) •  =  [(<ixi) ® «1 •  <t>P +  {[(S .x i) ® Op'-« -  *gn(S)10 A„ <?)}'. 0„.

Now suppose, 0 is a pullback of an invariant 1-form on G. Then the
Ma u r e r -Ca RTAN identities dQs  = sgn(5 ')|0 s  AB 0 s  and (17) give

Corollary 5.7. Let S be a Lie  group action of G on P , f : P - > G  differen­
tiable, K  e End(fl) and x« € Xn (P) ® Hom(0®g, V) 0-equivariant.

1- I f Xn € X (P )  0  Sym*(g, V) and fa  € -4P(P,g), then

=  « e / W M
+ (- ! )" ( ;) ,  Kx~ © ■< (<Mp -  sgn(S) fy> s (K) A„ O " '•  <t>„,

< 4 C d ® r 0 s W p ]  =  [ m ® r e s W p
+ ( - ! ) “ (;), Kx'„ ® F t f ) 1’- 1 ■< W p  -  sgn(.S ')/-öS  A, ^ p ) ] - 1.  ^p.

2. For / p € Ap(P,g) with- d<hp — sgn(S')/*i/»5 (Ä') Aß <i>P) o. g. for =

4 ( x ; © r e s )»A>] =  [ ( « » / ‘e ’ H -

Finally, in the case s = 0, Theorem 5.5 yields

Corollary 5.8. I f  S  is a Lie  group action of G on P and u>n € >ln (P) ® V
is ^-invariant, then for all O e A ^ Q )

d(u}n  © 0) =  (dcun ) © 0 + [(&ü>n) © 0]1 ◄ (dO — I sgn(S') 0 A0 0).

For any f  :P —> G, K  G End(g), especially K  =  id0 , we thus obtain

d u .  © rv> s (^ ))  =  (d-n) © f*f>s (.K), d(«„ © r e s ) =  (<iu„) © / ' 6  s .

Recall that the gauge fields F“ € A2(Ua ,g) are given by F“ = dAa  +
I Aa  A0 Aa . For that reason we are interested especially in the case where <̂2 =
d0 — |sgn(S')0 A0 0. Using 0 A0 (0 A0 0) ~  0 one easily checks that this yields
d</>2 = sgn(S) 0 A0 ^2. Thus Corollary 5.6 reads

«  © 0) • <t>z] = [(dX
s
n ) © 0]* fa + l(S.X

a
n ) © 0] • fa.

Now S .x n
s  e  Xn _i(P,Hom(0 ,Hom(0®fl, V))) A -i(P ,H om (® s+1 f l, V)). Since

fa has even degree, only the symmetric part of Hom (0s + 1 0, V) counts [e.g., confer
(14)]. So [(S©Xn)©0]«^2 =  Sym*[(5.Xn)©Ö]»</>2 =  [Sym*(S.Xn)® 0M 2, because
© only acts on ^ (P )  and commutes with any operation on Hom(®a + 1 0, V ) . This
leads to the following definition:
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Definition 5.9. For Xn € A n (P, Hom(®5 g, V)) and S: G x P —> P , we define

S.v 4  := Sym.(S.x ;)  € A - ^ S y m . ^ s ,  V)).

Corollary 5.10. I f S  is a LIE group action of G on P , Xn G •4n(/’)ö-equiv ®
H om (0Ä g, V ), 6 6 >li(P, g) and d>2 = d0 — - sgn(S') 0 A0 0 G ^M-F^g), then

d[(x: © * )•& ]  =  [(dX : ) © * ] • & + [ ( * w  © o] • k
Extend the symmetric product V in Sym(g, R) =  S(g*) to Sym(g, V),

whenever a bilinear map cp. V x V —> V  is given. Equip >l(P)®Sym(g, V) with the
gradation induced by A (P ) , then we obtain from (8) since i% is a skew-derivation
of degree — 1:

Lem m a 5.11. S f  is a skew-derivation of degree —1 of -4(P)eqUiv ® Sym(g, V)
and >l(P)86ym(g, V), e. g. for an G >ln (P)®Sym(g, V) and w e  X(P)®Sym(g, V),

S*(an  Av w) =  ( S > n ) Av w + ( - l ) n a„ Av  ( W

In view of our applications to connections on bundles we have thus proved:

Theorem 5.12. Let T be a connection on a principal fiber bundle P(M,G)
and let B(M , F, G) be an associated bundle, V any vector space, Xn € A n (F) ®
Hom (0Äg, V) be G-equivariant and <f>n G A n(F )® V  be invariant under G. Then

d(x>  • F) = [ ( « ) < «  • F +  • F.
= [ W M : «  • f  + [ ( irx y v K ti • f ,

d(<!>nv) = + [(£.</■„)u]i_! • F.
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