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During both positive and negative dyadic exchanges, individuals will often

unconsciously imitate their partner. A substantial amount of research has been

made on this phenomenon, and such studies have shown that synchronization

between communication partners can improve interpersonal relationships. Automatic

computational approaches for recognizing synchrony are still in their infancy. In this study,

we extend on previous work in which we applied a novel method utilizing hand-crafted

low-level acoustic descriptors and autoencoders (AEs) to analyse synchrony in the

speech domain. For this purpose, a database consisting of 394 in-the-wild speakers

from six different cultures, is used. For each speaker in the dyadic exchange, two

AEs are implemented. Post the training phase, the acoustic features for one of the

speakers is tested using the AE trained on their dyadic partner. In this same way, we

also explore the benefits that deep representations from audio may have, implementing

the state-of-the-art Deep Spectrum toolkit. For all speakers at varied time-points during

their interaction, the calculation of reconstruction error from the AE trained on their

respective dyadic partner is made. The results obtained from this acoustic analysis

are then compared with the linguistic experiments based on word counts and word

embeddings generated by our word2vec approach. The results demonstrate that there

is a degree of synchrony during all interactions. We also find that, this degree varies

across the 6 cultures found in the investigated database. These findings are further

substantiated through the use of 4,096 dimensional Deep Spectrum features.

Keywords: speech synchronization, human-human interaction, computational paralinguistics, machine learning,

speech processing, autoencoders

1. INTRODUCTION

It has been shown that during a dyadic human-human interaction, companions will often
synchronize their communication style with their partner. This synchrony happens not only on
a linguistic level, e.g., syntactic alignment (Gries, 2005; Dale and Spivey, 2006; Branigan et al.,
2010), but also occurs across modes, with partners shifting their posture (Scheflen, 1964), facial
expression (Blairy et al., 1999), as well as verbal cues (Chartrand and Bargh, 1999)—a topic
which has been an area of interest across fields, including psychology (Likowski et al., 2012) and
neuroscience (Seibt et al., 2015; Rymarczyk et al., 2018).

An alteration in the rapport between partners is one outcome in relation to synchronous
behaviors, and can be described as an interpersonal aspect of a given dyadic exchange in which both
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partners are experiencing positivity (Tickle-Degnen and
Rosenthal, 1990). From early-research in the field of psychology
an increase in rapport was found from interactions in which
body posture synchrony had occurred (LaFrance, 1979).
However, due to the intrinsic complexity of human behavior, the
measurement of interaction synchrony as an indicator of rapport
has posed a substantial challenge for researchers (Bernieri
et al., 1994). Nevertheless, in social psychological research a
non-invasive measurement of interpersonal synchrony, which
can be performed without the knowledge of participants, shows
great potential for the analysis of human interaction (Bernieri
et al., 1994).

Pickering and Garrod presented a mechanistic model
of language processing during a dialogue (Pickering and
Garrod, 2004). Their interactive alignment account describes
how interlocutors automatically synchronize their linguistic
representations on multiple levels, from syntax to semantics
and phonetics. They argue that alignment on one level also
increases alignment on other levels through mechanisms like
routinization (i.e., the establishment of semi-fixed expressions
encoding specific meanings). In recent years, approaches testing
mimicry (synchrony) as a tool to enhance rapport have been
popular in the field of Human Robot Interaction (HRI) (Riek
et al., 2010; Li and Hashimoto, 2011). Valdesolo et al. analyzed
the influence of synchrony on individuals who pursue joint
goals (Valdesolo et al., 2010). The authors demonstrated that
synchrony in body motions can enhance individuals’ perceptual
sensitivity to the movements of other persons and therefore
can increase their success in a following cooperative task which
requires the ability to respond appropriately to a partner’s
movement (Valdesolo et al., 2010). Furthermore, it was discussed
that success in achieving common goals is motivated by the
enhanced sense of collective spirit, and that synchrony could also
predict cooperative ability (Valdesolo et al., 2010).

Previously studies in the area of automatic synchrony
detection, have come largely from the vision domain (Michelet
et al., 2012), some of which evaluating behaviors such as rate of
head nods, and smiling (Sun et al., 2011a; Bilakhia et al., 2013).
For this study, we focus on the acoustic signal, as it has been
shown that aside from body-language, partners will additionally
shift their speech style toward that of their partner (Giles, 1973;
Giles et al., 1987).

Although there are similar previous works on this
topic (Brdiczka et al., 2005; Burgoon and Hubbard, 2005),
we have first proposed an acoustic-based approach to evaluate
individual communication styles for the phenomenon of dyadic
synchrony across a broad group of cultures (Han et al., 2018).
First, we attempt a brute-force conventional approach in which
we extract low-level descriptors (LLDs) such as log-energy, and
pitch, to measure similarities in the speech turns, resulting in
limited success (Han et al., 2018). To explore a state-of-the-art
machine learning approach for this task, an autoencoder-
based framework is implemented. The framework consists
of two autoencoders (AEs), in which each is trained on the
speech of one of the communication partners, subject A and
B, respectively. On training completion, the data subsets are
then switched, and fed to the opposing AE. In choosing this

approach, we hypothesize that when a subject is behaving in
a more synchronous manner, the reconstruction error of the
features from the AE trained on their communication partner
should decrease over time. Compared to other state-of-the-art
computational approaches for unsupervised learning, e.g.,
Generative Adversarial Networks, AEs are relatively easy to train
and chose hyperparameters for.

In the following section, the related work is summarized both
from a sociological and a technical perspective. We then describe
our multicultural dataset and the extracted acoustic and DEEP

SPECTRUM features used in our research. In section 4, we analyse
the behavioral similarities of dyads and explain the experimental
settings and discuss about our findings. Afterwards, in section 5,
we analyse the linguistic behavior and compare the results to the
ones obtained from our acoustic approach, before concluding the
paper in section 6.

2. RELATED WORK

Synchronous behavior (often referred to as mimicry), can play an
important role as a mechanism of emotional contagion (Hatfield
et al., 1993) i.e., the phenomenon an individual’s emotional
response to activate a similar emotion in their partner., and
is either emotion- or motor-based (Hess and Fischer, 2013).
Emotional synchrony is the change in affective states such as
happiness or anger, and the motor-based synchrony would refer
to physical changes, e.g., facial expression or position of the
hands, although there is also literature indicating that vocal
expression is often an unconsciousmotor act (McGettigan, 2015).
Of the two, motor-based synchrony is a more effectively tracked
aspect, as there is an object component which can be classified
by a human observer, subsequently showing improved accuracy
for automatic approaches such as body posture recognition (Hu
et al., 2016).

Toward the end of the 1970s, the Facial Action Coding
System’ (Ekman and Friesen, 1978) based on so-called facial
action units (FAUs), descriptors of 44 facial activations, was
first proposed. Since this time FAUs have been utilized for
an array of computational tasks (Kaiser and Wehrle, 1992;
Tian et al., 2001; Jaiswal and Valstar, 2016). When combining
active FAUs various facial expressions can be constructed, with
a strong relationship between typical FAU combinations, e.g.,
frowning, or smiling, and an individual’s affective state (Ekman
and Friesen, 2003). These combinations have shown to be
independent from culture (Ekman and Friesen, 2003), and can
be robustly extracted utilizing state-of-the-art toolkits such as the
well-known OPENFACE (Baltrušaitis et al., 2016).

In general partners will likely show synchrony of traits such
as gestures and posture, from their partner, nearer to the end
of a conversation (Chartrand and Bargh, 1999; Delaherche et al.,
2012). Motor-based synchrony can be applied as a persuasive tool
during human-to-human exchange, specifically when including
the mimicry of the partners spoken opinion (Hess and Fischer,
2013). From both the auditory and visual channels, humans
are vulnerable to this behavior (Parrill and Kimbara, 2006). To
this end, although there has been evidence of communication
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partners synchronizing when they do not agree, there is more
prevalent factors of synchrony when partners discuss a common
topic of which they hold a similar opinion (Sun et al., 2011a).

From a computational point of view, automatic detection
approaches for motor-based synchronous behavior are varied.
A time-based regression model which utilized long short-
term memory (LSTM) recurrent neural networks (RNNs) was
proposed as a prediction method for audio-visual features of
chat partners (Bilakhia et al., 2013). In Bilakhia et al. (2013), the
authors utilized Mel-frequency cepstral coefficients (MFCCs) as
acoustic features and facial landmarks as visual features. They
then trained an ensemble of models to predict the features of
one chat partner based on the features of their dyadic partner
in order to solve the binary classification task ofmimicry or non-
mimicry. The model in which the lowest reconstruction error was
provided gave the class. In contrast to their work, our approach is
unsupervised, i.e., the models are not trained to predict a ground
truth occurrence of mimicry.

In general, emotion-based synchrony has not been extensively
researched, and has shown to be highly dependent on social
context, with individuals not synchronizing at all if they are
not in favor with one another (Hess and Fischer, 2014). As
well as having a positive outcome on negotiations (Swaab et al.,
2011), a similar observation for the favored partner was found
within linguistic information (Scissors et al., 2008). In a text-
based interaction individuals were found to repeat the style of
their partner over time, particularly in scenarios where trust was
already established. In this same way, rapport during interactions
was found to develop more highly between partners over time
when repeating the counterpart’s behaviors (LaFrance, 1979).

3. DATASET AND FEATURES

To validate the proposed approaches, we use the SEWA
corpus of audio-visual interaction in-the-wild (Kossaifi et al.,
2019)1. A database which has in the past been used as the
official benchmark database for the 2017 and 2018 Audio-
Visual Emotion Challenges (AVEC) (Ringeval et al., 2017,
2018). Extracting both hand-crafted acoustic features and deep
representations of the audio signal on the frame-level of
all sessions. We decided to extract both acoustic and DEEP

SPECTRUM features, due to their previous performance and
proven ability in capturing characteristics of speech (Schuller
et al., 2013; Amiriparian et al., 2016, 2018; Eyben, 2016).
Both feature sets are different in their nature; COMPARE is a
hand-crafted, expert-designed feature set which can cover time-
dependent frame-level information for the input signals, and
DEEP SPECTRUM is based on the spectrograms of audio signals,
focusing mostly on the time-frequency properties of the speech.

3.1. The SEWA Video Chat Dataset
The SEWA database includes audio-visual recordings of 197
dyadic conversations (including 201 male and 197 female
subjects), from individuals of six differing cultures (Chinese,
Hungarian, German, British, Serbian, and Greek). A summary

1https://sewaproject.eu/

TABLE 1 | SEWA corpus: Quantity of conversations and subjects, as well as total

duration given in minutes for each culture.

Index Culture # Conversations # Subjects Total duration

C1 Chinese 35 70 101

C2 Hungarian 33 66 67

C3 German 32 64 89

C4 British 33 66 94

C5 Serbian 36 72 98

C6 Greek 28 56 81

Sum 197 394 530

FIGURE 1 | Screenshots taken from sample video chats in the SEWA corpus

(German culture).

of the SEWA database is given in Table 1, including number
and total duration of conversation for each culture. An
example conversation is shown in Figure 1 and during such
conversations, subjects discuss with each other their view of a 90 s
advertisement of a (water) tap that they have just been shown via
the web platform.

The subjects were “in-the-wild” and using a personal
computer, with recordings captured from either their home
or office. The chat partners were already acquainted with one
another before the chat (either family, friends, or colleagues), and
included varied gender pairings (female-male, female-female,
male-male), which were balanced across all sessions. Subject were
aged between 18 and 60, and communication was held in the
native language of the partners, with no specified limitation on
what to discuss about the advertisement. From post analysis,
it was found that the conversations in the SEWA Dataset
contain a variety of emotional states, as well as instances of
both agreement/disagreement, and additionally positive/negative
rapport (Ringeval et al., 2017, 2018; Kossaifi et al., 2019).

3.2. Acoustic Features
The COMPARE feature set of acoustic features (Eyben, 2016) is
used for our first approach. For each audio recording, acoustic
low-level descriptors are extracted using the OPENSMILE
toolkit (Eyben et al., 2013) at a step size of 10ms. COMPARE LLDs
are extracted at frame-level. Functionals defined in the feature set
are not applied in this work, as the time-dependent frame-level
information is of most interest. Extracted with a window size of
20 to 60 ms length, there are 65 LLDs in the COMPARE feature
set and these have been summarized in Table 2. Feature vectors
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TABLE 2 | Interspeech 2013 Computational Paralinguistics Challenge feature set.

4 energy related LLD Group

Loudness Prosodic

Modulation loudness Prosodic

RMS energy, zero-crossing rate Prosodic

55 spectral related LLD Group

RASTA auditory bands 1–26 Spectral

MFCC 1–14 Cepstral

Spectral energy 250-650 Hz, 1–4 kHz Spectral

Spectral roll-off pt. .25, .50, .75, .90 Spectral

Spectral flux, entropy, variance Spectral

Spectral skewness and kurtosis Spectral

Spectral slope Spectral

Spectral harmonicity Spectral

Spectral sharpness (auditory) Spectral

Spectral centroid (linear) Spectral

6 voicing related LLD Group

F0 via SHS Prosodic

Probability of voicing Voice quality

Jitter (local and delta) Voice quality

Shimmer Voice quality

Log harmonics-to-noise ratio Voice quality

An overview of the 65 acoustic low-level descriptors (LLDs). SHS, Sub-Harmonic

Summation.

of size 130 for each 10ms step are given by calculating the first
order derivative (deltas).

3.3. Deep SpectrumFeatures
In addition to the acoustic features (cf. section 3.2), we
apply the feature extraction DEEP SPECTRUM toolkit2 to
extract deep representations from the audio signals using pre-
trained convolutional neural networks (CNNs) (Amiriparian
et al., 2017c). First, audio signals are transformed into Mel-
spectrogram plots using a Hanning window of width 500ms
and an overlap 10ms. From these, 128 Mel-frequency bands
are then computed. Afterwards, the generated spectrograms are
forwarded through VGG16 (Simonyan and Zisserman, 2014), a
pre-trained CNN, and the activations of the penultimate fully
connected layer (fc7) of the network are extracted, resulting
in a 4,096 dimensional DEEP SPECTRUM feature vector. These
features can be considered as being a high-level representation
of the Mel-spectrograms (Amiriparian et al., 2017c), and have
shown to be highly effective in various speech and audio analysis
tasks (Amiriparian et al., 2017a,c, 2018, 2019; Baird et al., 2017;
Ringeval et al., 2018).

4. BEHAVIOR SIMILARITY TENDENCY
ANALYSIS WITH AUTOENCODER

In order to investigate the temporal-based patterns, as well as
interpersonal sentiment which may occur in speech, we first
need to get machine readable representations from the speech

2https://github.com/DeepSpectrum/DeepSpectrum

signals of each individual (cf. section 3.2 and 3.3) and then use
these features for our machine learning experiments (cf.section
4.1). Based on the experimental results (cf. section 4.2), we then
analyse the behavior similarities in various cultures.

To minimize the variance between recording environments
the acoustic features (130 frame level) are first standardized (zero
mean and unit standard deviation) across the same recordings.
We have neither standardized nor normalized the DEEP

SPECTRUM features, since we found during our preliminary
evaluation that this negatively impacts autoencoder performance.
Before beginning to train the AE (cf.section 4.1), the feature
sequences are first segmented based on the transcriptions which
are also included in the SEWA database. The feature sequences
of each recording are then split in two sub-sequences, with each
having the features of only one of the subjects.

We then use a machine learning framework based on
autoencoders for investigating the effect of synchrony found
in the feature sequences. Autoencoders are a special type of
neural network architecture trained in an unsupervised manner
to find a compact, information rich representation of the input
data from which this input can be reconstructed (Vincent et al.,
2008). Further, the reconstruction error that is made by a trained
autoencoder on unseen test data can give an indication on how
similar this data is to the training domain: In the context of
audio analysis, this has for example been used for automatic
acoustic novelty detection (Marchi et al., 2015), the intuition
being that audio events that are foreign to the training data
will be harder to accurately reconstruct for the autoencoder. For
our experiments, the training domain of each autoencoder are
the feature sequences of one speaker while the sequences of the
speaker’s partner are used for evaluation. In our approach, AEs
use the features extracted at each frame as independent instances,
without considering the evolution of features over time. For
each individual dyadic interaction in the dataset, we proceed
as follows: Features of one subject are applied frame-wise to
train the first AE, with the features of the other used frame-
wise for testing. Although training the AEs and reconstructing
the features using each frame as an independent instance, we
preserve the order of the test frames in order to generate the
reconstructed sequence of features. Then, the root-mean-squared
errors (RMSEs) are calculated between the reconstructed and
actual features as a means of evaluating the extent to which
the RMSE varies over time. For each conversation, we end with
two AEs trained on the two subjects involved, with two one-
dimensional RMSE sequences, whose slopes can be measured
by computing their first derivatives and later averaged for
further analysis.

4.1. Experimental Settings
For the AEs, we made use of a common bottleneck architecture:
The input layer of the encoder and the output layer of the decoder
match the size of the feature vectors whilst the size of neurons
on the hidden layers is halved (doubled) for each layer in the
encoder (decoder). As shown in Figure 2, the AE framework
that has been constructed consists of a 3-layer encoder with a
3-layer decoder. During the initial experiments, nodes in each
layer were selected as follows: 130–64–32–12–32–64–130, with
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FIGURE 2 | The autoencoder framework implemented for our study. The error

between the input features (left) and the reconstructed features (right) is

minimized for each subject using the RMSE. The given number of neurons in

each layer (indicated above the neurons) refers to the COMPARE /DEEP

SPECTRUM features, respectively.

the dimensions of the output matching that of the input low-level
audio descriptors. For the DEEP SPECTRUM features, we use a
larger number of neurons on each layer: 4,096–2,048–1,024–512–
1,024–2,048–4,096. We train all AEs with a batch size of 256 for
512 epochs minimizing the mean squared reconstruction error
using the Adagrad (Duchi et al., 2011) optimizer with a learning
rate of 0.01.

When the temporal reconstruction errors had been generated
for each of the test subjects, the sequence is then utilized for a
linear regression task, assuming that the learnt slope will indicate
a behavior pattern change. In other words, when there is a
negative slope, this may indicate that the dyadic partners are
becoming more similar. Counter to this if there is a positive
slope, it would indicate that the partners are less synchronized. As
well as this, we make the additional assumption that the overall
amplitude of the slope will denote the level of synchrony as well.

Our approach for using the slope for synchrony analysis
between dyads is mainly motivated by the works introduced
in Sun et al. (2011b), Delaherche et al. (2012), and Bilakhia et al.
(2013). In Delaherche et al. (2012), the authors state that the
interactive alignment/synchrony can be observed in conversation
from a variety of features such as intonation, intensity, and
rhythm in speech. In addition, in Bilakhia et al. (2013), the
authors applied MSE to measure the reconstruction error of an
unseen example with a trained model to detect non-verbal vocal
mimicry vs. non-mimicry categories. In particular, 6 MFCCs
were adopted as audio features instead of pitch or energy, whilst
in the present work, more hand-crafted features, as well as
deep representations, are investigated. Moreover, in Sun et al.
(2011b), the results have shown that a long-term increasing
correlation is consistently obtained between two speakers in a
discussion. Thus, though the term “slope” was not well-supported
in any of previous work, these previous findings motivate this
work to adopt the RMSE slope overall interaction to indicate
progressive synchronization. Furthermore, in Table 3, it has
been demonstrated that the slope tendencies have a negative
correlation with the answer to the question if an individual feels
of holding the same opinion with the partner, demonstrating

TABLE 3 | Average slope of RMSE sequences of all subjects and the Pearson

correlation coefficients of pairs in each culture (C1: Chinese, C2: Hungarian, C3:

German, C4: British, C5: Serbian, and C6: Greek).

Feature set C1 C2 C3 C4 C5 C6

Acoustic features

average slope −0.07 −0.11 −0.10 −0.07 −0.08 −0.12

pcc of pairs −0.03 0.34 0.15 0.39 0.39 −0.26

DEEP SPECTRUM features

average slope −0.03 −0.05 −0.03 −0.02 −0.05 −0.07

pcc of pairs 0.03 0.16 0.18 0.09 0.13 −0.15

The autoencoders were trained on both acoustic and DEEP SPECTRUM features. For all

cultures the average slope shallower when using DEEP SPECTRUM features.

that the detected synchronization tendency has a high correlation
with their self-reported labels.

4.2. Results and Discussion
The first culture from the SEWA dataset; C1 (Chinese) will
be where we begin our discussion. This culture consists of
35 sessions, and the average RMSE sequence slope for all 70
subjects is −0.07, and −0.03 when using acoustic and DEEP

SPECTRUM features, respectively. Using both feature sets, which
differ in their nature, we show that very low average RMSE can
be achieved for the Chinese culture. This finding indicates a
relatively high synchrony between Chinese dyadic partners.

From the analysis shown in Figure 3 it can be seen that most
subject slopes for both feature sets (54 /70 for the acoustic features
and 47 /70 for the DEEP SPECTRUM features) are negative,
with less being positive. With our previous assumption in
mind, these results indicate that the acoustic LLD features
and the DEEP SPECTRUM features of these subjects have a
smaller reconstruction error over time. As the AE is trained
with the opposing subject from the same session a smaller
reconstruction error should indicate higher synchrony between
the communication partners. We also see a similar trend across
other cultures in the dataset, however the ratios for negative /
positive slope vary across cultures. Figures 4, 5 show the slope
of RMSE for all subjects and all cultures obtained from both
feature sets.

With these results in mind, the average slopes s were
calculated for all cultures, as well as the Pearson correlation
coefficients (PCCs). This was made with the intention of
investigating cultural-based variation across the spontaneous in
the wild conversations. For this analysis, results are summarized
in Table 3. As mentioned a negative slope indicates a more
synchronous speech-based relationship. The average slope is
computed to demonstrate the overall tendency throughout all
subjects in one specific culture, whilst the pcc of pairs is applied to
indicate the tendency between two conversation partners given
that specific culture.

From the correlation analysis shown in Table 3, it can
be noticed that generally when observed as group pairings
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FIGURE 3 | Slope of RMSE sequences of 70 Chinese subjects from 35 recordings. In each recording, there are two subjects as denoted with green and blue bars.

The diagrams (from left to right) are generated based on the acoustic and DEEP SPECTRUM features, respectively.

FIGURE 4 | Slope of RMSE sequences of paired subjects from all recordings in all six cultures. The results are calculated based on the acoustic features.

A/B, individuals across the six cultures show a tendency to
synchronize. Given that s for each culture is always negative. The
Greek culture (C6) shows the largest slope, i.e., lower synchrony
between the Greek dyads, and the smallest slope is observed for
both Chinese and British cultures.

As well as this, when looking only at the PCC, we can see an
alternative culture variance. In the case of PCC, positive values
indicate that the subjects of a culture converge to a similar place,
either both behaving in synchrony or out of synchrony with one
another. Conversely, a negative PCC would indicate that one
subject is dominating the other. No correlation is seen in the

C1 (Chinese) pairs for example, with a PCC of −0.03 and 0.03

when using acoustic and DEEP SPECTRUM features which is close
to 0. On the other side, a linear correlation is shown as either
positive for the Hungarian (C2), German (C3), British (C4), and
Serbian (C5) or negative for the Greek (C6) culture. Although
out of the scope of our study, it would be of benefit to verify

these findings based on literature across other fields, such as the
anthropological linguistics domain and the field of conversation
analysis (Stivers et al., 2009). We should also note that variances
such as educational background, occupation, and health status
of the individuals in the SEWA dataset may have some effect on
the result, however, although the dataset providers did implement
a control of aspects such as age and gender, variation between
complex characteristics such as these would be difficult to avoid.

5. LINGUISTIC BEHAVIOR ANALYSIS AND
SIMILARITY PATTERNS

Motor-based synchrony, e.g., raising an eyebrow, can be detected
from visual mid-level features such as Facial Action Units
(FAUs) (Surakka and Hietanen, 1998). Nonetheless, the detection
of similarity in speech from raw features is challenging due
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FIGURE 5 | Slope of RMSE sequences of paired subjects from all recordings in all six cultures. The results are calculated based on the DEEP SPECTRUM features.

to the variability of speech descriptors. To name a few, these
descriptors are sensitive to the environment and the voice of the
subject, which is influenced by factors such as age and gender,
amongst others.

Besides the acoustic similarities, we should also investigate
the behavioral synchronization shown in video chats from
other modalities, including linguistic information. In this regard,
rather than the conventional bag-of-words (BoW) approach,
which represents a text as a sparse histogram vector, word
embeddings are the current state-of-the-art (Kusner et al., 2015;
Liu et al., 2015; Amiriparian et al., 2017b; Chung and Glass,
2018). With this technique, the sparse histogram vectors, with a
dimensionality higher thanR1×5000, are transformed into a lower
dimensionality vector, typically R

1×300, where each component
in the vector space represents a concept. As a relevant property
of word embeddings, the distance between this concept and
words with similar meanings is lower than the distance between
this concept and words with completely different meanings.
The architecture of neural networks for word embeddings
usually includes a single layer, which converts the BoW into the
embedding vector. Currently, word2vec, introduced by Mikolov
et al. (2013), is a popular technique to generate word embeddings,
as it is trained on large text corpora, such as Wikipedia.
This technique employs a specialized objective function,
called“negative sampling.” One of the benefits of using such word

embedding technique is that the representations generated from
the words quantitatively capture several properties of the object

they describe (Mikolov et al., 2013).
We base our analysis on the manual transcriptions of the

video chats from the six different cultures included in the

SEWA database (cf. section 3 for details). Word embeddings
are extracted using pre-trained word2vecmodels available on the
internet. While a word embedding model for the British culture
trained on a Google News corpus is employed3, word embedding
models for the Hungarian and German cultures trained on
Wikipedia dumps are used4. For the other cultures, suitable word
embedding pre-trained models are not currently available and, as
a consequence, we exclude these cultures from our experiments
with the word2vec approach. Furthermore, training our own
word embedding models on the transcriptions of the SEWA
database is discarded due to limitations on the available data.
Word embedding models require large amounts of data to be
trained, usually requiring more than a million running words.

In order to analyse the linguistic synchronization as the
interaction progresses, we decide to split the chat sessions in
two halves, the first and second half of each conversation.
The measurement of similarities on a smaller scale, e.g., on
utterance or speaker turn level, is not possible, as some particular
speaker turns are quite long (more than 30 s). For every half
of the interaction word2vec embeddings are extracted from
both the speaker and their partner, and the cosine similarity
between the word embeddings is computed. In addition to word
embeddings, a simple evaluation of word usage is also made
by counting how often the same words were used by the two
subjects in each segment and normalizing the result by the
number of words per segment. The averaged similarities of both
scenarios in both halves of the interactions for all participants

3https://github.com/3Top/word2vec-api
4https://github.com/Kyubyong/wordvectors
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TABLE 4 | Evaluation of linguistic similarities between dyadic companions in the

two halves of the video chat.

Culture Word usage similarity word2vec similarity

1st half 2nd half 1st half 2nd half

C1 (Chinese) 0.710 0.880 — —

C2 (Hungarian) 0.738 0.902 0.809 0.794

C3 (German) 1.063 1.128 0.301 0.327

C4 (British) 1.714 1.787 0.364 0.383

C5 (Serbian) 1.241 1.353 — —

C6 (Greek) 0.849 1.125 — —

The linguistic information is analyzed using two different approaches: by computing word

usage and by extracting word2vec embeddings from the transcripts included in the SEWA

database.

belonging to the same culture are calculated and summarized
in Table 4.

The results reported in Table 4 show that for all cultures the
linguistic similarity increases during the video chat in regards
to the word usage. For word2vec embeddings the increase is
very subtle and in particular, for the Hungarian culture, we
observe that the similarity slightly decreases. The very weak or
even non-existent linguistic synchronization we measured with
the word2vec approach could be explained by the nature of the
rather complex features. It seems possible that a synchronization
on such a high linguistic level takes even more time than the
acoustic synchronization or the linguistic synchronization on
the word level and could therefore not be measured in short
conversations. This result leads us to assume that rapport and
synchrony in the linguistic domain is manifested in the direct
synchrony of terminology, rather than in synchrony of concepts
and topics.

The differences of linguistic similarity across cultures is quite
noticeable as the values of word usage similarity in the first half
of the conversations range from 0.710 in the Chinese culture
up to 1.714 in the British culture. In the word2vec approach
the similarity values for the first half of the conversations range
from 0.301 in the German culture up to 0.809 in the Hungarian
culture. Reasons for this, as for the different changes of the
similarity through the conversations, might lie in the respective
languages of the different cultures or culture-specific behaviors
during conversation.

6. CONCLUSION AND OUTLOOK

In this work, we have demonstrated that, an autoencoder-based
framework has great potential to recognize the spontaneous
and unconscious synchronization which occur during social
interactions. We can see this evidence through the observation
of the reconstruction error, when using the acoustic and
DEEP SPECTRUM features extracted from the speech of each
dyadic companion.

From this work, we have also explored culturally dependent
synchronization of vocal behavior in dyadic conversations.
In section 4, we have analyzed the behavior similarities and ability
of interpersonal chats to synchronize. It was found that both

feature sets are suitable for this task. Most subjects slopes are
negative when observing the feature sets (54 /70 for the acoustic
features and 47 /70 for the DEEP SPECTRUM features). From
additional correlation analysis, it was found that individuals do
tend to synchronize, however from this analysis, the cultural
differences were more noticeable, e.g., C6 (Greek) and C1
(Chinese) show quite opposing average slopes (−0.07 and−0.03,
respectively with DEEP SPECTRUM features).

Furthermore, the results provided in Table 4 demonstrated
that for all six cultures the linguistic similarity increases during
the video chat.

Future work will focus on utilizing further unsupervised
representation learning techniques, such as unsupervised
feature learning with deep neural networks using the
AUDEEP toolkit (Amiriparian et al., 2017b; Freitag et al.,
2018), and feature quantization methods, such as bag-of-audio-
words (Schmitt et al., 2016). Moreover, we are planing to
exploit the linguistic domain through state-of-the-art word2vec
embeddings (Mikolov et al., 2013). Given the findings in relation
to cultures from the utilized dataset, it would also be of value
to further explore this, possibly through a deeper analysis
of non-verbal synchrony and the known occurrence of this
during dyadic interactions (Tschacher et al., 2014). It is also
of big interest to analyse the amount of alignment between
speakers across different dyads. Finally, in addition to the
slope of the reconstruction errors, we want to explore further
evaluation strategies to measure the degree of synchrony between
subjects (Delaherche et al., 2012).

DATA AVAILABILITY STATEMENT

The dataset analyzed for this study, SEWA, is a public dataset and
can be found under the following link: https://db.sewaproject.eu/.

ETHICS STATEMENT

For recording the SEWA dataset the local ethics board, the
Imperial College Research Ethics Committee (ICREC), has
approved the recording of the audio-visual database and the
study of audio-visual behavior in the collected data. All subjects
analyzed for the study described in this article have given their
written informed consent to participate prior to recording. The
two participants shown in Figure 1 have given their written
informed consent to publish excerpts from their recordings in
academic documents, articles, and presentations.

AUTHOR CONTRIBUTIONS

SA, JH, and MS conceptualized the study and ran the
machine learning experiments. AB, AM-R, MM, and BS
did literature analysis, manuscript preparation and editing.
MG helped with running the experiments and testing the
codes. All authors revised, developed, read, and approved the
final manuscript.

Frontiers in Robotics and AI | www.frontiersin.org 8 November 2019 | Volume 6 | Article 116

https://db.sewaproject.eu/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Amiriparian et al. Synchronization in Interpersonal Speech

FUNDING

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under

grant agreement No. 688835 (RIA DE-ENIGMA) and No.
826506 (sustAGE), and from the Bavarian State Ministry of
Education, Science and the Arts in the framework of the Centre
Digitisation.Bavaria (ZD.B).

REFERENCES

Amiriparian, S., Cummins, N., Gerczuk, M., Pugachevskiy, S., Ottl, S., and

Schuller, B. (2019). “Are you playing a shooter again?!” deep representation

learning for audio-based video game genre recognition. IEEE Trans. Games 11

doi: 10.1109/TG.2019.2894532

Amiriparian, S., Cummins, N., Ottl, S., Gerczuk, M., and Schuller, B. (2017a).

“Sentiment analysis using image-based deep spectrum features,” in Proceedings

of the 7th Biannual Conference on Affective Computing and Intelligent

Interaction (ACII 2017) (San Antonio, TX), 26–29.

Amiriparian, S., Freitag, M., Cummins, N., and Schuller, B. (2017b). “Sequence to

sequence autoencoders for unsupervised representation learning from audio,”

in Proceedings of the DCASE 2017 Workshop (Munich), 17–21.

Amiriparian, S., Gerczuk, M., Ottl, S., Cummins, N., Freitag, M., Pugachevskiy,

S., et al. (2017c). “Snore sound classification using image-based deep spectrum

features,” in Proceedings of INTERSPEECH 18th Annual Conference of the

International Speech Communication Association (Stockholm: ISCA), 3512–

3516.

Amiriparian, S., Gerczuk,M., Ottl, S., Cummins, N., Pugachevskiy, S., and Schuller,

B. (2018). “Bag-of-deep-features: Noise-robust deep feature representations for

audio analysis,” in Proceedings of the 31st International Joint Conference on

Neural Networks (IJCNN) (Rio de Janeiro: IEEE), 2419–2425.

Amiriparian, S., Pohjalainen, J., Marchi, E., Pugachevskiy, S., and Schuller, B.

(2016). “Is deception emotional? An emotion-driven predictive approach,” in

Proceedings INTERSPEECH 2016, 17th Annual Conference of the International

Speech Communication Association (San Francisco, CA: ISCA), 2011–2015.

Baird, A., Amiriparian, S., Cummins, N., Alcorn, A. M., Batliner, A., Pugachevskiy,

S., et al. (2017). “Automatic classification of autistic child vocalisations: A novel

database and results,” in Proceedings of INTERSPEECH 2017, 18th Annual

Conference of the International Speech Communication Association (Stockholm:

ISCA), 849–853.

Baltrušaitis, T., Robinson, P., and Morency, L.-P. (2016). “OpenFace: an open

source facial behavior analysis toolkit,” in Proceedings of the IEEE Winter

Conference on Applications of Computer Vision (WACV) (Lake Placid, NY),

1–10.

Bernieri, F. J., Davis, J. M., Rosenthal, R., and Knee, C. R. (1994).

Interactional synchrony and rapport: measuring synchrony in displays

devoid of sound and facial affect. Pers. Soc. Psychol. Bull. 20, 303–311.

doi: 10.1177/0146167294203008

Bilakhia, S., Petridis, S., and Pantic, M. (2013). “Audiovisual detection of

behavioural mimicry,” in Proceedings Humaine Association Conference on

Affective Computing and Intelligent Interaction (ACII) (Geneva), 123–128.

Blairy, S., Herrera, P., and Hess, U. (1999). Mimicry and the judgement

of emotional facial expressions. J. Nonverbal Behav. 23, 5–41.

doi: 10.1023/A:1021370825283

Branigan, H. P., Pickering, M. J., Pearson, J., and McLean, J. F. (2010). Linguistic

alignment between people and computers. J. Pragmatics 42, 2355–2368.

doi: 10.1016/j.pragma.2009.12.012

Brdiczka, O., Maisonnasse, J., and Reignier, P. (2005). “Automatic detection of

interaction groups,” in Proceedings of the 7th International Conference on

Multimodal Interfaces, ICMI ’05 (Trento), 32–36.

Burgoon, J. K., and Hubbard, A. E. (2005). “Cross-cultural and intercultural

applications of expectancy violations theory and interaction adaptation theory,”

in Theorizing About Intercultural Communication, ed W. B. Gudykunst

(Thousand Oaks, CA: Sage) 149–171.

Chartrand, T. L., and Bargh, J. A. (1999). The chameleon effect: the perception–

behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893–910.

doi: 10.1037//0022-3514.76.6.893

Chung, Y.-A. and Glass, J. (2018). Speech2vec: a sequence-to-sequence framework

for learning word embeddings from speech. arXiv preprint arXiv:1803.08976.

Dale, R., and Spivey, M. J. (2006). Unraveling the dyad: using recurrence analysis

to explore patterns of syntactic coordination between children and caregivers in

conversation. Lang. Learn. 56, 391–430. doi: 10.1111/j.1467-9922.2006.00372.x

Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S.,

and Cohen, D. (2012). Interpersonal synchrony: a survey of evaluation

methods across disciplines. IEEE Trans. Affect. Comput. 3, 349–365.

doi: 10.1109/T-AFFC.2012.12

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159.

Ekman, P., and Friesen, W. V. (1978). Facial Action Coding System. Consulting

Psychologists Press. Available online at: https://books.google.fr/books?id=

08l6wgEACAAJ

Ekman, P., and Friesen, W. V. (2003).Unmasking the Face: A Guide to Recognizing

Emotions From Facial Clues, 1 Edn. Los Altos, CA: Ishk.

Eyben, F. (2016). Real-Time Speech andMusic Classification by Large Audio Feature

Space Extraction, 1 Edn. Basel: Springer.

Eyben, F., Weninger, F., Groß, F., and Schuller, B. (2013). “Recent developments

in openSMILE, the Munich open-source multimedia feature extractor,” in

Proceedings the 21st ACM International Conference on Multimedia (ACMM)

(Barcelona), 835–838.

Freitag, M., Amiriparian, S., Pugachevskiy, S., Cummins, N., and Schuller, B.

(2018). audeep: Unsupervised learning of representations from audio with deep

recurrent neural networks. J. Mach. Learn. Res. 18, 1–5.

Giles, H. (1973). Accent mobility: a model and some data. Anthropol. Linguist. 15,

87–105.

Giles, H., Mulac, A., Bradac, J. J., and Johnson, P. (1987). Speech accommodation

theory: the first decade and beyond. Ann. Int. Commun. Assoc. 10, 13–48.

doi: 10.1080/23808985.1987.11678638

Gries, S. T. (2005). Syntactic priming: a corpus-based approach. J. Psycholinguist.

Res. 34, 365–399. doi: 10.1007/s10936-005-6139-3

Han, J., Schmitt, M., and Schuller, B. W. (2018). “You sound like your counterpart:

Interpersonal speech analysis,” in Proceedings of Speech and Computer - 20th

International Conference, SPECOM (Leipzig), 188–197.

Hatfield, E., Cacioppo, J. T., and Rapson, R. L. (1993). Emotional contagion. Curr.

Dir. Psychol. Sci. 2, 96–100. doi: 10.1017/CBO9781139174138

Hess, U., and Fischer, A. (2013). Emotional mimicry as social regulation. Pers. Soc.

Psychol. Rev. 17, 142–157. doi: 10.1177/1088868312472607

Hess, U., and Fischer, A. (2014). Emotional mimicry: why and when we mimic

emotions. Soc. Pers. Psychol. Compass 8, 45–57. doi: 10.1111/spc3.12083

Hu, F., Wang, L., Wang, S., Liu, X., and He, G. (2016). A human body posture

recognition algorithm based on bp neural network for wireless body area

networks. China Commun. 13, 198–208. doi: 10.1109/CC.2016.7563723

Jaiswal, S., and Valstar, M. (2016). ‘Deep learning the dynamic appearance and

shape of facial action units,” in Proceedings of 2016 IEEE Winter Conference on

Applications of Computer Vision (WACV) (New York, NY: IEEE), 1–8.

Kaiser, S., and Wehrle, T. (1992). Automated coding of facial behavior in

human-computer interactions with facs. J. Nonverbal Behav. 16, 67–84.

doi: 10.1007/BF00990323

Kossaifi, J., Walecki, R., Panagakis, Y., Shen, J., Schmitt, M., Ringeval, F., et al.

(2019). SEWA DB: a rich database for audio-visual emotion and sentiment

research in the wild. CoRR, abs/1901.02839.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015). “From word

embeddings to document distances,” in International Conference on Machine

Learning (Lille), 957–966.

LaFrance, M. (1979). Nonverbal synchrony and rapport: Analysis by the cross-lag

panel technique. Soc. Psychol. Q. 42, 66–70. doi: 10.2307/3033875

Li, Y., and Hashimoto, M. (2011). “Effect of emotional synchronization using

facial expression recognition in human-robot communication,” in Proceedings

of 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO)

(Phuket), 2872–2877.

Frontiers in Robotics and AI | www.frontiersin.org 9 November 2019 | Volume 6 | Article 116

https://doi.org/10.1109/TG.2019.2894532
https://doi.org/10.1177/0146167294203008
https://doi.org/10.1023/A:1021370825283
https://doi.org/10.1016/j.pragma.2009.12.012
https://doi.org/10.1037//0022-3514.76.6.893
https://doi.org/10.1111/j.1467-9922.2006.00372.x
https://doi.org/10.1109/T-AFFC.2012.12
https://books.google.fr/books?id=08l6wgEACAAJ
https://books.google.fr/books?id=08l6wgEACAAJ
https://doi.org/10.1080/23808985.1987.11678638
https://doi.org/10.1007/s10936-005-6139-3
https://doi.org/10.1017/CBO9781139174138
https://doi.org/10.1177/1088868312472607
https://doi.org/10.1111/spc3.12083
https://doi.org/10.1109/CC.2016.7563723
https://doi.org/10.1007/BF00990323
https://doi.org/10.2307/3033875
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Amiriparian et al. Synchronization in Interpersonal Speech

Likowski, K., Muehlberger, A., Gerdes, A., Wieser, M., Pauli, P., and Weyers, P.

(2012). Facial mimicry and the mirror neuron system: simultaneous acquisition

of facial electromyography and functional magnetic resonance imaging. Front.

Hum. Neurosci. 6:214. doi: 10.3389/fnhum.2012.00214

Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). “Topical word embeddings,” in

Proceedings of Conference on Artificial Intelligence (AAAI).

Marchi, E., Vesperini, F., Eyben, F., Squartini, S., and Schuller, B. (2015).

“A novel approach for automatic acoustic novelty detection using a

denoising autoencoder with bidirectional lstm neural networks,” in 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(Brisbane: IEEE), 1996–2000.

McGettigan, C. (2015). The social life of voices: studying the neural bases for the

expression and perception of the self and others during spoken communication.

Front. Hum. Neurosci. 9:129. doi: 10.3389/fnhum.2015.00129

Michelet, S., Karp, K., Delaherche, E., Achard, C., and Chetouani, M.

(2012). “Automatic imitation assessment in interaction,” in Human Behavior

Understanding, eds A. A. Salah, J. Ruiz-del Solar, Ç. Meriçli, and P.-Y. Oudeyer

(Berlin; Heidelberg: Springer), 161–173.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).

“Distributed representations of words and phrases and their compositionality,”

in Proceedings of NIPS (Lake Tahoe, NV), 3111–3119.

Parrill, F., and Kimbara, I. (2006). Seeing and hearing double: the influence

of mimicry in speech and gesture on observers. J. Nonverbal Behav. 30:157.

doi: 10.1007/s10919-006-0014-2

Pickering, M. J., and Garrod, S. (2004). Toward a mechanistic psychology

of dialogue. Behav. Brain Sci. 27, 169–190. doi: 10.1017/S0140525X04

000056

Riek, L. D., Paul, P. C., and Robinson, P. (2010). When my robot smiles at

me:enabling human-robot rapport via real-time head gesture mimicry. J.

Multimodal User Interfaces 3, 99–108. doi: 10.1007/s12193-009-0028-2

Ringeval, F., Schuller, B., Valstar, M., Cowie, R., Kaya, H., Schmitt, M., et al. (2018).

“Avec 2018 workshop and challenge: bipolar disorder and cross-cultural affect

recognition,” in Proceedings of the 2018 on Audio/Visual Emotion Challenge and

Workshop (AVEC) (Seoul: ACM), 3–13.

Ringeval, F., Schuller, B., Valstar, M., Gratch, J., Cowie, R., Scherer, S., et al.

(2017). “AVEC 2017: Real-life depression, and affect recognition workshop and

challenge,” in Proceedings of n Proceedings of the 2018 on Audio/Visual Emotion

Challenge and Workshop (AVEC) (Mountain View, CA), 3–9.

Rymarczyk, K., Zurawski, L., Jankowiak-Siuda, K., and Szatkowska, I. (2018).

Neural correlates of facial mimicry: Simultaneous measurements of emg

and bold responses during perception of dynamic compared to static facial

expressions. Front. Psychol. 9:52. doi: 10.3389/fpsyg.2018.00052

Scheflen, A. E. (1964). The significance of posture in communication systems.

Psychiatry 27, 316–331. doi: 10.1080/00332747.1964.11023403

Schmitt, M., Ringeval, F., and Schuller, B. (2016). “At the border of acoustics and

linguistics: Bag-of-Audio-Words for the recognition of emotions in speech,” in

Proceedings INTERSPEECH 2017, 17th Annual Conference of the International

Speech Communication Association (San Francisco, CA), 495–499.

Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F., et al.

(2013). “The INTERSPEECH 2013 computational paralinguistics challenge:

social signals, conflict, emotion, autism,” in Proceedings of INTERSPEECH

(Lyon), 148–152.

Scissors, L. E., Gill, A. J., and Gergle, D. (2008). “Linguistic mimicry and trust in

text-based cmc,” in Proceedings of the ACM Conference on Computer Supported

Cooperative Work (San Diego, CA), 277–280.

Seibt, B., Mühlberger, A., Likowski, K., andWeyers, P. (2015). Facial mimicry in its

social setting. Front. Psychol. 6:1122. doi: 10.3389/fpsyg.2015.01122

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556.

Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., et al.

(2009). Universals and cultural variation in turn-taking in conversation. Proc.

Natl. Acad. Sci. U.S.A. 106, 10587–10592. doi: 10.1073/pnas.0903616106

Sun, X., Nijholt, A., Truong, K. P., and Pantic, M. (2011a). “Automatic visual

mimicry expression analysis in interpersonal interaction,” in Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW) (Colorado Springs, CO), 40–46.

Sun, X., Truong, K. P., Pantic, M., and Nijholt, A. (2011b). “Towards visual

and vocal mimicry recognition in human-human interactions,” in 2011 IEEE

International Conference on Systems, Man, and Cybernetics (Anchorage, AK:

IEEE), 367–373.

Surakka, V., and Hietanen, J. K. (1998). Facial and emotional reactions

to duchenne and non-duchenne smiles. Int. J. Psychophysiol. 29, 23–33.

doi: 10.1016/S0167-8760(97)00088-3

Swaab, R. I., Maddux,W.W., and Sinaceur,M. (2011). Early words that work: when

and how virtual linguistic mimicry facilitates negotiation outcomes. J. Exp. Soc.

Psychol. 47, 616–621. doi: 10.1016/j.jesp.2011.01.005

Tian, Y.-I., Kanade, T., and Cohn, J. F. (2001). Recognizing action units for

facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intellig. 23, 97–115.

doi: 10.1109/34.908962

Tickle-Degnen, L., and Rosenthal, R. (1990). The nature of rapport

and its nonverbal correlates. Psychol. Inquiry 1, 285–293.

doi: 10.1207/s15327965pli0104_1

Tschacher, W., Rees, G. M., and Ramseyer, F. (2014). Nonverbal

synchrony and affect in dyadic interactions. Front. Psychol. 5:1323.

doi: 10.3389/fpsyg.2014.01323

Valdesolo, P., Ouyang, J., and DeSteno, D. (2010). The rhythm of joint action:

synchrony promotes cooperative ability. J. Exp. Soc. Psychol. 46, 693–695.

doi: 10.1016/j.jesp.2010.03.004

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning (Helsinki: ACM),

1096–1103.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Amiriparian, Han, Schmitt, Baird, Mallol-Ragolta, Milling,

Gerczuk and Schuller. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 10 November 2019 | Volume 6 | Article 116

https://doi.org/10.3389/fnhum.2012.00214
https://doi.org/10.3389/fnhum.2015.00129
https://doi.org/10.1007/s10919-006-0014-2
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1007/s12193-009-0028-2
https://doi.org/10.3389/fpsyg.2018.00052
https://doi.org/10.1080/00332747.1964.11023403
https://doi.org/10.3389/fpsyg.2015.01122
https://doi.org/10.1073/pnas.0903616106
https://doi.org/10.1016/S0167-8760(97)00088-3
https://doi.org/10.1016/j.jesp.2011.01.005
https://doi.org/10.1109/34.908962
https://doi.org/10.1207/s15327965pli0104_1
https://doi.org/10.3389/fpsyg.2014.01323
https://doi.org/10.1016/j.jesp.2010.03.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Synchronization in Interpersonal Speech
	1. Introduction
	2. Related Work
	3. Dataset and Features
	3.1. The SEWA Video Chat Dataset
	3.2. Acoustic Features
	3.3. Deep SpectrumFeatures

	4. Behavior Similarity Tendency Analysis With Autoencoder
	4.1. Experimental Settings
	4.2. Results and Discussion

	5. Linguistic Behavior Analysis and Similarity Patterns
	6. Conclusion and Outlook
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


