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ABSTRACT
In this paper, we investigate the relevance of using voice and
lip activity to improve performance of audiovisual emotion
recognition in unconstrained settings, as part of the 2014
Emotion Recognition in the Wild Challenge (EmotiW14).
Indeed, the dataset provided by the organisers contains
movie excerpts with highly challenging variability in terms
of audiovisual content; e. g., speech and/or face of the sub-
ject expressing the emotion can be absent in the data. We
therefore propose to tackle this issue by incorporating both
voice and lip activity as additional features in a decision-
level fusion. Results obtained on the blind test set show
that the decision-level fusion can improve the best mono-
modal approach, and that the addition of both voice and
lip activity in the feature set leads to the best performance
(UAR = 35.27%), with an absolute improvement of 5.36%
over the baseline.

Categories and Subject Descriptors
H.5.1 [Information systems]: Information systems appli-
cations—Multimedia information systems

Keywords
Emotion Recognition; Multimedia; Voice Activity Detec-
tion; Lip Activity Detection; Decision-Level fusion

1. INTRODUCTION
Automatic Emotion Recognition has become a major field

of research in the last decade. Early research focused on the-
oretical definitions of emotion [5], and automatic recognition

∗The author is affiliated with the Swiss Center for
Affective Sciences at the University of Geneva, Geneva,

Switzerland. †The author is also affiliated with the
Department of Com- puting, Machine Learning Group at
the Imperial College London, London, UK.

This is the author's version of the work. It is posted here for your personal use. Not 
for redistribution.
ICMI’14, November 12–16, 2014, Istanbul, Turkey.
Copyright 2014 ACM 978-1-4503-2885-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663204.2666271.

on prototypically, acted databases [4, 22]. Recently, more
naturalistic data, e. g., [7, 16, 17], as well as other paralin-
guistic phenomena besides emotion, such as social signals
and autism [20], physical and cognitive load [19], have been
addressed. Emotion recognition on real-life data suffers from
two issues: first, the variance of emotions expressed is very
high in relation to the data available (sparseness), second,
state-of-the-art methods are largely affected by additive and
convolutive background noise [10]. While the second issue
can be eased by multimodal approaches [7, 21] or noise ro-
bustness counter measures [10], the first issue remains.

To overcome the data-sparseness, larger and more realistic
multimodal emotion datasets are required, such as the one
collected for the SEMAINE project [16], or the RECOLA
dataset [17]. An endless resource of acted, but realistic
emotional portrayals seems to be available in TV series and
movies. The first database building on this kind of data
was introduced in [13]. It contains excerpts from the Vera
am Mittag TV show. Recently, facial expressions from TV
shows and movies were used for emotion analysis, namely
the Static Facial Expressions in the Wild database (SFEW)
[8] and the Acted Facial Expressions in the Wild (AFEW)
database [9]. Last year, the first Emotion in the Wild
(EmotiW 2013) challenge [7] provided an audiovisual dataset
(AFEW + audio tracks) and a platform for researchers to
create, extend, and validate their methods on real-world
movie data.

The AFEW database contains video clips collected by
searching closed caption keywords for emotion related con-
tent. The labels obtained in this way were validated by
human annotators in order to cope with incorrect or unre-
lated captions [7]. For the second EmotiW challenge [6],
an updated version of this database is used, namely version
4.0. The given training set has 578 video clips extracted
from movies labelled with six emotional expressions (Angry,
Disgust, Fear, Happy, Sad and Surprise) and a neutral state.
In the development/validation set, 383 video samples with
corresponding labels are contained. 407 video clips without
labels are released as blind evaluation/test set.

This paper describes our submission to the 2nd EmotiW
challenge (EmotiW 2014) and is organised as follows: In
Section 2 we introduce our developed system composed of
four components, voice and lip activity detection, feature ex-
traction and multimodal classification. The results obtained
on the development and the evaluation set are discussed in
Section 3. Section 4 highlights the differences between our
results and the baseline results of the challenge, summarises
the paper and discusses the direction of future work.
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Figure 1: Flowchart of the emotion recognition system: mono-modal SVM based emotion recognition +
decision-level fusion with both voice and lip activity as additional features.

2. SYSTEM
An overview of the system developed for the EmotiW 2014

challenge is shown in Fig. 1. Mono-modal emotion recog-
nition is first performed separately on audio features and
video features by using a supervised SVM learning. Out-
puts of these two systems (i. e., emotion probabilities) are
then merged with the estimated mean voice and lip activ-
ity and a second SVM is used to predict the final emotion
decision.

2.1 Voice Activity Detection
We used a voice activity detector to estimate the probabil-

ity ρa of having speech in the audio instances of the dataset;
we thus make the hypothesis that the emotion labelling pro-
cedure did not take into account the music content of the
audiovisual excerpt, but only the spoken content for the au-
dio modality. Because the probability of speech ρa was used
for the emotion decision-level fusion, cf. Fig. 1, it was esti-
mated only on the development and test dataset.

As the data provided for the EmotiW Challenge contain
a high level of background noise and music, we employ our
robust voice activity detector based on LSTM-RNN as in-
troduced in [11], using topology N1. The input frontend
to the neural network extracts RASTA-PLP [15] coefficients
1–18 and their first order delta regression coefficients. Our
openSMILE toolkit [12] is used to extract the RASTA-RLP
features. The output activation of the LSTM-RNN repre-
sents voice activity as values from approx. -1 to +1. This
output was normalised into probabilities according to the
minimum and maximum values observed on the validation
set. Fig. 2 shows the histogram of the voice activity proba-
bility ρa estimated on all audio frames (frame rate is 10 ms)
from both validation and test set. Frames for which the voice
probability ρa is superior or equal to 0.5 can be interpreted
as containing speech. Therefore, 38.48% of the overall audio
frames doesn’t contain speech.

2.2 Lip Activity Detection
Because speech can be present in the audiovisual instances

while not being produced by the person seen in the video,
we computed the lip activity from the video data1. We thus
make the hypothesis that the emotion labelling was per-

1In some rare cases (e. g., when depicting surprise), it is
possible that the person seen in the movie doesn’t talk while
having the mouth open.
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Figure 2: Histogram of voice activity ρa computed at
the frame level (10 ms) on the development and test
datasets; values of ρa that are superior or equal to
0.5 mean that speech is present in the corresponding
frames.

formed on the speech produced by the person seen in the
video regarding the audio modality.

The probability of lip activity ρl was estimated from the
fiducial points provided by the organisers of the challenge,
using a technique similar to the classic adaptive appearance
model (AAM) methodology [1]. The fiducial points are es-
timated according to a given head pose, which the angle θ
ranges from −90◦ to +90◦, with a step of 15◦. The number
of fiducial points modelling the face varies according to the
head pose: there are 49 points for θ ∈ F : [−45◦,+45◦] and
39 points for θ ∈ NF : [−90◦,−60◦]∪ [+60◦,+90◦]. Because
it appeared that the alignment of the fiducial points on the
face did not perform well with θ ∈ NF, we only considered
the frames where θ ∈ F ; Table 1 provides the association
between the fiducial points and their corresponding region
of the face; Fig. 3 shows the detected face and the fiducial
points on a video frame of an instance labeled as happy in
the training partition. As we noticed that errors in the de-
tection of the fiducial points can appear with θ ∈ F , we used
the following list of checks:

1. the mean horizontal coordinate of the points modelling
the nose has to be located in the middle of those com-
puted on the points modelling the left and the right
eye

2. the mean vertical coordinate of the points modelling
the eyebrow has to be located above the mean vertical
coordinate of the points modelling the corresponding
eye, i. e., left and right, respectively
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Table 1: Correspondances between the 49 detected
fiducial points with the 7 modelled regions of the
face when the absolute angle |θ| of the estimated
head pose is inferior or equal to 45◦

Indice of fiducial points Face region

1–5 left eyebrow
6–10 right eyebrow
11–19 nose
20–25 left eye
26–31 right eye
32–43 outer mouth
44–49 inner mouth
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Figure 3: Detected face and fiducial points on a
video frame of an instance labelled as happy (file:
000201320.avi, frame: 34; θ = 0◦, ρl = 0.07).

3. horizontal and vertical extremum of the points mod-
elling the inner region of the mouth have to be bounded
by the horizontal and vertical extremum of the points
modelling the outer region of the mouth, respectively

On a total of 54.7 k frames available on the validation and
test partitions, 4.94 % did not contain fiducial points (i. e.,
failure in the detection, e. g., not or partially visible face, too
low level of luminosity), 5.07 % were obtained with a value
of |θ| > 45◦ and 4.83 % were rejected by our check list.

To compute the probability of lip activity ρl, we first cal-
culated the area Aim of the polygon formed by the points
modelling the inner mouth region; the coordinates of the
fiducial points were normalised in [0, 1] to remove the in-
fluence of having various sizes of the face model over the
instances. Because the area of the inner mouth region Aim

depends on the angle of the head pose, we normalised this
value with the maximum value observed on each head pose
in absolute (accordingly), i. e., |θ| = [0◦, 15◦, 30◦, 45◦], to ob-
tain the probability of lip activity ρl; the minimum value of
Aim was always found to be equal to 0 for all angles θ ∈ F
of head pose.

Fig. 4 shows the histogram of the lip activity probability
ρl estimated on both validation and test set at the frame
level (frame rate is 40 ms). This histogram shows that there
is a high number of frames for which the probability of lip
activity is close to 0, i. e., having the mouth closed; 22.07 %
of the processed video frames present a value of ρl < 0.1.
This percentage is lower than the one obtained on speech
(38.48 % of frames doesn’t contain speech), because there is
the case where the mouth can be opened without producing
sound.
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Figure 4: Histogram of the probability of lip activ-
ity ρl computed at the frame level (40 ms) on the
development and test datasets; the lip activity ρl is
computed by the area formed by the points mod-
elling the inner region of the mouth, normalised by
the maximum value observed on each head pose in
absolute (accordingly), i. e., |θ| = [0◦, 15◦, 30◦, 45◦].

2.3 Features Extraction
We describe below the two feature sets we used for extract-

ing information from the audio and video data, respectively.

2.3.1 Audio Features
In contrast to large scale brute-force feature sets, which

have been successfully applied to many speech and music
classification tasks, e. g., [20, 23], smaller, expert-knowledge
based feature sets have shown high robustness for emotion
recognition [3]. In this light, we assembled a small acoustic
feature set for the EmotiW14 Challenge, using our openS-
MILE toolkit [12].

The set contains 102 parameters in total. The parameters
are based on the following Low-Level Descriptors (LLD):
Fundamental Frequency (F0) represented on a logarithmic
scale as well as on a linear scale, Loudness (computed as the
sum of the intensities in 26 Mel-frequency scale auditory
spectrum bands (20–8000 Hz)), Mel-Frequency Cepstral Co-
efficients (MFCC) 1–4, Jitter, Shimmer, Harmonics-to-Noise
Ratio (HNR), Formants 1–3 (frequency, bandwidth and log
of amplitude relative to F0), spectral slopes and spectral
flux. As functionals to summarise the descriptors over an
analysis segment, mean and standard deviation are applied
to all LLD, and to loudness and F0 additionally the follow-
ing functionals are applied: percentiles (20, 50, 80) and the
range of percentiles 20–80, as well as the means and stan-
dard deviations of the slopes of rising and falling contour
parts, and of the length of voiced and unvoiced segments.
Further, the equivalent sound level (i. e., the average RMS
energy converted to dB) is included.

2.3.2 Video Features
We used the feature set provided by the organisers as vi-

sual descriptors of the face contained in the video frames
[7]. The system requires first to detect the face in the
video frames; the MoPs framework was used for detection
[26]2 and the Intraface tracker was employed for tracking
[24]3. Features of the face were then extracted with the Lo-
cal Binary Pattern - Three Orthogonal Planes (LBP-TOP)
method [25]. The set contains 2832 parameters in total.

2http://www.ics.uci.edu/~xzhu/face/
3http://www.humansensing.cs.cmu.edu/intraface/
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Table 2: Matrix of confusion obtained on the 7 classes of the EmotiW14 dataset with a emotion perception
test; training+validation+test datasets; last value in bold is the % UAR.

Partition Angry Disgust Fear Happy Neutral Sad Surprise % Recall

Angry 120 68 6 2 13 1 4 56.08
Disgust 3 49 0 5 37 27 11 37.12

Fear 4 5 101 0 21 5 23 63.52
Happy 1 3 1 217 21 2 7 86.11
Neutral 4 11 10 8 224 17 10 78.87

Sad 2 20 34 4 28 105 5 53.03
Surprise 1 8 17 5 22 4 72 55.81

% Precision 88.89 29.88 59.76 90.04 61.20 65.22 54.55 61.51

2.4 Machine Learning
Mono-modal emotion recognition of the 7 classes was per-

formed by using a SVM classifier with the SMO training al-
gorithm. For transparency and reproducibility, we used the
implementation provided in the Weka data mining software
[14] – version 3-6-10. Two types of features normalisation
were used: either a normalisation between [0− 1] or a stan-
dardisation, i. e., subtracting the mean and dividing by the
standard deviation. We used either a linear (the degree of
exponent varied between 1 and 3 with a step of 1) or a gaus-
sian kernel (the gamma coefficient varied on a logarithmic
scale with 10 values between 10−5 and 0.5), and optimised
the complexity parameter on a logarithmic scale (10 values
between 10−3 and 1). The SVM was configured to provide as
output the probability of each class by using logistic regres-
sion models. Performance was optimised on the validation
set using the training set for learning the models, and the
unweighted average recall (UAR), i. e., the mean value of
the recall of each class in percentage, was used as metric;
chance score is therefore equal to 1/7 = 14.29 %.

For the multi-modal emotion recognition, we used as fea-
tures the sets of probabilities obtained on the audio and
video features, respectively. Additionally, we added the
probability of voice and lip activity (the mean value was
computed for each instance) to this feature vector. Finally,
another SVM was used on this feature set, with the same
set of parameters and configurations as used for mono-modal
emotion recognition. Considering the limited number of in-
stances available for each class on the validation partition (3
classes contain less than 50 instances, the other 4 classes con-
tain less than 65 instances), we optimised the performance
on this partition with a 2-fold cross validation.

3. RESULTS
We first present below the results obtained in a perception

test of the full dataset; results obtained on the test partition
were submitted as non-candidates for the challenge. The
performance obtained by our system on the audio and video
modalities are then described, followed by those obtained
with the multi-modal fusion. A discussion of the results over
each emotion class is provided at the end of this section.

3.1 Human perception test
We performed a perception test on all the audiovisual data

provided for the EmotiW14 challenge to estimate the per-
formance of human labelling in an emotion recognition task.
One author of this paper labelled all instances of the corpus
in a randomised order. Table 2 shows the confusion matrix

obtained with this perception test; results obtained on the
training, validation and test partitions were summed. The
obtained performance (%UAR = 61.51) is quite low and
shows that the emotion classes contained in the EmotiW14
dataset are not easy to identify even for a human. In partic-
ular, ‘Disgust’ was the worst recognised emotion and the
most confused, whereas ‘Happy’ was the best recognised
emotion and the less confused. In comparison, the perfor-
mance obtained by human labelling of audiovisual data on
the GEMEP corpus - acted data from professional actors
- is higher (%UAR = 76.00) [2]; for comparison, we con-
sidered the 6 following classes: ‘Joy (elation)’, ‘Hot anger
(rage)’, ‘Panic fear’, ‘Sadness (depression)’, ‘Disgust’ and
‘Surprise’, cf. Table 5 in [2]. This difference in accuracy
of emotion perception is probably due to the fact that: (1)
the audiovisual data present in the EmotiW14 dataset are
highly compressed, which reduces the quality of the stim-
ulus (2) the emotions portrayed in the GEMEP database
are more prototypical than those used in EmotiW14, e. g.,
‘Angry’ vs. ‘Rage’, ‘Fear’ vs. ‘Panic fear’, ‘Sadness’ vs. ‘De-
pression’ and (3) EmotiW14 contains an additional neutral
case that is not present in GEMEP.

3.2 Audio features
Results obtained with the audio features (EmotiW set;

102 parameters, cf. section 2.3.1) on the validation partition
are displayed in Fig. 5. The best performance (%UAR =
32.82) is obtained with a gaussian kernel (γ = 0.5) and the
lowest tested value of complexity, i. e., C = 10−3, combined
with a standardisation of the features. The absolute im-
provement over the baseline (%UAR = 23.74) is 9.08 %; the
baseline feature set includes 1582 parameters, which were
proposed for the INTERSPEECH 2010 Paralinguistic chal-
lenge [18]. We can notice from Fig. 5 that performance
decreases when the complexity parameter of the SVM in-
creases, which let us suppose that there are many outliers
in the audio data, since the system performs better when
these outliers are not considered for computing the decision
frontier. In the average, the RBF kernel performed better
than the linear kernel, and the standardisation better than
the normalisation (extremums are more sensitive to noise
than mean and variance). Predictions on the test partition
were submitted with the linear (%UAR = 32.16) and the
gaussian (%UAR = 31.61) kernels, and we obtained again a
better performance than the baseline (%UAR = 23.82); ab-
solute improvement with the linear kernel is 8.34%. There-
fore, a smaller, expert-knowledge based acoustic feature set
shows higher robustness for emotion recognition than a large
scale brute-force feature set, as found in [3].
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Figure 5: Emotion recognition performance on the
EmotiW14 dataset (7 classes) with audio features
(EmotiW set; 102 parameters) and SVM classifier,
for different types of kernel (linear, RBF), normal-
isation procedures (norm: normalisation between
[0−1], stand.: standardisation to zero mean and unit
variance) and values of complexity.

3.3 Video features
Results obtained with the video features (baseline set;

2832 parameters, cf. section 2.3.2) are displayed in Fig. 6.
The best performance (%UAR = 36.13) is obtained with
a gaussian kernel (γ = 10−4) and the highest tested value
of complexity, i. e., C = 1, combined with a standardisation
of the features. The absolute improvement obtained over
the baseline (%UAR = 31.49) is 4.64 %, which is smaller
than the one achieved with audio features (9.08%), but we
used as video data the baseline feature set and only tuned
the parameters of the SVM and the normalisation technique.
Whereas the performance doesn’t vary over the different val-
ues of complexity for the linear kernel (same support vectors
were probably obtained for the different values of complex-
ity), the performance increased with the value of complexity
with the gaussian kernel; the RBF based projection of the
features helped to find a better discriminant space. Predic-
tions on the test partition were submitted with the linear
(%UAR = 29.07) and the gaussian (%UAR = 32.33) ker-
nels, and we obtained a better performance than the baseline
(%UAR = 29.91) only with the RBF kernel; absolute im-
provement is 2.42 %. Video features thus did perform better
than the audio features for the emotion recognition of the
7 classes of the EmotiW14 dataset, on both validation and
test partitions. However, the difference in performance be-
tween audio and video features is rather small, especially on
the test partition, which thus lets room for improvement by
using a multi-modal approach.

3.4 Decision-level fusion
Predictions obtained with the audio and video features

were learned by another SVM in order to perform a decision-
level fusion. We used the same ensemble of machine learn-
ing settings for kernel and complexity as those employed for
the mono-modal emotion recognition. Multi-modal predic-
tions were performed separately regarding the type of ker-
nel used for the audiovisual modalities, i. e., either linear
or RBF kernel. Results obtained on the validation parti-
tion (2-fold cross validation) are depicted in Fig. 7. The
best performance (%UAR = 37.78) was obtained on the
mono-modal predictions made with a linear kernel, with the
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Figure 6: Emotion recognition performance on the
EmotiW14 dataset (7 classes) with video features
(baseline set; 2832 parameters) and SVM classifier,
for different types of kernel (linear, RBF), normal-
isation procedures (norm: normalisation between
[0−1], stand.: standardisation to zero mean and unit
variance) and values of complexity.

following configuration: linear kernel (2nd order), normal-
isation of features in [0 − 1] and with the lowest value of
complexity, i. e., C = 10−3. The absolute improvement over
our best mono-modal approach (%UAR = 36.13) is 1.65 %,
and up to 12.41 % over the baseline (%UAR = 25.37), which
was obtained with a feature-level fusion – performance has
dropped compared to the mono-modal baseline. Predic-
tions on the test partition were submitted with the linear
(%UAR = 30.46) and the RBF (%UAR = 33.58) based
decision-level fusion. Whereas the linear kernel performed
best on the validation partition for the decision-level fusion,
the RBF kernel provided the best performance on the test
partition. A small improvement can be observed compared
to our best mono-modal result (%UAR = 32.33). There-
fore, a decision-level fusion appears more appropriate than
a feature-level fusion, for the multi-modal emotion recogni-
tion of the EmotiW14 dataset, since we improved the per-
formance whereas a drop was observed on the baseline.

The values of voice and lip activity (cf. section 2.1 and
2.2, respectively) were added to the feature vector used to
perform the multi-modal decision-level fusion, i. e., emotion
predictions obtained with the audio and video features. The
goal is to provide the system some knowledge regarding the
occurrence of speech in the audiovisual data, because some
instances of the dataset doesn’t contain speech, cf. Fig. 2
and 4. Results obtained on the validation partition (2-fold
cross validation) are depicted in Fig. 8. The best perfor-
mance (%UAR = 38.78) was obtained on the mono-modal
predictions made with a linear kernel, with the following
configuration: RBF kernel (γ = 5.10−3), normalisation of
features in [0−1] and with the complexity equal to C = 0.2.
The absolute improvement over the previous approach, i. e.,
without adding the voice and lip activity, is quite small but
still observable: 1.00 %. An improvement over the decision-
level fusion was also observed on the test partition with the
mono-modal predictions made with the RBF kernel: we ob-
tained a performance of %UAR = 35.27, for an absolute
improvement of 1.69 %. These results show that the use
of voice and lip activity as additional features helps to im-
prove the multi-modal emotion recognition of the EmotiW14
dataset.
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Figure 7: Emotion recognition performance on the
EmotiW14 dataset (7 classes) with decision-level fu-
sion of audio and video predictions (top: estimated
with a linear kernel, bottom: estimated with a gaus-
sian kernel), for different types of kernel (linear,
RBF), normalisation procedures (norm: normalisa-
tion in [0 − 1], stand.: standardisation to zero mean
and unit variance) and values of complexity.

A summary of the best performance obtained on the au-
tomatic emotion recognition on the validation and test par-
titions of the EmotiW14 dataset for the different studied
approaches, i. e., audio, video, decision-level fusion and with
voice and lip activity, is given in Table 3.

3.5 Performance over the emotion classes
A detailed description of the automatic emotion recogni-

tion performance is given for each emotion class in Table
4; performance of human perception test and the baseline
system are included as well. Interestingly, the automatic
recognition system based on audio features performed bet-
ter than human labelling for the emotion ‘Angry’ on the test
partition; the multi-modal decision-level fusion with VAD
and LAD also performed better on the validation partition.
The audio modality provided the best performance on test
for both ‘Angry’ and ‘Neutral’ classes, video modality per-
formed best for ‘Disgust’ and ‘Happy’, whereas the multi-
modal system, i. e., audio and video combined, performed
best for ‘Fear’ and ‘Sad’; performance was the same on ‘Sur-
prise’ for both video and audiovisual based recognition sys-
tems. The analysis of the GEMEP corpus also shows that
‘Fear’, ‘Sad’ and ‘Surprise’ are best recognised with audio-
visual data in comparison to mono-modal data, cf. Table 5
in [2].
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Figure 8: Emotion recognition performance on the
EmotiW14 dataset (7 classes) with decision-level fu-
sion of audio and video predictions (top: estimated
with a linear kernel, bottom: estimated with a gaus-
sian kernel) combined with voice and lip activity,
for different types of kernel (linear, RBF), normal-
isation procedures (norm: normalisation in [0 − 1],
stand.: standardisation to zero mean and unit vari-
ance) and values of complexity.

4. CONCLUSIONS
We investigated the relevance of using voice and lip activ-

ity to improve performance of audiovisual emotion recogni-
tion in unconstrained settings, as part of the 2014 Emotion
Recognition in the Wild Challenge (EmotiW14). A small,
expert-knowledge based acoustic feature set (EmotiW: 102
parameters) was used for emotion recognition on audio data,
and it showed higher robustness than the large scale brute-
force feature set (INTERSPEECH 2010 Paralinguistic Chal-
lenge: 1582 parameters); the absolute improvement was
equal to 9.08 % on the validation set and 8.34 % on the
test set. Regarding video features, we used the baseline set
(LBP-TOP method; 2832 parameters) proposed by the or-
ganisers. A tuning of the parameters of the SVM allowed to
improve the baseline system with an absolute improvement
of 4.64 % on the validation set and 2.42 % on the test set.
Whereas the performance dropped with the multi-modal
baseline system (feature-level fusion) compared to the mono-
modal baseline system, our decision-level fusion achieved an
absolute improvement of 1.65 % on the validation set and
1.25 % on the test set compared to our best mono-modal
performance; a decision-level fusion appears thus more suit-
able than a feature-level fusion, for the multi-modal emotion
recognition of the EmotiW14 dataset. Finally, the addition
of both voice and lip activity as features in the multi-modal
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Table 4: Emotion recognition performance (%recall) obtained on the 7 classes of the EmotiW14 dataset with
perception test (human labelling), mono-modal and multi-modal (i. e., decision-level fusion) systems – best
configurations of SVM are retained here; UAR: unweighted average recall; the baseline corresponds to the
best system used by the organiser (i. e., using only video features); best automatic recognition performance
obtained on the test set are in bold.

Partition Angry Disgust Fear Happy Neutral Sad Surprise %UAR

Perception test
Validation 68.75 27.50 58.70 92.06 93.65 54.10 52.17 63.85

Test 46.55 46.15 78.26 91.35 64.96 62.26 65.39 64.99
Baseline

Validation 50.00 25.00 15.22 57.14 34.92 16.39 21.74 31.49
Test 36.21 34.62 26.09 41.98 40.17 22.64 7.69 29.91

Audio
Validation 57.81 12.50 43.48 30.16 65.08 16.39 4.35 32.82

Test 60.35 3.85 41.30 27.16 64.10 24.53 3.85 32.16
Video

Validation 54.24 28.21 22.73 61.91 45.90 20.34 19.56 36.13
Test 37.93 38.46 23.91 35.80 42.74 32.08 15.38 32.33

Audio+Video
Validation 60.93 12.50 34.78 55.56 39.68 26.23 34.78 37.78

Test 50.00 7.69 52.17 40.74 42.74 30.19 11.54 33.58
Audio+Video+VAD+LAD

Validation 70.31 0.0 34.78 52.38 74.60 18.03 8.69 36.97
Test 53.45 7.69 50.00 40.74 41.88 37.74 15.38 35.27

Table 3: Performance on the automatic emotion
recognition of the EmotiW14 dataset (7 classes) us-
ing different approaches: audio features, video fea-
tures, audiovisual decision-level based fusion and
audiovisual decision-level based fusion with voice
(VAD) and lip (LAD) activity; baseline on audio
was obtained with a linear kernel; baseline on video
was obtained with a gaussian kernel; baseline on au-
dio+video was obtained with a feature-level fusion
(RBF kernel).

% UAR Validation Test

Audio
Baseline 23.74 23.82

Linear kernel 30.42 32.16
Gaussian kernel 32.82 31.61

Video
Baseline 31.49 29.91

Linear kernel 33.74 29.07
Gaussian kernel 36.13 32.33

Audio+Video
Baseline 25.37 23.02

Linear kernel 37.78 30.46
Gaussian kernel 36.83 33.58

Audio+Video+VAD+LAD
Linear kernel 38.78 31.13

Gaussian kernel 36.97 35.27

decision-level fusion allowed to obtain the best overall per-
formance on both validation (%UAR = 38.78) and test
(%UAR = 35.27) sets. Therefore, the add of knowledge
of the occurrence of speech in the audiovisual data helps the
system to know which modality to trust.

More complex machine learning algorithms than SVM,
such as those exploiting non-linear dependencies (e. g., deep
neural networks - DNN), could probably provide some ad-
ditional improvement in the automatic emotion recognition
of the highly challenging EmotiW14 dataset. However, we
do not believe that recurrent based architectures, such as
LSTM or BLSTM, would help further, because the duration
of the instances is quite small (maximum duration is 5.4 s).
Finally, some improvement could probably be obtained by
tuning a bit more the feature sets. Regarding audio data,
finely tuned features selection could be performed from a
large brute-force feature set, whereas for video data, geo-
metric based information could be added to the feature set,
since the baseline set contains only appearance based infor-
mation.
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