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Electron-hole superfluidity controlled by a periodic potential
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We propose controlling an electron-hole superfluid in semiconductor coupled quantum wells and double
layers of a two-dimensional (2D) material by an external periodic field. This can be created either by the
gates periodically located and attached to the quantum wells or double layers of the 2D material or by
the moiré pattern of two twisted layers. The dependence of the electron-hole pairing order parameter on
the temperature, the charge carrier density, and the gate parameters is obtained by minimization of the mean-field
free energy. The second-order phase transition between superfluid and electron-hole plasma, controlled by the
external periodic gate field, is analyzed for different parameters.
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I. INTRODUCTION

The system of spatially separated electrons and holes can
be realized in semiconductor coupled quantum wells (CQWs),
where electrons and holes are located in different quantum
wells. For low temperatures and weak attraction the BCS
approach describes the superfluid formed by coherent Cooper
pairs, while in the strong-attraction regime the composite
bosons, known as indirect (dipolar) excitons, are formed.
An electron-hole plasma (EHP) appears at sufficiently high
temperatures. Superfluidity in the two-dimensional (2D) sys-
tem with spatially separated electrons and holes was pre-
dicted using the BCS mean-field approach [1], which caused
intensive theoretical [2–11] as well as experimental stud-
ies [12–23]. Different electron-hole phases, characterized by
unique collective properties, have been analyzed in the system
of spatially separated electrons and holes [24]. The BCS
phase of electron-hole Cooper pairs in a dense electron-hole
system [1] and a dilute gas of indirect excitons, which formed
as bound states of electron-hole pairs, were also analyzed
in CQWs [25]. Superfluidity of the BCS phase, formed by
spatially separated electrons and holes, can be manifested
as nondissipative electric currents and quasi-Josephson phe-
nomena [1,2]. Besides the superfluid phase a Wigner su-
persolid state caused by dipolar repulsion in electron-hole
double layers was described [26–29]. Recent theoretical and
experimental achievements in the studies of the superfluid
dipolar exciton phases in CQWs were reviewed in Ref. [30].
Probing the ground state of an electron-hole double layer
by low-temperature transport was experimentally performed
[31], and the various experimental studies of excitonic phases
in CQWs were described in Ref. [32].

Another physical realization of indirect excitons, formed in
an electron-hole double layer, is a wide single GaAs/AlGaAs
quantum well with a finite width [33]. In a wide single

QW, the transverse electric field separates electrons and holes
at the different boundaries of the QW [33]. The advantage
of a wide single QW compared with CQWs is the smaller
number of QW boundaries, which leads to the increase of
the electron mobility. Based on the photoluminescence pat-
tern caused by electron-hole recombination, evidence of a
condensate of indirect excitons, electrically polarized in a
GaAs wide single QW, was found experimentally recently
for a 15-nm-thick quantum well at temperature T = 370 mK
[34]. A spontaneous condensation of trapped two-dimensional
dipolar excitons from an interacting gas into a dense liquid
state was observed in GaAs/AlGaAs CQWs with an interwell
separation D = 4 nm at temperatures below a critical tem-
perature Tc ≈ 4.8 K [35]. The transport of indirect excitons
with an interwell separation D = 4 nm in GaAs/AlGaAs
CQWs in linear lattices, created by laterally modulated gate
voltage with a lattice period b = 2 μm, was studied exper-
imentally at the temperatures T = 1.6 K and T = 6 K, and
the localization-delocalization transition for transport across
the lattice was observed by reducing the lattice amplitude or
increasing the exciton density [36].

Besides semiconductor CQWs, the superfluid system of
spatially separated electrons and holes can appear in a
graphene double layer [11,37–40], two opposite surfaces of
the film of topological insulators [41], and two layers with
composite fermions in the quantum Hall regime at filling
factor ν = 1/2 [42]. Such systems can be engineered with
a WSe2 barrier between the graphene layers to enhance the
interlayer tunneling [23].

Today, an intriguing counterpart to gapless graphene is
a class of monolayer direct band gap materials, namely,
transition-metal dichalcogenides (TMDCs). Monolayers of
TMDCs such as MoS2, MoSe2, MoTe2, WS2, WSe2, and
WTe2 are 2D semiconductors, which have a variety of ap-
plications in electronics and optoelectronics [43]. The strong
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interest in TMDC monolayers is motivated by the following
facts: a semiconductor band structure is characterized by a
direct gap in the single-particle spectrum [44], the existence of
excitonic valley physics, and the possibility of electrically tun-
able, strong light-matter interactions [45,46]. Monolayers of
transition-metal dichalcogenides are truly 2D semiconductors,
which hold great appeal for electronics and optoelectronics
applications due to their direct band gap properties. Mono-
layer TMDCs have already been implemented in field-effect
transistors, logical devices, and lateral and tunneling optoelec-
tronic structures [43]. Like graphene, the monolayer TMDCs
have hexagonal lattice structures, and the nodes (valleys) in
the dispersion relations of both the valence and conduction
bands can be found at the K and −K points of the hexagonal
Brillouin zone. However, unlike graphene, these 2D crystals
do not have inversion symmetry [43].

High-temperature superfluidity can be studied in a het-
erostructure of two TMDC monolayers, separated by a hexag-
onal boron nitride (h-BN) insulating barrier [47]. The dipolar
excitons were observed in heterostructures formed by mono-
layers of MoS2 on a substrate constrained by hexagonal boron
nitride layers [48]. The theoretical study of the phase diagram
of 2D condensates of indirect excitons in a TMDC double
layer was reported [49]. The high-temperature superfluidity of
the two-component Bose gas of A and B dipolar excitons in a
transition-metal dichalcogenide double layer was predicted in
Refs. [50,51].

In this paper we study how the BCS-like EHP-superfluid
phase transition can be controlled by the external periodic
field, applied to the spatially separated electrons and holes via
the gates periodically attached to CQWs, where a quasi-two-
dimensional system of charge carriers is formed. The external
periodic field, applied to the spatially separated electrons and
holes, can also be produced via the gates periodically attached
to double layers of a 2D material or a twisted TMDC double
layer, where a truly 2D system of charge carriers is formed.
For this purpose we employ a mean-field approximation for
the many-body system of electrons and holes, using the parti-
tion function of the grand-canonical ensemble at temperature
T and the chemical potentials of the electrons and the holes,
respectively. The latter represent the Fermi energies of the
electrons and the holes. The logarithm of the partition function
gives us immediately the free energy, whose minimum defines
the mean-field solution with a nonvanishing order parameter
of the superfluid phase. The main goal is to analyze the influ-
ence of the external periodic field on the critical temperature
of the EHP-superfluid transition in an electron-hole double
layer. Here it should be mentioned that the phase fluctuations
of the order parameter can lead to a vortex-pair dissociation,
which results in a nonsuperfluid Kosterlitz-Thouless phase. Its
critical temperature is close to the mean-field temperature if
the exciton-exciton interaction is weak [52].

This paper is organized in the following way. We obtain the
free energy of the electron-hole double layer in the external
periodic potential and study the second-order EHP-superfluid
transition using a Landau expansion of the free energy in
Sec. II. The results of the calculations are presented and
analyzed in Sec. III. Finally, a discussion of the results and
the conclusions follow in Sec. IV.

II. PHASE TRANSITION IN THE ELECTRON-HOLE
DOUBLE LAYER UNDER THE ACTION OF THE

EXTERNAL PERIODIC POTENTIAL

The Hamiltonian of a system of spatially separated elec-
trons and holes in the momentum representation can be writ-
ten as

H =
∑

p

∑
σ=e,h

εp,σ c†
pσ cpσ +

∑
p,p1,p2

Upc†
p−p1,h

cp−p2,hc†
p1,ecp2,e,

(1)
where c†

p,e (cp,e) is the creation (annihilation) operator for

electrons and c†
p,h (cp,h) is the corresponding operator for

holes. The electron and hole single-particle dispersion εp,σ

depends on the details of the material properties. Moreover,
it is sensitive to an additional periodic potential, applied to
the CQWs or double layers of the 2D material. An example
is a periodic potential in the form of a square lattice with
periodicity b. Then the electron and hole dispersion reads
[53–55]

εp = δ0 − 2t cos(pxb/h̄)

− 2t cos(pyb/h̄) (−π � px,yb/h̄ < π ), (2)

which has a band width 8t and a Fermi energy δ0. The
electron-hole attraction potential in momentum space Up is
discussed briefly below. In Eq. (1) the spins of electrons
and holes are neglected because we are not interested in
magnetization effects.

We consider an external periodic potential induced by the
gate forming either a one-dimensional (1D) or a 2D square
superlattice with a period b applied to the electron and hole
quantum wells. An example is the particular case related to
the phase transition of indirect excitons in a double layer,
formed by two TMDC monolayers that are separated by h-BN
since h-BN monolayers are characterized by a relatively small
density of the defects of their crystal structure monolayers.
In Fig. 1 a schematic electrode pattern in the x-y and z-
x planes is presented. In our calculations we consider the
TMDC monolayers to be separated by h-BN insulating layers
and the separation between two layers of TMDC materials
calculated in steps of DhBN = 0.333 nm, corresponding to
the thickness of one h-BN monolayer [47]. Therefore, the
interlayer separation D is presented as D = NLDhBN, where
NL is the number of h-BN monolayers, placed between two
TMDC monolayers. It is obvious that the strength of the
electron-hole interaction decreases with the increase of the
separation between the layers. We assume that the densities
of electrons and holes are equal in order to have a neutral
electron-hole plasma and because the electrons and holes are
created always pairwise by an external laser source. This
implies that the corresponding chemical potentials are also
equal. Periodically positioned gates under the same electric
potentials create in turn the periodical potential in the 2D
system under consideration.

When the electron-hole attraction leads to Cooper pairing
of electrons and holes, characterized by the order parameter
� [56,57], the free energy is described within the mean-field
approximation (MFA) [1,58]. Following Ref. [58] and assum-
ing that (i) the order parameter � does not depend on the
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FIG. 1. Schematic electrode pattern in the x-y and z-x planes.

momentum and (ii) the dispersion relation εp,e = εp,h = εp is
the same for electrons and holes, the MFA of the free energy
at temperature T (β = 1/kBT , where kB is the Boltzmann
constant) as a function of the dimensionless order parameter
γ = β|�| can be written as

F = − 1

β2u0
γ 2

− 1

|B|β
∫

B
ln

{
2
[
1 + cosh

(√
β2ε2

p + γ 2
)]}

d2 p. (3)

In Eq. (2) the integration over the momentum p is taken over
the Brillouin zone with area |B|, and u0 is the strength of the
electron-hole interaction given by

1

u0
= 1

|B|
∫

B

1

Up
d2 p < 0, (4)

which parametrically depends on the interlayer separation
D. The effective electron-hole potential Up and therefore the
electron-hole pairing parameter u0 in the general case depend
essentially on the screening of the Coulomb potential. This
issue, in particular the different effects of static screening and
dynamical screening in a many-electron and -hole system,
has been discussed intensively in the literature [59–65]. In
particular, in two-dimensional semiconductors (contrary to
the three-dimensional case) the dielectric function is nonlocal;
that is, it depends on the wave vector [66]. This leads to the
Ritova-Keldysh potential between two charges [67,68]. The
Ritova-Keldysh potential has been widely used to describe the
Coulomb interaction of few-body complexes in a monolayer
of TMDCs and beyond (see the review in [69] and references
therein).

The mean-field free energy (3) indicates that the lattice
structure and the additional periodic potential enter our cal-
culation only through the dispersion εp. In Eq. (5) we will see
that the condition for the critical temperature of the transition
to a superfluid state at a given electron-hole coupling param-

eter u0 depends only on the density of states of particles with
dispersion εp and on the Fermi energy δ0.

We can rewrite Eq. (2) in the form of a dimensionless
free energy f = −u0F/(kBT )2 and expand the latter in terms
of the order parameter γ 2 as f = f0 + f2γ

2 + f4γ
4 (Landau

expansion [70,71]). The corresponding coefficients for this
expansion are given in Appendix A by Eqs. (A4)–(A6). At the
point of the phase transition we have a zero order parameter
γ = 0, and the condition for the minimum of the free energy is
∂ f
∂γ 2 |

γ=0
= f2 = 0. Therefore, the critical point is defined by a

vanishing coefficient f2. Thus, from expression (A5) it follows
that the critical inverse temperature βc satisfies the condition

1

u0
= − 1

|B|
∫

B

tanh(βc|εp|)
|εp| d2 p

= −
∫ E1

E0

tanh(βc|2tE − δ0|)
|2tE − δ0| ρ(E )dE . (5)

Here we have used the fact that the p integration can
be expressed as an energy integration through the relation
d2 p/|B| = ρ(E )dE , where ρ(E ) is the density of states of
the noninteracting Hamiltonian with dispersion εp. The di-
mensionless energy parameter E = (δ0 − εp)/2t is derived
from the dispersion which is shifted by the Fermi energy
δ0. The integration is restricted to the interval [E0, E1] since
only electronic states are accessible within the main band
of the electronic band structure. The specific values depend
on the material and its dispersion; typically, for a parabolic
dispersion they are given by E0 ≈ 0 and E1 ≈ h̄2/(λ22m) with
the lattice constant λ of the underlying material. According
to Eq. (5), the temperature of the electron-hole pairing is
controlled by the electron-hole pairing parameter (i.e., by
the effective electron-hole potential), by the density of states,
which is essentially modified by the external periodic poten-
tial, and by the position of the Fermi energy. The relation
between u0 and βc in Eq. (5) indicates that an increas-
ing interaction strength −u0 implies an increasing critical
temperature. Moreover, tanh(βc|2tE − δ0|)/|2tE − δ0| is a
monotonically decreasing function of |2tE − δ0| with the
maximum at E = δ0/2t . The density of states ρ(E ), on the
other hand, distinguishes between the case of a parabolic
dispersion [ρ(E ) = const] and the case of a periodic potential,
where ρ(E ) is not constant. Thus, the goal is to design the
dispersion by adding a superstructure to the material. This
can be achieved by doping [72], by creating a gated periodic
potential on the 2D material [36] (see Fig. 1), or by twisting
the two layers relative to each other to create a moiré pattern
[73,74]. A particular possibility to tune to a higher critical
temperature is to create Van Hove singularities near the Fermi
level of two twisted graphene bilayers [75–78]. The Van
Hove singularities, which appear at the saddle points on the
Brillouin zone, can also be shifted towards the Fermi energy
by applying strain to graphenelike materials [79]. In terms
of an additional periodic potential, the effect of strain can
be simulated by an anisotropic potential. Then the density of
states can be chosen such that it picks up the maximum value
of the integrand tanh(βc|2tE − δ0|)/|2tE − δ0|. Although this
depends on the Fermi energy δ0, the latter can also be tuned
by a uniform external gate to obtain a large value for the
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FIG. 2. The normalized free energy f as a function of tβ and the order parameter γ . (a) δ0/2t = 0.15, βu0 = −80. (b) δ0/2t = 0.15,
βu0 = −30.

integral. The idealized case would be ρ(E ) = δ(E − δ0/2t ),
which provides the maximal critical temperature

kBTc = −u0. (6)

If ρ(E ) = δ(E − E ′), where E ′ is a characteristic parameter
of the model, we get from Eq. (5)

kBTc = −u0
|2tE ′ − δ0|/u0

arctanh(|2tE ′ − δ0|/u0)
. (7)

As an example we consider the tight-binding approxi-
mation of Eq. (2). The corresponding density of states
reads [80]

ρ(E ) = ρ0

K
( 2−|E |

2+|E |
)

2 + |E | (−2 � E � 2), (8)

where K (x) is the complete elliptic integral of the first kind
and ρ0 is a normalization factor. Appendix B gives the expres-
sions for coefficients f0, f2, and f4 of the Landau expansion
in the case of the periodical potential. For the dispersion (2)
we have derived some results directly from Eqs. (3) and (5),
which will be discussed in the next section.

Instead of the 2D periodic potential we could also consider
an anisotropic potential with a 1D periodicity, which would
also strongly affect the density of states. This case corresponds
to the system studied in Ref. [36] and was previously con-
sidered for stripes in superconductors [81,82] and in coupled
graphene nanoribbons [83], where the goal is to create Van
Hove singularities in the density of states. A one-dimensional
periodic potential has an inverse square-root singularity at
E = 0, which can result in an even stronger enhancement of
the critical temperature. In that case we must use the density
of states ρ(Ex ) for a potential varying in the x direction. Then
the condition in Eq. (5) becomes

1

u0
= − 1

p1 − p0

∫ p1

p0

∫ E1

E0

tanh
(
βc

∣∣2tEx + p2
y/2m − δ0

∣∣)∣∣2tEx + p2
y/2m − δ0

∣∣
× ρ(Ex )dExd py, (9)

where p0 and p1 are the band edges in the y direction and E0

and E1 are the band edges in the x direction of the considered
model.

III. RESULTS

The free energy F of Eq. (3) with the dispersion in Eq. (2)
is calculated as a function of the dimensionless order pa-
rameter γ . The dependence of the dimensionless free energy
f = −β2u0F on tβ and the order parameter γ is shown in
Fig. 2. This result demonstrates that f has a minimum with
respect to the order parameter γ , while the dependence of f
on tβ is not strong. The nonzero minimum of f with respect
to the order parameter γ corresponds to the equilibrium value
of γ , characterizing the electron-hole superfluid. The plot in
Fig. 2(a) represents the low-temperature BCS-like superfluid
for electron-hole pairing with a nonzero value of the order
parameter γ > 0 at the minimum, while Fig. 2(b) shows the
high-temperature nonsuperfluid EHP for the zero value of γ

at the minimum. Both cases are connected via the second-
order phase transition, as visualized in Fig. 3, where the
normalized free energy f as a function of the order parameter

FIG. 3. The normalized free energy f for βu0 = −30, −35, −40,
−50, −60 at βt = 0.22 and δ0/2t = 0.175 indicates a second-order
phase transition between βu0 = −50 and βu0 = −40.
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FIG. 4. Critical temperature as a function of the interaction pa-
rameter for the square lattice potential with different Fermi energies
δ0 and with potential strength t or 2t in Eq. (2).

γ is plotted for different values of βu0 at fixed parameters
tβ and δ0/2t . The curves for βu0 = −50 and βu0 = −60
demonstrate the existence of a low-temperature BCS-like su-
perfluid with electron-hole pairing with a nonzero equilibrium
value of the order parameter γ > 0. The second-order phase
transition is characterized by the equilibrium value γ = 0,
which corresponds to the values of the parameter βu0 between
βu0 = −50 and βu0 = −40, as shown in Fig. 3. According
to Fig. 3, for fixed parameters δ0/2t and tβ, the minimal
order parameter γ increases with decreasing βu0 if βu0 <

−50. The curves in Fig. 3 for βu0 = −30 and βu0 = −35
represent the high-temperature nonsuperfluid EHP with γ =
0. Figure 4 can be understood as a kBT -u0 phase diagram,
in which the different curves indicate the phase boundaries
between the EHP on the left and the superfluid on the right
for different values of the Fermi energy in the case of a
periodic potential with dispersion (2). The critical temperature
depends on the interaction strength u0, the chemical potential
δ0, and the strength of the periodic potential t . For a given u0

and a given potential strength t the critical temperature kBTc

can be found in units of 2t for different values of δ0. The
critical interaction strength, where the graphs start at Tc = 0,
increases with increasing δ0. Obviously, we need −u0 > 4t
to obtain a superfluid phase of excitons if δ0 > 6t . Since the
dispersion must be positive [i.e., εp > 0 in Eq. (2)], we have
δ0 > 4t . On the other hand, the critical temperature increases
with t , as we can see in Fig. 4 when we double the strength
of the periodic potential by t → 2t at fixed δ0 = 10t . For a
large interaction strength the critical temperature indicates a
linear behavior, which is below the ideal relation of Eq. (6),
however. As a typical example, we assume u0 = −8 meV and
t = 1 meV such that −u0/2t = 4. Together with Fig. 4 we get
Tc = 40 K for δ0 = 10 meV and Tc = 120 K for δ0 = 6 meV.
Assuming that u0 and t can be independently chosen, where u0

is a property of the layer material and t depends on the applied
electric gates, is an oversimplification. In a more realistic
consideration these two parameters depend on each other due
to the geometry of the gates and the distance between layers.

This can be calculated in a classical capacitor model, as briefly
discussed in Appendix C.

IV. DISCUSSION AND CONCLUSIONS

In the framework of the mean-field approach for electron-
hole pairing, we applied the tight-binding approximation for
the single-electron spectrum of the superlattice created by
the external periodic potential and studied the effect of an
additional periodic potential on the EHP-superfluid transition.
We have assumed for simplicity that the dispersion and the
Fermi surfaces of the electrons and the holes are the same
and analyzed the phase transition at finite temperatures. Our
results clearly indicate the possibility to control the electron-
hole superfluid in CQWs or double layers of a 2D material
by applying an external periodic potential due to an attached
periodic gate. An alternative approach is to create a tun-
able periodic lattice in two twisted layers of 2D materials
(“magic angle” bilayers) [84]. The analogous effect occurs
in a supersolid, where the crystalline long-range order and
noncrystalline long-range order coexist [85–87]. In contrast
to a supersolid, where the crystalline phase is formed due
to self-organization, the band structure in the system under
consideration is induced by the external periodic potential.

A periodic potential creates many bands which are typi-
cally separated by gaps. (Neighboring bands can also touch
each other at spectral nodes. This case, however, is not consid-
ered here.) To reduce the calculation to a single band we have
assumed that the order parameter |�| is smaller than the gap
between the neighboring band. This allows us to use a single
band projection, based on a tight-binding model. The single
band has a lower band edge at energy E0 and an upper band
edge at energy E1, which are the boundaries of integration
for the condition of the critical temperature in Eq. (5). The
k integration is determined by the Coulomb interaction. In
the BCS theory of Cooper pairs only a small interval around
the Fermi energy, whose width is given by the Debye energy
h̄ωD, contributes to an attractive interaction: E0 = EF − h̄ωD,
E1 = EF + h̄ωD [56,88]. This is different in the excitonic
case because the attractive Coulomb interaction exists for all
energies inside the band.

The critical temperature depends on the interaction
strength u0, the chemical potential δ0, and the strength of
the periodic potential t . This is visualized in Fig. 4, where
for a given u0 and a given potential strength t the critical
temperature kBTc can be found in units of 2t for different
values of δ0.

A critical assumption in our model is that electrons and
holes have the same dispersion. If they had different disper-
sions, we would expect a more complex phase diagram (cf.
Ref. [58]). A difference in the dispersions can even affect the
form of the order parameter. In our study we assume that the
pumping beam is circularly polarized, and hence, the excitons
are formed only in one of the valleys: K or −K [45,46]. In
this study we address the formation of excitons in one of
the valleys. Moreover, we can have two electronic species in
TMDC materials due to the existence of two valleys [89].

It should be of particular interest to extend our MFA
approach to a more complex one with the valley degrees of
freedom and the effective coupling between the two valleys
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included. Another interesting extension of the MFA of the
present work would be the inclusion of quantum fluctuations.
This would open a wide avenue for measurements of quantum
effects near the EHP-superfluid transition as well as inside
the EHP and the superfluid through quantum excitations. A
first step in this direction was the calculation of the density-
density correlation and the structure factor, which indicates
a characteristic increase near the transition [90]. Another
possibility is to determine quantum transport properties in the
EHP and the superfluid.
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APPENDIX A: EXPANSION OF FREE ENERGY
WITH RESPECT TO THE ORDER PARAMETER

IN LANDAU FORM

From Eq. (3) the dimensionless free energy f =
−u0F/(kBT )2 can be written as

f = γ 2 + u0β
1

|B|
∫

B
ln

{
2
[
1 + cosh

(√
β2ε2

p + γ 2
)]}

d2 p.

(A1)
One can expand the integrant in Eq. (A1) in terms of the power
of γ 2 as

ln
{
2
[
1 + cosh

(√
β2ε2

p + γ 2
)]}

= ln[2(1 + cosh[β|εp|)] + tanh
(

1
2β|εp|

)
2β|εp| γ 2

+ β2ε2
p − β|εp| sinh(β|εp|)

8β4ε4
p(1 + cosh[β|εp|]) γ 4 + · · · . (A2)

Here to obtain the final expression for the coefficients of the
expansion we have used the following identities:

sinh 2u = 2 sinh u cosh u, 1 + cosh 2u = 2 cosh2 u. (A3)

Substituting (A2) into Eq. (A1), we present the dimensionless
free energy in the Landau form [70,71],

f = f0 + f2γ
2 + f4γ

4 + · · · ,

where

f0 = u0β
1

|B|
∫

B
ln{2[1 + cosh(β|εp|)]}d2 p, (A4)

f2 = 1 + u0β
1

|B|
∫

B

tanh
(

1
2β|εp|

)
2β|εp| d2 p, (A5)

f4 = u0β
1

|B|
∫

B

β2ε2
p − β|εp| sinh(β|εp|)

8β4ε4
p(1 + cosh[β|εp|]) d2 p. (A6)

APPENDIX B: FREE ENERGY IN THE CASE OF THE
PERIODIC POTENTIAL

In the case of the periodic potential, the integration in (A1)
as well as in Eqs. (A4)–(A6) is taken over the Brillouin zone,
implying |B| is the area of the Brillouin zone (for the square
superlattice of the period b): |B| = (2π h̄)2/b2; therefore, the
limits of the integration over px and py are given by −π h̄/b
and −π h̄/b. Assuming that in (A4)–(A6) the single-particle
energy dispersions versus momentum for electrons and holes
are the same, we can calculate f0, f2, and f4:

f0 = u0β

∫ 2

−2

ln{2[1 + cosh(β|δ0 − 2tE |)]}K( 2−|E |
2+|E |

)
2 + |E | dE ,

(B1)

f2 = 1 + u0β

∫ 2

−2

tanh
(

1
2β|δ0 − 2tE |)K

( 2−|E |
2+|E |

)
2|δ0 − 2tE |(2 + |E |) dE ,

(B2)

f4 = u0β

∫ 2

−2

β2(δ0 − 2tE )2 − β|δ0 − 2tE | sinh(β|εp|)
8β4(δ0 − 2tE )4{1 + cosh[β|(δ0 − 2tE |)]}

×
K

( 2−|E |
2+|E |

)
(2 + |E |)dE , (B3)

where K (k) is the complete elliptic integral of the first kind.

APPENDIX C: EFFECTIVE INTERACTION STRENGTH u0

We consider a classical approximation of a layered system,
using a capacitor model which is based on the schematic
electrode pattern of Fig. 1. This allows us to calculate t and
u0 as a function of the applied gate voltage and the distance
between the layers. Indirect excitons in CQWs are formed by
two TMDC monolayers that are separated by h-BN since h-
BN monolayers are characterized by a relatively small density
of defects of their crystal structure monolayers. The separation
between two layers of TMDC materials is calculated in steps
of DhBN = 0.333 nm, corresponding to the thickness of one h-
BN monolayer [47]. Using the values of the periodic potential
and the interlayer distance D, we obtain from the capacitor
model the values of t of the electron-hole dispersion in Eq. (2)
as

t = 1

2

εε0A

D
V 2,

where V is the potential difference applied to the electrodes, A
is the area of the electrodes, and ε (ε0) is the relative (vacuum)
dielectric constant. The corresponding interaction parameter
u0 for the square electrodes with a = 5 nm and applied voltage
V = 20 mV for the square lattice period b = 20 μm along
with values of t are given in Table I. It is interesting to
note that the coupling strength u0 and the critical temperature
decrease with the number of layers.
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TABLE I. Results for physical parameters t , δ0, and u0 at the critical temperature. The latter is obtained from the calculation in Sec. III,
where a phase transition occurs when βt = 0.22 and δ0/t = 0.35.

u0 (eV)

NL D (Å) t (meV) T (K) δ0 (meV) βu0 = −60 βu0 = −50 βu0 = −40

2 6.66 2.03 107 0.71 0.553 0.461 0.369
3 9.99 1.35 71 0.47 0.369 0.307 0.246
4 13.32 1.02 54 0.36 0.277 0.231 0.184
5 16.65 0.81 43 0.28 0.221 0.184 0.148
6 19.98 0.68 36 0.24 0.184 0.154 0.123
7 23.31 0.56 31 0.20 0.158 0.132 0.105
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