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Abstract
In this thesis we introduce new numerical multiscale methods for problems arising from time-
harmonic Maxwell’s equations in heterogeneous media. These problems are used to model
electromagnetic wave propagation, for instance, in the context of photonic crystals. Such
materials can exhibit unusual optical properties, where we are in particular interested in
negative refraction. Although this phenomenon and its effects have been studied in a lot of
physical experiments, the mathematical understanding of this topic is still in its infancy.
As a first step, we consider elliptic problems with heterogeneous (rapidly varying) coeffi-

cients involving the double application of the curl as differential operator. The corresponding
solutions typically admit very low regularity and conventional numerical schemes have ar-
bitrarily bad convergence rates. For locally periodic problems, we suggest a Heterogeneous
Multiscale Method and prove a priori error estimates. Numerical experiments are given to
confirm the convergence rates and to validate the applicability of the method. In order to
cope with more general coefficients, we construct a generalized finite element method in the
spirit of the Localized Orthogonal Decomposition. The method decomposes the exact solu-
tion into a coarse-scale part (spanned by standard finite element functions) and a fine-scale
part. A stable corrector operator, which is quasi-local and thus can be computed efficiently,
allows to represent and extract necessary fine-scale features of the solution. We show that
this construction enjoys optimal approximation properties in energy and dual norms.
As the next and even more challenging step towards negative refraction, we consider (in-

definite) scattering problems with periodic high contrast coefficients. Here, periodically dis-
tributed inclusions are associated with a much smaller material coefficient (scaled like the
square of the periodicity length) than the rest of the scatterer. Homogenization results show
that the high contrast leads to unusual effective parameters in the homogenized equation. Con-
sequently, wave propagation inside the scatterer is physically forbidden for certain wavenum-
bers; this effect is called a band gap. In the analysis of the homogenized formulation, we
particularly prove new wavenumber-explicit stability estimates for solutions to the Helmholtz
and Maxwell equations. As numerical discretization scheme we propose a Heterogeneous
Multiscale Method, for which we show inf-sup stability, quasi-optimality, and a priori error
estimates. These results are obtained under a (standard) resolution condition between the
wavenumber and the mesh size. Numerical experiments confirm the convergence rates and
give an explanation of the physical phenomenon of band gaps.

Zusammenfassung
In dieser Arbeit präsentieren wir neue numerische Mehrskalen-Methoden für Probleme, die aus
den zeitharmonischen Maxwell-Gleichungen in heterogenen Medien entstehen. Diese Prob-
leme werden für die Modellierung elektromagnetischer Wellenausbreitung, zum Beispiel im
Kontext photonischer Kristalle, benutzt. Solche Materialien können ungewöhnliche optische
Eigenschaften aufweisen, wobei wir besonders an negativer Brechung interessiert sind. Obwohl
dieses Phänomen und seine Auswirkungen in vielen physikalischen Experimenten studiert
worden sind, steht das mathematische Verständnis dieses Themas noch am Anfang.
Als ersten Schritt betrachten wir elliptische Probleme mit heterogenen Koeffizienten, bei

denen die doppelte Anwendung der Rotation den Differentialoperator bildet. Die zugehöri-
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gen Lösungen haben typischerweise sehr geringe Regularität und numerische Standardver-
fahren konvergieren mit beliebig schlechter Rate. Für lokal periodische Probleme präsen-
tieren wir eine Heterogene Mehrskalen-Methode und beweisen a priori Fehlerabschätzungen.
Numerische Experimente bestätigen die Konvergenzraten und zeigen die Anwendbarkeit der
Methode. Um allgemeinere Koeffizienten zu behandeln, konstruieren wir eine generalisierte
Finite-Elemente-Methode im Sinne der Lokalisierten Orthogonalen Zerlegung. Die Methode
zerlegt die exakte Lösung in einen grobskaligen Anteil (aufgespannt durch Standard-Finite-
Elemente-Funktionen) und einen feinskaligen Anteil. Ein stabiler Korrektor, der quasi-lokal
und daher effizient berechenbar ist, ermöglicht es, nötige feinskalige Merkmale der Lösung
darzustellen und zu extrahieren. Wir zeigen, dass diese Konstruktion optimale Approxima-
tionseigenschaften in Energie- und dualen Normen besitzt.
Als nächsten und weitaus herausfordernderen Schritt Richtung negativer Brechung betrach-

ten wir (indefinite) Streuprobleme mit periodischen Koeffizienten mit hohem Kontrast. Dabei
haben periodisch angeordnete Einschlüsse einen wesentlich kleineren Materialkoeffizienten
(wie das Quadrat der Periodenlänge skaliert) als der Rest des Streuhindernisses. Homo-
genisierungsresultate zeigen, dass der hohe Kontrast zu ungewöhnlichen effektiven Parame-
tern in der homogenisierten Gleichung führt. Als Konsequenz ist Wellenausbreitung inner-
halb des Streuhindernisses für gewisse Wellenzahlen physikalisch verboten; dieser Effekt wird
auch Bandlücke genannt. Bei der Analyse der homogenisierten Formulierung beweisen wir
insbesondere neue Stabilitätsabschätzungen (explizit in der Wellenzahl) für Lösungen der
Helmholtz- und Maxwell-Gleichungen. Für die numerische Behandlung führen wir eine Hete-
rogene Mehrskalen-Methode ein, für die wir inf-sup-Stabilität, Quasi-Optimalität und a priori
Fehlerabschätzungen zeigen. Diese Resultate gelten unter einer (Standard-)Auflösungsbedin-
gung zwischen der Wellenzahl und der Gitterweite. Numerische Experimente bestätigen die
Konvergenzraten und erklären das physikalische Phänomen der Bandlücken.
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1 Introduction

1.1 Motivation

The behavior and propagation of electromagnetic fields (in heterogeneous media) is studied in
many physical applications, for instance, in the large area of wave optics. These problems are
modeled by Maxwell’s equations and additional material laws. In recent years, heterogeneous
materials have been studied with great interest, e.g., in the context of photonic crystals
[JJWM08]. They can exhibit unusual and astonishing (optical) properties, such as frequency
band gaps [JJWM08], artificial magnetism [OP02], surface plasmons [BDE03], and negative
refraction [EP04,PE03].
The latter phenomenon has been described theoretically in 1968 by Veselago [Ves68]. He

states that in a material with negative permittivity ε and negative permeability µ, the re-
fractive index is negative. This implies that at the interface to a standard (positive index)
material, the refracted light beam lies on the same side of the surface normal as the incident
beam. We refer to Figure 1.1 a) and b) for an illustration. This has a lot of interesting appli-
cations. For instance, a simple rectangular slab of a negative index material can focus light
beams and act as lens, see Figure 1.1 c). In addition, such a perfect lens has no restrictions on
the obtainable spatial resolution of the imaged objects, see [Pen00]. Another interesting effect
is optical cloaking [PSS06]: If an object is surrounded by a suitable negative index material,
light waves seem to propagate undisturbed by the object, meaning that its existence cannot
be detected from the outside.
However, Veselago’s theoretical work has not been continued for quite a while since no

materials with simultaneous negative values of ε and µ were known in practice. By now,
the phenomenon of negative refraction has been experimentally confirmed using different
setups. We solely focus on constructions based on negative index materials, which rely on sub-
wavelength fine-scale structures. They can be realized as photonic crystals using, for instance,
dielectric composites with high contrast [EP04] or split-ring and wire constructions [SPV+00].
The latter setup is illustrated in Figure 1.2. We refer to the survey article [SPW04] for an
overview of different constructions.
Hence, these problems involve microscopic or fine-scale structures as well as macroscopic

Figure 1.1: Normal (a) versus negative (b) refraction and a perfect lens made out of a neg-
ative index material (c); source: https://commons.wikimedia.org/wiki/File:
Negative_refraction_index_focusing.png
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(a) (b)

Figure 1.2: Metamaterial constructed out of split rings and wires: (a) experimen-
tal setup, (b) schematic illustration; source: (a) https://commons.
wikimedia.org/wiki/File:Split-ring_resonator_array_10K_sq_nm.jpg, (b)
https://commons.wikimedia.org/wiki/File:Left-handed_metamaterial_
array_configuration.jpg (both produced by NASA Glenn Research Center)

processes (e.g., wave propagation), so that we deal with two or more scales. As typical size for
the finest scale, we introduce the (small) parameter δ. In the context of photonic crystals, δ
denotes the length of the periodicity cell, whereas in general heterogeneous materials, δ should
simply be seen as an indicator for fine-scale structures and is not uniquely determined. If we
want to emphasize that an operator or a function depends on fine-scale features, we equip it
with the index δ. In general, a multiscale problem has the following (abstract) formulation:

Find uδ ∈ X such that Lδuδ = f,

where f ∈ X ′ is a purely macroscopic source term. The multiscale (differential) operator
Lδ : X → X ′ involves rapid spatial oscillations.
Typically, δ is very small in comparison to the length scale of the computational domain.

Standard numerical schemes such as the Finite Element Method require to resolve the fine-
scale structures in order to produce a faithful approximation of the exact solution. This is
(prohibitively) expensive and easily exceeds today’s available computer resources. Therefore,
there is a need for multiscale methods, which have a computational complexity independent
of δ. An additional difficulty arises from the wave-type nature of our problems: Typically,
solutions are expected to have sine- or cosine-type contributions, where the oscillations become
faster for higher frequencies. This again requires a fine resolution of the grid in standard
numerical methods, which is known as the resolution condition [Sau06].

1.2 Goal and contribution of this work
The general long-term goal of our research is to (better) understand the mechanisms of neg-
ative refraction. As described above, we focus on the approach of effective negative index
materials, which use sub-wavelength fine-scale structures. This means that the typical length
scale of the material inhomogeneities is much smaller than the wavelength and consequently,
we can use homogenization approaches. Furthermore, we concentrate on the time-harmonic
setting so that we deal with spatial partial differential equations (PDEs) solely. We emphasize,
however, that time dependence can be easily incorporated by using standard time-stepping
approaches. We tackle this complex issue in two main steps: First, we deal with rapid os-
cillations or variations in the coefficients of our PDE and second, we additionally take high
contrasts into account.
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1.2 Goal and contribution of this work

For the first step, we consider H(curl)-elliptic problems with homogeneous boundary con-
ditions and rapidly oscillating coefficients µ and κ

curl
(
µ(x) curl u(x)

)
+ κ(x)u(x) = f(x) in Ω,

u(x)× n(x) = 0 on ∂Ω.

Such a problem models, for instance, electromagnetic waves in an (ohmic) cavity, surrounded
by a perfect electric conductor. Rapidly oscillating coefficients occur, for example, in the
context of photonic crystals. For locally periodic materials, we suggest a Heterogeneous Mul-
tiscale Method and show a priori convergence rates. The homogenization results as well as
the a priori and a posteriori error analysis have been discussed in the author’s master thesis.
Numerical experiments confirming the convergence results have been conducted during the
PhD, so that we summarize the theoretical and numerical findings in this thesis. They are
published in SIAM Journal of Numerical Analysis [HOV16b] and a second numerical exper-
iment (considering the indefinite H(curl)-problem) is reported in the Proceedings of Applied
Mathematics and Mechanics [HOV16a]. For general heterogeneous coefficients, beyond the
assumption of (local) periodicity and scale separation, we suggest a Localized Orthogonal
Decomposition. We analyze the approximation properties of the decomposition and present
an efficiently computable localization of the involved corrector. The corresponding results
are published in [GHV18]. The adaption of the described numerical scheme and its analysis
to the case of indefinite problems are published in the Proceedings of Equadiff 2017 confer-
ence [Ver17b].
The next and even more challenging step towards negative refraction are time-harmonic

scattering problems with high contrast:{
−∇ ·

(
ε−1
δ (x)∇uδ(x))− k2uδ(x) = 0 in G,

∇uδ(x) · n(x)− ikuδ(x) = g(x) on ∂G,

or

{
curl

(
ε−1
δ (x) curl uδ(x)

)
− k2uδ(x) = 0 in G,

curl uδ(x)× n(x)− ik
(
n(x)× uδ(x))× n(x) = g(x) on ∂G,

where ε−1
δ is 1 outside Ω and inside Ω given by ε−1

δ (x) = ε−1
0 χΣ∗(

x
δ ) + ε−1

1 χΣ(xδ ). Here Σ
and Σ∗ form a nonoverlapping partition of the unit cell, see Figure 1.3 for an illustration. We
suggest a corresponding Heterogeneous Multiscale Method, formulated as direct discretization
of the associated two-scale equation. The homogenized equation includes a nonstandard
effective coefficient in the identity term, which can have a positive or negative sign depending
on the wavenumber. If this effective permeability is negative, wave propagation inside the
scatterer is physically forbidden for the associated wavenumber, which is called a band gap.
Stability and quasi-optimality of the method are shown under the assumption of a (standard)
resolution condition between the wavenumber k and the mesh width. This resolution condition
can become prohibitive for large wavenumbers and we, therefore, study the application of a
(two-scale) Localized Orthogonal Decompositions as a remedy. Numerical experiments again
confirm the theoretical findings and study the behavior of solutions for different wavenumbers
and signs of the effective permeability. This gives an interesting insight into the occurrence of
frequency band gaps. The results for the two-dimensional setting (the Helmholtz equation)
are published in Multiscale Modeling and Simulation [OV18]. The theoretical analysis of the
(two-scale) Localized Orthogonal Decomposition is published in AIMS Mathematics [OV17].
The results on the Heterogeneous Multiscale Method for the full three-dimensional Maxwell
equations are published as a preprint [Ver17a] and are submitted to ESAIM Mathematical
Modeling and Numerical Analysis.
The implementation of all numerical experiments has been done based on the module dune-

gdt [MS15] of the DUNE software framework [BBD+08a, BBD+08b]. The corresponding
code can be found on Github1. The examples are curlcurl-discretization.cc for Section 3.1.3,

1github.com/BarbaraV/dune-gdt/tree/dissertation
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ε = 1

Ω, ε 6= 1

Σ

δ2ε−1
1

Σ∗

ε−1
0

Figure 1.3: Left: Scatterer Ω with inclusions with high permittivity (in gray); Right: Zoom
into one unit cell and scaling of the permittivity ε−1

δ .

helmholtz.cc for Section 4.6.1, and hmm-maxwell.cc for Section 4.6.2, all located in the directory
test.

1.3 Overview of the literature

There is a large variety of analytical and numerical approaches to cope with multiscale prob-
lems. Thus, we only outline the ones most closely related to our work.

Homogenization. Homogenization is an essential analytical tool to reduce the complexity
of multiscale problems. Broadly speaking, the main aim is to identify a coarse-scale problem
which is cheap to solve and whose solution is close to the exact solution. It considers the limit
of δ tending to zero. The question is whether a unique operator L0 and a function u0 exist,
such that u0 approximates uδ and u0 solves the problem defined by L0. (General) homoge-
nization results are obtained with the techniques of G-convergence, dealing with symmetric
linear elliptic operators; H-convergence, dealing with nonsymmetric linear operators; and Γ-
convergence dealing with minimizers of energy functionals. An overview of these techniques
is provided in [CD99,JKO94] and the references therein.
Even though these convergences provide the existence of a homogenized problem in very

general frameworks, the limit operator L0 cannot be stated explicitly in most cases. For
(locally) periodic problems, explicit limit equations often can be extracted using two specially
tailored approaches. The first is the asymptotic expansion technique [BLP78] based on the
(heuristic) assumption that uδ can be written as

uδ(x) =

∞∑
j=0

δjuj
(
x,
x

δ

)
,

where each uj is (0, 1)d-periodic in the second variable. In a similar spirit the method of
multiscale convergence gives a rigorous justification of the terms of the above expansion.
For a fixed number l of scales, it provides a new notion of convergence which is able to
capture oscillations in resonance with δj for all j ≤ l − 1. In the limit, homogenized and
corrector equations are obtained which can also be coupled in an l-scale limit equation. A
very common specific case is two-scale convergence which deals with the first two terms in the
above expansion. This method goes back to Nguetseng [Ngu89] and the notion of two-scale
convergence has been introduced in the seminal paper by Allaire [All92]. This is also the main
analytical homogenization tool we consider in this thesis, see Section 2.3.1 for an introduction.
There are several homogenization results (mainly using two-scale convergence) for wave

propagation problems. Dispersive effects occurring for the wave equation over long time
are studied in [AP16a, AP17, DLS14, DLS15]. High contrast problems are considered, for
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instance, in [All92, Section 4] and [CC15]. Linear Maxwell’s equations are homogenized
in [CH15,GZN07,Wel01,WK03] in frequency and in time domain. Different limit equations
for Maxwell’s equations depending on the relation between periodicity length, wavelength and
skin depth are discussed in [AS11]. Depending on the shape of the inclusions in the periodic
microstructure, [SU17] characterizes the resulting homogenized equations.
To understand negative refraction mechanisms, experimentally known periodic structures

are analyzed with homogenization tools. Dielectric structures with high contrast are con-
sidered in [BBF09,BBF17,BF04] and frequency-dependent, possibly negative, effective per-
meabilities are obtained. A qualitatively similar result is obtained for split-ring construc-
tions [BS10, LS13, LS16c]. Wire structures are studied in [BB12, BF06, FB97] and unusual
effective permittivities are obtained. Finally, a combination of dielectric structures with high
contrasts and wires yields a material with effective negative index in [LS16a]. A good overview
on the topic is given in [Sch17].
Homogenization theory for wave propagation is only justified in the regime where the fine-

scale features are much smaller than the wavelength. If the heterogeneities of the materials
are of the same order as the wavelength, Bloch wave analysis can be used. A Bloch wave is a
product of a plane wave and a periodic function, where the latter is the solution to an (elliptic)
eigenvalue problem. The (dispersion) relation between the wavevector of the plane wave and
the eigenvalue associated to the periodic function is an important (physical) characteristic
of the crystal, see, e.g., [EP04, JJWM08, LJJP02]. The use of Bloch wave expansion in the
homogenization of multiscale problems goes back to [CV97] and the connections to multiscale
convergence are studied, for instance, in [ABV16]. Bloch wave analysis and homogenization
is employed to analyze the spectrum of the Maxwell operator in [CG07], to study dispersion
effects in the wave equation in [DLS14], or to impose radiation-type boundary conditions in
crystals in [DS17,FJ16,LS16b].

Multiscale methods. In addition to purely analytical homogenization tools there also exists
a large variety of numerical methods to deal with multiscale problems. In the following, we
present a small overview of this large topic. We mainly focus on multiscale methods which
can be considered as generalized Finite Element Methods (gFEMs) in the sense of Babuška,
Osborn [BO83] and Melenk [Mel95]. They modify standard finite element basis functions
and/or they replace the rapidly varying coefficients with macroscopic approximations. In the
end, either the exact solution uδ or the homogenized solution u0 are approximated, where in
the latter case additional corrections can be taken into account in a post-processing step.
In this thesis we focus on two multiscale methods: the Heterogeneous Multiscale Method

(HMM), introduced by E and Engquist [EE03], and the Localized Orthogonal Decomposition
(LOD), introduced by Målqvist and Peterseim [MP14]. The HMM imitates the analytical
homogenization procedure by locally reconstructing the fine-scale behavior of the solution in
small cells around quadrature points. An average of this information is passed to a macroscopic
bilinear form and the corresponding solver so that the effective (macroscopic) behavior of the
solution is extracted. In other words, an approximation of the homogenized solution u0 is
obtained. The method is defined in detail in Section 2.3.3, where we also give a short overview
on the associated literature. The key idea of the LOD is to decompose the solution space into
a coarse (macroscopic) part and a remainder space using an interpolation operator. Fine-scale
information from the kernel of the interpolation operator is extracted by a problem-dependent
projection. This correction operator shows exponential decay and can be (quasi-)localized to
patches. A detailed introduction to the LOD and a literature survey are given in Section
2.3.4.
This idea to decompose the solution space into a coarse-scale and a fine-scale contribution

is motivated from the framework of the Variational Multiscale Method (VMM), introduced
by Hughes et al. [HFMQ98,HS07]. The fine-scale equations are formally solved in dependence
of the residual of the coarse-scale equation, which is a very general framework and allows for
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a lot of specializations. We refer, for instance, to [BC13,OP98] for the Helmholtz equation.
Another popular multiscale method is the Multiscale Finite Element Method (MsFEM),

developed by Hou and Wu [HW97]. The method constructs multiscale basis functions by
solving local fine-scale problems. The basis functions are coupled in a global variational
formulation so that an approximation of the exact solution is obtained, see [EH09] for an
overview. Concerning formulations for the wave equation, we refer to [JE12, JEG10]. An
MsFEM for elliptic problems with high contrast coefficients is presented in [CGH10]. Photonic
crystals are treated with a multiscale hp-FEM incorporating Bloch modes in [BSS11].
With view to the question which (generalized) finite element spaces to use for rough and

multiscale coefficients, we enumerate a few further suggestions made for elliptic diffusion prob-
lems. Owhadi and Zhang [OZ11,OZB14] solve localized fine-scale problems at certain macro-
scopic points and show optimal convergence independent of the regularity of the solution. The
adaptive local (AL) basis [GGS12,Wey17] also uses such local fine-scale computations for each
sub-problem, but the contributions are split in so-called near-field and far-field parts, which
are approximated differently. In the p-FEM method for locally periodic problems [MBS00],
standard finite element basis functions of polynomial degree p are modified by fine-scale shape
functions, which are determined on the basis of a Fourier-Bochner representation of the exact
solution. The two-scale FEM for locally periodic problems [MS02], constructs a two-scale fi-
nite element space built from a coarse mesh and a local microscopic space of δ-periodic shape
functions for each coarse degree of freedom.
Similar to analytical homogenization, upscaling or averaging methods try to determine ef-

fective global properties of an operator. Note that the result of the averaging process highly
depends on the chosen triangulation of the domain. The general idea is to perform local fine-
scale computations and extract effective global parameters for the coarse-scale from averaging.
We refer to [CHHS17] for an approach concerning Maxwell’s equations and to [EIL+09] for
high contrast problems. The multiscale medium approximation for heterogeneous Helmholtz
equations [BCG17] also works in this spirit. Using a fine-scale mesh the wavenumber is pro-
jected onto piecewise coarse-scale constants, which are then used in the actual (macroscopic)
FEM.
Based on the already mentioned l-scale equation in the context of multiscale convergence,

a Sparse Multiscale FEM was suggested by Hoang and Schwab [HS05] for periodic diffusion
problems. The discretized l-scale equation can be seen as a (classical) elliptic equation in Rld,
where d is the space dimension and l ≥ 2 the number of scales. Since this may become a very
high dimensional system, the use of sparse grids is proposed, making accuracy and memory
requirements comparable to the case of only one scale. A sparse multiscale FEM for the wave
equation can be found in [XH14].
For (locally) periodic problems, one can also directly discretize (with standard finite element

spaces) the terms of the asymptotic expansion or the limit functions of two-scale convergence.
This approach is studied for the Helmholtz equation in [CCZ02], for Maxwell’s equations in
frequency domain in [CZAL10] and in time domain in [CH18,ZCW10].
In the context of parametric multiscale problems, where the multiscale coefficients addi-

tionally depend on a low-dimensional parameter vector and one is interested in the solution
for several configurations, multiscale methods need to be combined with model order reduc-
tion approaches. The generalized Multiscale Finite Element Method (gMsFEM) [EGH13]
builds a multiscale (snapshot) basis by solving local fine-scale problems in an offline stage
as described above for the MsFEM. The dimension of this offline space can be reduced by
a spectral decomposition. In the online stage, the solution space for a given parameter is
computed using the already determined offline space. We refer to [CEH16] for an overview
including adaptivity. The wave equation is studied in [CEL14] and H(curl)-elliptic prob-
lems in [CL18]. The Localized Reduced Basis Multiscale Method (LRBMS) [AHKO12,OS15]
combines domain decomposition and traditional reduced basis approaches. It constructs a
spatially localized reduced basis on each subdomain of a coarse grid. Here, the local reduced
bases can be prescribed a priori, computed as solutions to local fine-scale problems, or defined
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as restrictions of global reduced bases, which allows for a lot of flexibility. By its locality the
computational costs of the basis generation can be much reduced in the LRBMS in compar-
ison to traditional (global) reduced basis methods. Based on this idea of localized reduced
bases, the ArbiLoMod [BEOR17a, BEOR17b] allows for fast recomputation after arbitrary
local modifications. The reduced model and the reduced basis are only changed in certain
subregions, steered by a a local error indicator.
Finally, we refer to [AH17b] for an overview on multiscale methods for the wave equation

and to [Li16] for a general survey of mathematical approaches (analytical and numerical) for
metamaterials.

1.4 Outline of the work
This thesis is organized as follows. In Chapter 2, we introduce the analytical and numerical
background necessary for this thesis. First, we study Maxwell’s equations and its variants in
Section 2.1. Then, in Section 2.2, we introduce the Finite Element Method for these problems.
Section 2.3 finally presents analytical and numerical homogenization approaches and methods.
Chapter 3 is devoted to H(curl)-elliptic problems with rapidly varying coefficients. We

introduce and analyze the Heterogeneous Multiscale Method for locally periodic problems in
Section 3.1. In Section 3.2, we turn to general oscillating coefficients and motivate, formulate,
and analyze a corresponding numerical homogenization scheme in the spirit of the Localized
Orthogonal Decomposition.
Chapter 4 deals with scattering problems with locally periodic coefficients with high con-

trast. We introduce the general setting in Section 4.1. The model problems are homogenized
in Section 4.2 and the resulting limit equations are analyzed in Section 4.3. In Section 4.4,
we formulate and analyze the corresponding Heterogeneous Multiscale Method. To relax the
required resolution between the wavenumber and the mesh size, we study the application
of a (two-scale) Localized Orthogonal Decomposition in Section 4.5. Extensive numerical
experiments can be found in Section 4.6.
Finally, we draw some conclusions and give a short outlook on possible future research in

Chapter 5.
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2 Analytical and numerical background

In this chapter, we give the necessary theoretical background for this thesis. We formulate
and analyze our model problems derived from Maxwell’s equations in Section 2.1. Section 2.2
then deals with the (standard) finite element discretization of the model problems. Finally,
Section 2.3 gives an introduction to homogenization and multiscale methods and we motivate
the main numerical schemes used in this thesis.

General notation. Throughout this thesis, C denotes a generic constant, which does not
depend on the mesh sizes, the oversampling parameter, or the wavenumber. It may vary from
line to line in the estimates. We use the short-hand notation a . b if a ≤ Cb with such a
generic constant C, and, similarly, a & b. If a . b and a & b, we write a ≈ b.

2.1 Maxwell’s and Helmholtz equations

In this section, we deal with Maxwell’s and Helmholtz equations. Section 2.1.1 deduces the
considered model problems from the Maxwell’s equations in their general form given by the
physical theory of electromagnetism. The associated function spaces and their main properties
are introduced in Section 2.1.2. With these spaces, we can then formulate the variational
problems and study the properties of the (weak) solutions in Section 2.1.3.

2.1.1 Motivation and model problems

Maxwell’s equations1 are the (physical) foundations of electromagnetism. Since they are a
topic on their own, we mainly focus on the derivation of our model problems in this sec-
tion. In order to understand this derivation also from a physical point of view, the im-
portant ingredients are constitutive material laws, the behavior of electromagnetic fields at
interfaces (between different materials) and simplifications such as the time-harmonic or the
two-dimensional case. As this section should motivate the model problems, we postpone exact
definitions concerning regularity (of the domain and the coefficients) to later sections.

Maxwell’s equations and constitutive laws. In the classical Maxwell equations, the
following four time- and space-dependent vector fields are involved as unknowns: the electric
field intensity E, the magnetic field intensity H, the electric displacement field D, and the
magnetic induction field B. The sources of the electromagnetic fields are the (free) charges and
currents, which are denoted by the charge density ρ and the current density J, respectively.
The classical formulation of Maxwell’s equations reads, see, e.g., [Bos98,Hip02,Mon03,Zag06]:

div D = ρ, (2.1a)
div B = 0, (2.1b)

curl E +
∂B

∂t
= 0, (2.1c)

curl H− ∂D

∂t
= J. (2.1d)

1James Clark Maxwell in “A Dynamical Theory of the Electromagnetic Field” (1865) and “Treatise on
Electricity and Magnetism” (1873)
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The basic interpretations of these laws, which we discuss here shortly, can be seen in their
integral form. As there are no magnetic charges (“magnetic monopoles”), the magnetic field is
source- (or divergence-) free, equation (2.1b). In contrast, electric charges exist and the electric
displacement field (sometimes also called electric flux) through the boundary of a volume
equals the enclosed total charge. This relation leads with the divergence theorem by Gauß
(also called Gauß’s theorem) to equation (2.1a). Faraday’s induction law (2.1c) states that
the change in time of the magnetic induction field B (sometimes called magnetic flux) through
a surface induces an (opposite) electric field through the boundary of the surface. This can
be observed, for instance, in a conductor loop positioned in a time-dependent magnetic field.
Ampère’s law describes the opposite fact: A current through a surface induces a magnetic field
H in the boundary. Maxwell added a so-called displacement current ∂D

∂t to this law, which
leads to equation (2.1d). By differentiating equation (2.1a) w.r.t. t and taking the divergence
of equation (2.1d), we obtain with div curl = 0 the continuity equation

div J +
∂ρ

∂t
= 0, (2.2)

which relates the current density and the charge density.
Maxwell’s equations (2.1) are only completely determined together with (experimentally

derived) material laws. These have the form

D = εE and B = µH (2.3)

with tensors ε and µ. In general these tensors can depend on time, space, and even the fields
themselves, but we only admit spatial dependence in the following. The electric permittivity
is called ε and the magnetic permeability µ. In an ohmic conductor the current inside the
conductor is related to its electric field via Jin = σE with the electric conductivity σ. The
total current density consists of the inner current density and an impressed (or source) density
J = Jin + Js. The latter can be assumed to be divergence-free (also called consistent), i.e.,
div Js = 0. With the material laws the Maxwell equations have the same number of equations
and unknowns. Still, we need initial conditions for the fields in order to have a well-defined
system of PDEs. However, we will focus on the time-harmonic case soon and, therefore, we
omit a detailed discussion of initial conditions.
Interface and boundary conditions. Gauß’s and Stokes’ theorem applied to Maxwell’s
equations (2.1) provide information on the behavior of the electromagnetic fields at the in-
terface between two different materials, see [Mon03, Zag06] for a similar discussion in more
detail. Let Γ be a sufficiently smooth (two-dimensional) interface between two domains R1,
R2 with the normal nΓ pointing from R2 to R1. From the divergence equations (2.1a) and
(2.1b), we can deduce with Gauß’ theorem that

[B · nΓ] = 0 and [D · nΓ] = ρS ,

where [B ·nΓ] := (B|R2
−B|R1

) ·nΓ denotes the jump and ρS is the surface charge. Applying
Stokes’ theorem to the curl-equations (2.1c) and (2.1d), we deduce that

[E× nΓ] = 0 and [H× nΓ] = −jΓ

with the jump [·] defined as above and jΓ the surface current. Even if ρS = 0 and jΓ = 0, we
see from the material laws (2.3) that the normal components of E and H and the tangential
components of D and B are discontinuous in general. This holds because at an interface
between two different materials, we have [µ] 6= 0 und [ε] 6= 0 in most cases.
The interface conditions derived above can also serve as a motivation for some frequently

used boundary conditions, cf. again [Zag06]. Let n denote the unit outer normal. By prescrib-
ing the surface quantities ρS or jΓ, we directly arrive at the boundary conditions D · n = ρS
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or H × n = jΓ, respectively. A perfect electric conductor is a region with very high conduc-
tivity σ, so that Ohm’s law implies E ≈ 0. If such a perfect conductor is situated around
the computational domain of interest, we obtain the boundary condition E × n = 0. Simi-
larly, a so-called perfect magnetic conductor has a high permeability and thus, H ≈ 0, which
gives the boundary condition H × n = 0. Finally, also a coupling of the electric field E and
the magnetic field H is possible. So-called impedance boundary conditions are Robin-type
boundary conditions of the form H × n − z(E × n) × n = 0 with the impedance parameter
z ∈ C. They can, for instance, model the reflections at the interface to a material with high
(but still finite) conductivity, where eddy currents are concentrated near the surface. They
also appear as approximations of the radiation condition in scattering problems. The exact
boundary conditions are given together with our model problems below, but all of them fall
into one of the above mentioned (physical) cases.

Simplifications. Often the system of the Maxwell equations is not studied in its full form
(2.1), but (problem adapted) reductions are made. First, we replace the time domain by the
frequency domain via the so-called time-harmonic ansatz, see [Mon03]. This means that we
assume ψ(x, t) = Re(exp(iωt)ψ̂(x)) for all time-dependent quantities ψ ∈ {E,H,D,B, ρ,J}.
Here, ω is the frequency and ψ̂ is complex-valued. In the sequel, we use again ψ instead
of ψ̂ for simplicity. The time-harmonic ansatz is justified by the following two common
applications: First, a Fourier transform with respect to time can be applied in many cases so
that the general solution can be written as the superposition of the solutions at several fixed
frequencies. Second, in many physical applications the frequency is a priori known, e.g., by an
incoming wave. With the time-harmonic ansatz, all time derivatives reduce to a multiplication
by iω. Hence, Maxwell’s equations (2.1) together with the material laws (2.3) simplify to

curl E(x) + iωµ(x)H(x) = 0,

curl H(x)− iωε(x)E(x) = J(x).
(2.4)

The divergence equations (2.1a) and (2.1b) are automatically fulfilled by taking the divergence
and using the continuity equation (2.2). The time-harmonic system for E and H can be
further reduced to a single second-order partial differential equation (PDE) by solving the
first equation for H or the second equation for E and inserting it into the other equation.
In a two-dimensional setting, i.e., a geometry invariant in one direction (e.g., the x3-

direction), all quantities only depend on two space dimensions, denoted here by x1 and x2.
Assuming a transverse electrical (TE) mode, i.e., E = (E1(x1, x2), E2(x1, x2), 0), the first
equation of (2.4) directly gives H = (0, 0, H3(x1, x2)). We can then solve the second equation
of (2.4) for E and insert it into the first equation. With the knowledge about the structure
of H, the curl reduces to a rotated gradient and reveals after a short computation that H3 is
determined as the solution to

∇ · (ε−1∇H3) + ω2µH3 = f, (2.5)

where f = (− curl(ε−1J))3 is a source term. This means that H3 solves a Helmholtz equation.
Assuming a transverse magnetic (TM) mode, i.e., H = (H1(x1, x2), H2(x1, x2), 0), we can
derive a similar Helmholtz equation for E3. Therefore, the Helmholtz equation is often studied
as the two-dimensional case of time-harmonic Maxwell’s equations.

Model problems. With the time-harmonic Maxwell equations and the Helmholtz equation
derived above, we have the basic equations at hand for our model problems. We formulate the
model problems in their strong form, i.e., as PDEs with boundary conditions and postpone
the presentation of the variational formulation to Section 2.1.3, where also more details on
the assumptions on the data and the geometry are given.
(1) For the H(curl)-elliptic problem, we consider time-harmonic Maxwell’s equations in

an ohmic conductor: We set J = −iωσE + j, where j is a source current density, solve the
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first equation of (2.4) for H and insert it into the second. If the computational domain is
surrounded by a perfect electric conductor, we conclude the boundary value problem

curl(µ̃ curl u) + κu = f in Ω,

u× n = 0 on ∂Ω,
(2.6)

where u = E, µ̃ = µ−1, κ = −ω2ε+ iωσ and f = −iωj. For simplicity, we write µ instead of µ̃
and keep in mind that it denotes the inverse permeability when studying an H(curl)-elliptic
problem. (2.6) is called H(curl)-elliptic because the associated sesquilinear form is coercive
over the space H(curl) if µ, ε and σ are (uniformly) positive definite, see Definition 2.1.5 for
details. A problem of similar structure also has to be solved in every time step of an eddy
current computation; then u is a vector potential for the magnetic field and κ = σ/(∆t) with
the time step size ∆t.
(2) For the Helmholtz (scattering) problem, we take (2.5), set f = 0 and equip it with an

impedance boundary condition so that we obtain

−∇ · (ε−1∇u)− k2µu = 0 in G,

∇u · n− iku = g on ∂G,
(2.7)

where u = H3, G ⊂ R2 is a two-dimensional domain, ε−1 and µ denote the relative permittivity
and permeability, respectively, and k = ω/c = ω/

√
ε0µ0 is the wavenumber. (2.7) models the

scattering of an incoming wave at an (embedded) obstacle Ω ⊂ G. Such a problem is normally
posed on the whole space with a (Sommerfeld) radiation condition. Instead, we artificially
truncate the domain (by introducing G) here and approximate (at first order) the radiation
condition by the impedance boundary condition. g is typically computed from the incoming
wave.
(3) The Helmholtz scattering problem presented above can be seen as the two-dimensional

reduction of the full Maxwell (scattering) problem. For this, we set J = 0 in (2.4), solve the
second equation for E and insert it into the first one. Together with an impedance boundary
condition we conclude

curl(ε−1 curl u)− k2µu = 0 in G,

curl u× n− ik(n× u)× n = g on ∂G,
(2.8)

where u = H and k is again the wavenumber. The impedance boundary condition is the
first order approximation of the Silver-Müller radiation condition and g is typically computed
from the incoming wave as in the two-dimensional setting.

2.1.2 Function spaces and their properties

Before we are able to define weak solutions of our model problems (2.6)–(2.8) and prove
existence as well as uniqueness, we require appropriate function spaces. Let R ⊂ Rd, d ∈
{2, 3}, be a contractible bounded domain with Lipschitz boundary and (real-valued) outer
normal field n. If we need more regularity of the boundary in this section, we will state
this explicitly. Vector-valued functions are indicated by bold-face letters and unless otherwise
stated, all functions are complex-valued. The dot denotes a normal (real) scalar product, for
a complex scalar product we explicitly conjugate the second component by using v∗ as the
conjugate complex of v. For a general Hilbert space X, we denote its dual space by X ′. In
this section, we introduce the necessary function spaces, discuss traces on the boundary and
present (Helmholtz-type) decompositions of vector functions.
Standard Sobolev spaces. Throughout this thesis, we use standard notation: For p ∈
[1,∞) and m ∈ N0, Lp(R) denotes the usual complex Lebesgue space with inner product
(·, ·)L2(R) and norm ‖ · ‖L2(R). By Wm,p(R) we denote the space of functions on R with weak
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derivatives up to order s belonging to Lp(R) and we write Hm(R) := Wm,2(R) for the scalar
and Hm(R) := [Hm(R)]d for the vector-valued case (mostly for d = 3). The domain R is
omitted from the norms if no confusion can arise and ‖ · ‖R denotes the L2(R)-norm for short.
The Sobolev spaces can also be defined for non-integers s ∈ R≥0, see [Mon03, p. 42]. Write

s = m+ r with m ∈ N0 and 0 < r < 1. Then W s,p(R) is the space of functions v ∈Wm,p(R)
with

ˆ
R

ˆ
R

|∂αv(x)− ∂αv(y)|p

|x− y|d+rp
dydx <∞, for all multi-indices α with |α| = m, (2.9)

equipped with the graph norm. Again, we use the abbreviation Hs(R) = W s,2(R) and Hs(R)
for the vector-valued case. Finally H−s(R) for s ≥ 0 denotes the dual space of Hs(R), i.e.,
H−s(R) := (Hs(R))′.
For the analysis of the Helmholtz scattering problem (2.7), we frequently replace the stan-

dard norm of H1(R) by the k-weighted norm ‖ · ‖1,k defined as

‖v‖1,k,R := (‖∇v‖2L2(R) + k2‖v‖2L2(R))
1/2. (2.10)

Moreover, the whole domain G is (naturally) partitioned into the scatterer Ω and the outside
G \ Ω. In this case, it is useful to define

Hs
pw(G) := Hs(Ω) ∩Hs(G \ Ω) ∩H1(G) (2.11)

for s ≥ 1 and note that Hs
pw(G) = Hs(G) for 1 ≤ s < 3/2, see [Pet10].

Vector functions with weak curl and divergence. Let R ⊂ R3. Recall that for a
smooth vector field v = (v1, v2, v3)T the divergence and the curl are defined as

div v :=

3∑
i=1

∂vi
∂xi

and curl v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)T
.

Using partial integration, we can introduce a weak notion of these differential operators in
the following way, see [Mon03, Section 3.5].

• For v ∈ L2(R;C3) we call div v ∈ L2(R;C) the weak divergence of v if it fulfills
ˆ
R

div v ψ∗ dx = −
ˆ
R

v · ∇ψ∗ dx ∀ψ ∈ C∞0 (R;C).

• For v ∈ L2(R;C3) we call curl v ∈ L2(R;C3) the weak curl of v if it fulfills
ˆ
R

curl v ·ψ∗ dx =

ˆ
R

v · curlψ∗ dx ∀ψ ∈ C∞0 (R;C3).

The spaces H(curl) and H(div) are defined in a similar way like the standard Sobolev spaces.

Definition 2.1.1 (H(curl) and H(div)). We define the function spaces

H(curl, R) := {v ∈ L2(R;C3)| curl v ∈ L2(R;C3)},
H(div, R) := {v ∈ L2(R;C3)|div v ∈ L2(R;C)}

with the scalar products

(v,ψ)H(curl) := (curl v, curlψ)L2(R) + (v,ψ)L2(R),

(v,ψ)H(div) := (div v,divψ)L2(R) + (v,ψ)L2(R).
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2 Analytical and numerical background

We omit the domain R from the notation of the spaces if no confusion can arise. H(curl) and
H(div) are Hilbert spaces and furthermore, the space of smooth functions C∞(R,C3) is a dense
subspace. Hence, we can define H0(curl, R) and H0(div, R) as the closure of C∞0 (R,C3) w.r.t.
the corresponding norm. These spaces have zero tangential or normal traces, respectively, on
the boundary as we see below. To quantify higher regularity, we define for s ≥ 0 the space
Hs(curl) as follows

Hs(curl, R) := {v ∈ H(curl, R)|v ∈ Hs(R), curl v ∈ Hs(R)} (2.12)

and observe that H0(curl) = H(curl). The space of divergence-free functions is denoted by
H(div 0).
In order to define a suitable functions space for the Maxwell scattering problem, we intro-

duce the following space of tangential L2-functions on the boundary

L2
T (∂R) := {v ∈ [L2(∂R)]3|v · n = 0}.

We denote by vT := (n×v)×n = v− (v ·n)n the tangential component of a vector function
v on the boundary. Then, we define the space for the Maxwell scattering problem as

Himp(R) := {v ∈ H(curl, R)|vT ∈ L2
T (∂R)}, (2.13)

equipped with the graph norm, see [Mon03, Section 3.8].
For the analysis of the scattering problem (2.8), we frequently replace the standard norms

of H(curl) and Himp by the k-weighted norms ‖ · ‖curl,k and ‖ · ‖imp,k given by

‖v‖curl,k,R := (‖ curl v‖2L2(R) + k2‖v‖2L2(R))
1/2, (2.14)

‖v‖imp,k,R := (‖ curl v‖2L2(R) + k2‖v‖2L2(R) + k‖vT ‖2L2(∂R))
1/2. (2.15)

Again, the whole domain G is (naturally) partitioned into the scatterer Ω and the outside
G \ Ω. In this case, it is useful to define for s ≥ 0 the space Hs

pw(curl) as

Hs
pw(curl, G) := Hs(curl,Ω) ∩Hs(curl, G \ Ω) ∩H(curl, G). (2.16)

Traces. The definition of Sobolev spaces on Lipschitz domains requires care. For |s| ≤ 1,
the space Hs(∂R) for a bounded Lipschitz domain R ⊂ Rd can be defined via local charts and
the definition is well-posed in the sense that it does not depend on the chosen parametrization,
see [Mon03, Section 3.2.1] and [Moi11, Section 5.5]. Recall that for s < 0, we deal with a
dual space. If 0 ≤ s < 1, the definition via local charts is equivalent to the definition of Hs

given via (2.9). It is well known (see, e.g., [Mon03, Theorem 3.9]) that there exists a linear,
continuous operator tr : H1(R)→ H1/2(∂R) which fulfills

tr(v) = v|∂R ∀v ∈ H1(R) ∩ C0(R).

This trace operator is used to define the space H1
0 (R) as the space of all functions in H1(R)

with vanishing traces on the boundary. H1
0 (R) coincides with the closure of C∞0 (R) w.r.t. the

H1(R)-norm.
From now on, we deal with the three-dimensional case d = 3 to identify the traces of

functions in H(div) or H(curl), see [Mon03, Theorems 3.24, 3.29].

Proposition 2.1.2 (Trace theorems). Let R ⊂ R3 be a bounded Lipschitz domain.

• There exists a linear, continuous operator trn : H(div)→ H−1/2(∂R) which fulfills

trn(v) = (v · n)|∂R ∀v ∈ H(div) ∩ C0(R,C3).
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2.1 Maxwell’s and Helmholtz equations

• There exists a linear, continuous operator trτ : H(curl)→ H−1/2(∂R) which fulfills

trτ (v) = (v × n)|∂R ∀v ∈ H(curl) ∩ C0(R,C3).

From now on, we write v · n and v × n for trn(v) and trτ (v), respectively. With these
traces, we can also give an explicit characterization of the spaces H0(curl) and H0(div) which
we introduced as the closure of C∞0 (R). In particular, we have

H0(curl, R) = {v ∈ H(curl, R)|v × n = 0}, H0(div, R) = {v ∈ H(div, R)|v · n = 0}.

Gauß’s theorem gives the following rules of partial integration
ˆ
R

div vψ∗ dx =

ˆ
∂R

trn(v)ψ∗ dσ −
ˆ
R

v · ∇ψ∗ dx ∀ψ ∈ H1(R),v ∈ H(div, R),

ˆ
R

curl v ·ψ∗ dx = −
ˆ
∂R

trτ (v) ·ψ∗ dσ +

ˆ
R

v · curlψ∗ dx ∀ψ ∈ H1(R),v ∈ H(curl, R).

With these identities we also deduce the following interface conditions for a piecewise defined
function: In order to be in H(div), the normal traces have to agree; in order to be in H(curl),
the tangential traces have to agree. For a precise formulation we refer to [Mon03, Lemma
5.3]. Note that we obtained similar conditions for the fields in Maxwell’s equations in Section
2.1.1.
For the impedance boundary condition in the Maxwell scattering problem (2.8), we need

further spaces. For detailed definitions and further properties, we refer to [BC01, BCS02].
First, to quantify higher regularity of a tangential vector field v ∈ L2

T (∂R), we introduce the
space

Hs
T (∂R) := {v ∈ Hs(∂R)|v · n = 0}. (2.17)

This is well-defined for 0 ≤ s ≤ 1/2 in the case of a C2-domain and for 0 ≤ s < 1/2 in
the case of a polyhedral Lipschitz boundary. In the latter case, the space can also be defined
piecewise on each face. Second, there is another (tangential) linear and bounded trace operator
trT : H1(R)→ H1/2(∂R) defined via trT (v) := vT = v− (v ·n)n = (n×v)×n. The operator
can be extended to a mapping from H(curl, R) to H−1/2(∂R). The mapping is not surjective
and we simply define the range space as

Hs
‖(∂R) := trT (Hs+1/2(R)), for s ∈ (0, 1), (2.18)

and refer to [BC01, BCS02] for a characterization. Third, curl∂R is defined as the L2(∂R)-
adjoint of curl∂R v := trτ (∇v) for v ∈ H2(R), see [BC01] for a precise definition. We define
for any Lipschitz surface Γ

H(curlΓ) := {v ∈ L2
T (Γ)| curlΓ(v) ∈ L2(Γ)}. (2.19)

Decompositions. We study the connections between the spaces H1(R), H(curl, R) and
H(div, R). In this analysis it is important that R ⊂ R3 is contractible, i.e., simply connected
with connected boundary. The image and kernel of the differential operators is summarized
in the so-called de Rham sequence: The de Rham sequence

C id−→H1(R)
∇−→H(curl, R)

curl−→H(div, R)
div−→L2(R)

0−→{0}

is exact, i.e., the image of one operator is equal to the kernel of the following operator. For
zero boundary conditions the modified de Rham sequence

C id−→H1
0 (R)

∇−→H0(curl, R)
curl−→H0(div, R)

div−→L2
0(R)

0−→{0}
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2 Analytical and numerical background

with L2
0(R) := {v ∈ L2(R)|

´
R
v dx = 0} is still exact. This in particular implies (i) curl∇ = 0

and div curl = 0, (ii) a curl-free vector field (i.e., a field v with curl v = 0) can be written as a
gradient, and (iii) a divergence-free vector field (i.e., a field v with div v = 0) can be written
as a curl.
The Helmholtz decomposition states that every vector field can be decomposed into a curl-

free and a divergence-free part. We only give one of the many variants and refer to [ABDG98]
for more details, also in the case of a noncontractible domain.

Proposition 2.1.3 (Helmholtz decomposition). For every vector field v ∈ L2(R,C3) there
exists the (unique) orthogonal decomposition

v = curl w +∇θ with θ ∈ H1(R),w ∈ H(curl, R).

In particular, if v ∈ H0(curl, R) we have the orthogonal decomposition

v = z +∇θ with θ ∈ H1
0 (R), z ∈ H0(curl, R) ∩H(div 0, R),

where H(div 0, R) is the space of the divergence-free functions.

The orthogonality is meant w.r.t. L2(R). The scalar potential θ is characterized as solution
to the following problem: Find θ ∈ H1

0 (R) such that (∇θ,∇ψ)L2(R) = (v,∇ψ)L2(R) for all
ψ ∈ H1

0 (R).
The second part of the proposition immediately rises the question how H0(curl, R) ∩

H(div 0, R) is connected to H1(R). Partial integration directly shows that H0(curl, R) ∩
H0(div, R) coincides with H1

0(R). If only parts of the traces are known, the situation is more
complicated and additional conditions on the domain are required. More precisely, if R has a
C2-boundary or if R is a convex polyhedral Lipschitz domain, then H0(curl, R) ∩H(div, R)
and H0(div, R)∩H(curl, R) are both continuously embedded in H1(R), see [ABDG98]. Even
for general Lipschitz domains, a regular decomposition with z ∈ H1

0(R) can be obtained,
but the uniqueness and the L2-orthogonality are lost. More precisely, we have the following
results, see [Hip02,Hip15,PZ02].

Proposition 2.1.4 (Regular decomposition). For every v ∈ H0(curl, R), there exist z ∈
H1

0(R) and θ ∈ H1
0 (R) such that v = z +∇θ.

The Helmholtz as well as the regular decompositions are important tools in the analysis of
H(curl)-problems such as (2.6) and (2.8), since they admit a splitting into the kernel of the
curl-operator and its complement.

2.1.3 Weak solutions: Existence, uniqueness, stability and regularity
With the knowledge of the function spaces from the previous section, we can define and analyze
the variational formulations of our model problems (2.6)–(2.8). We also (briefly) discuss the
existence and uniqueness of solutions as well as stability and (higher) regularity results that
are available in the literature.
Weak solutions. The weak (or variational) formulations of the (strong) equations (2.6)–
(2.8) are obtained by multiplying with a test function and integrating by parts. In our cases,
one order of the derivative is shifted to the test function so that the weak problems require
less regularity of the solutions. In the sequel, we give precise assumptions on the domain and
the data for each problem.

Definition 2.1.5 (H(curl)-elliptic problem). Let Ω ⊂ R3 be an open, bounded, contractible
domain with polyhedral Lipschitz boundary. Let f ∈ H(div,Ω), µ ∈ L∞(Ω;R3×3) and κ ∈
L∞(Ω;C3×3). We define the sesquilinear form B : H(curl,Ω)×H(curl,Ω)→ C as

B(v,ψ) := (µ curl v, curlψ)L2(Ω) + (κv,ψ)L2(Ω).
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2.1 Maxwell’s and Helmholtz equations

The form B is obviously continuous, i.e., there is CB > 0 such that

|B(v,ψ)| ≤ CB‖v‖H(curl,Ω)‖ψ‖H(curl,Ω) ∀v,ψ ∈ H(curl,Ω).

We furthermore assume that B is H(curl)-elliptic, i.e., there is α > 0 such that

|B(v,v)| ≥ α‖v‖2H(curl) ∀v ∈ H0(curl).

We then seek u ∈ H0(curl,Ω) such that

B(u,ψ) = (f ,ψ)L2(Ω) ∀ψ ∈ H0(curl,Ω). (2.20)

This is the weak formulation associated with (2.6). The ellipticity assumption on B is a
condition on µ and κ. It is, for instance, fulfilled if (i) Im(κ) is uniformly positive definite or
if (ii) κ ∈ L∞(Ω,R3×3) and it is again uniformly positive definite. Case (i) occurs in an ohmic
conductor and case (ii) is attained in each time step of an eddy current simulation, see the
discussion in Section 2.1.1. For other settings yielding an H(curl)-elliptic problem we refer
to [FR05]. In Chapter 3, we study the H(curl)-elliptic problem of Definition 2.1.5 in detail.

Definition 2.1.6 (Helmholtz problem). Let G ⊂ R2 be an open, bounded, contractible
domain with C2-boundary. Let ε−1, µ ∈ L∞(G;R) be uniformly positive, g ∈ L2(∂G) and
k ∈ R with k ≥ k0 > 0. We define the sesquilinear form B1 : H1(G)×H1(G)→ C as

B1(v, ψ) := (ε−1∇v,∇ψ)L2(G) − k2(µv, ψ)L2(G) − ik(v, ψ)L2(∂G),

which is continuous. We then seek u ∈ H1(G) such that

B1(u, ψ) = (g, ψ)L2(∂G) ∀ψ ∈ H1(G). (2.21)

This is the weak formulation associated with (2.7). The definition for the three-dimensional
generalization (2.8) is similar.

Definition 2.1.7 (Maxwell problem). Let G ⊂ R3 be an open, bounded, contractible domain
with C2-boundary. Let ε−1, µ ∈ L∞(G;R) be uniformly positive and piecewise constant,
g ∈ L2

T (∂G) and k ∈ R with k ≥ k0 > 0. We define the sesquilinear form B2 : Himp(G) ×
Himp(G)→ C as

B2(v,ψ) := (ε−1 curl v, curlψ)L2(G) − k2(µv,ψ)L2(G) − ik(vT ,ψT )L2(∂G),

which is continuous. We then seek u ∈ Himp(G) such that

B2(u,ψ) = (g,ψT )L2(∂G) ∀ψ ∈ Himp(G). (2.22)

For the scattering problems, the domain is called G because we will later on have a second
(embedded) domain Ω, which is the actual scatterer. G is the (artificial) computational domain
introduced to truncate the whole space. Note that we include the wave propagation inside
the scatterer in our model and do not only set a condition on the boundary of the scatterer.
The assumption k ≥ k0 means that we are interested in medium and high frequencies and
thus, the explicit dependency of all constants on k is of interest. In Chapter 4, the scattering
problems of Definitions 2.1.6 and 2.1.7 are studied in detail.

Remark 2.1.8. In Definitions 2.1.6 and 2.1.7, we assume that the coefficients ε−1 and µ
are real- and scalar-valued. The existence and uniqueness results presented below can be
extended to the matrix-valued case and furthermore, ε−1 and µ may also be complex-valued
with Im(ε−1) negative semidefinite and Im(µ) positive semidefinite. Combinations of these
situations occur in Chapter 4. However, we present the existence and uniqueness results only
for the scalar- and real-valued case for simplicity as this is in agreement with the literature.
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2 Analytical and numerical background

Existence and uniqueness of solutions. For the H(curl)-elliptic problem of Definition
2.1.5, existence and uniqueness directly follows from the Theorem of Lax-Milgram-Babuška
[Bab71], repeated below for convenience.

Theorem 2.1.9 (Lax-Milgram-Babuška). Let X be a (complex) Hilbert space and B : X ×
X → C a sesquilinear form which is continuous and coercive, i.e., there exist c, C > 0 such
that for all v, ψ ∈ X

|B(v, ψ)| ≤ C‖v‖X‖ψ‖X (continuity) and |B(v, v)| ≥ c‖v‖2X (coercivity).

Given F ∈ X ′, there exists a unique u ∈ X such that

B(u, ψ) = F (ψ) ∀ψ ∈ X.

Since the sesquilinear forms for the Helmholtz problem in Definition 2.1.6 and the Maxwell
problem in Definition 2.1.7 are not coercive, the existence and uniqueness of a solution cannot
be proved with the Theorem of Lax-Milgram-Babuška. In fact, in most cases uniqueness is
shown first, i.e., it exists at most one solution. For that, it has to be proved that for a zero
right-hand side the solution (if it exists) is necessarily zero. For the Helmholtz as well as the
Maxwell equation, we obtain by inserting ψ = v in the corresponding sesquilinear form and
taking the imaginary part that v ∈ H1

0 (G) for the Helmholtz problem and that vT = 0 for
the Maxwell problem. Unique continuation principles [Ale12,Mon03,NW12] then give that v
or v are already zero on the whole domain.
The existence of solutions to (2.21) and (2.22) is proved with Fredholm theory. We repeat

the main theorem of the Fredholm alternative in the formulation of [Hip15, Theorem 13]
below.

Theorem 2.1.10 (Fredholm alternative). Let X,Y be Banach spaces, T : X → Y a bijective
bounded linear operator and K : X → Y a compact linear operator. Then,

T +K injective ⇔ T +K bijective ⇔ T +K surjective.

The sesquilinear forms B1 and B2 can be identified with an operator, which one then tries
to split in the way required by the Fredholm alternative. Note that we have already proved
that T +K is injective by proving the uniqueness of a solution. The splitting in T +K with
T bijective and K compact is accomplished by a so-called Gårding inequality: We add a term
to the original sesquilinear form so that is becomes coercive. The added term must give rise
to a compact operator in order to make Fredholm alternative applicable. For instance, for the
Helmholtz problem of Definition 2.1.6 we have the following result, see [Hip15].

Lemma 2.1.11 (Gårding inequality for the Helmholtz problem). Let the assumptions of
Definition 2.1.6 be fulfilled. There exist C, c > 0 (independent of k) such that for all v ∈ H1(G)

Re{B1(v, v) + Ck2‖v‖2L2(G)} ≥ c‖v‖
2
1,k,G.

The term Ck2‖v‖2L2(G) can be identified with a compact operator because of the compact
embedding of H1(G) into L2(G). The constant C only depends on the upper bound of µ.
For the Maxwell problem of Definition 2.1.7, the same idea is not applicable, since the

embedding of Himp into L2 is not compact due to the large kernel of the curl-operator.
Instead, we have to use a Helmholtz decomposition (similar to Proposition 2.1.3) and a so-
called sign-flip isomorphism. To be more precise, we have the following result.

Lemma 2.1.12 (Gårding-type inequality for the Maxwell problem). Let the assumption of
Definition 2.1.7 be fulfilled. Decompose v ∈ Himp as v = z + ∇θ with θ ∈ H1

0 (G) and
z ∈ Himp(G) ∩H(div 0, G). Define the sign-flip isomorphism SF (v) := z −∇θ. There exist
C, c > 0 such that for all v ∈ Himp

|B2(v, SF (v)) + C(k2‖z‖2L2(G) + k‖zT ‖2L2(∂G))| ≥ c‖v‖
2
imp,k,G.
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2.1 Maxwell’s and Helmholtz equations

The sign-flip isomorphism corrects the wrong sign of B2 on the subspace of gradients and
the added term corrects the sign for the remainder part. Mixed terms between z and ∇θ
in B2 either vanish due to the L2-orthogonality or can be absorbed using Cauchy-Schwarz
and Young’s inequality. The added term C(k2‖z‖2L2(G) + k‖zT ‖2L2(∂G)) can be identified with
a compact operator, see [Mon03, Theorem 4.7]. See [GM12] and [Hip15] (with the regular
decomposition) for similar Gårding-type inequalities.
Stability and higher regularity. Lax-Milgram-Babuška as well as Fredholm theory
immediately imply stability, i.e., the solution depends continuously on the data. For instance,
the solution u ∈ H0(curl) to (2.20) fulfills

‖u‖H(curl) ≤ C/c ‖f‖L2 .

For the scattering problems of Definitions 2.1.6 and 2.1.7, however, this stability constant
depends on the wavenumber k. Since we are interested in the behavior for large k, the explicit
dependency on k needs to be known. This cannot be achieved by Fredholm theory, but by
explicit calculations, mostly using special test functions or the so-called Rellich-Morawetz
identities (see [MS14] and the original papers [ML68,Mor75]).
At first, constant coefficients have been studied with the result that the stability constant

for the Helmholtz equation behaves like

• k0 for G polygonal and star-shaped with respect to a ball, see [Mel95] for d = 2 and
[CF06,Het07] for d ≥ 2;

• k0 for a C∞-domain G, see [BSW16];

• k1 for a general Lipschitz domain, see [Spe14], which improves the earlier result of k5/2,
see [EM12].

However, such a polynomial stability does not always exist as the counter-example of a so-
called trapping domain constructed in [BCG+11] shows. More recently, extensions to non-
constant coefficients have been studied such as scalar-valued Lipschitz coefficients in [BGP17]
or scalar and piecewise constant coefficients in [BCG17]. Detailed stability analysis is con-
ducted for the transmission problem in [MS17] and for general matrix-valued coefficients
in [GPS18]. The latter two works also discuss in how far the assumptions on the jumps
of the coefficients are necessary to avoid an exponential-type k-dependency of the stabil-
ity constant. In this spirit, [ST17] analyzes the one-dimensional case for coefficients with
several jumps. Nothing worse than exponential stability is possible, while the well-behaved
polynomial stability is even the dominant case. For the three-dimensional case of Maxwell’s
equation (2.22) less results are available. All works show a dependency of k0 for constant coef-
ficients [FW14b,HMP11,Moi11,WW14]. We study the issue of stability for problems like those
of Definitions 2.1.6 and 2.1.7 in more detail in Section 4.3.2 and obtain some generalizations
of the above mentioned results for matrix-valued, nonconstant coefficients.
Since the scattering problems of Definitions 2.1.6 and 2.1.7 are not coercive, the well-

posedness (provided by Fredholm theory) is expressed via inf-sub stability. For instance, for
the Helmholtz equation there exists a constant C > 0, which depends on k, such that

inf
v∈H1(G)\{0}

sup
ψ∈H1(G)\{0}

ReB1(v, ψ)

‖v‖1,k‖ψ‖1,k
≥ C.

It can be shown, see, e.g., [EM12], that C ≈ (kCstab)−1, where Cstab denotes the k-dependent
stability constant for the problem. A similar result also holds for Maxwell’s equation (2.22).
Hence, the knowledge of the k-dependency of the stability constant is also important for the
inf-sup constant.
Often the solutions to variational problems admit higher regularity than required in the

problem. From elliptic regularity theory we can deduce that the solution u of the Helmholtz
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problem of Definition 2.1.6 admits H2(G) regularity if ε−1 ∈ W 1,∞(G), g ∈ H1/2(∂G) and
G is either a C2-domain or convex. If ε is discontinuous or G not convex, the maximal
regularity depends on the shape of the interfaces or the boundary, respectively. We refer
to [Gri85, GT77, Pet10] for more details and discuss the higher regularity for our example
of the (homogenized) Helmholtz equation in Section 4.3. Using the Helmholtz or regular
decomposition, the regularity of solutions to problems in H(curl) can be re-traced to elliptic
regularity. For problems as in Definition 2.1.5, the solution u admits H1(curl)-regularity if
µ, κ ∈ W 1,∞(Ω), f ∈ H(div) and Ω is either a C2-domain or convex, see [Hip02]. In the
case of discontinuous coefficients or nonconvex domains, the regularity is reduced, for details
see [BGL13,CD00,CDN99]. These results also apply to Neumann-type boundary conditions.
In the case of impedance boundary conditions as in Definition 2.1.7, however, the maximal
regularity H1(curl) is only achieved for Lipschitz-continuous coefficients and g ∈ H

1/2
T (∂G)

on C2-domains, see [Moi11]. For polyhedral domains, even if they are convex, the regularity
is reduced, see [Moi11] and the results in Proposition 4.3.8.

2.2 Finite element discretizations

In this section, we present the standard discretization of our model problems, based on the
Finite Element Method (FEM). We only consider lowest order methods and (uniform) mesh
refinement, the latter is commonly denoted by h-FEM. In Section 2.2.1, we recall the main
ingredients for the FEM and some basic notations on meshes. In Section 2.2.2, we introduce
the finite element spaces for our model problems which approximate the spaces H1, H(curl),
H(div) and L2. In Section 2.2.3, we study stable interpolation operators on these spaces
more closely because they are an essential ingredient for one of our multiscale methods, the
Localized Orthogonal Decomposition.

2.2.1 Basic concepts of the Finite Element Method

Galerkin approximation. Our model problems can be abstractly written as variational
problems over a Hilbert space: Let X be a Hilbert space with dual X ′, B : X × X → C a
sesquilinear form and F ∈ X ′. Find u ∈ X such that

B(u, ψ) = F (ψ) ∀ψ ∈ X. (2.23)

The Galerkin projection, see, e.g., [Cia78, Section 2.1], provides a general technique for a
discrete approximation of the above problem. Let Xh be a finite-dimensional Hilbert space
and find uh ∈ Xh such that

B(uh, ψh) = F (ψh) ∀ψh ∈ Xh. (2.24)

Here, h denotes a discretization parameter and typically, a sequence of spaces Xh with h→ 0
is considered. Important questions are (i) whether uh is well-defined and (ii) how well uh
approximates u.
We only consider conforming methods, i.e., Xh ⊂ X. Since Xh is finite-dimensional, a basis

can be chosen so that the determination of the discrete solution uh is equivalent to the solution
of a linear system. For conforming methods the error fulfills the Galerkin orthogonality

B(u− uh, ψh) = 0 ∀ψh ∈ Xh.

For coercive and continuous sesquilinear forms uh is automatically well-defined and the Galer-
kin orthogonality directly gives the first abstract error estimate, the Céa lemma, see [BS08,
Theorem 2.8.1] and [Cia78, Theorem 2.4.1].
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Lemma 2.2.1 (Céa). Let B be coercive and continuous, u the solution to (2.23) and uh ∈
Xh ⊂ X the discrete solution to (2.24). It holds that

‖u− uh‖X . inf
vh∈Xh

‖u− vh‖X .

This means that the error of the conforming Galerkin approximation is determined by
the best approximation error. For convergence results (and rates) it is then sufficient to
study the approximation properties of the discrete space Xh. In the case of an indefinite
sesquilinear form fulfilling a Gårding inequality, however, already the well-posedness of the
discrete problem (2.24) is not directly given. For sufficiently fine meshes well-posedness and
also quasi-optimality results similar to the Céa lemma can be established, see [Sch74]. This
constraint on h eventually leads to so-called resolution conditions for the discretization of the
scattering problems of Definitions 2.1.6 and 2.1.7.

Meshes. The construction of the discrete finite element (FE) spaces Xh depends on an
underlying mesh of the computational domain (called Ω in this section). We make the following
assumptions on our mesh, see [Cia78, Section 2.1].

Definition 2.2.2 (Triangulation). A triangulation T h (simplicial mesh) is a finite subdivision
Th = {Tj |j ∈ I} of Ω with an index set I into simplices Tj (triangles for d = 2 and tetrahedra
for d = 3). Th is called regular if

1. it is nonoverlapping, i.e., int(Tj) ∩ int(Tl) = ∅ for j 6= l;

2. it is a covering of Ω, i.e.,
⋃
j∈I Tj = Ω;

3. it has no hanging nodes, i.e., Tj ∩ Tl for j 6= l is either empty, or a vertex or an edge or
a face of both elements.

We define the local mesh size hj := diam(Tj) and the global mesh size h = maxj∈I hj .
Instead of hj , we sometimes write hT .

Definition 2.2.3 (Shape regular and quasi-uniform). Let Th be a regular triangulation of Ω.
For an element Tj ∈ Th, we denote by ρj the incircle radius, i.e., the maximal number such
that a ball of radius ρj completely fits into Tj .

• Th is called shape regular if hj/ρj ≤ C for all j ∈ I with C independent of h.

• Th is called quasi-uniform if hj = Ch for all j ∈ I with C independent of h.

We always assume shape regularity of our triangulations, while quasi-uniformity is only
required in special cases. Shape regularity means that the minimal angle in the triangulation
is bounded away from zero, uniformly in h, i.e., it does not degenerate under mesh refinement.
It is useful to have a notion of neighboring elements. We directly quantify the “distance”

between elements of the triangulation by introducing mth level patches as follows, see Figure
2.1 for an illustration and cf., e.g., [GHV18,Pet17].

Definition 2.2.4 (Patches). Given any (possibly even not connected) subdomain R ⊂ Ω
define its neighborhood via

N(R) := int(∪{T ∈ Th|T ∩R 6= ∅})

and for any m ≥ 2 the patches

N1(R) := N(R) and Nm(R) := N(Nm−1(R)).
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Figure 2.1: Triangle T (in black) and its first and second order patches (additional elements
for N(T ) in dark gray and additional elements for N2(T ) in light gray).

Shape regularity implies that there is a uniform bound Col,m on the number of elements in
the mth level patch

max
T∈Th

card{K ∈ Th|K ⊂ Nm(T )} ≤ Col,m (2.25)

and (additional) quasi-uniformity implies that Col,m depends polynomially on m.
Finite element. Our Galerkin approximation is based on a shape regular triangulation Th
as introduced above, so that h is the essential discretization parameter. It remains to define
the spaces Xh, which is done separately for each element T ∈ Th. As already mentioned, we
consider Finite Element Methods as special case of a Galerkin approximation. In this context
a finite element is defined in general as follows, see [Cia78, Section 2.3] and [BS08, Definition
3.1.1].

Definition 2.2.5 (Finite Element). A finite element is a triple (K,PK ,DK), where

1. the geometric domain K is bounded and closed with nonempty interior and piecewise
smooth boundary;

2. the space of shape functions PK is a finite-dimensional space of functions on K;

3. the set of degrees of freedoms DK = {Lj}j is a basis of the dual space P ′K .

In this thesis, K will be a simplex (triangle or tetrahedron) and PK a set of polynomials
of total degree at most 1. Of course, for the same K and PK several choices of DK are still
possible. Since the degrees of freedom form a basis of the dual spaces, they can be utilized
to define a so-called nodal basis {φj}j of PK which fulfills Lj(φl) = δjl, see [BS08, Definition
3.1.2]. A so-called nodal interpolation operator IK can be defined for sufficiently smooth
functions v as

IK(v) =
∑
j

Lj(v)φj . (2.26)

The next step is to connect the local finite elements on each simplex T ∈ Th to a global
space. A global set of degrees of freedom D is obtained by identifying degrees of freedom at
interfaces between elements of the mesh. The local nodal bases can then be glued together
to a global basis, see [Cia78, Section 2.3] for details. Note that the global basis functions
only have a small support, which is one key feature of the FEM. Since we want to consider
conforming Galerkin methods only, the (local) degrees of freedom of the finite element have
to be chosen appropriately, so that the global finite element space is a subspace of X. Then
we can equivalently define Xh as

Xh = {vh ∈ X| vh|T ∈ PT ∀T ∈ Th}.

A global nodal interpolation operator IH can be defined via the local nodal interpolation
operator (2.26) on each element.
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2.2.2 Lowest order elements for H1, H(curl), H(div) and L2

In this section, we define the conforming finite element spaces for H1, H(curl), H(div) and
L2. Our main focus lies on H1 and H(curl) as these are the spaces for our model problems.
Although we repeat the main definitions, we assume that the reader is familiar with the
standard Lagrange finite elements for H1. As described in the previous section, we begin with
the local finite elements. Let K be a simplex in Rd with d ∈ {2, 3} and denote by Pp(K) the
polynomials of (total) degree at most p on K.

Definition 2.2.6 (Local Finite Element). 1. The FE for H1 (see [Mon03, Def. 5.46]) is
given by the local space PK = P1 and the degrees of freedom DK = {Lj}d+1

j=1 are defined
by Lj(p) = p(aj), where aj are the vertices of K. The nodal basis is denoted by λj .

2. Let d = 3. The FE for H(curl) (see [Mon03, Def. 5.33]) is given by the local space
PK = N := {a + b × x | a,b ∈ C3} and the degrees of freedom DK = {Lj}6j=1 are
defined by Lj(p) =

ffl
Ej

p · t ds, where Ej are the edges of K and t is the unit tangent.
The nodal basis φj for the edge Ej = conv{ai0 , ai1} with tangent from ai0 to ai1 is given
by (see [Mon03, Section 5.5.1])

φj = |Ej |(λi0∇λi1 − λi1∇λi0).

3. The FE for H(div) (see [Mon03, Def. 5.14]) is given by the local space PK = RT :=
{a + bx | a ∈ Cd, b ∈ C} and the degrees of freedom DK = {Lj}d+1

j=1 are defined by
Lj(p) =

ffl
Fj

p · n dσ, where Fj are the faces of K.

4. The FE for L2 is given by the local space PK = P0 and the local degree of freedom
DK = {L1} is defined by L1(p) =

ffl
K
p dx.

For the case of vector-valued functions in H1 or L2(Ω;C3), the presented scalar spaces are
applied component-wise. Note that the local spaces N and RT lie inbetween zeroth and first
order polynomials.
For a simple implementation of the FEM, local FE spaces and the shape (basis) function

should only be given on the so-called reference element T̂ = conv{0, e1, . . . , ed}, where ej is
the jth unit vector. A general simplex is the image of the reference element under an affine
map FT : T̂ → T , FT (x̂) = Ax̂+b. Using this affine map, transformations for shape functions
on the reference element to a general simplex can be defined. In order to also preserve the
degrees of freedom, we define the following (conforming) transformations, see [Zag06, Lemmas
4.10, 4.15].

Lemma 2.2.7 (Conforming transformations). Let T̂ be the reference element and FT the
reference map as above.

1. Let v̂ ∈ H1(T̂ ) and define v := v̂ ◦F−1
T . Then v ∈ H1(T ) and ∇xv = (A−1)T∇x̂v̂ ◦F−1

T .

2. Let v̂ ∈ H(curl, T̂ ) and define v := (A−1)T v̂◦F−1
T . Then v ∈ H(curl, T ) with curlx v =

det(A)−1A (curlx̂ v̂) ◦ F−1
T .

Identifying degrees of freedom associated with global edges or vertices of the mesh, we can
glue together the local finite elements to global spaces. Let ∆0,∆1 be the set of vertices and
edges of Th, respectively. Then we define

S(Th) =
⊕
aj∈∆0

span{λj} and N (Th) =
⊕
Ej∈∆1

span{φj}.

These spaces are conforming, i.e., they are subspaces of H1(Ω) and H(curl,Ω), respectively.
The global basis is denoted by {λa}a∈∆0 and {φE}E∈∆1 , respectively. The same procedure
can be applied to the finite elements for H(div) and L2. Thus, we can alternatively define
the spaces as follows, see [Mon03, Chapter 5].
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Definition 2.2.8 (Global spaces). We define the following global FE spaces

S(Th) = {v ∈ H1(Ω)| v|T ∈ P1(T ) ∀T ∈ Th}
N (Th) = {v ∈ H(curl,Ω)| v|T ∈ N (T ) ∀T ∈ Th}
RT (Th) = {v ∈ H(div,Ω)| v|T ∈ RT (T ) ∀T ∈ Th}
P0(Th) = {v ∈ L2(Ω)| v|T ∈ P0(T ) ∀T ∈ Th}.

Finite element spaces with zero traces can be obtained by setting the degrees of freedom on the
boundary to zero. They are denoted by S̊(Th), N̊ (Th) and R̊T (Th). The L2-conforming space
is sometimes generalized to other polynomial orders as Pp(Th) := {v ∈ L2(Ω)| v|T ∈ Pp(T )}.

The FE spaces are constructed such that the exact de Rham sequence of the continuous
spaces carries over to the discrete case. Let Ω ⊂ R3 be simply connected with connected
boundary. Then the discrete de Rham sequence

R id−→S(Th)
∇−→N (Th)

curl−→RT (Th)
div−→P0(Th)

0−→{0}

is exact, see [AFW06]. The same also holds true for the FE spaces with zero bound-
ary conditions. The sequence in particular implies the relations ∇S(Th) ⊂ N (Th) and
curlN (Th) ⊂ RT (Th).
In Section 2.2.1, we have already discussed the construction of nodal interpolation operators

Ih. For instance, for the spaces S(Th) and N (Th), the nodal interpolation operators ILh and
IEh , respectively, are defined for sufficiently smooth functions v and v as

ILh (v) =
∑
a∈∆0

v(a)λa and IEh (v) =
∑
E∈∆1

( 
E

v · t ds
)
φE .

In the same way also IFh for RT (Th) and IPh for P0(Th) are defined. Note that IPh is simply
the local L2-projection. Except for IPh , all other nodal interpolation operators need higher
regularity than H1, H(curl) or H(div). In particular, ILh is well-defined on H3/2+δ(Ω), IEh on
H1/2+δ(curl,Ω), and IFh on H(div) ∩H1/2+δ(Ω) for δ > 0. Moreover, the following diagram
commutes, see [Mon03, (5.59)]:

H1(Ω)
∇ //

⋃
H(curl)

curl //

⋃
H(div)

div //

⋃
L2(Ω)

IPh

��

H3/2+δ(Ω)

ILh
��

H1/2+δ(curl)

IEh
��

H1/2+δ(Ω) ∩H(div)

IFh
��

S(Th)
∇ // N (Th)

curl // RT (Th)
div // P0(Th)

Using this commuting diagram, the scaling properties of the transformations (from and to the
reference element), and the Bramble-Hilbert lemma, the interpolation errors can be estimated.

Proposition 2.2.9 (Estimates for the interpolation error). Let Th be a (three-dimensional)
regular and shape regular simplicial mesh and recall the spaces of Definition 2.2.8.

1. If v ∈ Hs(Ω) for s ∈ ( 3
2 , 2], ILh satisfies (see [Mon03, Thm. 5.48])

h−1‖v − ILh v‖L2(Ω) + ‖∇(v − ILh v)‖L2(Ω) . hs−1‖v‖Hs(Ω).

2. If v ∈ Hs(curl,Ω) for s ∈ ( 1
2 , 1], IEh satisfies (see [Mon03, Thm. 5.41, Rem. 5.42])

‖v − IEh v‖L2(Ω) . hs‖v‖Hs(curl) and ‖ curl(v − IEh v)‖L2(Ω) . hs‖ curl v‖Hs(Ω).
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3. If v ∈ Hs(Ω) and div v ∈ Hs(Ω) for s ∈ ( 1
2 , 1], IFh satisfies (see [Mon03, Thm. 5.25,

Rem. 5.26])

‖v − IFh v‖L2(Ω) . hs‖v‖Hs(Ω) and ‖ div(v − IFh v)‖L2(Ω) . hs‖ div v‖Hs(Ω).

All estimates also hold elementwise. (Similar) best approximation estimates are given in
[EG17b]. Furthermore, nodal-type interpolation operators for H(curl) can also be constructed
based on the Helmholtz decomposition, see [Cia16]. We refer to the next section for a detailed
discussion on (quasi-)interpolation operators, which are already well-defined on the spaces H1

and H(curl), respectively.

2.2.3 Stable interpolation operators
The nodal interpolation operators introduced in the previous section are utilized for a priori
error estimates, where we can expect some higher regularity of the analytical solution, see
Section 2.1.3. However, in situations where no additional regularity can (reasonably) be
assumed, the nodal operators lack the required stability (they may even not be well-defined)
and new approaches are needed. Examples of such situations are a posteriori error estimates
and decompositions of the function spaces in the spirit of the Local Orthogonal Decomposition
(LOD), see Section 2.3.4. We focus on interpolation operators for the latter situation and
introduce appropriate choices for the spaces H1 and H(curl), which are used in Sections 3.2
and 4.5.
Stable interpolation in H1. We seek an interpolation operator Πh : H1

0 (Ω) → S̊(Th)
which is a projection, i.e., Πh ◦ Πh = Πh, and has the following stability property: It fulfills
for all T ∈ Th and all v ∈ H1

0 (Ω)

h−1
T ‖v −Πh(v)‖L2(T ) + ‖∇(v −Πh(v))‖L2(T ) . ‖∇v‖L2(N(T )). (2.27)

The previous estimate implies that Πh is H1-stable. Moreover, the scaling in h is consistent
with scaling estimates for the L2-norm and H1-seminorm of discrete functions. Indeed, one
possible construction satisfying the required properties is the following: We concatenate the
L2-projection onto discontinuous affine elements P1(Th) (as defined in Section 2.2.2) with
the Oswald interpolation operator IOh : P1(Th)→ S̊(Th). The Oswald interpolation operator
takes the average of the different nodal values of a function in P1(Th). Let v ∈ P1(Th) and
define IOh (v) for any (interior) vertex a ∈ ∆̊0 via

IOh (v)(a) =
1

card{K ∈ Th|a ∈ K}
∑

T∈Th:a∈T
v|T (a).

Estimate (2.27) follows from the properties of the L2-projection and the Oswald interpolation
operator, see [DE12,Pet16]. We emphasize that the kernel of this interpolation operator Πh

can be computed efficiently because the construction only involves local problems. Other
possible choices are the local L2-projection and Clément-type operators, see [EHMP16] for a
detailed discussion. Note that the projection property can be relaxed by only requiring the
existence of a quasi-local and stable right inverse, see, e.g., [HP13,MP14].
Stable interpolation in H(curl). For H(curl), we also require a stable, (quasi-)local inter-
polation operator which fits into a commuting diagram (as the nodal interpolation operators
do). Constructing an operator that enjoys such properties is a very delicate task and a lot
of operators have been suggested with different backgrounds and applications in mind. The
nodal interpolation operator and the interpolation operators introduced in [DB05] are not
well-defined on H(curl) and hence lack the required stability. Various (quasi)-interpolation
operators are constructed as composition of smoothing and some (nodal) interpolation, such
as [Chr07, CW08,DH14, EG16, Sch05, Sch08]. For all of them, the kernel of the operator is
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practically hard or even impossible to compute and they only fulfill the projection or the
locality property. Finally, we mention the interpolation operator of [EG17b] which is local
and a projection, however, which does not commute with the exterior derivative. A suit-
able candidate (and to the author’s best knowledge, the only one) that enjoys all required
properties is proposed by Falk and Winther in [FW14a] and it is called πE from now on.
We briefly describe the construction of [FW14a] for the present case of the space H(curl)
in three space dimensions. The two-dimensional case is thoroughly described in the gentle
introductory paper [FW15].
Let again ∆0 and ∆1 denote the set of vertices and edges of Th, respectively, and let ∆̊0

and ∆̊1 denote the interior vertices and edges, i.e., the elements of ∆0 and ∆1 that are not a
subset of ∂Ω. As introduced in Section 2.2.2, the space N̊ (Th) is spanned by the well-known
edge-oriented basis (φE)E∈∆̊1

. Any vertex a ∈ ∆0 possesses a nodal patch (sometimes also
called macroelement)

ωa := int
(
∪{T ∈ Th : a ∈ T}

)
.

For any edge E ∈ ∆1 being the convex hull of the two vertices a1, a2 ∈ ∆0, i.e., E =
conv{a1, a2}, the extended edge patch reads ωextE := ωa1

∪ ωa2
. The restriction of the mesh

Th to ωext
E is denoted by Th(ωext

E ) and the restrictions of the finite element spaces S, N , and
RT are denoted accordingly. The operator Q1

E : H(curl, ωext
E ) → N (Th(ωext

E )) is defined for
any v ∈ H(curl, ωext

E ) via

(v −Q1
Ev,∇τ) = 0 ∀τ ∈ S1(Th(ωext

E )),

(curl(v −Q1
Ev), curlψ) = 0 ∀ψ ∈ N (Th(ωext

E )).

Given any vertex a ∈ ∆0, define the piecewise constant function z0
a by

z0
a =

{
|ωa|−1 in ωa,
0 in Ω \ ωa,

where |ωa| is the measure of the patch ωa. For an edge E ∈ ∆1 shared by vertices a1, a2 ∈ ∆0

such that E = conv{a1, a2}, define

(δz0)E := z0
a2
− z0

a1
.

Let for any E ∈ ∆1 the field z1
E ∈ R̊T (Th(ωext

E )) be defined by

div z1
E = −(δz0)E ,

(z1
E , curlψ) = 0, ∀ψ ∈ N̊ (Th(ωext

E )).

The operator M1 : L2(Ω;C3)→ N̊ (Th) maps any v ∈ L2(Ω;C3) to

M1v :=
∑
E∈∆̊1

|E|−1
(ˆ

ωext
E

v · z1
E dx

)
φE .

Recall that the weights in the (modified) Clément interpolation of a function v ∈ H1
0 are

|ωz|−1
´
ωz
v dx for all vertices z. The operator M1 generalizes this (local) averaging process

of the Clément operator to the case of edge elements. However, M1 is not a projection onto
the edge elements yet.
The operator Q1

a,− : H(curl, ωext
E ) → S1(Th(ωext

E )) associated with a vertex a ∈ E is the
solution operator of a local discrete Neumann problem. For any v ∈ H(curl, ωext

E ), the function
Q1
a,−v solves

(v −∇Q1
a,−v,∇τ) = 0 ∀τ ∈ S1(Th(ωext

E ))ˆ
ωext
E

Q1
a,−v dx = 0.
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Define the operator S1 : H0(curl,Ω)→ N̊ (Th) via

S1v := M1v +
∑
a∈∆̊0

(Q1
a,−v)(a)∇λa, (2.28)

where λa are the nodal basis functions of S(Th) as introduced in Section 2.2.2. S1 preserves
the degrees of freedom of N (Th) for all gradient functions ∇S(Th), which is a first step to the
projection property. However, S1 does not commute with the exterior derivative in general
and hence, needs to be further modified. The second sum on the right-hand side of (2.28) can
be rewritten in terms of the basis functions φE . The inclusion ∇S̊1(Th) ⊆ N̊ (Th) follows from
the principles of finite element exterior calculus [AFW06,AFW10]. Given an interior vertex
a ∈ ∆̊0, the expansion in terms of the basis (φE)E∈∆̊1

reads

∇λa =
∑
E∈∆̊1

( 
E

∇λa · tE ds
)
φE =

∑
E∈∆1(a)

sign(tE · ∇λa)

|E|
φE

where ∆1(a) ⊆ ∆̊1 is the set of all edges that contain a. Thus, S1 from (2.28) can be rewritten
as

S1v := M1v +
∑
E∈∆̊1

|E|−1
(
(Q1

a2(E),−u)(a2(E))− (Q1
a1(E),−u)(a1(E))

)
φE , (2.29)

where a1(E) and a2(E) denote the endpoints of E (with the orientation convention tE =
(a2(E) − a1(E))/|E|). The Falk-Winter interpolation operator πEH : H0(curl,Ω) → N̊ (Th) is
defined as

πEh v := S1v +
∑
E∈∆̊1

( 
E

(
(id−S1)Q1

Ev
)
· tE ds

)
φE . (2.30)

The interpolation operator can be constructed in a similar manner without the homogeneous
boundary values, i.e., in H(curl). Falk and Winther [FW14a] also construct corresponding
interpolation operators mapping onto S(Th) and RT (Th), which are omitted here for simplic-
ity. Note that the Falk-Winther projection onto S(Th) does not coincide with Πh presented
above, but fulfills (almost) the same estimates. The most important properties of πEh are
summarized in the following proposition.

Proposition 2.2.10. The projection πEh : H0(curl) → N̊ (Th) from (2.30) satisfies: For all
v ∈ H0(curl) and all T ∈ Th it holds that

‖πEh (v)‖L2(T ) ≤ Cπ
(
‖v‖L2(N(T )) + h‖ curl v‖L2(N(T ))

)
, (2.31)

‖ curlπEh (v)‖L2(T ) ≤ Cπ‖ curl v‖L2(N(T )). (2.32)

Furthermore, there exists a projection πFh : H0(div)→ R̊T (Th) to the Raviart-Thomas space
such that the following commutation property holds

curlπEh (v) = πFh (curl v).

A corresponding proof that is also valid (verbatim) in the case of homogeneous boundary
values can be found in [FW14a]. The interpolation operator πEh and its properties play a
crucial role in the Localized Orthogonal Decomposition for H(curl)-problems in Section 3.2.
Further (new) properties are proved in Lemma 3.2.1 and the representation of πEh as a matrix
is discussed in Section 3.2.6.
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2.3 Homogenization and Multiscale Methods
As explained in the introduction, our model problems have a multiscale structure, i.e., the
coefficients in the PDE may vary rapidly on small spatial scales. In this setting, standard FE
discretizations fail to yield good approximations to the exact solution unless the underlying
mesh is very fine which, however, is computationally infeasible. In this section, we therefore
present analytical and numerical homogenization procedures. In Section 2.3.1, we introduce
the analytical homogenization tool of two-scale convergence. Section 2.3.2 presents a general
framework of numerical multiscale methods and gives a short overview of different schemes
fitting into this framework. We then focus on two multiscale methods, the Heterogeneous Mul-
tiscale Method (HMM) in Section 2.3.3 and the Localized Orthogonal Decompositon (LOD) in
Section 2.3.4. Throughout this section, we consider a simple diffusion problem with Dirichlet
boundary conditions as model problem: Find uδ ∈ H1

0 (Ω) such that
ˆ

Ω

Aδ∇uδ · ∇ψ dx =

ˆ
Ω

fψ dx ∀ψ ∈ H1
0 (Ω). (2.33)

with a given right-hand side f ∈ L2(Ω) and a diffusion tensor Aδ ∈ L∞(Ω;Rd×d), where the
index δ emphasizes the multiscale nature. We assume that Aδ is uniformly elliptic independent
of δ.

2.3.1 Two-scale convergence
Two-scale convergence is a type of convergence for rapidly oscillating, (locally) periodic func-
tions, i.e., functions with a period δ � 1. We present the main function spaces and the im-
portant theorems concerning two-scale convergence without proofs. Furthermore, we present
the (by now standard) homogenization results for the diffusion problem (2.33) with Aδ(x) =
A(x, xδ ) for a locally periodic function. These results should be compared with the homog-
enization of the H(curl)-elliptic problem in Section 3.1.1 and the high contrast problems in
Section 4.2.
Periodic functions. First, we precisely define periodic functions and introduce some
associated function spaces. From now on let Y := (− 1

2 ,
1
2 )d be the unit cell.

Definition 2.3.1 (Periodic function spaces). A continuous function v ∈ C0(Rd) is called
Y -periodic if it fulfills

v(y) = v(y + ej), for 1 ≤ j ≤ d and all y ∈ Rd.

Here, ej are the standard unit vectors. Let l ∈ N0 ∪ {∞}, 1 ≤ p ≤ ∞ and s ∈ N0. We
define the following spaces of periodic functions: Cl](Y ) as the functions in Cl(Rd) which are
Y -periodic, L∞] (Y ) as the functions in L∞(Rd) which are Y -periodic for almost all y, Hs

] (Y )
and H](curl, Y ) as the closure of C∞] (Y ) w.r.t. the corresponding norms. The Sobolev space
of functions with zero average is defined as

Hs
],0(Y ) :=

{
v ∈ Hs

] (Y )
∣∣∣ˆ
Y

v(y) dy = 0
}
.

The subscript ] thus indicates periodic functions. They can also be seen as functions on
the (flat) torus.
Bochner-Lebesgue spaces are a generalization of the well-known Lp-spaces to functions with

values in a Banach space.

Definition 2.3.2 (Bochner-Lebesgue space). Let 1 ≤ p <∞ and X be a Banach space. The
Bochner-Lebesgue space is defined as

Lp(Ω;X) := {v : Ω→ X|v is measurable and ‖v‖X ∈ L
p(Ω)}
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2.3 Homogenization and Multiscale Methods

with the norm

‖v‖Lp(Ω;X) :=

(ˆ
Ω

‖v(x)‖pX dx
) 1
p

.

We use the short notation v(x, y) := v(x)(y) for v ∈ Lp(Ω;X). Finally, the space
C∞0 (Ω;C∞] (Y )) consists of all functions v(x, y) for which we have v(x, ·) ∈ C∞] (Y ) for fixed
x ∈ Ω and for which the map x ∈ Ω 7→ v(x, ·) ∈ C∞] (Y ) has Fréchet derivatives of all orders
and a compact support.
Two-scale convergence. The term “two-scale convergence” was first used by Allaire [All92]
for a result derived by Nguetseng [Ngu89]. We present the definition and the main properties
and refer to [All92,LNW02] for details. We denote weak convergence by ⇀.

Definition 2.3.3 (Two-scale convergence). A sequence (vδ)δ>0 ⊂ L2(Ω) two-scale converges
to a function v0 ∈ L2(Ω× Y ) if it fulfills

lim
δ→0

ˆ
Ω

vδ(x)ψ
(
x,
x

δ

)
dx =

ˆ
Ω

ˆ
Y

v0(x, y)ψ(x, y) dydx ∀ψ ∈ L2(Ω;C0
] (Y )).

In short form we write vδ
2
⇀ v0 for the two-scale convergence.

The two-scale limit is always unique. An example for two-scale convergence is the so-
called asymptotic expansion: If vδ is of the form vδ(x) = v0(x, xδ ) + δv1(x, xδ ) with smooth
functions v0, v1, we have vδ

2
⇀ v0. The test functions allowed in the definition of the two-

scale convergence can be slightly changed, where we mention the notion of admissible test
functions [All92, Definition 1.4]. Two-scale convergence can be considered as inbetween strong
and weak convergence, i.e., strong (norm) convergences implies two-scale convergence, which
again implies weak convergence, see [LNW02, Theorems 5 and 6] for details.
Finally, we give compactness results in L2 and H1, see [LNW02, Theorems 7 and 13].

Theorem 2.3.4 (Compactness in L2). Let (vδ)δ>0 ⊂ L2(Ω) be bounded. Then there exists a
subsequence (vδ′)δ′>0 and v0 ∈ L2(Ω× Y ) such that vδ′

2
⇀ v0.

Theorem 2.3.5 (Compactness in H1). Let vδ⇀v0 in H1(Ω). Then we have vδ
2
⇀ v0 and

there exists a subsequence (vδ′)δ′>0 and v1 ∈ L2(Ω;H1
],0(Y )) such that ∇vδ′

2
⇀ ∇v0 +∇yv1.

As H(curl) is not compactly embedded in L2(Ω) (in contrast to H1(Ω)), the two-scale limit
in L2 does not coincide with the weak limit, see [Vis07, p. 44]. We have the following result
for two-scale convergence in H(curl) from the literature [CH15,Wel01,Wel09,WK03].

Theorem 2.3.6 (Compactness in H(curl)). Let (vδ)δ>0 ⊂ H(curl) be a bounded sequence.
Then there exists a subsequence and functions v0 ∈ H(curl), v1 ∈ L2(Ω; H1

],0(Y )) with
divy v1 = 0 a.e. and v2 ∈ L2(Ω;H1

],0(Y )) such that

vδ
2
⇀ v0 +∇yv2 and curl vδ

2
⇀ curl v0 + curly v1.

Homogenization of the diffusion problem. We present the typical homogenization
results at the example of the diffusion problem (2.33). In particular, this reveals the applica-
tion of the compactness results of Theorems 2.3.4 and 2.3.5. We assume (only for the rest of
this subsection) that Aδ(x) = A(x, xδ ) in (2.33), where A ∈ C0(Ω;L∞] (Y ;Rd×d)) is uniformly
elliptic and each matrix entry is an admissible test function.

Proposition 2.3.7. The sequence (uδ)δ>0 of weak solutions to (2.33) converges weakly in
H1

0 (Ω) to u0 and we have ∇uδ
2
⇀ ∇u0 +∇yu1, where (u0, u1) ∈ H1

0 (Ω) × L2(Ω;H1
],0(Y )) is

the unique solution toˆ
Ω

ˆ
Y

A(x, y)(∇u0(x) +∇yu1(x, y)) · (∇ψ0(x) +∇yψ1(x, y)) dydx =

ˆ
Ω

f(x)ψ0(x) dx

∀(ψ0, ψ1) ∈ H1
0 (Ω)× L2(Ω;H1

],0(Y )).

(2.34)
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2 Analytical and numerical background

Problem (2.34) is called the two-scale equation and is derived from the original PDE (2.33)
through the application of Theorem 2.3.5, for details see [All92]. The two-scale equation is
again well-posed because its left-hand side is coercive and bounded over the space H1

0 (Ω) ×
L2(Ω;H1

],0(Y )). The influence of the macroscopic scale in x and the microscopic scale in y
can be decoupled as follows.

Proposition 2.3.8. Define the homogenized matrix Ahom via

Ahom(x)ej =

ˆ
Y

A(x, y)(ej +∇ywj(x, y)) dy for j = 1, . . . , d,

where wj ∈ L2(Ω;H1
],0(Y )) solves the cell problem

ˆ
Y

A(x, y)(ej +∇ywj(x, y)) · ∇yψ1(y) dx = 0 ∀ψ1 ∈ H1
],0(Y ), a.e. in Ω.

Then, (u0, u1) is the solution to (2.34) if and only if u0 ∈ H1
0 (Ω) is the unique solution to

ˆ
Ω

Ahom(x)∇u0(x) · ∇ψ(x) dx =

ˆ
Ω

f(x)ψ(x) dx ∀ψ ∈ H1
0 (Ω) (2.35)

and u1(x, y) =
∑d
j=1 wj(x, y) ∂

∂xj
u0(x).

Note that the homogenized equation (2.35) has the same structure as the original equation
(2.33). However, the (effective) diffusion tensor Ahom is not given in closed form, but requires
the solution of an additional PDE (at each point x).

2.3.2 General idea of multiscale methods
In this section we give a general motivation for numerical multiscale methods, see also [Hen11].
We again consider model problem (2.33) with diffusion tensor Aδ ∈ L∞(Ω;Rd×d) over a
general Hilbert space X, which is either H1

0 (Ω) or a finite-dimensional approximation space.
In the finite-dimensional case we assume that the corresponding (Galerkin) solution (which
we call again uδ) is a good approximation to the true solution. The basic idea is to split the
space into X = Xc ⊕ Xf . Here, Xc is a coarse-scale space which does not contain rapidly
oscillating functions, and Xf is a fine-scale space. Writing uδ = uc +uf and also splitting the
test functions gives the system: Find uδ = uc + uf ∈ X such that

ˆ
Ω

Aδ(∇uc +∇uf ) · ∇ψc dx =

ˆ
Ω

fψc dx ∀ψc ∈ Xc,

ˆ
Ω

Aδ(∇uc +∇uf ) · ∇ψf dx =

ˆ
Ω

fψf dx ∀ψf ∈ Xf .

Inspired by the second equation, we define the corrector operator Q : Xc → Xf . For given
ψc ∈ Xc, find Q(ψc) ∈ Xf such that

ˆ
Ω

Aδ(∇ψc +∇Q(ψc)) · ∇ψf dx =

ˆ
Ω

fψf dx ∀ψf ∈ Xf .

Obviously, we have Q(uc) = uf . Defining then the reconstruction operator R(ψ) := Q(ψ)+ψ,
we have uδ = R(uc). Consequently, the system can be rewritten as: Find uc ∈ Xc such that

ˆ
Ω

Aδ∇R(uc) · ∇ψc dx =

ˆ
Ω

fψc dx ∀ψc ∈ Xc,

ˆ
Ω

Aδ∇R(uc) · ∇ψf dx =

ˆ
Ω

fψf dx ∀ψf ∈ Xf .
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2.3 Homogenization and Multiscale Methods

The different multiscale methods deal with the following questions: (i) what should be
chosen as Xc and Xf? (ii) how to solve the macro-scale equation (evaluation of the integrals
etc.)? (iii) how to compute the reconstructions efficiently? The third question plays an
essential role since we still have to solve global fine-scale equations in order to determine the
reconstructions. Most work in the numerical methods is thus devoted to a suitable localization
(and discretization) of the fine-scale equation.
The above motivation is closely inspired by the framework of the Variational Multiscale

Method (VMM), where we refer to [HFMQ98, HS07, LM05, LM07] for further details, es-
pecially concerning localization strategies. From this framework the Localized Orthogonal
Decomposition (LOD) arose and we refer to [BFHR97,HFMQ98,HS07,MP14,Pet16] for his-
torically important steps. The idea of the LOD [HP13, MP14] is to take Xc = S̊(TH) as
a standard finite element space on a coarse mesh, i.e., a mesh which does not resolve the
oscillations of Aδ. The fine-scale space Xf is defined as the kernel of a stable interpolation
operator Π : H1

0 (Ω)→ Xc. The corrector Q : Xc → Xf is chosen as the (Aδ∇·,∇·)-orthogonal
projection (i.e.,

´
Ω
fψf is set to zero). It turns out that the corrector Q can be localized to

patches of macroscopic simplices leading to a computable numerical scheme. This localization
and the choice of the right-hand side for the fine-scale problems both contribute to question
(iii) raised above. Further details are explained in Section 2.3.4 and we refer to [Pet16] for
an overview. The idea to compute local reconstructions on each macroscopic element T ∈ TH
by solving the fine-scale equation in a neighborhood of this element is also the central idea
in the Multiscale Finite Element Method (MsFEM). However, it simply takes Xf = S̊(Th),
i.e., the standard FE space with Dirichlet conditions on a fine mesh. The left-hand side of
the macroscopic equation then involves averages of Aδ∇RT (uc) · ∇ψc, where RT is the local
reconstruction described above. We refer to [EH09,EHG04,HW97] for details on this method.
The Heterogeneous Multiscale (Finite Element) Method (HMM) [EE03, EE05] is closely re-
lated to the MsFEM. It differs in the choice of the local reconstructions and the averaging as
follows: The local problems are solved on small unit cells Y δj = xj + δY around the macro-
scopic quadrature points xj with periodic boundary conditions. The averaging takes place
over similar scaled and shifted (smaller) cells. In general, the domain for averaging is a subset
of the computational domain for the local fine-scale problems in the MsFEM and the HMM.
This so-called oversampling is employed to reduce the effects of the incorrect boundary con-
ditions in the local problems. The procedure of the HMM is strongly inspired by the findings
of analytical homogenization in Section 2.3.1. We give further details on the HMM and in
particular on this connection in Section 2.3.3.

2.3.3 Heterogeneous Multiscale Method

In this section, we present the HMM for the diffusion problem (2.33). For simplicity, we
restrict ourselves to lowest order Lagrange finite elements and hence also to zeroth order
quadrature rules. In the case of a locally periodic diffusion coefficient Aδ(x) = A(x, xδ ), the
method can be reformulated as a direct discretization of the two-scale equation, which is a
crucial technique also for the problems considered in Chapters 3 and 4. We end this section
by a short literature overview.

Formulations of the HMM. Let Y = (− 1
2 ,

1
2 )d be the unit cell. Denote with TH and Th

regular and shape regular simplicial partitions of Ω and Y , respectively. We assume that Th
is periodic in the sense that it can be wrapped to a regular triangulation of the torus, i.e.,
no hanging nodes and edges occur over the periodic boundary. Introduce appropriate index
sets such that TH = {Tj | j ∈ J} and Th = {Kl | l ∈ I}. The barycenter of Tj is denoted
by xj . The δ-scaled and shifted unit cells are denoted by Y δj = δY + xj , together with the
mappings yδj : Y δj → Y and xδj = (yδj )

−1 : Y → Y δj . A triangulation of the shifted unit cells
is then given by Th(Y δj ) = {K̃ | K̃ = xδk(K),K ∈ Th}. The global mesh sizes are defined as
H := maxj∈J diam(Tj) and h := maxl∈I diam(Kl). Note that h denotes the mesh width of
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2 Analytical and numerical background

the partition of the unit cell Y . We stress that it is in no way related to δ and can be of the
same order as H. The δ-scaled cubes Y δj consequently have a mesh size of δh. A coarse-scale
space is given by S̊(TH) consisting of linear finite elements. The fine-scale spaces are given
by S̃(Th(Y δj )), which consist of periodic, piecewise affine functions with zero average.
In the HMM [EE05,Ohl05] we seek uH ∈ S̊(TH) such that∑
j∈J
|Tj |

 
Y δj

Aδ(x)∇xRj(uH)(x) · ∇Rj(ψH)(x) dx = (f, ψH)L2(Ω) ∀ψH ∈ S̊(TH). (2.36)

The reconstruction Rj(ψH) ∈ ψH + S̃(Th(Y δ1j )) of ψH ∈ S̊(TH) solves
ˆ
Y
δ1
j

Aδ(x)∇xRj(ψH)(x) · ∇xφh(x) dx = 0 ∀φh ∈ S̃(Th(Y δ1j )).

As already mentioned, we take δ1 ≥ δ (oversampling). The formulation (2.36) can be natu-
rally extended to higher order quadratures; then the reconstruction has to be determined for
each quadrature point. Note that the diffusion tensor Aδ needs to be approximated for the
computation of the integrals in practice.
In the locally periodic case with Aδ(x) = A(x, xδ ), we can choose δ1 = δ. There is no need

for oversampling as the periodic boundary conditions imposed in the reconstruction problems
are exact. Moreover, in this case we define a piecewise constant approximation Aδ,h for (2.36)

as follows Aδ,h(x)|xδj (Kl) := A
(
xj ,

xδj (yl)

δ ) for all Tj ∈ TH and all Kl ∈ Th. The HMM strongly
resembles a discretized version of Proposition 2.3.8. The homogenized matrix is determined
at each macroscopic quadrature point by the solution of discretized cell problems. Then,
a discrete solution to the homogenized equation (2.35) is computed. This correspondence
between the analytical homogenization result and the numerical scheme is made precise at
the level of the two-scale equation in the following proposition, see [Ohl05].

Proposition 2.3.9. Define the piecewise constant approximation Ah as Ah(x, y)|Tj×Kl :=

A(xj , yl) for all Tj ∈ TH and all Kl ∈ Th. Let uH ∈ S̊(TH) be the HMM-approximation of
(2.36) (with the modifications for the periodic case mentioned above). Then uH is also the
solution to the discrete two-scale-equation: Find (uH , uh) ∈ S̊(TH)× P0(Ω; S̃(Th)) such that
ˆ

Ω

ˆ
Y

Ah(x, y)(∇xuH(x) +∇yuh(x, y)) · (∇xψH(x) +∇yψh(x, y)) dydx = (f, ψH)L2(Ω)

∀(ψH , ψh) ∈ S̊(TH)× L2(Ω; S̃(Th)).

We furthermore have the relation uh(x, y)|Tj×Y = 1
δ (Rj(uH)− uH)(δy).

The proof uses the transformation and chain rule and the mappings yδj and xδj to switch
the integration from Y δj to Y . Finally, we employ the periodicity of A and the fact that the
chosen quadrature rule is exact for the integrand. For details of the proof we refer to [Ohl05].
This reformulation means that, at least in the locally periodic case, we can consider the
HMM as a direct discretization of the two-scale equation with numerical quadrature. We
take this viewpoint for new formulations of HMMs in this thesis and emphasize that we can
always reformulate them in the “traditional” way. This interpretation is also very useful for
error analysis as standard arguments directly lead to a priori estimates and also a posteriori
estimators.
Literature survey. The Heterogeneous Multiscale Method as introduced by Engquist and
E in [EE03] is a very general concept and allows for a lot of different realizations. It is based on
a framework of reconstructions and local averaging, where only the local averages are passed as
fine-scale information to the coarse-scale problem. Hence, the HMM tries to extract effective
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2.3 Homogenization and Multiscale Methods

macroscopic information, but it is always possible to locally recover fine-scale information
via the reconstructions. For a specific HMM, one has the choice of the macroscopic and
microscopic solvers, the boundary conditions of the local fine-scale problems, and even of the
coupling between coarse- and fine-scale. We focus on the HMM based on the standard finite
element approach (sometimes also called FE-HMM, Finite Element Heterogeneous Multiscale
Method), but also finite volume or finite difference methods are possible, see [AE03,EEL+07].
Furthermore, we note that our formulation of the HMM in (2.36) is a Galerkin approach,
as the test function ψH is also reconstructed. Petrov-Galerkin formulations, where only the
ansatz function is reconstructed, are also possible and in particular interesting for nonlinear
problems [HO15].
For a general and detailed overview of the HMM, specifications, implementation, stability

and different applications, we refer to the original paper by Engquist and E [EE03], as well
as the survey articles [Abd09, AEEV12, EE05], where also the available error estimates are
given. First detailed a priori error theory is presented in [EMZ05] for linear and nonlinear
elliptic problems with locally periodic or random coefficients. The analysis is performed
in a semi-discrete setting, i.e., it is assumed that the local fine-scale problems are solved
analytically. The results, still in the semi-discrete setting, are improved later in [AS05]. The
HMM-approximation with piecewise polynomials of order p converges to the homogenized
solution with rate p in the H1-norm and rate p+ 1 in the L2-norm, i.e., the rates known for
standard FEM. The first contributions on an optimal fully discrete error analysis are [Ohl05]
in an energy norm and [Abd05] in the L2-norm. As already mentioned, [Ohl05] also introduces
the reformulation technique, which enables the first a posteriori error estimate. The result is
again achieved in an energy norm assuming locally periodic coefficients. A general a posteriori
error result in dependence on the homogenized matrix is given in [AN09].
Concerning wave propagation problems, we mention the works on the acoustic and elastic

wave equation [AG11, AH17b, EHR11] and [AGJ17], long-time effects in the wave equation
[AGS14,AP16a,AP16b,AP17,AR14,EHR12], the Helmholtz equation [CS14], and Maxwell’s
equations in frequency and time domain [CFS17,HS17]. We note that the HMM in [CFS17] is
very similar to the one studied in Section 3.1, but with a different treatment of the divergence-
free constraint in one of the cell problems and with a different approach to the a priori error
analysis. An HMM for perforated domains is analyzed in [HO09] and flow problems in porous
media are treated, for instance, in [AB15,AB16]. We emphasize that the HMM and its analysis
are not limited to (locally) periodic problems, see [Glo06,HO15].

2.3.4 Localized Orthogonal Decomposition
In this section, we present the LOD for the diffusion problem (2.33). For this method no
periodicity of Aδ is assumed. We even do not require scale separation of a coarse- and a
fine-scale and therefore, drop δ from the notation of A and the solution u.
Formulation of the LOD. Let TH be a coarse triangulation of Ω in the sense that it
does not resolve the rapid variations of A. We denote by A : H1

0 (Ω) × H1
0 (Ω) → R the

bilinear form induced by the left-hand side of (2.33), i.e., A(v, ψ) := (A∇v,∇ψ)L2(Ω). As
already mentioned, the idea is to write H1

0 (Ω) = S̊(TH) ⊕ W with W = ker ΠH , where
ΠH : H1

0 (Ω) → S̊(TH) is a suitable projection, such as described in Section 2.2.3. We define
the correction operator Q : H1

0 (Ω)→W as the A-orthogonal projection via

A(Qv, w) = −A(v, w) ∀w ∈W. (2.37)

Introducing the multiscale space V msH := (id +Q)S̊(TH), we have the direct sum splitting
H1

0 (Ω) = V msH ⊕W , which is orthogonal w.r.t. A. The (ideal) LOD is then a generalized FEM
(gFEM) over the space V msH , i.e., we seek uH ∈ S̊(TH) such that

A
(
(id +Q)uH , (id +Q)ψH

)
=
(
f, (id +Q)ψH

)
L2(Ω)

∀ψH ∈ S̊(TH). (2.38)
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Denoting e = u − (id +Q)uH , where u solves (2.33), we observe ΠHe = 0, i.e., e ∈ W . With
the orthogonality of V msH and W , we obtain

‖∇e‖2L2(Ω) . A(e, e) = A(u, e) = (f, e)L2(Ω) = (f, e−ΠHe)L2(Ω).

At this point, the approximation properties of ΠH play a crucial role. With (2.27), we obtain
a convergence rate of H for the error independent of the oscillations of A and the regularity
of u.
Problem (2.37), however, is global and therefore very costly to solve. In order to obtain a

localized method the computation has to be truncated to patches Nm(T ) of diameter approx-
imately mH, see Definition 2.2.4. For a discrete function vH ∈ S̊(TH) this localized corrector
is computed as follows: For all T ∈ TH , we solve for QT,m(vH) ∈W (Nm(T )) such that

ANm(T )(QT,m(vH), w) = −AT (vH , w) ∀w ∈W (Nm(T )). (2.39)

HereANm(T ) andAT denote the restriction ofA to Nm(T ) and T , respectively, andW (Nm(T ))
are the functions in W vanishing outside Nm(T ). Defining the corrector operator Qm via

Qm(vH) =
∑
T∈TH

QT,m(vH),

we seek the solution uH,m ∈ S̊(TH) to (2.38) with Q replaced by Qm. Observe that Qm
is computed by solving local decoupled problems. The question is how this truncation to
the patches Nm(T ) affects the approximation properties of the corrector. For the diffusion
model problem, we have the following crucial estimate, see, e.g., [MP14]: There is 0 < β < 1,
independent of H and m, such that for all vH ∈ S̊(TH)

‖∇(Q−Qm)(vH)‖L2(Ω) .
√
Col,m β

m‖∇vH‖L2(Ω)

with the overlap constant Col,m from (2.25). This means that the error introduced by lo-
calization is decaying exponentially in the so-called oversampling parameter m. Choosing
m ≈ | logH|, the LOD-approximation uH,m still converges to u with rate H. Note that the
localized corrector problems (2.39) still need to be discretized since the spaces W (Nm(T )) are
infinite dimensional. For this step, a fine triangulation Th of Ω is used, which resolves the
rapid variations of A.
Summarizing, we see that the error estimates for the LOD crucially depend on the properties

of the interpolation operator and the exponential decay of the corrector, see [Pet16].
Literature survey. As already mentioned, the LOD as introduced in [MP14] arose from the
VMM framework [HFMQ98,HS07]. It reuses the idea of decomposing the solution space into
a coarse and a fine part and in particular studies the localization of the fine-scale corrector
problems. It is based on simplicial or quadrilateral partitions of the domain, but also meshless
methods are possible [HMP15]. The LOD as presented in (2.38) uses a Galerkin ansatz,
but also Petrov-Galerkin methods show the same stability and convergence behavior while
requiring less communication at the correctors, see [EGH15, Pet16]. The correction on the
right-hand side of (2.38) can be omitted and still some error estimates remain valid, see
[GP17a] for details. The LOD has been extensively studied for Lagrange finite elements, with
a wide range of applications such as elliptic diffusion problems [HM14,HP13,MP14], eigenvalue
problems [MP15] and parabolic equations [MP18], amongst others. We refer to [Pet16] and
[EHMP16] for details on the method and its implementation, where also a lot of application
cases are mentioned. Aside from Lagrange finite elements, an LOD in Raviart-Thomas spaces
is given in [HHM16].
The acoustic wave equation was treated in [AH17a,AH17b,PS17]. Elliptic diffusion prob-

lems with high contrast are studied in [HM17,PS16]. For high-frequency wave propagation
the LOD is not only able to deal with rapidly varying coefficients, but also to relax the
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resolution condition between the mesh size and the wavenumber. Instead of the standard
condition kαH . 1 with α > 1, only a natural mesh resolution of kH . 1 is needed, pro-
vided that the oversampling parameter is chosen as m ≈ | log k|. This has been analyzed
in [BGP17,GP15,Pet17] for the Helmholtz equation and in [BG16] for elastodynamics. Sec-
tion 4.5 also discusses this issue for two-scale Helmholtz-type problems.
The methodology of the LOD can be re-interpreted and connected to other existing methods

in various ways. With a different localization strategy, it can be viewed as an iterative method
(additive subspace correction method), which also yields a new technique for proving the
exponential decay of the corrector, see [KPY18, KY16]. A game-theoretic interpretation,
using so-called gamblets, was recently given in [Owh17], see also [OZ17]. Finally, the LOD is
also strongly connected to the computation of homogenized matrices as they occur in periodic
and stochastic homogenization, see [GP17a,GP17b].
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3 Multiscale methods for
H(curl)-problems

In this chapter, we present and analyze two multiscale methods for the H(curl)-elliptic problem
(2.20) with possibly rapidly varying coefficients. Specifically, we study the situation of Defini-
tion 2.1.5. We recall that we assumed f ∈ H(div,Ω), µ ∈ L∞(Ω;R3×3), and κ ∈ L∞(Ω;C3×3),
where Ω ⊂ R3 is an open, bounded, contractible domain with polyhedral Lipschitz boundary.
We defined a sesquilinear form B over Ω. This can be generalized to any open subset R ⊂ Ω
as follows: BR : H(curl, R)×H(curl, R)→ C is defined as

BR(v,ψ) := (µ curl v, curlψ)L2(R) + (κv,ψ)L2(R), (3.1)

and we set B := BΩ. We recall that BR is continuous and that B is assumed to be H(curl)-
coercive. The weak solution u ∈ H0(curl,Ω) solves

B(u,ψ) = (f ,ψ)L2(Ω) ∀ψ ∈ H0(curl,Ω).

We refer to Section 2.1.1 for a derivation of the model problem and the relations of µ, κ,
and f to physical quantities. Rapidly varying coefficients occur in composite materials with
fine-scale features or photonic crystals.
The assumption of contractibility of Ω is only required to ensure the existence of local

regular decompositions later used in the proof of Lemma 3.2.1. We note that this assumption
can be relaxed by assuming that Ω is simply connected in certain local subdomains formed
by unions of tetrahedra (i.e., in patches of the form N(ΩP ), using the notation from Lemma
3.2.1).
If we discretize the model problem from Definition 2.1.5 in the lowest order Nédélec finite

element space N̊ (TH), we have the classical error estimate of the form (see Section 2.2.2):

inf
vH∈N̊ (TH)

‖u− vH‖H(curl) ≤ CH
(
‖u‖H1(Ω) + ‖ curl u‖H1(Ω)

)
.

However, if the coefficients µ and κ are discontinuous, the necessary regularity for this estimate
is not available, see [BGL13,CDN99,Cos90]. On the other hand, if µ and κ are sufficiently
regular but rapidly oscillating on a fine scale, then we face the “blow-up” with ‖u‖H1(Ω) +
‖ curl u‖H1(Ω) → ∞ for the oscillation length going to zero. This makes the estimate useless
in practice, unless the mesh size H becomes very small to compensate for the blow-up. The
observation does not change if we replace the H(curl)-norm by the L2(Ω)-norm since both
norms are equivalent in the kernel of the curl-operator, i.e., on the subspace of gradient
functions. Therefore, we want to decompose the exact solution into a macroscopic part, which
does not involve fast oscillations and can thus be approximated on a rather coarse mesh, and
a fine-scale corrector contribution. Two main questions then arise: (i) What approximation
properties does the macroscopic part have? (ii) Can we find a computable approximation for
the fine-scale corrector? Both questions are tackled in this chapter.
Section 3.1 considers locally periodic coefficients and analyzes a Heterogeneous Multiscale

Method (HMM). In Section 3.2, we extend our findings to the general multiscale H(curl)-
problem beyond the assumptions of (local) periodicity and scale separation by the means
of a Localized Orthogonal Decomposition (LOD). The results presented in this chapter are
published in [GHV18,HOV16a,HOV16b,Ver17b].
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3.1 Heterogeneous Multiscale Method for locally periodic
problems

In this section we study the H(curl)-elliptic problem from Definition 2.1.5 for so-called locally
periodic coefficients. In particular, we introduce the periodicity length δ � 1, which is small
in comparison to the wavelength and the typical length scale of the computational domain Ω.
We make the following additional assumptions on the coefficients.

Assumption 3.1.1. Let the assumptions of Definition 2.1.5 be fulfilled. Define κδ(x) :=
κ(x, xδ ), µδ(x) := µ(x, xδ ), where the coefficients µ and κ fulfill µ ∈ C0(Ω;L∞] (Y ;R3×3)) and
κ ∈ C0(Ω;L∞] (Y ;C3×3)). We assume that the upper and lower bounds on µ and κ (implicitly
contained in the assumptions of Definition 2.1.5) are uniform in x and y.

The regularity assumptions on µ and κ imply that these functions are admissible test
functions for two-scale convergence in the sense of Allaire, see [All92, Def. 1.4 and Cor. 5.4].
This is needed for the homogenization results in Section 3.1.1. We indicate the coefficients
and the solution of our locally periodic problem with the subscript δ. More precisely, we seek
uδ ∈ H0(curl) such that

ˆ
Ω

µδ curl uδ · curlψ∗ + κδuδ ·ψ∗ dx =

ˆ
Ω

f ·ψ∗ dx ∀ψ ∈ H0(curl). (3.2)

The sesquilinear form on the left-hand side is uniformly coercive in δ and hence, we have the
uniform estimate ‖uδ‖H(curl) ≤ C‖f‖L2 with C = C(µ, κ,Ω).
We present homogenization results for this problem in Section 3.1.1. In Section 3.1.2,

the Heterogeneous Multiscale Method is introduced and its numerical analysis is presented.
Numerical experiments in Section 3.1.3 confirm our theoretical findings. All proofs are detailed
in [HOV16b].

3.1.1 Homogenization results
In this section we present homogenization results for time-harmonic Maxwell’s equations in
a two-scale formulation, a formulation with cell problems and macroscopic equations, and a
corrector result. We emphasize that although Maxwell’s equations have been homogenized in
the literature [AS11,Wel01,WK03], amongst others, the focus has mostly been on macroscopic
(homogenized) problems as (3.7), but not on two-scale limit equations. A two-scale result
similar to the following theorem has been presented recently in [CFS17, CH15] and for the
coupled system of first-order equations in [WK03]. The latter includes some incorrect terms
as remarked in [Wel09].

Theorem 3.1.2 (Two-scale equation). Under Assumption 3.1.1, let uδ ∈ H0(curl) be a
solution to (3.2). Then there exists a solution triple u = (u0,u1, u2) of functions u0 ∈
H0(curl), u1 ∈ L2(Ω; H1

],0(Y )) with divy u1 = 0 a.e., and u2 ∈ L2(Ω;H1
],0(Y )) such that

uδ⇀u0 in H0(curl), uδ
2
⇀ u0 +∇yu2, curl uδ

2
⇀ curl u0 + curly u1.

Considered in H := H0(curl) × L2(Ω; H1
],0(Y )) × L2(Ω;H1

],0(Y )), the triple u is the unique
solution to

B(u,ψ) = (f ,ψ0)L2(Ω) ∀ψ = (ψ0,ψ1, ψ2) ∈ H (3.3)

with the two-scale sesquilinear form B defined by

B(v,ψ) :=

ˆ
Ω

ˆ
Y

µ (curl v0 + curly v1) · (curlψ∗0 + curly ψ
∗
1) + divy v1 divy ψ

∗
1

+ κ (v0 +∇yv2) · (ψ∗0 +∇yψ∗2) dydx.
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In order to determine u1 in the two-scale equation, we have to solve the following problem:
Find u ∈ H(curl, Y ) ∩H(div, Y ) with div u = 0 a.e. in Y such thatˆ

Y

µ curl u · curlψ∗ dy = 0 ∀ψ ∈ H(curl, Y )

with appropriate boundary conditions. The divergence-free constraint div u = 0 is necessary
to guarantee the uniqueness of the solution, as otherwise the solution is only determined up
to a gradient term. However, divergence-free finite elements are quite rare and thus, it is more
convenient to include the constraint implicitly in the equation.
Using divergence-regularization, we seek u ∈ H1(Y ) such thatˆ

Y

µ curl u · curlψ∗ + div u divψ∗ dy = 0 ∀ψ ∈ H1(Y ).

Both problems are equivalent for convex domains, see [CD00]. This geometrical condition
is no constraint here as the cell problem is always posed on the obviously convex unit cube
Y . There are other possibilities to deal with a divergence-free constraint, cf. [CFS17]. The
introduction of Lagrange multipliers (see [CD00]) leads to a mixed problem, which increases
the computational costs and complicates the error analysis. The s-regularization suggested
in [DLTZ12] makes the reformulation of the HMM later on (Proposition 3.1.8) impossible,
since different orders of derivatives appear.

Definition 3.1.3 (Cell problems and homogenized matrices). The cell problems are defined
as follows: Find wk ∈ L2(Ω; H1

],0(Y )), wk ∈ L2(Ω;H1
],0(Y )) such that a.e. in Ω there holds

ˆ
Y

µ (ek + curly wk) · curlψ∗ + divy wk divψ∗ dy = 0 ∀ψ ∈ H1
],0(Y ), (3.4)

ˆ
Y

κ (ek +∇ywk) · ∇ψ∗ dy = 0 ∀ψ ∈ H1
],0(Y ). (3.5)

With the (unique) solutions to the cell problems (3.4)–(3.5) we define the homogenized ma-
trices (

µhom(x)
)
j,k

=

ˆ
Y

µ(x, y)(ek + curly wk(x, y)) · ej dy,(
κhom(x)

)
j,k

=

ˆ
Y

κ(x, y)(ek +∇ywk(x, y)) · ej dy, j, k = 1, 2, 3.

(3.6)

The homogenized matrices are used to formulate the macro-scale problem for u0, which has
the same structure as our original problem.

Theorem 3.1.4 (Equivalence of two-scale and homogenized equation). The triple (u0,u1, u2)
is the unique solution to (3.3) if and only if u0 ∈ H0(curl) solvesˆ

Ω

µhom curl u0 · curlψ∗ + κhom u0 ·ψ∗ dx =

ˆ
Ω

f ·ψ∗ dx ∀ψ ∈ H0(curl) (3.7)

with the correctors u1, u2 defined as u1 =
∑3
k=1(curl u0)k wk, u2 =

∑3
k=1(u0)k wk. Here,

the matrices µhom, κhom are defined through (3.6) and wk and wk are the solutions to the cell
problems (3.4) and (3.5), respectively.

We end this section by a corrector-type result, which relates the two-scale solution to the
asymptotic expansion. The assumption in the theorem below can, for instance, be fulfilled
if the mentioned functions belong to C0(Ω;L2

] (Y )), which is a regularity assumption on the
geometry and the material parameters. Other function spaces giving admissible test functions
for two-scale convergence are mentioned in [LNW02, Theorem 3]. See also the related corrector
result in [WK03] for the coupled first-order system of equations for the electric and magnetic
field.
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Theorem 3.1.5 (Strong convergence in H(curl)). Let µ, κ, u1, curlx u1, curly u1, ∇xu2,
and ∇yu2 be admissible test functions for two-scale convergence in the sense of Allaire [All92,
Definition 1.4]. Then it holds that∥∥∥uδ − (u0 + δ

(
u1

(
·, ·
δ

)
+∇u2

(
·, ·
δ

)))∥∥∥
H(curl)

δ→0−→ 0.

The theorem shows that the correctors u1 and u2 represent a Helmholtz decomposition
of the first order term in the asymptotic expansion. Since on the gradient subspace, the
H(curl)-norm and the L2(Ω)-norm are equivalent, we see that in particular u2 carries im-
portant information about the solution uδ itself. Thus, in contrast to the case of diffusion
problems, the correctors u1, u2 have to be considered as well (and not only the weak limit
u0) in order to get a good approximation of the heterogeneous solution uδ. This is a crucial
observation. Consequently, the HMM is not only constructed to approximate u0, but requires
to approximate u1 and u2 as well.
This convergence result is not only interesting for the design of the HMM, but also serves

as a good motivation for the general considerations in Section 3.2. Under the assumptions of
Theorem 3.1.5 we derive the estimates

δ−1
∥∥∥δu1

(
·, ·
δ

)∥∥∥
L2(Ω)

+
∥∥∥δu1

(
·, ·
δ

)∥∥∥
H(curl)

. ‖u0‖H(curl),

δ−1
∥∥∥δu2

(
·, ·
δ

)∥∥∥
L2(Ω)

+
∥∥∥δ∇u2

(
·, ·
δ

)∥∥∥
L2(Ω)

. ‖u0‖H(curl)

(3.8)

from the boundedness of the cell problem solutions and the homogenized solution u0. These
two estimates reveal that the first-order corrector Kδ := δu1 + δ∇u2 is H(curl)-stable and
that u0 must be a good approximation of uδ in H−1(Ω). In fact, using (3.8) we have for any
v ∈ H1

0(Ω) with ‖v‖H1 = 1 that∣∣∣ˆ
Ω

Kδ · v
∣∣∣ = δ

∣∣∣ˆ
Ω

u1

(
·, ·
δ

)
· v −

ˆ
Ω

u2

(
·, ·
δ

)
div v

∣∣∣ ≤ δ(‖u1‖L2(Ω) + ‖u2‖L2(Ω)) . δ‖u0‖H(curl).

This implies strong convergence in H−1(Ω), i.e., ‖uδ − u0‖H−1(Ω) → 0 for δ → 0. Section 3.2
is concerned with the question whether these approximation results can be transferred to a
discrete setting beyond the assumption of periodicity.
Moreover, a δ-explicit estimate for the homogenization error has been proved in [CH15,

Theorem 3.1]. Assuming sufficient regularity of the data and the analytical two-scale solution,
we have ∥∥∥uδ − (u0 + δ

(
u1

(
·, ·
δ

)
+∇u2

(
·, ·
δ

)))∥∥∥
H(curl)

≤ Cδ1/2. (3.9)

3.1.2 Heterogeneous Multiscale Method and numerical analysis
In this section we introduce the Heterogeneous Multiscale Method (HMM) for problem (3.2),
reformulate it as a discretization for the two-scale equation (3.3) and present its main a priori
error estimates.

The HMM. We reuse the notation and the ideas already introduced in Section 2.3.3. Let
TH = {Tj |j ∈ J} and Th = {Sl|l ∈ I} with index sets J, I denote regular and shape regular,
simplicial partitions of Ω and Y , respectively, where TH is periodic in the sense of Section
2.3.3 (i.e, no hanging nodes or edges over the periodic boundary). The δ-scaled and xj-
shifted unit cubes are denoted by Y δj = δY + xj , together with the mappings yδj : Y δj → Y

and xδj = (yδj )
−1 : Y → Y δj . A triangulation of the shifted unit cubes is then given by

Th(Y δj ) = {S̃|S̃ = xδj(S), S ∈ Th}. We define the global mesh sizes H := maxj∈J diam(Tj)

and h := maxl∈I diam(Sl). Finally, we choose discrete function spaces N̊ (TH) ⊂ H0(curl),
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3.1 Heterogeneous Multiscale Method for locally periodic problems

S̃(Th(Y δj )) ⊂ H1
],0(Y δj ), and S̃(Th) := (S̃(Th))3. The Nédélec edge elements N and the linear

Lagrange elements S are defined as in Section 2.2.2. We denote by S̃ the linear Lagrange
elements with periodic boundary values and zero mean value. We pick numerical quadrature
rules that are exact for the given test and ansatz spaces: In our case of piecewise linear
functions, it suffices to choose the one-point rule {xj , |Tj |} with the barycenter xj for the
curl-part and a second order quadrature rule Q(2)

j := {ql, xl}l with l = 1, . . . , 4 for the identity
part.
With these preliminaries we are able to define the HMM (see also [EE03,EE05,Ohl05]).

Definition 3.1.6 (HMM). The HMM-approximation of (3.2) is a discrete solution triple
(uH ,R1(uH),R2(uH)), where uH ∈ N̊ (TH) is defined as the solution to

BH(uH ,ψH) = (f ,ψH)L2(Ω) ∀ψH ∈ N̊ (TH), (3.10)

where the discrete sesquilinear form is given by

BH(vH ,ψH) :=
∑
j∈J

|Tj |
δ3

ˆ
Y δj

µδh(x) curl Rj,1(vH)(x) · curlψ∗H(x) dx

+
∑
j∈J

∑
l∈Q(2)

j

ql
δ3

ˆ
Y δl

κδh(x)Rl,2(vH)(x) ·Rl,2(ψH)∗(x) dx
(3.11)

with the piecewise constant approximations κδh|xδj (Sl)(x) := κ
(
xj ,

xδj (yl)

δ

)
for all Sl ∈ Th and µδh

defined analogously. The local reconstructions Rj,1(vH) ∈ vH |Y δj + S̃(Th(Y δj )), Rj,2(vH) =

vH(xj)|Y δj +∇yvh with vh ∈ S̃(Th(Y δj )) are defined as the solutions to the local cell problems
ˆ
Y δj

µδh(x) curl Rj,1(vH) · curlψ∗h + div(Rj,1(vH)− vH) divψ∗h dx = 0 ∀ψh ∈ S̃(Th(Y δj )),

ˆ
Y δj

κδh(x)Rj,2(vH) · ∇ψ∗h dx = 0 ∀ψh ∈ S̃(Th(Y δj )).

We reformulate the reconstructions of the HMM solution triple to draw a parallel between
them and the analytical correctors.

Remark 3.1.7 (Role of the reconstructions). Let (uH ,R1(uH),R2(uH)) denote the HMM-
approximation from Definition 3.1.6. Setting Kj,1(uH) = Rj,1(uH)−uH , we have Kj,1(uH) ∈
S̃(Th(Y δj )). Denote by Kj,2(uH) ∈ S̃(Th(Y δj )) the function fulfilling ∇Kj,2(uH) = Rj,2(uH)−
uH(xj). We then define the discrete fine-scale corrections uh,1 ∈ P0(TH ; S̃(Th)) and uh,2 ∈
P1(TH ; S̃(Th)) as

uh,1(x, y) :=
1

δ
Kj,1(uH)(δy), ∀x ∈ Tj ∀Tj ∈ TH

uh,2(xl, y) :=
1

δ
Kl,2(uH)(δy) ∀xl ∈ Q(2)

j ∀Tj ∈ TH ,

where the space of piecewise p-polynomial (w.r.t. x) discrete functions Pp(TH ;Xh) is defined
in Section 2.2.2. The discrete fine-scale corrections uh,1, uh,2 are discrete counterparts of the
analytical correctors u1 and u2 introduced in Theorem 3.1.2. The specific relation of both
will be clear from Proposition 3.1.8 below. Therefore, these corrections (or equivalently the
reconstructions) are an important part of the HMM-approximation. As discussed at the end
of Section 3.1.1, the correctors carry important information on the solution and cannot be
neglected as higher order terms (in contrast to diffusion problems). In form of the fine-scale
corrections, the observation transfers to the numerical scheme and the discrete setting.
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3 Multiscale methods for H(curl)-problems

Having observed this correspondence, we can reformulate the whole HMM as a direct
discretization with numerical quadrature of the two-scale equation (3.3), see Section 2.3.3
and [Ohl05].

Proposition 3.1.8 (Reformulation of the HMM). Define the piecewise constant approxima-
tions κh on Ω × Y by κh|Tj×Sl := κ(xj , yl) and µh in the same way. Furthermore, let uh,1,
uh,2 be the discrete fine-scale corrections as defined in Remark 3.1.7. Then (uH ,uh,1, uh,2) ∈
N̊ (TH)× P0(TH ; S̃(Th))× P1(TH ; S̃(Th)) is a solution to

Bh
(
(uH ,uh,1, uh,2), (ψH ,ψh,1, ψh,2)

)
= (f ,ψH)L2(Ω)

∀(ψH ,ψh,1, ψh,2) ∈ N̊ (TH)× L2(Ω; S̃(Th))× L2(Ω; S̃(Th))

with the discrete sesquilinear form Bh given as in (3.3) with µ and κ replaced by µh and κh,
respectively.

Conclusion 3.1.9. Let us note that the result of Theorem 3.1.5 is still valid if we replace
∇u2 by δ−1∇yu2. This implies that we can approximate uδ in H(curl) by u(x) + δu1

(
x, xδ

)
+

∇yu2

(
x, xδ

)
. Consequently, exploiting Proposition 3.1.8, we see that our final HMM-approxi-

mation uHMM to uδ can be written as

uHMM(x) := uH(x) + δuh,1

(
x,
x

δ

)
+∇yuh,2

(
x,
x

δ

)
.

Numerical analysis. Based on the reformulation of the HMM in Proposition 3.1.8, we give
the main a priori error estimates in Theorems 3.1.11 and 3.1.12. All error estimates are derived
in the two-scale energy norm ‖ · ‖e defined as

‖(v0,v1, v2)‖e := ‖ curl v0 + curly v1‖L2(Ω×Y ) + ‖ divy v1‖L2(Ω×Y ) + ‖v0 +∇yv2‖L2(Ω×Y ).

Let us furthermore define the error terms e0 := u0 − uH , e1 := u1 − uh,1, and e2 :=
u2 − uh,2. We only estimate these (discretization) errors and leave the modeling error
uδ −

(
u0 + δ

(
u1

(
·, ·δ
)

+∇u2

(
·, ·δ
)))

, introduced by homogenization, apart. Conclusion 3.1.9
together with Theorem 3.1.5 as well as the explicit rate (3.9) from [CH15] show that we can
neglect the modeling error if δ is sufficiently small. More explicitly, we have the following
estimate for the total error:∥∥∥uδ − (uH + δ

(
uh,1

(
·, ·
δ

)
+∇uh,2

(
·, ·
δ

)))∥∥∥
H(curl)

≤ Cδ1/2 + ‖(e0, e1, e2)‖e.

The numerical experiments in Section 3.1.3 also justify this concentration on the discretization
error.

Assumption 3.1.10. On top of the periodicity of the coefficients, we also assume

µ, κ ∈W 1,∞(Ω× Y ),

i.e., the coefficient functions are globally Lipschitz. Furthermore, let Ω be a convex domain.

Theorem 3.1.11 (A priori estimate in the energy norm). Under Assumptions 3.1.1 and
3.1.10, the following a priori estimate for the error between the discrete and the analytical
two-scale solution holds:

‖(e0, e1, e2)‖e ≤ C(H + h)‖f‖L2(Ω).

The constant C only depends on the domain Ω, the coefficients µ and κ, but not on the
periodicity parameter δ or the mesh sizes.
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Theorem 3.1.12 (A priori error estimate with dual problems). Under the same assumptions
as in Theorem 3.1.11, the Helmholtz decomposition of the error between the homogenized
solution u0 and the HMM-approximation uH

u0 − uH = ∇θ + z with θ ∈ H1
0 (Ω), z⊥∇H1

0 (Ω)

satisfies
‖θ‖L2(Ω) + ‖z‖L2(Ω) ≤ C(H2 + h2)‖f‖L2(Ω) + Ceapprox‖f‖L2(Ω),

where eapprox = max{‖µ−µh‖L∞(Ω×Y ), ‖κ−κh‖L∞(Ω×Y )} is a data approximation error aris-
ing from numerical quadrature. The constant C only depends on the domain Ω, the coefficients
µ and κ, but not on the periodicity parameter δ or the mesh sizes.

For elliptic diffusion problems posed on H1(Ω), the L2(Ω)-norm of the error converges with
quadratic rate. This better convergence is obtained by posing a dual problem and using the
Aubin-Nitsche trick. The above theorem shows how the result can be transferred to problems
in H(curl): On the gradient subspace, the L2(Ω)-norm is of the same order as the H(curl)-
norm, so that only on the complement a better convergence is obtained. Hence, the quadratic
convergence here is (only) obtained in H−1(Ω).
Both a priori error estimates are proved using standard Galerkin orthogonality and interpo-

lation estimates, see [HOV16b] for details. The reformulation of the HMM from Proposition
3.1.8 also enables us to derive robust and efficient local residual-based a posteriori error esti-
mators presented in [HOV16b].

3.1.3 Numerical experiments
In this section we analyze the HMM numerically and verify the theoretical a priori estimates
given in Theorems 3.1.11 and 3.1.12. The implementation has been done based on the module
dune-gdt [MS15] of the DUNE software framework [BBD+08a,BBD+08b]. The corresponding
code can be found on Github1. The example is located in test/curlcurl-discretization.cc. We
consider a test case with analytically known homogenized solution and a test case inspired
by [CZAL10], where this is not available. Besides the (absolute) errors we also give the
experimental order of convergence (EOC), which is defined for two mesh sizes H1 > H2 and
the corresponding error values eH,1 and eH,2 as EOC(e) := ln(

eH,1
eH,2

)/ ln(H1

H2
). In the tables,

we list the EOC for H1 > H2 in the row of the smaller mesh size H2.

Academic test case. The parameters µ and κ are periodic and quasi-one-dimensional, given
by

µ(y) =
1

2 + cos(2πy1)
and κ(y) = − 1

2 + cos(2πy1) + i(2 + sin(2πy1))
.

Cell problem (3.4) then has the solutions

v1 = 0, v2 = − 1

4π
sin(2πy1)e3, v3 =

1

4π
sin(2πy1)e2

and cell problem (3.5) has the solutions

v1 =
1− i
8π

(sin(2πy1)− i cos(2πy1)), v2 = v3 = 0.

We obtain the homogenized matrices

µhom = diag
( 1√

3
,

1

2
,

1

2

)
and κhom =

i− 1

4
Id .

1github.com/BarbaraV/dune-gdt/tree/dissertation
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3 Multiscale methods for H(curl)-problems

Table 3.1: Convergence history and EOC for the energy error between the HMM-approxima-
tion and the analytical two-scale solution for the academic test case.

H = 0.5h ‖e0‖H(curl) ‖∇ye1‖Ω×Y ‖∇ye2‖Ω×Y EOC(e0) EOC(e1) EOC(e2)
√

3 · 1/4 0.8525680 1.1779100 0.1453250 — — —√
3 · 1/6 0.5536540 0.6539270 0.1070710 1.065 1.452 0.753√
3 · 1/8 0.4123370 0.5105090 0.0826501 1.024 0.860 0.900√
3 · 1/12 0.2737220 0.3465770 0.0563304 1.011 0.955 0.946

Table 3.2: Convergence history and EOC for the L2(Ω)- and H−1(Ω)-norm of the macroscopic
error for the academic test case.

H = 0.5h ‖e0‖L2(Ω) ‖θ0.5H‖L2(Ω) EOC(‖e0‖L2) EOC(‖θ0.5H‖L2)
√

3 · 1/4 0.289838 0.01016380 — —√
3 · 1/6 0.198130 0.00547900 0.938 1.524√
3 · 1/8 0.150250 0.00286401 0.961 2.255√
3 · 1/12 0.100898 0.00139175 0.982 1.780

For the computational (macroscopic) domain Ω = (0, 1)3 and an appropriate volume term f
the homogenized solution u0 is given by

u0(x) = (sin(πx2) sin(πx3), sin(πx1) sin(πx3), sin(πx1) sin(πx2))T .

In fact the corresponding f is similar to u0 up to a prefactor, related to the homogenized
matrices, in each component. Note that u0 has zero tangential traces as required and that µ,
κ, and f fulfill Assumption 3.1.1. As it is explicitly known, the analytical two-scale solution is
used as reference solution for the error computation, but we also compute a reference solution
as direct discretization to the heterogeneous problem (3.2) on a well resolved mesh.
The energy norm for a two-scale triple (v0,v1, v2) in principle consists of the H(curl)-

norm of v0 and the H1(Y )-seminorms of v1 and v2. Table 3.1 shows the behavior of these
contributions for the error (e0, e1, e2) between the analytical two-scale solution (u0,u1, u2)
and the HMM-approximation (uH ,uh,1, uh,2) (as defined in Section 3.1.2) when decreasing H
and h simultaneously. One can clearly see a linear decay (the EOC is close to 1) for all three
parts of the energy error as predicted by Theorem 3.1.11.
In order to verify Theorem 3.1.12, the Helmholtz decomposition of the error u0 − uH has

to be computed. As it is well known, the gradient part θ ∈ H1
0 (Ω) can be characterized as

solution to (∇θ,∇v)L2(Ω) = (u0 − uH ,∇v)L2(Ω) for all v ∈ H1
0 (Ω). We solve the variational

problem using linear Lagrange finite elements on a refined macroscopic grid with mesh size
0.5H. The obtained approximation θ0.5H of θ is considered in Table 3.2 and we verify the
predicted quadratic convergence of Theorem 3.1.12 (the EOC is close to 2). We emphasize
that this consideration of the H−1(Ω)-norm is necessary to obtain a higher convergence order
by dual problems: Table 3.2 reveals that the L2(Ω)-norm only shows linear convergence (the
EOC is close to 1). The theoretical reasons for this difference have been discussed in Section
3.1.2.
Furthermore, we justify our assumption that the homogenization error can be neglected

and show that the correctors are needed to approximate the heterogeneous solution uδ. For
the rather large parameter δ = 0.2, we compute a fine reference solution uδ by a stan-
dard discretization with edge elements on a well resolved grid with 82,944 entities. The
“homogenization” error between this reference solution and the homogenized solution u0 in
the H(curl)-norm is 1.1175. Table 3.3 shows that the correctors are important parts of the ap-
proximation, as predicted in Conclusion 3.1.9. While the L2(Ω)-norm and H(curl)-seminorm
between the reference solution and the macroscopic HMM-approximation uH decrease only
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3.1 Heterogeneous Multiscale Method for locally periodic problems

Table 3.3: Errors between the reference solution for δ = 0.2 and the HMM- and zeroth order
approximations for the academic test case.

H = 0.5h ‖uδ − uH‖ ‖ curl(uδ − uH)‖ ‖uδ − u0
HMM‖ ‖ curl uδ − curl u0

HMM‖√
3 · 1/4 0.335398 1.506500 0.327844 1.506500√
3 · 1/6 0.238788 1.298450 0.223458 0.968140√
3 · 1/8 0.213063 1.195330 0.174381 0.734586√
3 · 1/12 0.185121 1.136130 0.127631 0.486497

(a) Behavior of the L2-norms

H = 0.5h EOC(‖uδ − uH‖) EOC(‖uδ − u0
HMM‖) EOC(‖ curl uδ − curl u0

HMM‖)√
3 · 1/4 — — —√
3 · 1/6 0.838 0.945 1.091√
3 · 1/8 0.396 0.862 0.960√
3 · 1/12 0.347 0.770 1.016

(b) Experimental order of convergence (EOC)

very slowly (Table 3.4a, columns 2–3, and Table 3.4b, column 2), the errors to the zeroth
order approximations u0

HMM := uH +∇yuh,2(·, ·δ ) and curl u0
HMM := curl uH + curly uh,1(·, ·δ )

converge (almost) linearly as predicted, see the EOCs in Table 3.4b. The convergence slows
down slightly in the end because the regime where the modeling error dominates over the
discretization error is approached.
Finally, we visualize the differences between a homogenized and heterogeneous solution

and their approximations by the HMM. Figure 3.1 shows the magnitude of four different
fields in the plane z = 0.5: The expected homogenized solution u0 (top left) on a grid
with H =

√
3 · 1/12, the macroscopic part of the HMM-approximation uH (top right) for

H = 0.5h =
√

3 · 1/12, the reference solution uδ (bottom left) for δ = 0.2 on a mesh with
size H =

√
3 · 1/24, and the zeroth order approximation u0

HMM (bottom right), as defined
above, computed with H = 0.5h =

√
3 · 1/12 and depicted on the fine-scale reference mesh.

The figure shows a good correspondence between the HMM-approximation and the expected
homogenized or reference solution (the left vs. right picture in the top and bottom row of
Figure 3.1, respectively). Moreover, by comparing the reference solution and the expected
homogenized solution (the left column of Figure 3.1), one can see how the periodic features
related to the oscillations in the parameters are in some sense “averaged” in the homogenization
procedure. This can also be seen in Figure 3.2, which shows the zeroth order approximation
u0

HMM for three different values of δ. With decreasing δ from left to right, we see that the
oscillations get “faster” (shorter length of a period), while their amplitudes remain the same.
This also corresponds to the fact that the convergence of uδ to u0 is not strong, but only
weak in L2(Ω).

Test case inspired by [CZAL10]. We chose a situation inspired by [CZAL10, Case 5.1.1]:
The macroscopic domain is Ω = (0, 1)3, κ = −1 and f = (30, 30, 30)T are constant, and µδ is
given as µδ(x) = µ(xδ ) with the periodic function

µ(y) =
20

(2 + 1.5 sin(2πy1 + 0.75))(2 + 1.5 sin(2πy2 + 0.75))(2 + 1.5 sin(2πy3 + 0.75))
.

Neither the exact nor the homogenized solution are known analytically. Moreover, due to
the choice of κ, we deal with an indefinite problem. Formally, this is not covered by our
error analysis, but we still expect the same rates for sufficiently fine meshes, see [CFS17] for
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3 Multiscale methods for H(curl)-problems

Figure 3.1: In the plane z = 0.5: magnitudes of the homogenized solution u0 (top left), of the
macroscopic part of the HMM-approximation Re(uH) (top right), of the reference
solution Re(uδ) on fine grid for δ = 0.2 (bottom left), and of the zeroth order
approximation Re(u0

HMM) (bottom right), all for the academic test case.

Figure 3.2: In the plane z = 0.5: magnitudes of the zeroth order approximations Re(u0
HMM)

for δ = 0.3 (left), δ = 0.2 (middle), and δ = 0.15 (right) for the academic test
case.
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3.1 Heterogeneous Multiscale Method for locally periodic problems

Table 3.4: Convergence history and EOC for the error e0 = u0 − uH between the HMM-
approximation and the reference homogenized solution for the test case of
[CZAL10].

H = 0.5h ‖ curl e0‖ ‖e0‖ ‖θ(e0)‖ EOC(e0) EOC(curl e0) EOC(θ(e0))
√

3 · 1/4 1.030690 0.233979 0.00665521 — — —√
3 · 1/6 0.579060 0.139066 0.00387697 1.283 1.422 1.333√
3 · 1/8 0.452262 0.108110 0.00219004 0.875 0.859 1.985√
3 · 1/12 0.250834 0.062329 0.00094402 1.358 1.454 2.076

Table 3.5: Convergence history and EOC for the error between the HMM-approximation uH ,
the curl zeroth order approximation curl u0

HMM := curl uH + curly uh,1(·, ·δ ), and
the reference solution uδ for the test case of [CZAL10].

H = 0.5h ‖ curl(uδ − uH)‖ ‖ curl uδ − curl u0
HMM‖ ‖uδ − uH‖ ‖θ(uδ − uH)‖

√
3 · 1/4 2.407260 2.138060 0.266706 0.006656590√
3 · 1/6 2.238660 1.586240 0.186146 0.003878270√
3 · 1/8 2.193030 1.239650 0.163394 0.002191250√
3 · 1/12 2.140620 1.002660 0.135681 0.000945141

a rigorous proof using T -coercivity. Since κ is constant, the second corrector u2 vanishes and
we expect strong convergence of uδ to u0 in L2(Ω).
We first compare the HMM-approximation to a reference homogenized solution (approxi-

mating u0), which is computed in the following way. The effective parameter µhom is calculated
by solving cell problem (3.4) on a mesh with 82,944 elements (κhom is simply the negative
identity). Afterwards, the macroscopic equation (3.7) is solved with the same number of el-
ements yielding the reference homogenized solution u0. Table 3.4 confirms the predictions
of Theorems 3.1.11 and 3.1.12: We observe linear convergence in the H(curl)-seminorm and
the L2(Ω)-norm and quadratic convergence for the Helmholtz decomposition. The gradient
part θ is computed as finite element approximation of the associated Poisson problem on the
reference mesh, as already described for the academic test case. The table not only confirms
the a priori error estimates, but also shows that solving the cell problems first, then assem-
bling the effective parameters, and finally solving the macroscopic homogenized equation on a
rather fine mesh gives a good approximation to the homogenized solution u0, which is useful
for other numerical experiments.
The reference mesh with 82,944 elements is also used to compute a reference solution uδ

for δ = 1/3. The homogenization error between this (heterogeneous) reference solution and
the reference homogenized solution described above amounts to 2.11517 in the full H(curl)-
and 0.119217 in the L2(Ω)-norm. Since u2 vanishes, the macroscopic part of the HMM-
approximation uH already forms the zeroth order L2-approximation to uδ, so that the error
uδ − uH equals the error uδ − u0

HMM. Table 3.5 summarizes the errors between uδ and
the HMM-approximation and reveals various interesting aspects. First, u1 has to be con-
sidered for the error in the H(curl)-seminorm: While the error curl(uδ − uH) is only slowly
decreasing, we almost regain linear convergence when considering curl uδ − curl u0

HMM with
curl u0

HMM := curl uH + curly uh(·, ·δ ). The convergence is slowing down slightly at the end
probably because the homogenization error is dominating. Second, because of the vanishing
corrector u2, we obtain some (sublinear) convergence in the L2(Ω)-norm of uδ − uH . This
convergence is certainly more than we obtained for the academic test case, where the corrector
has to be considered. The sublinearity of the rate may be explained by a dominance of the
homogenization error. However, it could also be that the heterogeneous reference solution
is still not well resolved enough. Third, we obtain quadratic convergence for the Helmholtz
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3 Multiscale methods for H(curl)-problems

Figure 3.3: In the plane z = 0.5: Magnitude of the reference solution uδ for δ = 1/3 (left) and
HMM-approximation uH (right) for the test case of [CZAL10].

decomposition of uδ − uH , which is in accordance with Theorem 3.1.12 and also due to the
vanishing corrector u2.
Finally, we visualize the reference solution (for δ = 1/3 on a mesh with 82,944 elements)

and the HMM-approximation uH (with H = 0.5h =
√

3 · 1/12) in Figure 3.3. Note that
the HMM-approximation uH equals the zeroth order approximation u0

HMM in this case and
moreover, it is also close to the homogenized solution. We see that some oscillatory behavior
of the reference solution is not captured and would need higher order correctors. However, in
contrast to the academic case, due to the strong convergence uδ to u0 in L2(Ω), the amplitudes
of these oscillations are decreasing for δ → 0. Therefore, we already have a good agreement
between the reference solution and the HMM-approximation for the parameter δ = 1/3.

3.2 Numerical homogenization beyond periodicity

In this section, we study the H(curl)-elliptic problem of Definition 2.1.5 without the as-
sumption of (local) periodicity or scale separation. For better readability, we assume that
µ ∈ L∞(Ω;R3×3) and κ ∈ L∞(Ω;C3×3) are self-adjoint because in this case the discretization
is a Galerkin method instead of a Petrov-Galerkin method. This is not an essential restriction.
This section is organized as follows. In Section 3.2.1, we give a short motivation of our ap-

proach from two perspectives: periodic homogenization and the (ideal) Localized Orthogonal
Decomposition. Section 3.2.2 presents some more details about the Falk-Winther interpola-
tion operator. In Section 3.2.3, we introduce the Corrector Green’s Operator and show its
approximation properties. We localize the corrector operator in Section 3.2.4 and present the
main a priori error estimates. The proofs of the decay of the correctors are given in Section
3.2.5. Details on the implementation of the Falk-Winther interpolation operator are given
in Section 3.2.6. The extension to indefinite H(curl)-problems is discussed in Section 3.2.7.
We only consider homogeneous essential boundary conditions, the incorporation of impedance
boundary conditions, in particular for the indefinite case, is an open question for future work.

3.2.1 Motivation of the approach

Motivation via homogenization. For the sake of argument, let us again look at periodically
oscillating coefficients µδ(x) = µ(x/δ) and κδ(x) = κ(x/δ). Classical homogenization theory
in Section 3.1.1 shows that the sequence of exact solutions uδ converges weakly in H0(curl) to
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3.2 Numerical homogenization beyond periodicity

a homogenized function u0. Since u0 ∈ H0(curl) is δ-independent, it can be well approximated
in N̊ (TH). Furthermore, there exists a corrector Kδ(u0) such that uδ ≈ (id +Kδ)u0 is a good
approximation in H(curl), i.e., the error converges strongly to zero with

‖uδ − (u0 + Kδ(u0))‖H(curl) → 0 for δ → 0.

Moreover, the corrector Kδ(u0) admits a decomposition into a gradient part and part with
small amplitude, see (3.8). We deduced that Kδ(u0) is H(curl)-stable and that u0 must be
a good approximation of the exact solution in the space H−1(Ω;C3). Consequently we have
strong convergence in H−1(Ω) with

‖uδ − u0‖H−1(Ω)
δ→0−→ 0.

Rephrasing this, we concluded two things. First, even though the coarse space N̊ (TH) does
not contain good H(curl)- or L2-approximations, it still contains meaningful approximations
in H−1(Ω). Second, the fact that the coarse part u0 is a good H−1-approximation of uδ is an
intrinsic conclusion from the properties of the correction Kδ(u0). A refined analysis reveals
that the numerical homogenization method presented here allows for estimates in the stronger
H(div)′-norm.
In this section we are concerned with the question if the above considerations can be trans-

ferred to a discrete setting beyond the assumption of periodicity. More precisely, defining a
coarse level of resolution through the space N̊ (TH), we ask if it is possible to find a coarse
function uH and an (efficiently computable) H(curl)-stable operator K, such that

‖uδ − uH‖H−1(Ω) ≤ CH and ‖uδ − (id +K)uH‖H(curl) ≤ CH, (3.12)

with C being independent of the oscillations in terms of δ. A natural ansatz for the coarse part
is uH = πH(u) for a suitable projection πH : H(curl) → N̊ (TH). From the considerations
above it is desirable that the interpolation error uδ − πH(uδ) fulfills a discrete analog to
the estimates (3.8). Hence, we seek a projector πH with the following property: There are
z ∈ H1

0(Ω) and θ ∈ H1
0 (Ω) such that v − πHv = z +∇θ with

H−1‖z‖L2(Ω) + ‖∇z‖L2(Ω) ≤ C‖ curl v‖L2(Ω),

H−1‖θ‖L2(Ω) + ‖∇θ‖L2(Ω) ≤ C‖v‖H(curl).
(3.13)

Note that the above properties are not fulfilled for, e.g., the L2-projection. We conclude this
paragraph by summarizing that we want to have a projection πH fulfilling (3.13). We can
then define a coarse scale numerically through the space N̊ (TH) = im(πH). Moreover, the
corrector K should be constructed such that it maps into the kernel of the projection operator,
i.e., im(K) ⊂ ker(πH) in order to inherit the estimates (3.12).

Motivation via the Localized Orthogonal Decomposition. As described in Section 2.3.4, the
decomposition of the solution space into a coarse and a fine part is also the key motivation for
the Localized Orthogonal Decomposition (LOD). In our setting, the idea is to write H0(curl) =
N̊ (TH) ⊕W with W = kerπH , where πH : H0(curl) → N̊ (TH) is a suitable projection. We
can define a correction operator K : H0(curl)→W via

B(Kv,ψ) = −B(v,w) ∀w ∈W. (3.14)

The (ideal) LOD is then a Galerkin method over the space (id +K)N̊ (TH), i.e., we seek
uH ∈ N̊ (TH) such that

B
(
(id +K)uH , (id +K)vH

)
=
(
f , (id +K)vH

)
L2(Ω)

∀vH ∈ N̊ (TH). (3.15)
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3 Multiscale methods for H(curl)-problems

Problem (3.14), however, is global and therefore very costly to solve. In order to obtain a
localized method, we truncate the computation to patches Nm(T ) as in Section 2.3.4. The
overall scheme can then be described as follows: Consider a basis {Φl| 1 ≤ l ≤ N} of N̊ (TH).
For all T ∈ TH with T ⊂ supp(Φl), we solve for KT,m(Φl) ∈W(Nm(T )) such that

BNm(T )(KT,m(Φl),w) = −BT (Φl,w) ∀w ∈W(Nm(T )),

where W(Nm(T )) denotes the space of functions in W which vanish outside Nm(T ). Defining
the corrector operator Km via

Km(Φl) =
∑
T∈TH

T⊂supp(Φl)

KT,m(Φl),

we seek the solution uH,m ∈ N̊ (TH) to (3.15) with K replaced by Km, see Section 3.2.4 for
details.
As discussed in Section 2.3.4, we have to analyze (i) what approximation properties uH and

(id +K)uH have, and, (ii) whether the computation in (3.14) can be truncated to patches of
elements without losing the approximation properties. With regard to these two questions,
we briefly describe the main challenges for H(curl)-problems in contrast to elliptic diffusion
problems (cf. Section 2.3.4). Concerning (i), denoting e = u − (id +K)uH with the exact
solution u of Definition 2.1.5, we observe πHe = 0 and quickly deduce the estimate

‖e‖2H(curl) . |(f , e)| = |(f , e− πHe)|.

In Section 2.3.4, we used estimates of the form ‖v−πHv‖L2(Ω) . H‖∇v‖L2(Ω) for v ∈ H1
0 (Ω).

Such an estimate (with the gradient replaced by the curl), however, cannot hold in H(curl)
because of the large kernel of the curl-operator. Instead, we require estimates like (3.13) in
order to deduce

|(f , e− πHe)| = |(f , z +∇θ)| ≤ |(f , z)|+ |(div f , θ)| . H‖f‖H(div)‖e‖H(curl),

where we also see the role of the assumption f ∈ H(div). This difference between the gradient
subspace and its complement also has to be considered when studying the exponential decay
of K in order to answer (ii).

3.2.2 Basic notation and the interpolation operator

We recall the basic notation on meshes and finite element spaces from Sections 2.2.1 and 2.2.2
and show that the Falk-Winther interpolation operator fulfills the condition (3.13) derived
above.
Let TH be a regular, shape regular, and quasi-uniform partition of Ω into tetrahedra with

global mesh size H := max{diam(T )|T ∈ TH}. TH is a coarse mesh in the sense that it does
not resolve the fine-scale oscillations of the parameters. We recall the notation of patches
Nm(T ) (Definition 2.2.4) and the uniform upper bound Col,m on the number of elements in
the mth order patch (2.25), which depends polynomially on m due to quasi-uniformity. We
abbreviate Col := Col,1. We use the space of linear Lagrange elements S̊(TH), the lowest order
Nédélec finite elements N̊ (TH), and the space of Raviart–Thomas fields R̊T (TH), as defined
in Definition 2.2.8.
We use the Falk-Winther interpolation operator πEH : H0(curl)→ N̊ (TH) defined in Section

2.2.3, see also [FW14a], for our numerical method. It is H(curl)-stable, local and fits into a
commuting diagram with other stable interpolation operators for lowest order H1(Ω), H(div)
and L2(Ω) elements, see Proposition 2.2.10. As explained in the motivation above, we also
require that πEH allows for a regular decomposition in the sense of (3.13). The first proof of
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such a local and H-weighted decomposition was given by Schöberl [Sch08]. In the following
we shall use his results and the locality of the Falk-Winther operator to recover a similar
decomposition for the projection πEH . More precisely, we have the following lemma which is
crucial for our analysis.

Lemma 3.2.1 (Localized regular decomposition of the interpolation error). Let πEH denote
the projection from Proposition 2.2.10. For any v ∈ H0(curl,Ω), there are z ∈ H1

0(Ω) and
θ ∈ H1

0 (Ω) such that
v − πEH(v) = z +∇θ

with the local bounds for every T ∈ TH
H−1‖z‖L2(T ) + ‖∇z‖L2(T ) ≤ Cz‖ curl v‖L2(N3(T )),

H−1‖θ‖L2(T ) + ‖∇θ‖L2(T ) ≤ Cθ
(
‖v‖L2(N3(T )) +H‖ curl v‖L2(N3(T ))

)
,

(3.16)

where ∇z stands for the Jacobi matrix of z. Here Cz and Cθ are generic constants that only
depend on the regularity of the coarse mesh.

Observe that (3.16) implies the earlier formulated condition (3.13).

Proof. Let v ∈ H0(curl,Ω). Denote by ISH : H0(curl,Ω) → N̊ (TH) the quasi-interpolation
operator introduced by Schöberl in [Sch08]. It is shown in [Sch08, Theorem 6] that there
exists a decomposition

v − ISH(v) =
∑

P vertex
of TH

vP (3.17)

where, for any vertex P , vP ∈ H0(curl,ΩP ) and ΩP the support of the local hat function
associated with P . Moreover, [Sch08, Theorem 6] provides the stability estimates

‖vP ‖L2(ΩP ) . ‖v‖L2(N(ΩP )) and ‖ curl vP ‖L2(ΩP ) . ‖ curl v‖L2(N(ΩP )) (3.18)

for any vertex P . With these results we deduce, since πEH is a projection onto the finite
element space, that

v − πEH(v) = v − ISH(v)− πEH(v − ISH(v)) =
∑

P vertex
of TH

(id−πEH)(vP ).

Due to the locality of πEH , we have (id−πEH)(vP ) ∈ H0(curl,N(ΩP )). The local stability of
πEH , (2.31) and (2.32), and the stability (3.18) imply

‖(id−πEH)(vP )‖L2(N(ΩP )) . ‖v‖L2(N(ΩP )) +H‖ curl v‖L2(N(ΩP )),

‖ curl(id−πEH)(vP )‖L2(N(ΩP )) . ‖ curl v‖L2(N(ΩP )).

We can now apply the regular splitting to (id−πEH)(vP ) (cf. [PZ02]), i.e., there are zP ∈
H1

0(N(ΩP )), θP ∈ H1
0 (N(ΩP )) such that (id−πEH)(vP ) = zP +∇θP satisfying

H−1‖zP ‖L2(N(ΩP )) + ‖∇zP ‖L2(N(ΩP )) . ‖ curl((id−πEH)(vP ))‖L2(N(ΩP )),

H−1‖θP ‖L2(N(ΩP )) + ‖∇θP ‖L2(N(ΩP )) . ‖(id−πEH)(vP )‖L2(N(ΩP )).

Set z =
∑
P zP and θ =

∑
P θP , which is a regular decomposition of v − πEH(v). The local

estimate follows from the foregoing estimates for vP and the decomposition (3.17) which yields

H−1‖z‖L2(T ) + ‖∇z‖L2(T ) ≤
∑

P vertex
of T

(
H−1‖zP ‖L2(ΩP ) + ‖∇zP ‖L2(ΩP )

)
.

∑
P vertex

of T

‖ curl(id−πEH)(vP )‖L2(N(ΩP )) . ‖ curl v‖L2(N3(T )).

The local estimate for θ follows analogously.
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3.2.3 Corrector Green’s Operator
In this section we introduce an ideal Corrector Green’s Operator (also known as fine-scale
Green’s operator in the context of the Variational Multiscale Method, see [HS07]) that allows
us to derive a decomposition of the exact solution into a coarse part (which is a good approxi-
mation in H−1(Ω)) and two different corrector contributions. For simplicity, we let from now
on L : H0(curl)→ H0(curl)′ denote the differential operator associated with the sesquilinear
form B(·, ·), i.e., L(v)(w) = B(v, w).
Using the Falk-Winter interpolation operator πEH for the Nédélec elements, we split the

space H0(curl) into the finite, low-dimensional coarse space N̊ (TH) = im(πEH) and a corrector
space given as the kernel of πEH , i.e., we set W := ker(πEH) ⊂ H0(curl). This yields the direct
sum splitting H0(curl) = N̊ (TH) ⊕W. Note that W is closed since it is the kernel of a
continuous (i.e., H(curl)-stable) operator. With this the ideal Corrector Green’s Operator is
defined as follows.

Definition 3.2.2 (Corrector Green’s Operator). For F ∈ H0(curl)′, we define the Corrector
Green’s Operator

G : H0(curl)′ →W by B(G(F),w) = F(w) ∀w ∈W. (3.19)

It is well-defined by the Lax-Milgram-Babuška theorem, which is applicable since B(·, ·) is
H0(curl)-elliptic and since W is a closed subspace of H0(curl).

Using the Corrector Green’s Operator we obtain the following decomposition of the exact
solution.

Lemma 3.2.3 (Ideal decomposition). The exact solution u ∈ H0(curl) from Definition 2.1.5
and uH := πEH(u) admit the decomposition

u = uH − (G ◦ L)(uH) + G(f).

Proof. Since H0(curl) = N̊ (TH)⊕W, we can write u uniquely as

u = πEH(u) + (id−πEH)(u) = uH + (id−πEH)(u),

where (id−πEH)(u) ∈W by the projection property of πEH . Using the differential equation for
test functions w ∈W yields that

B((id−πEH)(u),w) = −B(uH ,w) + (f ,w)L2(Ω) = −B((G ◦ L)(uH),w) + B(G(f),w).

Since this holds for all w ∈W and since G(f)− (G ◦ L)(uH) ∈W, we conclude that

(id−πEH)(u) = G(f)− (G ◦ L)(uH).

The Corrector Green’s Operator has the following approximation and stability properties,
which reveal that its contribution is always negligible in the H(div)′-norm and negligible in
the H(curl)-norm if applied to a function in H(div).

Lemma 3.2.4 (Ideal corrector estimates). Any F ∈ H0(curl)′ satisfies

H‖G(F)‖H(curl) + ‖G(F)‖H(div)′ ≤ CHα−1‖F‖H0(curl)′ . (3.20)

If F = f ∈ H(div), we even have

H‖G(f)‖H(curl) + ‖G(f)‖H(div)′ ≤ CH2α−1‖f‖H(div). (3.21)

The constant C only depends on Col and the generic constants appearing in Lemma 3.2.1.
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3.2 Numerical homogenization beyond periodicity

Remark 3.2.5. We phrase all results in the H(div)′-norm because we do not require more.
Note, however, that all results are still valid if we replace the H(div)′-norm by theH−1(Ω;C3)-
norm, which is the norm we used in the motivation in Section 3.2.1.

Proof. The stability estimate ‖G(F)‖H(curl) ≤ α−1‖F‖H0(curl)′ is obvious. Next, with G(F) ∈
W and Lemma 3.2.1 we have

‖G(F)‖H(div)′ = sup
v∈H(div)

‖v‖H(div)=1

∣∣∣∣ˆ
Ω

z · v −
ˆ

Ω

θ(∇ · v)

∣∣∣∣
≤ (‖z‖2L2(Ω) + ‖θ‖2L2(Ω))

1/2 ≤ CH‖G(F)‖H(curl) ≤ CHα−1‖F‖H0(curl)′ ,

(3.22)
which proves (3.20). Note that this estimate exploited θ ∈ H1

0 (Ω), which is why we do
not require the function v to have a vanishing normal trace. Let us consider the case that
F = f ∈ H(div). The coercivity, the relation (3.19), and (3.22) imply that

α‖G(f)‖2H(curl) ≤ ‖G(f)‖H(div)′‖f‖H(div) ≤ CH‖G(f)‖H(curl)‖f‖H(div).

We conclude ‖G(f)‖H(curl) ≤ CHα−1‖f‖H(div). Finally, we can use this estimate again in
(3.22) to obtain

‖G(f)‖H(div)′ ≤ CH‖G(f)‖H(curl) ≤ CH2α−1‖f‖H(div).

An immediate conclusion of Lemmas 3.2.3 and 3.2.4 is the following.

Conclusion 3.2.6. Let u denote the exact solution from Definition 2.1.5. Then with the
coarse part uH := πEH(u) and corrector operator K := −G ◦ L it holds

H−1‖u− (id +K)uH‖H(div)′ + ‖u− (id +K)uH‖H(curl) + ‖u− uH‖H(div)′ ≤ CH‖f‖H(div).

Here, C only depends on α, the mesh regularity and on the constants appearing in Lemma
3.2.1.

Proof. The estimates for u− (id +K)uH = G(f) directly follow from (3.21). For the estimate
of u− uH = K(uH) + G(f) observe that (3.20) and Proposition 2.2.10 imply

‖K(uH)‖H(div)′ . H‖LuH‖H0(curl)′ . H‖uH‖H(curl) = H‖πEHu‖H(curl) . H‖u‖H(curl).

Thus, the proof follows from the stability of the problem and the triangle inequality.

It only remains to derive an equation that characterizes (id +K)uH as the unique solution
of a variational problem. This is done in the following theorem.

Theorem 3.2.7 (Ideal numerical homogenization scheme). We consider the setting of Con-
clusion 3.2.6. Then uH = πEH(u) ∈ N̊ (TH) is characterized as the unique solution to

B
(
(id +K)uH , (id +K)ψH

)
=
(
f , (id +K)ψH

)
L2(Ω)

∀ψH ∈ N̊ (TH). (3.23)

The sesquilinear form B((id +K) · , (id +K) · ) is H(curl)-elliptic on N̊ (TH).

We mention that, in the non self-adjoint case, the correction operator for the test functions
would be the adjoint K∗.

Proof. Since Lemma 3.2.3 guarantees u = uH − (G ◦ L)(uH) + G(f), Definition 2.1.5 yields

B(uH − (G ◦ L)(uH) + G(f),ψH) = (f ,ψH)L2(Ω) ∀ψH ∈ N̊ (TH).
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3 Multiscale methods for H(curl)-problems

We observe that by definition of G we have

B(G(f),ψH) = (f , (G ◦ L)ψH)L2(Ω)

and

B(uH − (G ◦ L)(uH), (G ◦ L)ψH) = 0.

Combining the three equations shows that (id +K)uH is a solution to (3.23). The uniqueness
follows from the following norm equivalence

‖uH‖H(curl) = ‖πEH((id +K)uH)‖H(curl) ≤ C‖(id +K)uH‖H(curl) ≤ C‖uH‖H(curl).

This is also the reason why the H(curl)-ellipticity of B(·, ·) implies the H(curl)-ellipticity of
B((id +K) · , (id +K) · ) on N̊ (TH).

Dropping the correction on the right-hand side of (3.23) still allows for a numerical homog-
enization result. However, not all estimates from Conclusion 3.2.6 can be recovered in this
case, as the quadratic order convergence for ‖u− (id +K)ũH‖H(div)′ is typically lost (at least
in the asymptotic regime). In general, the following result is available.

Conclusion 3.2.8. For f ∈ H(div), let ũH ∈ N̊ (TH) denote the unique solution to

B
(
(id +K)ũH , (id +K)vH

)
= (f ,vH)L2(Ω) ∀vH ∈ N̊ (TH). (3.24)

Then we have the error estimate

‖u− (id +K)ũH‖H(curl) + ‖u− ũH‖H(div)′ ≤ CH‖f‖H(div).

Proof. We estimate the error uH − ũH , where uH solves (3.23). For any vH ∈ N̊ (TH), we
have that

B((id +K)(uH − ũH), (id +K)vH) = (f ,KvH)L2(Ω).

Hence, we conclude with the coercivity and continuity of B and Lemma 3.2.4 that

‖uH − ũH‖2H(curl) . ‖(id +K)(uH − ũH)‖2H(curl) . ‖f‖H(div)‖K(uH − ũH)‖H(div)′

. H‖f‖H(div)‖L(uH − ũH)‖H0(curl)′ . H‖f‖H(div)‖uH − ũH‖H(curl).

The estimate for ‖u − ũH‖H(div)′ follows with the triangle inequality and the properties of
the corrector K.

The result from Conclusion 3.2.8 reflects the fact that in periodic homogenization, correctors
typically do not appear on the right-hand side. However, as mentioned before, problem (3.24)
has the disadvantage that its suffers from a slight loss in accuracy which is expected to cause
reduced convergence rates for ‖u− (id +K)ũH‖H(div)′ .
Numerical homogenization. We summarize the most important findings and relate them
to (numerical) homogenization. We defined a homogenization scale via the coarse FE space
N̊ (TH). We proved that there exists a numerically homogenized function uH ∈ N̊ (TH) which
approximates the exact solution well in H(div)′ with

‖u− uH‖H(div)′ ≤ CH‖f‖H(div).

From the periodic homogenization theory (cf. Sections 3.1.1 and 3.2.1) we know that this is
the best we can expect and that uH is typically not a good L2-approximation due to the
large kernel of the curl-operator. Furthermore, we showed the existence of an H(curl)-stable
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3.2 Numerical homogenization beyond periodicity

corrector operator K : N̊ (TH) → W that corrects the homogenized solution in such a way
that the approximation is also accurate in H(curl) with

‖u− (id +K)uH‖H(curl) ≤ CH‖f‖H(div).

Since K = −G ◦ L, we know that we can characterize K(vH) ∈W as the unique solution to
the (ideal) corrector problem

B(K(vH),w) = −B(vH ,w) ∀w ∈W. (3.25)

The above result shows that (id +K)uH approximates the analytical solution with linear rate
without any assumptions on the regularity of the problem or the structure of the coefficients
that define B(·, ·). Also it does not assume that the mesh resolves the possible fine-scale
features of the coefficient. On the other hand, the ideal corrector problem (3.25) is global,
which significantly limits its practical usability in terms of real computations.
However, as we see next, the Corrector Green’s function associated with problem (3.19)

shows an exponential decay measured in units of H. This property allows the splitting of the
global corrector problem (3.25) into several smaller problems on subdomains, similar to how
we encounter it in classical homogenization theory.

3.2.4 Quasi-local numerical homogenization

In this section we describe how the ideal corrector K can be approximated by a sum of local
correctors without destroying the overall approximation order. This is of central importance
for an efficient computability. Furthermore, it also reveals that the new corrector is a quasi-
local operator, which is in line with homogenization theory. We follow the standard procedure
for the localization in the LOD, as displayed for instance in [AH17a,HM14,MP14,Pet17], just
to name a few.

Exponential decay and localized corrector. The property that K can be approximated by
local correctors is directly linked to the decay properties of the Green’s function associated
with problem (3.19). These decay properties can be quantified explicitly by measuring dis-
tances between points in units of the coarse mesh size H. We have the following result, which
states – loosely speaking – in which distance from the support of a source term F, becomes
the H(curl)-norm of G(F) negligibly small. A proof of the following proposition is given in
Section 3.2.5.

Proposition 3.2.9 (Decay of the corrector). Let T ∈ TH denote a coarse element and m ∈ N
a number of layers. Furthermore, let FT ∈ H0(curl)′ denote a local source functional in the
sense that FT (v) = 0 for all v ∈ H0(curl) with supp(v) ⊂ Ω\T . Then there exists 0 < β̃ < 1,
independent of H, T , m, and FT , such that

‖G(FT )‖H(curl,Ω\Nm(T )) . β̃m‖FT ‖H0(curl)′ . (3.26)

In order to use this result to approximate K(vH) = −(G ◦ L)vH (which has a nonlocal
argument), we introduce, for any T ∈ TH , localized differential operators LT : H(curl, T ) →
H(curl,Ω)′ such that

〈LT (u),v〉 := BT (u,v),

where BT (·, ·) denotes the restriction of B(·, ·) to the element T . By linearity of G we can
consequently write

K(vH) = −(G ◦ L)vH = −
∑
T∈TH

(G ◦ LT )vH =
∑
T∈TH

G(FT ) with FT := −LT (vH).
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3 Multiscale methods for H(curl)-problems

Obviously, G(FT ) fits into the setting of Proposition 3.2.9. This suggests to truncate the
individual computations of G(FT ) to a small patch Nm(T ) and then collect the results to
construct a global approximation for the corrector. Typically, m is referred to as oversampling
parameter. The strategy is detailed in the following definition.

Definition 3.2.10 (Localized Corrector Approximation). For an element T ∈ TH we define
the element patch ΩT := Nm(T ) of order m ∈ N. Let F ∈ H0(curl)′ be the sum of local func-
tionals with F =

∑
T∈TH FT , where FT ∈ H0(curl)′ is as in Proposition 3.2.9. Furthermore,

let W(ΩT ) ⊂W denote the space of functions from W that vanish outside ΩT , i.e.,

W(ΩT ) = {w ∈W|w = 0 outside ΩT }.

We call GT,m(FT ) ∈W(ΩT ) the localized corrector if it solves

B(GT,m(FT ),w) = FT (w) ∀w ∈W(ΩT ). (3.27)

With this, the global corrector approximation is given by

Gm(F) :=
∑
T∈TH

GT,m(FT ).

Observe that problem (3.27) is only formulated on the patch ΩT and that it admits a unique
solution by the Lax-Milgram-Babuška theorem.
Based on the decay properties stated in Proposition 3.2.9, we can derive the following error

estimate for the difference between the exact corrector G(F) and its approximation Gm(F)
obtained by an mth level truncation. The proof of the following result is again postponed to
Section 3.2.5.

Theorem 3.2.11 (Error of the corrector approximation). We consider the setting of Def-
inition 3.2.10 with ideal Green’s Corrector G(F) and its mth level truncated approximation
Gm(F). Then there exist constants Cd > 0 and 0 < β < 1 (both independent of H and m)
such that

‖G(F)− Gm(F)‖H(curl) ≤ Cd
√
Col,m β

m

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

(3.28)

and

‖G(F)− Gm(F)‖H(div)′ ≤ Cd
√
Col,m β

mH

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

. (3.29)

As a direct conclusion from Theorem 3.2.11 we obtain the main result of this section.

The quasi-local corrector and homogenization. Following the above motivation we split
the ideal corrector K(vH) = −(G ◦ L)vH into a sum of quasi-local contributions of the form∑
T∈TH (G ◦ LT )vH . Applying Theorem 3.2.11, we obtain the following result.

Conclusion 3.2.12. Let Km := −
∑
T∈TH (GT,m ◦ LT ) : N̊ (TH) → W denote the localized

corrector operator obtained by truncation of mth order. Then it holds

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl) ≤ C
(
H +

√
Col,mβ

m
)
‖f‖H(div). (3.30)

Note that even though the ideal corrector K is a nonlocal operator, we can approximate it
by a quasi-local corrector Km. Here, the quasi-locality is seen by the fact that, if K is applied
to a function vH with local support, the image K(vH) will typically still have a global support
in Ω. On the other hand, if Km is applied to a locally supported function, the support will
only increase by a layer with thickness of order mH.
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3.2 Numerical homogenization beyond periodicity

Proof of Conclusion 3.2.12. With Km = −
∑
T∈TH (GT,m ◦LT ) we apply Conclusion 3.2.6 and

Theorem 3.2.11 to obtain

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl) ≤ ‖u− (id +K)uH‖H(curl) + ‖(K −Km)uH‖H(curl)

≤ CH‖f‖H(div) + C
√
Col,m β

m

( ∑
T∈TH

‖LT (uH)‖2H0(curl)′

)1/2

,

where we observe with ‖LT (vH)‖H0(curl)′ ≤ C‖vH‖H(curl,T ) that∑
T∈TH

‖LT (uH)‖2H0(curl)′ ≤ C‖uH‖
2
H(curl) = C‖πEH(u)‖2H(curl) ≤ C‖u‖

2
H(curl) ≤ C‖f‖

2
H(div).

In the last line, the second last inequality is due to the stability of πEH and the last inequality
is the energy estimate for the original problem of Definition 2.1.5.

Conclusion 3.2.12 has immediate implications from the computational point of view. First,
we observe that Km can be computed by solving local decoupled problems. Considering a
basis {Φl| 1 ≤ l ≤ N} of N̊ (TH), we require to determine Km(Φl). For that, we consider all
T ∈ TH with T ⊂ supp(Φl) and solve for KT,m(Φl) ∈W(Nm(T )) such that

BNm(T )(KT,m(Φl),w) = −BT (Φl,w) ∀w ∈W(Nm(T )). (3.31)

The global corrector approximation is then given by

Km(Φl) =
∑
T∈TH

T⊂supp(Φl)

KT,m(Φl),

as already presented in the motivation in Section 3.2.1. Next, we observe that selecting the
localization parameter m such that

m & | logH|
/
| log β| ≈ | logH|,

we have with Conclusion 3.2.12 that

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl) ≤ CH‖f‖H(div), (3.32)

which is of the same order as for the ideal corrector K. Note that the polynomial (inm) growth
of Col,m does only influence the constant hidden in & in the selection rule m & | logH|, but
not (3.32). The choice m ≈ | logH| is the standard condition for the oversampling parameter
m in LOD-type methods. However, numerical experiments for other types of problems show
that moderate sizes of m such as m = 1, 2, 3 are often sufficient in practice, cf. [HM14,Pet17].
This indicates that there is hope for similar observations for H(curl)-problems, although this
still remains open for investigations.
Consequently, we can consider the Galerkin finite element method, where we seek uH,m ∈
N̊ (TH) such that

B
(
(id +Km)uH,m, (id +Km)ψH

)
=
(
f , (id +Km)ψH

)
L2(Ω)

∀ψH ∈ N̊ (TH).

Since a Galerkin method yields the H(curl) quasi-best approximation of u in the space
(id +Km)N̊ (TH) we have with (3.32) that

‖u− (id +Km)uH,m‖H(curl) ≤ CH‖f‖H(div)
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3 Multiscale methods for H(curl)-problems

and we have with (3.20), (3.29), and the H(curl)-stability of πEH that

‖u− uH,m‖H(div)′ ≤ CH‖f‖H(div).

This result is a homogenization result in the sense that it yields a coarse function uH,m that
approximates the exact solution in H(div)′. Furthermore, it yields an appropriate (quasi-local)
corrector Km(uH,m) that is required for an accurate approximation in H(curl).
Finally, we note that the error estimate in H(curl) above can also be obtained for the

Galerkin method without corrector Km on the right-hand side, see Conclusion 3.2.8. Moreover,
the assumption f ∈ H(div) is essential to obtain a linear rate: If we only have f ∈ H0(curl)′,
the results of Conclusion 3.2.12 do not hold. As seen in Lemma 3.2.4, we lose a power of H
for less regular right-hand sides.

Remark 3.2.13 (Refined estimates). With a more careful proof, the constants in the estimate
of Conclusion 3.2.12 can be specified as

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl)

≤ α−1(1 +H)
(
H max{Cz, Cθ}

√
Col,3 + CdCπC

2
B

√
Col,mCol β

m
)
‖f‖H(div),

where α and CB are as in Definition 2.1.5, Cd is the constant appearing in the decay estimate
(3.28), Cπ is as in Proposition 2.2.10, Cz and Cθ are from (3.16). Note that if m is large
enough so that Nm(T ) = Ω for all T ∈ TH , we have as a refinement of Conclusion 3.2.6 that

inf
vH∈N̊ (TH)

‖u− (id +K)vH‖H(curl) ≤ α−1(1 +H)
(
H max{Cz, Cθ}

√
Col,3

)
‖f‖H(div).

A fully discrete localized multiscale method. The procedure described above is still not yet
applicable in practice as the local corrector problems (3.31) involve the infinite dimensional
spaces W(ΩT ). Hence, we require an additional fine-scale discretization of the corrector
problems (just like the cell problems in periodic homogenization theory can typically not be
solved analytically).
For a fully discrete formulation, we introduce a second shape regular partition Th of Ω into

tetrahedra. This partition may be nonuniform and is assumed to be obtained from TH by at
least one global refinement. It is a fine discretization in the sense that h < H and that Th
resolves all fine-scale features of the coefficients. Let N̊ (Th) ⊂ H0(curl) denote the space of
Nédélec elements w.r.t. the partition Th. We then introduce the space

Wh(ΩT ) := W(ΩT ) ∩ N̊ (Th) = {vh ∈ N̊ (Th)|vh = 0 outside ΩT , π
E
H(vh) = 0}

and discretize the corrector problem (3.31) with this new space. The corresponding correctors
are denoted by KT,m,h and Km,h. With this modification we can prove analogously to the
error estimate (3.30) that it holds

inf
vH∈N̊ (TH)

‖uh − (id +Km,h)vH‖H(curl) ≤ C
(
H +

√
Col,mβ̃

m
)
‖f‖H(div), (3.33)

where uh is the Galerkin approximation of u in the discrete fine space N̊ (Th). If Th is fine
enough, we can assume that uh is a good H(curl)-approximation to the true solution u.
Consequently, it is justified to formulate a fully discrete (localized) multiscale method by
seeking uH,h,m ∈ N̊ (TH) such that

B
(
(id +Km,h)uH,h,m, (id +Km,h)ψH

)
=
(
f , (id +Km,h)ψH

)
L2(Ω)

∀ψH ∈ N̊ (TH).

As before, we can conclude from (3.33) together with the choice m & |logH|/|log β|, that it
holds

‖uh − (id +Km,h)uH,h,m‖H(curl) + ‖uh − uH,h,m‖H(div)′ ≤ CH‖f‖H(div).
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Thus, the additional fine-scale discretization does not affect the overall error estimates and we
therefore concentrate in the proofs on the semi-discrete case (for simplicity). Only some small
modifications are needed in the proofs for the decay of the correctors, which are outlined at
the end of Section 3.2.5. Note that the fine-scale reference solution uh is not needed in the
practical implementation of the method.

3.2.5 Main proofs
In this section, we prove Proposition 3.2.9 and Theorem 3.2.11. Since the latter one is based on
the first result, we start with proving the exponential decay of the Green’s function associated
with G. Recall that we quantified the decay indirectly through estimates of the form

‖G(FT )‖H(curl,Ω\Nm(T )) . β̃m‖FT ‖H0(curl)′ ,

where FT is a T -local functional and 0 < β̃ < 1. The proof techniques rely on the multiplica-
tion of a corrector function with a cut-off function η and Caccioppoli-type argument, as it is
the usual strategy for LOD methods, see, e.g., [MP14,Pet17]. Alternatively, the LOD has been
recently re-interpreted in form of an iterative method (additive subspace correction method)
and a new technique for proving the exponential decay has been proposed, see [KPY18,KY16].
However, this modified approach would require a different localization strategy than the one
that we chose in Section 3.2.4.

Proof of Proposition 3.2.9. Let η ∈ S1(TH) ⊂ H1(Ω) be a scalar-valued, piecewise linear and
globally continuous cut-off function with

η = 0 in Nm−6(T ), η = 1 in Ω \Nm−5(T ).

Denote R = supp(∇η) and φ := G(FT ) ∈W. In the following we use Nk(R) = Nm−5+k(T ) \
Nm−6−k(T ). Note that ‖∇η‖L∞(R) ∼ H−1. Furthermore, let φ = φ− πEHφ = z +∇θ be the
splitting from Lemma 3.2.1.
Set w := (id−πEH)(ηz +∇(ηθ)) and note that (i) curl w = curl(id−πEH)(ηz), (ii) w ∈W,

(iii) supp w ⊂ Ω\T . Property (i) holds because of curl∇ = 0 and curlπEH∇v = πFH(curl∇v) =
0 for all v ∈ H1

0 (Ω) due to the commuting property of πEH . Since πEHφ = 0, η = 1 in Ω\Nm(T )
and because of the coercivity, we obtain that

‖φ‖2H(curl,Ω\Nm(T )) = ‖(id−πEH)(z +∇θ)‖2H(curl,Ω\Nm(T )) ≤ ‖w‖
2
H(curl,Ω)

≤ α−1|B(w,w)|.

Using the definition of the Corrector Green’s Operator in (3.19) and the fact that FT (w) = 0
due to supp w ⊂ Ω \ T yields B(φ,w) = 0. Using that supp w ∩ supp(φ − w) ⊂ N(R), we
obtain with the continuity of B

α‖φ‖2H(curl,Ω\Nm(T )) ≤ |B(w,w)| = |B(w − φ,w)|
. ‖w − φ‖H(curl,N(R))‖w‖H(curl,N(R))

≤ ‖w − φ‖H(curl,N(R))

(
‖w − φ‖H(curl,N(R)) + ‖φ‖H(curl,N(R))

)
.

We estimate φ−w = (id−πEH)(φ− ηz−∇(ηθ)). We deduce with the stability of πEH , (2.31)
and (2.32), and Lemma 3.2.1

‖φ−w‖H(curl,N(R))

. ‖φ− ηz−∇(ηθ)‖L2(N2(R)) +H‖ curl(φ− ηz)‖L2(N2(R))

. (‖φ‖L2(N2(R)) +H‖ curlφ‖L2(N2(R)) + ‖ηz‖L2(N2(R))

+ ‖∇η‖L∞(R)‖θ‖L2(R) + ‖η‖L∞(N2(R))‖∇θ‖L2(Nm−3(T )\Nm−6(T ))

+H
(
‖∇η‖L∞(R)‖z‖L2(R) + ‖η‖L∞(N2(R))‖ curl z‖L2(Nm−3(T )\Nm−6(T ))

)
. ‖φ‖L2(Nm(T )\Nm−9(T )) +H‖ curlφ‖L2(Nm(T )\Nm−9(T )).
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All in all, this gives

‖φ‖2H(curl,Ω\Nm(T )) ≤ C̃‖φ‖
2
H(curl,Nm(T )\Nm−9(T ))

for some C̃ > 0. Moreover, it holds that

‖φ‖2H(curl,Ω\Nm(T )) = ‖φ‖2H(curl,Ω\Nm−9(T )) − ‖φ‖
2
H(curl,Nm(T )\Nm−9(T )).

Thus, we obtain finally with β̃pre := (1 + C̃−1)−1 < 1, a re-iteration of the above argument,
and Lemma 3.2.4 that

‖φ‖2H(curl,Ω\Nm(T )) . β̃bm/9cpre ‖φ‖2H(curl) . β̃bm/9cpre ‖FT ‖2H0(curl)′ .

Algebraic manipulations give the assertion.

Proof of Theorem 3.2.11. We start by proving the following local estimate

‖G(FT )− GT,m(FT )‖H(curl) ≤ C1β̃
m‖FT ‖H0(curl)′ (3.34)

for some constant C1 > 0 and 0 < β̃ < 1. Let η ∈ S1(TH) be a piecewise linear and globally
continuous cut-off function with

η = 0 in Ω \Nm−1(T ), η = 1 in Nm−2(T ).

Due to Céa’s Lemma we have

‖G(FT )− GT,m(FT )‖H(curl) . inf
wT,m∈W(ΩT )

‖G(FT )−wT,m‖H(curl).

We use the splitting of Lemma 3.2.1 and write G(FT ) = (id−πEH)(G(FT )) = z + ∇θ. Then
we choose wT,m = (id−πEH)(ηz +∇(ηθ)) ∈W(ΩT ) and derive with the stability of πEH and
(3.16)

‖G(FT )− GT,m(FT )‖H(curl) . ‖(id−πEH)(G(FT )− ηz−∇(ηθ))‖H(curl)

= ‖(id−πEH)((1− η)z +∇((1− η)θ))‖H(curl)

. ‖(1− η)z‖L2(Ω\{η=1}) + ‖∇((1− η)θ)‖L2(Ω\{η=1})

+ (1 +H)‖ curl((1− η)z)‖L2(Ω\{η=1})

. (1 +H) ‖G(FT )‖H(curl,N3(Ω\{η=1})).

Combination with Proposition 3.2.9 gives estimate (3.34).
To prove the main estimate of Theorem 3.2.11, i.e., estimate (3.28), we define, for a given

simplex T ∈ TH , the piecewise linear, globally continuous cut-off function ηT ∈ S1(TH) via

ηT = 0 in Nm+1(T ), ηT = 1 in Ω \Nm+2(T ).

Denote w := (G−Gm)(F) =
∑
T∈TH wT with wT := (G−GT,m)(FT ) and split w according to

Lemma 3.2.1 as w = w− πEH(w) = z +∇θ. Due to the ellipticity of B and its sesquilinearity,
we have

α‖w‖2H(curl) ≤
∣∣∣ ∑
T∈TH

B(wT ,w)
∣∣∣ ≤ ∑

T∈TH

|B(wT , z +∇θ)| ≤
∑
T∈TH

(AT +BT )

where, for any T ∈ TH , we abbreviate

AT :=
∣∣B(wT , (1− ηT )z +∇((1− ηT )θ)

)∣∣ and BT :=
∣∣B(wT , ηT z +∇(ηT θ)

)∣∣.
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3.2 Numerical homogenization beyond periodicity

For the term AT , we derive by using the properties of the cut-off function and the regular
decomposition (3.16)

AT . ‖wT ‖H(curl)‖(1− ηT )z +∇((1− ηT )θ)‖H(curl,{ηT 6=1})

≤ ‖wT ‖H(curl) (1 +H) ‖w‖H(curl,N3({ηT 6=1})).

The term BT can be split as

BT ≤
∣∣∣B(wT , (id−πEH)(ηT z +∇(ηT θ))

)∣∣∣+
∣∣∣B(wT , π

E
H(ηT z +∇(ηT θ))

)∣∣∣.
Denoting φ := (id−πEH)(ηT z + ∇(ηT θ)), we observe φ ∈ W and suppφ ⊂ Ω \ Nm(T ).
Because φ ∈ W with support outside T , we have B(G(FT ),φ) = FT (φ) = 0. Since φ has
support outside Nm(T ) = ΩT , but GT,m(FT ) ∈ W(ΩT ), we also have B(GT,m(FT ),φ) = 0.
All in all, this means B(wT ,φ) = 0. Using the stability of πEH (2.31), (2.32) and the regular
decomposition (3.16), we obtain

BT ≤ |B(wT , π
E
H(ηT z +∇(ηT θ)))|

. ‖wT ‖H(curl)

(
‖ηT z +∇(ηT θ)‖L2(N2({ηT 6=1})) + (1 +H)‖ curl(ηT z)‖L2(N2({ηT 6=1}))

)
. ‖wT ‖H(curl)(1 +H) ‖w‖H(curl,N5({ηT 6=1})).

Combining the estimates for AT and BT and observing that {ηT 6= 1} = Nm+2(T ), we deduce

α‖w‖2H(curl) .
∑
T∈TH

‖wT ‖H(curl) ‖w‖H(curl,Nm+7(T )) .
√
Col,m ‖w‖H(curl)

√ ∑
T∈TH

‖wT ‖2H(curl).

Combination with estimate (3.34) finishes the proof of (3.28). Finally, estimate (3.29) follows
with

‖w‖H(div)′ ≤ CH‖w‖H(curl).

Changes for the fully discrete localized method. Let us briefly consider the fully-
discrete setting described at the end of Section 3.2.4. We note that, up to a modification of
the constants, Theorem 3.2.11 also holds for the difference (Gh − Gh,m)(F). Here, Gh(F) is
the Galerkin approximation of G(F) in the discrete space Wh := {vh ∈ N̊ (Th)|πEH(vh) = 0}
and Gh,m(F) is defined analogously to Gm(F) but where Wh(ΩT ) := {wh ∈ Wh| wh =
0 in Ω \ΩT } replaces W(ΩT ) in the local problems. Again, the central observation is a decay
result similar to Proposition 3.2.9, but now for Gh(FT ). A few modifications to the proof have
to be made, though: The product of the cut-off function η and the regular decomposition
z +∇θ does not lie in N̊ (Th). Therefore, an additional interpolation operator into N̊ (Th) has
to be applied. Here it is tempting to just use the nodal interpolation operator and its stability
on piecewise polynomials, since η Gh(FT ) is a piecewise (quadratic) polynomial. However, the
regular decomposition employed is no longer piecewise polynomial and we hence have to use
the Falk-Winther operator πEh onto the fine space N̊ (Th) here. This means that we have to
modify w to w̃ := (id−πEH)πEh (ηz +∇(ηθ)). Note that the additional interpolation operator
πEh enlarges the patches slightly, so that we should define η via

η = 0 in Nm−8(T ), η = 1 in Ω \Nm−7(T ).

With the same arguments as in the proof of Proposition 3.2.9, we deduce that

α‖φ‖2H(curl,Ω\Nm(T ) ≤ |B(w̃, w̃)| = |B(w̃ − φ, w̃)|.

Note that φ− w̃ = (id−πEh )(φ−ηz−∇(ηθ))+(id−πEH)(id−πEh )(ηz+∇(ηθ)). The first term
is the same as in the proof of Proposition 3.2.9. The second term can be estimated simply
using the stability of πEh , the properties of η, and the regular decomposition (3.16).
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3 Multiscale methods for H(curl)-problems

3.2.6 Implementation of the Falk-Winther interpolation operator

Given a mesh TH and a refinement Th, the linear projection πEH : N̊ (Th) → N̊ (TH) can
be represented by a matrix P ∈ Cdim N̊ (TH)×dim N̊ (Th). This subsection briefly sketches the
assembling of that matrix. The procedure involves the solution of local discrete problems on
the macroelements. It is important to note that these problems are of small size. We recall
the detailed definition of the Falk-Winther interpolation operator in Section 2.2.3 and stick
to the notation used there.
Given an interior edge e ∈ ∆̊h

1 of Th, the interpolation πEHφe of the edge element basis
function φe has an expansion

πEHφe =
∑

E′∈∆̊H
1

cE′φE′

for coefficients (cE′)E′∈∆̊H
1
. The coefficient cE is zero whenever e is not contained in the closure

of the extended edge patch ωext
E . The assembling can therefore be organized in a loop over

all interior edges in ∆̊H
1 . Given a global numbering of the edges in ∆̊H

1 , each edge E ∈ ∆̊H
1 is

equipped with a unique index IH(E) ∈ {1, . . . , card(∆̊H
1 )}. Similarly, the numbering of edges

in ∆̊h
1 is denoted by Ih.

The matrix P = P1 + P2 is composed as the sum of matrices P1, P2 that represent the two
summands on the right-hand side of (2.30). These are assembled in loops over the interior
edges. Matrices P1, P2 are initialized as empty sparse matrices.

Operator P1. for E ∈ ∆̊H
1 do

Let the interior edges in ∆̊h
1 that lie inside ωext

E be denoted with {e1, e2, . . . , eN} for some
N ∈ N. The entries P1(IH(E), [Ih(e1) . . . Ih(eN )]) of the matrix P1 are determined as follows.
Compute z1

E ∈ R̊T (TH(ωext
E )). The matrix ME ∈ C1×N defined via

ME := |E|−1

[ˆ
ωext
E

z1
E · φej dx

]N
j=1

represents the map of the basis functions on the fine mesh to the coefficient ofM1 contributing
to φE on the coarse mesh. For the vertices yj(E) of E, denote by Ayj(E) and Byj(E) (j = 1, 2)
the stiffness and right-hand side matrix representing the system for the operator Qyj(E),−

Ayj(E) :=

[ˆ
ωyj(E)

∇λy · ∇λz dx

]
y,z∈∆0(TH(ωyj(E)))

,

Byj(E) :=

[ˆ
ωyj(E)

∇λy · φej dx

]
y∈∆0(TH(ωyj(E))), j=1,...,N

.

We recall that λy is the linear Lagrange element basis function (hat function) associated with
the vertex y. After enhancing the system to Ãyj(E) and B̃yj(E) (with a Lagrange multiplier
accounting for the mean constraint), it is uniquely solvable. Set Q̃yj(E) = Ã−1

yj(E)B̃yj(E) and
extract the row corresponding to the vertex yj(E)

Qj := |E|−1Q̃yj(E)[yj(E), :] ∈ C1×N .

Set
P1(IH(E), [Ih(e1) . . . Ih(eN )]) = ME + Q1 − Q2.

end
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3.2 Numerical homogenization beyond periodicity

Operator P2. for E ∈ ∆̊H
1 do

Denote the matrices – where indices j, k run from 1 to card(∆1(TH(ωext
E ))), y through

∆0(TH(ωext
E )), and ` = 1, . . . , N –

SE :=

[ˆ
ωext
E

curlφEj · curlφEk dx

]
j,k

TE :=

[ˆ
ωext
E

φEj · ∇λy dx

]
j,y

and

FE :=

[ˆ
ωext
E

curlφEj · curlφe` dx

]
j,`

GE :=

[ˆ
ωext
E

φe` · ∇λy dx

]
y,`

.

Solve the saddle-point system [
S T∗

T 0

] [
U
V

]
=

[
F
G

]
.

(This requires an additional one-dimensional gauge condition because the sum of the test
functions

∑
y∇λy equals zero.) Assemble the operator S1 (locally) as described in the previous

step and denote this matrix by Ploc
1 . Compute U−Ploc

1 U and extract the line X corresponding
to the edge E

P2(IH(E), [Ih(e1) . . . Ih(eN )]) = X.

end
We note that this representation of the Falk-Winther operator as a matrix is an essential step

towards a practical implementation: Computations requiring test or ansatz functions in the
kernel space W or its modifications can be written as saddle-point problems, see [EHMP16].
As the rest of our construction follows the LOD framework, we refer to [EHMP16] for a
discussion of an efficient implementation.

3.2.7 Indefinite H(curl)-problems
The error estimates for the Localized Orthogonal Decomposition in Sections 3.2.3 and 3.2.4
essentially use the coercivity of the sesquilinear form B. In this section, we extend the pre-
sented results to the indefinite case. As discussed in Section 2.1.3, the well-posedness of the
corresponding (standard) discrete problems is only given for sufficiently fine meshes. This
resolution condition between the frequency ω and the mesh size can be reduced with the
Localized Orthogonal Decomposition, as we will see in this section.
The indefinite case roughly sets κ = −ω2ε in (2.6). To be more precise, we replace the

sesquilinear form B (3.1) in the following way. Let µ ∈ L∞(Ω;R3×3), ε ∈ L∞(Ω;R3×3)
and ω ∈ R+ and we assume ω & 1, i.e., we study the high frequency case. We then seek
u ∈ H0(curl) such that

B(u,ψ) := (µ curl u, curlψ)L2(Ω) − ω2(εu,ψ)L2(Ω) = (f ,ψ)L2(Ω) ∀ψ ∈ H0(curl,Ω). (3.35)

Fredholm theory guarantees the existence of a unique solution u to (3.35) provided that ω is
not an eigenvalue of the curl-curl-operator, which we assume from now on. This in particular
implies that there is γ(ω) > 0 such that B is inf-sup stable with constant γ(ω), i.e.,

inf
v∈H0(curl)\{0}

sup
ψ∈H0(curl)\{0}

|B(v,ψ)|
‖v‖curl,ω‖ψ‖curl,ω

≥ γ(ω). (3.36)

Here and in the following, we use the ω-dependent inner product on H0(curl, R) for R ⊂ Ω

(v,ψ)curl,ω,R := (curl v, curlψ)L2(R) + ω2(v,ψ)L2(R).
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Ideal numerical homogenization. As in Section 3.2.3, we would like to decompose the ex-
act solution into a coarse part, which is a good approximation in H(div)′, and a corrector
contribution using the direct sum splitting H0(curl) = N̊ (TH)⊕W with W := ker(πEH). The
crucial point here is to prove the inf-sup stability of B over W in order to have a well-defined
Corrector Green’s Operator.
For this, we first observe that the regular decomposition estimates (3.16) directly imply for

any w ∈W
‖w‖H(div)′ . H‖w‖H(curl). (3.37)

Moreover, the stability estimates (2.31), (2.32) imply that following stability of πEH :

‖πEHv‖curl,ω . ‖v‖curl,ω if ωH . 1.

From now on, we assume this resolution condition

ωH . 1. (3.38)

It reflects that a few degrees of freedom per wavelength are always required to represent a
wave. The constant hidden in . only depends on interpolation constants and the bounds on
the material coefficients µ and κ. Under this resolution condition (3.38), B is stable on W,
as details the next lemma.

Lemma 3.2.14 (Properties of W). Let w ∈W be decomposed as w = z +∇θ and (3.38) be
satisfied. Then

• we have a (ω-independent) norm equivalence between ‖·‖curl,ω and ‖|w|‖2 := ‖ curl z‖2+
ω2‖∇θ‖2;

• there is α > 0 independent of ω such that

inf
w∈W\{0}

sup
φ∈W\{0}

|B(w,φ)|
‖w‖curl,ω‖φ‖curl,ω

≥ α.

Proof. For the norm equivalence we obtain using (3.16) and curl w = curl z

‖|w|‖2 = ‖ curl z‖2+ω2‖∇θ‖2 . ‖ curl w‖2 + ω2‖w‖2 + ω2H2‖ curl w‖2 . ‖w‖2curl,ω,

‖w‖2curl,ω ≤ ‖z‖2curl,ω + ‖∇θ‖2curl,ω . ‖ curl z‖2+ω2H2‖ curl z‖2 + ω2‖∇θ‖2 . ‖|w|‖2.

For the inf-sup constant, define the sign-flip isomorphism SF (w) = z − ∇θ. Observe that
curlπEHz = curlπEHw = 0 because of the commuting property of πEH . Then

Re{B(w, (id−πEH)SF (w))} & ‖ curl z‖2 + ω2‖∇θ‖2 − ω2‖z‖2 − 2ω2|(εz,∇θ)|
− 2ω2|(εz, πEHz)| − 2ω2|(ε∇θ, πEHz)|,

where we used πEH∇θ = −πEHz because of πEHw = 0. Applying Young’s inequality, the stability
of πEH (2.31)–(2.32), estimate (3.16) and using the resolution condition (3.38), we arrive at

Re{B(w, (id−πEH)SF (w))} & ‖ curl z‖2 + ω2‖∇θ‖2 & ‖w‖2curl,ω

because of the norm equivalence. The estimate ‖(id−πEH)SF (w)‖curl,ω . ‖w‖curl,ω finally
gives the claim.

With this inf-sup stability of B over W the Corrector Green’s Operator G from Definition
3.2.2 is well-defined. Moreover, the stability and approximation properties from Lemma 3.2.4
directly transfer to the indefinite case. Therefore, an ideal numerical homogenization scheme
consists in solving the variational problem over the “multiscale” space (id +K)N̊ (TH) with
K = −G ◦ L defined as in Section 3.2.3. The well-posedness of this scheme is proved in the
next lemma.
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Lemma 3.2.15 (Well-posedness of the ideal scheme). Under the resolution condition (3.38),
we have with γ(ω) from (3.36) that

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +K)vH , (id +K)ψH)|
‖vH‖curl,ω‖ψH‖curl,ω

& γ(ω). (3.39)

Proof. Fix vH ∈ N̊ (TH). From (3.36), there exists ψ ∈ H0(curl) with ‖ψ‖curl,ω = 1 such that

|B((id +K)vH ,ψ)| ≥ γ(ω)‖(id +K)vH‖curl,ω.

By the definition of K, it holds that (id +K)πEHψ = (id +K)ψ and B((id +K)vH ,w) = 0 for
all w ∈W. Thus, we obtain

|B((id +K)vH , (id +K)πEHψ)| = |B((id +K)vH , (id +K)ψ)| = |B((id +K)vH ,ψ)|
≥ γ(ω)‖(id +K)vH‖curl,ω.

The claim follows by the norm equivalence

‖vH‖curl,ω = ‖πEH(id +K)vH‖curl,ω . ‖(id +K)vH‖curl,ω,

which is a result of the stability of πEH .

Then, the main results (Lemma 3.2.3 and Conclusion 3.2.6) of Section 3.2.3 also hold for
the indefinite case in the following way.

Theorem 3.2.16 (Ideal decomposition). Let u denote the exact solution to (3.35) and uH =
πEHu. Then

• it holds that u = uH +K(uH) + G(f);

• assuming (3.38), uH is characterized as the unique solution to

B((id +K)uH , (id +K)ψH) = (f , (id +K)ψH) ∀ψH ∈ N̊ (TH); (3.40)

• assuming (3.38), it holds that

‖u− (id +K)uH‖curl,ω + ‖u− uH‖H(div)′ . H‖f‖H(div). (3.41)

The theorem shows that (id +K)uH approximates the analytical solution with linear rate
without assumptions on the regularity of the problem. What is more, only the reasonable
resolution condition ωH . 1 is required, which is less restrictive than the condition for stan-
dard finite element methods. However, the determination of K requires (again) the solution
of global problems, which limits the practical usability of the scheme.

Quasi-local numerical homogenization. Using the inf-sup stability of B over W, the expo-
nential decay result of Proposition 3.2.9 generalizes to the indefinite case. Therefore, we can
approximate K by local correctors in a similar manner as in Section 3.2.4. For the indefinite
case, however, we have to guarantee the well-posedness of the localized corrector problems.
When trying to carry over the proof of the inf-sup stability of Lemma 3.2.14 to local patches
ΩT := Nm(T ), we observe that the test function (id−πEH)SF (w) is no longer supported in
ΩT , but on a slightly larger patch. Therefore, we have to modify the definition of the localized
corrector in the following way.
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Definition 3.2.17 (Localized Corrector Approximation). For any element T ∈ TH we de-
fine its patch ΩT := Nm(T ). Let F ∈ H0(curl)′ be the sum of local functionals, i.e., F =∑
T∈TH FT with FT as in Proposition 3.2.9. Denote by πEH,ΩT : H0(curl,Ω) → N̊ (TH(ΩT ))

the Falk-Winther interpolation operator which enforces essential boundary conditions (i.e.,
zero tangential traces) on ∂ΩT . We then define

W(ΩT ) := {w ∈ H0(curl)|w = 0 outside ΩT , π
E
H,ΩTw = 0} * W. (3.42)

We call GT,m(FT ) ∈W(ΩT ) the localized corrector if it solves

B(GT,m(FT ),w) = FT (w) ∀w ∈W(ΩT ). (3.43)

The global corrector approximation is then given by

Gm(F) =
∑
T∈TH

GT,m(FT ).

Observe that problem (3.43) is only formulated on the patch ΩT . Its well-posedness can
be proved as in Lemma 3.2.14: For w ∈ W(ΩT ), use (id−πEH,ΩT )SF (w) ∈ W(ΩT ) as test
function (with the sign-flip isomorphism SF ). This is a nonconforming definition of the
localized corrector (i.e., πEHGm(·) 6= 0), so that additional terms appear in the error analysis.
However, the nonconformity error only plays a role near the boundary of ∂ΩT and can therefore
be controlled very well.

Theorem 3.2.18 (Error of the corrector approximation). Let G(F) be the ideal Green’s cor-
rector and Gm(F) the localized corrector from Definition 3.2.17. Under resolution condition
(3.38), there exists 0 < β < 1 such that

‖G(F)− Gm(F)‖curl,ω .
√
Col,m β

m
( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

, (3.44)

‖πEHGm(F)‖curl,ω .
√
Col,m β

m
( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

. (3.45)

The proof is given in the next paragraph.
Following the above motivation, we define a quasi-local numerical homogenization scheme

by replacing K in the ideal scheme (3.40) with Km = −
∑
T∈TH GT,m ◦ LT with the localized

corrector GT,m from Definition 3.2.17.

Definition 3.2.19 (Quasi-local numerical homogenization scheme). In the quasi-local nu-
merical homogenization scheme we seek uH,m ∈ N̊ (TH) such that

B((id +Km)uH,m, (id +Km)vH) = (f , (id +Km)vH) ∀vH ∈ N̊ (TH). (3.46)

We observe that Km can be computed by solving local decoupled problems and that the
spaces W(ΩT ) still need to be discretized, see Section 3.2.4 for a detailed discussion.
We then prove the well-posedness and the a priori error estimate for the quasi-local numer-

ical homogenization scheme.

Theorem 3.2.20 (Well-posedness of (3.46)). If the resolution condition (3.38) and the over-
sampling condition

m & | log
(
γ(ω)/

√
Col,m

)
|/| log(β)| (3.47)

are fulfilled, B is inf-sup stable over (id +Km)N̊ (TH), i.e.,

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +Km)vH , (id +Km)ψH)|
‖vH‖curl,ω‖ψ‖curl,ω

≥ γLOD(ω) ≈ γ(ω).
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Theorem 3.2.21 (A priori estimate). Let u denote the solution to (3.35) and uH,m the
solution to (3.46). If the resolution condition (3.38) and the oversampling condition

m & | log
(
γLOD(ω)/

√
Col,m

)
|/| log(β)| (3.48)

are fulfilled, then

‖u− (id +Km)uH,m‖curl,ω . (H + βmγ−1(ω))‖f‖H(div). (3.49)

Note that the oversampling condition (3.48) is – up to constants independent of H and ω –
the same as condition (3.47). Since Col,m grows polynomially in m for quasi-uniform meshes,
it is satisfiable and depends on the behavior of γ(ω). If γ(ω) . ωq, we derive m ≈ | log(ω)|.
Note that in (3.49), we can replace γ−1(ω) with Cstab(ω), the stability constant of the original
problem (3.35). This is exactly the same a priori estimate as for Helmholtz problems in [Pet17].
To sum up, an oversampling parameter m ≈ | log(ω)| is sufficient for the stability of the LOD.
Requiring additionally m ≈ | log(H)|, we obtain a linear convergence rate for the error.

Main Proofs. Theorem 3.2.18 results from the exponential decay of G in Proposition 3.2.9.

Proof of Theorem 3.2.18. We start by proving the following local estimate

‖G(FT )− GT,m(FT )‖curl,ω . β̃m‖FT ‖H0(curl)′ . (3.50)

By Strang’s second lemma we obtain

‖G(FT )− GT,m(FT )‖curl,ω

. inf
wT,m∈W(ΩT )

‖G(FT )−wT,m‖curl,ω + sup
φT,m∈W(ΩT )

‖φT,m‖curl,ω=1

|B(G(FT ),φT,m)− FT (φT,m)|.

The first term can be estimated as in Section 3.2.5 for Theorem 3.2.11. For the second term,
we have due to (3.19) that it is equal to

sup
φT,m∈W(ΩT ),‖φT,m‖curl,ω=1

|B(G(FT ),φT,m − φ)− FT (φT,m − φ)|

for any φ ∈W. Fixing φT,m = zT,m +∇θT,m, we choose φ = (id−πEH)(ηzT,m +∇(ηθT,m))

with a cut-off function such that φT,m−φ = 0 in Nm−2(T ). Then FT (φT,m−φ) = 0 and we
get with the stability of πEH and (3.16)

|B(G(FT ),φT,m − φ)| . ‖G(FT )‖curl,ω,Ω\Nm−2(T )‖φT,m − φ‖curl,ω

. ‖G(FT )‖curl,ω,Ω\Nm−2(T ).

Combination with Proposition 3.2.9 gives (3.50).
For (3.44), we split the error as

‖G(F)− Gm(F)‖curl,ω ≤ ‖(id−πEH)(G(F)− Gm(F))‖curl,ω + ‖πEHGm(F)‖curl,ω.

The first term can be estimated with the procedure for Theorem 3.2.11 from Section 3.2.5.
The second term is the left-hand side of (3.45) and thus, it suffices to prove (3.45). We observe
that πEHGT,m(FT ) 6= 0 only on a small ring R ⊂ Nm+1(T ) because πEH and πEH,ΩT only differ
near the boundary of ΩT . Hence, we get

‖πEHGm(F)‖2curl,ω ≤
∑
T∈TH

|(πEHGm(F), πEHGT,m(FT ))curl,ω|

.
∑
T

‖πEHGm(F)‖curl,ω,Nm+1(T )‖πEH(G(FT )− GT,m(FT ))‖curl,ω

.
√
Col,m‖πEHGm(F)‖curl,ω

(∑
T

‖G(FT )− GT,m(FT )‖curl,ω

)1/2

.

Application of (3.50) gives the claim.
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3 Multiscale methods for H(curl)-problems

The well-posedness of the quasi-local numerical scheme comes from the well-posedness of
the ideal scheme (Theorem 3.2.16) and the fact that the localized corrector is exponentially
close to the ideal corrector.

Proof of Theorem 3.2.20. Fix vH ∈ N̊ (TH) and set ṽH = πEH(id +Km)(vH). According to
Theorem 3.2.16, there exists ψH ∈ N̊ (TH) with ‖ψH‖curl,ω = 1 such that

|B((id +K)ṽH , (id +K)ψH)| ≥ γ(ω)‖ṽH‖curl,ω.

As B(w, (id +K)ψH) = 0 for all w ∈W, we derive

B((id +Km)vH , (id +K)ψH) = B((id+Km)vH−(id−πEH)((id +Km)vH), (id +K)ψH)

= B(ṽH , (id +K)ψH) = B((id +K)ṽH , (id +K)ψH).

This yields together with Theorem 3.2.18

|B((id +Km)vH , (id +Km)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)vH , (id +K)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)ṽH , (id +K)ψH)|
≥ γ(ω)‖ṽH‖curl,ω − C

√
Col,m β

m‖(id +Km)vH‖curl,ω.

Moreover, we have

‖(id +Km)vH‖curl,ω . (1 + βm)‖vH‖curl,ω . ‖vH‖curl,ω,

since β < 1, and

‖vH‖curl,ω = ‖πEH(id +K)vH‖curl,ω = ‖πEH(id +Km)vH + πEH(K −Km)vH‖curl,ω

. ‖ṽH‖curl,ω + C
√
Col,m β

m‖vH‖curl,ω.

If m is large enough (indirectly implied by the oversampling condition), the second term can
be hidden on the left-hand side. Thus, we finally obtain

|B((id +Km)vH , (id +Km)ψH)| & (γ(ω)− C
√
Col,m β

m)‖vH‖curl,ω.

Application of the oversampling condition (3.47) gives the assertion.

The proof of the a priori error estimate is inspired by the procedure for the Helmholtz
equation [Pet17] and uses duality arguments.

Proof of Theorem 3.2.21. Define e := u − (id +Km)uH,m and set eH,m := (id +Km)πEH(e).
Let zH ∈ N̊ (TH) be the solution to the dual problem

B((id +Km)vH , (id +Km)zH) = (eH,m, (id +Km)vH)curl,ω ∀vH ∈ N̊ (TH).

Using the fact that B(w, (id +K)zH) = 0 for all w ∈W and employing the Galerkin orthog-
onality B(e, (id +Km)zH) = 0, we obtain that

‖eH,m‖2curl,ω = B(eH,m, (id +Km)zH)

= B(eH,m, (Km −K)zH) + B(eH,m, (id +K)zH)

= B(e− eH,m, (K −Km)zH)− B(πEH(e− eH,m), (id +K)zH).

Observe that πEH(e− eH,m) = πEHKmπEH(e). Theorems 3.2.18 and 3.2.20 yield

‖eH,m‖2curl,ω .
√
Col,m β

m‖e− eH,m‖curl,ω‖zH‖curl,ω+
√
Col,m β

m‖e‖curl,ω‖zH‖curl,ω

.
√
Col,m β

m γ−1
LOD(ω) (‖e− eH,m‖curl,ω + ‖e‖curl,ω)‖eH,m‖curl,ω.
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3.2 Numerical homogenization beyond periodicity

The triangle inequality gives

‖e‖curl,ω ≤ ‖(id−πEH)(e− eH,m)‖curl,ω + ‖πEH(e− eH,m)‖curl,ω + ‖eH,m‖curl,ω.

The above computations and (3.45) imply with the resolution condition (3.48)

‖e‖curl,ω . ‖(id−πEH)(e− eH,m)‖curl,ω.

Observe that e− eH,m = u− (id +Km)πEH(u)− (id +Km)πEHKmuH,m. Since (id−πEH)(e−
eH,m) ∈W, Lemma 3.2.14 gives w ∈W with ‖w‖curl,ω = 1 such that

‖(id−πEH)(e− eH,m)‖curl,ω

. |B((id−πEH)(e− eH,m),w)|
= |B(u,w)−B((id+Km)πEHu,w)−B((id+Km)πEHKmuH,m,w)−B(πEHKmπEHe,w)|
= |(f ,w)−B((Km −K)πEHu,w)−B((Km −K)πEHKmuH,m,w)−B(πEHKmπEHe,w)|.

Theorems 3.2.18 and 3.2.20 give together with the stability of πEH and (3.37)

‖(id−πEH)(e− eH,m)‖curl,ω

.
(
H +

√
Col,m β

mγ−1(ω) + Col,m β
2mγ−1

LOD(ω)
)
‖f‖H(div) +

√
Col,m β

m‖e‖curl,ω.

The last term can be hidden on the left-hand side and the third term can be absorbed in the
second term.
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4 Heterogeneous Multiscale Methods
for high contrast problems

In this chapter, we present and analyze the Heterogeneous Multiscale Method (HMM) for
electromagnetic scattering problems with high contrast. More precisely, we study the problems
(2.21) and (2.22) for the two-dimensional and three-dimensional setting, respectively, where
the scatterer Ω exhibits a special (periodic) structure detailed below.
As already mentioned in the introduction, (locally) periodic media, such as photonic crys-

tals, can have astonishing properties such as band gaps or negative refraction. The setting and
studies of this chapter shed a light on the phenomenon of artificial magnetism. This describes
the occurrence of an (effective) permeability µ 6= 1 in an originally nonmagnetic material, i.e.,
µ = 1. Clearly, such a material must exhibit some interior structure to allow this significant
change of behavior. In [BBF17,BF04], a high contrast structure (see below) has been used
to obtain a wavenumber-dependent permeability. The permeability can even have a negative
real part, which is of particular interest: The corresponding wavenumbers form a so-called
band gap where wave propagation is physically forbidden.
Inspired by [FB97] and the experimental setup of [OP02], the setting of [BF04] (two-

dimensional case) is the following (see also Figure 4.1): A periodic array of rods with high
permittivity is embedded in a lossless dielectric material. The three-dimensional extension
in [BBF09,BBF17] consists of bulk inclusions with high permittivity embedded in a lossless
dielectric material, see Figure 4.2. In both cases, denoting by the small parameter δ the pe-
riodicity, the high permittivity in the inclusions is modeled by setting ε−1 = δ2ε−1

1 , see (4.1)
for an exact definition. As in Section 2.1, we denote by k the wavenumber of the scattering
problem and assume that there is k0 > 0 such that k ≥ k0, which corresponds to medium
and high frequencies. It is important to relate the scales introduced by k and δ: We basically
have a three-scale structure with δ � λ ∼ k−1 < 1, i.e., the periodicity of the material (and
hence the size of the inclusions) is much smaller than the wavelength of the incoming wave.
This chapter is structured as follows. The (geometric) setting is detailed in Section 4.1. In

Section 4.2, we give the homogenization results for these problems in form of a two-scale and an
effective homogenized equation each. These homogenized systems are analyzed with respect
to stability and regularity in Section 4.3. In Section 4.4, we introduce the Heterogeneous
Multiscale Method (HMM) and perform a rigorous a priori error analysis. Section 4.5 analyzes
an additional Localized Orthogonal Decomposition (LOD) to relax the resolution condition

ε = 1

Ω, ε 6= 1

Σ

δ2ε−1
1

Σ∗

ε−1
0

Figure 4.1: Left: Scatterer Ω with inclusions Σδ with high permittivity (in gray); Right: Zoom
into one unit cell Y and scaling of the permittivity ε−1

δ .
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Y

Σ∗, ε−1
0

Σ, δ2ε−1
1

Figure 4.2: Left: Scatterer Ω with the high contrast inclusions Σδ (in gray); Right: Zoom into
unit cell Y and scaling of ε−1

δ .

between the mesh size and the wavenumber. Numerical experiments are given in Section 4.6.
The results presented in this chapter have been published in [OV17,OV18] and as preprint
in [Ver17a].

4.1 Problem setting
Let Ω ⊂⊂ G ⊂ Rd, d ∈ {2, 3}, be bounded, simply connected domains with C2-boundary
and denote the outer unit normal of G by n. We consider the following setting for the
inverse relative permittivity ε−1, see [BBF17,BF04]: Ω is composed of δ-periodically disposed
inclusions, δ being a small parameter. Denoting by Σ ⊂⊂ Y = (− 1

2 ,
1
2 )d a connected domain

with C2-boundary, the inclusions occupy a region Σδ = ∪j∈Iδ(j + Σ) with I = {j ∈ Zd|δ(j +
Y ) ⊂ Ω}. The complement of Σ in Y , denoted by Σ∗, is connected. In the three-dimensional
case, we additionally assume Σ∗ to be simply connected. The inverse relative permittivity
ε−1
δ is then defined (possibly after rescaling) as (cf. Figures 4.1 and 4.2)

ε−1
δ (x) :=


δ2ε−1

1 , if x ∈ Σδ with ε1 ∈ C, Im(ε1) > 0, Re(ε1) > 0,

ε−1
0 , if x ∈ Ω \ Σδ with ε0 ∈ R, ε0 > 0,

1, if x ∈ G \ Ω.

(4.1)

We assume Re(ε1) > 0 for simplicity; all results hold — up to minor modifications in the
proofs — also for ε1 with Re(ε1) ≤ 0. Physically speaking, this choice of ε−1

δ means that the
scatterer Ω consists of periodically disposed metallic inclusions Σδ embedded in a dielectric
“matrix” medium.
We use the notation on Sobolev spaces from Section 2.1.2. We then consider the Helmholtz

equation (2.21) and the Maxwell equation (2.22) with the coefficient ε−1
δ . To be more precise,

we consider the following situations.

Definition 4.1.1 (Weak solution for the Helmholtz equation). Let ε−1
δ be defined by (4.1)

and let g ∈ H1/2(∂G). We call uδ ∈ H1(G) a weak solution for d = 2 if it fulfills
ˆ
G

ε−1
δ ∇uδ · ∇ψ

∗ − k2uδψ
∗ dx− ik

ˆ
∂G

uδψ
∗ dσ =

ˆ
∂G

gψ∗ dσ ∀ψ ∈ H1(G). (4.2)

Definition 4.1.2 (Weak solution for the Maxwell equation). Let ε−1
δ be defined by (4.1) and

let g ∈ L2
T (∂G). We call uδ ∈ Himp(G) a weak solution for d = 3 if it fulfills

ˆ
G

ε−1
δ curl uδ ·curlψ∗−k2uδ ·ψ∗ dx−ik

ˆ
∂G

(uδ)T ·ψ∗T dσ =

ˆ
∂G

g ·ψ∗T dσ ∀ψ ∈ Himp(G).

(4.3)
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4.2 Homogenization results

Both problems admit a unique solution for fixed δ, which can be shown by unique contin-
uation principles and Fredholm theory, see Section 2.1.3. The spaces H1(G) and Himp are
equipped with the k-weighted norms ‖ · ‖1,k (2.10) and ‖ · ‖imp,k (2.15).

4.2 Homogenization results

In this section we consider the homogenization process δ → 0 of problems (4.2) and (4.3) using
the tool of two-scale convergence. We present a two-scale equation and a homogenized effective
equation for each of the two problems: Section 4.2.1 deals with the Helmholtz equation (4.2)
and Section 4.2.2 with the Maxwell equation (4.3). In Section 4.2.3, we compare our results
and formulations with the existing ones in the literature, namely [All92, Section 4] and [BF04]
for the two-dimensional case, and [BBF17,CC15] for the three-dimensional case.
Details on two-scale convergence can be found in Section 2.3.1 and [All92, LNW02]. We

recall the short-hand notation 2
⇀. In addition to the (periodic) function spaces introduced in

Definition 2.3.1, we denote by H1
],0(Σ∗) the restriction of functions in H1

],0(Y ) to Σ∗ ⊂ Y .

4.2.1 Homogenization results for the Helmholtz equation

The special scaling of ε−1
δ with δ2 on a part of Ω leads to a different behavior of the solution on

Σδ and its complement, which can still be seen in the two-scale equation and the homogenized
(effective) equation. More precisely, we obtain the standard two-scale convergences from
Theorems 2.3.4 and 2.3.5 outside of the inclusions Σδ, whereas inside these inclusions the
high contrast implies that an additional identity term “survives”.

Theorem 4.2.1 (Two-scale equation). Let uδ be the weak solution to (4.2). There are func-
tions u0 ∈ H1(G), u1 ∈ L2(Ω;H1

],0(Σ∗)), and u2 ∈ L2(Ω;H1
0 (Σ)) such that the following

two-scale convergences for δ → 0 hold

uδ
2
⇀ u0 + χΣu2, χΩ\Σδ∇uδ

2
⇀ χΣ∗(∇u0 +∇yu1),

δχΣδ∇uδ
2
⇀ χΣ∇yu2, ∇uδ

2
⇀ ∇u0 in G \ Ω.

The two-scale triple u := (u0, u1, u2) ∈ H is the unique solution to

B
(
(u0, u1, u2), (ψ0, ψ1, ψ2)

)
= (g, ψ0)L2(∂G) ∀ψ := (ψ0, ψ1, ψ2) ∈ H, (4.4)

where H := H1(G)× L2(Ω;H1
],0(Σ∗))× L2(Ω;H1

0 (Σ)) and

B(v,ψ) :=

ˆ
Ω

ˆ
Σ∗
ε−1

0 (∇v0 +∇yv1) · (∇ψ∗0 +∇yψ∗1) dydx+

ˆ
Ω

ˆ
Σ

ε−1
1 ∇yv2 · ∇yψ∗2 dydx

− k2

ˆ
G

ˆ
Y

(v0 + χΣv2)(ψ∗0 + χΣψ
∗
2) dydx+

ˆ
G\Ω
∇v0 · ∇ψ∗0 dx− ik

ˆ
∂G

v0 ψ
∗
0 dσ.

The proof mainly follows the lines of [BF04] with the application of the two-scale conver-
gences proved in [All92, Section 4] for a so-called highly heterogeneous diffusion problem.
Note that u1 and u2 are zero outside Ω so that we have uδ⇀u0 in H1(G \ Ω). We remark
that the two-scale equation for a problem with high contrast includes an additional corrector
in the identity part in comparison to the classical elliptic case, see [All92,LNW02].
The two-scale equation can be recast into a homogenized effective (macroscopic) equation

which involves effective parameters computed from cell problems, as given in the next theorem.
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Theorem 4.2.2 (Homogenized effective equation). Define for j, l = 1, 2 the effective param-
eters

((ε−1)hom(x))jl :=

{´
Σ∗
ε−1

0 (ej +∇ywj) · (el +∇yw∗l ) dy, if x ∈ Ω,

Id jl, if x ∈ G \ Ω,

and µhom(x) :=

{´
Y

1 + k2χΣ w dy, if x ∈ Ω,

1, if x ∈ G \ Ω,

where wj and w are solutions to the following cell problems: wj ∈ H1
],0(Σ∗), j = 1, 2, solves

ˆ
Σ∗
ε−1

0 (ej +∇ywj) · ∇yψ∗1 dy = 0 ∀ψ1 ∈ H1
],0(Σ∗) (4.5)

and w ∈ H1
0 (Σ) solves

ˆ
Σ

ε−1
1 ∇yw · ∇yψ∗2 − k2wψ∗2 dy =

ˆ
Σ

ψ∗2 dy ∀ψ2 ∈ H1
0 (Σ). (4.6)

Then the triple (u0, u1, u2) solves the two-scale equation (4.4) if and only if we set u1(x, y) =∑2
j=1

∂u0

∂xj
|Ω(x)wj(y), u2(x, y) = k2u0|Ω(x)w(y), and u0 ∈ H1(G) solves

Bhom(u0, ψ) = (g, ψ)L2(∂G) ∀ψ ∈ H1(G) (4.7)

with the effective sesquilinear form

Bhom(v, ψ) :=

ˆ
G

(ε−1)hom∇v · ∇ψ∗ − k2µhomv ψ
∗ dx− ik

ˆ
∂G

v ψ∗ dσ. (4.8)

The presentation is oriented at the results for diffusion problems in [All92], which can be
seen most prominently in the form of the effective permeability µhom. In Lemma 4.2.5, we
prove that this formula for µhom is perfectly equivalent to the representation chosen in [BF04].
We emphasize that all cell problems are uniquely solvable due to the Theorem of Lax-

Milgram. (For (4.6), note that the left-hand side is coercive because of Im(ε−1
1 ) < 0.) Unique

solvability of the effetive macroscopic equation (4.7) again follows with Fredholm theory.
The foregoing theorem means that in the limit δ → 0, the scatterer Ω can be described as a

homogeneous material with the (effective) parameters (ε−1)hom and µhom. Whereas (ε−1)hom

is a positive definite matrix (see Proposition 4.3.5), the effective permeability µhom exhibits
some astonishing properties: First of all, its occurrence itself is surprising as the scatterer
is nonmagnetic. This is the already discussed effect of artificial magnetism. Second, the
permeability is wavenumber-dependent and its real part can have a positive or a negative
sign. In the region with Re(µhom) < 0 waves cannot propagate leading to photonic band
gaps, see [BF04]. This effect is also studied numerically in detail in Section 4.6.

4.2.2 Homogenization results for the Maxwell equation

From the previous section, we also expect a different behavior of the solution uδ to (4.3) in- and
outside Σδ. Moreover, we have to apply the two-scale convergences for H(curl) from Theorem
2.3.6, so that we already obtain a corrector in the identity term outside the inclusions. Hence,
the Maxwell equation with high contrast finally has three correctors in the two-scale equation.
Similar to H1

],0(Σ∗), we denote by H](curl,Σ∗) the restriction of functions in H](curl, Y )
to Σ∗ ⊂ Y . Moreover, we introduce the space

H̃](curl,Σ∗) := H](curl,Σ∗)/ ker(curly|Σ∗ ).
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This is the space of functions v ∈ H](curl,Σ∗) such that curly v is uniquely determined in Σ∗

or, in other words, such that v is determined up to a gradient (as Σ∗ is simply connected).
Note, however, that in practical applications, we will always be interested in curly v solely,
which is in L2

] (Σ
∗) and uniquely determined.

Theorem 4.2.3 (Two-scale equation). Let uδ be the solution to (4.3). There are functions
u0 ∈ Himp(G), u1 ∈ L2(Ω; H̃](curl,Σ∗)), u2 ∈ L2(Ω;H1

],0(Σ∗)), and u3 ∈ L2(Ω; H0(curl,Σ)),
such that the following two-scale convergences hold

uδ
2
⇀ u0 + χΣ∗∇yu2 + χΣu3, χΩ\Σδ curl uδ

2
⇀ χΣ∗(curl u0 + curly u1),

δχΣδ curl uδ
2
⇀ χΣ curly u3, curl uδ

2
⇀ curl u0 in G \ Ω.

The quadruple u := (u0,u1, u2,u3) ∈ H of two-scale limits is the unique solution to

B((u,u1, u2,u3), (ψ,ψ1, ψ2,ψ3)) = (g,ψT )L2(∂G) ∀(ψ,ψ1, ψ2,ψ3) ∈ H, (4.9)

where H := Himp(G)× L2(Ω; H̃](curl,Σ∗))× L2(Ω;H1
],0(Σ∗))× L2(Ω; H0(curl,Σ)) and

B(v,ψ) :=

ˆ
Ω

ˆ
Σ∗
ε−1

0 (curl v0 + curly v1) · (curlψ∗0 + curly ψ
∗
1) dydx

+

ˆ
Ω

ˆ
Σ

ε−1
1 curly v3 · curly ψ

∗
3 dydx

− k2̂

G

ˆ
Y

(v0 + χΣ∗∇yv2 + χΣv3) · (ψ∗0 + χΣ∗∇yψ∗2 + χΣψ
∗
3) dydx

+

ˆ
G\Ω

curl v0 · curlψ∗0 dx− ik
ˆ
∂G

(v0)T · (ψ0)∗T dσ.

Proof. The proof closely follows [BBF17] and mainly differs in the form of the two-scale
convergence, so that we focus on that part.
First step: A priori bounds. Assume that uδ is uniformly bounded in L2(G). We then

easily deduce that
√
|ε−1
δ | curl uδ is also uniformly bounded in L2(G).

Second step: Two-scale convergences. By the a priori bounds, uδ converges weakly in
H(curl, G \ Ω) to some u0. Using [BBF17, Prop. 7.1], we deduce u0 ∈ H(curl, G \ Ω). Since
G\Σδ is a simply connected domain, the two-scale convergences from Wellander et al. [Wel09,
WK03] and Visintin [Vis07] can be applied (formally with the help of extension by zero in
Σδ): There exist u0 ∈ Himp(G), u1 ∈ L2(Ω; H̃](curl,Σ∗)), and u2 ∈ L2(Ω;H1

],0(Σ∗)) such
that, up to a subsequence,

χG\Σδuδ
2
⇀ χΣ∗(u0 +∇yu2) and χG\Σδ curl uδ

2
⇀ χΣ∗(curl u0 + curly u1).

The uniform a priori bound of uδ furthermore implies that there is ũ0 ∈ L2(Ω; H](curl,Σ))
such that, up to a subsequence,

χΣδuδ
2
⇀ χΣũ0 and δχΣδ curl uδ

2
⇀ χΣ curly ũ0,

cf. [CC15]. Using all these two-scale convergences, we can deduce for any ψ ∈ C∞0 (Ω;C∞] (Y ))

ˆ
Ω

ˆ
Σ

curly ũ0 ·ψ dydx←−
ˆ

Ω

δ curl uδ ·ψ
(
x,
x

δ

)
dx

=

ˆ
Ω

δuδ · curly ψ
(
x,
x

δ

)
dx −→

ˆ
Ω

ˆ
Y

curly ψ · (χΣũ0 + χΣ∗(u0 +∇yu2)) dydx.
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Integrating then by parts on the right-hand side, we derive the continuity of the tangential
traces over ∂Σ, i.e.,ˆ

Ω

ˆ
∂Σ

ũ0 × n ·ψ dσdx =

ˆ
Ω

ˆ
∂Σ

(u0 +∇yu2)× n ·ψ dσdx ∀ψ ∈ C∞0 (Ω;C∞] (Y )).

Therefore, there exists u3 ∈ L2(Ω; H0(curl,Σ)) such that

uδ
2
⇀ u0 + χΣ∗∇yu2 + χΣu3.

Third step: Two-scale equation and uniqueness. The two-scale equation follows from the
two-scale limits by inserting a test function of the form ψ(x) + δψ1(x, xδ ) + ∇yψ2(x, xδ ) +
ψ3(x, xδ ) with smooth and locally periodic functions ψi and with ψ3(·, y) = 0 for y ∈ Σ∗ and
∇yψ2(·, y) = 0 for y ∈ Σ into (4.3). Uniqueness of this problem can either be derived by
the uniqueness of the effective equation (see Theorem 4.2.4) or by inserting appropriate test
functions.
Fourth step: L2(G)-bound on uδ. Finally, the assumption that uδ is uniformly bounded in

L2(G) is proved by a contradiction argument, for details we refer to [BBF17]. Note that we
cannot argue in the same way as for Helmholtz problems in [BF04] since weak convergence in
H(curl) does not imply strong convergence in L2.

Again, we decouple the influence of the micro- and macroscale by introducing effective
parameters. We emphasize that the homogenized solution u0 is not the weak limit of uδ.

Theorem 4.2.4 (Homogenized effective equation). Define for j, l = 1, 2, 3 the effective ma-
terial parameters

((ε−1)hom)j,l :=

{´
Σ∗
ε−1

0 (el + curly w1
l ) · ej dy, if x ∈ Ω,

Idjl, if x ∈ G \ Ω,

and (µhom)j,l :=

{´
Y

(el + k2χΣ∗∇yw2
l + k2χΣw3

l ) · ej dy, if x ∈ Ω,

Idjl, if x ∈ G \ Ω,

where w1
l , w

2
l , and w3

l are solutions to the following cell problems: w1
l ∈ H̃](curl,Σ∗), l =

1, 2, 3, solves ˆ
Σ∗
ε−1

0 (el + curly w1
l ) · curly ψ

∗
1 dy = 0 ∀ψ1 ∈ H̃](curl,Σ∗), (4.10)

and w2
l ∈ H1

],0(Σ∗) and w3
l ∈ H0(curl,Σ), l = 1, 2, 3, solve

ˆ
Σ∗

(el + k2∇yw2
l ) · ∇yψ∗2 dy = 0 ∀ψ2 ∈ H1

],0(Σ∗), (4.11)
ˆ

Σ

ε−1
1 curly w3

l · curly ψ
∗
3 − k2w3

l ·ψ
∗
3 dy =

ˆ
Σ

el ·ψ∗3 dy ∀ψ3 ∈ H0(curl,Σ). (4.12)

Then the quadruple (u0,u1, u2,u3) is solution to the two-scale equation (4.9) if and only if
u0 ∈ Himp(G) solves the effective macroscopic scattering problem

ˆ
G

(ε−1)hom curl u0 · curlψ∗ − k2µhomu0 ·ψ∗ dx− ik
ˆ
∂G

(u0)T ·ψ∗T dσ =

ˆ
∂G

g ·ψ∗T dσ

∀ψ ∈ Himp(G)

(4.13)

and the correctors are

u1 =
∑
j

(curl u0|Ω)j w1
j , u2 =

∑
j

k2(u0|Ω)j w
2
j , and u3 =

∑
j

k2(u0|Ω)j w3
j . (4.14)
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With the same arguments as for the Helmholtz equation in Theorem 4.2.2, we again conclude
existence and uniqueness of solutions to the cell problems. Unique solvability of the effective
macroscopic equation (4.13) follows because Im(µeff) is positive-definite in Ω according to
Proposition 4.3.5, see [BBF17] and [Mon03, Section 4] for details.
The effective macroscopic equation (4.13) again reveals the physical properties of the scat-

terer Ω, see the discussion after Theorem 4.2.2. The effective parameters are very similar to
the two-dimensional case: (ε−1)hom is a positive definite matrix (see Proposition 4.3.5), while
µhom is wavenumber-dependent and its real part can be positive or negative definite, see the
numerical experiments in Section 4.6. However, there are also some striking differences to the
two-dimensional case: µhom is now matrix-valued and does not only involve a cell problem
inside Σ, but also a cell problem in Σ∗.

4.2.3 Comparison to the literature
In this section, we show the equivalence of our results and those available in the litera-
ture, namely [All92, BF04] for the two-dimensional case and [BBF17, CC15] for the three-
dimensional case.
Helmholtz equation. As already mentioned, our presentation in Section 4.2.1 closely
follows [All92, Section 4]. The main difference is that we deal with the Helmholtz equation,
whereas [All92] considers an elliptic problem, i.e., with positive identity term +α. Still, the
two-scale equation (4.4) as well as the cell problem (4.6) and the representation of µhom in The-
orem 4.2.2 can be transferred directly by formally setting α = −k2. Only the unique solvability
of the two-scale equation (4.4) needs to be ascertained because the two-scale sesquilinear form
is no longer coercive. Note that we do not have a volume term on the right-hand side and
that our boundary condition differs from [All92].
Comparing with [BF04], we only observe a difference in the representation of µhom. The

equivalence of both formulations is shown in the next lemma. Note that ε1 is constant.

Lemma 4.2.5 (Representation of µhom). The homogenized parameter µhom from Theorem
4.2.2 can be equivalently written as

µhom = 1 +
∑
n∈N

k2ε1

λn − k2ε1

(ˆ
Σ

φn dy
)2

,

where (λn, φn) are the eigenvalues and eigenfunctions of the Laplace operator on Σ with Dirich-
let boundary conditions.

Proof. It is well known that the eigenfunctions of the Laplace operator on Σ with Dirichlet
boundary conditions form an orthonormal basis of L2(Σ). The eigenvalues λn are sorted as a
positive, increasing sequence of real numbers. We have the representation 1=

∑
n

(´
Σ
φn dy

)
φn.

Writing w =
∑
n αnφn and inserting this into (4.6) gives after a comparison of coefficients

w =
∑
n

( ε1

λn − k2ε1

ˆ
Σ

φn dy
)
φn and hence, µhom = 1 +

∑
n

k2ε1

λn − k2ε1

(ˆ
Σ

φn dy
)2

,

cf. [BF04]. See [LS16a, Appendix A] for a computation in the three-dimensional case.

We stress two advantages of our choice of µhom over the representation in [BF04]: First,
it still holds for nonconstant parameters ε1. Second, it only involves the solution of one cell
problem rather than determining all eigenvalues and eigenfunctions of the Dirichlet Laplacian,
which is very useful for the numerical implementation.
Maxwell equation. For the Maxwell equation from Section 4.2.2, we combined the two
approaches [BBF17] and [CC15], so that there are differences to both contributions. First of
all, we want to emphasize a few new aspects and advantages of our formulations:
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4 Heterogeneous Multiscale Methods for high contrast problems

• Presentation of a two-scale equation: So far, this concise and elegant formulation has
been hidden in the proofs of [CC15].

• Uniqueness of the two-scale solution: By a slightly modified definition of the correctors
(in comparison to [CC15], see below), we are able to prove uniqueness in nevertheless
simple and natural function spaces. This is a great advantage for analysis.

• A new formulation for µhom: As already discussed in [BBF17], the computation of µhom

is very challenging, especially with respect to numerical implementations. In contrast to
the two-dimensional case, µhom does not only depend on the behavior of the magnetic
field inside the inclusions (as one might expect), but also the surrounding medium Σ∗ has
to be considered. This, of course, is also persistent in our formulation. Here, however,
both parts decouple quite nicely. Moreover, in comparison to [BBF17], we are also able
to use natural function spaces and cell problems which are easy to implement.

Cherednichenko and Cooper [CC15, Theorem 2.1] obtain a very similar homogenization
result to Theorem 4.2.3. Note that in [CC15], the sign of the identity term is switched and
a volume source term is present. Instead of the corrector u1, [CC15, Lemma 4.4] already
includes the effective matrix (ε−1)hom (named Ahom) in the two-scale equation.
The only crucial difference between Theorem 4.2.3 and [CC15, Theorem 2.1] is the different

choice or construction of u2 and u3. Roughly speaking, our u3 fulfills u3 = ∇yu1 + u2 in Σ
for the functions u1, u2 defined in [CC15, Theorem 2.1]. Basically, we cut off our u2 at the
boundary ∂Σ and add the “remaining” normal boundary traces to u3, whereas in [CC15] the
function u1 (corresponding to our u2) is present on the whole cube Y . Moreover, this different
definition of the identity correctors leads to the lower regularity u3 ∈ H0(curl,Σ) instead of
u2 ∈ H1

0(Σ) in [CC15]. The great advantage of our new formulation is the uniqueness of the
two-scale solution. In [CC15], only uniqueness of u and of ∇yu1 + u2 can be demonstrated.
Comparing with [BBF17], we have (ε−1)hom = (εeff)−1 and µhom = µeff , where µeff and εeff

are defined in [BBF17]. The relationship (ε−1)hom = (εeff)−1 is shown in [CC15, Lemma 4.4].
Comparing the definition of µhom and the definition of µeff (via equations (5.23) and (5.21)
of [BBF17]), we observe that we have to prove

χΣ∗∇yw2
j + χΣw3

j = uj ,

where w2
j and w3

j are defined in Theorem 4.2.4 above and uj is introduced in [BBF17, equation
(5.21)]. Equivalently, this means to check that

w̃j := χΣ∗∇yw2
j + χΣw3

j ∈ Xdiv
0 :=

{
v ∈ H1

] (Y )|divy v = 0 in Y, curly v = 0 in Σ,

˛
v = 0

}
and that w̃j fulfills equation (5.18) of [BBF17]. For that, we first prove the following lemma.

Lemma 4.2.6. Let w2
j and w3

j be the solutions to (4.11) and (4.12). The function w̃j :=

χΣ∗∇yw2
j + χΣw3

j fulfills
w̃j ∈ H1

] (Y ) with divy w̃j = 0.

Consequently, the same holds true for χΣ∗∇yu2 + χΣu3 with the correctors u2,u3 defined in
(4.14).

Proof. We have divy∇yw2
j = 0 in Σ∗ because of (4.11) tested with ψ2 ∈ H1

],0(Σ∗) satisfying
ψ2 = 0 on ∂Σ. By inserting ψ3 = ∇yψ3 with ψ3 ∈ H1

0 (Σ) into (4.12), we obtain divy w3
j = 0

in Σ. Inserting then test functions as before, but without vanishing (normal) traces on ∂Σ,
we deduce that the normal traces of ∇yw2

j and w3
j coincide on ∂Σ. These properties together

imply w̃j ∈ H](div, Y ) with divy w̃j = 0. Since obviously w̃j ∈ H](curl, Y ), the assertion
follows with [BBF17, Lemma 4.7].
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The inclusion w̃j ∈ Xdiv
0 follows from the previous lemma and because w̃j is given as a

gradient on Σ∗. Equation (5.18) of [BBF17] follows from the two cell problems (4.11) and
(4.12) by a direct calculation, which we omit here. Note that ε0 and ε1 are constants on Σ∗

and Σ, respectively.

4.3 Analysis of the homogenized systems
This section is devoted to a detailed analysis of the homogenized formulations (two-scale
equation and effective macroscopic equation) presented in the previous section. The aim is
to obtain regularity and stability results and gain a better insight in the properties of the
effective material parameters. We emphasize that this stability and regularity analysis is a
prerequisite for the a priori estimates in Section 4.4.2.
In most of this section, we consider the two- and the three-dimensional case in parallel.

Some notations may be ambiguous, but it should be always clear which case we consider. We
analyze the cell problems and the macroscopic equation separately: Section 4.3.1 focuses on
the cell problems and the effective parameters, while Section 4.3.2 presents the stability results
for the homogenized macroscopic equations. The proofs of these (new) stability estimates are
detailed in Section 4.3.3.

4.3.1 Analysis of the two-scale equation and the effective parameters
In this section, we give some results on the two-scale equations, analyze the effective parame-
ters, and quantify higher regularity of all parts of the two-scale solutions. For the Helmholtz
equation, we explicitly keep track of the appearing constants, which are re-used in Section
4.4.2. This also gives an idea on how the constants hidden in . for the Maxwell equation look
like.

Two-scale equations. We first introduce a so-called two-scale energy norm for both cases.
H denotes the function space for the two-scale solution, i.e.,

H = H1(G)× L2(Ω;H1
],0(Σ∗))× L2(Ω;H1

0 (Σ))

for the Helmholtz equation and

H = Himp(G)× L2(Ω; H̃](curl,Σ∗))× L2(Ω;H1
],0(Σ∗))× L2(Ω; H0(curl,Σ))

for the Maxwell equation. We recall that ‖ · ‖R denotes the L2(R)-norm. The norms ‖ · ‖1,k,
‖ · ‖curl,k, and ‖ · ‖imp,k are defined in (2.10), (2.14), and (2.15), respectively. If these norms
are applied to a locally periodic function v(x, y), the derivatives are always taken w.r.t. y.

Lemma 4.3.1 (Two-scale energy norms). For the Helmholtz equation, the two-scale energy
norm

‖v‖2e := ‖∇v0 +∇yv1‖2G×Σ∗ + ‖∇yv2‖2Ω×Σ + k2‖v0 + χΣv2‖2G×Y (4.15)

is equivalent to the k-weighted norm

‖v‖2k,H := ‖v0‖21,k,G + ‖v1‖2L2(Ω;H1(Σ∗)) + ‖v2‖21,k,Ω×Σ,

where the equivalence constants do not depend on k.
For the Maxwell equation, the two-scale energy norm

‖v‖2e := ‖ curl v0 + curly v1‖2G×Σ∗ + ‖ curly v3‖2Ω×Σ

+ k2‖v0 + χΣ∗∇yv2 + χΣv3‖2G×Y + k‖(v0)T ‖2∂G
(4.16)
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is equivalent to the k-weighted norm

‖v‖2k,H := ‖v0‖2imp,k + ‖ curly v1‖2Ω×Σ∗ + k2‖∇yv2‖2Ω×Σ∗ + ‖v3‖curl,k,Ω×Σ,

where the equivalence constants do not depend on k.

Proof. The essential ingredient is a sharpened Cauchy-Schwarz inequality for the mixed/non-
orthogonal terms. More precisely, for the Helmholtz equation it holds that∣∣∣ˆ

G

ˆ
Σ∗
∇v0 · ∇yv1 dydx

∣∣∣ ≤ ‖∇v0‖L2(G×Σ∗)‖∇yv1‖L2(G×Σ∗)

= |Σ∗|1/2‖∇v0‖L2(G)‖∇yv1‖L2(Ω×Σ∗)

and
∣∣∣ˆ
G

ˆ
Y

v0 χΣ v2 dydx
∣∣∣ ≤ ‖v0‖L2(G×Σ)‖v2‖L2(G×Σ) = |Σ|1/2‖v‖L2(G)‖v2‖L2(Ω×Σ),

where |Σ∗|, |Σ| < 1. The proof for the three-dimensional case follows in the same manner.
Note that due to the choices of H1

],0(Σ∗) and H̃](curl,Σ∗), the H1- and H(curl)-seminorms
are norms on these function spaces, respectively.

We prove Gårding-type inequalities for the two-scale sesquilinear forms, which play a crucial
role for the numerical analysis.

Lemma 4.3.2. For the Helmholtz equation, there exist constants CB > 0 and Cmin :=
min{1, ε−1

0 ,Re(ε−1
1 )} > 0 depending only on the parameters and the geometry, such that the

sesquilinear form B from Theorem 4.2.1 is continuous with constant CB and fulfills a Gårding
inequality with constant Cmin, i.e.,

|B(v,ψ)| ≤ CB‖v‖e‖ψ‖e and ReB(v,v) + 2k2‖v0 + χΣv2‖2G×Y ≥ Cmin‖v‖2e

for all v,ψ ∈ H.

Proof. The Gårding inequality is obvious from the definition of B in Theorem 4.2.1. The
continuity of B follows from the multiplicative trace inequality as in [Mel95].

Also for the Maxwell equation, the two-scale sesquilinear form B from Theorem 4.2.3 is
obviously continuous w.r.t. the energy norm (4.16) with a k-independent constant. For the
Gårding-type inequality, however, the situation is more intricate: Due to the large kernel of
the curl-operator, the L2-term is no compact perturbation of the curl-term. As a remedy, we
have to use a Helmholtz-type splitting. We have the following decomposition of (v0,v3) ∈
Himp(G)× L2(Ω; H0(curl,Σ)):

v0 + χΣv3 = z0 + χΣz3 +∇θ0 + χΣ∇yθ3 with θ0 ∈ H1
0 (G), θ3 ∈ L2(Ω;H1

0 (Σ)),

and 0 = (z0 + χΣz3,∇η0 + χΣ∇yη3)L2(G×Y ) ∀(η0, η3) ∈ H1
0 (G)× L2(Ω;H1

0 (Σ)).

(4.17)

The orthogonality in the last line implies a weak divergence-free constraint on z0 + χΣz3. In
fact, we have div(µhomz0) = 0 and divy z3 = 0 in the weak sense. See [Hip15] for a similar
approach using the regular decomposition.

Lemma 4.3.3. For the Maxwell equation (4.9), define the sign-flip isomorphism SF : H → H
via

SF (v) := (z0 −∇θ,v1,−v2, z3 −∇yθ3)

with the Helmholtz-type decomposition from (4.17). There exist Cg > 0 and γell > 0, both
independent of k, such that∣∣∣B(v, SF (v)) + Cgk

2‖z0 + χΣz3‖2L2(G×Y ) + Cgk‖(z0)T ‖2L2(∂G)

∣∣∣ ≥ γell‖v‖2e. (4.18)
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Proof. The sign-flip isomorphism and the added term correct the “wrong” sign of the sesquilin-
ear form B and make it coercive. Mixed terms between θ0 and z0, or θ3 and z3, respectively,
either vanish due to the orthogonality of the Helmholtz decomposition or can be absorbed
using Cauchy-Schwarz and Young’s inequalities.

Cell problems and effective parameters. As discussed in Sections 4.2.1 and 4.2.2, all cell
problems, for the Helmholtz equation as well as for the Maxwell equation, are coercive so that
their stability is an easy consequence.

Lemma 4.3.4. For the Helmholtz equation, there are Cstab,1, Cstab,2 > 0 depending only on
ε−1

1 , ε−1
0 , Σ, Σ∗, and k0, such that the correctors u1 and u2 from Theorem 4.2.2 satisfy

‖u1‖L2(Ω;H1(Σ∗)) ≤ Cstab,1‖∇u0‖G and ‖u2‖1,k,Ω×Σ ≤ Cstab,2‖u0‖1,k,G.

For the Maxwell equation, the correctors u1, u2, and u3 from (4.14) fulfill

‖ curly u1‖L2(Ω×Σ∗) . ‖ curl u0‖L2(Ω),

k‖∇yu2‖L2(Ω×Σ∗) . ‖u0‖imp,k,Ω,

‖ curly u3‖L2(Ω×Σ) + k‖u3‖L2(Ω×Σ) . ‖u0‖imp,k,Ω.

With this knowledge on the cell problems, we analyze the homogenized parameters.

Proposition 4.3.5. The effective parameters have the following properties:

• (ε−1)hom is a real-valued, symmetric positive definite matrix;

• µhom is complex-valued and a scalar in the two-dimensional case and a symmetric (not
hermitian!) matrix in the three-dimensional case;

• |µhom| ≤ Cµ with a k-independent constant Cµ, where | · | stands for a matrixnorm in
the three-dimensional case;

• for the Helmholtz equation, it holds that

Im(µhom) ≥ C(ε1,Σ, Y ) k−2 > 0; (4.19)

• for the Maxwell equation, Im(µhom) is symmetric positive definite (and hence µhom is
invertible) and moreover,

Im(µhom)ξ · ξ∗ & k−2|ξ|2 ∀ξ ∈ C3.

Proof. The characterization of (ε−1)hom is well known and follows from the ellipticity of the
corresponding cell problem, see [All92] (two-dimensional case) and [CFS17] (three-dimensional
case).
The upper bound on µhom easily follows from the stability bounds on u2 (Helmholtz equa-

tion) and u2 and u3 (Maxwell equation), respectively, given in Lemma 4.3.4.
For the lower bound on µhom for the Helmholtz equation, we use the representation of

Lemma 4.2.5. Due to the positivity of Im(ε1) and of the eigenvalues of the Laplacian we can
deduce that

Im(µhom) =
∑
n

k2λn Im(ε1)

|λn − k2ε1|2
(ˆ

Σ

φn dy
)2

≥ k2λ0 Im(ε1)

|λ0 − k2ε1|2
(ˆ

Σ

φ0 dy
)2

.

The first eigenfunction of the Dirichlet Laplacian is zero-free, thus (
´

Σ
φ0)2 > 0. As we

consider the high-frequency case, w.l.o.g., we can assume λ0 ≤ k2|ε1| and then obtain |λ0 −
k2ε1|2 ≤ 2k4|ε1|2. This finally gives

Im(µhom) ≥ k2λ0 Im(ε1)

2k4|ε1|2
(ˆ

Σ

φ0 dy
)2

≥ C(ε,Σ)

k2
> 0.
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For the Maxwell equation, we also use the equivalence to the effective µ given in [BBF17]
(cf. Subsection 4.2.3). Then, we can use the following representation, which is equation (6.16)
of [BBF17] (see also [LS16a]),

(µhom)jl = Idjl +
∑
n

ε1k
2

λn − ε1k2

(ˆ
Y

φn · ej dy
)(ˆ

Y

φn · el dy
)
, j, l = 1, 2, 3.

Here, (φn, λn) are eigenfunctions and eigenvalues of a vector-Laplacian on Y . Then, the lower
bound can be shown similar to the two-dimensional case above.

The upper and lower bound on µhom can only be obtained for Im(ε1) > 0. If we have
an ideal lossless material (i.e., Im(ε1) = 0), µhom is unbounded, see [BF04]. Moreover, the
positivity of Im(µhom) can also be proved directly from our representations of µhom using
the cell problems. Hence, it also holds for nonconstant ε1. The lower bound(s) on Im(µhom)
might be improved using more advanced methods for estimating eigenvalues and averages of
eigenfunctions of the Laplacian. We emphasize that our numerical experiments in Section 4.6
do not show this severe k-dependency of the lower bound.

Higher regularity. Well-known regularity theory for elliptic diffusion problems [GT77,Pet10]
and the Maxwell equation [Hip02] directly implies higher regularity of the correctors. We recall
the notation Hs(curl) from (2.12).

Lemma 4.3.6 (Higher regularity for the correctors). For the Helmholtz equation (4.4), there
are t1, t2 ∈ ( 1

2 , 1] such that u1 ∈ L2(Ω;H1+t1(Σ∗)), u2 ∈ L2(Ω;H1+t2(Σ)) and

‖u1‖L2(Ω;H1+t1 (Σ∗)) ≤ Creg,1‖∇u0‖L2(Ω),

‖u2‖L2(Ω;H1+t2 (Σ)) ≤ Creg,2 k‖u0‖1,k,Ω.

For the Maxwell equation (4.9), there are tj ∈ ( 1
2 , 1], j = 1, 2, 3, such that

u1 ∈ L2(Ω; Ht1(curl,Σ∗)), u2 ∈ L2(Ω;H1+t2(Σ∗)), u3 ∈ L2(Ω; Ht3(curl,Σ)) and

‖ curly u1‖L2(Ω;Ht1 (Σ∗)) . ‖u0‖curl,k,G,

k‖u2‖L2(Ω;H1+t2 (Σ∗)) . ‖u0‖imp,k,G,

‖ curly u3‖L2(Ω;Ht3 (Σ)) + k‖u3‖L2(Ω;Ht3 (Σ)) . (1 + k)‖u0‖imp,k,G.

The regularity indices tj only depend on the geometry of Σ. With a C2-boundary of Σ, we
have tj = 1 for all j and both problems. For the numerical treatment, Σ is approximated by
a Lipschitz domain with polygonal/polyhedral boundary. In general, the maximal regularity
of problems posed on such a Lipschitz domain with polygonal/polyhedral boundary depends
on the domain’s maximal interior angle, see [CD00,Pet10]. We give the regularity results in
their general form as polygonal/polyhedral (nonconvex) domains have to be considered in the
process of boundary approximation in Section 4.4.
As the effective parameters (ε−1)hom and µhom are piecewise constant, we can only expect

piecewise higher regularity for the macroscopic solutions u0 and u0. We recall the notations
H1+s
pw (G) and Hs

pw(curl, G) from (2.11) and (2.16). The higher regularity for the effective
Maxwell (scattering) problem (4.13) is more difficult to derive than for the Helmholtz equation.
For the definition of trace spaces in the Maxwell case, we use the notations Hs

T (∂G) (2.17),
Hs
‖(∂G) (2.18) and H(curl∂G) (2.19). We again refer to [BC01,BCS02,Moi11] for details on

the spaces.

Proposition 4.3.7 (Higher regularity for the Helmholtz equation). Let u0 be the solution to
(4.7) with additional volume term f ∈ L2(G) and let g ∈ H1/2(∂G).

• If Ω has C2-boundary and G is convex, then u0 ∈ H2
pw(G).
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• If Ω has a polygonal Lipschitz boundary and G is convex, there is s ∈ ( 1
2 , 1] such that

u0 ∈ H1+s
pw (G).

Moreover, we have the regularity estimate

‖u0‖H1+s
pw (G) . k‖u0‖1,k,G + ‖f‖L2(G) + ‖g‖H1/2(∂G). (4.20)

Proof. The assertion follows from classical regularity theory for elliptic and interface problems,
see [Pet10]. We also refer to regularity results for the standard Helmholtz equation as, for
instance, in [Mel95].

Proposition 4.3.8 (Higher regularity for the Maxwell equation). Let u0 be the solution to
(4.13) with additional volume term f ∈ H(div 0, G).

• If Ω and G have C2-boundary and g ∈ H
1/2
T (∂G), then u0 ∈ H1

pw(curl, G).

• If G is convex and g ∈ H
sg
T (∂G) for sg ∈ (0, 1

2 ), there is s ∈ ( 1
2 ,

1
2 + sg], only depending

on the shape of Ω and G, such that u0 ∈ Hs
pw(curl, G).

If u0 ∈ Hs
pw(G) with s ∈ ( 1

2 , 1], it also holds u0 ∈ H
s−1/2
‖ (∂G)∩H(curl∂G) with the regularity

estimates

‖ curl u0‖Hs
pw(G) + k‖u0‖Hs

pw(G) . (1 + k)‖u0‖curl,k,G+ ‖f‖L2(G)+ ‖g‖Hsg (∂G),

k1/2(‖u0‖Hs−1/2

‖ (∂G)
+ ‖ curl∂G((u0)T )‖L2(∂G)) . k1/2‖u0‖Hs

pw(G). (4.21)

Proof. The proof can be easily adopted from the case of scalar-valued constant material
parameters in [Moi11]. We refer to [BGL13, CDN99] for other results on higher regularity
of curl-curl-problems with piecewise constant coefficients. The regularity on the boundary
directly follows from the continuity of trace operators, see [BC01,BCS02,BH03].

We see that the impedance boundary condition for the Maxwell equation is quite intricate
w.r.t. higher regularity: Maximal regularity of s = 1 is never possible for polyhedral G, even
under the assumption of convexity. Note that u0 ∈ Hs

pw(G) even for g ∈ L2
T (∂G), due

to [Cos90].

Remark 4.3.9. The arguments from Lemma 4.3.6 also imply z3 ∈ L2(Ω,Ht3(curl,Σ)) for
the divergence-free part in the decomposition (4.17). According to [Cos90], it also holds
z0 ∈ H

1/2
pw (G). Moreover, if (z0)T ∈ Hr

T (∂G) with r ∈ (0, 1
2 ) for some reason (for instance,

higher regularity of the function which is decomposed), the arguments of Proposition 4.3.8
imply z0 ∈ H

1/2+r
pw (G).

4.3.2 Stability results

Looking at Propositions 4.3.7 and 4.3.8, we note that these do not yet provide full regularity
estimates in terms of the data. We additionally need a stability result, i.e., the dependence of
the solution in its natural norm (‖ · ‖1,k,G or ‖ · ‖imp,k,G, respectively) on the data. Fredholm
theory ensures such a stability estimate, but without explicit dependency of the involved
constant on the wavenumber k. Therefore, we assume an explicit polynomial (in k) stability
constant from now on.

Assumption 4.3.10. Assume that there is q ∈ N0 and Cstab,0 > 0 such that the solution u0

to (4.7) with additional right-hand side f ∈ L2(G) fulfills

‖u0‖1,k,G ≤ Cstab,0 k
q(‖f‖L2(G)‖g‖H1/2(∂G)).
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Assumption 4.3.11. Assume that there is q ∈ N0 and Cstab > 0 such that the solution u0 to
(4.13) with additional volume term f ∈ H(div 0, G) and g ∈ H

sg
T (∂G) with sg ∈ (0, 1

2 ) fulfills

‖u0‖imp,k,G ≤ Cstab k
q(‖f‖L2(G) + ‖g‖Hsg (∂G)). (4.22)

As discussed in Section 2.1.3, such stability results are not trivial and most studies in the
literature concern the case of constant coefficients. We refer to Section 2.1.3 for a detailed
overview of existing results. The setting of the effective homogenized equations (4.7) and
(4.13) exhibits new challenges for the stability analysis: discontinuous, namely piecewise
constant, matrix-valued coefficients, and a partly complex parameter µ. In order to cope with
these challenges, we first generalize the known results to the class of matrix-valued, Lipschitz
continuous coefficients. We have the following propositions, proved in Section 4.3.3.

Proposition 4.3.12. Assume that there is γ > 0 such that

x · nG ≥ γ on ∂G, x · nΩ ≥ 0 on ∂Ω, (4.23)

where n denotes the outer normal of the domain specified in the subscript. Let v ∈ H1(G) be
the unique solution to

(A∇v,∇ψ)G − k2(µv, ψ)G − ik(v, ψ)∂G = (f, ψ)G + (g, ψ)∂G ∀ψ ∈ H1(G)

for f ∈ L2(G) and g ∈ L2(∂G). Moreover, we assume for A and µ that

• A ∈W 1,∞(G,R2×2) is symmetric, bounded, and uniformly elliptic;

• the matrix DA ·x with (DA ·x)jl :=
∑2
n=1 xn ∂nAjl, j, l = 1, 2, is negative semidefinite;

• µ ∈ L∞(G;C) is piecewise constant, namely µ|G\Ω = µ2 ∈ R+ and µ|Ω = µ1 ∈ C with
Im(µ1) > c0 > 0.

Then, there exists a constant C > 0, which depends on the geometry, the upper bounds on µ
and A, the ellipticity constant of A, and on k0, but not on the Lipschitz constant of A or any
other constant involving the derivative of A, such that

‖v‖1,k,G ≤ C
(
k1/2(c

−1/2
0 + 1)‖g‖∂G + ‖f‖G + (c

−1/2
0 + c−1

0 )‖f‖Ω

+
1

k
(1 + c

−1/2
0 + c−1

0 )‖f‖G +
k

c0
‖f‖G\Ω

)
.

(4.24)

Proposition 4.3.13. Let Ω and G satisfy (4.23). Let v ∈ Himp(G) be the unique solution to
ˆ
G

A curl v·curlψ∗−k2Bv·ψ∗ dx−ik
ˆ
∂G

βvT ·ψ∗T dσ =

ˆ
G

f ·ψ∗ dx+

ˆ
∂G

g·ψ∗T dσ ∀ψ ∈ Himp

(4.25)
for f ∈ H(div 0, G), g ∈ L2

T (∂G). Moreover, we assume for A,B ∈W 1,∞(G) that

• A,B are real-valued symmetric positive definite;

• A = α(x) Id, B = β(x) Id in a neighborhood of the boundary ∂G with α, β > 0, uniformly
in x;

• the matrix DA · x is negative semi-definite and DB · x is positive semi-definite, where
(DA · x)jl :=

∑
n xn ∂nAjl and DB · x is defined analogously.

Then, there exists a constant C > 0, depending only on G, k0, and the upper and lower bounds
(eigenvalues) of A and B, but not on k, the data f and g, or any derivative information of A
and B, such that

‖v‖imp,k,G ≤ C
(
‖f‖L2(G) + ‖g‖L2(∂G)

)
. (4.26)
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The geometrical assumption (4.23) is the common assumption for scattering problems,
see [EM12,Het07,HMP11,Moi11,MS14]. It can, for example, be fulfilled if Ω is convex (and
w.l.o.g. 0 ∈ Ω) and G is chosen appropriately. Note that the condition on the derivatives of
the coefficient A are quite similar for both propositions. In order to obtain the propositions,
a weaker condition on the Lipschitz constant of A and B would be sufficient, but then the
constant in the stability estimates would depend on this Lipschitz constant. This is not
desirable because we use the Lipschitz continuous coefficients to approximate discontinuous
coefficients, where this Lipschitz constant blows up. We emphasize that a similar condition
on the derivative of A is also imposed in [BGP17,GPS18]. Previous works on the Helmholtz
equation, e.g., [BGP17,EM12,Mel95,MS11], have shown stability with q = 0, whereas (4.24)
gives (for c0 independent of k) q = 1. This is due to the fact that µ is complex on a part
of the domain, see the discussion in Section 4.3.3. For the Maxwell equation, we obtain the
same stability result as the literature [HMP11,Moi11]. Hence, Propositions 4.3.12 and 4.3.13
generalize the existing results to a wider class of coefficients and may be of interest on their
own.
We now prove Assumptions 4.3.10 and 4.3.11 with q = 3 for the setting of the homogenized

equations (4.7) and (4.13), respectively.

Theorem 4.3.14 (Stability for (4.7)). Assume that Ω and G fulfill (4.23). Furthermore
assume that the (constant) matrix (ε−1)hom|G\Ω − (ε−1)hom|Ω is negative semidefinite. Let
u0 be the solution to (4.7) with additional volume term

´
G
fψ∗ dx on the right-hand side for

f ∈ L2(G). Then, there is Cstab,0 only depending on the geometry, the parameters, and k0,
such that u0 satisfies the stability estimate

‖u0‖1,k,G ≤ Cstab,0(k3‖f‖L2(G\Ω) + k2‖f‖L2(Ω) + k3/2‖g‖L2(∂G) + k−1‖g‖H1/2(∂G)).

Theorem 4.3.15 (Stability for (4.13)). Let G and Ω fulfill (4.23). Furthermore assume
that the (constant) matrix (ε−1)hom|G\Ω − (ε−1)hom|Ω is negative semidefinite. Let u0 be
the solution to (4.13) with additional volume term

´
G

f · ψ∗ dx on the right-hand side for
f ∈ H(div 0, G) and g ∈ H

sg
T (∂G) with sg ∈ (0, 1

2 ). Then, there is Cstab only depending on
the geometry, the parameters, and k0, such that u0 satisfies the stability estimate

‖u0‖imp,k,G ≤ Cstab(k3‖f‖L2(Ω) + k2‖f‖L2(G\Ω) + k3/2‖g‖L2(∂G) + k−1‖g‖Hsg (∂G)).

The assumption on (ε−1)hom in fact is an assumption on ε−1
0 and can be fulfilled for appro-

priate choices of material inside and outside the scatterer. It originates in the conditions on
the derivative of A in Propositions 4.3.12 and 4.3.13. The different power in k to the results
in the literature are caused by the complex-valued µhom (see the discussion above) and the
dependency of Im(µhom) on k (see Proposition 4.3.5). Note that Theorems 4.3.14 and 4.3.15
exhibit the same power in k.
In the following, we work with the (abstract) polynomial stability of Assumptions 4.3.10

and 4.3.11 and keep in mind that we have obtained an explicit (maximal) q in Theorems
4.3.14 and 4.3.15, respectively. For the Helmholtz equation we can directly deduce the (final)
stability and regularity estimates as well as a bound on the inf-sup constant of the two-scale
sesquilinear form, which is obtained similarly to [Het07,Mel95,Pet17].

Proposition 4.3.16. If Assumption 4.3.10 is satisfied, the following hold:

1. The two-scale solution to (4.4) satisfies

‖(u0, u1, u2)‖e ≤ Cstab,e k
q(‖f‖G + ‖g‖H1/2(∂G))

for Cstab,e := Cstab,0(1 + Cstab,1 + Cstab,2) with Cstab,1 and Cstab,2 from Lemma 4.3.4.

2. There is Creg,0 > 0 such that the solution u0 to (4.7) satisfies

‖u0‖H1+s
pw (G) ≤ Creg,0 k

q+1(‖f‖G + ‖g‖H1/2(∂G)).
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3. The inf-sup constant of B can be bounded below as follows:

inf
v∈H

sup
ψ∈H

ReB(v,ψ)

‖v‖e‖ψ‖e
≥ Cinf,ek

−(q+1) (4.27)

for Cinf,e := min{Cmin, 1}(k−(q+1)
0 + Cstab,e)

−1 with Cmin from Lemma 4.3.2.

Also for the Maxwell equation, we can conclude that the regularity constant from Proposi-
tion 4.3.8 behaves like kq+1. Using the Helmholtz-type decomposition (4.17), we can deduce
the same form of the inf-sup constant as for the Helmholtz equation.

Proposition 4.3.17. Under Assumption 4.3.11, the sesquilinear form B is inf-sup stable with

inf
v∈H

sup
w∈H

|B(v,w)|
‖v‖e ‖w‖e

≥ γell

1 + Cstab,eCgkq+1
,

where Cstab,e is a stability constant for the two-scale equation (4.9) and is k-independent.

Proof. Let v = (v0,v1, v2,v3) ∈ H be arbitrary and consider its Helmholtz-type decomposi-
tion according to (4.17). Let w ∈ H be the solution to the adjoint two-scale problem with
volume term Cgk

2(z0 +χΣz3) and boundary term Cgk(z0)T on the right-hand side. Note that
z0 and z3 are divergence-free and therefore, Assumption 4.3.11 can be applied. Recall the
sign-flip isomorphism SF and the Gårding inequality from Lemma 4.3.3. On the one hand,
due to the orthogonality of the Helmholtz decomposition we have∣∣B(v, SF (v) + w)

∣∣
=
∣∣∣B(v, SF (v)) + Cgk

2(z0 + χΣz3,v0 + χΣ∗∇yv2 + χΣv3)G×Y + Cgk((z0)T , (v0)T )∂G

∣∣∣
=
∣∣∣B(v, SF (v)) + Cgk

2‖z0 + χΣz3‖2G×Y + Cgk‖(z0)T ‖2∂G
∣∣∣ ≥ γell‖v‖2e.

On the other hand, it holds that

‖SF (v) + w‖e ≤ ‖SF (v)‖e + ‖w‖e ≤ ‖v‖e+Cstab,ek
qCg

(
k2‖z0 + χΣz3‖G×Y + k‖(z0)T ‖∂G

)
≤ (1 + Cstab,eCgk

q+1)‖v‖e.

Combining both estimates finishes the proof.

4.3.3 Proofs of the stability results
In this section, we give detailed proofs of Theorems 4.3.14 and 4.3.15. First, we show the
(general) stability results Propositions 4.3.12 and 4.3.13. The proofs are based on Rellich-
Morawetz identities. For the proof of Proposition 4.3.12, we use these identities indirectly by
testing the variational form with the special function x · ∇v. This requires higher regularity
of v in order to be an admissible test function (see the proof below), which can be relaxed
when starting with the original Rellich-Morawetz identities.

Proof of Proposition 4.3.12. First step: With ψ = v and considering the imaginary part of
the variational problem, we obtain with Hölder and Young’s inequalities

k2c0‖v‖2Ω + k‖v‖2∂G .
1

k
‖g‖2∂G +

1

k2c0
‖f‖2Ω + ‖f‖G\Ω‖u‖G\Ω. (4.28)

Second step: With ψ = v and considering the real part of the variational problem, we obtain
due to the boundedness of µ and the uniform ellipticity of A

‖∇v‖2G . k2‖v‖2G +
1

2k2
‖f‖2G +

k2

2
‖v‖2G + ‖g‖∂G‖v‖∂G.
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Inserting (4.28) yields

‖∇v‖2G . k2‖v‖2
G\Ω +

1

k2

(
1 +

1

c20

)
‖f‖G +

1

k2c0
‖f‖2Ω +

1

k

( 1

c0
+ 1
)
‖g‖2∂G. (4.29)

Third step: It remains to estimate ‖v‖2
G\Ω. For this, we insert ψ = x · ∇v and consider the

real part of the variational problem. Note that x · ∇v is an admissible test function because
we have v ∈ H2(G) due to the convexity of G and the smoothness of A, see [GT77]. We
moreover use the identity ∂j(|w|2) = 2 Re(w∂jw

∗). For the first term of the sesquilinear form
we obtain

Re
{ˆ

G

A∇v · ∇(x · ∇v∗) dx
}

= Re
{ˆ

G

A∇v · ∇v∗ +A∇v · (D2v∗)x dx
}

=

ˆ
G

A∇v · ∇v∗ +
1

2
∇(A∇v · ∇v∗) · x− 1

2
(DA · x)∇v · ∇v∗ dx

= −1

2

ˆ
G

(DA · x)∇v · ∇v∗ dx+
1

2

ˆ
∂G

A∇v · ∇v∗x · ndσ,

where in the last equality we integrated by parts. As DA · x is negative semidefinite by
assumption, the first term is nonnegative.
For the second part of the sesquilinear form we obtain

Re
{ˆ

G

k2µvx · ∇v∗ dx
}

= Re
{ˆ

Ω

k2µ1vx · ∇v∗ dx
}

+
µ2

2

ˆ
G\Ω

k2x · ∇|v|2 dx

= Re
{ˆ

Ω

k2µ1vx·∇v∗ dx
}

+
µ2

2

ˆ
∂(G\Ω)

k2|v|2x·ndσ −
ˆ
G\Ω

k2µ2|v|2 dx.

Hence, for the test function ψ = x ·∇v and the real part we deduce by combining the foregoing
calculations

1

2

ˆ
∂G

A∇v · ∇v∗x · ndσ +

ˆ
G\Ω

k2µ2|v|2 dx

≤ 1

2

ˆ
∂(G\Ω)

k2µ2|v|2x · ndσ + Re
{ˆ

Ω

k2µ1vx · ∇v∗ dx+

ˆ
∂G

ikvx · ∇v∗ dσ
}

+ Re
{ˆ

G

fx · ∇v∗ dx+

ˆ
∂G

gx · ∇v∗ dσ
}
.

The assumption (4.23) on G and Ω implies that the first term on the right-hand side can
be bounded from above by k2‖v‖2∂G. This yields after application of Hölder and Young’s
inequalities

k2‖v‖2
G\Ω . k2‖v‖Ω‖∇v‖Ω + k2‖v‖2∂G + ‖g‖2∂G + ‖f‖G‖∇u‖G.

Inserting the estimates (4.28) and (4.29) gives

k2‖v‖2
G\Ω . ‖g‖2∂G+

1

kc0
‖f‖2Ω+ η1k

2‖v‖2
G\Ω+

1

η1
‖f‖2

G\Ω +
1

η2
‖f‖2G + η2k

2‖v‖2
G\Ω

+
η2

k2
(1 + c−2

0 )‖f‖2G +
η2

k2c0
‖f‖2Ω +

η2

k
(1 + c−1

0 )‖g‖2∂G +
k4

η2
‖v‖2Ω.
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We choose η1, η2 independent of k such that k2‖v‖G\Ω can be hidden on the left-hand side
and insert once more (4.28) for the last term on the right-hand side to obtain

k2‖v‖2
G\Ω . ‖g‖2∂G + ‖f‖2G +

( 1

kc0
+

1

k2c0

)
‖f‖2Ω +

( 1

k2
+

1

k2c20

)
‖f‖2G +

(1

k
+

1

kc0

)
‖g‖2∂G

+
k

c0
‖g‖2∂G +

1

c20
‖f‖2Ω + η3k

2‖v‖2
G\Ω +

k2

η3c20
‖f‖2

G\Ω.

Choosing finally η3 appropriately gives the desired estimate for k2‖v‖2
G\Ω and combination

with (4.28) and (4.29) finishes the proof.

If c0 is independent of k, we obtain

‖v‖1,k,G . ‖f‖Ω + k‖f‖G\Ω + k1/2‖g‖∂G.

On the other hand, if c0 > k−2 as in the case of µhom (see Proposition 4.3.5), we obtain

‖v‖1,k,G . k2‖f‖Ω + k3‖f‖G\Ω + k3/2‖g‖∂G.

The dependency of c0 on k contributes by a factor k for g and a factor k2 for f . However, even
without this critical dependency of c0 on k, the stability estimate is worse than the classical
versions by about a factor k for f and k1/2 for g. Looking into the proof, we can see that this
is due to the difficult term

´
Ω
k2µvx · ∇v. The presented proof can also be transferred (with

minor adaptations) to the case where µ is real-valued and then yields the known stability
of k0. Hence, this also contributes to the analysis of [BGP17,MS17] by covering the case of
matrix-valued A and it coincides with the recent findings of [GPS18].
For the proof of Proposition 4.3.13 we generalize the Rellich-Morawetz identities of [Moi11]

to the case of Lipschitz continuous coefficients.

Lemma 4.3.18. Let G be an open, bounded domain satisfying (4.23). Let A,B ∈ W 1,∞(G)
be symmetric positive definite such that DA · x is negative semidefinite, DB · x is positive
semidefinite and it holds A = α(x) Id and B = β(x) Id with real-valued, uniformly positive
α, β in a neighborhood of the boundary ∂G.

• If ξ ∈ H(div, G) with curl(Aξ) ∈ L2(G) and ξT ∈ L2
T (∂G), then

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣ˆ
G

curl(Aξ)·(ξ∗×x)+(Aξ·x) div ξ∗ dx
∣∣∣+C(G)

ˆ
∂G

α|ξT |2 dσ. (4.30)

• If ξ ∈ Himp(G) with div(Bξ) ∈ L2(G), then

‖B1/2ξ‖2L2(G) ≤ 2
∣∣∣ˆ
G

curl ξ∗·(Bξ×x)+(ξ∗·x) div(Bξ) dx
∣∣∣+C(G)

ˆ
∂G

β|ξT |2 dσ. (4.31)

Proof. We only prove (4.30), the procedure for (4.31) is similar.
First step: Assuming that A and ξ are C1, we derive the pointwise identity

2 Re
{

curl(Aξ) · (ξ∗ × x)
}

= 2 Re
{

div((Aξ · x)ξ∗)− (Aξ · x) div ξ∗
}

− div((Aξ · ξ∗) x) +Aξ · ξ∗ − (DA · x)ξ · ξ∗.
(4.32)

This is a direct computation using product rules for curl(a×b), div(a×b), the vector calculus
identity a× (b× c) = (a · c)b− (a · b)c, and

2 Re(Aξ · (x ·∇)ξ∗) = x ·∇(Aξ ·ξ∗)− (DA ·x)ξ ·ξ∗ = div((Aξ ·ξ∗)x)−3Aξ ·ξ∗− (DA ·x)ξ ·ξ∗.
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Second step: We then integrate (4.32) over G with partial integration in the divergence-
terms. Splitting the vector ξ in its tangential and normal components, ξT and ξN , respectively,
and using their orthogonality, we obtain
ˆ
G

Aξ · ξ∗ − (DA · x)ξ · ξ∗ dx

= 2 Re
{ˆ

G

curl(Aξ) · (ξ∗ × x) + (Aξ · x) div ξ∗ dx
}
− 2 Re

{ˆ
∂G

((Aξ)T · xT ) (ξ∗ · n) dσ
}

+ Re
{ˆ

∂G

((Aξ)T · ξ∗T − (Aξ)N · ξ∗N ) (x · n) dσ
}
.

(4.33)

Third step: Using the assumptions of this lemma in (4.33) gives

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣ˆ
G

curl(Aξ) · (ξ∗ × x) + (Aξ · x) div ξ∗ dx
∣∣∣

+

ˆ
∂G

α(|ξT |2 − |ξN |2)(x · n) dσ − 2 Re
{ˆ

∂G

α(ξT · xT )(ξ∗ · n) dσ
}
.

We apply Young’s inequality with weight x · n to the last term and obtain

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣ˆ
G

curl(Aξ) · (ξ∗ × x) + (Aξ · x) div ξ∗ dx
∣∣∣+ C(G)

ˆ
∂G

α|ξT |2|x|2 dσ,

which directly yields (4.30). The claim is then obtained by a density argument.

For this lemma it is essential that A and B reduce to scalar values near the boundary
because otherwise no connection between (Aξ)T and ξT etc. can be drawn. The previous
lemma eliminated all terms with normal components on the boundary, which is necessary in
order to apply this lemma to functions in Himp. In other words, we do not have any knowledge
about vN on ∂G for the solution v to (4.25).

Proof of Proposition 4.3.13. We test (4.25) with ψ = v and take the imaginary part to obtain

k‖vT ‖2L2(∂G) . ‖f‖L2(G)‖v‖L2(G) + k−1‖g‖2L2(∂G) (4.34)

with a constant independent of k. Next, we observe that by testing with ∇φ for φ ∈ H1
0 (G),

we deduce div(Bv) = 0. We apply (4.30) with ξ = curl v and (4.31) with ξ = v and obtain

‖v‖2curl,k,G

. 2
∣∣∣ˆ
G

curl(Av) · (curl v∗ × x) + k2 curl v∗ · (Bv × x) dx
∣∣∣+

ˆ
∂G

α| curl vT |2 + βk2|vT |2 dσ

= 2
∣∣∣ˆ
G

curl(Av) · (curl v∗ × x)− k2Bv · (curl v∗ × x) dx
∣∣∣+

ˆ
∂G

α| curl vT |2 + βk2|vT |2 dσ

. 2
∣∣∣ˆ
G

f · (curl v∗ × x) dx
∣∣∣+

ˆ
∂G

k2|vT |2 + |g|2 dσ,

where we used (the strong form of) the PDE and the boundary condition. Applying Hölder
and Young’s inequalities for the first term on the right-hand side, we deduce

‖v‖2curl,k,G . ‖f‖2L2(G) + ‖g‖2L2(∂G) + k2‖vT ‖2L2(∂G).

Plugging in (4.34) and using once more Young’s inequality we finally obtain the asserted
estimate (4.26).
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We can now prove our main results, namely Theorems 4.3.14 and 4.3.15. For the Helmholtz
equation, we only have to deal with the discontinuity of (ε−1)hom across ∂Ω, which is treated
by a smoothing/approximation procedure, see [GPS18] for a similar idea.

Proof of Theorem 4.3.14. Because of the density of smooth functions in Lp for p ∈ [1,∞), for
every η > 0 there exists Aη ∈ C∞(G) such that ‖Aη − (ε−1)hom‖Lp ≤ η. Furthermore, Aη
can be chosen symmetric and uniformly elliptic with constants independent of η. Because of
the additional assumption on (ε−1)hom and the geometric setting, the assumption “DAη · x is
negative semidefinite” can also be fulfilled for all η small enough.
According to Proposition 4.3.12, the solution vη to the Helmholtz problem with diffusion

coefficient Aη (and sesquilinear form Bη) satisfies

‖vη‖1,k,G . k3‖f‖G\Ω + k2‖f‖Ω + k3/2‖g‖∂G.

u0 − vη satisfies Bη(u0 − vη, ψ) =
´
G

(Aη − (ε−1)hom)∇u0 · ∇ψ∗ dx for all ψ ∈ H1(G). As the
inf-sup constant of Bη is bounded below by k−4, this gives

‖u0 − vη‖1,k,G . k4‖(Aη − (ε−1)hom)∇u0‖G.

By the Hölder inequality, we have

‖(Aη − (ε−1)hom)∇u0‖G . ‖Aη − (ε−1)hom‖Lp(G)‖∇u0‖Lq(G)

for all p, q with 1/p + 1/q = 1/2. Choose q such that Lq ⊂ Hs for some s ∈ (0, 1/2] (e.g.,
q = p = 4 or q = 8/3, p = 8). Because of ‖Aη − (ε−1)hom‖Lp ≤ η and the estimate for the
Hs-norm of u (see Proposition 4.3.7), we get

‖u0 − vη‖1,k,G . k4η(k‖u0‖1,k,G + ‖f‖G + ‖g‖H1/2(∂G)).

Then, choose η = O(k−5) small enough. By the triangle inequality we finally obtain

‖u0‖1,k,G ≤ ‖u0 − vη‖1,k,G + ‖vη‖1,k,G

.
1

2
‖u0‖1,k,G + k−1(‖f‖G + ‖g‖H1/2(∂G)) + k3‖f‖G\Ω + k2‖f‖Ω + k3/2‖g‖∂G,

which gives the claim.

The same smoothing/approximation argument is also used for (ε−1)hom for the Maxwell
equation, while µhom is treated with a modified (auxiliary) problem. The procedure for µhom

presented below could have also been used for the Helmholtz equation.

Proof of Theorem 4.3.15. Let ũ ∈ Himp be the solution to (4.13) with µhom replaced by µ̃ = Id
on all of G. Using the higher regularity of ũ (see Proposition 4.3.8) and an approximation
argument for (ε−1)hom similar to the one above gives the following stability

‖ũ‖imp,k,G . ‖f‖L2(G) + ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

This also implies that the inf-sup constant behaves like k−1, so that the above stability
estimate holds also for f̃ ∈ L2(G) without the divergence-free constraint.
The difference function u0 − ũ solves (4.13) with µhom replaced by µ̃ and right-hand side

(volume term) k2(µ̃ − µhom)u0 ∈ L2(G). Note that the right-hand side vanishes outside Ω.
Hence, the previous arguments together with the triangle inequality yield

‖u0‖imp,k,G . ‖f‖L2(G) + ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G) + k2‖u‖L2(Ω).
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It thus remains to bound ‖u0‖L2(Ω). Inserting ψ = u0 into (4.13) and considering the
imaginary part gives

k2c0‖u0‖2L2(Ω) . k−1‖g‖2L2(∂G) + k−2c−1
0 ‖f‖2L2(Ω) + ‖f‖L2(G\Ω)‖u0‖L2(G\Ω),

where c0 denotes the lower bound on Im(µhom). Together with Young’s inequality and the
foregoing estimates this finally gives

‖u0‖imp,k,G . c−1
0 ‖f‖L2(Ω) + kc−1

0 ‖f‖L2(G\Ω) + k1/2c
−1/2
0 ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

Setting c0 = k−2 according to Proposition 4.3.5 finishes the proof.

The proof shows that if the lower bound c0 on Im(µhom) is independent of k, we get the
improved stability estimate

‖u0‖imp,k,G . ‖f‖L2(Ω) + k‖f‖L2(G\Ω) + k1/2‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

Here again, the powers in k agree with the Helmholtz case, cf. the estimates after the proof
of Proposition 4.3.12.

4.4 Multiscale method and numerical analysis
As explained in the introduction and in Section 2.3.2, a direct discretization of the heteroge-
neous problems (4.2) and (4.3) is infeasible due to the necessary small mesh width. We study
the Heterogeneous Multiscale Method (HMM) for high contrast problems in this section. The
method is introduced in Section 4.4.1 for the Helmholtz and the Maxwell equation. A rigorous
numerical analysis is performed in Section 4.4.2. The proofs are detailed in Section 4.4.3 for
the Helmholtz equation and in Section 4.4.4 for the Maxwell equation.

4.4.1 The Heterogeneous Multiscale Method
Following the original idea of [Ohl05] for elliptic diffusion problems, we concentrate on the
direct discretization of the two-scale equations (4.4) and (4.9). This point of view is vital
for the numerical analysis in Section 4.4.2. However, we also shortly explain how this direct
discretization can be decoupled into macroscopic and microscopic computations in the fashion
of the HMM as originally presented in [EE03,EE05]. We also refer to Section 2.3.3 for details
about this equivalence and how it can be proved.
In this and the next section, we assume that Σ, Ω, and G are polygonally bounded (in

contrast to the C2-boundaries in the analytic sections). The reason is that the C2-boundaries
can be approximated by a series of more and more fitting polygonal boundaries. This proce-
dure of boundary approximation results in nonconforming methods, i.e., the discrete function
spaces are no subspaces of the analytic ones. We avoid this difficulty in our numerical analysis
by assuming polygonally bounded domains by now. The new assumption reduces the possible
higher regularity of solutions as discussed in Section 4.3. However, we can always obtain the
maximal regularity in the limit of polygonal approximation of C2-boundaries, which we have
in mind as an application case. We assume throughout this section that G has been chosen
as a convex domain.
Denote by TH = {Tj |j ∈ J} and Th = {Sl|l ∈ I} with index sets J, I regular and shape reg-

ular simplicial partitions of G and Y , respectively. Additionally, we assume that TH resolves
the partition into Ω and G \ Ω and that Th resolves the partition of Y into Σ and Σ∗ and is
periodic in the sense of Section 2.3.3 (no hanging nodes or edges over the periodic boundary).
By Th(Σ∗) and Th(Σ), we denote the parts of the triangulation Th belonging to Σ∗ and Σ, re-
spectively. We define the global mesh sizes H := maxj∈J diam(Tj) and h := maxl∈I diam(Sl).
We use the following (standard) conforming finite element spaces, associated with the

meshes TH or Th,
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• classical linear Lagrange elements S(TH) ⊂ H1(G), S̃(Th(Σ∗)) ⊂ H1
],0(Σ∗) (adopted to

periodic boundary conditions and zero mean value), and S̊(Th(Σ)) ⊂ H1
0 (Σ);

• Nédélec edge elements of lowest order N (TH) ⊂ Himp(G), Ñ (Th(Σ∗)) ⊂ H̃](curl,Σ∗),
and N̊ (Th(Σ)) ⊂ H0(curl,Σ).

The linear Lagrange space S and the lowest order Nédélec space N are defined in Section 2.2.2.
The space Ñ (Th(Σ∗)) is used to discretize the first corrector u1 for the Maxwell equation. As
discussed in Section 4.2.2, we are only interested in its curl. In order to obtain a unique solution
uh,1, we have to apply a suitable stabilization procedure to the corresponding cell problem,
such as a Lagrange multiplier or weighted divergence regularization, see [CD00,CD02]. As an
alternative, we can also directly discretize curly u1(x, ·) in a suitable finite element space.
These function spaces are used to build up a two-scale function space VH,h for the Galerkin

method.

Definition 4.4.1 (HMM). • For the Helmholtz equation, set

VH,h := S(TH)× L2(Ω; S̃(Th(Σ∗)))× L2(Ω; S̊(Th(Σ))).

We then seek the discrete two-scale solution uH,h := (uH , uh,1, uh,2) ∈ VH,h such that

B(uH,h,ψH,h) = (g, ψH)L2(∂G) ∀ψH,h := (ψH , ψh,1, ψh,2) ∈ VH,h (4.35)

with the two-scale sesquilinear form defined in Theorem 4.2.1.

• For the Maxwell equation, set

VH,h := N (TH)× L2(Ω; Ñ (Th(Σ)))× L2(Ω; S̃(Th(Σ∗)))× L2(Ω; N̊ (Th(Σ))).

We then seek the discrete two-scale solution uH,h := (uH ,uh,1, uh,2,uh,3) ∈ VH,h such
that

B(uH,h,ψH,h) = (g, (ψH)T )L2(∂G) ∀ψH,h := (ψH ,ψh,1, ψh,2,ψh,3) ∈ VH,h (4.36)

with the two-scale sesquilinear form defined in Theorem 4.2.3.

In order to evaluate the integrals over G in B for both cases, we introduce quadrature rules,
which are exact for the given ansatz and test spaces. In our case of piecewise linear functions,
it suffices to choose the one-point rule {|Tj |, xj} with the barycenters xj for the part with the
differential operator and a second order quadrature rule Q(2)

j := {ql, xl}l with l = 1, . . . , d+ 1
on each simplex Tj for the identity part. As a consequence, the functions uh,1 and uh,2 as
well as uh,1, uh,2 and uh,3 are also discretized w.r.t. the macroscopic variable x: In fact, we
have

• uh,1 ∈ P0(TH(Ω); S̃(Th(Σ∗))) and uh,2 ∈ P1(TH(Ω); S̊(Th(Σ))) for the Helmholtz equa-
tion;

• for the Maxwell equation: uh,1 ∈ P0(TH(Ω); Ñ (Th(Σ∗))), uh,2 ∈ P1(TH(Ω); S̃(Th(Σ∗))),
and uh,3 ∈ P1(TH(Ω); N̊ (Th(Σ))).

The space of discontinuous, piecewise p-polynomial (w.r.t. x) discrete functions Pp is defined
in Section 2.2.2. Note that uh,2 (for both cases) and uh,3 (for the Maxwell equation) are
piecewise x-linear discrete functions, since Q(2) consists of d + 1 quadrature points on each
simplex.
The functions uh,1 and uh,2 as well as uh,1, uh,2, and uh,3 are the discrete counterparts

of the analytical correctors u1 and u2 and u1, u2, and u3, respectively. These corrections
are an important part of the HMM-approximation and cannot be neglected as higher order
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terms: For the Maxwell equation, we saw in Chapter 3 that uh,2 is necessary to obtain good
L2-approximations. Additionally, the correctors uh,2 for the Helmholtz equation and uh,2 and
uh,3 for the Maxwell equation, respectively, encode the behavior of the solution inside the
inclusions, see Section 4.6.
The discrete correctors depend on the macroscopic discrete function uH or uH , respectively,

and solve discretized cell problems. These cell problems, posed on the unit cell Y , can be
transferred back to δ-scaled and shifted cells Y δj = xj + δY , where xj is a macroscopic
quadrature point. This finally gives an equivalent formulation of (4.35) and (4.36) in the form
of a (traditional) HMM. The formulation using a macroscopic sesquilinear form with local
cell reconstructions is used in practical implementations. We emphasize that the presented
HMM also works for locally periodic ε−1

0 and ε−1
1 depending on x and y. The HMM and its

interpretation as discretization of a fully coupled two-scale equation can even be applied to
nonperiodic problems, as demonstrated in [HO15].

4.4.2 Numerical analysis
Based on the definition of the HMM as direct discretization of the two-scale equation (Defi-
nition 4.4.1), we analyze its well-posedness and quasi-optimality in Theorems 4.4.2 and 4.4.3.
This quasi-optimality is a kind of Céa lemma for indefinite sesquilinear forms and directly
leads to a priori estimates in Corollaries 4.4.4 and 4.4.5 as well as Theorem 4.4.6.
All estimates are derived in the two-scale energy norms (4.15) and (4.16). Let us furthermore

define the (discretization) error e := u − uH,h, where u solves the (analytical) two-scale
equation (4.4) or (4.9), respectively, and uH,h is the discrete two-scale solution solving (4.35)
or (4.36), respectively. For the Helmholtz equation, e = (e0, e1, e2) with e0 = u0 − uH ,
e1 = u1−uh,1, e2 = u2−uh,2; for the Maxwell equation e = (e0, e1, e2, e3) with e0 = u0−uH ,
e1 = u1 − uh,1, e2 = u2 − uh,2 and e3 = u3 − uh,3. We only estimate these (discretization)
errors and leave the modeling error, introduced by homogenization, apart. Unfortunately,
there is no estimate in δ available in the literature for this homogenization error.
In the h-version of the Finite Element method we consider in this thesis, the meshes TH

and Th are refined (thus H and h are decreased) in order to obtain a better approximation.
Hence, we introduce constants Hmax > 0 and hmax > 0 such that H ≤ Hmax and h ≤ hmax

for all considered grids.
For the Helmholtz equation, we explicitly keep track of the appearing constants. This also

gives an idea on how the constants hidden in . (which are independent of k, H and h) for
the Maxwell equation look like. We recall the following notations on constants: CB is the
continuity constant of B (for both cases), s and tj are the regularity exponents from Lemma
4.3.6 and Propositions 4.3.7 and 4.3.8, and k0 is the lower bound on k. Capprox denotes the
approximation properties constant, see (4.43) and Lemma 4.4.7 below. For the Helmholtz
equation, we have the regularity constants Creg,j , j = 0, 1, 2 (Lemma 4.3.6 and Proposition
4.3.16), the stability constant Cstab,e (Proposition 4.3.16), and the constant Cmin from the
Gårding inequality (Lemma 4.3.2). For the Maxwell equation, we recall the constants Cg and
γell from the Gårding-type inequality (Lemma 4.3.3).

Theorem 4.4.2 (Quasi-optimality for the Helmholtz equation). Let Assumption 4.3.10 be
satisfied. If the wavenumber k and the mesh widths H and h are coupled by

kq+2Hs ≤ − kq+1
0

2H1−s
max

+

√
kq+1

0

H1−s
max

( Cmin

12CBCapproxCreg,0
+

kq+1
0

4H1−s
max

)
,

kq+1ht1 ≤ Cmin

12CBCapproxCreg,1Cstab,e
,

kq+2ht2 ≤ − kq+1
0

2h1−t2
max

+

√
kq+1

0

h1−t2
max

( Cmin

12CBCapproxCreg,2Cstab,e
+

kq+1
0

4h1−t2
max

)
,

(4.37)
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we have the discrete inf-sup condition

inf
vH,h∈VH,h

sup
ψH,h∈VH,h

ReB(vH,h,ψH,h)

‖vH,h‖e ‖ψH,h‖e
≥ CHMM

kq+1
(4.38)

with CHMM := Cmin

2 (k
−(q+1)
0 (1 + Cmin

2CB
) + Cstab,e)

−1 and the error between the analytical and
discrete two-scale solution satisfies

‖(e0, e1, e2)‖e ≤
2CB
Cmin

inf
vH,h∈VH,h

‖u− vH,h‖e. (4.39)

The proof is postponed to Section 4.4.3. The resolution conditions (4.37) can (roughly)
be summarized as kq+2(Hs + ht1 + ht2) . 1, this is discussed in detail further below. A
similar result as Theorem 4.4.2 is also obtained in the three-dimensional case. However, the
resolution condition includes a second part due to the boundary terms, which are part of the
energy norm for the Maxwell equation.

Theorem 4.4.3 (Quasi-optimality for the Maxwell equation). Let Assumption 4.3.11 be
fulfilled. Under the resolution condition

CBCapprox(Cg + 2)(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2) ≤ γell/2, (4.40)

we have the discrete inf-sup condition

inf
vH,h∈VH,h

sup
ψH,h∈VH,h

|B(vH,h,ψH,h)|
‖vH,h‖e‖ψH,h‖e

≥ γell

2 + γell/CB + 2CgCstab,ekq+1
∼ k−(q+1) (4.41)

and the error between the analytical and discrete two-scale solution satisfies

‖(e0, e1, e2, e3)‖e ≤
2CB
γell

inf
vH,h∈VH,h

‖u− vH,h‖e. (4.42)

The proof is postponed to Section 4.4.4. Together with the approximation results (4.43)
and of Lemma 4.4.7, the quasi-optimality yields explicit convergence rates.

Corollary 4.4.4 (A priori estimate for the Helmholtz equation). Let the assumptions of
Theorem 4.4.2 be fulfilled. Then, the energy error can be estimated as

‖(e0, e1, e2)‖e .
(
(Hs + ht2)kq+1 + kqht1

)
‖g‖H1/2(∂G).

Assuming the maximal possible regularity s = t1 = t2 = 1 as discussed in Section 4.3.1, the
energy error converges with rate kq+1(H+h) under the resolution assumption that kq+2(H+h)
is sufficiently small.

Corollary 4.4.5 (A priori estimate for the Maxwell equation I). Let the assumptions of
Theorem 4.4.3 be fulfilled. Then, the energy error can be estimated as

‖(e0, e1, e2, e3)‖e . (kq+1(Hs + ht1 + ht2 + ht3) + kq+1/2Hs−1/2)‖g‖Hsg (∂G).

Assuming the maximal possible regularity s = t1 = t2 = t3 = 1 as discussed in Section 4.3.1,
the energy error converges with rate kq+1(H+h)+kq+1/2H1/2 under the resolution assumption
that kq+2(H + h) + kq+3/2H1/2 is sufficiently small.

The a priori estimates give linear convergence for the volume terms and, in the case of the
Maxwell equation, a convergence rate of H1/2 for the boundary terms. These are classical
optimal convergence rates under mesh refinement for the Helmholtz equation, see [MS11,
Sau06] and for problems posed in H(curl), see [EG17a,GM12].
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For the Helmholtz equation, dual problems can be used to obtain the estimate

‖e0 + χΣe2‖L2(G×Y ) . (kq+1(Hs + ht2) + kqht1)‖(e0, e1, e2)‖e

as it will be done in the proof of Theorem 4.4.2. This is the classical Aubin–Nitsche argument
to obtain higher convergence rates in the L2-norm, for details see [EM14,MS11] for classical
Helmholtz problems. However, for the Maxwell equation, we have to go over to dual norms
to obtain higher order convergence, as discussed in [GHV18,HOV16b].

Theorem 4.4.6 (A priori estimate for the Maxwell equation II). Under the assumptions of
Theorem 4.4.3, let e0 + χΣe3 = z0 + χΣz3 +∇θ0 + χΣ∇yθ3 be the Helmholtz decomposition
of the error according to (4.17). This decomposition satisfies the following a priori estimate

‖z0+χΣz3‖L2(G×Y )+ ‖θ0+χΣθ3‖L2(G×Y ) . (kq+1(Hs+ht1 +ht2 +ht3)+ kq+1/2Hs−1/2)‖e‖e.

The proof is postponed to Section 4.4.4.
As has already been remarked in [HOV16b,Ohl05], the definition of the HMM as a direct

discretization of the two-scale equation, see (4.35) and (4.36), is the crucial starting point for
all kinds of error estimates and, in particular, enables us to derive a posteriori error estimates.
Concerning a posteriori error estimates in general, we refer to [DS13, IB01] for the Helmholtz
equation and to [HOV16b,Sch08] for the Maxwell equation.
Discussion of the resolution conditions. Under the stability estimate from Assumption
4.3.10, the resolution conditions (4.37) for the Helmholtz equation are optimal/unavoidable
for standard finite element methods and the multiscale setting: As the second cell problem
depends on k, it is natural that h enters the condition (4.37). We emphasize that h denotes
the mesh width of the unit square mesh and is thus not coupled to δ in any way. Assuming
q = 0, as is the case for classical Helmholtz problems, we regain the usual condition “k2(H+h)
sufficiently small”, cf., e.g., [EM12,Het07,Ihl98,Mel95,MS11]. This latter resolution condition
is also what we experience in our numerical experiments in Section 4.6.1.
The resolution condition (4.40) for the Maxwell equation reads k2(H + h) + k3/2H1/2 . 1

if we assume maximal regularity s = t1 = t2 = t3 = 1 and optimal stability q = 0. The first
part k2(H + h) comes from the volume terms and is unavoidable as just discussed for the
Helmholtz equation. The second part k3/2H1/2 is caused by the boundary terms, which are
an essential part of the energy norm for the Maxwell equation. In contrast to the Helmholtz
equation, they cannot be estimated against the volume terms by a trace inequality and thus,
seem to be unavoidable as well. The powers in k and H for the resolution condition caused
by the boundary terms are consistent with the volume terms: for both, k and H, the power is
reduced by 1/2. Unfortunately, despite this consistency, the part k3/2H1/2 is the dominating
part in the resolution condition and finally, leads to a condition like “k3H small”.
Our explicit stability estimates in Theorems 4.3.14 and 4.3.15 yield q = 3. This is a

kind of “worst case” resolution condition which is certainly sufficient for the quasi-optimality
and a priori error results presented above, but can well be suboptimal (as the numerical
experiments indicate). We emphasize that this gap between the optimal and worst case
resolution condition is no defect of the numerical method, but can be closed if better stability
results are proved, which is outside the scope of our work. For instance, the influence of
Im(µhom) may still be overestimated. For the Maxwell equation, we moreover underline
that previous works [GM12,Hip02,Hip15,Mon03] so far have only proved well-posedness for
sufficiently fine meshes without explicit k-dependent resolution condition.
As also supported by our numerical experiments, the HMM is much more efficient than a

direct discretization of the heterogeneous problems (4.2) and (4.3). In order to get an accurate
solution, a grid with mesh size href satisfying href < δ � 1 is required from the multiscale point
of view. On top of that, at least k2href < C has to be satisfied to rule out pre-asymptotic
effects. Note that the heterogeneous problems do not fulfill the assumptions for any available
stability estimate, so that the resolution condition may even be worse.
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Reduction of the pollution effect. Although the above described so-called pollution effect
is not avoidable for the classical Helmholtz equation in dimension d ≥ 2 as shown in [BS00],
much work in its reduction has been invested: Examples of the proposed methods are the
hp-version of the finite element method [EM12,MS11], (hybridizable) discontinuous Galerkin
methods [CLX13, GM11], or plane wave Trefftz methods [HMP16a, HMP16b, PPR16], just
to name a few. For the Maxwell equation, attempts to reduce the pollution effect include
hp-FEM [MS18], (hybridizable) discontinuous Galerkin methods [FLX16, FW14b, LCQ17],
or (plane wave) Trefftz methods [HMP13]. Recently, it has been shown that the resolution
condition for the Helmholtz equation can be relaxed to the natural assumption “kh sufficiently
small” by applying a Localized Orthogonal Decomposition (LOD), see [BGP17,GP15,Pet17].
To that end, the function space is decomposed into a coarse space, where the solution is sought,
and a remainder space. The coarse space is spanned by pre-computable basis functions with
local support, which include some information from the remainder space by the solution of
localized corrector problems, see Section 2.3.4 for details. Only recently, the LOD has also
been discussed for H(curl)-problems [GHV18,Ver17b]. The definition of the HMM as a direct
discretization of the two-scale equation makes it possible to apply an additional LOD, see
Section 4.5.

4.4.3 Proofs for the Helmholtz equation
In this section we give the proof of Theorem 4.4.2. The finite element function space VH,h

for the Helmholtz equation (see first part of Definition 4.4.1) has the following approximation
property: There is Capprox such that for all 1

2 < s ≤ 1 and given (v0, v1, v2) ∈ H1+s
pw (G) ×

L2(Ω;H1+s(Σ∗))× L2(Ω;H1+s(Σ)) it holds

‖v0 − vH‖G +H‖∇(v − vH)‖G ≤ CapproxH
1+s|v|H1+s

pw (G),

‖v1 − vh,1‖Ω×Σ∗ + h‖∇y(v1 − vh,1)‖Ω×Σ∗ ≤ Capproxh
1+s|v1|L2(Ω;H1+s(Σ∗)),

‖v2 − vh,2‖Ω×Σ + h‖∇y(v2 − vh,2)‖Ω×Σ ≤ Capproxh
1+s|v2|L2(Ω;H1+s(Σ))

(4.43)

for all vH,h := (vH , vh,1, vh,2) ∈ VH,h. Note that the regularity coefficient s does not neces-
sarily have to be the same in all three estimates.

Proof of Theorem 4.4.2. Proof of the inf-sup condition (4.38): Let vH,h := (vH , vh,1, vh,2) ∈
VH,h be given and let w := (w0, w1, w2) ∈ H solve

B(ψ,w) = 2k2(ψ0 + χΣψ2, vH + χDvh,2)G×Y ∀ψ := (ψ0, ψ1, ψ2) ∈ H.

Due to the regularity of the cell problems (Lemma 4.3.6), Assumption 4.3.10 on the stability,
and the resulting estimates from Proposition 4.3.16 it holds that

‖w‖e ≤ 2Cstab,ek
q+1‖vH,h‖e,

‖w0‖H1+s
pw (G) ≤ 2Creg,0k

q+2‖vH,h‖e,

‖w1‖L2(Ω;H1+t1 (Σ∗)) ≤ Creg,1‖w‖e ≤ 2Creg,1Cstab,ek
q+1‖vH,h‖e,

‖w2‖L2(Ω;H1+t2 (Σ)) ≤ Creg,2k‖w‖e ≤ 2Creg,2Cstab,ek
q+2‖vH,h‖e.

(4.44)

Due to (4.43) we can choose wH,h := (wH , wh,1, wh,2) ∈ VH,h such that

‖w −wH,h‖e ≤ Capprox

(
Hs(1 + kH)‖w0‖H1+s

pw (G) + ht1‖w1‖L2(Ω;H1+t1 (Σ∗))

+ ht2(1 + kh)‖w2‖L2(Ω;H1+t2 (Σ))

)
(4.44)
≤ 2Capprox

(
Creg,0k

q+2Hs(1 + kH) + Creg,1Cstab,ek
q+1ht1

+ Creg,2Cstab,ek
q+2ht2(1 + kh)

)
‖vH,h‖e.

(4.45)
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With this wH,h we obtain

ReB(vH,h,vH,h + wH,h) = ReB(vH,h,vH,h + w −w + wH,h)

= ReB(vH,h,vH,h + w)− ReB(vH,h,w −wH,h)

≥ Cmin‖vH,h‖2e − CB‖vH,h‖e ‖w −wH,h‖e.

Inserting (4.45) yields

ReB(vH,h,vH,h + wH,h)

≥ Cmin

(
1− 2CBCapprox

Cmin

(
Creg,0k

q+2Hs(1 + kH) + Creg,2Cstab,ek
q+2ht2(1 + kh)

+ Creg,1Cstab,ek
q+1ht1

))
‖vH,h‖2e.

Hence, this gives ReB(vH,h,vH,h + wH,h) ≥ 1
2Cmin‖vH,h‖2e under the resolution conditions

(4.37). Finally, observing that

‖vH,h + wH,h‖e ≤ ‖vH,h‖e + ‖w‖e + ‖w −wH,h‖e

≤
(

1 + 2Cstab,ek
q+1 + 2Capprox

(
Creg,0k

q+2Hs(1 + kH) + Creg,1Cstab,ek
q+1ht1

+ Creg,2Cstab,ek
q+2ht2(1 + kh)

))
‖vH,h‖e

(4.37)
≤

(
1 + 2Cstab,ek

q+1 +
Cmin

2CB

)
‖vH,h‖e

≤
(
k
−(q+1)
0

(
1 +

Cmin

2CB

)
+ 2Cstab,e

)
kq+1‖vH,h‖e

finishes the proof of the inf-sup condition.
Proof of the quasi-optimality (4.39): Consider the following (auxiliary) dual problem for

w := (w0, w1, w2) ∈ H

B(ψ,w) = k2(ψ0 + χΣψ2, e0 + χΣe2)G×Y ∀ψ := (ψ0, ψ1, ψ2) ∈ H.

As already argued in the proof of the discrete inf-sup constant, w0 ∈ H1+s
pw (G) fulfills the

estimate ‖w0‖H1+s
pw
≤ Creg,0k

q+2‖(e0, e1, e2)‖e due to Proposition 4.3.16. For all wH,h ∈ VH,h,
the standard Galerkin orthogonality gives

k2‖e0 + χΣe2‖2L2(G×Y ) = B(e,w) = B(e,w −wH,h).

The continuity of B w.r.t. the energy norm and an approximation argument like (4.45) yield

k2‖e+ χΣe2‖2L2(G×Y ) ≤ CB‖(e0, e1, e2)‖e ‖z− zH,h‖e

≤ CBCapprox

(
Creg,0k

q+2Hs(1 + kH) + Creg,1Cstab,ek
q+1ht1

+ Creg,2Cstab,ek
q+2ht2(1 + kh)

)
‖(e0, e1, e2)‖2e.

With the Gårding inequality, we get for any wH,h ∈ VH,h

‖(e0, e1, e2)‖2e ≤ C−1
min

(
ReB(e, e) + 2k2‖e0 + χΣe2‖2L2(G×Y )

)
= C−1

min

(
ReB(e,u−wH,h) + 2k2‖e0 + χΣe2‖2L2(G×Y )

)
≤ CB
Cmin

‖u−wH,h‖e ‖(e0, e1, e2)‖e

+
2CBCapprox

Cmin

(
Creg,0k

q+2Hs(1 + kH) + Creg,1Cstab,ek
q+1ht1

+ Creg,2Cstab,ek
q+2ht2(1 + kh)

)
‖(e0, e1, e2)‖2e.
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Together with the resolution conditions (4.37) this gives

‖(e0, e1, e2)‖2e ≤
CB
Cmin

‖u−wH,h‖e‖(e0, e1, e2)‖e +
1

2
‖(e0, e1, e2)‖2e

and, hence, (4.39).

4.4.4 Proofs for the Maxwell equation
In this section, we prove Theorems 4.4.3 and 4.4.6. We introduce the following dual problem:
For f ∈ H(div 0, G), f3 ∈ L2(Ω; H(div 0,Σ)) and g̃ ∈ Hr

T (∂G) with r ∈ (0, 1
2 ), find w =

(w0,w1, w2,w3) ∈ H such that

B(ψ,w) = (ψ + χΣψ3, f + χΣf3)L2(G×Y ) + (ψT , g̃)L2(∂G) ∀ψ = (ψ0,ψ1, ψ2,ψ3) ∈ H.
(4.46)

Dual problem (4.46) is very similar to the two-scale limit equation (4.9) and we thereby
know that it is uniquely solvable. Note that we can also apply our theory from Section 4.3,
in particular Assumption 4.3.11, since the right-hand side is divergence-free. We have the
following approximation result for the dual problem.

Lemma 4.4.7. Under Assumption 4.3.11, the solution w ∈ H to (4.46) satisfies

inf
wH,h∈VH,h

‖w −wH,h‖e ≤ Capprox

(
kq+1(Hs + ht1 + ht2 + ht3)

+ kq+1/2Hs−1/2
)(
‖f + χΣf3‖L2(G×Y ) + ‖g̃‖Hr(∂G)

)
.

(4.47)

Proof. Interpolation and best approximation estimates in Himp, see [EG17b,GM12], yield

inf
wH,h∈VH,h

‖w −wH,h‖e . (Hs + ht1 + ht2 + ht3)‖w‖k,Hs,t

+ k1/2Hs−1/2(‖wT ‖Hs
‖(∂G) + ‖ curl∂G wT ‖L2(∂G)),

where we abbreviated by ‖·‖k,Hs,t the (weighted) higher order norms. Inserting the regularity
and stability results from Section 4.3 and using Assumption 4.3.11 finishes the proof.

With these preliminaries, we prove the inf-sup condition and the quasi-optimality of Theo-
rem 4.4.3.

Proof of Theorem 4.4.3. Proof of the inf-sup condition (4.41): Let vH,h ∈ VH,h be arbitrary
and apply the Helmholtz decomposition (4.17) to vH = z0 +∇θ0 and vh,3 = z3 +∇yθ3. We
write in short vH,h = z + ∇θ with z = (z0,vh,1, 0, z3) and ∇θ := (∇θ0, 0,∇yvh,2,∇yθ3).
Let w = (w0,w1, w2, z3) ∈ H be the solution to dual problem (4.46) with f = Cgk

2z0,
f3 = Cgk

2z3, and g̃ = Cgk(z0)T . Note that (z0)T ∈ Hr
T (∂G) for all r < 1

2 due to the
boundary regularity of edge element functions. Let wH,h ∈ VH,h be the best approximation
to w in the two-scale energy norm ‖ · ‖e.
Imitating the proof of the analytical inf-sup condition in Proposition 4.3.17, we would like to

choose the test function SF (vH,h) + wH,h with the sign-flip isomorphism SF . Unfortunately,
SF (vH,h) is not discrete any more, so that we have to apply an additional interpolation
operator. We choose the corresponding standard (nodal) interpolation operator for each of
the single spaces of VH,h (see Section 2.2.2) and call the resulting operator IH,h. Hence, we
obtain∣∣B(vH,h, IH,h(SF (vH,h)) + wH,h)

∣∣
≥
∣∣B(vH,h, SF (vH,h) + w)

∣∣− ∣∣B(vH,h, (IH,h − id)SF (vH,h)
∣∣− ∣∣B(vH,h,wH,h −w)

∣∣.
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Due to the orthogonality of the Helmholtz decomposition, the first term can be estimated as∣∣B(vH,h, SF (vH,h) + w)
∣∣

=
∣∣B(vH,h, SF (vH,h)) + Cgk

2(z0 + χΣz3,vH + χΣvh,3)G×Y + Cgk((z0)T , (vH)T )∂G
∣∣

=
∣∣B(vH,h, SF (vH,h)) + Cgk

2‖z0 + χΣz3‖2G×Y + Cgk‖(z0)T ‖2∂G
∣∣ ≥ γell‖vH,h‖2e.

Using the continuity of B and Lemma 4.4.7, we deduce for the third term∣∣B(vH,h,wH,h −w)
∣∣

≤ CcCapproxCg(k
q+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖vH,h‖e

·
(
k‖z0 + χΣz3‖G×Y + k1/2‖(z0)T ‖L2

T (∂G)

)
≤ CcCapproxCg(k

q+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖vH,h‖2e,

where we used the stability of the Helmholtz decomposition in the last step.
For the second term we note that SF (vH,h) = 2z−vH,h. It holds that curl(IH,h− id)z = 0

because the nodal interpolation operator is a commuting projector and curl z = curl vH,h.
In particular, this means that the curl and the tangential curl of z0 + χΣz3 are discrete
functions, so that we can apply the modified interpolation estimates [GM12, Lemmas 5.1 and
5.3]. Together with the regularity of the decomposition discussed in Remark 4.3.9, this yields
for the second term∣∣B(vH,h, (IH,h − id)SF (vH,h))

∣∣
≤ 2Cc‖vH,h‖e

(
k‖(IH,h − id)(z0 + χΣz3)‖G×Y + k1/2‖(IH,h − id)(z0)T ‖∂G

)
≤ 2CcCapprox(k(Hs + ht3) + k1/2Hs−1/2)‖vH,h‖e.

The term |B(vH,h, (IH,h− id)SF (vH,h))| thus is of lower order than term |B(vH,h,wH,h−w)|
and can be absorbed in the latter because of k ≥ k0. All in all, this gives∣∣B(vH,h, IH,h(SF (vH,h)) + wH,h)

∣∣
≥ (γell − CcCapprox(Cg + 2)(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2))‖vH,h‖2e
≥ γell/2‖vH,h‖2e,

where we used the resolution condition (4.40) in the last step.
Furthermore, it holds – with the same arguments as before – that

‖IH,h(SF (vH,h)) + wH,h‖e
≤ ‖SF (vH,h)‖e + ‖w‖e + ‖w −wH,h‖e + ‖(IH,h − id)SF (vH,h)‖e

≤
(

1 + CgCstab,ek
q+1

+ (Cg + 2)Capprox(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)
)
‖vH,h‖2e,

which finishes the proof of the inf-sup condition.
Proof of the quasi-optimality (4.42): Let e := (e0, e1, e2, e3) and apply the Helmholtz de-

composition (4.17) to e0 +χΣe3 = z0 +χΣz3 +∇θ0 +χΣ∇yθ3. We write in short e = z +∇θ
with z = (z0, e1, 0, z3) and ∇θ := (∇θ0, 0,∇ye2,∇yθ3).
Using the Gårding-type inequality (4.18), we have that

γell‖e‖2e ≤ |B(e, SF (e)) + Cgk
2‖z0 + χΣz3‖2G×Y + Cgk‖(z0)T ‖2∂G|

≤ |B(e, e)|+ (Cg + 2)k2‖z0 + χΣz3‖2G×Y + (Cg + 2)k‖(z0)T ‖2∂G.
(4.48)

The main work is to bound the second and third term. For this, let w ∈ H be the solution to
dual problem (4.46) with f = kz0, f3 = kz3 and g̃ = k1/2(z0)T . Note that (z0)T ∈ H

s−1/2
T (∂G)
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due to the regularity of u0 from Proposition 4.3.8 and the regularity of functions in VH,h.
Because of the orthogonality in the Helmholtz decomposition of (4.17) and ∇T θ0 = 0 it holds
that

k‖z0 + χΣz3‖2G×Y + k1/2‖(z0)T ‖2∂G = k(z0 + χΣz3, e0 + χΣe3)G×Y + k1/2((z0)T , (e0)T )∂G

= B(e,w).

Using Galerkin orthogonality and Lemma 4.4.7, we obtain for any wH,h ∈ VH,h that

k‖z0 + χΣz3‖2G×Y + k1/2‖(z0)T ‖2∂G = B(e,w) = B(e,w −wH,h)

≤ CcCapprox(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖e‖e
· (‖(z0 + χΣz3)‖G×Y + ‖(z0)T ‖∂G)

and thus

k‖(z0 + χΣz3)‖G×Y + k1/2‖(z0)T ‖∂G
≤ CcCapprox(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖e‖e.

(4.49)

Inserting (4.49) into (4.48) and applying Galerkin orthogonality, we get

γell‖e‖2e ≤
∣∣B(e, e)

∣∣+ (Cg + 2)k2‖z0 + χΣz3‖2G×Y + (Cg + 2)k‖(z0)T ‖2∂G
≤
∣∣B(e,u− vH,h)

∣∣+ (Cg + 2)‖e‖e (k‖z0 + χΣz3‖G×Y + k1/2‖(z0)T ‖∂G)

≤ Cc‖e‖e‖u− vH,h‖
+ (Cg + 2)CcCapprox(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖e‖2e,

which gives the claim using resolution condition (4.40).

The proof of the quasi-optimality already showed that the compact perturbation is of higher
order (w.r.t. the rates in the mesh size) than the energy error. This kind of Aubin-Nitsche
trick can be extended to the whole Helmholtz decomposition.

Proof of Theorem 4.4.6. The estimate for z0 + χΣz3 is already given by (4.49) (considering
only the volume term and dividing by k). To estimate θ0+χΣθ3, we pose another dual problem
(cf. [HOV16b]): Find w := (w0, w2, w3) ∈ X := H1

0 (G)×L2(Ω;H1
],0(Σ∗))×L2(Ω;H1

0 (Σ)) such
that

A(ψ,w) := −k2

ˆ
G

ˆ
Y

(∇ψ0 + χΣ∗∇yψ2 + χΣ∇yψ3) · (∇w∗0 + χΣ∗∇yw∗2 + χΣ∇yw∗3) dydx

=

ˆ
G

ˆ
Y

(ψ0 + χΣψ3) · (θ∗0 + χΣθ
∗
3) dydx ∀ψ = (ψ0, ψ2, ψ3) ∈ X.

Let us denote by wH,h = (wH , wh,2, wh,3) the solution to the corresponding discrete prob-
lem over the Lagrange finite element spaces S̊(TH) ⊂ H1

0 (G), S̃(Th(Σ∗)) ⊂ H1
],0(Σ∗), and

S̊(Th(Σ)) ⊂ H1
0 (Σ). It is a well-known fact in finite element exterior calculus that ∇S(TH) ⊂

N (TH), etc. We obtain with the Galerkin orthogonality and the orthogonality of the Helm-
holtz decomposition

‖θ0 + χΣθ3‖2G×Y = A((θ0, e2, θ3),w) = B((∇θ0, e1, e2,∇yθ3), (∇w0, 0, w2,∇yw3))

= B(e, (∇w0, 0, w2,∇yw3))− B((z0, 0, 0, z3), (∇w0, 0, w2,∇yw3))

= B(e, (∇(w0 − wH), 0, w2 − wh,2,∇y(w3 − wh,3)).

Using the approximation properties of the Lagrange finite element spaces and the regularity
and stability of elliptic diffusion two-scale problems, we deduce

‖θ0 + χΣθ3‖2G×Y . ‖e‖e k‖∇(w0 − wH) + χΣ∗∇y(w2 − wh,2) + χΣ∇y(w3 − wh,3)‖G×Y
. (Hs + ht2 + ht3 +Hs−1/2)‖e‖e‖θ0 + χΣθ3‖G×Y ,

which in combination with (4.49) finishes the proof.
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4.5 Two-scale Localized Orthogonal Decomposition for
Helmholtz-type problems

In this section, we present how the Localized Orthogonal Decomposition (LOD) can be applied
to two-scale Helmholtz-type problems to relax the resolution conditions (4.37), following the
ideas in [GP15]. Here, we have to deal with coupled functional spaces and sesquilinear forms.
This coupling has to be taken care of in all new definitions of (again coupled) spaces and also
in the estimates, where we have to jump back and forth between the two-scale norms and
the properties of each individual space and interpolation operator. Furthermore, our coupled
two-scale functional spaces involve periodic boundary conditions on the unit cell, which also
have to be paid attention at when defining the interpolation operators and the oversampling
patches at the boundary.
We consider the two-scale equation (4.4) over the two-scale space H. Again, we estimate

errors in the two-scale energy norm (4.15). Furthermore, we introduce a version ‖ · ‖1,e of the
H1-seminorm on H via

‖(v0, v1, v2)‖21,e,ω×R := ‖∇v0 +∇yv1‖2ω×R1
+ ‖∇yv2‖2ω×R2

(4.50)

for a subdomain ω ×R ⊂ G× Y with R1 := R ∩ Σ∗ and R2 := R ∩ Σ. This norm is induced
by the sesquilinear form

(v,ψ)1,e,ω×R := (∇v0 +∇yv1,∇ψ0 +∇yψ1)ω×R1
+ (∇yv2,∇yψ2)ω×R2

∀v,ψ ∈ H.

Recall that the sesquilinear form B fulfills a Gårding inequality, see Lemma 4.3.2.
For the error analysis, we compare the solution of the LOD to a discrete reference solution,

which is only needed for the theory and is never computed in practical implementations. This
reference solution is the discrete two-scale solution uH,h ∈ VH,h to (4.35), see Definition 4.4.1.
It is computed over the meshes TH for G and Th for Y , as introduced in Section 4.4.1. We
assume that this discretization is stable in the following sense: The (fine) mesh sizes H and h
are small enough (in dependence on the wavenumber k) such that there is a constant CHMM

with

(CHMM kq+1)−1 ≤ inf
vH,h∈VH,h

sup
ψH,h∈VH,h

ReB(vH,h,ψH,h)

‖vH,h‖e‖ψh,h‖e
. (4.51)

In Theorem 4.4.2, we proved that this discrete inf-sup condition holds under the classical
resolution condition kq+2(H + h) = O(1).

Remark 4.5.1. We demonstrate the LOD at the specific example of the two-scale Helmholtz
problem obtained in Theorem 4.2.1. However, the theory can easily be extended to more
general two-scale Helmholtz problems, which fulfill the following assumptions:

• The variational problem (4.4) involves a continuous sesquilinear form with Gårding
inequality.

• The analytical solution fulfills a stability estimate of order kq (see Assumption 4.3.10).

• The (direct) Galerkin discretization (4.35) is stable (4.51) for sufficiently fine meshes.

This section is organized as follows: The LOD is introduced in Section 4.5.1 and its rigorous
a priori error analysis is performed in Section 4.5.2. The proof of the exponential decay of
the correctors is detailed in Section 4.5.3.

4.5.1 Localized Orthogonal Decomposition
In this section, we introduce the notation on meshes and (quasi)-interpolation operators and
define the LOD in Petrov-Galerkin formulation for the two-scale setting. We close with some
remarks regarding an implementation of the two-scale LOD.
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Figure 4.3: Triangle T (in black) and its first and second order patches. Striped triangles
belong to N2(T ) in the case of periodic boundary conditions.

Meshes and interpolation operator. Let the (fine) meshes TH of G and Th of Y be given
as in Section 4.4.1, we assume that H and h are small enough such that (4.51) is fulfilled.
We consider a second, coarse discretization scale Hc > H and hc > h: Let THc and Thc
denote corresponding regular, quasi-uniform, and shape regular triangulations of G and Y ,
respectively. As for the fine grids, we additionally assume that Thc is periodic and that
THc and Thc resolve the partition of G into Ω and its complement and of Y into Σ and
Σ∗, respectively. We denote by Thc(Σ∗) and Thc(Σ) the parts of Thc triangulating Σ∗ and
Σ, respectively. The global mesh sizes are defined as Hc := max{diam(T )|T ∈ THc} and
hc := max{diam(S)|S ∈ Thc}. For the sake of simplicity we assume that TH and Th are
derived from THc and Thc , respectively, by some regular, possibly nonuniform, mesh refinement
including at least one global refinement. We consider simplicial partitions, but the theory of
this paper carries over to quadrilateral partitions [GP15] and even meshless methods would
be possible [HMP15].
We use the notation Nm(ω) for the mth layer patch around a subdomain ω ⊂ G, as

introduced in Definition 2.2.4. In this context, we also recall the overlap constants Col,m

(2.25) and Col := Col,1. The patches can also be defined in a similar way for a subdomain
R ⊂ Y . Here, we split R = R1∪R2 with R1 = R∩Σ and R2 = R∩Σ∗, where R1 or R2 may be
empty, and we write in short Nm(R) := Nm(R1)∪Nm(R2). Nm(R1) is defined in the same way
as before, in particular, it ends at the boundary ∂Σ. For the patch Nm(R2) we interpret Σ∗ as
part of the torus. This implies that Nm(R2) ends at the inner boundary ∂Σ, but is continued
periodically over the outer boundary ∂Y . This means that also the striped triangles in Figure
4.3 belong to the second patch for the periodic setting. We denote the overlap constants by
Col,m,Y and Col,Y . By slight abuse of notation, we write Nm(ω × R) := Nm(ω)× Nm(R) for
a subdomain ω ×R ⊂ G× Y .
We denote the conforming FE triple space consisting of lowest order Lagrange elements

w.r.t. the meshes THc and Thc by VHc,hc as in Section 4.4. Again, we have VHc,hc := S(TH)×
L2(Ω; S̃(Thc(Σ∗)))× L2(Ω; S̊(Thc(Σ))) and we moreover note that VHc,hc ⊂ VH,h ⊂ H.
A key tool in the definition and the analysis is a bounded linear surjective (quasi)-inter-

polation operator ΠHc,hc : VH,h → VHc,hc that acts as a stable quasi-local projection in the
following sense. It is a projection, i.e., ΠHc,hc ◦ΠHc,hc = ΠHc,hc , and it is constructed as
ΠHc,hc := (ΠHc ,Π

Σ∗

hc
,ΠΣ

hc
), where each (quasi)-interpolation operator fulfills the following.

There exist constants CΠHc
, CΠΣ∗

hc
, and CΠΣ

hc
such that for all vH,h := (vH , vh,1, vh,2) ∈ VH,h

and for all T ∈ THc , S1 ∈ Thc(Σ∗), and S2 ∈ Thc(Σ)

H−1
c ‖vH −ΠHc(vH)‖T + ‖∇ΠHc(vH)‖T ≤ CΠHc

‖∇vH‖N(T ),

h−1
c ‖vh,1 −ΠΣ∗

hc (vh,1)‖T×S1
+ ‖∇yΠΣ∗

hc (vh,1)‖T×S1
≤ CΠΣ∗

Hc
‖∇yvh,1‖T×N(S1),

h−1
c ‖vh,2 −ΠΣ

hc(vh,2)‖T×S2
+ ‖∇yΠΣ

hc(vh,2)‖T×S2
≤ CΠΣ

Hc
‖∇yvh,2‖T×N(S2).

(4.52)
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We abbreviate CΠ := max{CΠHc
, CΠΣ∗

hc
, CΠΣ

Hc
}. Under the mesh condition that k(Hc +hc) .

1, this implies stability in the two-scale energy norm

‖ΠHc,hcvH,h‖e ≤ CΠ,e‖vH,h‖e ∀vH,h ∈ VH,h. (4.53)

The quasi-interpolation operator ΠHc,hc is not unique: A different choice might lead to a
different Localized Orthogonal Decomposition and this can even affect the practical perfor-
mance of the method [Pet17]. One popular choice is the concatenation of the L2-projection
onto piecewise polynomials and the Oswald interpolation operator, see also Section 2.2.3.
Other choices are discussed in [EHMP16,Pet16]. Note that the operators ΠΣ∗

hc
and ΠΣ

hc
only

act w.r.t. the second variable y. For ΠΣ∗

hc
, the averaging process of the Oswald interpolation

operator has to be continued over the periodic boundary (as for the patches before) to preserve
periodicity.

Definition of the LOD. The method approximates the discrete two-scale solution uH,h :=
(uH , uh,1, uh,2) to (4.35) for given (fine) mesh sizes H, h. It is determined by the choice of the
coarse mesh sizes Hc and hc and the oversampling parameterm explained in the following. We
assign to any (T, S1, S2) ∈ THc×Thc(Σ∗)×Thc(Σ) itsmth order patchGT×Σ∗S×ΣS = Nm(T )×
Nm(S1) × Nm(S2) and define for any vH,h = (vH , vh,1, vh,2),ψH,h = (ψH , ψh,1, ψh,2) ∈ VH,h

the localized sesquilinear form

BGT×YS (vH,h,ψH,h)

:= (ε−1
0 (∇vH +∇yvh,1),∇ψH +∇yψh,1)(GT∩Ω)×Σ∗S

+ (ε−1
1 ∇yvh,2,∇yψh,2)GT×ΣS

+ (∇vH ,∇ψH)GT∩(G\Ω) − k
2(vH + χDvh,2, ψH ,+χDψh,2)GT×YS

− ik(vH , ψH)∂GT∩∂G

with YS := Σ ∪ Σ∗S . For m = 0 (i.e., Nm(T ) = T ), we write BT×S with S = S1 ∪ S2.
Note that the oversampling parameter does not necessarily have to be the same for G, Σ∗,
and Σ. We could as well introduce patches Nm0(T ) × Nm1(S1) × Nm2(S2), but we choose
m0 = m1 = m2 =: m for simplicity of presentation and to improve readability.
We define the (truncated) finite element functions on the fine-scale meshes as

S(TH(GT )) := {vH ∈ S(TH)|vH = 0 outside GT },

L2(Ω; S̃(Th(Σ∗S))) := {vh,1 ∈ L2(Ω; S̃(Th(Σ∗)))|vh,1 = 0 outside (GT ∩ Ω)× Σ∗S},

and L2(Ω; S̊(Th(ΣS))) in a similar way. Define the null space

WH,h(GT × YS)

:= {wH,h ∈ S(TH(GT ))× L2(Ω; S̃(Th(Σ∗S)))× L2(Ω; S̊(Th(ΣS)))|ΠHc,hc(wH,h) = 0}

and note that WH,h(GT × YS) := WH(GT ) × L2(Ω;Wh(Σ∗S)) × L2(Ω;Wh(ΣS)), where WH

and Wh are defined as the kernels of the corresponding (single) interpolation operators ΠHC

and ΠΣ∗

hc
and ΠΣ

hc
, respectively. For given vHc,hc ∈ VHc,hc we define the localized correction

Qm(vHc,hc) := (Qm(vHc), Qm,1(vhc,1), Qm,2(vhc,2)) as

Qm(vHc,hc) :=
∑

(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)

QT×S,m(vHc,hc |T×S),

where QT×S,m(vHc,hc |T×S) ∈WH,h(GT ×YS) solves the following subscale corrector problem

BGT×YS (wH,h,QT×S,m(vHc,hc |T×S)) = BT×S(wH,h,vHc,hc) ∀wH,h ∈WH,h(GT × YS).
(4.54)
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The space of test functions then reads

VHc,hc,m := (id−Qm)(VHc,hc)

and can be written as triple

VHc,hc,m = V Hc,m × L2(Ω;V hc,m(Σ∗))× L2(Ω;V hc,m(Σ)).

We emphasize that dim VHc,hc,m = dim VHc,hc and hence, VHc,hc,m is low-dimensional.
Moreover, the dimension does not depend on H, h, or m.

Definition 4.5.2. For the two-scale Localized Orthogonal Decomposition in Petrov-Galerkin
formulation we seek uHc,hc ∈ VHc,hc such that

B(uHc,hc ,ψHc,hc) = (g, ψHc)∂G ∀ψHc,hc := (ψHc , ψhc,1, ψhc,2) ∈ VHc,hc,m. (4.55)

The error analysis will show that the choice k(Hc + hc) . 1 and m ≈ log k suffices to
guarantee stability and quasi-optimality of the method, provided that the direct discretization
(4.35) (with mesh widths H, h) is stable.
As discussed in [Pet17], further stable variants of the method are possible: The local subscale

correction procedure can be applied only to the test functions, only to the ansatz functions,
or to both ansatz and test functions.

Remarks on implementation aspects. The present approach of the LOD exploits the two-
scale structure of the underlying problem. In practice, we cannot work with the space triples
such as VHc,hc , but look at each of the function spaces separately. The LOD consists of two
main steps: First, the modified basis functions of VHc,hc,m have to be determined, which
includes the solution of the localized subscale corrector problems (4.54). Second, the actual
LOD-approximation is computed as solution to (4.55). In both steps, the computations for
the macroscopic domain and the unit square can be decoupled. For general considerations
on how to implement an LOD, for example algebraic realizations of the problems, we refer
to [EHMP16].
Computation of modified bases. We observe that due to the sesquilinearity of B the
following linearity fof the correction operators Qm holds

QmvHc,hc = Qm(vHc , 0, 0) + Qm(0, vhc,1, 0) + Qm(0, 0, vhc,2)

= (Qm(vHc), 0, 0) + (0, Qm,1(vhc), 0) + (0, 0, Qm,2(vhc,2)).

This means that the corrections of the basis functions in S(THc), S̃(Thc(Σ∗)), and S̊(Thc(Σ))
can be computed separately in the following way:

1. Choose bases {λx} of S(THc), {λy,1} of S̃(Thc(Σ∗)), and {λy,2} of S̊(Thc(Σ)).

2. For each basis function λx, λy,1, and λy,2:

a) Find the solutions QT×S,m(λx), QT×S,m,1(λy,1), and QT×S,m,2(λy,2) to the correc-
tor problem (4.54) for each T ∈ THc , S1 ∈ Thc(Σ∗), and S2 ∈ Thc(Σ). This needs
the determination of WH(GT ), Wh(Σ∗S), and Wh(ΣS).

b) Build up the modified bases λx of V Hc,m, λy,1 of V hc,m(Σ∗), and λy,2 of V hc,m(Σ)
via λx := λx −

∑
(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)QT×S,m(λx), etc.

Note that no communication between the basis functions on G, Σ∗, and Σ is needed and
therefore, the computation of the modified bases can be easily parallelized. Only if the pa-
rameters ε1 and ε0 are constant w.r.t. x as here, the corrections QT×S,m,1 and QT×S,m,2 are
x-independent. Depending on the choice of the interpolation operator, Lagrange multipliers
can be employed to decode if a function belongs to WH or Wh, see [EHMP16].
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4.5 Two-scale Localized Orthogonal Decomposition for Helmholtz-type problems

We can further decrease the computational complexity of the localized corrector problems
by decoupling the integrals over G and Y and by reducing the number of corrector problems.
The potential gain of course hinges on (additional) structure of the parameters and the meshes
with the following general observations:

• The corrections QT×S,m,1 and QT×S,m,2 only have to be computed for T ∈ THc with
T ∩ Ω 6= ∅.

• It is sufficient to choose test functions of the form w = (w, 0, 0) for QT×S,m, w =
(0, w1, 0) for QT×S,m,1, and w = (0, 0, w2) for QT×S,m,2.

• In the case of constant parameters ε1 and ε0, the corrector problems for QT×S,m,1 and
QT×S,m,2 include information on T only in form of the weights |T | and |Ω|; and the
problems for QT×S,m only depend on S in form of the weights |S1| and |Σ∗S |.

• In case of structured meshes THc and Thc and constant parameters, we can exploit
symmetries to reduce the number of corrector problems [GP15].

Computation of the LOD-approximation. The LOD-approximation is defined as
the solution to (4.55). This problem is similar to the discrete two-scale equation (4.35),
only the test functions have been modified. Therefore, the LOD-approximation can be re-
interpreted as an HMM-approximation with modified test functions and corrector problems.
To be more explicit, uHc,hc ∈ VHc,hc from Definition 4.5.2 can be characterized as uHc,hc =
(uHc ,Khc,1(uHc),Khc,2(uHc)), where uHc ∈ V 1

Hc
is the solution to an HMM with modified

test functions and the corrections Khc,1(uHc) and Khc,2(uHc) are computed from uHc and its
reconstructions; see Section 2.3.3 and [HOV16b,Ohl05] for similar reformulations in different
settings. The HMM with modified test functions involves the following two steps:

1. Solve the cell problems for the reconstructions around each quadrature point of the
macroscopic triangulation THc using test functions in V hc,m(Σ∗) and V hc,m(Σ).

2. Assemble the macroscopic sesquilinear form with the computed reconstructions and the
test functions in V Hc,m.

Note that the reconstructions as well as the fine-scale correctors Kh,1 and Kh,2 are different
from those of a standard HMM for this problem because of the modified test functions.
This reformulation of the LOD-approximation as solution to a (modified) HMM decouples
the computations on Y and G and no triple function spaces have to be considered. This
is one great advantage of the present Petrov-Galerkin ansatz for the LOD in comparison
to a Galerkin ansatz: We only need to compute reconstructions of standard Lagrange basis
functions in S(THc), but not of the basis functions in V Hc,m.

4.5.2 Error analysis

The error analysis is based on the observation that the localized subscale corrector problems
(4.54) can be seen as perturbation of idealized subscale problems posed on the whole domain
G× Y . Let us introduce idealized counterparts of the correction operators QT×S,m and Qm

where the patch GT × YS equals G× Y , roughly speaking “m =∞”. Define the null space

WH,h := WH×L2(Ω;Wh(Σ∗))×L2(Ω;Wh(Σ)) := {vH,h ∈ VH,h|ΠHc,hc(vH,h)=0}.

For any vH,h ∈ VH,h, the idealized element corrector problem seeks QT×S,∞vH,h ∈ WH,h

such that
B(wH,h,QT×S,∞vH,h) = BT×S(wH,h,vH,h) ∀wH,h ∈WH,h, (4.56)
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and we define

Q∞(vH,h) :=
∑

(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)

QT×S,∞(vH,h). (4.57)

The following result implies the well-posedness of the idealized corrector problems.

Lemma 4.5.3. Under the assumption

k(CΠHc

√
Col,GHc + CΠΣ

hc

√
Col,Y hc) ≤

√
Cmin/2, (4.58)

we have for all wH,h := (wH , wh,1, wh,2) ∈WH,h the following equivalence of norms

‖(wH , wh,1, wh,2)‖1,e ≤ ‖(wH , wh,1, wh,2)‖e ≤
√

1 + Cmin/2 ‖(wH , wh,1, wh,2)‖1,e,

and coercivity
Cmin/2 ‖(wH , wh,1, wh,2)‖21,e ≤ ReB(wH,h,wH,h),

where the H1-seminorm ‖ · ‖1,e is defined in (4.50).

Proof. The essential observation is that for any (wH , wh,1, wh,2) ∈WH,h the property of the
quasi-interpolation operators (4.52) implies that

k2‖wH + χΣwh,2‖2G×Y ≤ k2
(
‖wH‖G + ‖wh,2‖G×Σ

)2
= k2

(
‖wH −ΠHc(wH)‖G + ‖wh,2 −ΠΣ

hc(wh,2)‖G×Σ

)2
≤ k2

(
Hc CΠHc

√
Col,G ‖∇wH‖G + hc CΠΣ

hc

√
Col,Y ‖∇ywh,2‖G×Σ

)2
.

This directly yields the equivalence of norms on WH,h under the resolution condition (4.58).
For the coercivity we observe that

ReB(wH,h,wH,h) ≥ Cmin‖wH,h‖21,e − k2‖wH + χΣwh,2‖2G×Y .

As the sesquilinear form B is also continuous (see Lemma 4.3.2), Lemma 4.5.3 implies that
the idealized corrector problem (4.56) is well-posed and that the idealized correctors Q∞
defined by (4.57) are continuous w.r.t. the two-scale energy norm

‖Q∞(vH,h)‖e ≤ CQ ‖vH,h‖e ∀vH,h ∈ VH,h.

Since the inclusion WH,h(GT × YS) ⊂WH,h holds, the well-posedness result carries over to
the localized corrector problems (4.54) with the same constant.
The proof of the well-posedness of the two-scale LOD in Petrov-Galerkin formulation (4.55)

relies on the fact that (Q∞ −Qm)(v) decays exponentially with the distance from supp(v).
The difference between idealized and localized correctors is quantified in the next theorem.
The proof is given in Section 4.5.3 and is based on the observation that Q∞(v|T×S) decays
exponentially with distance from T × S.

Theorem 4.5.4 (Error of corrector localization). Under the resolution condition (4.58) there
exist constants C1, C2, and 0 < β < 1, independent of Hc, hc, H, and h, such that for any
vHc,hc ∈ VHc,hc , any (T, S1, S2) ∈ THc × Thc(Σ∗)× Thc(Σ), and any m ∈ N it holds

‖(QT×S,∞ −QT×S,m)(vHc,hc)‖1,e ≤ C1β
m‖vHc,hc‖1,e,T×S , (4.59)

‖(Q∞ −Qm)(vHc,hc)‖1,e ≤ C2(
√
Col,m,G +

√
Col,m,Y )βm‖vHc,hc‖1,e. (4.60)

The stability of the LOD requires the coupling of the oversampling parameter m to the
stability/inf-sup constant of the HMM. Therefore, we assume that H and h are small enough
such that (4.51) holds.
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Theorem 4.5.5 (Well-posedness of the LOD). Under the resolution conditions (4.51) and
(4.58), and the following oversampling condition

m ≥
(q+1) log(k)+log

(
2C2CΠCΠ,eCHMMCB

√
1 + Cmin/2

(√
Col,m,G+

√
Col,m,Y

))
| log(β)|

, (4.61)

the two-scale LOD (4.55) is well-posed and with the constant CLOD := 2CHMMC
2
Π,e(1 + CQ)

it holds

(CLOD k
q+1)−1 ≤ inf

vHc,hc∈VHc,hc

sup
ψHc,hc∈VHc,hc,m

ReB(vHc,hc ,ψHc,hc)

‖vHc,hc‖e‖ψHc,hc‖e
.

As Col,m,G and Col,m,Y grow at most polynomially with m because of the quasi-uniformity
of THc and Thc , condition (4.61) is indeed satisfiable and the choice of the oversampling
parameter m is dominated by the logarithm of the wavenumber, i.e., m ≈ log k is a good
choice. This condition for the oversampling parameter is standard for the LOD of Helmholtz
problems, see, for instance, [Pet17, equation (5.12)]. In the numerical examples, moderate
choices of m were sufficient, see Remark 4.5.9.

Proof. Let vHc,hc ∈ VHc,hc be given. From (4.51) we infer that there is ψH,h ∈ VH,h such
that

ReB(vHc,hc − (Q∞(v∗Hc,hc))
∗,ψH,h) ≥ C−1

HMMk
−(q+1)‖vHc,hc−(Q∞(v∗Hc,hc))

∗‖e ‖ψH,h‖e.

It follows from the structure of the sesquilinear form B that (Q∞(v∗Hc,hc))
∗ solves the following

adjoint corrector problem

B((Q∞(v∗Hc,hc))
∗,wH,h) = B(vHc,hc ,wH,h) ∀wH,h ∈WH,h.

Let ψHc,hc := (id−Qm)ΠHc,hcψH,h ∈ VHc,hc,m. It obviously holds that

B(vHc,hc ,ψHc,hc) = B(vHc,hc , (id−Q∞)ΠHc,hcψH,h) + B(vHc,hc , (Q∞ −Qm)ΠHc,hcψH,h).
(4.62)

Since Q∞ is a projection onto WH,h and (id−ΠHc,hc)ψH,h ∈WH,h, we have

(id−Q∞)(id−ΠHc,hc)ψH,h = 0

and thus, (id−Q∞)ΠHc,hcψH,h = (id−Q∞)ψH,h. The solution property of (Q∞(v∗Hc,hc))
∗

and the definition of Q∞ in (4.56)–(4.57) gives

B((Q∞(v∗Hc,hc))
∗,ψH,h) = B((Q∞(v∗Hc,hc))

∗,Q∞ψH,h) + B((Q∞(v∗Hc,hc))
∗, (id−Q∞)ψH,h)

= B(vHc,hc ,Q∞ψH,h).

Hence, we obtain

ReB(vHc,hc , (id−Q∞)ΠHc,hcψH,h) = ReB(vHc,hc − (Q∞(v∗Hc,hc))
∗,ψH,h)

≥ (CHMM kq+1)−1 ‖vHc,hc−(Q∞(v∗Hc,hc))
∗‖e ‖ψH,h‖e.

Furthermore, the estimate (4.53) implies

‖vHc,hc‖e = ‖ΠHc,hc(vHc,hc − (Q∞(v∗Hc,hc))
∗)‖e ≤ CΠ,e‖vHc,hc − (Q∞(v∗Hc,hc))

∗‖e

and
‖ψHc,hc‖e ≤ CΠ,e(1 + CQ) ‖ψH,h‖e.
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The second term on the right-hand side of (4.62) satisfies with Lemma 4.5.3 and Theorem
4.5.4 that

|B(vHc,hc , (Q∞ −Qm)ΠHc,hcψH,h)|

≤
√

1 + Cmin/2 CB ‖(Q∞ −Qm)ΠHc,hcψH,h‖1,e ‖vHc,hc‖e
≤
√

1 + Cmin/2 CBC2

(√
Col,m,G +

√
Col,m,Y

)
βmCΠ ‖ψH,h‖e ‖vHc,hc‖e.

Altogether, this yields

ReB(vHc,hc ,ψHc,hc)

≥
( 1

CΠ,eCHMMkq+1
−
√

1 + Cmin/2 CBC2

(√
Col,m,G +

√
Col,m,Y

)
βmCΠ

)
· ‖vHc,hc‖e ‖ψH,h‖e

≥
( 1

CΠ,eCHMMkq+1
−
√

1 + Cmin/2 CBC2

(√
Col,m,G +

√
Col,m,Y

)
βmCΠ

)
· 1

CΠ,e(1 + CQ)
‖vHc,hc‖e ‖ψHc,hc‖e.

Hence, the condition (4.61) implies the assertion.

Remark 4.5.6 (Adjoint problem). Under the assumption of Theorem 4.5.5, problem (4.55)
is well-posed. Thus, it follows from a dimension argument that also the adjoint problem to
(4.55) is well-posed with the same stability constant as in Theorem 4.5.5, cf. [GP15, Rem. 1].

Theorem 4.5.7 (Quasi-optimality). Under the resolution conditions (4.51) and (4.58), and
the oversampling conditions (4.61) and

m ≥
(
(q + 1) log(k) + log(2

√
1 + Cmin/2 C

2
BC2CLOD)

)
/| log(β)|, (4.63)

the LOD-approximation uHc,hc , solution to (4.55), and the solution uH,h to the direct dis-
cretization (4.35) satisfy

‖uH,h − uHc,hc‖e ≤ C min
vHc,hc∈VHc,hc

‖uH,h − vHc,hc‖e

with a generic constant C depending only on CΠ,e.

Proof. Let e := uH,h − uHc,hc . We prove that ‖e‖e ≤ 2‖(id−ΠHc,hc)uH,h‖e, which gives the
assertion because ΠHc,hc is a projection. By the triangle inequality and the fact that ΠHc,hc

is a projection onto VHc,hc , we obtain

‖e‖e ≤ ‖(id−ΠHc,hc)uH,h‖e + ‖ΠHc,hce‖e,

so that it only remains to bound the second term on the right-hand side. The proof employs a
standard duality argument, the stability of the idealized method, and the fact that the actual
two-scale LOD can be seen as a perturbation of the idealized method. Let zHc,hc ∈ VHc,hc

be the solution to the dual problem

B(ψHc,hc , (id−Q∞)zHc,hc) = (ψHc,hc ,ΠHc,hce)e ∀ψHc,hc ∈ VHc,hc ,

where (·, ·)e denotes the scalar product which induces the two-scale energy norm (4.15). This
adjoint problem is uniquely solvable as explained in Remark 4.5.6. Choosing the test function
ψHc,hc = ΠHc,hce implies

‖ΠHc,hce‖2e = B(ΠHc,hce, (id−Q∞)zHc,hc)

= B(ΠHc,hce, (Qm −Q∞)zHc,hc) + B(ΠHc,hce, (id−Qm)zHc,hc).
(4.64)
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Since (id−Qm)zHc,hc ∈ VHc,hc,m by definition, we have the Galerkin orthogonality

B(uH,h − uHc,hc , (id−Qm)zHc,hc) = 0.

Using this orthogonality and the fact that ΠHc,hcuH,h − uH,h ∈ WH,h together with the
definition of Q∞ (4.56)–(4.57) implies for the second term

B(ΠHc,hce, (id−Qm)zHc,hc) = B(ΠHc,hcuH,h − uH,h, (id−Qm)zHc,hc)

= B(ΠHc,hcuH,h − uH,h, (Q∞ −Qm)zHc,hc).

The first and the (modified) second term of (4.64) are similar now and can be treated with
the same procedure. First, we note that (Q∞ −Qm)zHc,hc ∈WH,h. Applying Lemma 4.5.3
and then the decay estimate (4.60) from Theorem 4.5.4, we obtain (for the second term)

|B(ΠHc,hcuH,h − uH,h, (Q∞ −Qm)zHc,hc)|

≤
√

1 + Cmin/2 CB‖(id−ΠHc,hc)uH,h‖e ‖(Q∞ −Qm)zHc,hc‖1,e
≤
√

1 + Cmin/2 CBC2

(√
Col,m,G +

√
Col,m,Y

)
βm ‖(id−ΠHc,hc)uH,h‖e ‖zHc,hc‖1,e.

The stability of the adjoint problem from Remark 4.5.6 implies

‖zHc,hc‖1,e ≤ CLODk
q+1CB‖ΠHc,hce‖e.

Thus, we obtain for (4.64) after division by ‖ΠHc,hce‖e that

‖ΠHc,hce‖e ≤
√

1 + Cmin/2 C
2
BC2

(√
Col,m,G +

√
Col,m,Y

)
βmCLODk

q+1

· (‖(id−ΠHc,hc)uH,h‖e + ‖ΠHc,hce‖e).

The oversampling condition (4.63) implies that the constants can be bounded by 1/2 and
hence, the term ‖ΠHc,hce‖e can be absorbed on the left-hand side.

Corollary 4.5.8 (Full error). Let u := (u0, u1, u2) ∈ H be the two-scale solution to (4.4).
Under the assumptions of Theorem 4.5.7, the two-scale LOD-approximation uHc,hc , solution
to (4.55), satisfies with some generic constant C

‖u− uHc,hc‖e ≤ ‖u− uH,h‖e + C min
vHc,hc∈VHc,hc

‖uH,h − vHc,hc‖e.

The full error is dominated by the best approximation error of VHc,hc , which can be
quantified using standard interpolation operators and regularity results. The error of the
HMM-approximation u − uH,h is estimated in Theorem 4.4.2. As we consider the HMM-
approximation as an (overkill) reference solution only needed for the error estimates and not
in practical computations, H and h are much smaller than the actual mesh sizes Hc and hc,
so that the error u− uH,h indeed becomes negligible.

Remark 4.5.9 (Choice of LOD parameters in practice). Although this is a purely theoretical
section, we want to give a few comments on the practical choice of Hc, hc, and m. Our
numerical experiment in Section 4.6 reveals a resolution condition of k2(H + h) . 1, so that
for a wavenumber k = 26, grids with mesh width of about H = h = 2−9 up to H = h = 2−12

are required for a reliable HMM-approximation. Numerical experiments by other authors
in [BGP17, GP15, Pet17] for the standard Helmholtz problem showed that the LOD only
needs meshes of about Hc = hc = 2−5 to give a good approximation for a wavenumber
k = 26. Furthermore, an oversampling parameter of m = 2 was already sufficient for various
wavenumbers and no problems with the well-posedness of the discrete scheme have been
reported. This is a significant reduction of the mesh size, which might outweigh the overhead
of the additional corrector computations, in particular when taking the decoupling of Section
4.5.1 into account.
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4.5.3 Proof of the decay of the corrector
In this section, we give a proof of the exponential decay result of Theorem 4.5.4, which is
central for this method. The idea of the proof is the same as in the previous proofs for the
Helmholtz equation [BGP17,GP15,Pet17] or in the context of diffusion problems [MP14]. As
in the previous sections, we have to take into account the two-scale nature of the problem and
the spaces.
Let IH,h := (IH , I

Σ∗

h , IΣ
h ) with IH : C0(G)→S(TH), IΣ∗

h : L2(Ω;C0(Σ∗))→L2(Ω; S̃(Th(Σ∗))),
and IΣ

h : L2(Ω;C0(Σ))→ L2(Ω; S̊(Th(Σ))) denote the nodal Lagrange interpolation operators
(see Section 2.2.2), where IΣ∗

h and IΣ
h only act on the second variable. We note that periodicity

is preserved when identifying degrees of freedom on the periodic boundary. Recall that the
nodal Lagrange interpolation operator I is L2- and H1-stable on piecewise polynomials Pp on
shape regular meshes due to inverse inequalities. Hence, for any (T, S1, S2) ∈ THc×Thc(Σ∗)×
Thc(Σ) and all q ∈ P2(T )× L2(T ;P2(S1))× L2(T ;P2(S2)) we have the stability estimate

‖IH,hq‖1,e,T×S ≤ CI ‖q‖1,e,T×S . (4.65)

In this section, we do not explicitly give the constants in the estimates. Instead we use a
generic constant C, which is independent of the mesh sizes and the oversampling parameter,
but may depend on the (quasi)-interpolation operators’ norms, the overlap constants Col,G

and Col,Y (not on Col,m,G and Col,m,Y !), the constant for the cut-off functions (see below),
and Cmin.
In the proofs, we frequently use cut-off functions. We collect some basic properties in the

following lemma, see also [GP15, Appendix A, Lemma 2].

Lemma 4.5.10. Let η := (η0, η1, η2) ∈ VHc,hc be a function triple with ηj, j = 0, 1, 2, having
values in the interval [0, 1] and satisfying the bounds

‖∇η0‖L∞(G) ≤ CηH−1
c and ‖∇yηj‖L2(Ω;L∞(Y )) ≤ Cηh−1

c , j = 1, 2. (4.66)

By writing ∇η, we mean the triple (∇η0,∇yη1,∇yη2). Let wH,h := (wH , wh,1, wh,2) ∈WH,h

be arbitrary and define ηwH,h := (η0wH , η1wh,1, η2wh,2). Given any subset (K0,K1,K2) ⊂
THc × Thc(Σ∗)× Thc(Σ), wH,h fulfills for R := K0 × (K1 ∪K2) that

‖wH,h‖R ≤ C(Hc‖∇wH‖N(R0)+

2∑
j=1

hc‖∇ywh,j‖R0×N(Rj)), (4.67)

‖ηwH,h‖1,e,R ≤ C(‖wH,h‖1,e,R∩supp(η) + ‖wH,h‖1,e,N(R∩supp(∇η))), (4.68)
‖(id−ΠHc,hc)IH,h(ηwH,h)‖R ≤ C(Hc + hc)‖ηwH,h‖1,e,N(R). (4.69)

Proof. The properties (4.52) directly imply (4.67). For the proof of (4.68) the product rule
and (4.66) yield

‖ηwH,h‖1,e,R ≤ ‖wH,h‖1,e,R∩supp(η) + CηH
−1
c ‖wH‖R0∩supp(∇η0)

+

2∑
j=1

Cηh
−1
c ‖wh,j‖R0×(Rj∩supp(∇ηj)).

The combination with (4.67) gives the assertion. For a proof of (4.69), apply (4.52). The
estimate then follows from theH1-stability of IH,h (4.65) on the piecewise polynomial function
ηwH,h.

Proposition 4.5.11. Under the resolution condition (4.58), there exists 0 < β < 1 such that
for any vHc,hc ∈ VHc,hc , all (T, S1, S2) ∈ THc × Thc(Σ∗)× Thc(Σ), and m ∈ N

‖QT×S,∞vHc,hc‖1,e,(G×Y )\Nm(T×S) ≤ Cβm‖vHc,hc‖1,e,T×S .
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Proof. We define the cut-off functions η0 ∈ S(THc), η1 ∈ L2(Ω; S̃(Thc(Σ∗))), and η2 ∈
L2(Ω; S̊(Thc(Σ))) via

η0 = 0 in Nm−3(T ) and η0 = 1 in G \Nm−2(T ),

η1 = 0 in Nm−3(T × S1) and η1 = 1 in (Ω× Σ∗) \Nm−2(T × S1),

η2 = 0 in Nm−3(T × S2) and η2 = 1 in (Ω× Σ) \Nm−2(T × S2),

where w.l.o.g. η1 and η2 are chosen piecewise x-constant. The shape regularity implies that
each ηj satisfies (4.66). Denote η := (η0, η1, η2) and R := supp(∇η). Let vHc,hc ∈ VHc,hc

and denote φ := QT×S,∞vHc,hc ∈WH,h. Elementary estimates yield

‖φ‖21,e,(G×Y )\Nm(T×S)

= |Re(φ,φ)1,e,(G×Y )\Nm(T×S)|
≤ |Re

(
(∇φ0 +∇yφ1, η0∇φ0 + η1∇yφ1)G×Σ∗ + (∇yφ2, η2∇yφ2)G×Σ

)
|

≤ |Re(φ,ηφ)1,e|+|Re
(
(∇φ0+∇yφ1, φ0∇η0 + φ1∇yη1)G×Σ∗+(∇yφ2, φ2∇yη2)G×Σ

)
|

≤M1 +M2 +M3 +M4

for

M1 :=
∣∣∣Re
(
φ, (id−IH,h)(ηφ)

)
1,e

∣∣∣,
M2 :=

∣∣∣Re
(
φ, (id−ΠHc,hc)IH,h(ηφ)

)
1,e

∣∣∣,
M3 :=

∣∣∣Re
(
φ,ΠHc,hcIH,h(ηφ)

)
1,e

∣∣∣,
M4 :=

∣∣∣Re
(
(∇φ0 +∇yφ1, φ0∇η0 + φ1∇yη1)G×Σ∗ + (∇yφ2, φ2∇yη2)G×Σ

)∣∣∣.
With the stability of IH,h on polynomials (4.65) and estimate (4.68) we obtain

M1 ≤ C‖φ‖1,e,R ‖ηφ− IH,h(ηφ)‖1,e,R ≤ C‖φ‖1,e,R ‖φ‖1,e,N(R).

Since w := (id−ΠHc,hc)IH,h(ηφ) ∈WH,h, the idealized corrector problem (4.56) and the fact
that w has support only outside T ×S imply B(w,φ) = BT×S(w,vHc,hc) = 0. Therefore, we
obtain

M2 := |Re(φ,w)1,e| ≤ C−1
min |Re

(
B(w,φ) + k2(w0 + χΣw2, φ0 + χΣφ2)G×Y

)
|

= C−1
min|Re k2(w0 + χΣw2, φ0 + χΣφ2)G×Y |.

Hence, estimates (4.68) and(4.69) give with the resolution condition (4.58)

M2 ≤ C−1
mink

2(H2
cC

2
ΠHc

Col,G + h2
cC

2
ΠΣ
hc

Col,Y )‖φ‖21,e,(G×Y )\Nm(T×S)

+ C−1
mink

2(H2
cC

2
ΠHc

Col,G + h2
cC

2
ΠΣ
hc

Col,Y )CΠCICη‖φ‖21,e,N2(R)

≤ 1

2
‖φ‖21,e,(G×Y )\Nm(T×S) + C‖φ‖21,e,N2(R),

so that the first term can be absorbed. Because of supp(ΠHc,hcIH,h(ηφ)) ⊂ N(R), the
properties (4.52) of ΠHc,hc , (4.65) of IH,h, and estimate (4.68) lead to

M3 ≤ ‖φ‖1,e,N(R) ‖ΠHc,hcIH,h(ηφ)‖1,e,N(R) ≤ C‖φ‖21,e,N2(R).

For the last term, the Lipschitz bound (4.66) on the cut-off functions and estimate (4.67)
show

M4 ≤ Cη
(
H−1
c ‖φ0‖supp(∇η0) +

2∑
j=1

h−1
c ‖φj‖supp(∇ηj)

)
‖φ‖1,e,R ≤ C‖φ‖21,e,N(R).
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All in all, it follows for some C̃ > 0 that

1

2
‖φ‖21,e,(G×Y )\Nm(T×S) ≤ C̃‖φ‖

2
1,e,N2(R),

where we recall that N2(R) = Nm(T × S) \Nm−5(T × S). Because of

‖φ‖21,e,(G×Y )\Nm(T×S) + ‖φ‖21,e,Nm(T×S)\Nm−5(T×S) = ‖φ‖21,e,(G×Y )\Nm−5(T×S),

we obtain
(1 + (2C̃)−1)‖φ‖21,e,(G×Y )\Nm(T×S) ≤ ‖φ‖

2
1,e,(G×Y )\Nm−5(T×S).

Repeated application of this argument gives for β̃ := 2C̃/(2C̃ + 1) < 1 together with the
stability of QT×S,∞ that

‖φ‖21,e,(G×Y )\Nm(T×S) ≤ β̃
bm/5c‖φ‖21,e ≤ CQβ̃

bm/5c‖vHc,hc‖21,e,T×S ,

which gives the assertion after some algebraic manipulations.

As the localized correctors Qm are the Galerkin approximations of the idealized correctors
Q∞, the decay property carries over to Qm. This is the main observation for the proof of
Theorem 4.5.4.

Proof of Theorem 4.5.4. We define the cut-off functions η0 ∈ S(THc), η1 ∈ L2(Ω; S̃(Thc(Σ∗))),
and η2 ∈ L2(Ω; S̊(Thc(Σ))) via

η0 = 0 in G \Nm−1(T ) and η0 = 1 in Nm−2(T ),

η1 = 0 in (Ω× Σ∗) \Nm−1(T × S1) and η1 = 1 in Nm−2(T × S1),

η2 = 0 in (Ω× Σ) \Nm−1(T × S2) and η2 = 1 in Nm−2(T × S2),

where again w.l.o.g. η1 and η2 are piecewise x-constant. The cut-off functions ηj satisfy the
bounds (4.66). Set again η := (η0, η1, η2). As already discussed, QT×S,m can be interpreted
as Galerkin approximation of QT×S,∞ in the discrete subspace WH,h(GT × YS) ⊂ WH,h.
Hence, Céa’s Lemma gives for any wH,h ∈WH,h(GT × YS)

‖(QT×S,∞ −QT×S,m)v‖21,e ≤ C‖QT×S,∞v −wH,h‖2e.

We choose wH,h := (id−ΠHc,hc)IH,h(ηQT×S,∞v) ∈ WH,h(GT × YS) and obtain with the
identity ΠHc,hcQT×S,∞v = 0, the estimate (4.69), the approximation and stability estimates
(4.52) and (4.65), the resolution condition (4.58), and estimate (4.68) that

‖(QT×S,∞ −QT×S,m)v‖21,e
≤ C‖QT×S,∞v − (id−ΠHc,hc)IH,h(ηQT×S,∞v)‖2e
= C‖(id−ΠHc,hc)IH,h(QT×S,∞v − ηQT×S,∞v)‖2e,(G×Y )\{η=1}

≤ C‖(1− η)QT×S,∞v‖21,e,N((G×Y )\{η=1})

≤ C‖QT×S,∞v‖21,e,N((G×Y )\{η=1}).

Note that N((G×Y ) \ {η = 1}) = (G×Y ) \Nm−3(T ×S). Together with Proposition 4.5.11,
this proves (4.59).
Define z := (Q∞−Qm)v and zT×S := (QT×S,∞−QT×S,m)v. The ellipticity from Lemma

4.5.3 yields
‖z‖21,e ≤ C

∣∣∣ ∑
(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)

B(z, zT×S)
∣∣∣.
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We (re-)define the cut-off functions η0 ∈ S(THc), η1 ∈ L2(Ω; S̃(Thc(Σ∗))), and
η2 ∈ L2(Ω; S̊(Thc(Σ))) via

η0 = 1 in G \Nm+2(T ) and η0 = 0 in Nm+1(T ),

η1 = 1 in (Ω× Σ∗) \Nm+2(T × S1) and η1 = 0 in Nm+1(T × S1),

η2 = 1 in (Ω× Σ) \Nm+2(T × S2) and η2 = 0 in Nm+1(T × S2),

where again η1 and η2 are w.l.o.g. piecewise x-constant. The cut-off functions satisfy the
bounds (4.66) and we set η := (η0, η1, η2). For any (T, S1, S2) ∈ THc × Thc(Σ∗) × Thc(Σ) we
have (id−ΠHc,hc)IH,h(ηz) ∈ WH,h with support outside GT × YS . Hence, we deduce with
z = IH,hz that

B(z, zT×S) = B(IH,h(z− ηz), zT×S) + B(ΠHc,hcIH,h(ηz), zT×S).

The function z − IH,h(ηz) vanishes on {η = 1}. Thus, the first term on the right-hand side
satisfies

|B(IH,h(z− ηz), zT×S)| ≤ CB‖IH,h(z− ηz)‖e,supp(1−η) ‖zT×S‖e.

The L2- and H1-stability of IH,h on piecewise polynomials together with the estimate (4.68)
applied to the cut-off function 1− η gives

‖IH,h(z− ηz)‖e,supp(1−η) ≤ C‖z‖e,N(supp(1−η)).

Furthermore, ΠHc,hcIH,h(ηz) vanishes on (G×Y ) \N(supp(1−η)). Therefore, we infer from
the stability (4.53) of ΠHc,hc , the stability of IH,h as before, and estimate (4.68) that

|B(ΠHc,hcIH,h(ηz), zT×S)| ≤ C‖z‖e,N2(supp(1−η)) ‖zT×S‖e.

Because of the resolution condition (4.58) and Lemma 4.5.3, it holds ‖z‖e ≤ C‖z‖1,e. Sum-
ming up over (T, S1, S2) ∈ THc ×Thc(Σ∗)×Thc(Σ) yields with the Cauchy-Schwarz inequality
and the finite overlap of patches that

‖z‖21,e ≤ C
∑

(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)

‖z‖1,e,N2(supp(1−η)) ‖zT×S‖e

≤ C
(√

Col,m,G +
√
Col,m,Y

)
‖z‖1,e

√ ∑
(T,S1,S2)∈THc×Thc (Σ∗)×Thc (Σ)

‖zT×S‖2e.

Combining the last estimate with (4.59) concludes the proof.

4.6 Numerical experiments
In this section we analyze the HMM numerically with particular respect to the convergence
order, the resolution condition for the Helmholtz equation (see (4.37)), and the behavior of
solutions for different values of µhom. The implementation has been done based on the module
dune-gdt [MS15] of the DUNE software framework [BBD+08a,BBD+08b]. The corresponding
code can be found on Github1. The examples are located in test/helmholtz.cc for Section 4.6.1
and in test/hmm-maxwell.cc for Section 4.6.2.
The overall setting is similar for the Helmholtz and Maxwell equation: We consider box-

type domains G and Ω and also the inclusion Σ in the unit cell Y is a square or cube,
respectively. The boundary condition is computed from incoming waves. As the inclusion Σ
is quadratic or cubic, the eigenvalues of the Laplacian are explicitly known. The analytical
predictions coincide nicely with our computed behavior of µhom for changing wavenumbers k.

1github.com/BarbaraV/dune-gdt/tree/dissertation
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Figure 4.4: Real and imaginary parts of µhom for changing wavenumber k (Helmholtz equa-
tion).

In order to verify the predicted convergence rates, we compare the macroscopic part of the
HMM-approximation with a homogenized reference solution. Besides the (absolute) errors we
also give the experimental order of convergence (EOC), which is defined for two mesh sizes
H1 > H2 and corresponding error values eH,1 and eH,2 as EOC(e) := ln(

eH,1
eH,2

)/ ln(H1

H2
). In

the tables, we list the EOC for H1 > H2 in the row of the smaller mesh size H2. Finally, we
compare wavenumbers with Re(µhom) > 0 and Re(µhom) < 0, both for the two- and the three-
dimensional case. As physically expected, Re(µhom) > 0 corresponds to normal transmission,
whereas for Re(µhom) < 0 the wave amplitude decays exponentially inside the scatter. This
prohibited wave propagation is caused by the incited eigen resonances inside the inclusions.
The results of the numerical experiment for the Helmholtz equation are given in Section

4.6.1 and for the Maxwell equation in Section 4.6.2.

4.6.1 Experiments for the Helmholtz equation
We consider the macroscopic domain G = (0.25, 0.75)2 with scatterer Ω = (0.375, 0.625)2.
The boundary condition g is computed as g = ∇uinc ·n− ikuinc from the (left-going) incoming
plane wave uinc = exp(−ikx1). The unit square Y has the inclusion Σ = (0.25, 0.75)2 and the
inverse permittivities are chosen as ε−1

0 = 10 and ε−1
1 = 10− 0.01i. Obviously, the real parts

of both parameters are of the same order and, moreover, ε1 is only slightly dissipative.
Behavior of the effective permeability. As discussed before, the eigenvalues of the
Dirichlet Laplacian on Σ are explicitly known. Only the eigenvalues where the associated
eigenfunctions have nonzero mean contribute to the expansion of µhom. For our setup, the
first interesting values are at k ≈ 28.1 and k ≈ 62.8. We compute µhom using cell problem
(4.6) with a grid consisting of 131,072 elements on Σ. Figure 4.4 shows the behavior of the
real and the imaginary part. As predicted, we can see a significant change of behavior around
the Laplace eigenvalues, where the real part changes sign and also the imaginary part has
large values. Note that for this example, we do not see that Im(µhom) behaves like k−2, as
proved in Proposition 4.3.5.
Resolution condition. In order to analyze the resolution condition, we use a reference
homogenized solution by computing the effective parameters of Theorem 4.2.2 with 524,288
entities on Y and then solving the effective homogenized equation (4.7) on G with the same
number of entities. We compare the macroscopic part uH of our HMM-approximation (see
Definition 4.4.1) with this reference solution in the weighted H1-norm ‖ · ‖1,k,G for a sequence
of simultaneously refined meshes on G and Y and three different wavenumbers k = 34, 48, 68,
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Figure 4.5: Error between the homogenized reference solution and the HMM-approximation
in the weighted H1-norm versus number of grid entities for different wavenumbers
k for the Helmholtz equation.

see Figure 4.5. Note that these wavenumbers are all away from any resonant behavior of
µhom. For higher wavenumbers, finer meshes are needed to obtain convergence: Whereas for
k = 34, the error converges for all considered grids, the threshold value for k = 48 ≈

√
2 ·34 is

288 entities; and for k = 68 = 2 · 34, it is 1,152 entities. This indicates a resolution condition
of “k2(H + h) small” in practice, which is standard for continuous Galerkin discretizations of
Helmholtz problems.
Convergence rates. We then take a closer look at the convergence of the errors and verify
the predictions of Theorem 4.4.2 and Corollary 4.4.4. We choose the wavenumber k = 29,
which corresponds to Re(µhom) < 0 and is thus also interesting from a physical point of view.
Table 4.1 shows the error between the macroscopic part uH of the HMM-approximation and
the reference homogenized solution (as before) in the k-weighted H1(G)-norm and the L2(G)-
norm. The experimental order of convergence (EOC) verifies the linear convergence in the H1-
norm predicted theoretically in Corollary 4.4.4, and the quadratic convergence in the L2-norm
discussed afterwards. Note that from the geometry one might expect a reduced regularity of
the analytical solution and, therefore, a sublinear convergence of the H1-error. We believe
that the linear convergence observed in the experiment does not imply a suboptimality of the
error bound in Theorem 4.4.2 and Corollary 4.4.4, but that in fact, the analytical solution
in this special case has full H2

pw(G) regularity, probably because of the boundary condition.
This clearly shows that our general theory holds for all regimes of wavenumbers even if they
result in unusual effective parameters. However, we observe a small pre-asymptotic effect for
coarse meshes, which indicates that the resolution condition may be stricter for such resonant
settings.
Furthermore, we compare the HMM-approximation with a detailed reference solution to

the heterogeneous problem for δ = 1/32, solved on a fine grid with 524,288 entities. The
“homogenization” error between this (heterogenous) reference solution and the homogenized
reference solution is 0.348659 in the L2-norm. Table 4.2 compares the error to the reference
solution for the macroscopic part uH of the HMM-approximation and for the zeroth order
L2-approximation u0

HMM := uH + uh,2(·, ·δ ). Whereas the error stagnates for uH , we almost
recover the quadratic convergence for u0

HMM with a saturation effect for fine meshes where
we enter the regime of the homogenization error. This clearly underlines the necessity of the
correctors in the HMM to faithfully approximate the true solution. Note that we do not have
results on the homogenization error: We expect strong convergence of uδ to u0

HMM in the
L2-norm according to [All92], but the proof is not applicable to the Helmholtz case.
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Table 4.1: Convergence history and EOC for the error between the HMM-approximation and
the reference homogenized solution in the L2-norm and k-weighted H1-norm for
the Helmholtz equation with k = 29.

H = 2h ‖e0‖L2(G) ‖e0‖1,k,G EOC(‖e0‖L2) EOC(‖e0‖1,k)
√

2 · 1/8 0.270474 11.780290 — —√
2 · 1/16 0.110372 5.373207 1.293 1.132√
2 · 1/24 0.051400 2.970250 1.885 1.461√
2 · 1/32 0.029671 2.019241 1.910 1.341√
2 · 1/48 0.013506 1.235815 1.941 1.211√
2 · 1/64 0.007672 0.886311 1.967 1.155

Table 4.2: Error between the reference solution and the HMM- and zeroth order approximation
in the L2-norm for the Helmholtz equation with k = 29.

H = 2h ‖uδ − uH‖L2(G) ‖uδ − u0
HMM‖L2(G) EOC(uδ − u0

HMM)
√

2 · 1/8 0.418463 0.565853 —√
2 · 1/16 0.351655 0.174724 1.696√
2 · 1/24 0.345950 0.061964 2.556√
2 · 1/32 0.346266 0.034091 2.077√
2 · 1/48 0.347330 0.027245 0.553√
2 · 1/64 0.347862 0.029764 −0.307

Comparison of wavenumbers. We compare two wavenumbers with very different physical
meaning: k = 38 corresponds to normal transmission, whereas k = 29 has Re(µhom) < 0 and
thus corresponds to a wavenumber in the band gap where propagation inside the scatterer is
physically forbidden. We consider the macroscopic part uH of the HMM-approximation (with
H = 2h =

√
2 · 1/64) and the zeroth order reconstruction u0

HMM (plotted on a well-resolved
mesh with 524,288 entities) and depict both functions on the whole two-dimensional domain
as well as over the line x2 = 0.545, which cuts through a row of inclusions. For k = 38,
wave propagation with low speed takes place inside the scatterer, see the macroscopic part
uH depicted in Figures 4.6a and 4.6b. In contrast to that, we see the expected exponential
decay of the wave amplitude inside the scatterer for k = 29, see the macroscopic part uH
depicted in Figures 4.7a and 4.7b. The zeroth order reconstruction u0

HMM can explain this
behavior by approximating the heterogeneous solution also inside the inclusions. For k = 38,
the amplitudes inside the inclusions are as high as the amplitude of the incoming wave, see
Figures 4.6c and 4.6d. However, we observe very high amplitudes inside the inclusions for
k = 29, see Figures 4.7c and 4.7d. These are caused by eigen resonances incited inside the
inclusions. Moreover, these incited waves from neighboring inclusions interfere destructively
with each other so that over the whole scatterer, no wave can propagate.

Plane wave at an oblique angle. So far, we considered an incoming plane wave propagat-
ing in x1-direction, which consequently hits the faces of the scatterer in either a perpendicular
or parallel way. However, the observation of a frequency band gap should not depend on the
angle of the incoming wave according to the presented homogenization theory. Therefore, we
change the boundary condition to g = ∇uinc · n − ikuinc, but now with the incoming plane
wave uinc = exp(−ikν · x) with ν = (0.6, 0.8)T . All other parameters are left unchanged. The
transmission wavenumber k = 38 and the band gap wavenumber k = 29 are compared in
Figure 4.8. Again, we see no wave propagation inside the scatterer for k = 29, as predicted.
The zeroth order approximation reveals that the incited eigen resonances inside the inclusions
account for the decay of the wave amplitude for k = 29 also in this case. This confirms the
theoretical prediction that the artificial magnetism and the band gap do not depend on the
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(a) uH (b) line plot of uH

(c) u0
HMM (d) line plot of u0

HMM

Figure 4.6: Helmholtz equation for k = 38: Macroscopic part Re(uH) of the HMM-
approximation and zeroth order approximation Re(u0

HMM), both on the whole
domain (left column) and over the line x2 = 0.545 (right column); incoming wave
in −x1-direction
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(a) uH (b) line plot of uH

(c) u0
HMM (d) line plot of u0

HMM

Figure 4.7: Helmholtz equation for k = 29: Macroscopic part Re(uH) of the HMM-
approximation and zeroth order approximation Re(u0

HMM), both on the whole
domain (left column) and over the line x2 = 0.545 (right column); incoming wave
in −x1-direction
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4.6 Numerical experiments

Figure 4.8: Macroscopic part Re(uH) of the HMM-approximation (top row) and zeroth-order
approximation Re(u0

HMM) (bottom row) for k = 38 (left column) and k = 29 (right
column); Helmholtz equation with incoming wave at an oblique angle

angle of the incoming wave. Moreover, it shows that our numerical method works regardless
of the chosen boundary condition. We note that similar convergence behavior as in Tables 4.1
and 4.2 can also be observed for the oblique angle.

4.6.2 Experiments for the Maxwell equation
We consider the macroscopic domain G = (0, 1)3 with embedded scatterer Ω = (0.25, 0.75)3.
The boundary condition g is computed as g = curl uinc × n − ikn × (uinc × n) with the
(left-going), e2-polarized incoming plane wave uinc = exp(−ikx1)e2. The unit cube Y has
the inclusion Σ = (0.25, 0.75)3 and we choose the inverse permittivities as ε−1

0 = 1.0 and
ε−1

1 = 1.0− 0.01i. Obviously, the real parts of both parameters are of the same order and ε1

is only slightly dissipative.
Behavior of the effective permeability. The contribution to µhom from the second cell
problem (4.11) in Σ∗ is independent of k, as expected. The wavenumber dependence is wholly
caused by cell problem (4.12) inside Σ. As discussed before, significant changes in µhom are
expected around the eigenvalues of the vector Laplacian. Only some of the eigenvalues, namely
those where the mean value of the eigenfunction(s) is not the zero vector, eventually lead to
resonances in the behavior of the effective permeability. For our setup, the first interesting
values are k ≈ 8.9 and k ≈ 19.9. We compute µhom using cell problems (4.11) and (4.12) with
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5 10 15 20 25

−2

0

2

4
Re(µhom)

Im(µhom)

Figure 4.9: Dependency of the effective permeability µhom on the wavenumber k (Maxwell
equation).

a mesh consisting of 196,608 elements on Y . Figure 4.9 depicts the behavior of the diagonal
entries of Re(µhom) and Im(µhom) (all three diagonal entries are the same due to symmetry)
for changing k. As predicted, we see a significant change of behavior around the eigenvalues,
where the imaginary part has large values and the real part shows resonances. For the first
eigenvalue, this resonance is strong enough to produce a negative real part, while this is not
the case for the second eigenvalue in our setup.
Convergence rates. We then take a closer look at the convergence of errors and verify the
predictions of Theorem 4.4.3/Corollary 4.4.5 and Theorem 4.4.6. We use a reference homoge-
nized solution by computing the effective parameters of Theorem 4.2.4 with 196,608 elements
on Y and then solving the effective homogenized equation (4.13) with these parameters using
a mesh with 663,552 elements for G. This reference homogenized solution is compared to
the macroscopic part uH of the HMM-approximation on a sequence of simultaneously refined
macro- and microscale meshes for the frequencies k = 9 and k = 12. Note that k = 12
corresponds to “standard” effective parameters, while for k = 9, Re(µhom) is negative definite.
The errors in the L2- and H(curl)-seminorm are shown in Table 4.3 for k = 12 and in Table
4.4 for k = 9. In order to verify Theorem 4.4.6, we compute an approximation of the gra-
dient part θ of the Helmholtz decomposition: We solve the Poisson problem determining θ
(with right-hand side e0) using linear Lagrange elements on the reference mesh (with 663,552
elements). The L2-norms of this resulting θ are also shown in Tables 4.3 and Table 4.4,
respectively. The experimental order of convergence (EOC) verifies the linear convergence in
L2 and H(curl), predicted in Theorem 4.4.3 and Corollary 4.4.5, and the quadratic convergence
of the Helmholtz decomposition, predicted in Theorem 4.4.6. As for the Helmholtz equation,
we might expect reduced regularity of the exact solution and a sublinear error convergence
from the geometry. We believe that the linear convergence observed in the experiment can
be explained by full H1

pw(curl, G) regularity of the analytical homogenized solution, cf. the
discussion for the Helmholtz equation. This clearly shows that our general theory holds for all
regimes of wavenumbers even if they result in unusual effective parameters. This is consistent
with the observations made for the two-dimensional case in Section 4.6.1.
Comparison of wavenumbers. As in Section 4.6.1, we compare two wavenumber with
different physical meaning in more detail: k = 12 (normal transmission) and k = 9 (band gap
because of (Re(µhom) negative definite). We consider the magnitude of the real part of uH
(the macroscopic part of the HMM-approximation with H = h =

√
3 · 1/16) in Figure 4.10.

The isosurfaces are almost parallel planes for k = 12 indicating normal, almost undisturbed
propagation of the wave through the scatterer. Note that the effective wave speed inside the
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4.6 Numerical experiments

Table 4.3: Convergence history and EOC for the error between the macroscopic part of the
HMM-approximation and the reference homogenized solution for the Maxwell equa-
tion with k = 12.

H = h ‖e0‖L2(G) ‖ curl e0‖L2(G) ‖θ‖L2(G) EOC(e0) EOC(curl e0) EOC(θ)
√

3 · 1/4 0.945214 11.60030 0.015550 — — —√
3 · 1/8 0.531599 5.76452 0.009633 0.830 1.009 0.691√
3 · 1/12 0.321809 3.36067 0.004100 1.238 1.331 2.107√
3 · 1/16 0.230797 2.38167 0.002201 1.156 1.197 2.163

Table 4.4: Convergence history and EOC for the error between the macroscopic part of the
HMM-approximation and the reference homogenized solution for the Maxwell equa-
tion with k = 9.

H = h ‖e0‖L2(G) ‖ curl e0‖L2(G) ‖θ‖L2(G) EOC(e0) EOC(curl e0) EOC(θ)
√

3 · 1/4 0.697211 5.54104 0.024216 — — —√
3 · 1/8 0.410991 2.94379 0.010455 0.762 0.913 1.212√
3 · 1/12 0.285928 1.85786 0.005747 0.895 1.135 1.476√
3 · 1/16 0.216505 1.31478 0.003328 0.967 1.202 1.899

scatterer does not differ greatly from the one outside in our choice of material parameters. In
contrast, the scatterer has a significant influence on the wave propagation for k = 9, as we
can deduce from the distorted wavefronts in Figure 4.10, right.
To compare this in more detail, we study two-dimensional representations in the plane

x2 = 0.545 in Figure 4.11. There we depict the x2-component, which is the principal one
due to the polarization of the incoming wave. The top row shows again the macroscopic part
uH of the HMM-approximation and we see the expected exponential decay of the amplitude
inside the scatterer for k = 9 (top right), while the amplitude is not affected for k = 12.
The zeroth order approximation u0

HMM := uH +∇yuh,2(·, ·δ ) + uh,3(·, ·δ ) in the bottom row
of Figure 4.11 (depicted for δ = 1/8 on a grid with 1,572,864 entities) explains this effect. In
consistency with the observations of Section 4.6.1, the eigen resonance of the inclusions for
k = 9 causes very high amplitudes, which confines the energy of the wave to the inclusions.
The amplitudes in the inclusions for k = 12 are solely due to the different material parameters
and do not disturb the overall wave propagation.
The comparison of the HMM- and zeroth order approximation to a (full) reference solution

to the original (heterogeneous) problems (4.3) is a task for future research.
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Figure 4.10: Maxwell equation: Isosurfaces for the magnitude of the HMM-approximation
Re(uH) for k = 12 (left) and k = 9 (right).

Figure 4.11: In the plane x2 = 0.545: x2-component of Re(uH) (top row) and of Re(u0
HMM)

(bottom row) for the Maxwell equation with k = 12 (left column) and k = 9
(right column).
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5 Conclusion and Outlook

5.1 Conclusion

In this thesis, we were concerned with two different classes of problems arising from time-
harmonic Maxwell’s equations in heterogeneous media.
At first, we considered H(curl)-elliptic problems with homogeneous boundary conditions

and rapidly oscillating coefficients µ and κ

curl
(
µ(x) curl u(x)

)
+ κ(x)u(x) = f(x) in Ω,

u(x)× n(x) = 0 on ∂Ω.

We proposed and analyzed two multiscale methods: the Heterogeneous Multiscale (Finite
Element) Method and the Localized Orthogonal Decomposition.
For locally periodic coefficients µ and κ, we suggested the Heterogeneous Multiscale Method

and proved a priori error estimates. Based upon existing homogenization results, we formu-
lated a two-scale equation as well as a decoupled macroscopic homogenized equation with cell
problems. Particularly, we proposed a divergence regularization to cope with the cumber-
some divergence-free constraint in one of the cell problems. The Heterogeneous Multiscale
Method (for locally periodic coefficients) was reformulated as a discretization of the two-scale
equation with numerical quadrature. Based on this framework, optimal convergence rates
for the error to the solution to the two-scale limit equation were proved: linear convergence
in the H(curl)-norm and quadratic convergence in the H(div)′-norm (based on a Helmholtz
decomposition of the error). In order to confirm the convergence rates and to demonstrate the
applicability of the method, we also gave numerical experiments. One model problem covered
the H(curl)-elliptic case and one dealt with the indefinite problem.
For general heterogeneous coefficients even without (local) periodicity and scale separation,

we considered the Localized Orthogonal Decomposition. We showed that the exact solution
can be decomposed into a coarse part (spanned by standard edge elements on a coarse mesh)
and a fine part, using the Falk-Winther interpolation operator. The error between the coarse
part and the exact solution converged linearly in the H(div)′-norm. Adding a so-called Cor-
rector Green’s operator to the coarse functions, we obtained linear convergence of the error
in the H(curl)-norm and also quadratic convergence in the H(div)′-norm. We discussed that
these approximations results are optimal by revisiting the periodic case. We defined the Cor-
rector Green’s Operator as a projection onto the kernel of the interpolation operator, which is
orthogonal with respect to the energy scalar product. Exponential decay of the corrector was
shown so that its computation could be localized to patches of coarse elements. Adding these
(local) corrections to the standard finite element basis, we defined a generalized finite element
method. Under a suitable (logarithmic) coupling of the patch size to the (coarse) mesh size,
linear convergence of the method in the H(curl)-norm was proved. Furthermore, we showed
that the same error convergence is obtained for indefinite problems.

As a second and even more challenging problem class, we were dealing with time-harmonic
scattering problems with high contrast:{

−∇ ·
(
ε−1
δ (x)∇uδ(x)

)
− k2uδ(x) = 0 in G,

∇uδ(x) · n(x)− ikuδ(x) = g(x) on ∂G,
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or {
curl

(
ε−1
δ (x) curl uδ(x)

)
− k2uδ(x) = 0 in G,

curl uδ(x)× n(x)− ik
(
n(x)× uδ(x)

)
× n(x) = g(x) on ∂G,

where outside Ω, ε−1
δ = 1 and inside Ω, ε−1

δ (x) = ε−1
0 χΣ∗(

x
δ ) + ε−1

1 χΣ(xδ ).
Here, we proposed and analyzed a Heterogeneous Multiscale Method, which was directly

formulated as the discretization of the corresponding two-scale equation. Hence, as a first step,
we revisited the existing homogenization results for these problems and restated and proved
them for our setting. The high contrast structure causes the occurrence of an additional ho-
mogenized (or effective) parameter in the identity term. This effective permeability depends
on the wavenumber k and can have a positive or a negative sign. A negative effective perme-
ability completely changes the mathematical structure of the equation and physically implies
that wave propagation is forbidden inside the scatterer in that case, leading to a so-called
band gap. Moreover, we were concerned with the stability and regularity of the homogenized
macroscopic problems. Particularly, we proved stability estimates with k-explicit constants
for the Helmholtz equation and the time-harmonic Maxwell equation with piecewise constant
coefficients, respectively.
Using these results, we proved the well-posedness (stability) and quasi-optimality of the Het-

erogeneous Multiscale Method under a (standard) resolution condition between the wavenum-
ber and the mesh size. As a consequence of the quasi-optimality, we deduced linear conver-
gence in the energy norm (k-weighted H1 or k-weighted H(curl)) and quadratic convergence
in the L2-norm (Helmholtz equation) and H(div)′-norm (Maxwell equation), respectively.
Even though the discovered resolution condition between the wavenumber and the mesh size
is standard in the literature, it can become prohibitive for large wavenumbers. As a remedy,
we studied the additional application of a Localized Orthogonal Decomposition directly in the
two-scale setting.
Numerical experiments for both problems demonstrated the applicability of the Hetero-

geneous Multiscale Method and confirmed the convergence rates. For wavenumbers with
associated negative effective permeability, the (physically expected) exponential decay of the
wave amplitude inside the scatterer was observed. Furthermore, this behavior could be ex-
plained by incited eigen resonances inside the inclusions Σ. For the Helmholtz equation, we
also observed nice convergence behavior of a numerical zeroth order approximation to the
heterogeneous reference solution.

5.2 Outlook

The problems arising from time-harmonic Maxwell’s equations and the associated multiscale
methods presented in this thesis offer several starting points for future research.
With view to negative refraction, homogenization results from the literature [LS16a] tell us

that the three-dimensional setting of Chapter 4 needs to be complemented with long and thin
wires. Building upon the method of Chapter 4, a Heterogeneous Multiscale Method for this
setting could be proposed and analyzed. The vanishing diameter of the wires in the limit,
however, might pose additional difficulties for discretization. In this context, we also mention
high contrast structures with topology change in the limit (e.g., split rings), for which the
formulation of a multiscale method is another task for the future and might be helpful for
tackling the long and thin wires in the end.
Since in practice, no material is perfectly periodic, the extension of the Localized Orthog-

onal Decomposition of Section 3.2 should be studied – theoretically as well as in numerical
experiments. First, impedance boundary conditions for Maxwell’s equation need to be incor-
porated in the method. This might relax the resolution condition for time-harmonic Maxwell’s
problems, as it has already been achieved for the Helmholtz equation. Furthermore, we plan
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to investigate the application of the Localized Orthogonal Decomposition to the high contrast
problems of Chapter 4. Results and strategies obtained for high contrast diffusion problems
in the literature are very promising. They can be combined with the (homogenization) anal-
ysis in Section 4.2 as well as the analysis of the Localized Orthogonal Decomposition for
H(curl)-problems in Section 3.2.
Furthermore, all problems considered in this thesis make use of the time-harmonic ansatz.

The presented numerical analysis is an important building block for the long-time goal of
studying multiscale methods for time-dependent Maxwell’s equations, possibly also with high
contrast or singular structures.
Finally, an even more challenging generalization are random media, where the coefficients

of the problem are random fields. This modeling ansatz may be useful if the material prop-
erties are subject to uncertainties, for instance, if they are derived from measurements. In
this context, the correlation length of the random coefficients plays an important role, com-
parable to the characteristic length of the spatial oscillations in our multiscale problems.
Depending on the relation of wavelength and correlation length, random media may trigger
astonishing phenomena in wave propagation problems, such as wave localization or time re-
versal, see [FGPS07] for an overview. In the numerical approximation of these random or
stochastic PDEs one is interested in the extraction of deterministic quantities, such as the
expected value, of the solutions. This is a challenging task since typically the problem has to
be solved for several realizations of the coefficients. Under certain assumptions on the coeffi-
cients, stochastic homogenization [JKO94] provides an analytical tool for the identification of
effective deterministic models, which can be used in the numerical approximation. We refer
to [ACL+12] for an overview of analytical and numerical approaches in that direction.
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List of Symbols

B sesquilinear form associated with a variational problem 16, 17
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Re real part 11
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2
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RT (Th) Raviart-Thomas elements on the mesh Th 24
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S(Th) linear Lagrange elements on the mesh Th 23
] (as subscript) indicates periodic function spaces 28
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T regular and shape regular triangulation 21
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VH,h discrete two-scale space 92
X ′ dual space of the Hilbert space X 12
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