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ABSTRACT
The ability of sound to enhance human wellbeing has been
known since ancient civilisations, and methods can be found
today across domains of health and within a variety of
cultures. There are an abundance of sound-based methods
which show benefits for both physical and mental-states of
wellbeing. Current methods vary from low frequency vibra-
tions to high frequency distractions, and from drone-like
sustain to rhythmical pulsing, with limited knowledge of a
listeners psycho-physical perception of this. In this regard,
for the presented study 40 listeners were asked to evaluate
the perceived emotional dimensions of Valence and Arousal
from a dataset of 144 isolated synthetic periodic waveforms.
Results show that Arousal does correlate moderately to fun-
damental frequency, and that the sine waveform is perceived
as significantly different to square and sawtooth waveforms
when evaluating perceived Arousal. The general results sug-
gest that isolated synthetic audio can be modelled as a means
of evoking affective states of emotion.

This is the author's version of the work. It is posted here for your personal 
use. Not for redistribution.
AM’18, September 12–14, 2018, Wrexham, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6609-0/18/09. . . $15.00

https://doi.org/10.1145/3243274.3243277

CCS CONCEPTS
• Applied computing → Sound and music comput-
ing; • Human-centered computing → Sound-based in-
put / output;

KEYWORDS
affective computing, synthetic audio, sound healing, percep-
tion, wellbeing.

ACM Reference Format:
Alice Baird, Emilia Parada-Cabaleiro, Cameron Fraser, Simone Han-
tke, and Björn Schuller. 2018. The Perceived Emotion of Isolated
Synthetic Audio: The EmoSynth Dataset and Results . In Audio
Mostly 2018: Sound in Immersion and Emotion (AM’18), September
12–14, 2018, Wrexham, United Kingdom. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3243274.3243277

1 INTRODUCTION
The soundscape of our world is informative and vibrant,
able to create cultural snapshots [21] and evoke emotional
connections [32]. In the natural world sound is all encompass-
ing, with parameters such as amplitude, and fundamental
frequency continually changing. On one hand, sound (par-
ticularly music), has shown to have the ability to alter a
human’s state-of-conciousness [1], yet on the other hand,
sound (particularly stochastic sources), can not only cause
long-term physical health issues, such as hearing-loss [3],
but also negatively impact mental-health [28].
Traditional techniques including medicine songs (i. e.,

chanting [11]) have been used by ancient cultures for healing,
and thesemethods are still in practice withinmany communi-
ties across the globe, from Native North and South American
tribes, to Korean Buddhist temples [11]. With the substantial
‘power’ of sound known to some degree, much focus is being
put towards the development of systems to reduce the affect
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of uncontrolled sound environments, e. g., road noise [31].
The implementation of purposeful soundscape designs re-
ceives less attention, and system based on holistic methods
may have benefits to an abundance of scenarios.

In this way, synthetic audio generated through signal pro-
cessing methods is gaining in clinical recognition [12], with
sound-based vibratory apparatus (also known as vibroacous-
tics showing benefits for chronic pain e. g., arthritis [25]. Low
frequency oscillations in particular, have been suggested to
improve negative-mood, and reduce short-term stress [43],
and sufferers of neurological disorders such as Thalamocor-
tical Dysrhythmia are provided with low-frequency sound
stimulation as a regulatory function [36]. Although specific
use-cases in this area have been evaluated, previously no
general assessment of fundamental synthetic audio features,
including sound intensity, and overall duration have been
made in relation to emotion.

The current state-of-the-art for computer audition frame-
works (e. g., WaveNet [44]) shows great promise for sound-
scape design informed by additional attributes. With this
in mind, this study asked 40 German native individuals to
evaluate the perceived emotional dimensions of Valence and
Arousal from a dataset 144 isolated audio instances, to gain
a basis for future tasks in the area of audio generation. The
Emotional Synthetic Audio (EmoSynth) dataset has been pre-
pared specifically for this study, and includes audio of varied
acoustic parameters – waveform, amplitude envelope, dura-
tion, and fundamental frequency. To this end, this study aims
to gain a base understanding of the extent to which emo-
tion is perceived in varied combinations of isolated synthetic
audio.

2 RELATED RESEARCH
The Impact of the Soundscape
The notion of the soundscape is a term which was initially
understood as an ecological concept in which culture and
history can be captured, analogous to archival photogra-
phy [42]. On the other side, the soundscape can include
purposefully designed sound combinations, which may fill
an environment for a specific intention e. g., for environ-
ments in which excessive background noise is causing task-
distraction. Showing a substantial effects on wellbeing for
individuals across cultures [33], the study of soundscapes is a
cross-disciplinary topic, from environmental noise manage-
ment [8] to cultural anthropology [9]. Cross culturally the
emotional connections that different acoustic soundscapes
evoke, predominately through association, have also recently
been evaluated [32]. Moscoso et al. found that rural sounds of-
ten have a more positive impact than urban sounds, although
in some cases, factors of modern-life such as rainforest de-
forestation will impact negatively. Additionally, synthetic

soundscapes based on physiological signals (e. g., the heart
beat), have been found to evoke much stronger emotions
than purely synthetic audio [39].

Health and Wellbeing from Sound
Within the field of audio and acoustics there have in the
past been many studies focusing on the effect of exposure
to sound, both in the home and in the workplace [24]. Some
studies claim that excessive sound level can have an effect
on the hospital working environment, causing long-term
implication for nursing staff [37]. In that same domain, mu-
sic within a hospital has shown to have a strong impact on
patient experience [46]. Health and wellbeing from music
specifically, is a prominent area of research, with the strong
links between them still not fully understood [30]. Vocal
stimulation, through singing, is another method to maintain
a positive level of both emotional and social wellbeing [38].
With non-verbal inward singing techniques, known as ‘ton-
ing’, and ‘overtoning’ able to resonate the brain and improve
the flow of cranial fluid [12].
Synthetic audio and the design of synthetic soundscapes

have been explored across domains of research, for their abil-
ity to promote wellbeing, and have shown positive results for
the reduction of stress in public settings including the hos-
pital emergency room [10]. Additionally, it has been shown
that for self-reported anxiety, embedded binaural beats can
clinically reduce such values [45].

Assessment of Emotion from Sound
The study of emotion crosses many domains of research, and
many standardised measures have been developed for this
type of assessment, particularly for the field of music [20].
There are 3 core approaches for this: dimensional, contin-
uous, and categorical. The Self-Assessment Manikin (SAM)
is one such dimensional approach. SAM is a visual assess-
ment technique in which the Arousal, Valence, and domi-
nance of a given stimuli is measured. SAM has been imple-
mented in [7], for the analysis of emotion from natural sound
sources. Continuous measures overtime are also popular for
the study of emotion in music [19]. For example, as mu-
sic changes overtime, this method ensures that dimensions
can be measured against specific markers. These markers
could be points within a piece of music, composed to insight
stronger emotion. Through a time-continuous approach such
markers could be analysed for their effectiveness. Another
approach would be a categorical approach in which a listener
has a forced choice between a set of given labels.

Synthetic Audio Data
Large quantities of synthetic audio can be generated rea-
sonably quickly, yet there are limited datasets available, and
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seemingly none which have been annotated in terms of emo-
tion. There are many large datasets of music recordings, such
as the Million Song Dataset [4], or the RWC Music Database
[15], with the labels limited to artist name, genre, release
data etc. Some do feature a mood label for music listening cat-
egorisation, and an overview of such datasets can be found
in [2]. The Nsynth dataset gathered for use with the NSynth:
Neural Audio Synthesis framework 1 by the Google Research
lab [14], is the first-of-its-kind aimed at Deep Learning tasks
and provides more than 1 000 instruments with more than
300 000 note combinations. The Nsynth framework itself is
designed to promote creativity in audio expression, and is
a WaveNet-based [44] autoencoder for synthesizing audio.
Such frameworks show great promise for the generation of
soundscapes, and with large quantities of data and training
time, these show high fidelity in the domains of music and
speech synthesis generation are possible [40]. In this way,
the potential to generate emotion driven audio could be the
next step, and the data set discussed within this study would
be novel in that regard.

3 METHODOLOGY
The Emotional Synthetic Audio (EmoSynth)Dataset
As a means of evaluating the emotional dimensions evoked
by isolated synthetic audio, a dataset of audio files has
been generated using the computer programming language
Csound [27]. For this initial study, the dataset includes 3 x
waveforms, 12 x frequencies, 2 x amplitude envelop lengths,
and 2 x durations. The data annotated data is publicly avail-
able2, and includes 144 files (44.1 kHz, 16 bit WAV files), at a
total length of 18 minutes. There have been previous studies
which explore more complex manipulated waveforms [10];
however, this study focuses on a limited selection of acoustic
parameters, as a means of providing a base for further, more
complex study.
The waveforms sine, square, and sawtooth have been

selected for the dataset, all of which are periodic waveforms.
These have been chosen due to their wave shape (cf. Figure 1)
and spectral variance.
The sine wave (also known as a sinusoidal wave, or pure

tone), is a continuous, smooth periodic oscillation. The spec-
trum of a sine wave consists of a fundamental frequency
(without harmonics), and has been described to lack ‘tim-
bre in the same sense that white lacks color’ [6]. With such
pure qualities, this waveform offers a baseline in which more
complex combination can then be considered from.

1Nsynth Neural Audio Synthesis https://magenta.tensorflow.org/nsynth
2The Emosynth dataset is freely available for research purposes. Please
contact the corresponding author to gain access.

Table 1: Frequency values considered within the dataset.
Frequency Class (fc) and fundamnetal frequency (Hz), the
Pitch Class (pc), and musical (N)ote.

fc Hz pc N
1 41.20 1 E1
2 61.73 8 B1
3 92.49 2 F#2
4 138.59 9 C#3
5 207.65 4 G#3
6 311.12 11 D#4

fc Hz pc N
7 466.16 6 A#5
8 698.45 3 F5
9 1046.50 10 C6
10 1567.98 5 G6
11 2349.32 12 D7
12 3520.00 7 A7

The square and the sawtoothwaves are both non-sinusoidal
periodic waveforms. The square has instantaneous transi-
tions, and the sawtooth a sharp ramp-up and release. Spec-
trally, they are both created through the addition of sinu-
soidal waves [35], with the square wave showing a sum of
only odd-integer harmonic frequencies, and the sawtooth
showing all-integer harmonic frequencies [22]. Additionally
the triangle wave, would include only even-integer harmonic
frequencies. The triangle wave has been excluded for this
analysis, as we focus on the impact of increased harmonic
content on emotional perception, and the triangle waveform
would in that sense be similar to square waveform.

There are 12 fundamental frequency values in the data
set, which have been selected following the circle of fifths,
at Perfect 5th intervals (7 semitones) from E1 – A7 (Table 1).
This was chosen in order to equally consider a range of pitch
classes (i. e., C–B) typical of western musical theory. Accord-
ing to the ‘Docterin of Ethos’ from Ancient Greece, specific
scales of pitch class can evoke emotional and moral con-
cepts [16]. Given that the fundamental frequencies used here
do cover specific pitch classes, we might hypothesise that the
perception of pitch class to some extent relates to emotional
concepts. However, the consonant Perfect 5th intervals alone
will not have an impact on the listener’s perception of emo-
tion, as audio instances were randomised during playback,
and annotations are made directly after listening to only one
audio instance. In this way, listeners are not able to evaluate
the interval relationships – only the absolute value of the
frequency.
The amplitude envelope (ae) parameters of attack and

release were also applied to the signal. An amplitude enve-
lope is used to control the time it takes for a waveform to
reach its peak amplitude (attack), decaying to a steady-state
of sustain, and then releasing to null [13], (commonly, an
attack, decay, sustain (ADSR) envelope). For this study, at-
tack and release are applied with two variable lengths 0.4s
(ae-short) and 1.9s (ae-long), and all sound durations have
both variable lengths applied. Amplitude Envelope has been
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Figure 1: Time and frequency domain representations of the waveforms generated for the EmoSynth dataset. Sine, Square,
and Sawtooth periodic waveforms.

discussed in the field of phonetics as having an explicit ef-
fect on a listener’s ability to perceive emotion [29]; to this
end, we evaluate the extent to which ae may influence the
perception of emotion evoked by synthetic audio.
The duration of the audio files was also generated with

two variations, 5 seconds (du-short) and 10 seconds (du-long).
Although in the past, duration of music listening has shown
to have little effect on the perception of emotion by listen-
ers [5], there is seemingly no studies which have focused
on isolated synthetic audio. Therefore, for the first time, we
evaluate the relationship between perceived emotional states
and isolated synthetic audio listening duration.

Perception Test Parameters and Set-up
For this study we are focusing on the perceived emotion that
is evoked by the the instances of audio. Perceived emotion
refers to the intellectual processing ability of the listener, and
alternatively measuring induced emotion refers to the uncon-
scious physiological response shown, which therefore would
require additional measuring tools, such as skin conductance
or brain activity [23].

As previously discussed in section 2 Assessment of Emotion
from Sound, there are a few approaches which could have
been used for the evaluation of emotion from synthetic audio.
As categorical measures can cause ambiguous results [18],
we evaluate with a dimensional model of emotion, consid-
ering Arousal and Valence (common in the field perception
of emotion evaluation [41]). Valence is a measure of how
positive or negative an emotion is, and Arousal measures the
emotions levels of activation (i. e., weak, or strong intensity).
For each dimension, i. e., Valence / Arousal, we consider a

Figure 2: The interface used within iHEARu-PLAY, to label
the audio for its perceived level of evoked Valence (x) and
Arousal (y). Black outline box indicates current selection.

5-level scale, from 1 = negative / weak, 5 = positive / strong).
We choose not to use a time-continuous dimensional model,
as the instances do not change substantially over time, and
due to possible ‘annotator delay’, these instances would be
too short for an accurate evaluation of this.
A group of 40 (20 females and 20 males) German native

listeners, aged between 21− 29 years (mean, 23 years), volun-
tarily evaluated the dataset of 144 audio files (total duration
18minutes). Listeners were asked to perform the task alone
in a self-reported calm environment, in this way ensuring
prior mood and or emotional state would have a limited
influence on the results. The listening task was completed
in the iHEARu-PLAY online browser-based annotation plat-
form [17], and listeners were asked to label on a 5x5 grid the
values of Valence (x-axis) and Arousal (y-axis), i. e., choosing
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one unique position of the matrix as the emotional value
of that sample (cf. Figure 2). Listeners were required to use
headphones, and for safety purposes prior to the listening
test, listeners set their volume carefully for the highest and
lowest fundamental frequencies in the dataset, and were
explicitly asked not to adjust their volume during the test.
Before the main annotation began, listeners also made a prac-
tice run annotation, to ensure they were comfortable with
the task, and understood the parameters being evaluated.

4 EVALUATION OF RESULTS
To evaluate the perceived Valence and Arousal, we anal-
yse the results by their separate parameter (cf. Table 2). In
the analysis, Cohen’s d (for parametric test, i. e., two-way
ANOVA), and η2 (for non-parametric, i. e., Kruskal-Wallis)
are considered as measures of effect size. Such values must
be interpreted as follows [26]: d = 0.2 (small), d = 0.5
(medium), d = 0.8 (large); and η2 = 0.01 (small), η2 = 0.06
(medium), η2 = 0.14 (large). The Pearson Correlation Co-
efficient (r) should be interpreted as [34]: .900 − 1.00 (very
high), .700 − .900 (high), .500 − .700 (moderate), .300 − .500
(low), .000 − .300 (negligible). Finally, here, p values indicate
statistical significance above the conventional threshold of p
< .05. However, since the sample size might influence these
parameters, analysis will mainly focus on the effect size and
correlation results.

Dimensional perception of amplitude envelope and
duration
As the parameters of amplitude envelope and duration are
both time dependent (i. e., short, long), we evaluate them
together. The sine waveform has been chosen for this eval-
uation, as this wave is a pure tone which we see as our
baseline. For both the perception of Arousal and Valence in
the isolated synthetic audio, a two-way ANOVA test was
considered in order to examine the effect of duration (du),
i. e., du-short and du-long, and amplitude envelope (ae), i. e.,
ae-short and ae-long.

(i) Arousal assessment – A two-way ANOVA has been
performed for each listener group (female and male), show-
ing in both cases that there is no statistically significant
interaction between the two independent variables (du and
ae) and the dependent variable (Arousal perception). For fe-
male and male listeners, the test yielded to F(1,960) = 3.718,
p = .054; and F(1,960) = 0.335, p = .563 respectively. Thus,
perception of Arousal was evaluated with all the listeners
together, showing no significant results from the two-way
ANOVA: F(1,1920) = 0.018, p = .892.

Simple main effect analysis has shown that ae does not
influence listeners’ perception of Arousal. For the evaluation
of du-long and du-short samples, there is also no significance
(p = .122, effect size d = 0.10), and (p = .191, effect size d

Table 2: The mean and standard deviation (sd) result for
valence and Arousal from each parameter in the dataset.
Waveforms (Wave), Frequency Class (fc), Amplitude Enve-
lope (ae), and Duration (du).

Wave Valence sd Arousal sd
Sine 2.97 1.32 2.85 1.05
Square 2.93 1.34 3.55 1.24
Sawtooth 2.84 1.31 3.58 1.09
fc Valence sd Arousal sd
1 2.20 1.08 2.28 1.02
2 2.14 1.01 2.50 1.09
3 2.47 1.15 2.75 1.14
4 2.81 1.16 2.93 1.06
5 3.19 1.26 3.13 1.08
6 3.77 1.19 3.43 1.16
7 2.19 1.12 3.28 0.98
8 2.43 1.17 3.45 0.99
9 2.84 1.24 3.83 0.99
10 3.24 1.25 3.76 1.01
11 3.58 1.26 4.08 0.85
12 3.82 1.26 4.30 0.86
ae Valence sd Arousal sd
ae-short 2.87 1.34 3.44 1.17
ae-long 2.95 1.30 3.23 1.17
du Valence sd Arousal sd
du-
short

2.90 1.31 3.24 1.17

du-long 2.92 1.34 3.43 1.18

= 0.09) respectively. du is also similarly perceived regardless
of ae, as shown by the lack of significance for both ae-long
(p = .093, effect size d = 0.12), and au-short (p = .057, effect
size d = 0.13).
(ii) Valence assessment – A two-way ANOVA was also

conducted in order to examine the effect of du and ae in the
listeners’ perception or Valence. For both female and male
our analysis shows that there is a statistically significant
interaction between the influence of these two parameters
and the assessment of Valence. For female, the two-way
ANOVA yielded to F(1,960) = 12.229, p = .001; for male to
F(1,960) = 4.694, p = .030. Therefore, since both female and
male listeners show an influence in Valence for duration and
amplitude envelope, all the responses were again evaluated
together, yielding to F(1,1920) = 7.195, p = .007.
Simple main effect analysis has shown that du does not

play a role in listeners’ perception with ae-long (p = .075,
effect size d = 0.12); whereas, it is relevant for the evaluation
of the ae-short samples (p = .045, effect size d = 0.13). ae
seems to affect listeners’ perception of Valence for du-long
samples (p = .008, effect size d = 0.18); but this has not been
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Figure 3:Mean results forArousal andValence of each FrequencyClass (fc), by eachwaveform type (Sine, Square and Sawtooth).
The linear trend (lt) line is also shown for each waveform.

confirmed for the evaluation of du-short samples (p = .267,
effect size d = 0.07). The small effect size shown by the single
main effects suggests that neither du nor ae are factors of
influence for the perception of Valence.

Dimensional perception of the waveform
For the evaluation of waveforms (sine, sawtooth, and square)
in relation to the emotion evoked, the annotations for each
waveform have been comparatively evaluated, considering
the two emotional dimensions, i. e., Arousal and Valence,
individually. Considering that du and ae did not show con-
sistently to have an effect on the dimensional perception, all
the samples have been evaluated regardless of du or ae. The
non-parametric test Kruskal-Wallis has been performed for
the evaluation of both Arousal and Valence since the null
hypothesis for the data homogeneity (measured by Levene
test) and normality (measured by Kolmogorov-Smirnov test)
has been rejected.
For Arousal, the variance of the populations from the

different groups (i. e., the three wave forms), were not equal
or normal; yielding for Levene to F(2,5760) = 29.011, p < .001
and for Kolmogorov-Smirnov to p < .001. For Valence, even
though the null hypothesis for homogeneity was confirmed,
yielding in Levene test to F(2,5760) = 1.223, p = .294 and
for Kolmogorov-Smirnov to p < .001, thus rejecting the null
hypothesis of normality.

(i) Arousal assessment – Considering this, the non-
parametric test Kruskal-Wallis has been performed, which
has shown that the Arousal evoked by the three waveforms is
perceived as different to a statistically significant level: H(2)
= 404.101, p < .001. In order to evaluate of which specific
waves differences were displayed, a pairwise comparison,
considering the post hoc test Dunn-Bonferroni was applied.
The pairwise comparison shows that the sine wave is

perceived significantly different to the sawtooth and square
wave. This comparison displayed in both a p value < .001
and a medium effect size η2 = 0.08. On the contrary, the
comparison of the sawtooth wave vs square wave shows that
these two waves are not perceived as significantly different
(p = 1.00, and an almost none effect η2 < 0.001).

(ii) Valence assessment – From the non-parametric
Kruskal-Wallis test, the results have shown that the three
wave forms are perceived differently in terms of Valence to a
statistically significant level: H(2)= 9.381, p = .009. However,
even though the pairwise comparison shows that sine wave
is perceived statistically different than the sawtooth wave (p
value = .012), the very small effect size η2 = 0.002 indicates
that such difference might be negligible. Furthermore, no sig-
nificant difference in the perception has been shown in the
other pairwise comparisons, i. e., sine vs sawtooth (p = 1.00,
η2 < 0.001 for sine vs square, and p = .062, η2 = 0.001 for
sawtooth vs square).
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Dimensional perception of pitch
Linear relationship between fundamental frequency and per-
ceived Arousal and Valence has been evaluated for the three
waveforms (sine, sawtooth, and square) independently, as
we have seen some significance to their effect. For Arousal,
a 2-tailed Pearson correlation test yielded a moderate pos-
itive correlation (r = .516 and p < .001) for sine waves,
i. e., the higher the fundamental frequency, the higher the
perceived Arousal (cf. Figure 3). On the contrary, low cor-
relation has been displayed for the other two waveforms:
r = .411 (p < .001) for sawtooth and r = .434 (p < .001) for
square wave. For Valence, the correlation with fundamental
frequency is low, yielding to r = .300 (p < .001) for sine
wave, to r = .311 (p < .001) for sawtooth, and to a negligible
correlation of r = .270 (p < .001) for square wave.

From the lower plot of Figure 3, it can be observed that the
fundamental frequency against Valence may in-fact relate to
melodic pairings of the pitch classes rather than frequency
class. In order to assess this correlation for both Valence and
Arousal, the fundamental frequencies have been reordered
according to the chromatic scale, (cf. Table 1 column pc), and
a 2-tailed Pearson correlation test has been performed. Yet,
from this we see that neither Arousal or Valence correlate
against pitch classes, yielding negligible correlations: sine
waves, r = .211 (p < .001) for Arousal and r = .189 (p < .001)
for Valence; sawtooth waves, r = .271 (p < .001) for Arousal
and r = .260 (p < .001) for Valence; square waves, r = .307
(p < .001) for Arousal and r = .241 (p < .001) for Valence.
5 CONCLUSIONS
From this study an understanding of the dimensional emo-
tional measure of Valence and Arousal percieved in a dataset
of isolated synthetic audio with varied acoustic parameters
was gained. The perception of Valence does not show any
significant results, however Arousal shows more significance
with fundamental frequency correlating positively. The sine
wave shows to be significantly different to all other wave-
forms in the dataset particularly for Arousal. This suggests
that for the creation of a low aroused soundscapes, lower
fundamental frequencies with less complex wave combina-
tions may be more suitable. However, as [39] found that the
presence of physiological signals within a soundscape can en-
hance emotional perception, we will consider exploring this
combination as a future step, as well as evaluating the trends
found here further. Additionally, with synthetic audio show-
ing the possibility to evoke emotional dimensions, further
study will include developing longer audio combinations and
incorporating aspects such as spatial panning. As well as
this, from the generation of a much larger dataset, transfer
learning methods can be used in order to expand the anno-
tation labels obtained in this study, making deep learning
methods a more feasible option for audio generation.
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