Generating Functions of $\pi_{2 n-1}\left(S U_{n}\right)$

Christian Gross

In many questions concerning homotopy groups of Lie groups G, especially of the unitary groups U_{m} and $S U_{m}$, it suffices to know the mere group structure of $\pi_{n}(G)$. For this purpose one can consult tables. For example, it is known that
(1) $\quad \pi_{2 n}\left(S U_{m}\right)=\pi_{2 n}\left(U_{m}\right)=0, \pi_{2 n+1}\left(S U_{m}\right) \cong \pi_{2 n+1}\left(U_{m}\right) \cong \mathbf{Z}, \quad m>n \in \mathbf{N}$
by Botт's periodicy theorem [1]. However, often we have to know representatives $U: S^{n} \rightarrow G$ for the generators of these homotopy groups.

One example for this situation is the Skyrme model [5] in theoretical nuclear physics, a chiral invariant effective field theory describing the low energy limit of the quantum chromodynamics (QCD). By compactification of euclidian space \mathbf{R}^{3}, resp., of space-time \mathbf{R}^{4}, the meson fields are differentiable functions $U: \mathbb{R}_{(t)} \times S^{3} \rightarrow S U_{N_{F}}$, resp., $U: S^{4} \rightarrow S U_{N_{F}}, N_{F}$ being the number of flavors in the QCD ($N_{F}=2$, resp., $N_{F}=3$). In this model nucleons appear as topological soliton solutions of these field configurations. The number of nucleons described by a certain meson field \hat{U} can be computed by integration of the pullback

$$
\begin{equation*}
\frac{1}{24 \pi^{2}} \hat{U}^{\star} \omega_{3}=\frac{1}{24 \pi^{2}} \operatorname{Tr}(L \wedge L \wedge L) \tag{2}
\end{equation*}
$$

over the space manifold, with $L:=\hat{U}^{\dagger} d \hat{U}$, where \wedge is the wedge product of differential forms and ω_{3} is the generator of the DE-RHAM cohomology $H_{3}\left(S U_{m}\right) \cong$ $H_{3}\left(U_{m}\right) \cong \mathbf{R}$ for $m \geq 2$.

The meson fields obey the field equations derived as Euler-Lagrange equations from a lagrangian $\mathcal{L}(U, d U)$ by variation of the action integral $\int_{S^{4}} \mathcal{L} d V$. Let $\epsilon^{\mu \nu \rho \sigma}$ denote the totally antisymmetrical Levi-Civita symbol, $L_{\mu}=U^{\dagger} \partial_{\mu} U$ and λ a coupling constant. Then for $N_{F}=3$ the field equations involve an additional term

$$
\begin{equation*}
\lambda \epsilon^{\mu \nu \rho \sigma} L_{\mu} L_{\nu} L_{\rho} L_{\sigma}, \tag{3}
\end{equation*}
$$

that describes anomalous processes of the QCD. (In (3) we have used the EinsTEIN summation convention.) Unfortunately, it is impossible to build up the global corresponding term in the lagrangian from which (3) could be derived by variation. Instead by using $\pi_{4}\left(S U_{3}\right)=0$ from (1) one argues that U can be extended to a differentiable function $U^{\prime}: D^{5} \rightarrow S U_{3}$ from a five-dimensional disc D^{5} whose boundary ∂D^{5} is space-time $S^{4}[7]$. Now the corresponding term for (3), the so-called Wess-Zumino term [6], is $\lambda \int_{D^{s}}\left(U^{\prime}\right)^{\star} \omega_{5}$, with ω_{5} being the
generator of $H_{5}\left(S U_{m}\right) \cong \mathbf{R}$ for $m \geq 3$. Using Sтокеs' theorem we can perform the integration along space-time which leads - at least locally - to (3).

For any possible extension U^{\prime} the result has to be unique. This is equivalent to the requirement that

$$
\lambda \int_{S^{\star}}(\tilde{U})^{\star} \omega_{5}=2 \pi z, \quad z \in \mathbf{Z}
$$

where S^{5} is the 5 -sphere which one obtains by gluing any two 5 -cells $D_{(1)}^{5}$ and $D_{(2)}^{5}$ at space-time $S^{4}=\partial D_{(1)}^{5}=\partial D_{(2)}^{5}$ together, and where we have defined $\tilde{U}=U_{(1)}^{\prime} \cup U_{(2)}^{\prime}: S^{5} \rightarrow S U_{3}$ as the corresponding extension to this 5 -sphere. This forces λ to be set equal to $\frac{1}{240 \pi^{2}}$ by the following index theorem (cf. Вотt, Seeley [2]). The factor $\frac{1}{24 \pi^{2}}$ in (2) can also be deduced from this conclusion. Recall $L_{\mu}=U^{\dagger} \partial_{\mu} U$.

Theorem 1. For every map $U: S^{2 n-1} \rightarrow U_{m}$ the integral

$$
\begin{aligned}
& \int_{S^{2 n-1}}\left(\frac{i}{2 \pi}\right)^{n} \frac{(n-1)!}{(2 n-1)!} U^{\star} \omega_{2 n-1}= \\
& \int_{S^{2 n-1}}\left(\frac{i}{2 \pi}\right)^{n} \frac{(n-1)!}{(2 n-1)!} \epsilon^{\mu_{1} \mu_{2} \cdots \mu_{2 n-1}} \operatorname{Tr}\left(L_{\mu_{1}} L_{\mu_{2}} \cdots L_{\mu_{2 n-1}}\right) d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{2 n-1}
\end{aligned}
$$

is an integer $n(U)$. The assignment $[U] \mapsto n(U): \pi_{2 n-1}\left(U_{m}\right) \rightarrow \mathbf{Z}$ is an isomorphism for $m \geq n$.

We have seen that in the case of the Sкyrme model, explicit representatives $\hat{U}(t, \cdot): S^{3} \rightarrow S U_{N_{F}}$ and $\tilde{U}: S^{3} \rightarrow S U_{N_{F}}$ for the generators of $\pi_{3}\left(S U_{N_{F}}\right)$ and $\pi_{5}\left(S U_{N_{F}}\right)$ have physical significance. Thus it is worthwhile to look for such explicit representatives. This is the task of the following article.

For $\pi_{3}\left(S U_{2}\right)$ there is the so-called Hedgehog Ansatz [5] where the field equations can be transformed into a differential equation for the radial part of this ansatz. Unfortunately, this is not transferable to $\pi_{5}\left(S U_{m}\right)$, let alone $\pi_{2 n-1}\left(S U_{m}\right)$. In order to achieve such an extension we take the more mathematical point of view and do not demand our representatives to obey certain physical field equations. A first result is the following: having found a generator U of $\pi_{2 n-1}\left(S U_{n}\right)$ one also has a generator $j \circ U$ of $\pi_{2 n-1}\left(S U_{m}\right)$ for $m>n$ through the inclusion

$$
j: S U_{n} \rightarrow S U_{m}, \quad U \mapsto\left(\begin{array}{cc}
U & 0 \\
0 & \mathbb{1}_{m-n}
\end{array}\right)
$$

because of $U^{\star} \omega_{k}=(j \circ U)^{\star} \omega_{k}$. On the other hand one obtains a generator $i \circ U$ of $\pi_{2 n-1}\left(U_{n}\right)$ (and thereby of $\pi_{2 n-1}\left(U_{m}\right)$ for $m \geq n$) via the inclusion $i: S U_{n} \rightarrow$ U_{n}.

So the main problem is to find representatives for $\pi_{2 n-1}\left(S U_{n}\right)$. By looking at the LIE algebra of U_{n} and the use of the exponential map we make the following ansatz for a function of a ($2 n-1$)-dimensional disc $D_{(1)}^{2 n-1}$ into U_{n} : let H denote the hermitian operator

$$
\left(\begin{array}{cccccc}
x_{0} & z_{1} & 0 & & & \tag{4}\\
\overline{z_{1}} & -x_{0} & z_{2} & 0 & & \\
0 & \overline{z_{2}} & x_{0} & z_{3} & \ddots & \\
& 0 & \overline{z_{3}} & -x_{0} & \ddots & 0 \\
& & \ddots & \ddots & \ddots & z_{n-1} \\
& & & 0 & \overline{z_{n-1}} & \pm x_{0}
\end{array}\right),
$$

where $z_{j}:=x_{2 j-1}+i x_{2 j}$ for $j=1, \ldots, n-1$. Let $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{2 n-2}\right)$ and define $U_{1}: D_{(1)}^{2 n-1} \rightarrow U_{n}$ by $U_{1}(\mathbf{x})=\exp (i \pi H(\mathbf{x}))$. To obtain a representative of a generator of $\pi_{2 n-1}\left(U_{n}\right)$, resp., of $\pi_{2 n-1}\left(S U_{n}\right)$ one has to construct a second function $\widetilde{U_{1}}$ of a second disc $D_{(2)}^{2 n-1}$ (northern and southern hemisphere) so that $U_{1} \cup \widetilde{U_{1}}$ is a continous function of $D_{(1)}^{2 n-1} \cup D_{(2)}^{2 n-1} \cong S^{2 n-1}$, well defined on the equator $\partial D_{(1)}^{2 n-1}=\partial D_{(2)}^{2 n-1} \cong S^{2 n-2}$. In order to get a generator we must make sure that this "gluing process" is not trivial: if we were so careless as to choose $\widetilde{U_{1}}$ so that $U_{1} \cup \widetilde{U_{1}}$ is symmetric about the equator, then we would obtain a candidate for the zero element of $\pi_{2 n-1}\left(U_{n}\right)$ instead of a generator. In this paper we shall carry out this program for $n=1,2,3$.

In [3] Lundell has proven an iteration for the construction of representatives for generators of $\pi_{2 n-1}\left(S U_{n}\right)$. This iteration even leads to functions $U: S^{2 n-1} \rightarrow S U_{n}$ directly, one doesn't have to look for fitting second functions on the northern hemisperes. But unfortunately, as he himself admits, "the actual formulae are too complicated for reasonable calculation". They do not inherit any symmetries between the matrix elements - like the ones built up by (4) - that allow for the calculation of the integral in Theorem 1. So this iteration is of more theoretical interest, whereas the representatives presented here could be of practical use whenever the problem of finding functions for the northern hemispheres is solved for $n \geq 4$.

Using Clifford algebras Lundell and Tosa constructed representatives for generators of the stabe homotopy groups of $S O, S U$ and $S p$ [4]. In the case of $S U$ their formalism leads to functions $U: S^{2 n+1} \rightarrow S U_{2^{n}}$, so $\pi_{2 n-1}\left(S U_{n}\right), n \geq 3$ isn't covered either.

A Generator of $\pi_{1}\left(U_{1}\right)$

For the sake of illustration and completeness we begin by discussing the simplest case. The isomorphism $U_{1} \rightarrow S^{1}$ yields a representative for the generator of $\pi_{1}\left(U_{1}\right)$. We also obtain this representative by using our scheme in (4). In this case we set:

$$
H=\left(x_{0}\right), \quad U_{1}(\mathbf{x})=U_{1}\left(x_{0}\right)=\exp \left(i \pi x_{0}\right) .
$$

Here we have $U_{1}(-1)=U_{1}(1)=-1$. Therefore we can map D^{1} onto S^{1} by identifying 1 and -1 (and so we define our second function from $D_{(2)}^{1}$ to S^{1} by $\widetilde{U_{1}}(\mathbf{x})=-1=$ const $)$. The mapping $U: S^{1} \rightarrow U_{1}$ we obtain is a homeomorphism and thus generates $\pi\left(U_{1}\right)$. This is confirmed by our invoking Theorem 1: Because of $\left(U_{1}\right)^{\star} \omega_{1}=\operatorname{Tr}\left[\exp \left(-i \pi x_{0}\right) i \pi \exp \left(i \pi x_{0}\right)\right] d x_{0}=i \pi d x_{0}$, integration gives

$$
\int_{-1}^{+1}\left(\frac{i}{2 \pi}\right)^{1} \frac{0!}{1!} i \pi d x_{0}=-1
$$

Note. Representatives for the other elements of $\pi_{1}\left(U_{1}\right)$ are obtained by expanding the domain for U_{1} to be $n \cdot D^{1}=[-n, n]$. Because of $U_{1}(-n)=U_{1}(n)=$ $(-1)^{n}$, we can again identify n and $-n$ and thereby transform $n \cdot D^{1}$ into S^{1}. Integration leads to

$$
\int_{-n}^{+n}\left(\frac{i}{2 \pi}\right)^{1} \frac{0!}{1!} i \pi d x_{0}=-n
$$

If we keep $D^{1}=[-1,1]$ as domain, $U_{n}=\exp \left(i n \pi x_{0}\right)$, resp., $U_{-n}=\exp \left(-i n \pi x_{0}\right)$ is a representative for the n-th element of $\pi_{1}\left(U_{1}\right)$.

A Generator of $\pi_{3}\left(S U_{2}\right)$

Here we have $S U_{2} \cong S^{3}$. Under this identification the identity on S^{3} is again a representative for the generator of $\pi_{3}\left(S U_{2}\right)$. We are led to it through our scheme defined by (4) (remember $z_{1}=x_{1}+i x_{2}$):

$$
H=\left(\begin{array}{cc}
x_{0} & z_{1} \\
z_{1} & -x_{0}
\end{array}\right), \quad U_{1}(\mathbf{x})=U_{1}\left(x_{0}, x_{1}, x_{2}\right)=\exp (i \pi H(\mathbf{x}))
$$

Evaluating the exponential map and using $R^{2}:=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$, we obtain

$$
U_{1}(\mathbf{x})=\left(\begin{array}{cc}
\cos \pi R+i \frac{x_{0}}{R} \sin \pi R & i \frac{z_{1}}{R} \sin \pi R \\
i \frac{\bar{z}_{1}}{R} \sin \pi R & \cos \pi R-i \frac{x_{0}}{R} \sin \pi R
\end{array}\right) .
$$

Setting $y_{0}:=\cos \pi R, y_{1}:=\frac{x_{1}}{R} \sin \pi R, y_{2}:=\frac{x_{2}}{R} \sin \pi R$, and $y_{3}:=\frac{x_{0}}{R} \sin \pi R$, we get $\sum_{j=0}^{3} y_{j}^{2}=1$ and realize the isomorphism $\chi: S U(2) \rightarrow S^{3}$ as follows:

$$
\left(\begin{array}{cc}
y_{0}+i y_{3} & -y_{2}+i y_{1} \\
y_{2}+i y_{1} & y_{0}-i y_{3}
\end{array}\right) \mapsto\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in S^{3}
$$

In particular, $R=1$ yields

$$
U_{1}(\mathbf{x})=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

and therefore, similarly to the previous case, we can transform our function $U_{1}: D^{3} \rightarrow S U_{2}$ into a continous mapping $U: S^{3} \rightarrow S U_{2}$ by collapsing all points $\mathbf{x} \in D^{3}$ with $R=1$ into one single point ∞, the "North Pole".

For the evaluation of the integral in Theorem 1 we use the three independent parameters x_{0}, r_{1}, ϕ_{1} defined by $z_{1}=r_{1} e^{i \phi_{1}}$. We thus rather compute $\psi^{\star}\left(U_{1}\right)^{\star} \omega_{3}$ instead of $U^{\star} \omega_{3}$, where $\psi: \mathbf{R} \times[0,1] \times[-\pi,+\pi] \rightarrow D^{3}$ is defined by $\psi\left(x_{0}, r_{1}, \phi_{1}\right)=\left(x_{0}, r_{1} \cos \phi_{1}, r_{1} \sin \phi_{1}\right)$. By cyclic permutation under the trace we get

$$
\psi^{\star}\left(U_{1}\right)^{\star} \omega_{3}=-3 \cdot \operatorname{Tr}\left\{L_{x_{0}}\left[L_{\phi_{1}}, L_{r_{1}}\right]\right\} d x_{0} \wedge d r_{1} \wedge d \phi_{1}
$$

Next we compute the L_{μ} 's, using the abbrevations $c:=\cos \pi R, s:=$ $\sin \pi R:$

$$
\begin{align*}
& L_{x_{0}}=i\left(\begin{array}{cc}
\frac{\pi x_{0}^{2}}{R^{2}}+\frac{r_{1}^{2} s c}{R^{3}} & z_{1}\left[\frac{\pi x_{0}}{R^{2}}-\frac{x_{0} s c}{R^{3}}+i \frac{s^{2}}{R^{2}}\right] \\
\overline{z_{1}}\left[\frac{\pi x_{0}}{R^{2}}-\frac{x_{0} s c}{R^{3}}-i \frac{s^{2}}{R^{2}}\right] & -\frac{\pi x_{0}^{2}}{R^{2}}-\frac{r_{1}^{2} s c}{R^{3}}
\end{array}\right) \tag{5}\\
& L_{\phi_{1}}=i\left(\begin{array}{cc}
-\frac{r_{1}^{2} s^{2}}{R^{2}} & z_{1}\left[\frac{x_{0} s^{2}}{R^{2}}+i \frac{s c}{R}\right] \\
\overline{z_{1}}\left[\frac{x_{0} s^{2}}{R^{2}}-i \frac{s c}{R}\right] & \frac{r_{1}^{2} s^{2}}{R^{2}}
\end{array}\right), \tag{6}\\
& L_{r_{1}}=i r_{1}\left(\begin{array}{cc}
\frac{\pi x_{0}}{R^{2}}-\frac{x_{0} s c}{R^{3}} & z_{1}\left[\frac{\pi}{R^{2}}+\frac{x_{0}^{2} s c}{r_{1}^{2} R^{3}}-i \frac{x_{0} s^{2}}{r_{1}^{2} R^{2}}\right] \\
\overline{z_{1}}\left[\frac{\pi}{R^{2}}+\frac{x_{0}^{2} s c}{r_{1}^{2} R^{3}}+i \frac{x_{0} s^{2}}{r_{1}^{2} R^{2}}\right] & -\frac{\pi x_{0}}{R^{2}}+\frac{x_{0} s c}{R^{3}}
\end{array}\right) \tag{7}
\end{align*}
$$

This yields

$$
\left[L_{\phi_{1}}, L_{r_{1}}\right]=\frac{2 i r_{1}}{R^{2}}\left(\begin{array}{cc}
-\frac{\pi r_{1}^{2} s c}{R}-\frac{x_{0}^{2} s^{2}}{R^{2}} & z_{1}\left[\frac{\pi x_{0} s c}{R}-\frac{x_{0} s^{2}}{R^{2}}-i \pi s^{2}\right] \\
\overline{z_{1}}\left[\frac{\pi x_{0} s c}{R}-\frac{x_{0} s^{2}}{R^{2}}+i \pi s^{2}\right] & \frac{\pi r_{1}^{2} s c}{R}+\frac{x_{0}^{2} s^{2}}{R^{2}}
\end{array}\right)
$$

and $\operatorname{Tr}\left\{L_{x_{0}}\left[L_{\phi_{1}}, L_{r_{1}}\right]\right\}=\frac{4 \pi r_{1}}{R^{2}} \sin ^{2} \pi R$, from which we deduce

$$
\begin{aligned}
\psi^{\star}\left(U_{1}\right)^{\star} \omega_{3} & =-\frac{12 \pi r_{1}}{R^{2}} \sin ^{2} \pi R d x_{0} \wedge d r_{1} \wedge d \phi_{1} \\
\text { resp., } \quad U^{\star} \omega_{3} & =-\frac{12 \pi}{R^{2}} \sin ^{2} \pi R d x_{0} \wedge d x_{1} \wedge d x_{2}
\end{aligned}
$$

By the transformation rule for integrals we obtain for the integral in theorem 1

$$
I_{1}=\int_{S^{3}}-\frac{1}{24 \pi^{2}} U^{\star} \omega_{3}=\int_{-1}^{+1} d x_{0} \int_{0}^{\sqrt{1-x_{0}^{2}}} d r_{1} \int_{0}^{2 \pi} d \phi_{1} \frac{r_{1}}{2 \pi R^{2}} \sin ^{2} \pi R=\int_{0}^{+1} d x_{0} \int_{0}^{\sqrt{1-x_{0}^{2}}} d r_{1} \frac{2 r_{1}}{R^{2}} \sin ^{2} \pi R
$$

(the integrand is even in x_{0}). We choose new variables R, r_{1}^{2}, observe $d R \wedge d\left(r_{1}^{2}\right)=$ $\frac{2 x_{0} r_{1}}{R} d x_{0} \wedge d r_{1}$, and finally get

$$
I_{1}=\int_{0}^{+1} d R \int_{0}^{R^{2}} d\left(r_{1}^{2}\right) \frac{\sin ^{2} \pi R}{R \sqrt{R^{2}-r_{1}^{2}}}=\int_{0}^{+1} 2 \sin ^{2} \pi R d R=1
$$

This confirmes that U is a representative for the generator of $\pi_{3}\left(S U_{2}\right)$.
Note. As for $\pi_{1}\left(U_{1}\right)$, we obtain representatives for all other elements of $\pi_{3}\left(S U_{2}\right)$ by expanding our domain to the ball of radius $R=n$. For \mathbf{x} with $\|\mathbf{x}\|=R=n$ we have

$$
U_{1}(\mathbf{x})=\left(\begin{array}{cc}
(-1)^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right)
$$

For this reason even a mapping from $n \cdot D^{3}$ can be transformed into a continous mapping from S^{3}, resp., $n \cdot S^{3}$, into S^{3}, which yields

$$
I_{n}=\int_{0}^{n} 2 \sin ^{2} \pi R d R=n
$$

If we want to keep our domain D^{3}, we simply replace \mathbf{x} by $n \mathbf{x}$ and obtain $U_{n}: D^{3} \rightarrow S U_{2}:$

$$
U_{n}(\mathbf{x})=\left(\begin{array}{cc}
\cos n \pi R+i \frac{x_{0}}{R} \sin n \pi R & i \frac{\bar{x}_{1}}{R} \sin n \pi R \\
i \frac{\bar{z}_{1}}{R} \sin n \pi R & \cos n \pi R-i \frac{x_{0}}{R} \sin n \pi R
\end{array}\right)
$$

as representative for the n-th element of $\pi_{3}\left(S U_{2}\right)$. In order to get the inverse elements we replace x_{0} by $-x_{0}$, then $L_{x_{0}}$ changes into $-L_{x_{0}}$ and $U^{*} \omega_{3}$ changes into $-U^{\star} \omega_{3}$. We obtain $U_{-n}: D^{3} \rightarrow S U_{2}:$

$$
U_{-n}(\mathbf{x})=\left(\begin{array}{cc}
\cos n \pi R-i \frac{x_{0}}{R} \sin n \pi R & i \frac{z_{1}}{R} \sin n \pi R \\
i \frac{\bar{x}_{1}}{R} \sin n \pi R & \cos n \pi R+i \frac{x_{0}}{R} \sin n \pi R
\end{array}\right) .
$$

A Generator of $\pi_{5}\left(S U_{3}\right)$

There is no isomorphism between $S U_{3}$ and a sphere and for the first time we will have to make use of the gluing process described in the introduction. Two mappings $U_{1}: D_{(1)}^{5} \rightarrow S U_{3}$ and $U_{1}: D_{(2)}^{5} \rightarrow S U_{3}$ that coincide on the boundaries $\partial D_{(1)}^{5}=\partial D_{(2)}^{5}=S^{4}$, are transformed into a well defined continous function $U=U_{1} \cup \widetilde{U_{1}}: S^{5} \rightarrow S U_{3}$. In analogy with (4) we have

$$
H=\left(\begin{array}{ccc}
x_{0} & z_{1} & 0 \\
\overline{z_{1}} & -\frac{x_{0}}{z_{2}} \\
0 & \overline{z_{2}} & x_{0}
\end{array}\right), \quad\left\{\begin{array}{l}
z_{1}=x_{1}+i x_{2}=r_{1} e^{i \phi_{1}} \\
z_{2}=x_{3}+i x_{4}=r_{2} e^{i \phi_{2}}
\end{array}\right\}, \quad \sum_{i=0}^{4} x_{i}^{2}=x_{0}^{2}+r^{2}=R^{2},
$$

and a mapping $U_{1}^{\prime}: D^{5} \rightarrow U_{3}$ defined by $U_{1}^{\prime}(\mathbf{x})=\exp (i \pi H)(\mathbf{x})$.

$$
\operatorname{det} U_{1}^{\prime}=\exp (i \pi \operatorname{Tr} H)=\exp \left(i \pi x_{0}\right),
$$

so we have $U_{1}^{\prime}\left(D^{5}\right) \nsubseteq S U_{3}$. Using the diagonalisation of H we compute

$$
U_{1}^{\prime}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{r_{1}^{2}}{r^{2}}\left(c+i \frac{x_{0}}{R} s\right)+\frac{r_{2}^{2}}{r_{2}} e^{i \pi x_{0}} & i \frac{z_{1}}{R} s & \frac{z_{1} z_{2}}{r^{2}}\left(c+i \frac{x_{0}}{R} s-e^{i \pi x_{0}}\right) \\
i \frac{z_{1}}{R} s & c-i \frac{x_{0}}{R} s & i \frac{z_{2}}{R} s \\
\frac{\bar{z}_{1} z_{2}}{r^{2}}\left(c+i \frac{x_{0}}{R} s-e^{i \pi x_{0}}\right) & i \frac{\overline{z_{2}}}{R} s & \frac{r_{2}^{2}}{r^{2}}\left(c+i \frac{x_{0}}{R} s\right)+\frac{r_{2}^{2}}{r^{2}} e^{i \pi x_{0}}
\end{array}\right)
$$

where we again used $c=\cos \pi R$ and $s=\sin \pi R$ for convenience. In order to obtain $U_{1}: D^{5} \rightarrow S U_{3}$, we multiply every matrix $U_{1}^{\prime}(\mathbf{x})$ by a matrix $T(\mathbf{x})$ of determinant $\operatorname{det} T(\mathbf{x})=\exp \left(-i \pi x_{0}\right)$, preserving a convenient degree of symmetry between its elements. Thus we choose

$$
U_{1}(\mathbf{x})=T(\mathbf{x}) \cdot U_{1}^{\prime}(\mathbf{x}) \quad \text { with } \quad T(\mathbf{x})=\left(\begin{array}{ccc}
e^{-i \frac{\pi}{2} x_{0}} & 0 & 0 \tag{8}\\
0 & 1 & 0 \\
0 & 0 & e^{-i \frac{\pi}{2} x_{0}}
\end{array}\right) .
$$

Using $\pi^{ \pm}:=c \pm i \frac{x_{0}}{R} s$ for further convenience we obtain
as the function on the southern hemisphere of S^{5}. On the equator $(R=1)$ it turns out to be

$$
U_{1}(\mathbf{x})=\left(\begin{array}{ccc}
-\frac{r_{1}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}+\frac{r_{2}^{2}}{r^{2}} e^{+i \frac{\pi}{2} x_{0}} & 0 & -\frac{z_{1} z_{2}}{r^{2}}\left(e^{+i \frac{\pi}{2} x_{0}}+e^{-i \frac{\pi}{2} x_{0}}\right) \\
\frac{0}{\frac{\bar{z}_{1} z_{2}}{r^{2}}}\left(e^{+i \frac{\pi}{2} x_{0}}+e^{-i \frac{\pi}{2} x_{0}}\right) & 0 & -\frac{r_{r}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}+\frac{r_{1}^{2}}{r^{2}} e^{+i \frac{\pi}{2} x_{0}}
\end{array}\right) .
$$

Obviously this is not constant like in the previous cases, so it is impossible to contract the boundary into one single point, but we have to look for a nontrivial mapping $\widetilde{U_{1}}$ on the northern hemisphere, that coincides with U_{1} on the equator. There are two possibilities:

$$
\widetilde{U_{1}}(\mathbf{x})=\left(\begin{array}{ccc}
-\frac{r_{2}^{2}}{r^{2}} \pi^{-} e^{+i \frac{\pi}{2} x_{0}} \frac{r_{1}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}} & \pm i \frac{z_{2}}{R} s e^{+i \frac{\pi}{2} x_{0}} & \frac{z_{1} z_{2}}{r^{2}}\left(\pi^{-} e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) \\
\mp i \frac{z_{1}}{R} s & \pm i \frac{z_{1}}{R} s \\
\frac{\pi^{+}}{r^{2} 2} & \left.\pi^{-} e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) & \mp i \overline{\overline{\bar{T}_{1}}} R e^{+i \frac{\pi}{2} x_{0}} \\
-\frac{r_{1}^{2}}{r^{2}} \pi^{-} e^{+i \frac{\pi}{2} x_{0}}-\frac{r_{2}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}
\end{array}\right) .
$$

To secure the property of being unitary we have to choose either the upper or the lower signs. Once the choice has been made, it propagates to all products, its derivations and inverses, and so - by forming the trace at the end of the computation of $\left(\widetilde{U_{1}}\right)^{\star} \omega_{5}$ - does not influence the value of this pullback. In the following we choose the upper signs.

Again we will use polar coordinates for the evaluation of our 5 -form: let $K=\mathbf{R} \times \mathbf{R}_{0}^{+} \times \mathbf{R}_{0}^{+} \times[-\pi,+\pi] \times[-\pi,+\pi]$ and define $\psi: K \rightarrow \mathbf{R}^{5}$ by $\psi\left(x_{0}, r_{1}, r_{2}, \phi_{1}, \phi_{2}\right)=\left(x_{0}, r_{1} \cos \phi_{1}, r_{1} \sin \phi_{1}, r_{2} \cos \phi_{2}, r_{2} \sin \phi_{2}\right)$, resp., restrict K to $\psi^{-1}\left(D^{5}\right)$. By cyclic permutation under the trace we then obtain

$$
\begin{equation*}
\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}=5 \cdot \operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\} d x_{0} \wedge d r_{1} \wedge d r_{2} \wedge d \phi_{1} \wedge d \phi_{2} \tag{9}
\end{equation*}
$$

with the hermitian matrix

$$
\begin{align*}
L= & +\left[L_{\phi_{1}}, L_{\phi_{2}}\right]\left[L_{r_{1}}, L_{r_{2}}\right]-\left[L_{\phi_{1}}, L_{r_{1}}\right]\left[L_{\phi_{2}}, L_{r_{2}}\right]+\left[L_{\phi_{1}}, L_{r_{2}}\right]\left[L_{\phi_{2}}, L_{r_{1}}\right] \tag{10}\\
& +\left[L_{r_{1}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{\phi_{2}}\right]-\left[L_{\phi_{2}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{r_{1}}\right]+\left[L_{\phi_{2}}, L_{r_{1}}\right]\left[L_{\phi_{1}}, L_{r_{2}}\right]
\end{align*}
$$

($L^{\dagger}=L$ is a consequence of $\left[L_{\mu}, L_{\nu}\right]^{\dagger}=-\left[L_{\mu}, L_{\nu}\right]$, which itself follows from $L_{\mu}^{\dagger}=-L_{\mu}$, cf. (5) to (7)).

The computation of $\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}$ is straightforward but long and tedious. We have collected the main steps in the appendix. We end up with (14):

$$
\begin{aligned}
\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}= & 30 i \pi \frac{r_{1} r_{2}}{R^{3}}\left[-\pi \sin ^{2} \pi R\left(\sin \pi R \cos \pi x_{0}-\frac{x_{0}}{R} \cos \pi R \sin \pi x_{0}\right)\right. \\
& +2 \pi \sin \pi R\left(\cos \pi x_{0}-\cos \pi R\right)+\left(2 \frac{R^{2}}{r^{2}}+2\right) \frac{\sin ^{2} \pi R}{R}\left(1-\cos \pi R \cos \pi x_{0}\right) \\
& \left.-\left(2 \frac{R^{2}}{r^{2}}+1\right) \frac{x_{0}}{R^{2}} \sin ^{3} \pi R \sin \pi x_{0}\right] d x_{0} \wedge d r_{1} \wedge d r_{2} \wedge d \phi_{1} \wedge d \phi_{2}
\end{aligned}
$$

For the mapping on the northern hemisphere, it turns out that - cf. (15) -

$$
\left(\widetilde{U_{1}}\right)^{\star} \omega_{5}=\overline{\left(\overline{U_{1}}\right)^{\star} \omega_{5}}=-\left(U_{1}\right)^{\star} \omega_{5} .
$$

Fortunately, the negative sign compensates the factor (-1), that arises as a consequence of the opposite orientation of the northern hemisphere. So both integrals yield the same value:

$$
\begin{aligned}
I_{1} & =\int_{S^{3}, \text { "south" }}-\frac{i}{480 \pi^{3}}\left(U_{1}\right)^{\star} \omega_{5}+\int_{S^{5}, \text { "north" }}-\frac{i}{480 \pi^{3}}\left(\widetilde{U_{1}}\right)^{\star} \omega_{5} \\
& =2 \int_{S^{5}, \text { "south" }}-\frac{i}{480 \pi^{3}}\left(U_{1}\right)^{\star} \omega_{5}=2 \int_{\psi^{-1}\left(D^{5}\right)}-\frac{i}{480 \pi^{3}} \psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}
\end{aligned}
$$

Because $\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}$ is even in x_{0}, we integrate twice over positive values of x_{0}, the integration over ϕ_{1} and ϕ_{2} just yields the factor $4 \pi^{2}$. Using new variables R, x_{0} and r_{1}^{2} and observing $d R \wedge d x_{0} \wedge d r_{1}^{2}=2 \frac{r_{1} r_{2}}{R} d x_{0} \wedge d r_{1} \wedge d r_{2}$, we obtain

$$
\begin{aligned}
& I_{1}=\int_{0}^{1} \frac{d R}{R^{2}} \int_{0}^{R} d x_{0} \int_{0}^{R^{2}-x_{0}^{2}}\left[-\pi \sin ^{2} \pi R\left(\sin \pi R \cos \pi x_{0}-\frac{x_{0}}{R} \cos \pi R \sin \pi x_{0}\right)\right. \\
&+2 \pi \sin \pi R\left(\cos \pi x_{0}-\cos \pi R\right)-\left(2 \frac{R^{2}}{r^{2}}+1\right) \frac{x_{0}}{R^{2}} \sin ^{3} \pi R \sin \pi x_{0} \\
&\left.+\left(2 \frac{R^{2}}{r^{2}}+2\right) \frac{\sin ^{2} \pi R}{R}\left(1-\cos \pi R \cos \pi x_{0}\right)\right] d r_{1}^{2} \\
&=\int_{0}^{1} \frac{d R}{R^{2}} \int_{0}^{R}\left[-\pi\left(R^{2}-x_{0}^{2}\right) \sin ^{2} \pi R\left(\sin \pi R \cos \pi x_{0}-\frac{x_{0}}{R} \cos \pi R \sin \pi x_{0}\right)\right. \\
&+2 \pi\left(R^{2}-x_{0}^{2}\right) \sin \pi R\left(\cos \pi x_{0}-\cos \pi R\right)-\left(3 R^{2}-x_{0}^{2}\right) \frac{x_{0}}{R^{2}} \sin ^{3} \pi R \sin \pi x_{0} \\
&\left.+\left(4 \bar{R}^{2}-2 x_{0}^{2}\right) \frac{\sin ^{2} \pi R}{\bar{R}}\left(1-\cos \pi R \cos \pi x_{0}\right)\right] d x_{0}
\end{aligned}
$$

Partial integration yields:

$$
\begin{aligned}
I_{1}= & \int_{0}^{1}\left[\begin{array}{l}
2 \sin ^{2} \pi R-\frac{2}{3} \pi R \sin \pi R \cos \pi R-\frac{1}{3} \sin ^{2} \pi R \\
\\
\\
\\
\left.-2 \frac{\sin \pi R \cos \pi R}{\pi R}+\frac{\sin ^{2} \pi R}{\pi^{2} R^{2}}+4 \frac{\sin ^{3} \pi R \cos \pi R}{\pi^{3} R^{3}}-3 \frac{\sin ^{4} \pi R}{\pi^{4} R^{4}}\right] d R \\
= \\
=
\end{array} \int_{0}^{1} 2 \sin ^{2} \pi R d R+\left[-\frac{1}{3} R \sin ^{2} \pi R-\frac{\sin ^{2} \pi R}{\pi^{2} R}+\frac{\sin ^{4} \pi R}{\pi^{4} R^{3}}\right]_{R=0}^{R=1}\right.
\end{aligned}
$$

This finally proves that our mapping constructed from U_{1} and $\widetilde{U_{1}}$ represents the generator of $\pi_{5}\left(S U_{3}\right)$.

Representatives for further Elements of $\pi_{5}\left(\mathrm{SU}_{3}\right)$

Having found a representative U for the generator [U] of $\pi_{5}\left(S U_{3}\right)$, we could use standard techniques to construct representatives for the powers $[U]^{n}$, notably, since $S U_{3}$ is a group. But neither of these is practical for an explicit numerical representation of a V_{n} with $\left[V_{n}\right]=[U]^{n}$. Fortunately, there is a simple technique
due to the fact that we can expand the domains for U_{1} and $\widetilde{U_{1}}$. They not only can be glued together at $R=1$, but as well at $R=2 n+1$, yet not at $R=2 n\left(n \in \mathbf{N}_{0}\right)$.

$$
I_{2 n+1}=\int_{0}^{2 n+1} 2 \sin ^{2} \pi R d R=2 n+1
$$

we thus easily obtain further representatives for all odd products of [U]. For even products U_{1} has to be combined with another function $\widehat{U_{1}}: 2 n \cdot D^{5} \rightarrow S U_{3}$. Choosing
$\widehat{U_{1}}(\mathbf{x})=\left(\begin{array}{ccc}\frac{r_{2}^{2}}{r^{2}} \pi^{-}-e^{+i \frac{\pi}{2} x_{0}}+\frac{r_{1}^{2}}{r^{2}}{ }^{-i \frac{\pi}{2} x_{0}} & i \frac{z_{2}}{R} s e^{+i \frac{\pi}{2} x_{0}} & -\frac{z_{1} z_{2}}{r^{2}}\left(\pi^{-} e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) \\ i \frac{\pi^{+}}{R} & i \frac{z_{2}}{R} s \\ -\overline{\frac{z_{1} z_{2}}{r^{2}}}\left(\pi^{-} e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) & i \overline{\frac{\bar{z}}{1}} R e^{+i \frac{\pi}{2} x_{0}} & \frac{r_{1}^{2}}{r^{2}} \pi^{-} e^{+i \frac{\pi}{2} x_{0}}+\frac{r_{2}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}\end{array}\right)$
for points on the northern hemisphere, we recognize that $\widehat{U_{1}}$ can be glued together with U_{1} at $R=2 n$, since

$$
\widehat{U}_{1}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{r_{1}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}+\frac{r_{2}^{2}}{r^{2}} e^{+i \frac{\pi}{2} x_{0}} & 0 & -\frac{z_{1} \frac{2}{2}}{r^{2}}\left(e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) \\
\frac{1}{\frac{1}{2} \Sigma_{2}^{2}} \\
r^{2} & \left(e^{+i \frac{\pi}{2} x_{0}}-e^{-i \frac{\pi}{2} x_{0}}\right) & 1 \\
0 & \frac{r_{2}^{2}}{r^{2}} e^{-i \frac{\pi}{2} x_{0}}+\frac{r_{1}^{2}}{r^{2}} e^{+i \frac{\pi}{2} x_{0}}
\end{array}\right)=U_{1}(\mathbf{x})
$$

for all points \mathbf{x} with $\|\mathbf{x}\|=R=2 n$. Because of $\widehat{U_{1}}(\mathbf{x}=0)=\mathbb{1}_{3}=U_{1}(\mathbf{x}=0)$, both North Pole and South Pole of S^{5} are mapped onto the base point of SU_{3}. Using the fact that the L_{μ} are invariant under left multiplications, we have

$$
\widehat{U_{1}}(\mathbf{x})=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \cdot \widetilde{U_{1}}(\mathbf{x}) \Longrightarrow \widehat{L_{\mu}}(\mathbf{x})=\widetilde{L_{\mu}}(\mathbf{x}) .
$$

This yields $\left(\widehat{U_{1}}\right)^{\star} \omega_{5}=\left(\widetilde{U_{1}}\right)^{\star} \omega_{5}$ and thus:

$$
\begin{aligned}
I_{2 n} & =\int_{2 n \cdot S^{5}, \text { "south" }}-\frac{i}{480 \pi^{3}}\left(U_{1}\right)^{\star} \omega_{5}+\int_{2 n \cdot S^{5}, \text { "north" }}-\frac{i}{480 \pi^{3}}\left(\widehat{U_{1}}\right)^{\star} \omega_{5} \\
& =2 \int_{2 n \cdot S^{5}, \text { "south" }}^{2 n}-\frac{i}{480 \pi^{3}}\left(U_{1}\right)^{\star} \omega_{5}=\int_{0}^{2 n} 2 \sin ^{2} \pi R d R=2 n .
\end{aligned}
$$

In order to obtain representatives for the corresponding inverse elements of $\pi_{5}\left(S U_{3}\right)$ we replace x_{0} by $-x_{0}$, or define U_{1} to be the mapping of the northern hemisphere and $\widehat{U_{1}}$, resp., $\widehat{U_{1}}$ to be the mapping of the southern hemisphere of S^{5}. If we replace \mathbf{x} by $2 n \mathbf{x}$, resp., by $(2 n+1) \mathbf{x}$, we can keep D^{5} instead of $2 n \cdot D^{5}$, resp., $(2 n+1) \cdot D^{5}$ as domain.

Representatives for Elements of $\pi_{5}\left(U_{3}\right)$

As already mentioned in the introduction, $U: S^{5} \rightarrow S U_{3}$ constructed above also is a representative for the generator of $\pi_{5}\left(U_{3}\right)$ via the inclusion $i: S U_{3} \rightarrow U_{3}$. Alternatively, we can also use the function $U_{1}^{\prime}: D^{5} \rightarrow U_{3}$ that we had obtained
by (4) directly, to build up representatives for all the elements of $\pi_{5}\left(U_{3}\right)$, as a short computation will show.

For the mappings on the northern hemisphere we define:

$$
\begin{aligned}
& \widetilde{U_{1}^{\prime}}(\mathbf{x})=\left(\begin{array}{ccc}
-\frac{r_{2}^{2}}{r^{2}} \pi^{-} e^{i \pi x_{0}}-\frac{r_{1}^{2}}{r^{2}} & i \frac{z_{2}}{R} s e^{i \frac{\pi}{2} x_{0}} & \frac{z_{1} z_{2}}{r^{2}}\left(\pi^{-} e^{i \pi x_{0}}-1\right) \\
-i \frac{\overline{z_{2}}}{R} s e^{i \frac{\pi}{2} x_{0}} & \pi^{+} & i \frac{z_{1}}{R} s e^{i \frac{\pi}{2} x_{0}} \\
\frac{\overline{z_{1} z_{2}}}{r^{2}} & \left.\pi^{-} e^{i \pi x_{0}}-1\right) & -i \frac{\overline{\overline{1}}}{R} s e^{i \frac{\pi}{2} x_{0}} \\
-\frac{r_{1}^{2}}{r^{2}} \pi^{-} e^{i \pi x_{0}}-\frac{r_{2}^{2}}{r^{2}}
\end{array}\right), \quad \text { resp., } \\
& \widehat{U_{1}^{\prime}}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{r_{2}^{2}}{r^{2}} \pi^{-} e^{i \pi x_{0}}+\frac{r_{1}^{2}}{r^{2}} & i \frac{z_{2}}{R} s e^{i \frac{\pi}{2} x_{0}} & \frac{z_{1} z_{2}}{r^{2}}\left(-\pi^{-} e^{i \pi x_{0}}+1\right) \\
i \frac{\overline{z_{2}}}{R} s e^{i \frac{\pi}{2} x_{0}} & \pi^{+} & -i \frac{z_{1}}{R} s e^{i \frac{\pi}{2} x_{0}} \\
\frac{\overline{z_{1} z_{2}}}{r^{2}} & \left.-\pi^{-} e^{i \pi x_{0}}+1\right) & -i \frac{\overline{z_{1}}}{R} s e^{i \frac{\pi}{2} x_{0}} \\
\frac{r_{1}^{2}}{r^{2}} \pi^{-} e^{i \pi x_{0}}+\frac{r_{2}^{2}}{r^{2}}
\end{array}\right)
\end{aligned}
$$

these can be glued together with U_{1}^{\prime} at $R=2 n+1$, resp., $R=2 n$, because

$$
\widetilde{U_{1}^{\prime}}(\mathbf{x})=\left(\begin{array}{ccc}
-\frac{r_{1}^{2}}{r^{2}}+\frac{r_{2}^{2}}{r^{2}} e^{i \pi x_{0}} & 0 & -\frac{z_{1} z_{2}}{r^{2}}\left(1+e^{i \pi x_{0}}\right) \\
0 & -1 & 0 \\
\frac{\overline{z_{1} z_{2}}}{r^{2}}\left(1+e^{i \pi x_{0}}\right) & 0 & -\frac{r_{2}^{2}}{r^{2}}+\frac{r_{1}^{2}}{r^{2}} e^{i \pi x_{0}}
\end{array}\right)=U_{1}^{\prime}(\mathbf{x})
$$

for all \mathbf{x} with $\|\mathbf{x}\|=R=2 n+1$ and

$$
\widehat{U_{1}^{\prime}}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{r_{1}^{2}}{r^{2}}+\frac{r_{2}^{2}}{r^{2}} e^{i \pi x_{0}} & 0 & \frac{z_{1} z_{2}}{r^{2}}\left(1-e^{i \pi x_{0}}\right) \\
0 & 1 & 0 \\
\frac{z_{1} z_{2}}{r^{2}}\left(1-e^{i \pi x_{0}}\right) & 0 & \frac{r_{2}^{2}}{r^{2}}+\frac{r_{1}^{2}}{r^{2}} e^{i \pi x_{0}}
\end{array}\right)=U_{1}^{\prime}(\mathbf{x})
$$

for all \mathbf{x} with $\|\mathbf{x}\|=2 n$. Recalling $T(\mathbf{x})$ from (8) we get
$U_{1}^{\prime}(\mathbf{x})=T^{-1}(\mathbf{x}) \cdot U_{1}(\mathbf{x}), \quad \widetilde{U_{1}^{\prime}}(\mathbf{x})=\widetilde{U_{1}}(\mathbf{x}) \cdot T^{-1}(\mathbf{x}), \quad \widehat{U_{1}^{\prime}}(\mathbf{x})=\widehat{U_{1}}(\mathbf{x}) \cdot T^{-1}(\mathbf{x})$.
$T(\mathbf{x})$ only depends on x_{0}, so the matrices that occur in our calculation of $\left(U_{1}\right)^{\star} \omega_{5}$ (conf. (9)), only change in the following manner (we omit the argument \mathbf{x} for convenience):

$$
\begin{aligned}
L_{x_{0}}^{\prime} & =L_{x_{0}}+i \frac{\pi}{2} U_{1}^{\dagger} E U_{1} \\
\widetilde{L_{x_{0}}^{\prime}} & =T \cdot \widetilde{L_{x_{0}}} \cdot T^{-1}+i \frac{\pi}{2} E \\
\widehat{L_{x_{0}}^{\prime}} & =T \cdot \widehat{L_{x_{0}}} \cdot T^{-1}+i \frac{\pi}{2} E \\
L^{\prime} & =L, \quad \widetilde{L}^{\prime}=T \cdot \widetilde{L} \cdot T^{-1}, \quad \widehat{L^{\prime}}=T \cdot \widehat{L} \cdot T^{-1}
\end{aligned}
$$

where we have defined $E:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. We easily deduce

$$
\begin{aligned}
& \operatorname{Tr}\left\{L^{\prime} \cdot L_{x_{0}}^{\prime}\right\}=\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}+i \frac{\pi}{2} \operatorname{Tr}\left\{L \cdot U_{1}^{\dagger} E U_{1}\right\} \quad \text { and } \\
& \operatorname{Tr}\left\{\widetilde{L^{\prime}} \cdot \widetilde{L_{x_{0}}^{\prime}}\right\}=\operatorname{Tr}\left\{\widehat{L^{\prime}} \cdot \widehat{L_{x_{0}}^{\prime}}\right\}=-\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}+i \frac{\pi}{2} \operatorname{Tr}\{L \cdot E\}
\end{aligned}
$$

For the total integral we get $I_{n}^{\prime}=I_{n}+\Delta$ with

$$
\Delta=\int_{0}^{n} \frac{d R}{R^{2}} \int_{-R}^{R} d x_{0} \int_{0}^{R^{2}-x_{0}^{2}} d r_{1}^{2} \frac{1}{48} \frac{R^{3}}{r_{1} r_{2}} \operatorname{Tr}\left\{L \cdot\left(U_{1}^{\dagger} E U_{1}-E\right)\right\}
$$

and for $M:=U_{1}^{\dagger} E U_{1}-E$ we compute

$$
M=\left(\begin{array}{ccc}
-\frac{r^{2} s^{2}}{R^{2}} & z_{1}\left(x_{0} \frac{s^{3}}{R^{2}}+i \frac{s c}{R}\right) & -z_{1} z_{2} \frac{s^{2}}{R^{2}} \\
\overline{z_{1}}\left(x_{0} \frac{s^{2}}{R^{2}}-i \frac{s c}{R}\right) & \frac{r^{2} s^{2}}{R^{2}} & z_{2}\left(x_{0} \frac{s^{2}}{R^{2}}-i \frac{s c}{R}\right) \\
-\overline{z_{1} z_{2} \frac{s}{2} \frac{s^{2}}{R^{2}}} & \overline{z_{2}}\left(x_{0} \frac{s^{2}}{R^{2}}+i \frac{s c}{R}\right) & -\frac{r_{2}^{2} s^{2}}{R^{2}}
\end{array}\right) .
$$

Using (11) to (13) from the appendix we obtain

$$
\begin{aligned}
\operatorname{Tr}\{L \cdot M\} & =\frac{s^{2}}{R^{2}} S+2 \frac{s c}{R}\left(r_{1}^{2} \operatorname{Im}\left\{\frac{L_{12}}{z_{1}}\right\}-r_{2}^{2} \operatorname{Im}\left\{\frac{L_{23}}{z_{2}}\right\}\right) \\
& =\frac{r_{1} r_{2}}{R^{3}}\left[-24 \pi s^{3} c\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right)+24 \pi s^{3} c\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right)\right]=0 .
\end{aligned}
$$

This yields $\Delta=0$, and thus - as expected -

$$
I_{n}^{\prime}=n
$$

This result once again confirms that our ansatz (4) directly leads to representatives for generators of $\pi_{2 n-1}\left(S U_{n}\right)$, resp., $\pi_{2 n-1}\left(U_{n}\right)$, depending on n being even or odd - at least for the lower dimensions examinated here.

Appendix

In order to compute $\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}$ we first calculate the antihermitian L_{μ} 's. Throughout all computations we will use the following abbrevations for convenience and clarity:

$$
\begin{aligned}
c & =\cos \pi R, & s & =\sin \pi R, \\
\pi^{+} & =\cos \pi R+i \frac{x_{0}}{R} \sin \pi R, & \pi^{-} & =\cos \pi R-i \frac{x_{0}}{R} \sin \pi R, \\
c_{x} & =\cos \pi x_{0}, & s_{x} & =\sin \pi x_{0}, \\
e^{+} & =\exp \left(+i \pi x_{0}\right), & e^{-} & =\exp \left(-i \pi x_{0}\right) .
\end{aligned}
$$

Remember $K=\mathbf{R} \times \mathbf{R}_{0}^{+} \times \mathbf{R}_{0}^{+} \times[-\pi,+\pi] \times[-\pi,+\pi]$ as domain for the polar coordinate function ψ and let $\mathbf{v}:=\left(x_{0}, r_{1}, r_{2}, \phi_{1}, \phi_{2}\right) \in K$. Define the linear involution $\Lambda: K \rightarrow K$ by $\mathbf{w}=\Lambda(\mathbf{v})=\left(x_{0}, r_{2}, r_{1},-\phi_{2},-\phi_{1}\right)$. So $U_{1}(\psi(\mathbf{w}))$ is the matrix we obtain from $U_{1}(\psi(\mathbf{v}))$ by replacing $\left(z_{1}, z_{2}\right)$ by ($\left.\overline{z_{2}}, \overline{z_{1}}\right)$, resp.. $\left(r_{1}, \phi_{1}\right)$ by $\left(r_{2},-\phi_{2}\right)$, and vice versa.

Let A^{P} denote the matrix A "rotated by 180° ", so that A_{11} becomes A_{33}, A_{12} becomes A_{32}, A_{13} becomes A_{31}, and so on. Obviously this operation commutes with the hermitian conjugation and the derivation of A. We have $(A B)^{P}=A^{P} B^{P}$ and $\operatorname{Tr}\left\{A^{P}\right\}=\operatorname{Tr}\{A\}$. Because of $U_{1}^{P} \circ \psi=U_{1} \circ \psi \circ \Lambda$ we obtain $\frac{\partial}{\partial x_{0}}\left(U_{1}^{P} \circ \psi\right)=\frac{\partial}{\partial x_{0}}\left(U_{1} \circ \psi \circ \Lambda\right)=\frac{\partial}{\partial x_{0}}\left(U_{1} \circ \psi\right) \circ \Lambda, \frac{\partial}{\partial r_{1}}\left(U_{1}^{P} \circ \psi\right)=\frac{\partial}{\partial r_{1}}\left(U_{1} \circ \psi \circ \Lambda\right)=$ $\frac{\partial U_{1}}{\partial r_{2}}\left(U_{1} \circ \psi\right) \circ \Lambda$ 'and $\frac{\partial}{\partial \phi_{1}}\left(U_{1}^{P} \circ \psi\right)=\frac{\partial}{\partial \phi_{1}}\left(U_{1} \circ \psi \circ \Lambda\right)=-\frac{\partial U_{1}}{\partial \phi_{2}}\left(U_{1} \circ \psi\right) \circ \Lambda$. We thus have an additional symmetry between the elements of the antihermitian L_{μ} 's (here $L_{\mu}=\left(U_{1} \circ \psi\right)^{\dagger} \frac{\partial}{\partial \mu}\left(U_{1} \circ \psi\right): K \rightarrow M_{3}(\mathbb{C})$ for $\left.\mu=x_{0}, r_{1}, r_{2}, \phi_{1}, \phi_{2}\right)$:

$$
\begin{aligned}
& L_{x_{0}}(\mathbf{v})=L_{x_{0}}^{P}(\mathbf{w}), \\
& L_{\phi_{1}}(\mathbf{v})=-L_{\phi_{2}}^{P}(\mathbf{w}), L_{\phi_{2}}(\mathbf{v})=-L_{\phi_{1}}^{P}(\mathbf{w}), \\
& L_{r_{1}}(\mathbf{v})=+L_{r_{2}}^{P}(\mathbf{w}), L_{r_{2}}(\mathbf{v})=+L_{r_{1}}^{P}(\mathbf{w}),
\end{aligned}
$$

which makes life a bit easier. We obtain

$$
\begin{aligned}
& L_{x_{0}}(\mathbf{v})=\frac{i \pi}{2 R^{2}} . \\
& \left(\begin{array}{ccc}
R^{2}+r_{1}^{2}\left(\frac{2 o c}{\pi R}-1-c^{2}\right) & z_{1}\left[-x_{0}\left(\frac{2 s c}{\pi R}-1-c^{2}\right)+i\left(\frac{2 s^{2}}{\pi}-R s c\right)\right] & z_{1} z_{2}\left(\frac{2 s c}{\pi R}-1-c^{2}\right) \\
\overline{z_{1}}\left[-x_{0}\left(\frac{2 s c}{\pi R}-1-c^{2}\right)-i\left(\frac{2 s^{2}}{\pi}-R s c\right)\right] & -2 R^{2}-r^{2}\left(\frac{2 s c}{\pi R}-1-c^{2}\right) & z_{2}\left[-x_{0}\left(\frac{20 c}{\pi R}-1-c^{2}\right)-i\left(\frac{2 \sigma^{2}}{\pi}-R s c\right)\right] \\
\overline{z_{1} z_{2}}\left(\frac{2 \sigma c}{\pi R}-1-c^{2}\right) & \overline{z_{2}}\left[-x_{0}\left(\frac{2 \sigma c}{\pi R}-1-c^{2}\right)+i\left(\frac{2 s^{2}}{\pi}-R s c\right)\right] & R^{2}+r_{2}^{2}\left(\frac{2 o c}{\pi R}-1-c^{2}\right)
\end{array}\right), \\
& L_{\phi_{1}}(\mathbf{v})=i \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& L_{\phi_{2}}(\mathbf{v})=i \text {. } \\
& \left(\begin{array}{ccc}
-\frac{r_{1}^{2} r_{2}^{2}}{r_{2}^{4}}\left|\pi^{+}-e^{+}\right|^{2} & -i z_{1} \frac{r_{2}^{2}}{R} \frac{r_{2}^{2}}{r^{2}}\left(\pi^{-}-e^{-}\right) & -\frac{z_{1} z_{2}}{r^{4}}\left(r_{2}^{2} \pi^{+}+r_{1}^{2} e^{+}\right)\left(\pi^{-}-e^{-}\right) \\
+i \bar{z}_{1} \frac{r_{2}}{R} \frac{r_{2}^{2}}{r^{2}}\left(\pi^{+}-e^{+}\right) & -\frac{r_{2}^{2} 0^{2}}{R^{2}} & +i z_{2} \frac{s}{R}\left(\frac{r_{2}^{2}}{r^{2}} \pi^{+}+\frac{r_{1}^{2}}{r^{2}} e^{+}\right) \\
-\overline{\frac{z_{1} z_{2}}{r^{4}}}\left(r_{2}^{2} \pi^{-}+r_{1}^{2} e^{-}\right)\left(\pi^{+}-e^{+}\right) & -i \overline{z_{2}} \frac{s}{R}\left(\frac{r_{2}^{2}}{r^{2}} \pi^{-}+\frac{r_{1}^{2}}{r^{2}} e^{-}\right) & +\frac{r_{2}^{2} e^{2}}{R^{2}}+\frac{r_{1}^{2} r_{2}^{2}}{r^{4}}\left|\pi^{+}-e^{+}\right|^{2}
\end{array}\right) \text {, } \\
& L_{r_{1}}(\mathbf{v})=i r_{1} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& L_{r_{2}}(\mathbf{v})=i r_{2} \text {. }
\end{aligned}
$$

For the antihermitian $\left[L_{\mu}, L_{\nu}\right]$ we have the following additional symmetries:

$$
\begin{aligned}
& {\left[L_{\phi_{1}}, L_{\phi_{2}}\right](\mathbf{v}) }=-\left[L_{\phi_{1}}, L_{\phi_{2}}\right]^{P}(\mathbf{w}), \\
& {\left[L_{{r_{1}}_{1}}, L_{r_{2}}\right](\mathbf{v})=-\left[L_{r_{1}}, L_{r_{2}}\right]^{P}(\mathbf{w}) } \\
& {\left[L_{\phi_{1}}, L_{r_{2}}\right](\mathbf{v})=-\left[L_{\phi_{2}}, L_{r_{2}}\right]^{P}(\mathbf{v})=-\left[L_{\phi_{2}}, L_{r_{1}}\right]^{P}(\mathbf{w}), } {\left[L_{\phi_{2}}, L_{r_{1}}\right](\mathbf{v})=-\left[L_{\phi_{2}}, L_{r_{2}}\right](\mathbf{v})=-\left[L_{r_{2}}\right]^{P}(\mathbf{w}) } \\
& {\left[L_{\phi_{1}}, L_{r_{1}}\right]^{P}(\mathbf{w}) }
\end{aligned}
$$

so that $\left[L_{\phi_{1}}, L_{r_{2}}\right](\mathbf{v})$ and $\left[L_{\phi_{2}}, L_{r_{2}}\right](\mathbf{v})$ do not need to be computed. For the others we obtain

$$
\begin{aligned}
& {\left[L_{\phi_{2}}, L_{r_{1}}\right](\mathbf{v})=r_{1} .}
\end{aligned}
$$

We further have

$$
\begin{aligned}
& {\left[L_{\phi_{1}}, L_{\phi_{2}}\right]\left[L_{r_{1}}, L_{r_{2}}\right](\mathbf{v})=\left(\left[L_{\phi_{1}}, L_{\phi_{2}}\right]\left[L_{r_{1}}, L_{r_{2}}\right]\right)^{P}(\mathbf{w}),} \\
& {\left[L_{r_{1}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{\phi_{2}}\right](\mathbf{v})=\left(\left[L_{r_{1}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{\phi_{2}}\right]\right)^{P}(\mathbf{w}),} \\
& {\left[L_{\phi_{1}}, L_{r_{1}}\right]\left[L_{\phi_{2}}, L_{r_{2}}\right](\mathbf{v})=\left(\left[L_{\phi_{1}}, L_{\left.r_{1}\right]}\right]\left[L_{\phi_{2}}, L_{r_{2}}\right]\right)^{P}(\mathbf{w}),} \\
& {\left[L_{\phi_{2}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{r_{1}}\right](\mathbf{v})=\left(\left[L_{\phi_{2}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{r_{1}}\right]\right)^{P}(\mathbf{w}),} \\
& {\left[L_{\phi_{2}}, L_{r_{2}}\right]\left[L_{\phi_{1}}, L_{r_{2}}\right](\mathbf{v})=\left(\left[L_{\phi_{2}}, L_{r_{r}}\right]\left[L_{\phi_{1}}, L_{r_{2}}\right]\right)^{P}(\mathbf{w}),} \\
& {\left[L_{\phi_{1}}, L_{2}\right]\left(\left[L_{\phi_{1}}, L_{r_{2}}\right]\left[L_{\phi_{2}}, L_{r_{1}}\right]\right)^{P}(\mathbf{w}),}
\end{aligned}
$$

from which we deduce for L defined by (10)
$L(\mathbf{v})=L^{P}(\mathbf{w}), L \cdot L_{x_{0}}(\mathbf{v})=\left(L \cdot L_{x_{0}}\right)^{P}(\mathbf{w})$ and $\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}(\mathbf{v})=\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}(\mathbf{w})$.
Since $d x_{0} \wedge d r_{1} \wedge d r_{2} \wedge d \phi_{1} \wedge d \phi_{2}=d x_{0} \wedge d r_{2} \wedge d r_{1} \wedge d\left(-\phi_{2}\right) \wedge d\left(-\phi_{1}\right)$, we have $\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}(\mathbf{v})=\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}(\mathbf{w})$ by (9). Even if we make good use of these symmetries there is still some work left over to compute L. We finally obtain

$$
\begin{aligned}
& L(\mathbf{v})=\frac{r_{1} r_{2}}{R^{3}} .
\end{aligned}
$$

Using

$$
\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}=\sum_{i j} L_{i j}\left(L_{x_{0}}\right)_{j i}=\sum_{i} L_{i i}\left(L_{x_{0}}\right)_{i i}+2 i \sum_{i<j} \operatorname{Im}\left\{L_{i j}\left(L_{x_{0}}\right)_{j i}\right\}
$$

we have (omitting the argument \mathbf{v})

$$
\begin{align*}
\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}= & i\left(\frac{2 s^{2}}{R^{2}}-\frac{\pi s c}{R}\right)\left(r_{1}^{2} \operatorname{Im}\left\{\frac{L_{12}}{z_{1}}\right\}-r_{2}^{2} \operatorname{Im}\left\{\frac{L_{23}}{z_{2}}\right\}\right) \\
& +i \frac{\pi}{2}\left(L_{11}-2 L_{22}+L_{33}\right)+i\left(\frac{\pi\left(1+c^{2}\right)}{2 R^{2}}-\frac{s c}{R^{3}}\right) S \\
\text { with } \quad S= & {\left[-r_{1}^{2} L_{11}+r^{2} L_{22}-r_{2}^{2} L_{33}-2 r_{1}^{2} r_{2}^{2} \operatorname{Re}\left\{\frac{L_{13}}{z_{1} z_{2}}\right\}\right.} \\
& \left.+2 x_{0}\left(r_{1}^{2} \operatorname{Re}\left\{\frac{L_{12}}{z_{1}}\right\}+r_{2}^{2} \operatorname{Re}\left\{\frac{L_{23}}{z_{2}}\right\}\right)\right] .
\end{align*}
$$

We obtain

$$
\begin{align*}
& r_{1}^{2} \operatorname{Im}\left\{\frac{L_{12}}{z_{1}}\right\}-r_{2}^{2} \operatorname{Im}\left\{\frac{L_{23}}{z_{2}}\right\}=\frac{r_{1} r_{2}}{R^{3}} 12 \pi R s^{2}\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right), \tag{12}\\
& r_{1}^{2} \operatorname{Re}\left\{\frac{L_{12}}{z_{1}}\right\}+r_{2}^{2} \operatorname{Re}\left\{\frac{L_{23}}{z_{2}}\right\}=\frac{r_{1} r_{2}}{R^{3}} 12 x_{0} s\left(\frac{s}{R}-\pi c\right)\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right), \\
& L_{11}-2 L_{22}+L_{33}= \frac{r_{1} r_{2}}{R^{3}}\left\{36 s^{2}\left[\pi\left(s c_{x}-\frac{x_{0}}{R} c s_{x}\right)+\frac{x_{0}}{R^{2}} s s_{x}\right]\right. \\
&\left.+24 s\left[\pi\left(c-c_{x}\right)+\frac{x_{0}^{2} s}{r^{2} R}\left(1-c c_{x}\right)-\frac{x_{0}}{r^{2}} s^{2} s_{x}\right]\right\}, \\
&-2 r_{1}^{2} r_{2}^{2} \operatorname{Re}\left\{\frac{L_{13}}{z_{1} z_{2}}\right\}= \frac{r_{1} r_{2}}{R^{3}} \frac{r_{1}^{2} r_{2}^{2}}{r^{2}}\left\{-24 s^{2}\left[\pi\left(s c_{x}-\frac{x_{0}}{R} c s_{x}\right)-\frac{x_{0}}{R^{2}} s s_{x}\right]\right. \\
&\left.-48 s\left[\pi\left(c-c_{x}\right)+\frac{x_{0}^{2} s}{r^{2} R}\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right)\right]\right\}, \\
&-r_{1}^{2} L_{11}+r^{2} L_{22}-r_{2}^{2} L_{33}= \frac{r_{1} r_{2}}{R^{3}} r^{2}\left\{-24 s^{2}\left(1-\frac{r_{1}^{2} r_{2}^{2}}{r^{4}}\right)\left[\pi\left(s c_{x}-\frac{x_{0}}{R} c s_{x}\right)+\frac{x_{0}}{R^{2}} s s_{x}\right]\right. \\
&\left.-24 s \frac{r_{1}^{4}+r_{2}^{4}}{r^{4}}\left[\pi\left(c-c_{x}\right)+\frac{x_{0}^{2} s}{r^{2} R}\left(1-c c_{x}\right)-\frac{x_{0}}{r^{2}} s^{2} s_{x}\right]\right\}, \\
& \operatorname{thus:} \quad \tag{13}\\
& \operatorname{Tand}=-\frac{r_{1} r_{2}}{R^{3}} 24 \pi R^{2} s c\left(1-c c_{x}-\frac{x_{0}}{R} s s_{x}\right) \\
& \operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}= i \frac{r_{1} r_{2}}{R^{3}}\left\{12 \pi^{2} s\left(c_{x}-c\right)-6 \pi^{2} s^{2}\left(s c_{x}-\frac{x_{0}}{R} c s_{x}\right)\right. \\
&\left.-6 \pi\left(2 \frac{R^{2}}{r^{2}}+1\right) \frac{x_{0}}{R^{2}} s^{3} s_{x}+6 \pi\left(2 \frac{R^{2}}{r^{2}}+2\right) \frac{s^{2}}{R}\left(1-c c_{x}\right)\right\} .
\end{align*}
$$

It is finally done. For the desired 5 -form on the southern hemisphere of the S^{5} we end up with

$$
\begin{align*}
\psi^{\star}\left(U_{1}\right)^{\star} \omega_{5}= & 30 i \pi \frac{r_{1} r_{2}}{\bar{R}^{3}}\left[-\pi \sin ^{2} \pi R\left(\sin \pi R \cos \pi x_{0}-\frac{x_{0}}{R} \cos \pi R \sin \pi x_{0}\right)\right. \\
& +2 \pi \sin \pi R\left(\cos \pi x_{0}-\cos \pi R\right)+\left(2 \frac{R^{2}}{r^{2}}+2\right) \frac{\sin ^{2} \pi R}{R}\left(1-\cos \pi R \cos \pi x_{0}\right) \\
& \left.-\left(2 \frac{R^{2}}{r^{2}}+1\right) \frac{x_{0}}{R^{2}} \sin ^{3} \pi R \sin \pi x_{0}\right] d x_{0} \wedge d r_{1} \wedge d r_{2} \wedge d \phi_{1} \wedge d \phi_{2} . \tag{14}
\end{align*}
$$

After this preliminary work it is quite easy now to compute $\left(\widetilde{U_{1}}\right)^{\star} \omega_{5}$ on the northern hemisphere. We rewrite $\widetilde{U_{1}}$ as

$$
\widetilde{U_{1}}=F{\overline{U_{1}}}^{P} F^{P}=\left(F^{P} \overline{U_{1}} F\right)^{P}
$$

where we have defined $F:=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. This yields

$$
{\widetilde{U_{1}}}^{\dagger}=\left(F{\overline{U_{1}}}^{\dagger} F^{P}\right)^{P}, \quad \frac{\partial \widetilde{U_{1}}}{\partial x_{i}}=\left(F^{P} \frac{\overline{\partial U_{1}}}{\partial x_{i}} F\right)^{P}
$$

because complex conjugation and differentiation along real variables commute. We thus have

$$
\begin{aligned}
\widetilde{L_{x_{i}}} & =\left(F \overline{{L_{x i}}_{i}} F\right)^{P}, \\
\operatorname{Tr}\left\{\widetilde{L} \cdot \widetilde{L_{x_{0}}}\right\} & =\operatorname{Tr}\left\{\left(F \overline{L \cdot L_{x_{0}}} F\right)^{P}\right\}=\operatorname{Tr}\left\{F \overline{L \cdot L_{x_{0}}} F\right\} \\
& =\operatorname{Tr}\left\{\overline{L \cdot L_{x_{0}}}\right\}=\overline{\operatorname{Tr}\left\{L \cdot L_{x_{0}}\right\}}
\end{aligned}
$$

and immediately obtain

$$
\begin{equation*}
\left(\widetilde{U_{1}}\right)^{\star} \omega_{5}=\overline{\left(U_{1}\right)^{\star} \omega_{5}}=-\left(U_{1}\right)^{\star} \omega_{5} \tag{15}
\end{equation*}
$$

Acknowledgement

The author is very grateful to Prof. Dr. K. H. Hofmann for numerous fruitful discussions and his great help in revising this work.

References

[1] Bott, R., The stable homotopy of the classical groups, Ann. Math. 70 (1959), 313-337.
[2] Bott, R. and Seeley, R., Some remarks on the paper of Callias, Commun. math. Phys. 62 (1978), 235-245.
[3] Lundell, A. T., A Bott map for non-stable homotopy of the unitary group, Topology 8 (1969), 209-217.
[4] Lundell, A. T. and Tosa, Y., Explicit construction of nontrivial elements for homotopy groups of classical Lie groups, Journal of math. Phys. 31 (1990), 1494-1502.
[5] Skyrme, T. H. R., A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962), 556-569.
[6] Wess, J. and Zumino, B., Consequences of anomalous Ward identities, Phys. Lett. 37 B (1971), 95-97.
[7] Witten, E., Global aspects of current algebra, Nucl. Phys. B 223 (1983), 422-432.

Fachbereich Mathematik
Technische Hochschule
Schlossgartenstr. 7
D-6100 Darmstadt, Germany
gross@mathematik.th-darmstadt.de

Received April 15, 1993

