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A B S T R A C T

Spatial and temporal variability of meteorological variables across urban areas due to differences
in land surface characteristics is a common phenomenon. Most pronounced is the effect of land
cover on air temperature. In this study, parametric and non-parametric statistical approaches
(stepwise multiple linear regression, random forests) were applied in order to model sub-daily
and daily spatial patterns of the urban heat island intensity in the major city of Augsburg,
Southern Germany, and its rural surroundings. A large number of model setups utilizing variables
from different land surface data sets as predictors and taking into account different seasonal,
daily and meteorological situations was examined. The results were compared concerning dif-
ferent measures of model performance (mean squared skill score, mean squared error, explained
variance). For individual setups and situations considerable skill with a mean squared skill score
of up to 0.85 was reached. The best performing models were obtained from multiple linear re-
gression for situations with low wind speeds and cloud cover in the morning and evening.
Selected models were utilized to derive continuous spatial distributions of the air temperature
deviations from a rural reference station. The resulting maps can be useful for various applica-
tions, e.g. in the context of urban planning.

1. Introduction

In urban areas, air temperature generally reaches higher magnitudes compared to the rural surroundings. This phenomenon, first
observed in London by Luke Howard in 1833 (Oke, 1982), and since then known as the urban heat island (UHI) has been investigated
thoroughly for several decades (Tyson et al., 1972; Arnfield, 2003; Stewart, 2011; Deilami et al., 2018). However, spatial air tem-
perature differences are not only observable between urban and rural locations but also occur within cities (e.g. Spronken-Smith and
Oke, 1998; Fenner et al., 2017; Skarbit et al., 2017; Beck et al., 2018).

These differences in thermal characteristics correspond to varying land cover types and are a result of variations in the energy
balances of these surfaces (Oke, 1982). The energetic properties of artificial urban surfaces differ from those of natural surfaces due to
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distinctions in thermal conductivity, heat capacity, water permeability and albedo (Oke, 1988). Thus, intra-urban vegetation such as
single trees, ground vegetation, green roofs, gardens, forests or parks can reduce urban air temperatures, e.g. by shading and in-
creasing the latent heat flux (Oláh, 2012; Bowler et al., 2010). Sufficiently large vegetated areas tend to generate a so-called park cool
island (PCI) with lower air temperatures compared to the adjacent built-up areas, sometimes affecting not only the green space itself
but also its surroundings (e.g. Jáuregui, 1975; Upmanis et al., 1998; Wang et al., 2018). Another cause for the formation of an UHI are
the geometric features of buildings, specified by e.g. the height-to-width ratio of urban street canyons or the sky view factor (Oke,
1981; Unger, 2004). Moreover, anthropogenic heat emissions alter the urban energy balance to a larger extent than the rural one
(Oke, 1988; Hinkel et al., 2003). The UHI intensity follows a distinct daily as well as annual cycle with highest values usually
occurring several hours after sunset during summer in temperate climates (e.g. Erell and Williamson, 2007; Wienert et al., 2013;
Arnds et al., 2017) and during the dry season in tropical climates (e.g. Chow and Roth, 2006; Roth, 2007; Jongtanom et al., 2011).
Besides, mesoscale conditions can alter this distinct periodicity, e.g. sea breeze can reduce summerly UHI intensities in coastal cities
(e.g. Kim and Baik, 2002; Kim and Baik, 2004). During summer daytime, the formation of an urban cool island is possible with the
occurrence of lower urban air temperatures compared to the rural surroundings (Oke, 1993; Yang et al., 2017). Besides, UHI in-
tensities greatly depend on the meteorological conditions where cloudless and calm weather favours the development of large
temperature differences between urban and rural areas (e.g. Oke, 1982; Morris et al., 2001; Alonso et al., 2007). Wind, on the other
hand, diminishes UHI intensities (e.g. Oke, 1982; Morris et al., 2001; Konarska et al., 2015) and can cause a relocation of the areas
with elevated temperatures (Gedzelman et al., 2003; Vicente-Serrano et al., 2005).

Knowledge of the spatially and temporally varying thermal conditions within urban areas is becoming increasingly important
especially as advancing urbanization results in an increase of UHI intensities (Pauleit et al., 2005; Kim and Baik, 2004) also discussed
within the concept of urban heat archipelagos (e.g. Unger, 2004). Accompanied by current climate change this causes additional heat
stress in urban areas (Chapman et al., 2017; Wouters et al., 2017). Elevated outdoor air temperatures have an impact on human
thermal comfort, but can also have more severe consequences as they contribute to an increase of heat induced morbidity and
mortality (e.g. Basu, 2009; Guo et al., 2014). Therefore, the results of spatio-temporal models for air temperature are of great
relevance e.g. for urban planning (e.g. Goosen et al., 2014), the selection of appropriate heat mitigation strategies (e.g. Kim et al.,
2018) and the calculation of human-biometeorological indices (e.g. Matzarakis et al., 2008).

Numerous studies used different statistical methods to estimate spatio-temporal UHI development with temporal analysis focusing
on seasonality and the daily cycle (e.g. Chow and Roth, 2006; Jongtanom et al., 2011), the influence of weather conditions (e.g.
Morris et al., 2001; Kim and Baik, 2004; Alonso et al., 2007; Hoffmann et al., 2012) or changes due to urbanization (e.g. Pauleit et al.,
2005; He et al., 2007). Spatial patterns were related to land cover characteristics (e.g. Eliasson and Svensson, 2003; Suomi and
Käyhkö, 2012; Konarska et al., 2015; Tong et al., 2018). Multiple linear regression (MLR) based models were applied frequently and
often reached considerable goodness of fit as shown e.g. by Unger et al. (2001) for Szeged, Hungary, Bottyán et al. (2005) for
Debrecen, Hungary, Alcoforado and Andrade (2006) for Lisbon, Portugal, Szymanowski and Kryza (2012) for Wrocław, Poland,
Buttstädt and Schneider (2014) for Aachen, Germany, Heusinkveld et al. (2014) for Rotterdam, Netherlands, Ketterer and Matzarakis
(2015) for Stuttgart, Germany as well as Bernard et al. (2017) for Nantes, Angers and La Roche-sur-Yon in western France. While MLR
belongs to the linear parametric approaches and is a well-established method in climate science (Wilks, 2006), another, relatively
new statistical approach successfully utilized to derive spatio-temporal patterns of air temperature were Regression Trees, e.g.
Random Forests (RF). They were introduced by Breiman (2001) and are a non-parametric machine learning method, which is able to
model non-linear processes (Breiman, 2001; Hastie et al., 2009). RF often result in high model performance, when applied e.g. by
Hart and Sailor (2009) for Portland, Oregon, Hjort et al. (2011) for Turku, Finland, Ho et al. (2014) for Vancouver, Canada, and
Makido et al. (2016) for Doha, Qatar, which makes them a promising approach.

An initial study by Beck et al. (2015) showed stepwise MLR and RF to be suited for modelling spatial patterns of intra-urban air
temperature in the urban area of Augsburg, Southern Germany. The aim of the present study is the evaluation and comparison of
various setups of stepwise MLR- and RF-based statistical models used for estimating spatial patterns of mean hourly and mean daily
air temperature deviations in the city of Augsburg and its surroundings from a rural reference station. A large set of land use/land
cover characteristics is available as predictors for the models. Different situations discriminated according to season, time of the day
and synoptic conditions are taken into account. Finally, selected models are transferred to a regular grid to obtain continuous spatial
air temperature distributions.

In Section 2 the study area is characterized, a description of the available data is given and the methodology is described. A
presentation of the results follows in Section 3, their discussion in Section 4. Finally, chapter 5 draws some main conclusions.

2. Material and methods

2.1. Study area

Augsburg is located in Bavaria, Southern Germany, (48.37°N; 10.90°E) (Stadt Augsburg, 2015) on an average elevation of
485m a.s.l. (LDBV 2016). It has 288.653 inhabitants (effective December 2016, Stadt Augsburg, 2017) or 372.422, respectively, if the
directly neighbouring municipalities of Königsbrunn, Stadtbergen, Gersthofen and Friedberg are included (Stadt Königsbrunn, 2018,
Stadt Stadtbergen, 2018, Stadt Gersthofen, 2018, Stadt Friedberg, 2018). The elevation within the region of Augsburg varies by 89m
(LDBV, 2016). The study region covers an area of 9×10 km2 (Fig. 1). The city centre and as well some parts near the outskirts are
characterized by built-up areas with percentages of sealed surface of> 80% (based on the European Urban Atlas, cf. Section 2.3).
Two rivers, framed by vegetated areas, traverse the city from south to north. A large forested area is situated to the southwest of
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Augsburg in the rural surroundings. Another forest, most of which is included in the study area, lies in the southeast of the city. Fig. 1
shows the setting using land surface data from Open Street Map (cf. Section 2.3). A map of the European Urban Atlas data (cf. Section
2.3) for the same area is presented in Appendix A.

According to the Köppen-Geiger climate classification, Augsburg belongs to type Cfb, which corresponds to a warm temperate
climate with humid conditions throughout the year (Kottek et al., 2006). Annual mean temperature amounts to 8.4 °C with maximum
values in July. Measured UHI intensities in the most densely built-up areas of the study region reach mean values of up to 5 °C in
summer for calm and clear nocturnal situations when highest air temperature differences between distinct environments tend to
occur (Beck et al., 2018). The most frequent wind direction is southwest.

2.2. Meteorological data

The meteorological database includes a measurement network of HOBO pro v2 U23–001 data loggers (Onset, 2010) recording air
temperature and relative humidity with a temporal resolution of four minutes. It is operated in collaboration of the Institute of
Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health and the Institute of Geography,
University of Augsburg. The network has been running since December 2012 and comprises altogether 82 measurement sites, cur-
rently 49 of them in operation. Data of 77 stations in the period from December 2012 until January 2017 were utilized for the
analysis presented here. The measurement sites are located in the urban area of Augsburg and its rural surroundings and represent
different types of surface cover and land use (cf. Fig. 1, Appendix B). The instruments are mounted in measurement heights between
1.5m and 2.3m above the ground due to reasons of feasibility and secureness (Beck et al., 2018). The data have been quality checked
via a validation procedure including a fixed range test and persistence test (Estévez et al., 2011), a step test (Shafer et al., 2000) as
well as tests for spatial and temporal outliers (Gandin, 1988). Here, “spatial outliers” refer to values, which are unrealistic with regard
to the measurements at other stations within the network at the same time, and “temporal outliers” are unrealistic values with regard
to the season in which they were recorded. C.f. Beck et al. (2018) for a more detailed description of the conducted tests. For the
further procedure, the data values, which passed all tests, were aggregated to hourly and daily mean values. There are large dif-
ferences in data availability between the stations, ranging from 5% to 95% of missing observations with an average availability of
50% for the hourly values. This is due to the fact that some stations were relocated or operated for only several months during the
study period, while nearly continuous measurements are available at other sites (Beck et al., 2018). For information on the char-
acteristics of the individual measurement sites and their surroundings see Appendix B.

A station from the German Meteorological Service (DWD), providing hourly and daily meteorological data, has been used as rural
reference station for the calculation of mean hourly and mean daily (0 a.m. to 12 p.m.) temperature deviations of the HOBO loggers.
Besides, hourly and daily observations have been utilized for the characterization of different synoptic conditions based on wind
speed and cloud cover. The station is situated north of Augsburg at the airport of Mühlhausen (48.4254°N; 10.9420°E) (DWD Climate

Fig. 1. The city of Augsburg and its surroundings, including the study area (within the box with dashed border) with locations of HOBO logger
stations as well as the rural reference station (“DWD station”) and coverages of selected land surface categories. White areas indicate missing land
cover information (land surface data: Open Street Map).
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Data Centre, 2017). The measurement site is surrounded by agricultural land. According to the local climate zone (LCZ) concept by
Stewart and Oke (2012), the station lies within the LCZ “low plants” (Beck et al., 2018).

Furthermore, air temperature data from automatic weather stations situated at the University and the University of Applied
Sciences of Augsburg were available. They were used for comparisons of the HOBO logger data at these respective sites with another,
more reliable device, in order to estimate the quality of the HOBO logger data in addition to the previously mentioned quality control.
The results show reasonably well agreements between HOBO loggers and the automatic weather stations, with a bias of 0.26 °C at the
University and 0.04 °C at the University of Applied Sciences and a slight underestimation of the temperature maxima by the HOBO
loggers (cf. Appendix C). Thus, the comparison confirms that the HOBO loggers provide a suitable data basis for this study.

2.3. Land surface characteristics

Data on surface characteristics originate from the open access databases of Open Street Map (OSM) (Geofabrik, 2016) and
European Urban Atlas (UA) (EEA, 2010), respectively. The OSM data is based on crowd sourcing and thus, it consists of information
from mapping with GPS devices as well as freely available satellite data and maps. Due to the dependency on the contribution of
volunteers, the horizontal resolution, accuracy and completeness are spatially inhomogeneous (Haklay and Weber, 2008). A free
version, which is updated daily but does not contain all layers, is available as vector data (Geofabrik, 2016). Areas with missing
information in the OSM dataset amount to approximately 7.8% of the study area (cf. Fig. 1). The UA data are provided by the
European Environment Agency (EEA) for European urban areas with>100,000 inhabitants in the form of vector data. They are
based on remote sensing data, topographic maps as well as street navigation data and soil sealing data of the EEA. The UA version
utilized in this study is based on data from the years 2005 and 2009, respectively, and fully covers the study region. The size of the
smallest mapped element amounts to 0.25 ha (EEA, 2011; EEA, 2016).

Different land use/land cover characteristics from both data sets that are presumably relevant for the spatial air temperature
distribution were taken into account. For OSM this comprises the categories “buildings”, “roads”, “railway”, “water”, “parks” (urban
green spaces), “forest”, “meadow” and “agriculture”. For UA five categories of “urban fabric” characterizing different percentages of
sealed area (> 80%, 50% - 80%, 30% - 50%, 10% - 30% and < 10%, respectively), “Roads”, “Railways”, “Industrial, commercial,
public, military and private units”, “Agricultural areas, semi-natural areas and wetlands”, “Forest”, “Water” and “Green urban areas”
were considered. Area percentages of these land use/land cover types were calculated using quadratic buffer zones of varying sizes
(edge lengths of 500m, 250m, 100m, 50m and 25m, respectively) around the logger stations as well as for a regular grid with
spatial resolution of 50m and additionally for presumed source regions of advective air flow. These source regions were defined as
quadratic zones southwest of a given logger location in accordance with the most frequent wind direction in Augsburg, with the
logger lying in the north-eastern corner of the respective buffer zone. Thereby, varying edge lengths of 500m, 250m, 100m, 50m
and 25m, respectively, were applied, too.

The UA data were used to calculate the additional variables “distance to areas with potential cooling effect” defined as water-
bodies and vegetated areas as well as “distance to the city centre”. As the city of Augsburg is not concentric in shape and the density
of built-up areas does not decrease continuously from the centre to the edge of the city, a single central area could not be defined.
Instead, densely built-up polygons of considerable size were detected within the centre of each city district via the coverage by the UA
land cover class “continuous urban fabric (sealed layer> 80%)” and defined as “densely built-up areas”. The variable “distance to the
city centre” was calculated as the distance of each HOBO logger or grid cell, respectively, to the nearest “densely built-up area”.

Furthermore, the sky view factor (SVF) was calculated from fish-eye photographs for the HOBO logger stations in operation
during summer 2017 utilizing the RayMan 1.2 software (Matzarakis et al., 2007) in order to consider geometric features. The SVF is
available for 48 stations, which corresponds to 62% of the stations used in this study. Finally, the surface elevation was included,
which originates from a digital terrain model from the Bavarian State Office for Survey and Geoinformation with a spatial resolution
of 25m and an accuracy of 2–3m (LDBV 2016).

2.4. Statistical modelling approaches and model setups

2.4.1. Modelling approaches
Two different statistical modelling approaches were applied in order to derive spatial patterns of air temperature deviations from

the rural reference station for the study area based on a large number of explanatory variables. These predictors are spatial variables,
some of which are included in the form of area percentages by utilization of different buffer zone sizes. A result of that is a close
correlation among some of the independent variables. In order to reduce this multicollinearity in the predictor data set and thus the
impact of overfitting, a pre-selection of the land use/land cover categories available in different buffer zone sizes was carried out. For
this purpose, correlations between air temperature deviations from the reference station and the area percentages of these predictors
around the logger sites were calculated and tested for significance (α= 0.05 for MLR and α=0.1 for RF, respectively, due to the –
according to Breiman (2001) – robustness of RF when including relatively weak predictors). For each land cover type, only the buffer
zone size variant with highest significant correlation to the predictand was included in the fitting procedure, types with no significant
correlation were omitted, which affected every type in at least one model setup.

Multiple linear regression is a parametric approach that fits a linear equation, which best represents the relation between the in-
dependent variables and the predictand, based on the minimization of the sum of the squared residuals (Wilks, 2006). The MLR models
were fitted using the R software. Here, a stepwise approach for predictor selection, including both forward selection and backward
elimination in combination, was applied, based on the minimization of the Akaike Information Criterion (AIC) (Akaike, 1974).
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Random Forests is a non-parametric, non-linear machine learning approach, based on a large number of uncorrelated, equally
distributed decision trees (Breiman, 2001). In this study, the RF models were fitted including 1500 regression trees each. The number
of variables used as candidates for each split was determined by an optimization algorithm from the R package “randomForest” (Liaw
and Wiener, 2002). It searches for the optimal value starting from the default value of one third of the number of input variables. The
minimum size of the terminal nodes was set to 5, which is the default for regression trees (Liaw and Wiener, 2002).

Missing land use/land cover information are treated as a coverage of 0% of the respective type. Thus, for areas with incomplete
data the area percentages within the quadratic buffer zones around the logger sites as well as the pixels of the grid for the whole
model region do not sum up to 100%. Consequently, for these areas the modelled air temperatures are based only on those variables
which are both available area wide (e.g. elevation) and included in the model equation.

2.4.2. Model setups
The statistical models were fitted for different situations separately, taking into account the meteorological season (March to May

Table 1
Characterization of different modelled situations regarding season, time of day and meteorological conditions.
Differentiation according to temporal aspects

Season
spring: MAM, summer: JJA, autumn: SON, winter: DJF

Times of day
Variant 1): mean values for fixed time spans [UTC+1]
morning: 4:00–7:00, noon: 12:00–15:00, evening: 20:00–23:00
Variant 2): times of day or mean values for time spans, respectively, varying according to the season [UTC+1]

MAM JJA SON DJF
Morning 6:00 4:00 6:00 7:00
Noon 12:00 13:00 12:00 12:00
Evening 20:00 21:00–22:00 20:00 18:00–19:00

Variant 3) daily mean values
Meteorological situations (including consecutive numbering) based on wind speed [ms−1] and cloud cover [octas]

Wind speed
< 2ms−1 2–7ms−1 >7ms−1

Cloud cover 0–3 octas (1) Calm and clear (3) Moderate and clear (5) Windy and clear
> 3 octas (2) Calm and cloudy (4) Moderate and cloudy (6) Windy and cloudy

Table 2
Overview of different model setups regarding the predictors included in the fitting procedure as well as the temporal resolution of the resulting
model (sub-daily or daily, respectively). The two columns to the right give the denotation used for the model variants in the presentation of the
results (abbreviations: OSM: Open Street Map, UA: Urban Atlas, SVF: Sky view factor).
Model setups

OSM-based
UA-based

Setup including all predictors, based on sub-daily mean values for selected (fixed) times of day
“OSM”
”UA”
Setup including all predictors, based on sub-daily mean values accounting for seasonal variation

“OSM adj. time”
“UA adj. time”
Setup without SVF, based on sub-daily values for selected (fixed) times of day

“OSM w/o SVF”
“UA w/o SVF”
Setup summarizing selected land use/land cover categories, based on sub-daily values for selected (fixed) times of day

“OSM built-up”
–
Setup utilizing land use/land cover parameters (all predictors) of source areas, based on sub-daily values for selected (fixed) times of day

“OSM source”
–
Setup including all predictors, based on daily mean values

“OSM daily”
“UA daily”
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(“MAM”), June to August (“JJA”), September to November (“SON”) and December to February (“DJF”)), time of day and meteor-
ological conditions (cf. Table 1). While it is also common to include meteorological parameters as temporal explanatory variables
(e.g. Shi et al., 2018), a similar stratification of the input data in order to derive models for different situations has been successfully
applied in other studies (e.g. Eliasson and Svensson, 2003). In this study, the selected times of day were morning (before sunrise),
noon (maximum solar elevation) and evening (after sunset). In different model setups, times of day were differentiated utilizing
either mean values for fixed time spans, varying times according to seasonal variations of the hour of sunrise, maximum solar
elevation and sunset or daily mean values, respectively. Six different synoptic situations reaching from “calm and clear” to “windy
and cloudy” were defined referring to wind speed and cloud cover from the rural reference station. This classification was based on
hourly observations for the sub-daily models and on daily observations for the daily models. The division into seasonal subsets as well
as the threshold values for the times of day and the weather conditions (cf. Table 1) were derived from the studies by Kuttler et al.
(1994), Eliasson and Svensson (2003), Alonso et al. (2007) and Wienert et al. (2013). The upper threshold value for the wind speed
results from the empirical equation by Wienert et al. (2013), which calculates a wind speed above which an UHI is not expected to
develop based on the number of inhabitants of the city. The resulting models represent estimations of average air temperature
deviations between the logger stations and the reference station for each of the different situations. This stratification results in 72
sub-daily (four seasons, three times of the day, six meteorological classes) and 24 daily situations (four seasons, six meteorological

Fig. 2. MSSS for all MLR-based and RF-based sub-daily and daily model variants (fitted models), seasonal subsets (MAM, JJA, SON, DJF), times of
day (morning, noon, evening) and synoptic conditions (Met1: calm and clear, Met2: calm and cloudy, Met3: moderate wind speed and clear, Met4:
moderate wind speed and cloudy, Met5: windy and clear, Met6: windy and cloudy). White signatures indicate that models could not be fitted in
these situations due to missing temperature observations.
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classes), for each of which the various model setups described in the following passage were tested.
Different model variants including selected, predefined subsets of the independent variables were evaluated for each of the

situations described above. Variants incorporating all available types of predictors were fitted separately using OSM- and UA-based
land use/land cover data, respectively. A further setup considered all predictors but SVF, because this variable is only available for
part of the logger locations and thus cannot be used for estimating continuous spatial air temperature patterns for the whole study
area. Another variant included the summarized land cover classes “built-up area” composed of the OSM-based land cover classes
“buildings”, “roads” and “railway” as well as “low vegetation” composed of “meadow” and “agriculture” in addition to the other
OSM-based predictors. Furthermore, a model setup using land cover properties of source regions of advective air flow instead of on-
site characteristics was tested for situations with a wind direction between 180° and 270° according to the definition of the source
areas (cf. Table 2).

2.4.3. Assessment of model performance and predictor importance
In this study, the model performance of the fitted models was assessed via different scores, e.g. the explained variance (R2), which

is the square of the Pearson correlation coefficient (Wilks, 2006). Besides, the mean square error (MSE) was utilized. It is calculated
from the square of the deviations between observed and modelled values. Thus, it takes positive values, where smaller values indicate
higher model quality. A drawback of the MSE is its sensitivity to outliers (Wilks, 2006). Another way to assess the model performance
are skill scores, which describe the accuracy of a model compared to a reference, e.g. the climatological mean. They become unity for
a perfect model and take negative values, if the reference fits better than the respective model. Here, the mean square skill score
(MSSS) (Murphy, 1988) was calculated. Furthermore, R2 from leave-one-out cross validation (LOOCV) was calculated for MLR. As
MLR is sensitive to overfitting, cross validation is a common method to evaluate the model performance for test data in comparison
with the training data. Small differences between R2 of the fitted models and R2 from cross validation indicate good transferability of
the model equation to test data and thus confirm the validity of the models (Wilks, 2006).

The relative importance of individual predictors was examined using averaging over orderings for MLR. This method decomposes
the explained variance of a model into the contributions of individual predictors to the overall explained variance. It can also be
interpreted as the decrease of R2 of a model if the respective predictor was not included (Grömping, 2006; Grömping, 2007). For RF-
based models, the predictor importance was assessed utilizing the permutation importance, which is calculated from data excluded
from the fitting procedure (out-of-bag data). It is given as the increase of the MSE in percent and can be interpreted as the dete-
rioration of the model if the respective predictor was not included (Breiman, 2001).

3. Results

3.1. Model performance

The following section presents the performance of the resulting statistical models using the MSSS, the MSE, and in the case of
MLR-based approaches, also the difference between R2 and R2 from LOOCV. At first, differences in the quality of models for different
seasons, times of day and weather conditions are shown, then the differences between model setups with regard to predefined

Fig. 3. Mean R2 and R2 from leave-one-out cross-validation over all model setups and seasons for MLR-based models.
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predictor combinations and temporal resolution are considered. In general, both MLR- and RF-based models show considerable model
performances for individual situations and setups (Fig. 2).

3.1.1. Differences between seasons, times of the day and weather conditions
Fig. 2 shows the MSSS for all model variants and situations as well as both statistical approaches. For both, MLR and RF, the

models with highest performance for sub-daily as well as daily variants occur for low to intermediate wind speeds, especially for
situations in spring, summer and autumn. In winter, highest MSSS are reached also for low to intermediate wind speeds, while models
for situations with high wind speeds are among those with lowest performance. Differences between clear and cloudy situations are
less pronounced. The MSSS for sub-daily variants shows that the best models are obtained for morning and evening, whereas for noon
the resulting values of the MSSS are lower (Fig. 2). For some situations, no models could be fitted due to missing air temperature
observations within the respective classes.

For sub-daily models, values of the MSSS up to 0.85 for MLR and 0.7 for RF are reached in the fitting procedure. For the daily
variants, similar maxima of the MSSS are obtained (Fig. 2). As visible in Fig. 2, not only the MSSS values of the best-performing
models are lower for RF than MLR, but also they are lower for most of the other situations and setups. Besides, the best MLR-based
models have R2 of up to 0.85 (Appendix D) and MSE of minimum values of 0.02 °C, for RF-based models R2 reach up to 0.71 and the
best MSE values amount to 0.03 °C (not shown). Thus, model performance is altogether worse for RF- than for the MLR-based
approaches, but still robust models for different situations could be obtained (Fig. 2).

For MLR, the differences between R2 from the fitting procedure and R2 from leave-one-out cross validation are presented in Fig. 3.
Mean values of these performance measures of different model setups and seasons confirm that the best models are obtained for
situations in the morning and evening with low to moderate wind speed and varying cloudiness. R2 from LOOCV is altogether

Fig. 4. Box-whisker plots of performance measures for MLR- and RF-based model variants: MSSS and MSE [°C] for different OSM- and UA-based
model setups as well as for setups utilizing daily and sub-daily values, respectively. The boxes show the median as well as the 1st and 3rd quartile
(lower/upper boundary of the box, respectively), whiskers indicate the 1.5-fold interquartile range from the upper/lower boundary of the box. Each
box contains the model variants for different seasons (MAM, JJA, SON, DJF) as well as meteorological situations (Met 1 – Met 6) and in the case of
sub-daily models different times of day (morning, noon, evening), too. Numbers above the boxes indicate the sample size (number of models)
contained in each box.
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between 0.1 and 0.2 lower than R2 from the fitted model. Most of the models for windy conditions at different times of the day as well
as models for varying weather situations at noon show R2 below 0.5 and R2 from LOOCV below 0.3 (Fig. 3). Maxima of R2 from
LOOCV of up to 0.8 are reached for individual models (not shown), with reductions of< 0.1 compared to R2 of the fitted models
(Appendix D). Besides it should be mentioned, that MSSS and R2 are identical or differ only slightly in most cases (not shown). When
these two scores are identical, the models have no bias (Déqué, 2003).

3.1.2. Comparison of different model setups
Model variants with different combinations of predictors each result in large variations in the performance of models for different

seasonal, daily or meteorological situations (Fig. 2 and Fig. 4). Box-whisker plots of the performance measures for different model
variants show that in most cases, highest MSSS exceed 0.8 for MLR-based models and 0.7 for RF-based models, respectively. The
worst MLR-based models have MSSS below 0.2, for RF-based models, the MSSS becomes negative in several cases (Fig. 4 top).
Considerable variations are also present in the MSE of the variants, being close to 0 °C for the best models but exceeding 1 °C for the

Fig. 5. Predictor importance averaged over all model variants and setups for variables with a considerable contribution to the model quality
(contribution to R2 of ≥10% for MLR and increase of MSE≥10% for RF). For MLR-based approaches, the mean contribution to the overall
explained variance of selected predictors is presented. For RF-based approaches, the predictor importance is expressed as the mean increase of the
MSE if the respective predictor was excluded. Numbers above the bars indicate the number of model setups in which the respective predictor is
included. Blue bars and numbers indicate the most important and the most frequently included explanatory variables, respectively. X-axis labels
indicate predictor variable and – if available – size of included buffer zone [m]. dist. Centre= distance to the city centre, lowveg= low vegetation,
S.L. = urban fabric, sealed layer x%, semi nat.= agricultural areas, semi-natural areas and wetlands, diff. Built-up= Industrial, commercial, public,
military and private units, green urb.= green urban areas. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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worst (Fig. 4 bottom). Differences in the overall performance of individual setups are visible in the medians of the performance
measures. For MLR, OSM- as well as UA-based model setups including seasonal variation of the times of day (“adj. time”) reach
highest medians of the MSSS of 0.6, the medians of the MSE values lie below 0.2 °C (Fig. 4 left). For RF, the OSM-based setups with all
predictors (“OSM”), adjusted times of day (“adj. time”) and summarized categories (“built-up”) reach equally high performance with
medians of the MSSS around 0.45 and medians of the MSE around 0.25 °C (Fig. 4 right). Models excluding the SVF (“w/o SVF”),
especially the UA-based variants, are among those with lowest MSSS and highest MSE. The OSM-based setup using the land use/land
cover information of source regions of advective airflow (“source”) also results in relatively poor MSSS, but its MSE is comparably
low. For both approaches, daily models have considerably higher MSSS with medians around 0.7 and 0.5 for MLR- and RF-based
models, respectively, and OSM-based models performing better than UA-based ones. Negative values do not occur. The medians of
the MSE for daily models are close to 0 °C, the maxima lie below 0.5 °C for both approaches and consequently are lower than for the
sub-daily variants (Fig. 4).

As also visible in Fig. 2, the boxplots show, too, that the overall performance of RF is slightly worse than for MLR, with con-
siderably lower median values of the MSSS for all setups and slightly higher MSE for many setups (Fig. 4).

For MLR, the differences between the explained variances from the fitted models and the leave-one-out cross validation are small
for some setups. The medians of the differences for the UA-based models reach about 0.2 and accordingly are higher compared to the
OSM-based setups, whose medians lie distinctly below 0.2. Small differences between R2 and R2 from LOOCV are reached especially
for the “OSM built-up” setup, with a median of about 0.1 (cf. Appendix D).

3.2. Predictor importance

Fig. 5 presents the average predictor importance of selected explanatory variables for MLR and RF as well as both land use/land
cover data sets over all model variants and setups. The most important predictors for both model approaches include variables
describing artificial surfaces, thus the categories “buildings”, “built-up” and “roads” for OSM-based approaches as well as “urban
fabric” with different percentages of sealed layer for UA-based approaches. These predictors are important in the buffer zone sizes
larger than 100m. Furthermore, the distance from the city centre, the SVF as well as the surface elevation contribute substantially to
the explained variance of the models. They have lower values of the respective predictor importance measures in many cases but they
are included frequently (Fig. 5). Predictors describing natural surfaces are less important. For OSM-based approaches, “forest” is the
most important of the natural types, classes describing low vegetation and water are less important. Here, land use/land cover
characteristics within larger buffer zones are also more important than in the closer surrounding of the respective site. In the UA-
based setups, the only important natural type is “agricultural areas, semi-natural areas and wetlands” for RF-based models (Fig. 5).

3.3. Spatial patterns of air temperature

Spatial patterns of the air temperature deviations from the rural reference station in the urban area of Augsburg were derived
from the OSM-based model setup with fixed daytimes but without SVF, as this predictor was only available for selected sites. The
patterns show distinct spatial differences of the air temperature deviations from the rural reference station. Exemplary situations are
displayed in Fig. 6. In general, MLR- and RF-based models show similar patterns. In both approaches, highest air temperatures occur
in densely built-up areas in the city centre and the central parts of the city districts. Large vegetated areas within the city are cooler,
but the effect of small parks is not visible in the models. The lowest air temperatures occur on the unsealed areas surrounding the city,
especially in the forest in the south-eastern part of the study area (10.91°E-10.94°E, 48.33°N-48.35°N). Sometimes these parts are
even cooler than the rural reference station (Fig. 6). The temperature differences within the urban area of Augsburg are highest in
calm and clear situations, especially in summer in the evening, when they exceed 6.0 °C in the MLR-based model and amount up to
5.5 °C in the RF-based setup (Fig. 6, middle). Intermediate temperature differences of up to 2.5 °C for MLR and 2.0 °C for RF occur e.g.
in clear situations with moderate wind speeds in the morning in spring (Fig. 6, top). In addition to wind speed, cloudiness also
contributes to a reduction of the air temperature differences within the study region. In cloudy situations, temperature elevation
compared to the rural reference station amounts to e.g. 1.5 °C for autumn, evening and moderate wind speed for both, MLR and RF
(Fig. 6, bottom), or 2.0 °C for winter, morning and calm conditions (not shown). Comparatively low temperature differences within
the study area are also modelled at noon. In these situations, temperatures higher than those of the reference station occur only in the
areas with highest density of buildings (not shown). Differences between the situations appear also in the spatial extent of the
warmest parts of the city, with larger areas affected in situations with large temperature deviations within the study area (e.g. Fig. 6
middle and bottom for RF-based results). The similarity between the resulting air temperature patterns of MLR and RF also becomes
apparent in the close correlation between them, with values of 0.9 and higher for the exemplary situations (cf. Appendix E).

The absolute differences between the patterns are small for most parts of the study region for the two situations with moderate
wind speed, but reach magnitudes of up to 1.5 °C at some locations for the calm and clear situation in the evening in summer (cf.
Appendix E). Major differences between the two methods concern an area north of the city centre (around 10.89°E, 48.39°N), which

Fig. 6. Exemplary results of estimated spatial distributions of air temperature deviations from the rural reference station including model perfor-
mance measures for three selected situations as well as for both statistical model approaches: spring, morning, moderate wind speed and clear (top),
summer, evening, calm and clear (middle) and autumn, evening, moderate wind speed and cloudy (bottom) as well as MLR (left), RF (right).
Displayed are the results for the sub-daily OSM-based model setup without SVF (“OSM w/o SVF”) for the study area as defined in Fig. 1.
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appears to be as warm as the city centre in the MLR-based models but is notably cooler in the RF-based approaches. As there are no
measurements available for this specific area, a direct comparison of the statistical models with observations is not possible. Besides,
the forested areas in the southeast (10.91°E-10.94°E, 48.33°N-48.35°N) and southwest (10.82°E-10.83°E, 48.34°N-48.36°N) of the
model region are cooler in the MLR-based model (Fig. 6, middle). Thus, differences between the model approaches concern as well
the estimated range of air temperature differences within the study area, which appear to be slightly smaller in the RF-based models
compared to the MLR-based models. This is also visible in the maps showing the differences between MLR- and RF-based patterns,
where positive and negative deviations are present in every example (cf. Appendix E). Besides, the RF-based models show sharper air
temperature gradients between different surface structures, which are homogeneous in themselves, as for example visible at the
transition between the aforementioned forests and the surrounding built-up areas, especially in the examples for spring and autumn
(Fig. 6, top and bottom).

The MSE values for the exemplary situations are smaller for MLR than for RF and the MSSS values are smaller for RF than MLR,
indicating, as stated before, that the MLR-based models fit slightly better (Fig. 6).

4. Discussion

4.1. Model performance

The MSSS and MSE of the MLR-based models are altogether better than that of the RF-based models (Fig. 2 and Fig. 4). Opposed to
this, the studies by Ho et al. (2014) and Makido et al. (2016) result in higher performance of RF compared to other model approaches,
but this could also result from the utilization of different kinds of input data in these studies. After Hjort et al. (2011), a large amount
of observations is necessary for an optimal prediction with RF. However, in this study the formation of classes regarding season, time
of day and meteorological conditions leads to a reduced sample size. Furthermore, for individual classes data was only available from
a subset of the HOBO logger stations. Appendix F shows exemplarily for the sub-daily model setups with fixed times of day and source
regions that for some situations no observations are available for a considerable percentage of the logger stations.

The explained variances of MLR-based models reach up to 85%, which is in line with the results of other studies ranging from 81%
(Unger et al., 2001) to 92% (Alcoforado and Andrade, 2006). The medians of the differences between R2 and R2 from LOOCV for
MLR-based models lie below 0.2 for most of the model setups. Consequently, they are comparable with the results from other studies,
e.g. Buttstädt and Schneider (2014), where the difference amounts to a maximum of 0.17. The model performance exhibits con-
siderable variations in relation to time of day and weather conditions with best models obtained for situations in the morning and
evening with calm and moderately windy conditions. Models for situations around noon as well as for windy conditions perform quite
poor in comparison. These findings are compatible with the results of e.g. Eliasson and Svensson (2003). A possible explanation could
be the overall small spatial air temperature differences in the stated situations (e.g. Oke, 1993; Schatz and Kucharik, 2014), whereas
under conditions of higher stability of the planetary boundary layer in situations with low or negative net radiation as well as in
anticyclonic weather conditions air temperatures are influenced stronger by the underlying surface characteristics (Morris et al.,
2001; Eliasson and Svensson, 2003). However, improvements of the model performance for situations around noon, when heat stress
is most pronounced, are of particular interest for the various applications of such models, e.g. the assessment of human health in
relation to outdoor thermal comfort (Matzarakis et al., 2008). A clear seasonal differentiation of model performance does not appear.

The performance of the daily model variants exceeds that of the sub-daily setups. A possible explanation is the categorization of
the synoptic situation based on the current conditions only while not accounting for the meteorological conditions in advance of the
modelled situation. Consequently, the situations included in one class can be heterogeneous. For example, a situation classified as
“calm and clear” may follow on “windy and cloudy” conditions and thus be not an ideal representative for its category. For sub-daily
models, this can have a negative impact on the model building process, whereas for the daily setups this effect is presumably smaller.
Taking into account such time lagged effects is proposed by Unger et al. (2001). This aspect could be addressed in further studies, e.g.
by taking into account the persistence of the meteorological boundary conditions over a certain time interval. As the daily cycle is an
important feature when considering air temperatures in urban environments as well as thermal stress and associated health issues, for
example because night-time cooling is essential for the recovery after hot days (Nicholls et al., 2008; Steeneveld et al., 2014),
increasing the performance of sub-daily models is of great relevance for their various applications.

For many situations, better model performance is reached in OSM based models compared to UA based variants. The difference is
visible especially regarding the MSSS and MSE from daily model setups, the MSSS from RF-based sub-daily models as well as the
differences between R2 and R2 from LOOCV from MLR (Fig. 4 and Appendix D). A possible reason could be the heterogeneity of the
land surface characteristics within several of the classes available in UA. While some of the UA land use/land cover classes are
composed of one kind of surface, e.g. “water”, and thus can be assumed to have a well defined impact on energy and water balances
of the respective surfaces, others, e.g. “agricultural areas, semi-natural areas and wetlands” contain elements whose properties with
regard to albedo, heat and water capacity can be expected to be variable. This complicates the detection of correlations between air
temperature and land surface characteristics and may contribute to a reduced robustness of the models.

Models without SVF, both OSM and UA based variants, are among those with worst performance, confirming that SVF is an
important predictor for air temperature. This is in line with the results from other studies, e.g. Svensson (2004) and Konarska et al.
(2015). For further improvements of the model performance seasonal variations of the SVF due to the phenological cycle of the
vegetation cover should be taken into account (Svensson, 2004).

The OSM based variant using summaries of selected land cover types to form the new categories “built-up” and “low vegetation”
is among the worse models regarding the medians of MSSS and MSE, but the difference between R2 and R2 from LOOCV is
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comparably small. This indicates that including a smaller number of predictor variables, some of which contain different land use/
land cover types with similar effects on air temperature, produces models that are more robust when transferred to test data,
presumably due to a reduction of the multicollinearity.

The OSM based variant using the land cover characteristics of source regions of advective airflow seems to be a promising setup for
weather conditions with moderate to higher wind speeds. Nevertheless, it does not perform better than the other model variants. The MSE
is in fact comparably small; however, the MSSS is quite poor compared to the other model setups. A possible reason is the definition of the
source areas as quadratic areas southwest of each logger station. A more sophisticated determination of source areas would be more
appropriate, because urban wind patterns are complex and greatly influenced by the orientation of street canyons and the building
geometry (Nakamura and Oke, 1988; Eliasson et al., 2006). Including situation specific wind speed and wind direction in combination
with the site-specific urban geometry would allow a more accurate determination of position and size of the source areas for individual
situations. Besides, as high wind speeds favour relatively homogenous spatial air temperature distributions, the investigation of the setup
with source regions under various wind conditions, including low wind speeds, could be subject of further studies.

Other possibilities for the improvement of the model performances could include the utilization of smaller seasonal and/or
meteorological subsets, as proposed by Eliasson and Svensson (2003). Their explanation is the relatively high variation of ob-
servations within large groups, which could also apply to this study. Choosing a larger number of classes, e.g. by utilizing monthly
instead of seasonal subsets, could lead to an improvement of model performance. On the other hand, models taking into account
seasonal variations of the hours of sunrise, apex and sunset use smaller temporal subsets than the other variants. However, for MLR-
based models their overall performance is not clearly improved compared to the other variants and for RF-based models it is worse.
This indicates that the negative impact of smaller sample sizes for the individual situations predominates the assumed positive effects
of reduced variation within the groups. A stratification into smaller temporal subsets leads to an increase of the percentage of logger
stations without any observations for individual classes, thus resulting in models based on a reduced number of stations. This is
shown in Appendix F where for the model setup with source regions, which includes only situations with specific wind directions, the
sample size and numbers of HOBO loggers with at least one observation is considerably lower than for the model setup with fixed
times of the day. Consequently, a stratification into a larger number of smaller subsets would reduce the representativity of the
affected models for the study area. Besides, as stated before, the meteorological conditions in advance of the modelled periods may
also vary, inducing another source of inhomogeneity within the groups.

4.2. Predictor importance

Important predictors in both approaches are those describing the alteration of the land surface by urban elements, e.g. percentage of
buildings, built-up area, types describing high level of sealed surface, the SVF, the distance to the city centre, but in some model variants
also the elevation. These or similar explanatory variables have been found to be important predictors of air temperature in other cities, too,
e.g. in Lisboa (Alcoforado and Andrade, 2006), Szeged (Unger et al., 2001) or Göteborg (Eliasson and Svensson, 2003). In cities with highly
variable elevation, this parameter can be an important predictor due to phenomena related to the topographic influence on air tem-
perature, as is the case e.g. in Aachen (Buttstädt and Schneider, 2014) with a variation of the elevation of 285m within the study area. In
this study, these variations are much smaller. They amount to only 89m for the region of Augsburg and thus, the topographic influence can
be expected to be less important. On the other hand, after Hjort et al. (2011) even small spatial differences in elevation can have an effect
on air temperature. Variables describing land surface features with presumable cooling effect, e.g. “forest”, “urban green spaces” or
“water”, are – except “forest” – less important for the models in this study. This is in contrast to other studies, where e.g. water is an
important predictor of air temperature in coastal cities (e.g. Hart and Sailor, 2009; Alcoforado and Andrade, 2006) or cities in the vicinity
of large water bodies (e.g. Hjort et al., 2011). It could be a result of the absence of large water bodies in the region of Augsburg. Here, it
should be mentioned, that the cooling effect of water is discussed controversial. While on the one hand urban water is discussed in the
context of UHI mitigation strategies (e.g. Oláh, 2012; Coutts et al., 2012; Hathway and Sharples, 2012), Steeneveld et al. (2014) state, that
standing water can increase night-time UHI due to the thermal properties of water. Spatial predictors available as area percentages were
most important in larger buffer zones, which is in line with the results from Buttstädt and Schneider (2014).

In other studies, a large number of other explanatory variables has been found to model air temperature well, e.g. the normalized
difference vegetation index (NDVI, e.g. Szymanowski and Kryza, 2012), the normalized difference water index (NDWI, e.g. Ho et al.,
2014), the albedo (e.g. Makido et al., 2016), land surface temperatures (e.g. Ho et al., 2014) or the building height (e.g. Bottyán and
Unger, 2003). Further improvement of the models could be obtained by incorporating such additional parameters.

4.3. Spatial patterns of air temperature

The spatial patterns of air temperature for the different situations derived with each of the model approaches show distinct
variations dependent on the surface characteristics. Highest air temperatures occur on the areas with high percentage of artificial
surfaces, as would be expected due to the higher thermal conductivity and heat capacity of building materials (Oke, 1988) and the
reduced SVF within street canyons (Oke, 1981; Svensson, 2004). In contrast, areas with high percentage of vegetation and water are
cooler because of the higher evaporation rate (e.g. Jáuregui, 1975; Oláh, 2012). These findings are in line with the results from other
cities (e.g. van Hove et al., 2015; Shojaei et al., 2017; Tong et al., 2018). The patterns form quasi-concentric circles around the city
centre and the centres of the city districts, which in this case is due to the utilization of the predictor variable “distance from the city
centre”. Concentric patterns were also obtained in other studies, e.g. by Bottyán et al. (2005). Differences in the spatial patterns of
different meteorological situations concern mainly the magnitude of the air temperature deviations from the reference station and the
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spatial extent of the warmest areas (Fig. 6). Intra-urban air temperature differences are most pronounced under clear and calm
conditions, as was also observed by e.g. Yokobori and Ohta (2009) and van Hove et al. (2015). Wind speed notably reduces the intra-
urban temperature differences due to the more effective mixing (e.g. Wienert et al., 2013; He, 2018; Shi et al., 2018). However,
differences also result from the specific subset of predictor variables included in each model.

4.4. Meteorological and land surface data

Limitations of the models result from uncertainties in the input data. Although several quality tests were conducted on the
temperature data from the HOBO logger network, important aspects like the internal/physical consistency (e.g. Estévez et al., 2011)
or the homogeneity (e.g. Aguilar et al., 2003) were not verified. On the other hand, comparisons between HOBO logger stations and
automatic weather stations situated at the University and the University of Applied Sciences of Augsburg suggest that the HOBO
logger network provides a solid data basis for this application. An exemplary figure is presented in the appendix. Monthly boxplots of
the hourly air temperature show that the HOBO logger slightly underestimates maximum temperature values. However, the overall
correspondence between the two devices is good (Appendix C). Besides, in order to derive valid models, the temperature mea-
surements at the HOBO logger sites have to be representative for the study area. As can be seen in Appendix B and Beck et al. (2018),
the logger stations are distributed over the various local climate zones (LCZ), which are present in the region of Augsburg and they
cover transition areas between different LCZs as well. Furthermore, they are situated at different heights above sea level. Thus, the
HOBO loggers represent differently characterized sites in terms of land cover and topography.

The land use/land cover data from Open Street Map also contain uncertainties because it is a crowd-sourcing project, which
means that everybody can contribute to the data base (Arsanjani et al., 2013). Consequently, the data base constitutes of input from
persons with different amount of expertise and experience on the subject of mapping which leads to large differences in the quality of
individual contributions. However, according to Arsanjani et al. (2013), a large part of the input comes from persons that are able to
generate map data of high accuracy. Besides, Zielstra and Zipf (2010) show that the positional accuracy as well as the completeness of
the OSM data have been increasing steadily. Even so, for some areas in the city of Augsburg and its surroundings, the land use/land
cover information from OSM is missing. Although the model area was selected to contain a minimum of missing land use/land cover
data, this is a problem for the estimation of the continuous spatial patterns of air temperature because the modelled thermal con-
ditions on the affected areas cannot be linked to surface parameters.

The Urban Atlas data covers the whole study area. However, as stated in section 4.1, a drawback of the Urban Atlas data for this
application might be the combination of different surface cover features in some of the available land use/land cover categories.
While some of them appear to be homogenous (e.g. “Forest”), others contain land use/land cover classes quite dissimilar in terms of
their radiation and water balance. Thus, they can hardly be interpreted regarding their influence on air temperature (e.g. the category
“Agricultural areas, semi-natural areas and wetlands” which contains different kinds of vegetation as well as bare soil and swamps)
(EEA, 2011). This makes the interpretation of the UA based results difficult for the affected areas. Another drawback of the UA data is
that they are updated only once in several years. For individual areas this can be a problem.

A possibility to combine the advantages of OSM and UA would be a model setup utilizing both data sets together. In this way, a
larger range of predictors would be available and the strongest explanatory variables could be combined. On the other hand, most of
the land surface information should be similar in both data sets. Still, the problem of missing values in the OSM data could be avoided
by filling the respective areas with information from UA. If a combination of OSM and UA based predictors leads to a model
improvement, could be subject of further studies.

5. Conclusion

In this study, sub-daily as well as daily spatial air temperature patterns within a heterogeneous urban environment were modelled
for a variety of different seasonal, daily as well as meteorological situations using the statistical approaches of multiple linear
regression and random forests. The aim was to investigate the skill of various model setups including different land use/land cover
characteristics as predictors. These predictors were derived from different land surface data sets. Large differences in model per-
formance between the model variants were obtained with the best MLR-based results reaching high MSSS of up to 0.85 as well as
explained variance of up to 85% in the fitting procedure and 80% in leave-one-out cross-validation. Models utilizing the Open Street
Map land use/land cover data perform slightly better than those based on Urban Atlas data. Thus, current land use/land cover
information with categories, which are homogeneous in themselves and interpretable regarding their influence on the water and
energy budget of the respective surface, is favourable for such studies. The estimated spatial patterns of the thermal conditions are
realistic for different situations and are similar for both statistical modelling approaches. Consequently, these statistical models are an
appropriate tool to derive the spatial distribution of meteorological variables as a function of land surface parameters for varying
synoptic boundary conditions. However, there is still potential for improvement of the model results. Options for this task include the
inclusion of further explanatory variables, the calculation of the sky view factor for the whole study area and a more realistic
definition of source regions of advection. The maps resulting from such models can be useful for different applications, e.g. for urban
planning, for the development of concepts for the climate change adaption of cities or for human biometeorological studies.
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Appendix A. Land use/land cover characteristics of the study region from the European Urban Atlas

Fig. 7. Land use/land cover in the region of Augsburg from the Urban Atlas data set (“S.L.”= sealed layer)

Appendix B. Site characteristics of the HOBO logger stations

Table 3
Site characteristics of the HOBO logger stations: name and ID of the station, geographic coordinates and elevation of the measurement site [m above
sea level], local climate zone (LCZ, after Stewart and Oke, 2012) at the site and area percentages of the LCZs within a 500m buffer zone around the
site. For a map of the local climate zones in Augsburg and its surroundings, including also the logger stations, cf. Beck et al. (2018). Abbreviations of
the LCZs: 2=Compact Mid-Rise, 5=Open Mid-Rise, 6=Open Low-Rise, 8= Large Low-Rise, 101= dense trees, 102= scattered trees,
104= low plants.

Station name ID Lat [°] Lon [°] Height
[m]

LCZ-
Station

LCZ-Neighborhood (500m)

Moritzplatz 1 48.36707 10.89799 488.4 2 2 (64%); 5 (36%)
Marketplace 2 48.36808 10.89561 490.7 2 2 (62%); 5 (38%)
Volunteer fire brigade, Pfersee 3 48.36171 10.87526 478.4 5 5 (90%); 6 (2%); 8 (2%); 101 (1%); 102

(5%)
Police headquarters Augsburg 4 48.35556 10.88699 494.5 5 5 (69%); 8 (18%); 102 (13%)
Measurement site of the state office for environment at K-

arlstrasse
5 48.37036 10.89679 487.8 2 2 (42%); 5 (58%)

School at Rotes Tor 6 48.35788 10.90291 484.3 5 2 (3%); 5 (97%)
Measurement site at the University of Applied Sciences A-

ugsburg
7 48.35794 10.90705 481.4 5 2 (3%); 5 (97%)

Train station forecourt 8 48.36633 10.88583 486.7 8 2 (10%); 5 (59%); 6 (13%); 8 (18%)
Measurement site of the state office for environment at K-

oenigsplatz
9 48.36459 10.89503 490.7 5 2 (50%); 5 (45%); 6 (1%); 8 (4%)

Fire brigade Augsburg 10 48.3741 10.91424 474.9 5 2 (8%); 5 (79%); 6 (5%); 8 (8%)
Kindergarten St. Moritz 11 48.36563 10.90106 491.5 2 2 (58%); 5 (42%)
Gaertnerstrasse 12 48.3603 10.90738 480.1 5 2 (8%); 5 (91%); 8 (1%)
Gollwitzerstrasse Pfersee 13 48.36051 10.87592 476.5 5 5 (84%); 6 (5%); 101 (2%); 102 (9%)
Measurement site of the state office for environment at B-

ourges-Platz
14 48.37659 10.88848 473.8 5 2 (20%); 5 (69%); 6 (3%); 8 (7%); 104 (1%)
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Table 3 (continued)

Station name ID Lat [°] Lon [°] Height
[m]

LCZ-
Station

LCZ-Neighborhood (500m)

Weather station St. Stephan 15 48.37428 10.90013 486.8 5 2 (21%); 5 (77%); 8 (1%); 104 (1%)
Wittelsbacher Park 16 48.35683 10.88118 494.3 102 5 (67%); 6 (9%); 8 (6%); 101 (2%); 102

(16%)
Cemetery, Hermanstrasse 17 48.36401 10.89271 494 5 2 (39%); 5 (44%); 6 (1%); 8 (16%)
Botanic Garden 18 48.3503 10.91506 482 102 5 (69%); 6 (1%); 102 (29%); 104 (1%)
Kulperhuette 19 48.35141 10.86784 479.3 101 5 (22%); 6 (56%); 101 (14%); 102 (2%);

104 (6%)
Siemens Technopark 20 48.3417 10.90532 490.7 8 5 (28%); 8 (53%); 102 (12%); 104 (7%)
Roof station at the University of Augsburg 21 48.33466 10.89713 490.7 5 5 (63%); 6 (1%); 8 (19%); 104 (17%)
Municipal construction yard, Neusaess 22 48.39322 10.82416 479.3 8 5 (38%); 6 (26%); 8 (24%); 101 (1%); 102

(11%)
Church at Goegginger bridge 23 48.33781 10.85684 487.7 6 6 (48%); 101 (26%); 102 (5%); 104 (21%)
Measurement site at the State office for environment 24 48.32602 10.90308 494.2 5 5 (71%); 6 (9%); 8 (5%); 104 (3%); 106

(12%)
Gasworks 25 48.38771 10.86526 473.2 8 6 (60%); 8 (40%)
Krautgartenweg Leitershofen 26 48.34864 10.83809 487.5 6 6 (60%); 102 (25%); 104 (15%)
Private garden site, Neusaess 27 48.38133 10.82 507.8 102 5 (1%); 6 (51%); 101 (33%); 102 (8%); 104

(7%)
Vegetable field, Baerenkeller 28 48.39232 10.86423 472.2 6 6 (87%); 8 (7%); 104 (6%)
Water supply works, Lochbach 29 48.3332 10.91299 487.6 101 5 (25%); 8 (1%); 101 (29%); 102 (44%);

104 (1%)
Hat factory Augsburg 30 48.35203 10.90268 486.5 5 5 (96%); 6 (1%); 102 (2%); 104 (1%)
Ulmer Strasse, company building 31 48.3792 10.84645 487.3 6 6 (77%); 8 (11%); 104 (12%)
Friesenstrasse 32 48.38225 10.91751 472.8 5 2 (16%); 5 (42%); 6 (42%)
Neuburger Strasse 33 48.38993 10.91457 469.7 6 5 (6%); 6 (59%); 8 (5%); 104 (30%)
Muehlstrasse/equestrian farm 34 48.33034 10.85532 489.8 102 6 (8%); 101 (22%); 102 (37%); 104 (33%)
Eiskanal/Friedberger Strasse-Spickelstrasse 35 48.35496 10.92768 482.3 5 5 (88%); 6 (3%); 101 (2%); 102 (7%)
Diedorf (Church of Herz Maria) 36 48.35469 10.78167 484.9 6 5 (8%); 6 (67%); 8 (5%); 102 (3%); 104

(17%)
Municipal construction yard, Gessertshausen 37 48.32821 10.72022 500.3 104 6 (3%); 101 (1%); 102 (25%); 104 (71%)
Volunteer fire brigade, Strassberg 38 48.27558 10.78446 558.5 101 6 (15%); 101 (75%); 102 (4%); 104 (6%)
Bobingen, Church of St. Felizitas 39 48.2609 10.83076 525.8 6 6 (53%); 104 (47%)
Grossaitingen, Church of St. Georg 40 48.22859 10.78223 537.9 6 6 (84%); 102 (2%); 104 (14%)
Kleinaitingen, cemetery 41 48.2206 10.8397 541.9 104 5 (4%); 6 (25%); 104 (71%)
Kissing, Church of St. Bernhard 42 48.30366 10.96725 499.1 6 6 (76%); 8 (24%)
Friedberg, fire brigade 43 48.3582 10.98659 512.3 6 6 (92%); 104 (8%)
Adelsried, parish office St. Johann Baptist 44 48.42505 10.71755 487.6 6 5 (6%); 6 (35%); 101 (1%); 102 (39%); 104

(19%)
Heretsried, Church of St. Martin 45 48.45951 10.7375 487.6 6 5 (4%); 6 (11%); 102 (63%); 104 (22%)
Schwabmuenchen 46 48.1768 10.7578 533.4 6 6 (100%)
Mering, private premises 47 48.2638 10.985 510.1 5 5 (43%); 6 (51%); 104 (6%)
Altenmuenster, day nursery 48 48.46744 10.59051 487.6 6 no data
Rehling, company building 49 48.47405 10.89649 465.9 104 104 (100%)
Poettmes, company building 50 48.58476 11.08857 487.6 6 no data
Aichach, old fire station 51 48.45771 11.13174 487.6 6 no data
Mering, private premises 52 48.27729 10.97062 506.8 6 6 (34%); 8 (4%); 104 (62%)
Poettmes, hall 53 48.58207 11.0861 487.6 6 no data
Horgau, church 54 48.3939 10.68422 525.7 6 no data
Zusmarshausen, welfare centre 55 48.3991 10.59974 525.7 6 no data
Gasworks 56 48.38741 10.86638 473.5 8 2 (3%); 6 (53%); 8 (44%)
Car service station 57 48.38547 10.85329 485.2 8 6 (57%); 8 (32%); 104 (11%)
Kobelgraben 58 48.37917 10.80824 479.9 6 6 (27%); 101 (4%); 102 (11%); 104 (58%)
Burger King 59 48.34708 10.87108 485 5 5 (34%); 6 (40%); 101 (23%); 102 (3%)
Tattenbachstrasse 60 48.3078 10.90966 501.5 5 5 (82%); 6 (2%); 102 (15%); 104 (1%)
Siemens parking lot 61 48.34079 10.90543 490.7 8 5 (32%); 8 (49%); 102 (12%); 104 (7%)
Aulzhausen 63 48.44711 10.96793 468.8 104 5 (6%); 6 (2%); 104 (92%)
Derching 64 48.40845 10.97907 502 104 5 (10%); 101 (2%); 102 (9%); 104 (79%)
Bobingen 65 48.27243 10.82205 508.5 104 6 (18%); 101 (3%); 102 (16%); 104 (63%)
Wellenburg 66 48.33599 10.82553 505.4 101 101 (64%); 102 (25%); 104 (11%)
Haunstetten, horse enclosure 67 48.27298 10.90399 511.9 102 6 (15%); 101 (15%); 102 (20%); 104 (50%)
Ellensindstrasse 68 48.31888 10.91557 495.8 102 5 (7%); 6 (15%); 8 (21%); 102 (53%); 104

(4%)
Stadtbergen, golf club 69 48.36562 10.83696 490.4 102 6 (26%); 102 (53%); 104 (21%)
Diedorf, Kapellenweg 70 48.34373 10.76339 487.1 104 101 (1%); 102 (30%); 104 (69%)
Oberottmarshausen 71 48.23847 10.85647 533.6 6 6 (38%); 104 (62%)
Herbertshofen 73 48.5298 10.85112 480.2 6 6 (44%); 104 (56%)
Measurement station at the University of Augsburg 74 48.33676 10.89541 493.7 5 5 (42%); 6 (1%); 8 (44%); 104 (13%)

(continued on next page)
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Table 3 (continued)

Station name ID Lat [°] Lon [°] Height
[m]

LCZ-
Station

LCZ-Neighborhood (500m)

Meadow at the University of Augsburg 75 48.33071 10.89843 493.9 5 5 (68%); 6 (2%); 104 (29%); 106 (1%)
Pond at the University of Augsburg 76 48.33603 10.89607 494.3 5 5 (47%); 8 (36%); 104 (17%)
Parking lot at the exhibition centre 77 48.33859 10.89185 498.9 8 5 (35%); 6 (1%); 8 (46%); 104 (18%)
Europaplatz 78 48.33382 10.90139 493.9 5 5 (82%); 6 (2%); 8 (11%); 104 (5%)
Moritzplatz 2 79 48.36709 10.89811 485.6 2 2 (64%); 5 (36%)
Institute of Geography, University of Augsburg 80 48.33599 10.89747 491.9 5 5 (53%); 8 (39%); 104 (8%)
Tauroggener Strasse 81 48.38642 10.92158 472 6 5 (19%); 6 (77%); 8 (4%)

Appendix C. Comparison between HOBO logger and automatic weather station

Fig. 8. Comparison of hourly air temperature measurements of an automatic weather station and a HOBO logger at the University of Applied
Sciences in Augsburg on a monthly basis (comparison based on the period from December 2012 to June 2016). The boxes show the median as well
as the 1st and 3rd quartile (lower/upper boundary of the box, respectively), whiskers indicate the 1.5-fold interquartile range from the upper/lower
boundary of the box.

Appendix D. Differences between R2 from the model fitting and R2 from LOOCV for MLR-based model setups

Fig. 9. Boxplots of the differences between R2 from the model fitting and R2 from LOOCV (left) and R2 from the model fitting (right) for MLR-based
model setups. The boxes show the median as well as the 1st and 3rd quartile (lower/upper boundary of the box, respectively), whiskers indicate the
1.5-fold interquartile range from the upper/lower boundary of the box. Each box contains the model variants for different seasons (MAM, JJA, SON,
DJF) as well as meteorological situations (Met 1 – Met 6) and in the case of sub-daily models different times of day (morning, noon, evening), too.
Numbers above the boxes indicate the sample size (number of models) contained in each box.
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Appendix E. Differences between MLR- and RF-based modelled air temperature deviations

Fig. 10. Differences between modelled MLR- and RF-based temperature deviations from the rural reference station for exemplary situations as well
as the spatial correlation between the patterns (Pearson correlation coefficient r). Displayed are the results for the sub-daily OSM based model setup
without SVF (“OSM w/o SVF”) for the study area as defined in Fig. 1.
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Appendix F. Data availability in the meteorological data sets (DWD station and HOBO logger network)

Fig. 11. Overview of data availability of the HOBO logger data for different seasons, times of day and meteorological conditions, exemplarily for the
sub daily model setup with fixed time spans (green) compared to the model setup with source regions (blue) (cf. Table 1). The bars indicate the
number of available observations in the DWD data for the respective situation. The numbers above the bars indicate the percentage of HOBO loggers
with at least one observation for the respective situation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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