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Generating Functions of ;,_,(SU,)

Christian Gross

In many questions concerning homotopy groups of LIE groups G, especially of
the unitary groups U, and SU,,, it suffices to know the mere group structure
of 7,(G). For this purpose one can consult tables. For example, it is known that

(1) Wzn(SUm) = Wzn(Um) = 0, 7T2n+1(SUm) = 7T2n+1(Um) = Z, m>nc¢ N

by BOTT’s periodicy theorem [1]. However, often we have to know representa-
tives U: S™ — G for the generators of these homotopy groups.

One example for this situation is the SKYRME model [5] in theoreti-
cal nuclear physics, a chiral invariant effective field theory describing the low
energy limit of the quantum chromodynamics (QCD). By compactification of
euclidian space R3, resp., of space-time R*, the meson fields are differentiable
functions U:R(y) x §* — SUn,, resp., U:S* - SUn,, Nr being the number
of flavors in the QCD (Ng = 2, resp., Nr = 3). In this model nucleons appear
as topological soliton solutions of these field configurations. The number of nu-
cleons described by a certain meson field I/ can be computed by integration of
the pullback
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over the space manifold, with L: = Ut dU, where A is the wedge product of dif-
ferential forms and w3 is the generator of the DE-RHAM cohomology H3(SU,) =
H3(Up) =R for m 2> 2.

The meson fields obey the field equations derived as EULER-LAGRANGE
equations from a lagrangian L(U,dU) by variation of the action integral
Jos £ dV. Let €#?? denote the totally antisymmetrical LEVI-CIVITA symbol,
L, =U'9,U and A a coupling constant. Then for Nr = 3 the field equations
involve an additional term

(3) A€o [,L,L,L,,

that describes anomalous processes of the QCD. (In (3) we have used the EIN-
STEIN summation convention.) Unfortunately, it is impossible to build up the
global corresponding term in the lagrangian from which (3) could be derived
by variation. Instead by using m4(SU3) = 0 from (1) one argues that U can
be extended to a differentiable function U': D® — SUj; from a five-dimensional
disc D° whose boundary D5 is space-time S* [7]. Now the corresponding term
for (3), the so-called WESS-ZUMINO term [6], is A [5s(U’)*ws , with ws being the
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where zj 1= x2j_1 +tx2; for j=1,...,n—1. Let x = (2¢,21,...,%2n-2) and

define Uy: D?I")" — U, by Ui(x) = exp(:mH(x)). To obtain a representative of

a generator of mp,_1(Uy), resp., of m3,—1(SU,) one has to construct a second

function U; of a second disc D(22")_l (northern and southern hemisphere) so that

Uy U ff; is a continous function of D?B_l U D?zn) 1o 9271 wel] defined on the

equator an;;-l = 0D%2") 1> §27=2 In order to get a generator we must make

sure that this “gluing process” is not trivial: if we were so careless as to choose [7;
so that U;UU; is symmetric about the equator, then we would obtain a candidate
for the zero element of 7y,_1(U,) instead of a generator. In this paper we shall
carry out this program for n =1,2,3.

In [3] LUNDELL has proven an iteration for the construction of rep-
resentatives for generators of m2,-1(SUy). This iteration even leads to func-
tions U:$2"~! — SU, directly, one doesn’t have to look for fitting second func-
tions on the northern hemisperes. But unfortunately, as he himself admits, “the
actual formulae are too complicated for reasonable calculation”. They do not
inherit any symmetries between the matrix elements — like the ones built up by
(4) — that allow for the calculation of the integral in Theorem 1. So this iteration
is of more theoretical interest, whereas the representatives presented here could
be of practical use whenever the problem of finding functions for the northern
hemispheres is solved for n > 4.

Using CLIFFORD algebras LUNDELL and TOSA constructed representa-
tives for generators of the stabe homotopy groups of SO, SU and Sp [4].
In the case of SU their formalism leads to functions U:S?"*! — SUss, so
Toan-1(SU,),n > 3 isn’t covered either.

A Generator of =,(Uy)

For the sake of illustration and completeness we begin by discussing the simplest
case. The isomorphism U; — S! yields a representative for the generator of
71(U1). We also obtain this representative by using our scheme in (4). In this
case we set:

H = (), Ui(x) = Ui(zo) = exp(emzo).

Here we have U,(—1) = U;(1) = —1. Therefore we can map D' onto S by
1dent1fy1ng 1 and —1 (and so we define our second function from D(2) to S* by

U, 1(x) = —1 = const ). The mapping U:S' — U; we obtain is a homeomorphism
and thus generates (U ). This is confirmed by our invoking Theorem 1: Because
of (U1)*wy = Tr [exp(—imzq )i exp(izo)] dzo = i dzo, integration gives.
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Note. Representatives for the other elements of m1(U;) are obtained by expand-
ing the domain for U; to be n - D' = [-n,n]. Because of Uj(~n) = Ui(n) =
(—1)", we can again identify n and —n and thereby transform n - D! into S!.

Integration leads to
+n s o \1
1 0! .
/_n (57;) E (%8 dl‘o = —n.

If we keep D' = [~1, 1] as domain, U, = exp(inwzg), resp., U_, = exp(—inmzy)
is a representative for the n-th element of 71 (U;).

A Generator of 73(SU;)

Here we have SU, = S3®. Under this identification the identity on S° is again a
representative for the generator of 73(SU;). We are led to it through our scheme
defined by (4) (remember z; = z; + iz; ):

H= (‘”0 “1 ) Ul(x)=Ul(a:?,ml,:vg)=exp(z'7rH(x)).

zZ1 —xo

Evaluating the exponential map and using R? := z2 + 2% + 22, we obtain

20 o gy s
Ui(x) = cosw?'?.?+.z B sintR i3 51.111C7r1? .
t$sinTR cosTR ~i%¢ sin7R

Setting yo := cos7R, y; := Zsin7R, yo := Zsin7R, and y3 := P sin7R,
we get Z;LO y? = 1 and realize the isomorphism x: SU(2) — S* as follows:

Yo +1ys —y2 + iy 3
. ) € 5°.
(y2 + 1y Yo — 1Y3 ) L (yo’ylay27y3)

In particular, R =1 yields

Ul(x): ( 01 _01)7
and therefore, similarly to the previous case, we can transform our function
Uy: D® — SU, into a continous mapping U: S — SU, by collapsing all points
x € D® with R =1 into one single point co, the “North Pole”.

For the evaluation of the integral in Theorem 1 we use the three inde-
pendent parameters zo,r1,¢; defined by z; = re'®t. We thus rather compute
P*(Uy)*ws instead of U*ws, where ¢:R x [0,1] x [~7,+7] — D? is defined by
Y(zo,71,61) = (20,71 €OS $1,71 sin ¢1). By cyclic permutation under the trace we

get
t,b*(Ul )*LU3 =-3- TI.‘{L,;O[L‘pl R Ln]} dzo Adri A d¢1
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by (4) directly, to build up representatives for all the elements of 75(Us), as a
short computation will show.

For the mappings on the northern hemisphere we define:
2

_f;_ﬂ.—ei‘rr:co _ % Z—R?'SB 5o zrl 23 (ﬂ-*“eiﬂ'zo _ 1)

r

~

rre TR . %4
Ui(x) = —1 s 270 xt 1% set T , Tesp.,
— , — . 2 . 2
Z12 - L IMTy __ _ iz tZxg _ T — imzg _ T
Az(r7e 1) —i3lse' F717e 3
2 . 2 . - .
%n"e"’“ + % 3%36'2’:0 zrl zz(__ﬂ. eimZo + 1)
——— L— . . » X
Ul(x) = 122set 370 rt —i2lsetz "o ;
- — 2 . 2
- . | X r? r
zrl gz (-—7[' etﬂ‘xo + 1) _z%sei 720 Fé'ﬂ- eﬂl’xo + F%

these can be glued together with U] at R = 2n + 1, resp., R = 2n, because

~ _g+geiwxo 0 _55_1(1_'_61'7”:0)
vix)= 0 -1 0, = Ui(x)
__1;;1(1+ez1r:ro) 0 —%"}-;}szo

for all x with (|x||=R=2n+1 and

_ B+t 0 ap(l-em)
vix)=1 0 1, 0 = Ul(x)
'Z-L}zl(l-— ur:co) 0 [i__l_%enr:co

for all x with {|x| = 2n. Recalhng T(x) from (8) we get
Ui(x) =7} (x)-Uh(x),  Uj(x) =Ti(x) T7(x), Dj(x) = Ta(x)-T7(x)

T(x) only depends on g, so the matrices that occur in our calculation of
(U1)*ws (conf. (9)), only change in the following manner (we omlt the argu-

ment X for convenience):

L, —Lzo—i-l UEUl,

I =T-L,,-T'+i-E,

2
L, =T L., -T™ +izE,

-~

L'=L, L['=T-L.T7Y, D=T-L.T7,

OO
o OO
— O O

where we have defined E := ( ) . We easily deduce

Te{L'- L)} = Te{L - L,,} + zg- Te{L - U}EU;} and
Te{D'-I0 } = To{L'- I} = - Te{L - Ls,} +igTr{L-E}.

For the total integral we get I], = I, + A with

/ /dzo / drl—l—-ﬁs—Tr{L (UIEU, - E)},
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which makes life a bit easier. We obtain

Lzo(v) = % '
R2+4r2(222—1-c?) 21[—270(2&—1— 2)+i(?;—2—Rac)] n22( 2% —1-c?)
[0 (g 1-c ?)—i(2> —Rsd) —2R -1 (B -1-c?)  2g[wo(@t—1-c?)—i(2> ~Rsd)|,
a(FE—1-c?) ["Io("gﬁ"l‘cz)'ﬂ( —Rac)] R*+r3(248-1-c?)

Ly(v) = -
r2,2 2,2 2 ) s
——k,——-—hll-;r"’—e"'lz +iz1-,‘i(;}1r"+'_ e‘) +—51(rf1r"‘+r§e')(1r+—e+)

— 1'2 2 ) ,.2 2 . 2
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rzrz + + 2 . !‘2 -  z 2 + 2 + _ _
_."1'_?2"7" ~-e f —321%:}(7 —e ) —-—1—2-,4 (rz‘)r +rlg )(‘K —e )
—, r2 + + r2,2 , ,2 N ,2 +
e BT TINEREY)
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~ I3 (r3n 4rle)(at —et) —i'z;,'i(;%nw;ge-) + o et et p?
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For the antihermitian [L,,L,] we have the following additional symmetries:

[L¢1,L¢2](V) = —[L¢1’L¢2]P(W)v [L"UL":](V) = "[Lrnerlp(w)’
[Lgys L J(v) = _[L¢21L"2]P(w), [Lgss Lr, J(V) = _[L¢1’L7‘2]P(W)’
[L¢1’L1’2](V) = _[L'ﬁza Ln]P(w)’ [L¢2’L"z](v) = —[L¢,1,Ln]P(W),

so that [Lg,,Lr,])(v) and [Lg,,Ly,}(v) do not need to be computed. For the
others we obtain


















