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A NEW HETEROGENEOUS MULTISCALE METHOD FOR THE
HELMHOLTZ EQUATION WITH HIGH CONTRAST∗

MARIO OHLBERGER† AND BARBARA VERFÜRTH†

Abstract. In this paper, we suggest a new heterogeneous multiscale method (HMM) for the
Helmholtz equation with high contrast. The method is constructed for a setting as in Bouchitté and
Felbacq [C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 377–382], where the high contrast in the
parameter leads to unusual effective parameters in the homogenized equation. We revisit existing
homogenization approaches for this special setting and analyze the stability of the two-scale solution
with respect to the wavenumber and the data. This includes a new stability result for solutions to the
Helmholtz equation with discontinuous diffusion matrix. The HMM is defined as direct discretization
of the two-scale limit equation. With this approach we are able to show quasi-optimality and an a
priori error estimate under a resolution condition that inherits its dependence on the wavenumber
from the stability constant for the analytical problem. Numerical experiments confirm our theoretical
convergence results and examine the resolution condition. Moreover, the numerical simulation gives
a good insight and explanation of the physical phenomenon of frequency band gaps.
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1. Introduction. The interest in (locally) periodic media, such as photonic crys-
tals, has grown in the last years as they exhibit astonishing properties such as band
gaps or negative refraction; see [23, 51, 40]. In this paper, we study artificial mag-
netism in the setting of [11], which has been inspired by the experimental setup of [45].

The electromagnetic properties of a material are governed by the permittivity
ε and the permeability µ. Whereas for ε a great range of values can be observed,
almost all materials are nonmagnetic, i.e., µ is close to 1. Artificial magnetism now
describes the occurrence of an (effective) permeability µeff 6= 1 in an originally non-
magnetic material with µ = 1. Clearly, such a material must exhibit some interior
structure to allow this significant change of behavior. In [11], an unusual and highly
heterogeneous scaling (in the sense of Allaire [2, section 4]) of material parameters (see
below) has been used to obtain a frequency-dependent permeability, which can even
have a negative real part, in the homogenization limit. The observation that µeff can
even be negative is of particular interest: When ε and µ are negative, such a material
can have a negative refraction index, as discussed in [54]. Metals can have a negative
real part of ε, but no negative µ can be observed in nature. Moreover, in material
with positive ε and negative µ, wave propagation is forbidden, which corresponds to
a frequency in the band gap.

The setting of [11], inspired by [45] and [26], is the following (see also Figure 1):
A periodic array of rods with high permittivity (depicted in gray in Figure 1) is
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Fig. 1. Left: Scatterer Ω with highly conductive inclusions Dδ (in gray); Right: Zoom into one
unit cell Y and scaling of the permittivity ε−1

r .

embedded in a lossless dielectric material. Denoting by the small parameter δ the
periodicity, the high permittivity in the rods is modeled by setting ε−1 = δ2ε−1

i ; see
section 2 for an exact definition. The consideration of small inclusions with high
permittivity has become a popular modeling also in the three-dimensional setting to
tune unusual effective material properties; see [10, 12, 13, 17, 38]. Interesting memory
effects can occur in the time-dependent setting; see [9].

The overall setting in this paper can be described now as follows: We consider a
scatterer of the form Ω× R with Ω ⊂ R2 bounded and smooth (with C2 boundary).
The structure is nonmagnetic, i.e., µ = 1, and has a relative permittivity εr, which
equals 1 outside Ω. This effectively two-dimensional geometry (invariant in the x3-
direction) is illuminated by a transversely polarized field Hinc = (0, 0, uinc)

T . The
total magnetic field H = (0, 0, u)T then satisfies the Helmholtz equation

(1.1) −∇ ·
(
ε−1
r ∇u

)
− k2u = 0 on R2

with the wavenumber k = ω/c. We artificially truncate our domain by introducing a
sufficiently large convex Lipschitz domain G ⊃⊃ Ω and imposing on ∂G the following
boundary condition

(1.2) ∇u · n− iku = g := ∇uinc · n− ikuinc,

which is the popular first order approximation of the Sommerfeld radiation condition;
cf. [19, 36]. The relative permittivity εr = a−1

δ inside the scatterer models the de-
scribed setting of periodic inclusions with high permittivity and is defined in (2.2).
Throughout this article, we assume that there is k0 > 0 such that k ≥ k0, which
corresponds to medium and high frequencies.

A numerical treatment of (1.1) with boundary condition (1.2) and permittivity
with high contrast is very challenging. Solutions to Helmholtz problems show oscilla-
tory behavior in general and the consideration of (locally) periodic media intensifies
this effect. The challenge is then to well approximate the heterogeneities in the ma-
terial and the oscillations induced by the incoming wave. It is important to relate
the scales of these oscillations: We basically have a three-scale structure here with
δ � k−1 < 1, i.e., the periodicity of the material (and the size of the inclusions)
is much smaller than the wavelength of the incoming wave. A direct discretization
requires a grid with mesh size h < δ � 1 to approximate the solution faithfully. This
can easily exceed today’s computational resources when using a standard approach.
In order to make a numerical simulation feasible, so-called multiscale methods can be
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applied. The family of heterogeneous multiscale methods (HMM) [20, 21] is a class
of multiscale methods that has been proved to be very efficient for scale-separated
locally periodic problems. The HMM can exploit local periodicity in the coefficients
to solve local sample problems that allow one to extract effective macroscopic features
and to approximate solutions with a complexity independent of the (small) periodicity
δ. First analytical results concerning the approximation properties of the HMM for
elliptic problems have been derived in [1, 22, 29, 46] and then extended to other prob-
lems, such as time-harmonic Maxwell’s equations [32]. Other related works are the
HMM for Helmholtz problems with locally periodic media (without high contrast!)
[18], or a multiscale asymptotic expansion for the Helmholtz equation [15]. The HMM
itself can also be applied to nonperiodic settings; see [29, 31]. However, it is by no
means clear whether the (analytical) setting under consideration in this paper has a
meaningful extension beyond the (locally) periodic case.

The new contribution of this article is the first formulation of an HMM for the
Helmholtz equation with high contrast in the setting of [11], its comprehensive nu-
merical analysis and its implementation. The numerical experiment not only shows
the practicality of the suggested HMM, but also gives an enlightening insight into
the physical background of artificial magnetism and frequency band gaps. The HMM
can be used to approximate the true solution to (1.1) with a much coarser mesh
and hence less computational effort. We observe that for a frequency in the band
gap, wave propagation is prohibited due to destructive interference of waves incited
at eigen resonances of the small inclusions with high permittivity. From the theo-
retical point of view, the main result is that the energy error converges with rate
kq+1(H + h) if the resolution condition kq+2(H + h) = O(1) is fulfilled. Here, H and
h denote the δ-independent mesh sizes used for the HMM and we assume that the
analytical two-scale solution has a stability constant of order kq with q ∈ N0. This
resolution condition is unavoidable for standard Galerkin discretizations of Helmholtz
problems and it shows up with q = 0 (the optimal case) in our numerical experiments.
A posteriori estimates in this setting are equally possible to obtain. The described
HMM itself might be transferable/adaptable to similarly scaled situations in three
dimensions.

To complement our numerical analysis, we also show an explicit stability estimate
for the solution to the two-scale limit equation, so that we have an explicit (though
maybe suboptimal) result for the stability exponent q = 3. This includes a second
contribution, which may be of its own interest: A new stability result for a certain
class of Helmholtz-type problems, namely, with matrix-valued discontinuous diffusion
coefficient. Stability results for the Helmholtz equation have only been proved in the
following cases: Constant coefficients have been studied under various geometrical
conditions in [5, 24, 33, 41, 42, 43] and scalar-valued, globally Lipschitz continuous
coefficients have been treated in [14]. Only recently (during the review process of this
paper), has a detailed stability analysis of the Helmholtz equation with scalar-valued,
discontinuous coefficients been conducted in [44].

The article is organized as follows: In section 2 we detail the (geometric) setting of
the heterogeneous problem considered and give some basic notation used throughout
the article. We present and combine existing homogenization results and analyze the
homogenized problems in detail in section 3. This is the motivation and starting point
for the formulation of the corresponding HMM in section 4. The quasi-optimality and
a priori estimates for the new method as the central statement of the article are given
in section 5. All essential proofs are detailed in section 6. A numerical experiment is
presented in section 7.
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2. Problem setting. For the remainder of this article, let Ω ⊂⊂ G ⊂ R2 be
two bounded domains, where ∂Ω is of class C2 and G is convex and has a polygonal
Lipschitz boundary. Throughout this paper, we use standard notation: For a domain
ω, p ∈ [1,∞) and s ∈ R≥0, Lp(ω) denotes the usual complex Lebesgue space with
norm ‖ · ‖Lp(ω) and Hs(ω) denotes the complex (fractional) Sobolev space with the
norm ‖·‖Hs(ω). The domain ω is omitted from the norms if no confusion can arise. The
dot will denote a normal (real) scalar product, for a complex scalar product we will
explicitly conjugate the second component by using v∗ as the conjugate complex of v.
The L2 scalar product on a domain ω is abbreviated by (·, ·)ω and the corresponding
norm abbreviated by ‖ · ‖ω. For a polygonally bounded domain ω, H1/2(∂ω) denotes
the space of functions which are edgewise H1/2. For the domain G, we abbreviate by

(2.1) Hs
pw(G) := Hs(Ω) ∩Hs(G \ Ω) ∩H1(G), s > 1,

the function space of piecewise Hs functions and note that Hs
pw(G) = Hs(G) for

s ∈ [1, 3
2 ); see [50]. For v ∈ H1(ω), we frequently use the k-dependent norm

‖v‖1,k,ω :=
(
‖∇v‖2ω + k2‖v‖2ω

)1/2
,

which is obviously equivalent to the H1-norm.
Let ej denote the jth unit vector in R2. For the rest of the paper, we write

Y := [− 1
2 ,

1
2 )2 to denote the two-dimensional unit square and we say that a function

v ∈ L2
loc(R2) is Y -periodic if it fulfills v(y) = v(y+ej) for all j = 1, 2 and almost every

y ∈ R2. With that we denote L2
] (Y ) := {v ∈ L2

loc(R2)|v is Y -periodic}. Analogously

we indicate periodic function spaces by the subscript ]. For example, H1
] (Y ) is the

space of periodic H1
loc(R2) functions and we define

H1
],0(Y ) :=

{
φ ∈ H1

] (Y )

∣∣∣∣ ∫
Y

φ = 0

}
.

For Y ∗ ⊂ Y , we denote by H1
],0(Y ∗) the restriction of functions in H1

],0(Y ) to Y ∗. For

D ⊂⊂ Y , H1
0 (D) can be interpreted as a subspace of H1

] (Y ) and we will write H1
0 (D)]

to emphasize this periodic extension. By Lp(Ω;X) we denote Bochner–Lebesgue
spaces over the Banach space X and we use the short notation f(x, y) := f(x)(y) for
f ∈ Lp(Ω;X). Functions in L2(Ω) are also regarded as functions in L2(G) by simple
extension by zero.

Using the above notation we consider the following setting for the (inverse) relative
permittivity ε−1

r ; see [11]: Ω is composed of δ-periodically-disposed sections of rods, δ
being a small parameter. Denoting by D ⊂⊂ Y a connected domain with C2 bound-
ary, the rods occupy a region Dδ := ∪j∈Iδ(j+D) with I = {j ∈ Z2|δ(j+Y ) ⊂ Ω}. The
complement of D in Y , which is also connected, is denoted by Y ∗. The inverse relative
permittivity aδ := ε−1

r is then defined (possibly after rescaling) as (cf. Figure 1)

aδ(x) :=


δ2ε−1

i if x ∈ Dδ with εi ∈ C, Im(εi) > 0,Re(εi) > 0,

ε−1
e if x ∈ Ω \Dδ with εe ∈ R+,

1 if x ∈ G \ Ω.

(2.2)

We assume Re(εi) > 0 for simplicity; all results hold—up to minor modifications in
the proofs; also for εi with Re(εi) ≤ 0. Physically speaking, this means that the scat-
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terer Ω consists of periodically disposed metallic rods Dδ embedded in a dielectric
“matrix” medium. The scaling of δ2 in the rods corresponds to a constant optical
diameter of these inclusions.

It is essential that Ω\Dδ is connected, otherwise the two-scale convergences shown
below can fail; see [13] for an example. To assume D as connected is only done for
simplicity.

Definition 2.1 (weak solution). Let the parameter aδ be defined by (2.2) and let
g ∈ H1/2(∂G). We call uδ ∈ H1(G) a weak solution if it fulfills

(2.3)

∫
G

aδ(x)∇uδ ·∇ψ∗−k2uδψ
∗ dx− ik

∫
∂G

uδψ
∗ dσ =

∫
∂G

gψ∗ dσ ∀ψ ∈ H1(G).

It is well known that for fixed δ, there is a unique solution to (2.3), which can be
seen using the Fredholm alternative: The left-hand side fulfills a G̊arding inequality
and problem (2.3) as well as the adjoint problem are uniquely solvable. Throughout
the article, C denotes a generic constant, which does not depend on k (and later the
mesh sizes H and h), but may depend on k0 and may vary from line to line.

3. Homogenization and analysis of the homogenized equations. As the
parameter δ is assumed to be very small in comparison to the wavelength and the
typical length scale of Ω, one can reduce the complexity of problem (2.3) by considering
the limit δ → 0. This process, called homogenization, can be performed with the tool
of two-scale convergence [2, 39] for locally periodic problems. In subsection 3.1, we
adopt the two-scale equation from [2, section 4], derived for highly heterogeneous
diffusion problems with Dirichlet boundary condition, and the homogenized effective
macroscopic equation from [11] (with Sommerfeld radiation condition) to our setting.
Subsection 3.2 is devoted to a detailed analysis of the two-scale equation and its
homogenized formulation. Most importantly, this subsection includes a new stability
result for solutions to Helmholtz-type problems, generalizing results available in the
literature to a larger class of coefficients. We emphasize that this analysis is an
important building block and prerequisite for the numerical analysis in section 4.

3.1. Two-scale equation and homogenized formulation. Two-scale con-
vergence is a special form of convergence for locally periodic functions, which tries
to capture oscillations and lies between weak and strong (norm) convergence. Its

definition and main properties can be found in [2] or [39], for instance. We write
2
⇀

for the two-scale convergence in short form.
The special scaling of aδ with δ2 on a part of Ω leads to a different behavior of the

solution on Dδ and its complement, which can still be seen in the two-scale equation
and the homogenized (effective) equation.

Theorem 3.1 (two-scale equation). Let uδ be the weak solution to (2.3). There
are functions u ∈ H1(G), u1 ∈ L2(Ω;H1

],0(Y ∗)), and u2 ∈ L2(Ω;H1
0 (D)]) such that

we have the following two-scale convergences for δ → 0:

uδ
2
⇀ u(x) + χD(y)u2(x, y), χΩ\Dδ∇uδ

2
⇀ χY ∗(y)(∇u(x) +∇yu1(x, y)),

δχDδ∇uδ
2
⇀ χD(y)∇yu2(x, y), ∇uδ

2
⇀ ∇u in G \ Ω.
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Here, the two-scale triple u := (u, u1, u2) is the unique solution of

B((u, u1, u2), (ψ,ψ1, ψ2)) =

∫
∂G

gψ∗ dσ,

∀ψ := (ψ,ψ1, ψ2) ∈ H1(G)× L2
(
Ω;H1

],0(Y ∗)
)
× L2

(
Ω;H1

0 (D)]
)

(3.1)

with the two-scale sesquilinear form B defined by

B(v,ψ)

:=

∫
Ω

∫
Y ∗
ε−1
e (∇v +∇yv1) · (∇ψ∗ +∇yψ∗1) dydx+

∫
Ω

∫
D

ε−1
i ∇yv2 · ∇yψ∗2 dydx

− k2

∫
G

∫
Y

(v + χDv2)(ψ∗ + χDψ
∗
2) dydx+

∫
G\Ω
∇v · ∇ψ∗ dx− ik

∫
∂G

vψ∗ dσ.

The proof mainly follows the lines of [11] with the application of the two-scale
convergences proved in [2, section 4] for a highly heterogeneous diffusion problem.
Note that u1 and u2 are zero outside Ω so that we have uδ⇀u in H1(G \Ω). We re-
mark that the two-scale equation for a problem with highly heterogeneous coefficients
includes two correctors and especially a corrector in the identity part—in contrast to
the classical elliptic case; see [2, 39].

The two-scale equation can be recast into a homogenized macroscopic equation
which involves effective parameters computed from cell problems, as given in the next
theorem.

Theorem 3.2 (homogenized macroscopic equation). (u, u1, u2) solves the two-

scale equation (3.1) if and only if we set u1(x, y) =
∑2
j=1

∂u
∂xi
|Ω(x)wj(y), u2(x, y) =

k2u|Ω(x)w(y), and u ∈ H1(G) solves

(3.2) Beff(u, ψ) =

∫
∂G

gψ∗ dσ ∀ψ ∈ H1(G)

with the effective sesquilinear form

(3.3) Beff(v, ψ) :=

∫
G

aeff∇v · ∇ψ∗ − k2µeffvψ
∗ dx− ik

∫
∂G

vψ∗ dσ.

Here, the effective parameters are defined as

(aeff(x))jk :=

{∫
Y ∗ ε

−1
e (ej +∇ywj) · (ek +∇yw∗k) dy if x ∈ Ω,

Idjk if x ∈ G \ Ω,

and µeff(x) :=

{∫
Y

1 + k2wχD dy if x ∈ Ω,

1 if x ∈ G \ Ω,

where wj and w are solutions to the following cell problems. wj ∈ H1
],0(Y ∗), j = 1, 2,

solves

(3.4)

∫
Y ∗
ε−1
e (ej +∇ywj) · ∇yψ∗1 dy = 0 ∀ψ1 ∈ H1

],0(Y ∗)

and w ∈ H1
0 (D)] solves

(3.5)

∫
D

ε−1
i ∇yw · ∇yψ

∗
2 − k2wψ∗2 dy =

∫
D

ψ∗2 dy ∀ψ2 ∈ H1
0 (D)].
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The presentation is oriented at the results for diffusion problems in [2], which can
be seen most prominently in the form of the effective permeability µeff . We prove
that it is perfectly equivalent to the representation chosen in [11]; see Proposition 3.5.

The foregoing theorem means that in the limit δ → 0, the scatterer Ω can be
described as a homogeneous material with the (effective) parameters aeff (inverse per-
mittivity) and µeff . Whereas aeff is a positive definite matrix (see Proposition 3.5),
the effective permeability µeff exhibits some astonishing properties: First of all, its
occurrence itself is surprising as the scatterer is nonmagnetic. This is the already dis-
cussed effect of artificial magnetism. Second, the permeability is frequency dependent
and its real part can have positive and negative signs. In the frequency region with
Re(µeff) < 0 waves cannot propagate leading to photonic band gaps; see [11]. This
effect is also studied numerically in detail in section 7.

We end with two observations on the two-scale equation, which are useful for
the analysis later on. We introduce the “two-scale energy norm” on H := H1(G) ×
L2(Ω;H1

],0(Y ∗))× L2(Ω;H1
0 (D)]) as

‖(v, v1, v2)‖2e := ‖∇v +∇yv1‖2G×Y ∗ + ‖∇yv2‖2Ω×D + k2‖v + χDv2‖2G×Y .(3.6)

In contrast to other homogenization settings, ∇v and ∇yv1 as well as v and χDv2 are
no longer orthogonal. Still, the two-scale energy norm is equivalent to the natural
norm of H, which is the statement of the next lemma.

Lemma 3.3. The two-scale energy norm is equivalent to the natural norm of H

‖(v, v1, v2)‖2H := ‖v‖2H1(G) + ‖v1‖2L2(Ω;H1(Y ∗)) + ‖v2‖2L2(Ω;H1(D)).

Furthermore, the two-scale energy norm is equivalent to the k-dependent norm

‖(v, v1, v2)‖2k,H := ‖v‖21,k,G + ‖v1‖2L2(Ω;H1(Y ∗)) + ‖v2‖2L2(Ω;1,k,D),

where the equivalence constants do not depend on k and we have abbreviated

‖v2‖2L2(Ω;1,k,D) := ‖∇yv2‖2L2(Ω;L2(D)) + k2‖v2‖2L2(Ω;L2(D)).

Proof. The essential ingredient is a sharpened Cauchy–Schwarz inequality for the
nonorthogonal terms∣∣∣∣∫

G

∫
Y ∗
∇v · ∇yv1 dydx

∣∣∣∣ ≤ ‖∇v‖L2(G×Y ∗)‖∇yv1‖L2(G×Y ∗)

= |Y ∗|1/2‖∇v‖L2(G)‖∇yv1‖L2(Ω×Y ∗)

and

∣∣∣∣∫
G

∫
Y

vχDv2 dydx

∣∣∣∣ ≤ ‖v‖L2(G×D)‖v2‖L2(G×D) = |D|1/2‖v‖L2(G)‖v2‖L2(Ω;L2(D)),

where |Y ∗|, |D| < 1.

Lemma 3.4. There exist constants CB > 0 and Cmin := min{1, ε−1
e ,Re(ε−1

i )} > 0
depending only on the parameters and the geometry, such that B is continuous with
constant CB and fulfills a G̊arding inequality with constant Cmin, i.e.,

|B(v,ψ)| ≤ CB‖v‖e‖ψ‖e and ReB(v,v) + 2k2‖v + χDv2‖2G×Y ≥ Cmin‖v‖2e

for all v := (v, v1, v2),ψ := (ψ,ψ1, ψ2) ∈ H.

Proof. The G̊arding inequality is obvious from the definition of B in Theorem 3.1.
The continuity of B follows from the multiplicative trace inequality as in [41].
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3.2. Stability and regularity. In this section, we derive stability and regularity
results for the two-scale equation and its homogenized formulation. To achieve that
goal, we analyze the cell problems and the macroscopic equation separately. Although
the homogenized macroscopic equation is of Helmholtz-type, the unusual effective
parameters introduce new aspects and challenges in the stability analysis.

Proposition 3.5. The effective parameters in Ω have the following properties:
1. aeff is a real-valued, symmetric, uniformly elliptic matrix.
2. µeff is a complex scalar with the upper bound on the absolute value

(3.7) |µeff | ≤ Cµ with Cµ = C(εi, D, Y, k0).

3. µeff can be equivalently written as

µeff = 1 +
∑
n∈N

k2εi
λn − k2εi

(∫
D

φn dx

)2

,

where (λn, φn) are the eigenvalues and eigenfunctions of the Laplace operator
on D with Dirichlet boundary conditions.

4. It holds that

(3.8) Im(µeff) ≥ C(εi, D, Y )/k2 > 0.

The proof is postponed to subsection 6.1. The upper and lower bound on µeff can
only be obtained for Im(εi) > 0. If we have an ideal lossless material (i.e., Im(εi) = 0),
µeff is unbounded; see [11]. As discussed above, the foregoing proposition shows that
our µeff agrees with the one presented in [11]. However, we stress two advantages of
our choice: First, it still holds for complex, but nonconstant parameters εi. Second, it
only involves the solution of one cell problem rather than determining all eigenvalues
and eigenfunctions of the Dirichlet Laplacian, which is very useful for the numerical
implementation. The lower bound on Im(µeff) might be improved using sophisticated
methods for estimating eigenvalues and averages of eigenfunctions of the Dirichlet
Laplacian. We emphasize that our numerical experiment from section 7 does not
show this severe k-dependence of the lower bound.

For the properties of the effective parameters, the cell problems have already
been implicitly analyzed. Hence, results on the two-scale corrections u1 and u2 follow
immediately.

Proposition 3.6. There are Cstab,1, Cstab,2 > 0 depending only on ε−1
i , ε−1

e , D,
Y ∗, and k0, such that the correctors u1 and u2 satisfy

‖u1‖L2(Ω;H1(Y ∗)) ≤ Cstab,1‖∇u‖G and ‖u2‖L2(Ω;1,k,D) ≤ Cstab,2‖u‖1,k,G

with the notation ‖ · ‖L2(Ω;1,k,D) explained in Lemma 3.3.

All elements of the two-scale solution triple admit higher regularity depending on
the geometry.

Proposition 3.7. Let g ∈ H1/2(∂G). There are regularity coefficients s(Ω, G),
s(Y ∗), and s(D) with s(·) ∈ ( 1

2 , 1] such that
1. for all 0 < s < s(D), u2 ∈ L2(Ω;H1+s(D)) with ‖u2‖L2(Ω;H1+s(D)) ≤
Creg,2 k‖u‖1,k,Ω;

2. for all 0 < s < s(Y ∗), u1 ∈ L2(Ω;H1+s(Y ∗)) with ‖u1‖L2(Ω;H1+s(Y ∗)) ≤
Creg,1 ‖∇u‖Ω;
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3. for all 0 < s < s(Ω, G), u ∈ H1+s
pw (G) (see (2.1)) with

‖u‖H1+s
pw (G) ≤ C(k‖u‖1,k,G + ‖f‖G + ‖g‖H1/2(∂G)).(3.9)

Proof. The assertion follows from classical regularity theory for elliptic and inter-
face problems; see [50]. We also refer to regularity results for the standard Helmholtz
equation as in [41], for instance.

With a C2 boundary of D (and then also Y ∗), we obtain s(D) = s(Y ∗) = 1.
For the numerical treatment, D is approximated by a polygonally bounded Lipschitz
domain. As also ∂Ω is of class C2 and G is convex, we have s(Ω, G) = 1. The interface
∂Ω is also approximated by a piecewise polygonal interface in practical numerical
schemes. In general, the maximal regularity of the problems posed on a polygonal
Lipschitz domain depends on the domain’s maximal interior angle; see [50]. We give
the regularity results in their general form as polygonal (nonconvex) domains have to
be considered in the process of boundary approximation in sections 4 and 5.

Looking at estimate (3.9), we note that we need an estimate for ‖u‖1,k,G in
terms of the data. From Fredholm theory we have a stability estimate of the form
‖u‖1,k,G ≤ C(k)‖g‖∂G, but the dependence of the constant on the wavenumber k is
unknown. We therefore make the following assumption of polynomial stability.

Assumption 3.8. Assume that there is q ∈ N0 and Cstab,0 > 0 such that the
solution u to (3.2) with additional right-hand side f ∈ L2(G) fulfills

‖u‖1,k,G ≤ Cstab,0 k
q(‖f‖G + ‖g‖H1/2(∂G)).

Polynomial stability is not trivial: There are so called trapping domains leading
to exponential growth of the stability estimate in k; see [8]. In our setting, we can
prove the assumption with q = 3 under some (mild) additional assumptions. More
explicitly speaking, we have the following theorem, which is proved in subsection 6.2.

Theorem 3.9 (stability). Assume that there is γ > 0 such that

x · nG ≥ γ on ∂G, x · nΩ ≥ 0 on ∂Ω,(3.10)

where n denotes the outer normal of the domain specified in the subscript. Further-
more assume that aeff |G\Ω − aeff |Ω is negative semidefinite. Let u be the solution to

(3.2) with additional volume term
∫
G
fφ∗ dx on the right-hand side for f ∈ L2(G).

Then there is Cstab,0 only depending on the geometry, the parameters, and k0, such
that u satisfies the stability estimate

‖u‖1,k,G ≤ Cstab,0

(
k3‖f‖G\Ω + k2‖f‖Ω + k3/2‖g‖∂G + k−1‖g‖H1/2(∂G)

)
.

The geometrical assumption (3.10) is the common assumption for scattering prob-
lems; see [24, 33, 43]. It can, for example, be fulfilled if Ω is convex (and without
loss of generality (w.l.o.g.) 0 ∈ Ω) and G is chosen appropriately. The assumption
on aeff in fact is an assumption on εe and can be fulfilled for appropriate choices of
material inside and outside the scatterer. Analytically, this assumption can be traced
back to the assumption that “Da · x is negative semidefinite” for Lipschitz contin-
uous a in Proposition 6.1. In order to obtain that proposition, a weaker condition
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on the Lipschitz constant of a would be sufficient, but then the constant in the sta-
bility estimate would depend on the Lipschitz constant of a, which blows up in the
approximation of aeff . We emphasize that a similar condition on the derivative of the
diffusion coefficient and/or its Lipschitz constant has also been imposed in the scalar
case in [14].

In the literature, most stability results for Helmholtz problems have been obtained
in the case of constant coefficients; see, e.g., [5, 24, 33, 41, 42, 43]. Only recently scalar
valued, Lipschitz continuous real-valued heterogeneous coefficients have been studied
in [14]. All these works have obtained the stability estimate with q = 0 under the same
geometry assumption (3.10) as here. Our setting exhibits three new challenges for the
stability analysis: a discontinuous, namely, piecewise constant, diffusion coefficient,
a partly complex parameter µ, and the fact that the diffusion coefficient a is matrix
valued. The second aspect introduces the worse dependence on k in the stability
estimate, as explained after Proposition 6.1. There, we also discuss how the lower
bound on the imaginary part of µ influences the stability estimate.

Under the assumption of polynomial stability, the (final) stability and regularity
estimates for the two-scale equation are deduced. A bound on the inf-sup-constant of
the corresponding sesquilinear form is obtained similarly to [33, 41, 49].

Proposition 3.10. If Assumption 3.8 is satisfied, the following hold:
1. The two-scale solution satisfies

‖(u, u1, u2)‖e ≤ Cstab,e k
q(‖f‖G + ‖g‖H1/2(∂G))

for Cstab,e := Cstab,0(1 + Cstab,1 + Cstab,2).
2. The regularity estimate for u is

‖u‖H1+s
pw (G) ≤ Creg,0 k

q+1(‖f‖G + ‖g‖H1/2(∂G)).

3. The inf-sup-constants of Beff and B can be bounded below as follows:

inf
v∈H1(G)

sup
ψ∈H1(G)

ReBeff(v, ψ)

‖v‖H1(G)‖ψ‖H1(G)
≥ Cinf,effk

−(q+1),(3.11)

inf
v∈H

sup
ψ∈H

ReB(v,ψ)

‖v‖e‖ψ‖e
≥ Cinf,ek

−(q+1)(3.12)

with Cinf,eff := min{α,Cµ}(k−(q+1)
0 + Cstab,0)−1, where α denotes the ellip-

ticity constant of aeff , and Cinf,e := min{Cmin, 1}(k−(q+1)
0 + Cstab,e)

−1.

4. The HMM. As explained in the introduction, a direct discretization of the
heterogeneous problem (2.3) is infeasible due to the necessary small grid mesh width
resolving all inclusions. The idea of the HMM is to imitate the homogenization process
and to thereby provide a method based on grids independent of the finescale parameter
δ. In this paper, we introduce the HMM as a direct discretization of the two-scale
equation (3.1); see [46] for the original idea for elliptic diffusion problems. This point
of view is vital for the numerical analysis in section 5 since ideas and procedures
developed for “normal” Helmholtz problems can be easily transferred. However, we
will also shortly explain below how this direct discretization can be decoupled into
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macroscopic and microscopic computations in the fashion of the HMM as originally
presented in [20, 21].

In this and the next section, we assume that D and Ω are polygonally bounded
(in contrast to the C2 boundaries in the analytic sections). The reason is that the
C2 boundaries can be approximated by a series of more and better fitting polygo-
nal boundaries. This procedure of boundary approximation results in nonconforming
methods, i.e., the discrete function spaces are no subspaces of the analytic ones. We
avoid this difficulty in our numerical analysis by assuming polygonally bounded do-
mains by now. The new assumption reduces the possible higher regularity of solutions
as discussed in subsection 3.2. However, we can always obtain the maximal regularity
in the limit of polygonal approximation of C2 boundaries, which we have in mind as
an application case.

Denote by TH = {Tj |j ∈ J} and Th = {Sk|k ∈ I} conforming and shape regular
triangulations of G and Y , respectively. Additionally, we assume that TH resolves
the partition into Ω and G \ Ω and that Th resolves the partition of Y into D and
Y ∗ and is periodic in the sense that it can be wrapped to a regular triangulation of
the torus (without hanging nodes). By Th(Y ∗) and Th(D), we denote the parts of
the triangulation Th belonging to Y ∗ and D, respectively. We define the local mesh
sizes Hj := diam(Tj) and hk := diam(Sk) and the global mesh sizes H := maxj∈J Hj

and h := maxk∈I hk. Finally, the discrete function spaces V 1
H ⊂ H1(G), Ṽ 1

h (Y ∗) ⊂
H1
],0(Y ∗), and V 1

h (D) ⊂ H1
0 (D)] are defined as

V 1
H :=

{
vH ∈ H1(G)|vH |T ∈ P1 ∀T ∈ TH

}
,

Ṽ 1
h (Y ∗) :=

{
vh ∈ H1

],0(Y ∗)|vh|S ∈ P1 ∀S ∈ Th(Y ∗)
}
,

V 1
h (D) :=

{
vh ∈ H1

0 (D)]|vh|S ∈ P1 ∀S ∈ Th(D)
}
,

where P1 are the linear polynomials. In other words, we use standard linear finite
element spaces (with obvious adaptations to the boundary conditions) to discretize
the function spaces H1(G), H1

],0(Y ∗), and H1
0 (G).

Definition 4.1. The discrete two-scale solution

(uH , uh,1, uh,2) ∈ V 1
H × L2

(
Ω; Ṽ 1

h (Y ∗)
)
× L2

(
Ω;V 1

h (D)
)

is defined as the solution of

B((uH , uh,1, uh,2), (ψH , ψh,1, ψh,2)) =

∫
∂G

g ψ∗H dσ(4.1)

∀(ψH , ψh,1, ψh,2) ∈ V 1
H × L2

(
Ω; Ṽ 1

h (Y ∗)
)
× L2

(
Ω;V 1

h (D)
)

with the two-scale sesquilinear form B defined in Theorem 3.1.

In order to evaluate the integrals over G in B, one introduces quadrature rules,
which are exact for the given ansatz and test spaces. In our case of piecewise linear
functions, it suffices to choose the one-point rule {|Tj |, xj} with the barycenter xj for

the gradient part and a second order quadrature rule Q
(2)
j := {ql, xl}l with l = 1, 2, 3

on each triangle Tj for the identity part. As a consequence, the functions uh,1 and uh,2
will also be discretized with respect to the macroscopic variable x: In fact, one has
uh,1 ∈ S0

H(Ω; Ṽ 1
h (Y ∗)) and uh,2 ∈ S1

H(Ω;V 1
h (D)). Here, the space of discontinuous,
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piecewise p-polynomial (w.r.t. x) discrete functions is defined as

SpH(Ω;Xh) :=
{
vh ∈ L2(Ω;X)| vh(·, y)|Tj ∈ Pp ∀j ∈ J, y ∈ Y ; vh(x, ·) ∈ Xh ∀x ∈ Ω

}
for any conforming finite element space Xh ⊂ X. In other words, a discrete function
in SpH(Ω;Xh) is a (discontinuous) piecewise p-polynomial with respect to the first
variable x and belongs to the discrete space Xh in the second variable. We have
Xh = Ṽ 1

h (Y ∗) and p = 0 for uh,1 and Xh = V 1
h (D) and p = 1 for uh,2. Note that uh,2

is a piecewise x-linear discrete function, since Q(2) consists of 3 quadrature points on
each triangle.

The functions uh,1 and uh,2 are the discrete counterparts of the analytical cor-
rectors u1 and u2. They are correctors to the macroscopic discrete function uH and
solve discretized cell problems. These cell problems, posed in the unit square Y , can
be transferred back to δ-scaled and shifted unit squares Y δj = xj + δY , where xj is a
macroscopic quadrature point. This finally gives an equivalent formulation of (4.1) in
the form of a (traditional) HMM. The formulation using a macroscopic sesquilinear
form with local cell reconstructions is used in practical implementations. We empha-
size that the presented HMM also works for locally periodic ε−1 depending on x and
y. The HMM and its interpretation as a discretization of a fully coupled two-scale
equation can even be applied to nonperiodic problems, as demonstrated in [31].

5. Quasi-optimality of the HMM. Based on the definition of the HMM in
Definition 4.1, we analyze its quasi-optimality in Theorem 5.1. This quasi-optimality
is a kind of Céa lemma for indefinite sesquilinear forms and directly leads to a priori
estimates.

All estimates will be derived in the two-scale energy norm (3.6). Let us further-
more define the error terms e0 := u−uH , e1 := u1−uh,1, and e2 := u2−uh,2. We will
only estimate these errors and leave the modeling error uδ − (uH + uh,2(·, ·δ ) +
δuh,1(·, ·δ )), introduced by homogenization, apart. Unfortunately, there is no esti-
mate in δ available in the literature for this modeling error. Recall the abbreviation
H := H1(G) × L2(Ω;H1

],0(Y ∗)) × L2(Ω;H1
0 (D)]). In a similar short form we write

VH,h := V 1
H × L2(Ω; Ṽ 1

h (Y ∗))× L2(Ω;V 1
h (D)).

We recall that the finite element function space VH,h has the following approx-
imation property: There is Cappr such that for all 1

2 < s ≤ 1 and given (v, v1, v2) ∈
H1+s
pw (G)× L2(Ω;H1+s(Y ∗))× L2(Ω;H1+s(D)) it holds

(5.1)

(‖v − vH‖G +H‖∇(v − vH)‖G) ≤ CapprH
1+s|v|H1+s

pw (G),

(‖v1 − vh,1‖Ω×Y ∗ + h‖∇y(v1 − vh,1)‖Ω×Y ∗) ≤ Capprh
1+s|v1|L2(Ω;H1+s(Y ∗)),

(‖v2 − vh,2‖Ω×D + h‖∇y(v2 − vh,2)‖Ω×D) ≤ Capprh
1+s|v2|L2(Ω;H1+s(D))

for all vH,h := (vH , vh,1, vh,2) ∈ VH,h. The space H1+s
pw (G) is defined in (2.1). Note

that the regularity coefficient s does not necessarily have to be the same in all three
estimates.

In the h-version of the finite element method we consider in this paper, the meshes
TH and Th are refined (thus decreasing H and h) in order to obtain a better approxi-
mation. Hence, we introduce constants Hmax > 0 and hmax > 0 such that H ≤ Hmax

and h ≤ hmax for all considered grids.

Theorem 5.1 (discrete inf-sup-stability and quasi-optimality). Let Assump-
tion 3.8 be satisfied and let s(Ω, G), s(Y ∗), and s(D) be the (higher) regularity expo-
nents from Proposition 3.7. Fix (s0, s1, s2) with 0 < s0 < s(Ω, G), 0 < s1 < s(Y ∗),
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0 < s2 < s(D). If the wavenumber k and the mesh widths H, h are coupled by

(5.2)

kq+2Hs0 ≤ − kq+1
0

2H1−s0
max

+

√√√√ kq+1
0

H1−s0
max

(
Cmin

12CBCapprCreg,0
+

kq+1
0

4H1−s0
max

)
,

kq+1hs1 ≤ Cmin

12CBCapprCreg,1Cstab,e
,

kq+2hs2 ≤ − kq+1
0

2h1−s2
max

+

√√√√ kq+1
0

h1−s2
max

(
Cmin

12CBCapprCreg,2Cstab,e
+

kq+1
0

4h1−s2
max

)
,

then

(5.3) inf
vH,h∈VH,h

sup
ψH,h∈VH,h

ReB(vH,h,ψH,h)

‖vH,h‖e ‖ψH,h‖e
≥ CHMM

kq+1

with CHMM := Cmin

2 (k
−(q+1)
0 (1+ Cmin

2CB
)+Cstab,e)

−1 and the error between the two-scale
solution and the HMM-approximation satisfies
(5.4)

‖(e0, e1, e2)‖e ≤
2CB
Cmin

inf
vH∈VH,h

‖u−vH‖e ≤ C
(
(Hs0 + hs2)kq+1 + kqhs1

)
‖g‖H1/2(∂G).

The proof is postponed to subsection 6.3.

Corollary 5.2. Under the maximal possible regularity s0 = s1 = s2 = 1 as
discussed in subsection 3.2, the energy error converges with rate kq+1(H + h) under
the resolution assumption that kq+2(H + h) is sufficiently small.

Dual problems can be used to estimate ‖(e0, e1, e2)‖L2 by

C(kq+1(Hs0 + hs2) + kqhs1)‖(e0, e1, e2)‖e

as in the the proof of Theorem 5.1. This is the classical Aubin–Nitsche argument to
obtain higher convergence rates in the L2-norm; for details see [25, 42] for classical
Helmholtz problems.

As has already been remarked in [32, 46], the definition of the HMM as a direct
discretization of the two-scale equation (see (4.1)), is the crucial starting point for
all kinds of error estimates and, in particular, enables us to derive a posteriori error
estimates. This can also be achieved for the setting considered here by adapting a
posteriori error estimates for Helmholtz problems obtained e.g., in [19, 37] to the
two-scale equation.

Under the regularity estimate from Assumption 3.8, the resolution condition (5.2)
is optimal/unavoidable for standard finite element methods and the multiscale setting:
As the second cell problem depends on k, it is natural that h enters the condition
(5.2). We emphasize that h denotes the mesh width of the unit square mesh and is
thus not coupled to δ in any way. Assuming now q = 0, as is the case for classical
Helmholtz problems, we regain the usual condition “k2(H + h) sufficiently small”;
cf., e.g., [24, 33, 36, 41, 42]; see also the early abstract discussion in [52]. This is
also the resolution condition we experience in our numerical experiments in section 7.
Our explicit stability estimate in Theorem 3.9 yields q = 3 and thus, the resolution
condition “k5(H+h) small”. This is a kind of “worst case” resolution condition: It is
certainly sufficient for the quasi-optimality and a priori error result presented above,
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but can well (as the numerical example indicates) be suboptimal. We emphasize
that this gap between the optimal and worst case resolution condition is no defect
of the numerical method, but can be closed if better stability results in the spirit of
Theorem 3.9 are proved, which is outside the scope of our work.

As also supported by our numerical experiment, the HMM is much more efficient
than a direct discretization of the heterogeneous Helmholtz problem (2.3). In order to
get an accurate solution, one needs a grid with mesh size href satisfying href < δ � 1
from the multiscale point of view. On top of that, at least k2href < C has to be
satisfied to rule out preasymptotic effects. Note that the heterogeneous problem does
not fulfill the assumptions for any available stability estimate, so that the resolution
condition may even be worse.

Although the so-called pollution effect is not avoidable for the classical Helmholtz
equation in dimension d ≥ 2 as shown in [4], much work in its reduction has been
invested: Examples of the proposed methods are the hp-version of the finite element
method [24, 42], (hybridizable) discontinuous Galerkin methods [16, 30], or plane wave
Trefftz methods [35, 34, 48], just to name a few. Recently, it has been shown that the
resolution condition can be relaxed to the natural assumption kh sufficiently small by
applying a localized orthogonal decomposition (LOD) to the Hemholtz equation; see
[14, 27, 49]. The function space is decomposed into a coarse space, where the solution
is sought, and a remainder space. The coarse space is spanned by pre-computable
basis functions with local support, which include some information from the remainder
space by the solution of localized correction problems. The definition of the HMM as a
direct discretization of the two-scale equation makes it possible to apply an additional
LOD; see [47].

6. Main proofs. In this section the essential proofs of the properties of the ef-
fective parameters occurring in homogenization, the stability of the effective equation,
and the quasi-optimality of the HMM will be given.

6.1. Proof of the properties of the effective parameters. In this section
we show the upper and lower bounds for the effective permeability µeff . We also show
the equivalence of the two formulations of µeff obtained from Allaire [2] and Bouchitté,
Bourel, and Felbacq [10], respectively.

Proof of Proposition 3.5. The characterization of aeff is well known and follows
from the ellipticity of the corresponding cell problem (3.4); see [2] for similar cell
problems.

Cell problem (3.5) is (uniformly) coercive because of Im(ε−1
i ) < 0. The Lax–

Milgram–Babuška theorem [3] now implies the unique solvability of the cell problem
for w with the stability estimate

‖w‖1,k,D ≤ C(εi, k0, D)/k.

Combination with the representation of µeff directly yields (3.7).
It is well known that the eigenfunctions of the Laplace operator on D with Dirich-

let boundary conditions form an orthonormal basis of L2(D). The eigenvalues λn are
sorted as a positive, increasing sequence of real numbers. We have the representation
1 =

∑
n(
∫
D
φn)φn. Writing w =

∑
n αnφn and inserting this into (3.5), gives after a

comparison of coefficients

w =
∑
n

(
εi

λn − k2εi

∫
D

φn

)
φn and, hence, µeff = 1 +

∑
n

k2εi
λn − k2εi

(∫
D

φn

)2

;
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see [11]. A similar computation for the full three-dimensional case is given in [38,
Appendix A]. Now we can deduce because of the positivity of Im(εi) and of the
eigenvalues that

Im(µeff) =
∑
n

k2λn Im(εi)

|λn − k2εi|2

(∫
D

φn

)2

≥ k2λ0 Im(εi)

|λ0 − k2εi|2

(∫
D

φ0

)2

.

The first eigenfunction of the Dirichlet Laplacian is zero free, thus (
∫
D
φ0)2 > 0. As

we consider the high-frequency case, we can w.l.o.g. assume λ0 ≤ k2|εi| and then
obtain |λ0 − k2εi|2 ≤ 2k4|εi|2. This finally gives

Im(µeff) ≥ k2λ0 Im(εi)

2k4|εi|2

(∫
D

φ0

)2

≥ C(εi, D)

k2
> 0.

6.2. Polynomial stability of the Helmholtz equation with discontinuous
coefficients. In this section, we give a detailed proof of Theorem 3.9. We consider
a Lipschitz continuous, matrix-valued diffusion coefficient a with the partly complex-
valued µ first. Then the discontinuity in aeff is treated by a smoothing/approximation
procedure. A direct application of the Rellich–Morawetz identities (see, e.g., [43,
section 2] and the references therein) is not possible due to jumps in the gradient of
the solution over the interface. Throughout this subsection, we use the notation a . b
for a ≤ Cb with a constant C independent of k, η, and c0.

Proposition 6.1. Let Ω and G satisfy (3.10). Let u be the unique solution to

B(u, ψ) = (f, ψ)G + (g, ψ)∂G

for f ∈ L2(G) and g ∈ L2(∂G), where B is the sesquilinear form of (3.3) with aeff

replaced by a and µeff replaced by µ fulfilling the assumptions
• a ∈W 1,∞(G,R2×2) is symmetric, bounded, and uniformly elliptic;
• the matrix Da · x with (Da · x)ij :=

∑
k xk ∂kaij is negative semidefinite;

• µ ∈ L∞(G;C) is piecewise constant, namely, µ = µ2 ∈ R+ in G \ Ω and
µ = µ1 ∈ C in Ω with Im(µ1) > c0 > 0.

Then the following stability estimate holds,

‖u‖1,k,G . k1/2
(
c
−1/2
0 + 1

)
‖g‖∂G + ‖f‖G +

(
c
−1/2
0 + c−1

0

)
‖f‖Ω

+
1

k

(
1 + c

−1/2
0 + c−1

0

)
‖f‖G +

k

c0
‖f‖G\Ω,

where the constants depend on the geometry, the upper bounds on µ and a, the ellip-
ticity constant of a, and on k0; but not on the Lipschitz constant of a or any other
constant involving the derivative of a.

Proof. First step: With ψ = u and considering the imaginary part, we obtain
with Hölder’s and Young’s inequalities

k2c0‖u‖2Ω + k‖u‖2∂G .

(
1

k
‖g‖2∂G +

1

k2c0
‖f‖2Ω + ‖f‖G\Ω‖u‖G\Ω

)
.(6.1)

Second step: With ψ = u and considering the real part, we obtain due to the
boundedness of µ and the uniform ellipticity of a

‖∇u‖2G .

(
k2‖u‖2G +

1

2k2
‖f‖2G +

k2

2
‖u‖2G + ‖g‖∂G‖u‖∂G

)
.
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Inserting (6.1) yields

‖∇u‖2G .

(
k2‖u‖2

G\Ω +
1

k2

(
1 +

1

c20

)
‖f‖G +

1

k2c0
‖f‖2Ω +

1

k

(
1

c0
+ 1

)
‖g‖2∂G

)
.

(6.2)

Third step: It remains to estimate ‖u‖2
G\Ω. For this, we insert ψ = x · ∇u and

consider the real part. Note that x ·∇u is an admissible test function because we have
u ∈ H2(G) due to the convexity of G and the smoothness of a; see [28]. We moreover
use the identity ∂j(|w|2) = 2 Re(w∂jw

∗). For the first term of the sesquilinear form
we obtain

Re

∫
G

a∇u · ∇(x · ∇u∗) dx

= Re

∫
G

a∇u · ∇u∗ + a∇u ·
(
D2u∗

)
x dx

=

∫
G

a∇u · ∇u∗ +
1

2
∇(a∇u · ∇u∗) · x− 1

2
(Da · x)∇u · ∇u∗ dx

= −1

2

∫
G

(Da · x)∇u · ∇u∗ dx+
1

2

∫
∂G

a∇u · ∇u∗x · ndσ,

where in the last equality we integrated by parts. As Da · x is negative semidefinite
by the assumption, the first term is nonnegative.

For the second part of the sesquilinear form we obtain

Re

∫
G

k2µux · ∇u∗ dx

= Re

∫
Ω

k2µ1ux · ∇u∗ dx+
µ2

2

∫
G\Ω

k2x · ∇|u|2 dx

= Re

∫
Ω

k2µ1ux·∇u∗ dx+
µ2

2

∫
∂(G\Ω)

k2|u|2x·ndσ −
∫
G\Ω

k2µ2|u|2 dx.

So for the test function ψ = x · ∇u and the real part we deduce by combining the
foregoing calculations

1

2

∫
∂G

a∇u · ∇u∗x · ndσ +

∫
G\Ω

k2µ2|u|2 dx

≤ 1

2

∫
∂(G\Ω)

k2µ2|u|2x · ndσ + Re

(∫
Ω

k2µ1ux · ∇u∗ dx+

∫
∂G

ikux · ∇u∗ dσ
)

+ Re

(∫
G

fx · ∇u∗ dx+

∫
∂G

gx · ∇u∗ dσ
)
.

The assumption (3.10) on G and Ω implies that the first term on the right-hand side
can be bounded above by k2‖u‖2∂G. This yields after application of Hölder’s and
Young’s inequalities

k2‖u‖2
G\Ω .

(
k2‖u‖Ω‖∇u‖Ω + k2‖u‖2∂G + ‖g‖2∂G + ‖f‖G‖∇u‖G

)
.
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Inserting the estimates (6.1) and (6.2) into the estimate for k2‖u‖2
G\Ω gives

k2‖u‖2
G\Ω .

(
‖g‖2∂G +

1

kc0
‖f‖2Ω+ η1k

2‖u‖2
G\Ω +

1

η1
‖f‖2

G\Ω +
1

η2
‖f‖2G + η2k

2‖u‖2
G\Ω

+
η2

k2

(
1 + c−2

0

)
‖f‖2G +

η2

k2c0
‖f‖2Ω +

η2

k

(
1 + c−1

0

)
‖g‖2∂G +

k4

δ2
‖u‖2Ω

)
.

Choose η1, η2 independent of k such that k2‖u‖G\Ω can be hidden on the left-hand

side and insert once more (6.1) for the last term on the right-hand side to obtain

k2‖u‖2
G\Ω .

(
‖g‖2∂G + ‖f‖2G +

(
1

kc0
+

1

k2c0

)
‖f‖2Ω +

(
1

k2
+

1

k2c20

)
‖f‖2G

+

(
1

k
+

1

kc0

)
‖g‖2∂G +

k

c0
‖g‖2∂G +

1

c20
‖f‖2Ω

+ η3k
2‖u‖2

G\Ω +
k2

η3c20
‖f‖2

G\Ω

)
.

Choosing finally η3 appropriately gives the desired estimate for k2‖u‖2
G\Ω and com-

bination with (6.1) and (6.2) finishes the proof.

If c0 is independent from k, we obtain

‖u‖1,k,G .
(
‖f‖Ω + k‖f‖G\Ω + k1/2‖g‖∂G

)
.

On the other hand, if c0 > k−2 as in the case of µeff (see Proposition 3.5), we obtain

‖u‖1,k,G .
(
k2‖f‖Ω + k3‖f‖G\Ω + k3/2‖g‖∂G

)
.

The dependence of c0 on k contributes by a factor k for g and a factor k2 for f .
However, even without this critical dependence of c0 on k, the stability estimate is
worse than the classical versions by about a factor k for f and k1/2 for g. Looking
into the proof, one can see that this is due to the difficult term

∫
Ω
k2µux · ∇u.

The presented proof can also be transferred (with minor adaptations) to the case
where µ is a real constant and then yields the known stability of k0. So this also
contributes to the analysis of [14] by covering the case of matrix valued a.

Proof of Theorem 3.9. Because of the density of smooth functions in Lp for p ∈
[1,∞), for every η > 0 there exists aη ∈ C∞(G) such that ‖aη − a‖Lp ≤ η. Further-
more, aη can be chosen symmetric and uniformly elliptic with constants independent
of η. Because of the additional assumption on aeff and the geometric setting, the
assumption Daη ·x is negative semidefinite can also be fulfilled for all η small enough.

The solution uη to the Helmholtz problem with diffusion coefficient aη (and
sesquilinear form Bη) satisfies, according to the previous proposition,

‖uη‖1,k,G .
(
k3‖f‖G\Ω + k2‖f‖Ω + k3/2‖g‖∂G

)
.

u − uη satisfies Bη(u − uη, v) =
∫
G

(aη − a)∇u · ∇v∗ for all v ∈ H1(G). As the
inf-sup-constant of Bη is bounded below by k−4, this gives

‖u− uη‖1,k,G . k4‖(aη − a)∇u‖G.



402 MARIO OHLBERGER AND BARBARA VERFÜRTH

By the Hölder inequality, we have ‖(aη−a)∇u‖G . ‖aη−a‖Lp‖∇u‖Lq for all p, q
with 1/p + 1/q = 1/2. Now choose q such that Lq ⊂ Hs for some s ∈ (0, 1/2] (e.g.,
q = p = 4 or q = 8/3, p = 8). Because of ‖aη − a‖Lp ≤ η and the estimate for the
Hs-norm of u (see Proposition 3.7), we get

‖u− uη‖1,k,G . k4η(k‖u‖1,k,G + ‖f‖G + ‖g‖H1/2(∂G)).

Now choose η = O(k−5) small enough. By the triangle inequality we finally obtain

‖u‖1,k,G ≤ ‖u− uη‖1,k,G + ‖uη‖1,k,G

.
1

2
‖u‖1,k,G + k−1(‖f‖G + ‖g‖H1/2(∂G))

+
(
k3‖f‖G\Ω + k2‖f‖Ω + k3/2‖g‖∂G

)
,

which gives the claim.

6.3. Proof of the quasi-optimality of the HMM. In this section we give
the proof of our central result, namely, Theorem 5.1.

Proof of Theorem 5.1. Proof of the discrete inf-sup constant (5.3): Let vH,h :=
(vH , vh,1, vh,2) ∈ VH,h be given and let z := (z, z1, z2) ∈ H solve

B(ψ, z) = 2k2

∫
G

∫
Y

(ψ + χDψ2)(v∗H + χDv
∗
h,2) dydx ∀ψ := (ψ,ψ1, ψ2) ∈ H.

Due to the regularity of the cell problems (Proposition 3.7), Assumption 3.8 on the
stability, and the resulting estimates from Proposition 3.10 it holds that

‖z‖e ≤ 2Cstab,ek
q+1‖vH,h‖e,

‖z‖
H

1+s0
pw (G)

≤ 2Creg,0k
q+2‖vH,h‖e,

‖z1‖L2(Ω;H1+s1 (Y ∗)) ≤ Creg,1‖z‖e ≤ 2Creg,1Cstab,ek
q+1‖vH,h‖e,

‖z2‖L2(Ω;H1+s2 (D)) ≤ Creg,2k‖z‖e ≤ 2Creg,2Cstab,ek
q+2‖vH,h‖e.

(6.3)

Due to (5.1) we can choose zH,h := (zH , zh,1, zh,2) ∈ VH,h such that

‖z− zH,h‖e ≤ Cappr(H
s0(1 + kH)‖z‖

H
1+s0
pw (G)

+ hs1‖z1‖L2(Ω;H1+s1 (Y ∗))

+ hs2(1 + kh)‖z2‖L2(Ω;H1+s2 (D)))

(6.3)

≤ 2Cappr

(
Creg,0k

q+2Hs0(1 + kH) + Creg,1Cstab,ek
q+1hs1

+ Creg,2Cstab,ek
q+2hs2(1 + kh)

)
‖vH,h‖e.

(6.4)

With this zH,h we obtain

ReB(vH,h,vH,h + zH,h) = ReB(vH,h,vH,h + z− z + zH,h)

= ReB(vH,h,vH,h + z)− ReB(vH,h, z− zH,h)

≥ Cmin‖vH,h‖2e − CB‖vH,h‖e ‖z− zH,h‖e.
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Inserting (6.4), we obtain

ReB(vH,h,vH,h + zH,h)

≥ Cmin

(
1− 2CBCappr

Cmin
(Creg,0k

q+2Hs0(1 + kH) + Creg,2Cstab,ek
q+2hs2(1 + kh)

+ Creg,1Cstab,ek
q+1hs1)

)
‖vH,h‖2e.

Hence, under the resolution conditions (5.2), this gives ReB(vH,h,vH,h + zH,h) ≥
1
2Cmin‖vH,h‖2e. Finally, observing that

‖vH,h + zH,h‖e
≤ ‖vH,h‖e + ‖z‖e + ‖z− zH,h‖e
≤
(
1 + 2Cstab,ek

q+1 + 2Cappr(Creg,0k
q+2Hs0(1 + kH) + Creg,1Cstab,ek

q+1hs1

+ Creg,2Cstab,ek
q+2hs2(1 + kh))

)
‖vH,h‖e

(5.2)

≤
(

1 + 2Cstab,ek
q+1 +

Cmin

2CB

)
‖vH,h‖e

≤
(
k
−(q+1)
0

(
1 +

Cmin

2CB

)
+ 2Cstab,e

)
kq+1‖vH,h‖e

finishes the proof of the inf-sup condition.
Proof of the quasi-optimality (5.4): Consider the following (auxiliary) dual prob-

lem for z := (z, z1, z2) ∈ H,

B(ψ, z) = k2

∫
G

∫
Y

(ψ + χDψ2)(e∗0 + χDe
∗
2) dydx ∀ψ := (ψ,ψ1, ψ2) ∈ H.

As already argued in the proof of the discrete inf-sup constant, z ∈ H1+s0
pw (G) fulfills

the estimate ‖z‖
H

1+s0
pw

≤ Creg,0k
q+2‖(e0, e1, e2)‖e due to Proposition 3.10. For all

zH,h ∈ VH,h, the standard Galerkin orthogonality gives

k2‖e0 + χDe2‖2L2(G×Y ) = B(e, z) = B(e, z− zH,h).

The continuity of B w.r.t. the energy norm and an approximation argument like (6.4)
yield

k2‖e+ χDe2‖2L2(G×Y ) ≤ CB‖(e0, e1, e2)‖e ‖z− zH,h‖e
≤ CBCappr

(
Creg,0k

q+2Hs0(1 + kH) + Creg,1Cstab,ek
q+1hs1

+ Creg,2Cstab,ek
q+2hs2(1 + kh)

)
‖(e0, e1, e2)‖2e.

With the G̊arding inequality, we get for any zH,h ∈ VH,h

‖(e0, e1, e2)‖2e ≤ C−1
min

(
ReB(e, e) + 2k2‖e0 + χDe2‖2L2(G×Y )

)
= Re

(
B(e,u− zH,h) + 2k2‖e0 + χDe2‖2L2(G×Y )

)
≤ CB
Cmin

‖u− zH,h‖e ‖(e0, e1, e2)‖e

+
2CBCappr

Cmin

(
Creg,0k

q+2Hs0(1 + kH) + Creg,1Cstab,ek
q+1hs1

+ Creg,2Cstab,ek
q+2hs2(1 + kh)

)
‖(e0, e1, e2)‖2e.
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Fig. 2. Real and imaginary parts of µeff for changing wavenumber k.

Together with the resolution conditions (5.2) this gives

‖(e0, e1, e2)‖2e ≤
CB
Cmin

‖u− zH,h‖e‖(e0, e1, e2)‖+
1

2
‖(e0, e1, e2)‖2e

and, hence, the first inequality of (5.4). The second inequality directly follows from
the approximation properties (5.1) and the regularity estimates from Propositions 3.7
and 3.10.

7. Numerical experiment. In this section we analyze the HMM numerically
with particular respect to the convergence order (see Theorem 5.1), the resolution
condition (see (5.2)) and the behavior of solutions for different wavenumbers k and
different values of µeff . The implementation was done with the module dune-gdt [53]
of the DUNE software framework [6, 7].

We consider the macroscopic domain G = (0.25, 0.75)2 with embedded scatterer
Ω = (0.375, 0.625)2. The boundary condition g is computed as g = ∇uinc · n− ikuinc
from the (left-going) incoming plane wave uinc = exp(−ikx1). The unit square Y has
the inclusion D = (0.25, 0.75)2 and the inverse permittivities are given as ε−1

e = 10
and ε−1

i = 10 − 0.01i. Obviously, the real parts of both parameters are of the same
order and, moreover, εi is only slightly dissipative.

As the inclusion D is quadratic, the eigenvalues of the Dirichlet Laplacian are
explicitly known. Only the eigenvalues where the associated eigenfunctions have non-
zero mean contribute to the expansion of µeff . For our setup, the first interesting
values are at k ≈ 28.1 and k ≈ 62.8. We compute µeff using cell problem (3.5) with a
grid consisting of 32768 elements on D. Figure 2 shows the behavior of the real and
the imaginary part. As predicted, we can see a significant change of behavior around
the Laplace eigenvalues, where the real part changes sign and also the imaginary part
has large values. Note that for this example, we do not see a dependence of Im(µeff)
like k−2, as proved in Proposition 3.5.

In order to analyze the resolution condition, we use a reference homogenized
solution by computing the effective parameters with 524288 entities on Y and then
solving the effective homogenized equation on G with the same number of entities.
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Fig. 3. Error between homogenized reference solution and macroscopic part uH of the HMM
approximation in weighted H1-norm versus number of grid entities for different wavenumbers k.

Table 1
Convergence history and EOC for the error between the macroscopic part uH of the HMM

approximation and the reference homogenized solution in the L2-norm and k-weighted H1-norm.

H = 2h ‖e0‖L2(G) ‖e0‖1,k,G EOC(‖e0‖L2 ) EOC(‖e0‖1,k)
√

2× 1/8 0.270474 11.7804630632 — —
√

2× 1/12 0.197617 8.9454269415 0.7740374081 0.678973445
√

2× 1/16 0.110372 5.373206314 2.0247154456 1.7718088298
√

2× 1/24 0.0513966 2.9702496635 1.2792537865 1.4619724025
√

2× 1/32 0.0296714 2.0192725797 1.9097067775 1.3414415096
√

2× 1/48 0.0135056 1.2358350102 1.9411761676 1.2109315066
√

2× 1/64 0.00767201 0.8863106904 1.9658012347 1.1555624022

We compare the macroscopic part uH of our HMM approximation with this reference
solution in the weighted H1-norm ‖ · ‖1,k,G for a sequence of simultaneously refined
macro- and fine-scale meshes and three different wavenumbers k = 34, k = 48, k = 68;
see Figure 3. Note that these wavenumbers are all away from any resonant behavior
of µeff . For higher wavenumbers, finer meshes are needed to obtain convergence:
Whereas for k = 34, the error convergences for all considered grids, the threshold
value for k = 68 ≈

√
2× 34 is 288 entities; and for k = 68 = 2× 34, it is 1152 entities.

This indicates a resolution condition of k2(H+h) small in practice, which is standard
for continuous Galerkin discretizations of Helmholtz problems.

We now take a closer look at the convergence of the errors and verify the pre-
dictions of Theorem 5.1. We choose the wavenumber k = 29, which corresponds
to Re(µeff) < 0 and thus is also interesting from a physical point of view. Ta-
ble 1 shows the error between the macroscopic part uH of the HMM approxima-
tion and the reference homogenized solution (as before) in the k-weighted H1(G)-
norm and the L2(G)-norm. The experimental order of convergence (EOC), defined as
EOC(e) := ln(

eH1

eH2
)/ ln(H1

H2
), verifies the linear convergence in the H1-norm predicted

theoretically in Theorem 5.1, and the quadratic convergence in the L2-norm discussed
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Table 2
L2(G)-norm of the error to the reference heterogeneous solution for macroscopic part uH and

zeroth order reconstruction u0
HMM.

H = 2h ‖uδ − uH‖L2(G) ‖uδ − u0
HMM‖L2(G) EOC(uδ − u0

HMM)
√

2× 1/8 0.418463 0.565853 —
√

2× 1/16 0.351655 0.174724 1.695349522
√

2× 1/24 0.34595 0.0619639 2.5567073663
√

2× 1/32 0.346266 0.0340908 2.0770303799
√

2× 1/48 0.34733 0.0272449 0.5528495573
√

2× 1/64 0.347862 0.0297642 −0.3074226373

afterwards. Note that from the geometry one might expect a reduced regularity of
the analytical solution and therefore, a sublinear convergence of the H1-error. We
believe that the linear convergence observed in the experiment does not imply a sub-
optimality of the error bound in Theorem 5.1, but that in fact, the analytical solution
in this special case has full H2

pw(G) regularity, probably because of the boundary con-
dition. This clearly shows that our general theory holds for all regimes of wavenumbers
even if they result in unusual effective parameters. However, we observe a small pre-
asymptotic effect for coarse meshes, which indicates that the resolution condition may
be stricter for those resonant settings.

Furthermore, we compare the HMM approximation with a detailed reference
solution of the heterogeneous problem for δ = 1/32, solved on a fine grid with
524288 entities. Table 2 compares the error to the reference solution for the macro-
scopic part uH of the HMM approximation and to the zeroth order L2-approximation
u0

HMM = uH + uh,2(·, ·δ ). Whereas the error stagnates for uH , we almost recover the
quadratic convergence for u0

HMM with a saturation effect for fine meshes where we
enter the regime of the homogenization error. This clearly underlines the necessity
of the correctors in the HMM to faithfully approximate the true solution. Note that
we do not have results on the homogenization error: We expect strong convergence
of uδ to u0

HMM in the L2-norm according to [2], but the proof is not applicable to the
Helmholtz case.

Finally, we compare two wavenumbers with very different physical meaning:
k = 38 corresponds to normal transmission, whereas k = 29 has Re(µeff) < 0 and
thus corresponds to a wavenumber in the band gap where propagation inside the scat-
terer is forbidden. We consider the macroscopic part uH of the HMM approximation
(with H = 2h =

√
2 × 1/64) and the zeroth order reconstruction u0

HMM (plotted on
a well-resolved mesh with 524288 entities) and depict both functions on the whole
two-dimensional domain as well as over the line y = 0.545, which cuts through a
row of inclusions. For k = 38, wave propagation with low speed takes place inside
the scatterer; see the macroscopic part uH depicted in Figures 4(a) and 4(b). In
contrast to that, we see the expected exponential decay of the wave inside the scat-
terer for k = 29; see the macroscopic part uH depicted in Figures 5(a) and 5(b).
The zeroth order reconstruction u0

HMM can explain this behavior by approximating
the heterogeneous solution also inside the inclusion. For k = 38, the amplitudes
inside the inclusions are as high as the amplitude of the incoming wave; see Fig-
ures 4(c) and 4(d). However, we observe very high amplitudes inside the inclusions
for k = 29; see Figures 5(c) and 5(d). These are caused by eigen resonances incited
inside the inclusions. Moreover, these incited waves from neighboring inclusions in-
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(a) uH (b) line plot of uH

(c) u0
HMM (d) line plot of u0

HMM

Fig. 4. For k = 38: Real part of the macroscopic part uH and real part of zeroth order
reconstruction u0

HMM, both on the whole domain (left column) and over the line y = 0.545 (right

column). Computed with H = 2h =
√

2× 1/64; uH visualized on that grid, u0
HMM on fine reference

mesh.

terfere destructively with each other so that over the whole scatterer, no wave can
propagate.

Conclusion. We suggested a new HMM for the Helmholtz equation with high
contrast. The stability and regularity of the associated analytical two-scale solution
is rigorously analyzed and, thereby, a new stability estimate for Helmholtz equations
with piecewise constant coefficients is developed. The HMM is defined as direct finite
element discretization of the two-scale equation, which is crucial for the numerical
analysis. Quasi-optimality of the HMM under the (unavoidable) resolution condition
kq+2(H + h) is sufficiently small is proved, where q denotes the exponent for k in the
stability estimate. Numerical experiments verify the developed convergence results
and analyze the resolution condition. Moreover, the approximation to the heteroge-
neous solution, obtained from the HMM, explains the effect of evanescent waves in
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(a) uH (b) line plot of uH

(c) u0
HMM (d) line plot of u0

HMM

Fig. 5. For k = 29: Real part of the macroscopic part uH and real part of zeroth order
reconstruction u0

HMM, both on the whole domain (left column) and over the line y = 0.545 (right

column). Computed with H = 2h =
√

2× 1/64; uH visualized on that grid, u0
HMM on fine reference

mesh.

frequency band gaps as destructive interference of eigen resonant waves inside the
inclusions.

Acknowledgments. The authors would like to thank P. Henning, A. Lamacz,
and B. Schweizer for fruitful discussions on the subject. We also thank the anonymous
referees for their valuable remarks.

REFERENCES

[1] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Mul-
tiscale Model. Simul., 4 (2005), pp. 447–459, https://doi.org/10.1137/040607137.

[2] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992),
pp. 1482–1518, https://doi.org/10.1137/0523084.
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