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Abstract
Whilst snoring itself is usually not harmful to a person’s health,
it can be an indication of Obstructive Sleep Apnoea (OSA), a
serious sleep-related disorder. As a result, studies into using
snoring as acoustic based marker of OSA are gaining in popu-
larity. Motivated by this, the INTERSPEECH 2017 ComParE
Snoring sub-challenge requires classification from which areas
in the upper airways different snoring sounds originate. This
paper explores a hybrid approach combining evolutionary fea-
ture selection based on competitive swarm optimisation and
deep convolutional neural networks (CNN). Feature selection
is applied to novel deep spectrum features extracted directly
from spectrograms using pre-trained image classification CNN.
Key results presented demonstrate that our hybrid approach can
substantially increase the performance of a linear support vec-
tor machine on a set of low-level features extracted from the
Snoring sub-challenge data. Even without subset selection, the
deep spectrum features are sufficient to outperform the challenge
baseline, and competitive swarm optimisation further improves
system performance. In comparison to the challenge baseline,
unweighted average recall is increased from 40.6% to 57.6%
on the development partition, and from 58.5% to 66.5% on the
test partition, using 2 246 of the 4 096 deep spectrum features.
Index Terms: competitive swarm optimisation, evolutionary
feature selection, convolutional neural network, snoring, compu-
tational paralinguistics

1. Introduction
Induced by a blockage of the upper airways during sleep, Ob-
structive Sleep Apnea (OSA) can have numerous detrimental
effects on someone’s health, including, for example, periodic
hypoxia, or an increased risk for cardiovascular diseases [1].
Snoring is a prevalent symptom for OSA [2], and knowledge of
the exact site of vibration and obstruction is key to a targeted
medical treatment.

Addressing this task, the INTERSPEECH 2017 ComParE
Snoring sub-challenge requires classification of snoring audio
samples based on the source of vibration in the upper airways [3].
As for past challenges, a standard feature set is provided, con-
taining 6 373 acoustic features. Whilst it has been shown that the
inclusion of more features can boost system performance in com-
putational paralinguistics [4], large feature sets can quickly lead
to issues with training time and the ‘curse of dimensionality’.

Therefore, many current approaches reduce the effective
dimensionality of the feature space, e. g., by quantising fea-
tures [5, 6], or with dimensionality reduction techniques such
as PCA [7]. Filter-based feature selection approaches are also
commonly used in computational paralinguistics [8, 9]. Such
approaches typically employ statistical tests or measures, such
as information gain [10], the Kolmogorov-Smirnov test [11],

canonical correlation analysis [12], or the chi-squared test [13].
However, to date, there has been little work on wrapper-based
feature selection methods.

Many heuristic wrapper algorithms, such as stepwise for-
ward selection, struggle on large real-world feature sets, due
to the exponential size of the feature set search space [14, Ch.
17]. Evolutionary algorithms are a group of heuristic algorithms,
which are better suited to large-scale feature selection [15]. They
mimic biological evolution, in that they optimise a set of can-
didate feature vectors over several iterations, or generations,
taking into account the quality of past candidates. Evolutionary
feature selection has been used successfully in the audiovisual
domain, for instance for instrument recognition [16], voice com-
mand recognition [17], classification of infant cries [18], speaker
identification [19], and emotion prediction [20, 21].

In this paper, we apply a hybrid approach combining deep
image convolutional neural networks (CNNs) and evolutionary
feature selection to the INTERSPEECH 2017 ComParE Snoring
sub-challenge; noting that as some authors are part of the chal-
lenge organisers, we do not officially participate in the challenge.
The feature selection algorithm is based on competitive swarm
optimisation [22, 23], which promises effective feature selection
even on large, high-dimensional data sets. To the best of our
knowledge, this is the first time a hybrid approach combining
deep image CNNs and swarm optimisation has been applied
in computational paralinguistics. It is applied to a novel set of
4 096 low-level features that we extracted in an end-to-end man-
ner from the spectrograms of the Snoring challenge data using
a pre-trained image classification CNN. We have shown that,
even without subset selection, these features, herein referred
to as deep spectrum features, are sufficient to outperform the
challenge baseline [24].

2. Evolutionary Feature Selection
Our feature selection approach is based on competitive swarm
optimisation, which was proposed as a modification of particle
swarm optimisation [25] for large scale optimisation [22].

2.1. Background

Canonical particle swarm optimisation (PSO) is an optimisation
approach inspired by the social swarm behaviour of animals,
such as bird flocking, or fish schooling [25]. In PSO, a set of can-
didate solutions, called particles, is allowed to move through the
search space over several time steps, or generations. The parti-
cles each maintain a fitness value, which measures the quality of
the solution they represent, and a velocity vector. Once per gen-
eration, particles are accelerated towards the solutions with the
currently highest fitness values, by changing their velocities ac-
cordingly. Subsequently, they are moved a small distance along
their velocity vector. After sufficiently many generations, the
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Figure 1: A particle swarm minimising f(x) = exp(‖x‖2) for
x ∈ R

2. Black dots correspond to individual particles, and blue
arrows indicate their velocity. As more generations pass (left
to right), the particle swarm converges to the optimal solution
x∗ = (0, 0) of this optimisation problem.

particle swarm converges at an optimal solution (see Figure 1).

However, PSO has been found to struggle on optimisation
problems with many local optima, or high dimensionality [22,
26]. For such large-scale problems, Cheng and Jin have proposed
competitive swarm optimisation (CSO) [22].

2.2. Competitive Swarm Optimisation

Applying the CSO algorithm to wrapper-based feature selection
has recently been proposed by Gu et al. [23]. We follow this ap-
proach for several reasons. First, as a typical wrapper algorithm,
it considers feedback from the machine learning system to fine-
tune the feature subset. Therefore, CSO can possibly achieve
higher classification performance than a filter-based approach.
Second, typical feature sets in computational paralinguistics,
as well as our novel deep spectrum feature set, contain thou-
sands of features [8, 24, 27]. The CSO algorithm has been devel-
oped specifically for such large-scale optimisation problems [22].
Third, the algorithm naturally lends itself to parallelisation, fur-
ther alleviating the impact of the feature set size on training
time.

Like canonical PSO [25], CSO for feature selection main-
tains a swarm of particles, representing candidate solutions,
which is updated iteratively over several generations. Given
a feature set of size n, a particle p = (x, v) consists of its loca-
tion x ∈ [0; 1]n, and its velocity v ∈ [0; 1]n. The location x of
a particle indicates which features are selected, where feature i
is selected iff xi > λ for a constant λ ∈ [0; 1]. The velocity of a
particle points towards a potentially better solution [23].

Algorithm 1 shows our version of this algorithm. Initially,
a predetermined number of particles nP is randomly initialised
(lines 1–3). Subsequently, the swarm is allowed to evolve for
several generations. In a given generation t, the swarm P t is first
evaluated using the machine learning system (lines 7–13). Given
a particle p = (x, v) ∈ P t, its corresponding feature vector

S = {i ∈ {1, . . . , n} | xi > λ} (1)

is passed to the machine learning system for evaluation. The
fitness of the particle f(p) is determined by the classification
performance of the machine learning system when using the fea-
ture vector S. Since the computational cost of CSO is dominated
by particle evaluation, a number of optimisations have been ap-
plied to this step. Following Gu et al. [23], fitness values are
cached in a mapH, in order to avoid duplicate evaluations of the
same feature vector, which approximately halves the number of
required evaluations. The remaining evaluations are performed
in parallel, which allows the algorithm to scale well on modern
multi-core systems.

Algorithm 1 The competitive swarm optimisation algorithm

1: for all particles p0i = {x0
i , v

0
i } in swarm P 0 do

2: initialise position x0
i ∈ [0; 1]n and velocity v0i ∈ [0; 1]n

3: end for
4: nG ← maximum number of generations
5: t← 0,H ← ∅
6: while t < nG do
7: for all particles pti in swarm P t do parallel
8: compute feature vector St

i from xt
i

9: if (St
i , ∗) /∈ H then

10: evaluate fitness f(pti) using ML system
11: H ← H∪ (St

i , f(p
t
i))

12: end if
13: end for
14: while swarm P t �= ∅ do
15: randomly choose pti, p

t
j ∈ P t with i �= j

16: if f(pti) > f(ptj) then
17: pw ← pti, pl ← ptj
18: else
19: pw ← ptj , pl ← pti
20: end if
21: vt+1

l ← Rt
1v

t
l +Rt

2(x
t
w − xt

l) + φRt
3(x̄

t − xt
l)

22: xt+1
l ← xt

l + vt+1
l

23: P t+1 ← P t+1 ∪ {ptw, (xt+1
l , vt+1

l )}
24: P t ← P t \ {pti, ptj}
25: end while
26: t← t+ 1
27: end while

After evaluation, the particle swarm update is performed
(lines 14–25), which involves the main deviation from canon-
ical PSO. Instead of learning from the best solution found so
far, particles learn from randomly selected competitors. For
this, pairwise competitions between particles from two random
partitions of the swarm are carried out. Given such a pair of par-
ticles, the winner pw = (xw, vw) with the higher fitness score
f(pw) is passed directly to the next generation. The loser par-
ticle pl = (xl, vl) updates its location and velocity by learning
from the winner particle. In particular, its new location x′l and
velocity v′l are computed as follows

v′l = R1vl +R2(xw − xl) + φR3(x̄− xl), (2)

x′l = xl + v′l. (3)

Here, R1, R2, and R3 are vectors in [0; 1]n, which are randomly
generated for each generation, x̄ is the mean particle location in
the current generation, and φ ∈ [0; 1] is a constant controlling
the influence of x̄.

3. Experiments and Results
In order to evaluate our approach, we have developed a feature
extraction and selection pipeline containing two main compo-
nents (cf. Figure 2). Feature vectors are extracted from spectro-
grams using CNNs (Figure 2a), and passed to the CSO algorithm
(Figure 2b), which in turn interacts with the machine learning
system to determine an optimised feature set.

3.1. Database

The Interspeech Snoring sub-challenge is based on the Munich-
Passau Snore Sound Corpus. This corpus consists of 828 snore
samples from four classes relating to the point of obstruction:
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Figure 2: Block diagram of our system architecture. Spectrograms are generated from whole audio files and plotted with the matplotlib
Python library. We then use these plots as input for pre-trained CNNs for image processing and extract the activations of fully connected
layers as high dimensional feature vectors. Next, we send the extracted feature vectors to the feature selection component which interacts
with the machine learning component during optimisation, in order to determine an optimised feature vector.

Velum (V), Oropharyngeal (O), Tongue (T) and Epiglottis (E).
For the challenge, the data has been divided equally into train,
development and test sets. For a detailed description of the
corpus and the class distributions the reader is referred to [3].

It is worth noting that the classes have a very unbalanced
distribution; there are considerably more samples labelled V
than others. Thus, we use the same upsampling strategy as the
challenge baseline system [3]. Samples from the O, T, and E
classes are replicated proportional to their relative frequency, so
that all class labels have roughly the same number of samples.

3.2. Deep Spectrum Feature Extraction

Our deep spectrum features are extracted from the spectrogram
of each data instance using pre-trained image classification
CNNs. First, we extract power spectrograms of every snore
sample with Hanning windows of width 16 ms, and overlap 8 ms.
Subsequently, they are plotted as images with the Python li-
brary matplotlib [28], using a predetermined colour map. The
feature vectors are then computed by forwarding these images
through pre-trained large deep convolutional neural networks
and extracting the activations of a specific fully connected layer.
Specifically, we use VGG19 [29] and AlexNet [30] with weights
obtained from the Caffe [31] model-zoo1.

Preliminary experiments indicated that – among the con-
figurations tested (activations of fc6 and fc7 of both VGG19
and AlexNet respectively) – the seventh layer (also commonly
called fc7) of AlexNet using a viridis colour map provides the
best performance for the Snoring sub-challenge. The resulting
feature set therefore has 4 096 attributes (one for every neuron
in the fully connected layer) and can be viewed as a high-level
representation of spectrograms as seen by AlexNet.

3.3. Machine Learning Component

The machine learning system encapsulates a linear SVM. For a
given feature vector, the respective features are selected from the
training data, and a model is trained on this data. Afterwards, the
model is evaluated on the development data, using unweighted
average recall (UAR) as the performance measure. Following
the challenge rules, we use this performance measure, since the
snoring corpus has highly imbalanced class labels [3]. The UAR
value is then reported back to CSO as the fitness of the supplied
feature vector.

3.4. Experimental Settings

The competitive swarm optimiser has been implemented in
Java 1.8, using the WEKA machine learning library (version

1https://github.com/BVLC/caffe/wiki/Model-Zoo

Table 1: System performance on all 4 096 deep spectrum features,
i. e., before feature selection, for different SVM complexity values
C. Performance is measured in unweighted (UAR), and weighted
(WAR) average recall on the development partition.

C 10−6 10−5 10−4 10−3 10−2 10−1

UAR[%] 29.8 36.7 44.8 47.3 42.7 40.5
WAR[%] 31.1 42.8 55.1 60.4 62.2 62.2

3.8.1) [32]. The SVM classifiers are trained using the LibLIN-
EAR library with the L2-regularised L2-loss dual solver [33].
We do not normalise or standardise our data, since we found
during our preliminary evaluation that this negatively impacts
classifier performance. Also, during our preliminary evaluation,
the parameters φ = 0.1 and λ = 0.5 were selected.

Table 1 shows SVM performance on the development parti-
tion for different SVM complexity values C. Since UAR peaks
for C around 10−4 to 10−3, we choose values from this range
for further evaluation. The optimal choice of C may change
during subset selection, and thus, we report SVM performance
on the development partition after feature selection with different
numbers of generations and swarm sizes (see Table 2). In order
to keep computation time under control, and to eliminate one op-
timisation dimension, we have limited the number of evaluations
in CSO, i.e., the product of the number of generations and the
swarm size, to 40 000.

3.5. Results

First and foremost, we observe in Table 2 that CSO increases
the UAR on the development partition substantially across all
configurations, achieving as much as 65.3% UAR. Furthermore,
the algorithm reduces the feature subset size to as little as 48.3%
of its original size. In fact, the feature subset size and the UAR
on the development partition are strongly negatively correlated
(Pearson, ρ = −0.89), meaning that smaller subsets generally
achieve higher performance.

Moreover, we also observe that there is generally little varia-
tion in UAR on the development partition for different values of
nG, and nP . According to Cheng and Jin [22], the performance
of CSO does not depend on a large swarm size. On the contrary,
we even observe slightly lower performance for large swarm
sizes (nP = 300 or 400). However, this may be caused by the
low number of generations that we choose in conjunction with
these swarm sizes.

On the test partition, the feature sets that achieve the best
UAR on the development partition, i.e., C = 5 ·10−3 denoted in
grey text in Table 2, result in low UAR scores (60.3 % – 60.7 %)
on the test partition. We assume that this is due to overfitting

3509



Table 2: System performance after feature selection for differ-
ent configurations. As per the challenge rules, performance is
measured in terms of unweighted (UAR) average recall. For
completeness, we also show weighted (WAR) average recall val-
ues, and the size of the selected feature subset relative to the
original feature set sF . Evaluations were performed for differ-
ent SVM complexity values C, numbers of generations nG, and
swarm sizes nP . The configurations denoted in grey text have
been excluded from further investigation due to overfitting to
the development partition. Superscripts on the development set
scores indicate the indices of the corresponding configurations
in Figure 3.

UAR (WAR) [%]
nG nP C sF devel test

100 400 1 · 10−4 60.1 56.6 (60.1) –

5 · 10−4 76.7 53.1 (63.6) –

1 · 10−3 61.8 57.1 (68.2) –

5 · 10−3 48.3 63.9 (72.1)1 60.6 (63.5)

133 300 1 · 10−4 58.9 56.6 (61.5) –

5 · 10−4 79.8 52.4 (64.0) –

1 · 10−3 71.2 55.5 (67.5) –

5 · 10−3 52.0 61.6 (72.1)2 60.3 (66.2)

200 200 1 · 10−4 53.8 57.9 (62.5)6 64.5 (62.4)

5 · 10−4 77.4 53.2 (64.0) –

1 · 10−3 66.8 57.3 (70.3) –

5 · 10−3 56.3 62.1 (73.9)3 60.7 (63.9)

300 134 1 · 10−4 54.8 57.6 (62.5)7 66.5 (62.4)

5 · 10−4 77.1 53.2 (64.3) –

1 · 10−3 64.2 58.1 (70.7)8 65.3 (65.4)

5 · 10−3 49.3 65.3 (74.9)4 60.3 (63.9)

400 100 1 · 10−4 56.0 58.0 (63.3)9 64.6 (60.8)

5 · 10−4 68.5 54.4 (65.7) –

1 · 10−3 65.3 56.3 (68.9) –

5 · 10−3 51.8 64.5 (74.9)5 60.6 (63.5)

of the feature subset to the development partition, since particle
fitness is derived from performance on the development partition
(cf. Section 3.3). Figure 3 shows a plot of development partition
UAR over the number of selected features. For all feature subsets
selected for C = 5 · 10−3, marked by red circles in the plot,
the UAR deviates clearly from the distribution of the remaining
feature subsets. Generally, the UAR increases little for feature
subsets smaller than about 65% of the original size. For the
marked feature subsets, however, the UAR suddenly increases
sharply. We interpret this as evidence of overfitting, and exclude
the feature subsets obtained for C = 5 · 10−3 from further
examination.

Among the remaining combinations of nG, nP , and C, we
choose those four with the next best performance on the devel-
opment partition for evaluation on the test partition. That way,
the best development partition result is 58.1 % UAR, which cor-
responds to 65.3 % UAR on the test partition. The fourth best
configuration performs only slightly worse on the development
partition with 57.6 % UAR, but better on the test partition with
66.5 % UAR. Overall, all of them result in considerably higher
performance than both the challenge baseline (58.5% UAR),
and the deep spectrum features without subset selection (63.3%
UAR, cf. Table 3). The final feature subset contains 2 246 of the
original 4 096 CNN-descriptors.
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Figure 3: Relation between selected features (x-axis), and un-
weighted average recall (UAR) on the development partition
(y-axis). The superscripts in Table 2 map configurations to the
corresponding points. Generally, the UAR increases as fewer
features are selected, but little improvement is achieved if less
than about 65% are selected. The subsets marked by red circles
deviate clearly from this pattern, which is evidence of overfitting.

Table 3: Comparison of our proposed approach (Deep Spectrum
& CSO) to the challenge baseline (functionals), the end-to-end
approach (CNN & LSTM) investigated in the baseline paper, and
the purely CNN-based approach (Deep Spectrum). We do not
report WAR, since no values are available for the baseline.

UAR [%]
Model Ref. devel test

Baseline CNN & LSTM [3] 40.3 40.3
Baseline functionals [3] 40.6 58.5
Deep Spectrum [24] 47.3 63.3
Deep Spectrum & CSO Table 2 57.6 66.5

4. Conclusion
This paper proposed a hybrid ‘end-to-evolution’ paradigm for
snore sound classification. Our results demonstrate that using
a large feature set ‘as-is’ does not necessarily result in optimal
system performance. Even though our deep spectrum features
are already sufficient to substantially outperform the challenge
baseline, feature selection is able to further boost performance
on both the development and test partitions.

Naturally, our proposed approach comes with certain draw-
backs. Most significantly, like any wrapper algorithm, it in-
creases training time greatly, due to the large number of required
particle evaluations. Partly, however, we mitigate this issue by
parallelising the evaluation step in CSO. Overfitting, as observed
in this paper, is a common problem for wrappers, but we are able
to identify and eliminate instances in which overfitting occurs
based on their development partition scores.

Based on the results presented, future work will focus on
feature selection for computational paralinguistics, such as ap-
plying it to regression problems, or to multimodal data. Also, we
will investigate the performance of our hybrid approach when
fusing features extracted by CNN-descriptors with conventional
acoustic feature representations.
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