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Generating Functions of ir2n-i(SU n )

Christian Gross

In many questions concerning homotopy groups of Lie  groups G, especially of
the unitary groups Um  and SUm , it suffices to know the mere group structure
of 7r„(G). For this purpose one can consult tables. For example, it is known that

(1) ÏÏ2n(SUm) — '^2n(Um') =  0, (SUm) =  ^2n+l(Um) — 7̂  TIT, > Tl £ N

by Bo t t ’s periodicy theorem [1]. However, often we have to know representa
tives U :S n  G for the generators of these homotopy groups.

One example for this situation is the SKYRME model [5] in theoreti
cal nuclear physics, a chiral invariant effective field theory describing the low
energy limit of the quantum chromodynamics (QCD). By compactification of
euclidian space R3 , resp., of space-time R4 , the meson fields are differentiable
functions U:R(t ) x S'3 —► SUn F i resp., U:S4 —► SUn f , N f  being the number
of flavors in the QCD (N f  = 2, resp., N f  =  3). In this model nucleons appear
as topological soliton solutions of these field configurations. The number of nu
cleons described by a certain meson field U can be computed by integration of
the pullback

over the space manifold, with L: — IP dU , where A is the wedge product of dif
ferential forms and 0)3 is the generator of the DE-Rh a m cohomology H3 (SUm ) =
H 3 (Um ) R for m > 2.

The meson fields obey the field equations derived as Eu l e r -La g r a n g e
equations from a lagrangian £(U,dU) by variation of the action integral
f&i £  dV . Let denote the totally antisymmetrical Le v i-Civ it a  symbol,
Lp, = d^U and A a coupling constant. Then for N f  =  3 the field equations
involve an additional term

(3) A e‘“"Mr L,l L v L p L a ,

that describes anomalous processes of the QCD. (In (3) we have used the EIN
STEIN summation convention.) Unfortunately, it is impossible to build up the
global corresponding term in the lagrangian from which (3) could be derived
by variation. Instead by using ir^(SU3 ) — 0 from (1) one argues that U can
be extended to a differentiable function U': D5 —» SU3 from a five-dimensional
disc P 5 whose boundary dD5 is space-time S4 [7]. Now the corresponding term
for (3), the so-called WESS-ZUMINO term [6], is A $D i(U')*W5, with o?5 being the
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S2n-1

generator of S  R for m > 3. Using STOKES’ theorem we can perform
the integration along space-time which leads — at least locally — to (3).

For any possible extension U' the result has to be unique. This is equiv
alent to the requirement that

A /  (Û)*u>5 — 2nz, z
J s 6

where S 5 is the 5-sphere which one obtains by gluing any two 5-cells D^y and
D(2y at space-time S 4 = together, and where we have defined
U = U(iy U U(2y: S b —» SU3 as the corresponding extension to this 5-sphere. This
forces A to be set equal to 24q .̂2 by the following index theorem (cf. BOTT,
SEELEY [2]). The factor in (2) can also be deduced from this conclusion.
Recall L ß  = d^U .

Theorem  1. For every map U :S2 n - 1  —»■ Um  the integral

( ”  - 1 ) !

( 2 i ï^ l ) ï  U  -

-À:. T r ■ ■ L ß2n_f) dæj A da?2 A - • • A dx2 n - i
( x i «

is an integer n(U). The assignment [U] i-> n(U): ^2n-i(,Um ) —» Z is an isomor
phism for m > n.

We have seen that in the case of the Sk y r m e  model, explicit represen
tatives U (t,-):S 3 —* SUn f  and Û: S 3 —» SU^F for the generators of iï3(SUn f )
and n’sÇSUNp) have physical significance. Thus it is worthwhile to look for such
explicit representatives. This is the task of the following article.

For 'XsÇSUz) there is the so-called Hedgehog Ansatz [5] where the field
equations can be transformed into a differential equation for the radial part
of this ansatz. Unfortunately, this is not transferable to let alone
^2n-i(SU m ). In order to achieve such an extension we take the more mathe
matical point of view and do not demand our representatives to obey certain
physical field equations. A first result is the following: having found a genera
tor U of 7F2n-i(5Un ) one also has a generator j  oU  of ifyn-itßUm) for m > n
through the inclusion

j-. S V „ s u m , V ^ \ ^ o  lm°

because of =  (j o . On the other hand one obtains a generator io U
of 7F2n-i(Un ) (and thereby of 7r2n-i(Um) for m > n) via the inclusion i: SUn  —>
u n .

So the main problem is to find representatives for 7r2n - i( ‘̂ Un ). By
looking at the LIE algebra of Un  and the use of the exponential map we make
the following ansatz for a function of a (2n — 1)-dimensional disc D^y 1 into
Un  : let H  denote the hermitian operator
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where Zj := æ2j-i +  ^2 j for j  =  1 ,... ,n  — 1. Let x =  (xo,xy,. .. ,X2n-2) and
define Uy.D2^ 1 -> Un  by U i(x) = exp(?7rl/(x )). To obtain a representative of
a generator of iT2n-i(Un) ■> resp., of i^n-iÇSUn) one has to construct a second
function Uy of a second disc P 2^ - 1  (northern and southern hemisphere) so that
Uy U Uy is a continous function of P ^ - 1  U P?Tx- 1  =  S'2” - 1 , well defined on the
equator ÖP2”)- 1  = dD 2^ 1 = S 2 n ~2 . In order to get a generator we must make
sure that th isj‘gluing process” is not trivial: if we were so careless as to choose Uy
so that Uy U Uy is symmetric about the equator, then we would obtain a candidate
for the zero element of 7r2n-i(Un) instead of a generator. In this paper we shall
carry out this program for n = 1,2,3.

In [3] LUNDELL has proven an iteration for the construction of rep
resentatives for generators of i^n -itS U n ). This iteration even leads to func
tions U: S 2” - 1  —» SUn directly, one doesn’t have to look for fitting second func
tions on the northern hemisperes. But unfortunately, as he himself admits, “the
actual formulae are too complicated for reasonable calculation” . They do not
inherit any symmetries between the matrix elements — like the ones built up by
(4) — that allow for the calculation of the integral in Theorem 1. So this iteration
is of more theoretical interest, whereas the representatives presented here could
be of practical use whenever the problem of finding functions for the northern
hemispheres is solved for n > 4.

Using CLIFFORD algebras LUNDELL and TOSA constructed representa
tives for generators of the stabe homotopy groups of SO, SU  and Sp [4].
In the case of SU  their formalism leads to functions U: S'2 n + 1  —> SU2™, so
^2n-i(SU n ),n  > 3 isn’t covered either.

A Generator of 7ry(Uy)

For the sake of illustration and completeness we begin by discussing the simplest
case. The isomorphism Uy —» S 1 yields a representative for the generator of
ny(Uy), We also obtain this representative by using our scheme in (4). In this
case we set:

H  =  (x q ), U i(x) =  Ui(æo) = exp(zTrxo).

Here we have Uy(—1) =  Ui(l) = —1. Therefore we can map D 1 onto S 1 by
identifying 1 and —1 (and so we define our second function from P ^  to S 1 by
Ui(x) = —1 =  const). The mapping U: S 1 —> Uy we obtain is a homeomorphism
and thus generates 7r(Ui ). This is confirmed by our invoking Theorem 1: Because
of (Ui)*aq =  Tr [exp(—Z7rxo)z7rexp(z7ra:o)] dxo = in dxo, integration gives
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- j iir dxo = —1.

N ote. Representatives for the other elements of ?ri (C7i ) are obtained by expand
ing the domain for Ui to be n • D 1 = [-n ,n ]. Because of U i(-n ) = Ui(n) =
(—l) n , we can again identify n and —n and thereby transform n • D 1 into S 1 .
Integration leads to

f + n  f  i Ÿ  0! . j
' 77 Z7r «æo = — n.-n \ 2 t t J  1!

If we keep D 1 = [—1,1] as domain, Un = exp(m7ræo), resp., U -n — exp(—ùi7ræo)
is a representative for the n-th element of

A Generator of

Here we have SU2 = S 3 . Under this identification the identity on S 3 is again a
representative for the generator of • We are led to it through our scheme
defined by (4) (remember = xi 4- ix2 ):

H = ( ^ .  Z1 Y  Ui(x) = Ui(x0 ,x i ,x 2 ) =  exp(i7rH(x)).
\  —xq J

Evaluating the exponential map and using R2 := x 'q +  æ2 4- ■> w e  obtain

(cost tR_ 4 ~ î W sin ttR K i sin ttRI  \
i sin ttR cos ttR — sin irR/

Setting yo := cost t R, yi := ^ - sh it t R, y2 := ^sin?rR , and y$ := ^-sin^R ,
we get j/2 =  1 and realize the isomorphism X' SU (2) —> S 3 as follows:

(  yo 4- iys - y i  4- iyi \  ( \ z- c3
I i • ) ( Î/0 » Î/1 •> Î/2, Î/3 ) € S .\  V2 4- îi/i yo — ty3 J

In particular, R =  1 yields

TT z ( - 1  0 \
( ̂  ) \ 0  _ I / ’

and therefore, similarly to the previous case, we can transform our function
Ui'.D3 —> SU2 into a continous mapping U :S3 —* SU2 by collapsing all points
x  G D3 with R =  1 into one single point 00, the “North Pole”.

For the evaluation of the integral in Theorem 1 we use the three inde
pendent parameters x o ,ri,^ i defined by z\ = . We thus rather compute

instead of where x [0,1] x [—7r,4-tt] —> D3 is defined by
, r i , ^1 ) =  (xo, Fi cos , ri sin 0i ). By cyclic permutation under the trace we

get
0*(Ui)*u?3 =  —3 • Tr{LX0[I^ i» I^ri]} dxo A dri A d0i.
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Next we compute the L^’s, using the abbrevations c := cost fÄ, s :=
sin irR:

This yields

L ri = iri

(5)

(6)

(7)

7TF| 3C
R R^

2
2 ?  ^ - ^ - + î 7 T S 2

7T SC 0 I X Q S C
“  Ä3 I" Ä3

and TrjLxofZ^, Ln ]} =  sin2 7TÄ, from which we deduce

1 2tT?'i
V’*(i7i)*^3 = ---- sin2 7r7î dxo /\ dri A d</>i,

Hr
12tf

resp., =  — —  sin27r7Z dx$ A dxi A dx^.
R l

By the transformation rule for integrals we obtain for the integral in theorem 1

+1 x/1 - I o 2ir +i \ / 1 - r o

/ 1 f  f  f  *̂1 f  f  O= I dx0 /  dri /  d</)i—~=^ sin2 tvR  = dx0 /  dry —  sin2 7rfi
247f z  J J J 2tvR £ J J R

s3 - l o o  o o
(the integrand is even in xq ). We choose new variables R, r j , observe cLRAd(r2 ) =
—r x  dxo A d r i, and finally get

+1 Ä2 2 +i

/
,  /  z  9  x  S I U  7 T J v  /  , 9  - __

dR I d(r?)---- = == = =  =  I 2sm2 7TÄ dR — 1.

This confirmes that U is a representative for the generator of ^(SL ^)-

Note. As for t vi(Ui ), we obtain representatives for all other elements of
by expanding our domain to the ball of radius R  =  n . For x with || x  || =  R = n
we have

U 1 M  = ( ( -1 )” 0 \
11 J \  0 ( - 1 ) " /

For this reason even a mapping from n • D3 can be transformed into a continous
mapping from S 3 , resp., n • S 3 , into S 3 , which yields

n
I n =  / 2sin2 7r2? dR =  n.

o
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If we want to keep our domain D3 , we simply replace x by nx  and obtain
Un'.D3 ~^SU 2 :

cos mrR +_i sifnt  nirR K i Q sin nirR
i^& n m rR  cosnirR —i^ s in n irR

as representative for the n-th element of it3(SU2 ). In order to get the inverse
elements we replace xq by — Xq , then LXo changes into — LXo and U*a>3 changes
into —U*u>3 . We obtain U -n .D 3 —> SU2 :

cos nirR — sin nirR i sinnirR \
i sin nirR cos nirR 4- a; sin nirR J

A Generator of

There is no isomorphism between SU3 and a sphere and for the first time
we will have to make use of the gluingjjro cess described in the introduction.
Two mappings U \'.D ^  —» SU3 and —> SU3 that coincide on the
boundaries d D ^  = d D ^  = S 4 , are transformed into a well defined continous
function U = U\ U Uy: S 5 —t SU3. In analogy with (4) we have

zi

22
{zi = xi + ix 2 — r ie ’̂ 1 1

z2 = X3 + 1x4 = r2 e* 2̂ J ’

4

E
~2 _  „2 I „2 _  p2— æO +  »

:=0

and a mapping C pD 5 —> U3 defined by U](x) = exp(z7r/f)(x).

detU{ = exp(zzrTrÆ) — exp(zzrx0 ),

so we have U[(D5 ) SU3. Using the diagonalisation of H  we compute

U j(x) =

2 2
^ ( c  +  ^ 5 ) +  £ e «™o

i rC
^ R c  +  z ^ - e ^ * 0 )

’ ä s

c — i^S-sft
2 7 ? 5

^ ( c  + z ^ s - e ’™0 )

2 2
^ (c  + z’^  + ^ e 1̂ 0

where we again used c — coszrJÎ and s = sinzrf? for convenience. In order to
obtain Ui'.D5 —*• SU3, we multiply every matrix U{(x) by a matrix T (x) of de
terminant detT (x) =  exp(—z’t t xo), preserving a convenient degree of symmetry
between its elements. Thus we choose

(
e -» f® o  0 0 \

0  1 .° I *
0 0 e~*^x ° J

Using := c ±  z ^ s  for further convenience we obtain

(
2 2

^F (zr+ e - ’i Xo -  e+ i f  x °)

i Îts e  * îXo

ir~
z’̂ s e - * ?x°
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as the function on the southern hemisphere of S 5 . On the equator ( R  = 1 ) it
turns out to be

/ 2  2/  I i - e - i f x o  +  0

^ i ( x ) =    o  - 1

\  £ l | l ( e + » fxo  _|_ (J

Obviously this is not constant like in the previous cases, so it is impossible to
contract the boundary into one single point, but we have to look for a nontrivial
mapping U\ on the northern hemisphere, that coincides with Ui on the equator.
There are two possibilities:

.2

r , ( x ) =

2
FiyXo _  e  — s e + l %

___ T *  rC
7T+

,+«fxo _ e - * f x o )  z F ^ e + i f x o

e+*2x ° — e ’ 2 X ° )

ft
2 2

— e+ i %x ° — - £ e — * 2"X o

To secure the property of being unitary we have to choose either the upper or
the lower signs. Once the choice has been made, it propagates to all products,
its derivations and inverses, and so — by forming the trace at the end of the
computation of (?7i)*W5 — does not influence the value of this pullback. In the
following we choose the upper signs.

Again we will use polar coordinates for the evaluation of our 5-form:
let K  ~  R x R+ x  R^ x [—?r, 4-tt] x  [—7r, 4-tt] and define > R5 by
^ ( t o , ^2) =  (^o ,n  c o s t r i  s in ^ i,r2 cos^2 , r 2 sin^2 ), resp.,restrict K
to «/>- 1 (Z>5 ). By cyclic permutation under the trace we then obtain

(9) 0*(IA)*Ws = 5 • Tr{Z • L Xo} dxo A dr^ A dr2 A d̂ >i A d</>2

with the hermitian matrix

(IQ) 1 ’ ■̂'’'2) [-^ î >-^nHZ^ , Z r2 ] 4“ [Z^t , Z r2 ][Z^2 , Z r i ]
4-[Zr i , Z r2 ][Z^t , Z^2] [Z^2 , Zr 2 ][Ẑ >i, Z r i ] H- [Ẑ >2 , Z r i ][Ẑ >1 , Z r2 ]

(£ t =  L is a consequence of [ Z ^ Z ^  = — [Z^Z^], which itself follows from
Z£ = - Z ^ , cf. (5) to (7)).

The computation of V’*(t7i)*u’5 is straightforward but long and tedious.
We have collected the main steps in the appendix. We end up with (14):

—7T sin2 7rR(sin7rR cost o q ----£  cost cR sin-raro )

sin2?rR
----- -- ----- (  1 — COSTT/t COSTHT0 )

R

■0*(C7i )‘w5 = 3 0 ^ ^
JI

722
+ 2tt sin7rR(cos7rro — cost t R) +  (2 — +2)r 2

R 2
— (2— 4-1) —  sin3 7rRsin7roo dæo Adn Adr2 Ad^i Ad<̂ 2 .r 2 R z

For the mapping on the northern hemisphere, it turns out that — cf. (15) —

(^i)*w5 = (t7 1 )*o;5 =  -(t7 1 )*W 5.
Fortunately, the negative sign compensates the factor (—1), that arises as a
consequence of the opposite orientation of the northern hemisphere. So both
integrals yield the same value:
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11 -  j  ~ 4 ^ { U ' y u , s  +  /  “ 4 8 5 ^ ( £ / 1 ) *“ 5

S 5 , “south” S 5 ,“nor th”

/
7 r tf

- 4 8 0 ^ ( t 7 ' ) * “ 5  =  2  J
S 5 ,“south”

Because V’*(^i)*^5 is even in x q , we integrate twice over positive values of
Xq , the integration over fa and fa just yields the factor 4tt2 . Using new vari
ables R,x$  and r 2 and observing dR A dxQ h drj -  2r^ - d x 0 h dr\ N dr2 , we
obtain

R R 2-^l

~7T sin2 TrR(sinTrR c ost o 0 — — cost tR sinTixo )
Ro 0 0

R 2 Xq+ 2tt sin7rR(cos7ïT0 — cost tR) -  (2—r- + 1)-^- sin3 TrRsinTtxo
r 2 / i 2

/ e (1 — cost tR cost t xq ) dr2R 2 n , sin2TrR
+ ( 2 ^ + 2 ) —

R

I —ir(R2 — Xq) sin2 7tR(sin7FjR cost ixq — cost tR sinrao)
' R

i/  —

J  R 2 J
0 0

+ 2?r(R2 —Xo)sin7rR(cosTOo — cost t R) — (3R2 —Xq) - ^  sin3 7rRsin7ixo
R £

(  a  n 2  n 2 x .+ (4/t — 2x0 )— - — (1 — cost t R cos t oo )
ix

Partial integration yields:

o

i

o

2 1+2sin2 TtR — —t t R shit t R cost tR — -  sin2 7rR
3 3

shit t R cost t R sin2 TrR sin3 ttR cost t R—2___________ i________L 4____________ 3
TTÄ 7T2R 2 7T3R 3 7T4 R 4

R"1. 2 „  F 1 „ . 2 „  sin2 TrR sh ^ ttR"1
sm2?ER dR + - ~ R  sm2 kR ----- 5—  + r

3 tt2 R Tr4 R3

sin4 7rRl

K=o
=  1 +  0 =  1.

This finally proves that our mapping constructed from Ui and Ui represents the
generator of tt5 ( S U3 ).

Representatives for further Elements of

Having found a representative U for the generator [U] of ^(SU a), we could use
standard techniques to construct representatives for the powers [17]n , notably,
since SU3 is a group. But neither of these is practical for an explicit numerical
representation of a Vn  with [Vn ] =  [U]n  • Fortunately, there is a simple technique
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due to the fact that we can expand the domains for tTj and U i. They not
only can be glued together at R = 1, but as well at R  = 2n 4- 1, yet not at
R  =  2n (n € No).

/•2 n + l
hn+1 =  I  2sin27rR dR = 2n +  1,

Jo
we thus easily obtain further representatives for all odd products of [U]. For
even products Z7i has to be combined with another function Û : 2n ■ D5 —> SU3.
Choosing

for points on the northern hemisphere, we recognize that (7i can be glued
together with Ui at R = 2n , since

for all points x with ||x || — R = 2n. Because of U i(x =  0) = I3 = Ui(x =  0),
both North Pole and South Pole of S 5 are mapped onto the base point of SU3.
Using the fact that the are invariant under left multiplications, we have

_  / - 1  0 0 \  _
U i(x )=  0 1 0  -U i(x)

\  0 0 - 1 /
L^(x) = L ^ x ) .

This yields (Ui)*o>5 =  (Ui)*u>5 and thus:

/
2 / * 2“ 480Ï3 ( :7 1 )*W5 +  J

2n-SB ,“south” 2n-SB ,“noith”

f i f 2n
= 2 /  -  -  /  2sin2 7rRdÄ =  2n.

J 480t f3 J q
2 n S B ,“south”

In order to obtain representatives for the corresponding inverse elements
of TTsÇSUi) we replace x q  by —x q  , or define U\ to be the mapping of the northern
hemisphere and U \, resp., U\ to be the mapping of the southern hemisphere of
S 5 . If we replace x by 2 n x , resp., by (2n 4- l ) x , we can keep D5 instead of
2n • D 5 , resp., (2n +  1) • D5 as domain.

Representatives for Elements of ^5(1/3)

As already mentioned in the introduction, U :S 5 —♦ SU3 constructed above also
is a representative for the generator of ^5(^3) via the inclusion V.SU3 —> U3 •
Alternatively, we can also use the function U{ : D 5 —» U3 that we had obtained
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by (4) directly, to build up representatives for all the elements of 7r5 ({73 ), as a
short computation will show.

For the mappings on the northern hemisphere we define:
/ 2  2_  /  -  £

U[(x) =  I — i^ se * ^ x °

\ ^ ( v ~ e in xo  - 1 )
/ „2 . f2

_  [  J ? ™ 0 +  £
U](x) = I i ^ s e l i XQ

X ^ R - T r 'e ’™0 +  :

i R̂s e t 2x °
7F+

—i^ s e t ^ x °

zt
7T+

JL
these can be glued together with U{ at R = 2n + 1, resp., R  = 2n, because

' 2 ._  r l I r 2 c l7TZo

_  0
^ ( l  +  e ^ o )

0
-1
0

for all x with || x J| =  R = 2n + 1 and

iîTTo

for all x with j|x || =  2n. Recalling T(x) from (8) we get

u ;(x )  =  r - 1 ( x ) . r 1 (x ), y ;(x )  = t/1( x ) . r - I (x ), e ;(x ) = e 1(x )-t - 1(x ).
T (x ) only depends on xo, so the matrices that occur in our calculation of
({7i )*u?5 (conf. (9)), only change in the following manner (we omit the argu
ment x for convenience):

L ' ^ L ^  + i^ U 'E U ! ,
. — — '  . — i _  - TT*

L'I , =  T - £ I 0 T - + i - E ,&
L ^ ^ T - L ^ - T ^ + i ^ E ,

L' = L, L' = T L - T - \ L' = T - L T ' \

/ 1 0
where we have defined E  := I 0 0

\ 0  0

0 \
0 ) . We easily deduce
1 /

Tr{£' ■ L i J  = Tr{I ■ £ „ }  + >- Tr{L • U}EUi } and
„— x**'* — 7F

iy { I ' • I ^ J  =  Tr)L' £;<,} =  - Tr{L ■ L x „} +  z -  Tr{L ■ £}.£
For the total integral we get Tn  = I n + A with

” ß 2 — x o 3

A =  [  dx0 [  * ’ 1 —  Tr{L ■ -  E)},
J R? J J 48 ri F2
0 - R  0
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— 2122 £2
2 2(æ 0ft2  ~  "ß )

r 2 s 2

“R5“

and for M  := U}EU t -  E  we compute

(
2 2  2

— -^7" 21 (^ 0  +  2 ^  )

_____  2 __  2
— 22(^0 Jp + * Jt)

Using (11) to (13) from the appendix we obtain

Tr{L M} = ^ S  + 2 ^ ( r î  Im{ — } -  r*

=  ^5 7  [-247rs3 c ( l- c c x - ^ s s x ) + 24t t s3 c (1 — ccx — ̂ s s ^ ) ]  =  0.

This yields A =  0, and thus — as expected —

i ;  = n.
This result once again confirms that our ansatz (4) directly leads to

representatives for generators of 7r2n -i(SU n ) , resp., 7F2n -i(Z7n ), depending on n
being even or odd — at least for the lower dimensions examinated here.

Appendix

In order to compute ^*(Z7i)*u>5 we first calculate the antihermitian L^'s.
Throughout all computations we will use the following abbrevations for con
venience and clarity:

c — cos 7T R,
4. _  .«»-o . 1-,

it  =  cos irR +  z — sm 7r/t,
R

C j; COS 7TI Q

e+  — exp(-f-z7ra:o),

3 — sin 7T.R,

7T~ =  cos itR — i sin t tR,
R

s x = simrxo,
e~ =  exp(—ît t æo)-

Remember K  =  R x  R J  x R +  X [ - 7T, +7T1 X [—7T, + t f] as domain for the polar
coordinate function t/? and let v := (^o,ri,r2,</»i,^2) € K . Define the linear
involution A. : K  —> K  by w =  A(v) = (æo, n , —<£2,-^1 )• So ^ ( ^ ( w ) )  is
the matrix we obtain from ^ ( ^ ( v ) )  by replacing (21,22) by (22,2?), resp..
(ri,</>i) by (r2 ,— (/>2), and vice versa.

Let A p  denote the matrix A “rotated by 180°”, so that An becomes
A33 , A12 becomes A32 , A13 becomes A31, and so on. Obviously this operation
commutes with the hermitian conjugation and the derivation of A. We have
(A B )P  = A P B P  and Tr{Ap } =  Tr{A}. Because of Up oÿ = Ui o^>oA we obtain

52 - ( ^ o 0) = 52-(U1 o V’°A ) =
and = ^ ( ^ o V - o A )  =  -!& -([/, 00)0  A. We thus

have an additional symmetry between the elements of the antihermitian Lg ’s
(here = (Uj o^): K  -> M3 (C) for ft = x0 , r n  r 2 , <£1, <j>2 ):

iro (v ) = £ f 0 (w),
^ i ( v )  = - ^ 2 ( w ) ,  I ^ 2 ( v )  =  - L j i ( w ) ,

( v )  =  + z £  ( w ) ,  Lr2 ( v )  =  + L p
x ( w ) ,
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which makes life a bit easier. We obtain

For the antihermitian we have the following additional symmetries:

, L^2](v ) (w ),

=  - [ £ * ,  ̂ ] P (W),
Lr2](v) = —[L 2̂ ,L r i ] (w),

|£ r i ,L r,](v) =  -  [Lr i ,L r,)p (w),
[Zr̂ 2 , LrJ(v) [-Z/0J , Zfrj] (w),
[Zî 2 , Z<r2](v) =  [X̂ 1 ,Z'r i ] (w),

so that [I^ r , L r2]( v  ) and [£<>2, ̂ n X v ) d o  n o t  nee<  ̂ t o  b e  c o m Pu t e d - F o r  t h e

others we obtain



(_a—+ »-0Z)Ÿ0:r.*-
(j — _93-|-̂ 9j)0zjiî —

2
0

Z

g£ïz

^+ ’ - + * 1 ^ 4 ^ -
g ^ J ___ H»-*

J j Oæ *j  "®77^*J7x 7s

_____ j ^ fr4
3ff*4X»C J jO x X lJ

(_9-+ »-^2)40;r?4“
(j— _ao4-̂ _9D)0ixt+

(_9- + 9>2pi

züzd
= (a )[s“*7‘u 7]

=  ( A ) [ ^ 7 ‘ ^ 7 1

TOI SSOH0
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Z r J (v )  — ri •
9 9  - 9 2
" r 2 c t *  i ' 2 « » r * r p c

- T T f e r -------- +  r 2 f i 3

• 2 9  - 9 9
L L S iI z l iS  2 l x ° r i r 2 f S x

r 4 R  ~  r 4 R 3

2 ï r 2 f r 2 - r 2 l2 ,rr (r|...r.Jk +_e+^
f t )  > 1

2 t r 2 r 2 « 2  2 i r 2 r 2 i 2

H (irR c -s ) ]

2 t r 2 r 2 ^ 2  2 t r 2 r 2 a 2  9 1 r  2  a 2
l - X ?  +  Z t  I  3. , - _  V

1 r ' f i 4  r 4

We further have

•) Z^2] , I r 2](v) ([Z^ , Z^2][Zr i , Zr j ]) (w )j
(Zr , ,Z r ! ][Z ^ ,Z ^](v ) =  ([Lr i ,L r ,] [Z ^ ,7 ^ ] ) p (w),
[Z^1 ,Z r i ][Z<̂ 2 ,Z r2 ](v) = ([Z^j, Z r i ][Ẑ >2 ■)Zr2]) (w),
[Z02 ,Z r2 ][Z^1 ,Z r i ](v) ([Z<̂>2 , Zr2 ][Z^j,Z r J )  (w),
[Z^2 , Z r i ][Z^j , Z r a ](v) ~  ([Z^2 , ZrjJfZ^j, Zr2]) (w),
[Ẑ >! , Zr2] [Ẑ >2 , Z r i ](v) ([Zÿ>1 , Zr2] [Z^2 , Z r J )  (w),

from which we deduce for Z defined by (10)

Z (v) = Z p (w ), Z • Z IO (v )  = (Z - Z I 0 )p (w ) and Tr{Z • Z ,0 }(v) =  Tr{Z • ZXo}(w).

Since dxo A dri A dr2 A d̂ >i A d</>2 = dx$ A dr2 A dr\ A d(—̂ 2) A d (-^ i) ,  we
have V’*(^i)*^’5(v ) — V’*(bri)*W5( w) by (9). Even if we make good use of these
symmetries there is still some work left over to compute Z . We finally obtain
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Using

Tr{.Zj • Lij{LX o)jj =  Lg{LiXQ ),j 4- 2i ^Im.{Z>tj(.Z/a;0 )j't'}
i) i i< j

we have (omitting the argument v )

Tr{L ■ I , , }  = i ( ^  -  ^ ) ( r ?  I m { ^ }  -  r ’ I m { ^ } )
I t r  i t  \  Z \ Z2 /

with

.7T/ i r  r  . . /TH 1 + CA ) SC
+ * 2 ^ u  “  2 ^ 22 +  ^ 3 3 ) +  * \— 2R2-------R3

—rf L n + r2 L22 — r2 L33 — 2r2 r2 Re{—— }
L Z1Z2

(H )

We obtain

2 T f ^ 1 2  -i 2 T f -^23 -i *̂1 ̂ 2 i  »  n  2 / 1 \Tj Im{---- } -  T2 Im{-----} = -— 12irRs (1 -  ccx  -  — ssx ),
Z\ Z2 R  f t

r i Re{ — } + r2
2 Re{ — } = ^ -1 2 a :o s (^  -  7rc)(l -  ccx -  ^ s s

Z± Z2 R  -ft -ft
X

(12)

365 2 r 7f (a s c \ i
x ---- ^ C S X ) +

i t  i t

+ 2 4 4 ^ - 0 . ) + ^

_ 2 r ^ R e { ^ } = ^ d d
Z1Z2 R

L n  -  2L22 + L33 R 3

-4 8 s  t f(c - c x ) +L r2 R
2 2

- r ? £ n + r 2 L 2 2 - r 2 ^ 3 3  = - ^ r 2 { “ 2 4 s 2 ( l - ~ p - )  M > c ;

^0 2 1 1s * br 2 J J
# o  \ ^0

7T(s Cx  — ~ ^ S S x

?»’ (1 - c e , - ^ , ) ] } ,

*̂ 0 \ . *̂ 0
r 4 xT ------R--  CStx ))  H----R---2 x

and

-  2 4 3 ^  P ( e - c . )  +  ^ ( l - c c . )  -  ï p s . ]  },

thus: S  = — ^~24:TrR2sc(l — ccx  — ~~ssx ) (13)
R 6 R

Tr{L-L Xo) = i^^-(127r2s(cx - c )  -  67F2 s2 (sca; -  ^ c s x )
R 5 I R

T?2 t  R2 s2 y- M 2 ^ -  +  1 ) ^ 5 3 ^t  +67r(2 ^ - + 2 )—(i-cc ,:)} .

It is finally done. For the desired 5-form on the southern hemisphere of the S 5

we end up with

^*(U1)*W5 =30 î 7T — ir sin2 7rR(sin7rRcos7nro — cost t R  sinTixo )R s L R
_ . _ z / n R 2 n , sin2 ttR .^  _

+  2t t  smm(cosTOo —cosît R) +  (2— 4-2)— - — (1 —cost t R  cost t oo )r 2 R
— ( 2 ^  +  l ) ^  sin3%Rsin7nrojdæoAdri Ad^2 - (14)
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After this preliminary work it is quite easy now to compute (Z7i )*cl>5 on
the northern hemisphere. We rewrite as

U i= F U l
P F p  = (Fp U!F)P ,

/ - 1  0 0 \
where we have defined F  := I 0 1 0 1. This yields

\  0 0 1 /

Ui' = , dUi
dxi

because complex conjugation and differentiation along real variables commute.
We thus have

Î Z  =  (F Z ^ F )P ,

Tr{Z • l Z}  = Tr{(J’L 7 L ^ F ) p } = T r f F L T C j’}
= T r f F ^ }  =

and immediately obtain

(is )  (uiy^5 = = - p f y .
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