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Summary
It has been shown that automatic bird sound recognition can be an extremely useful tool for ornithologist and
ecologists, allowing for a deeper understanding of; mating, evolution, local biodiversity and even climate change.
For a robust and efficient recognition model, a large amount of labelled data is needed, requiring a time consuming
and costly effort by expert-human annotators. To reduce this, we introduce for the first time, active learning,
for automatic selection of the most informative data for training the recognition model. Experimental results
show that our proposed; sparse-instance-based and least-confidence-score-based active learning methods reduce
respectively 16.0% and 35.2% human annotated samples than compared to passive learning methods, achieving
an acceptable performance (unweighted average recall > 85%), when recognising the sound of 60 different
species of birds.

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent decades, more and more scholars of ecology,
bioacoustics, signal processing, and machine learning, are
working towards better machine listening for bird sounds,
which is now seen as an essential indicator for climate
change tracing [1], and species evolution [2]. Bird species
recognition by sound will be a very important supple-
ment, or even substitute for traditional telescope based ap-
proaches due to its ability for long-term non-human mon-
itoring, unrestricted by adverse weather conditions. From
the early work done by McIlraith et al. [3], using two-layer
perceptrons to recognise six species of birds, to recent
work on handling larger amounts of bird sound data [4], or
the use of a more robust, and efficient classification model
with limited data [5].

However, there are few studies which deal with the
problem of unlabelled bird sound data. Unlabelled data is
much more easily acquired in much larger quantities, com-
pared to labelled ones. Asking human-experts to annotate
the data would be massively time-consuming, and very ex-
pensive. Inspired by our work on active learning (AL) for
speech emotion recognition [6], we introduce this method-
ology for bird sound. In our study, we propose and in-
vestigate two AL methods, e. g., the sparse-instance-based
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AL (SI-AL), and the least-confidence-score-based AL
(LCS-AL). We extend the strategy of selecting the sparse
data from a multi-class database rather than a two-class
problem [6]. As indicated by the database provider1, the
recordings in their database are high quality, and the deter-
mination of species and the locations of the recordings are
highly reliable, considering the experimental experience
of our previous work, we chose a least-confidence-score
rather than the medium-confidence-score in [6].

This paper is organized as follows: related prior work
will be shown in Section 2. Then, Section 3 will describe
our current methodology, and the the databases utilised.
Experimental results, and discussion will be presented in
Section 4 before conclusions are made in Section 5.

2. Related Prior Work

Inspired by our successful work on active learning for
speech emotion recognition [6], we introduce this method-
ology for bird sounds. There are two main differences
between this work, and the work in [6]: 1) we extend
the sparse-instances-based active learning into a multi-
class problem; 2) we use a least-certainty method to select
ranked samples rather than the medium certainty method
used in [6]. This work is also an extended work of [7],

1 http://www.animalsoundarchive.org/RefSys/
ProjectDescription.php?CurLa=en
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which proposed a framework for bird sound detection,
classification, and classifier modification.
Algorithm 1: Passive Learning

Repeat:
1) Randomly selectN samplesωn from the unlabelled
set Ω.
2) Let human experts annotate the selected subset ωn.
3) Remove ωn from the unlabelled set Ω, i. e., Ω =Ω\
ωn.
4) Add ωn to the labelled set Σ, i. e., Σ = Σ ∪ ωn.

End: When iteration reaches a defined number, or the
trained classifier achieves a certain performance on
the associated validation set.

3. Methodology

A common approach for coping with the issue of limited
data, is passive learning (PL), which randomly, and inde-
pendently selects samples from unlabelled data and asks
for additional human-expert annotation. This method can
be extremely time-consuming, and costly [6]. It has been
reported that, in a typical data mining project, approxi-
mately 80 % of the work is completed during data collec-
tion, cleaning, and annotation [8]. The detailed PL algo-
rithm is shown in Algorithm 1.

Another method, known as ‘Active Learning (AL)’,
uses only the ‘most informative’ manually labelled sam-
ples, using are several methods to select them [9]. The
most popular is based on uncertainly sampling. Such a
strategy uses a confidence measure criterion to select
data. This assumes that the unlabelled data predicted with
the least-confidence-score are the most informative, and
should be selected for human annotation. Compared with
other AL approaches, this methods is simple and effective,
and widely used in many other applications [6]. Thus, it
is one of the methods investigated in this paper, named as
least-confidence-score-based AL (LCS-AL). In addition,
another state-of-the-art active learning approach, sparse-
instance-based AL (SI-AL), has shown promising per-
formance for emotion recognition in [6]. Compared with
other AL approaches, it assumes that the instances pre-
dicted as the sparse classes, are the most helpful to en-
hance discrimination of the classification model. More de-
tailed information about these approaches is to follow.

3.1. Sparse-Instance-based Active Learning

Bird sound data is naturally unbalanced due to the var-
ied distribution of bird species, and the collected record-
ings. Therefore, we take the sparse-instance-based active
learning (SI-AL) as our method. In SI-AL, we consider the
unbalanced characteristics of the bird sound data set. We
randomly select N samples from this data, and through-
out each iteration, classify these as the ‘sparse class’,
and ‘most informative’ samples. The pseudo code of this
method is shown in Algorithm 2. We need to note that,
if it happens that no data is classified as a ‘sparse class’,

the Algorithm 2 will make random selections as in Algo-
rithm 1.
Algorithm 2: Sparse-Instance-based Active Learning

Repeat:
1) Train a classifier Ψ based on the labelled set Σ.
2) Randomly Select N samples ωn from the unla-
belled set Ω as predicted by Ψ to be the ‘sparse class’,
whose value is less than a specified threshold, i. e.,
Ns < Nmax × sparse_fraction, where Ns is the sam-
ple value of a certain class,Nmax is the maximum sam-
ple value among all data, and sparse_fraction is a
predefined ratio.
3) Let human expert annotate ωn.
4) Remove ωn from the unlabelled set Ω, i. e., Ω =Ω\
ωn.
5) Add ωn to the labelled set Σ, i. e., Σ = Σ ∪ ωn.

End: When the iteration reaches a defined number, or
the Ψ achieves a certain performance on the validation
set.

Algorithm 3: Least-Confidence-Score-based Active
Learning

Repeat:
1) Train a classifier Ψ based on the labelled set Σ.
2) Predict the unlabelled data Ω by Ψ, and rank the
data by its prediction confidence scores.
3) Randomly select N samples ωn from the last c%
of ranked data in Ω.
4) Let human expert annotate ωn.
5) Remove ωn from the unlabelled set Ω, i. e., Ω =Ω\
ωn.
6) Add ωn to the labelled set Σ, i. e., Σ = Σ ∪ ωn.

End: When iteration reaches a defined number, or the
Ψ achieves a certain performance on the validation set.

3.2. Least-Confidence-Score-based Active Learning

Compared with the SI-AL, least-confidence-score-based
active learning (LCS-AL) considers the capacity of clas-
sifier trained at initial steps. In LCS-AL, we treat ‘the
least-confidence-scores’ samples ranked by classifier’s es-
timated posterior probabilities as the ‘most informative’
samples. As the confidence scores have a consistent cor-
responding relationship to the posterior probabilities esti-
mated by the classifier, we use the latter to rank the un-
labelled data in our method. The cross entropy of the es-
timated probability vector is used to represent the confi-
dence score (as inverted ranking) of the unlabelled data.
The pseudo code of this method is shown in Algorithm 3.

4. Experimental Results

4.1. Bird Sound Database
The bird sound data utilised for these experiments has
been provided by the Museum für Naturkunde Berlin
(MNB)2, Germany. Due to copyright restrictions defined
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by the author, we removed all audio files which were la-
belled as protected. In addition, we eliminated the sub-
classes of bird species which had less than 20 audio sam-
ples. In total, our bird sound dataset has 3 483 audio
files, including 60 species (sub-classes) of birds. As Ta-
ble I shows, we separated the database into three parts: a
smaller labelled dataset, a larger pool dataset without la-
belled information, and a test dataset.

4.2. Acoustic Feature Set & Classifier

As previously, our toolkit, openSMILE [10], has been
used within the bird sound recognition task [7]. In this
study, we use the ‘ComParE’ set, which contains a to-
tal of 6 373 features. The detailed information about the
low-level-descriptors (LLDs), and the functions applied to
those LLDs, can be found in [11]. Before feeding into the
classifier model, all the original features are standardized
to eliminate any effect of outliers. As a classifier, we chose
Support Vector Machines (SVM) [12]. We implemented
the SVM training, and testing process with LIBSVM [13].
Based on previous work, we select SVM with a linear ker-
nel, and a complexity value of 0.01. The method to cal-
culate the estimated posterior probabilities of the SVM
classifier were described in [14].

4.3. Experimental Setup

All experiments were done in the software environment of
Matlab 2016b by Math Works. The sparse_fraction men-
tioned in Algorithm 2 is set to 0.5, and the c value men-
tioned in Algorithm 3 is set to 20, respectively. The itera-
tion number is set to use all of the unlabelled data due to
each learning strategy, and N is 100. To make a fair com-
parison, we randomly repeat 20 rounds of independent ex-
periments of PL. In this work, we use unweighted average
recall (UAR), i. e., the averaged accuracy of each class of
data, as our evaluation metric due to the imbalanced dis-
tribution of bird sound data.

4.4. Results and Discussion

Figure 1 shows the unweighted averaged recalls vs. the
used human annotated samples by PL, and AL during iter-
ations. We can see that, both the SI-AL, and the LCS-AL
use less human annotated samples than PL, once the best
trained model is a achieved. We observe that, LCS-AL, is
better than SI-AL in selecting the ‘most informative’ sam-
ples. LCS-AL is the fastest method to build an acceptable
model (UAR above 85.0 %) among all strategies. When
using around 2k (2 020 samples in 14-th iteration) hu-
man annotated samples, LCS-AL can reach approximately
86.9 % UAR, higher than performance by PL (81.6 %),
with a significant level at p < 0.005 within one-tailed z-
test. It should be noted that, in LCS-AL, the UAR can be
improved quickly at earlier iterations, but later will gradu-
ally become stable or even decrease slightly. This is caused
due to an increased use of the most informative samples,

2 http://www.animalsoundarchive.org/RefSys/Statistics.php.

Table I. Bird sounds data set.

Labelled Pool Test

3 483 720 2 090 673

Figure 1. Unweighted Average Recall (UAR) vs. used human
annotated samples. 20 independent runs were carried out with
PL.

the remaining samples bring unimportant information to
the classifier, which in return, produces a negative effect on
the model. Figure 2 shows the percentage of the least used
human annotated samples from the whole unlabelled data
when achieving an acceptable model (UAR above 85.0 %)
for the proposed three methods. LCS-AL required the least
number of human annotated samples (1 100, 52.6 %) to
train the best performing model, 35.2 % absolute less than
PL (1 835, 87.8 %, averaged by 20 independent experi-
ments), and 19.2 % less than SI-AL (1 500, 71.8 %). In
this study, SI-AL is inferior to LCS-AL, but it still requires
16.0 % less human annotated samples when compared to
PL. With improved classifier performance, these experi-
mental results prove that, the two proposed AL methods
can considerably reduce the need for human experts’ when
comparing this to PL. The two proposed methods, i. e., SI-
AL, LCS-AL can also be easily extended to multi-label
cases if we modify the definition of sparse class (for SI-
AL), and cross entropy (for LCS-AL).

5. Conclusion

In this work, we proposed and compared two active learn-
ing methods, namely sparse-instance-based active learn-
ing, and least-confidence-score-based active learning, for
the task of bird sound classification. Experimental re-
sults have demonstrated that, both active learning methods
can considerably reduce the need for human annotation,
when compared with passive learning, once an accept-
able model is achieved. The least-confidence-score-based
active learning method can outperform passive learning
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Figure 2. Minimal amount, in percent of human annotations
needed from an unlabelled dataset, to build an acceptable model
(UAR> 85.0 %) using different learning strategies.

when fed a small number of human annotated samples
during earlier iterations. In this study, the performance
of sparse-instance-based active learning falls behind least-
confidence-score-based active learning. Future work will
focus on extending our study to multi-label cases, and
comparing with other state-of-the-art active learning meth-
ods.
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