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1 Introduction

Adaptive finite element methods for the numerical solution of partial differ-
ential equations consist of successive cycles of the loop

SOLV E =⇒ ESTIMATE =⇒ MARK =⇒ REFINE .

Here, SOLVE stands for the finite element solution of the problem with re-
spect to a given triangulation of the computational domain. The following
step ESTIMATE is devoted to the estimation of the global discretization er-
ror in some appropriate norm or a user specified quantity of interest by a
cheaply computable a posteriori error estimator. The estimator is assumed
to consist of local contributions whose actual magnitude is then used in the
step MARK to specify elements of the triangulation for refinement. The fi-
nal step REFINE deals with the generation of a new triangulation based on
the refinement of the elements selected in the previous step according to spe-
cific refinement rules. Adaptive finite elements are by now well established.
There are various approaches such as residual-type a posteriori error esti-
mators which rely on the proper evaluation of the residuals with respect to
a computed approximation in the norm of the dual space and hierarchical
type estimators where the equation satisfied by the error is suitably localized
along with a solution of the local problems by higher order finite elements
(cf.,e.g., [1, 3, 35]). Averaging-type estimators typically use some sort of gra-
dient recovery on element-related patches (cf.,e.g.,[1, 35]), whereas the theory
of guaranteed error majorants provides reliable upper bounds for the error (see
[31]). Finally, the goal oriented weighted dual approach extracts information
on the error via the dual problem (cf. [4, 12]).
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As far as the optimal control of PDEs are concerned, the goal oriented
dual weighted approach has been applied to unconstrained problems in [4, 5],
to control constrained ones in [17, 36] and to state constrained problems in
[16, 19]. Residual-type a posteriori error estimators for control constrained
problems have been developed and analyzed in [13, 14, 18, 20, 23, 26, 27]. State
constrained optimal control problems are more difficult to handle than control
constrained ones, since the Lagrange multiplier for the state constraints typi-
cally lives in a measure space. An appropriate way to cope with this problem
is to use a regularization of the state constrained problems by means of mixed
control-state constraints (Lavrentiev regularization). With regard to nume-
rical solution techniques the regularized problems can be formally treated as
in the case of control constraints (cf. e.g., [2, 9, 29, 32, 33, 34]).
In this paper, we will develop, analyze and implement the goal oriented
weighted dual approach to mixed control-state constrained distributed opti-
mal control problems for linear second order elliptic boundary value problems.
The paper is organized as follows: In section 2, we consider a model distributed
optimal control problem for a two-dimensional, second order elliptic PDE with
a quadratic objective functional and mixed unilateral constraints on the state
and on the control. The finite element discretization is based on standard
P1 conforming finite elements with respect to simplicial triangulations of the
computational domain and gives rise to a finite dimensional constrained mini-
mization problem. In both the continuous and discrete regime, the optimality
conditions are stated in terms of the associated Lagrangians. Section 3 is
devoted to a representation of the error in the quantity of interest which is
chosen as the objective functional. The error representation involves primal-
dual residuals, a primal-dual mismatch in complementarity due to a possible
mismatch between the continuous and discrete active and non-active sets, and
data oscillation terms. In section 4, we derive the goal oriented a posteriori
error estimator based on appropriate upper bounds both for the primal-dual
residuals and the primal-dual mismatch in complementarity. The final section
5 contains a brief description of the marking and refinement strategy as well
as numerical results for an example illustrating the performance of the error
estimator.

2 The mixed control-state elliptic optimal control

problem and its finite element approximation

We assume Ω to be a bounded domain in R
2 with boundary Γ := ΓD ∪

ΓN , ΓD ∩ ΓN = ∅. We use standard notation from Lebesgue and Sobolev
space theory. In particular, we refer to L2(Ω) as the Hilbert space with inner
product (·, ·)0,Ω and norm ‖ · ‖0,Ω and to Hk(Ω), k ∈ N, as the Sobolev space
with norm ‖ · ‖k,Ω . The set L2

+(Ω) stands for the positive cone in L2(Ω) with
respect to the canonical ordering.



Goal Oriented Mesh Adaptivity 3

Given a desired state yd ∈ L2(Ω), a shift control ud ∈ L2(Ω), regularization
parameters α > 0, ε > 0, and a function ψ ∈ L∞(Ω), we consider the mixed
control-state constrained distributed optimal control problem:
Find (y, u) ∈ V × L2(Ω), where V := {v ∈ H1(Ω) | v|ΓD

= 0}, such that

inf
y,u

J(y, u) :=
1

2
‖y − yd‖2

0,Ω +
α

2
‖u− ud‖2

0,Ω , (1a)

subject to a(y, v) = (u, v)0,Ω , v ∈ V, (1b)

εu+ y ∈ K := {v ∈ L2(Ω) | v(x) ≤ ψ(x) f.a.a. x ∈ Ω}. (1c)

Here, a(·, ·) : V × V → R stands for the bounded, V -elliptic bilinear form

a(u, v) :=

∫

Ω

(

∇u · ∇v + cuv
)

dx , c ∈ R+.

Denoting by A : V → V ∗ the operator associated with a(·, ·), we introduce
the Lagrangian L : V × L2(Ω) × V × L2

+(Ω) → R according to

L(y, u, p, σ) := J(y, u) + 〈Ay − u, p〉 + (εu+ y − ψ, σ)0,Ω , (2)

where 〈·, ·〉 denotes the dual pairing between V ∗ and V . Then, the minimiza-
tion problem (1a)-(1c) can be equivalently stated as the saddle point problem

inf
y,u

sup
p,σ

L(y, u, p, σ). (3)

Setting x := (y, u, p) ∈ X := V × L2(Ω) × V , the optimality conditions read
as follows

∇xL(x, σ) = 0, (4a)

∇σL(x, σ)(µ− σ) ≤ 0 , µ ∈ L2
+(Ω), (4b)

where ∇xL(x, σ) and ∇σL(x, σ) stand for the derivatives of L with respect to
x and σ in (x, σ). The multiplier p is referred to as the adjoint state. We note
that (4a) gives rise to the state equation (1b), the adjoint state equation

a(p, v) = (yd − y − σ, v)0,Ω , v ∈ V, (5)

and the equation
p = α(u− ud) + εσ, (6)

whereas the variational inequality (4b) can be equivalently written in terms
of the complementarity conditions

σ ∈ L2
+(Ω) , ψ − (εu+ y) ∈ L2

+(Ω) , (εu+ y − ψ, σ)0,Ω = 0. (7)

We define the active set A as the maximal open set A ⊂ Ω such that εu(x) +
y(x) = ψ(x) f.a.a. x ∈ A and the inactive set I according to I :=

⋃

κ>0Bκ,
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where Bκ is the maximal open set B ⊂ Ω such that εu(x) + y(x) ≤ ψ(x) − κ

for almost all x ∈ B.

For the finite element discretization of (1a)-(1c) we consider a family {Tℓ(Ω)}
of shape-regular simplicial triangulations of Ω which align with ΓD, ΓN on Γ .
We denote by Nℓ(D) and Eℓ(D) , D ⊆ Ω, the sets of vertices and edges of
Tℓ(Ω) in D ⊆ Ω, and we refer to hT and |T | as the diameter and the area of an
element T ∈ Tℓ(Ω), whereas hE stands for the length of an edge E ∈ Eℓ(D).
For E ∈ Eℓ(Ω) such that E = T+ ∩T−, T± ∈ Tℓ(Ω), we define ωE := T+ ∪T−.
Further, we denote by Sℓ := {vℓ ∈ C0(Ω) | vℓ|T ∈ P1(T ) , T ∈ Tℓ(Ω)}
the finite element space of continuous, piecewise linear finite elements and we
refer to Vℓ as its subspace Vℓ := { vℓ ∈ Sℓ | vℓ|ΓD

= 0}. We will also use the
following notation: If A and B are two quantities, then A � B means that
there exists a positive constant C such that A ≤ CB, where C only depends
on the shape regularity of the triangulations, but not on their granularities.
Then, given approximations yd

ℓ ∈ Sℓ, u
d
ℓ ∈ Sℓ and ψℓ ∈ Sℓ of yd, ud and ψ, the

finite element approximation of (1a)-(1c) is given by:
Find (yℓ, uℓ) ∈ Vℓ × Sℓ such that

inf
yℓ,uℓ

Jℓ(yℓ, uℓ) :=
1

2
‖yℓ − yd

ℓ ‖
2
0,Ω +

α

2
‖uℓ − ud

ℓ‖
2
0,Ω , (8a)

subject to a(yℓ, vℓ) = (uℓ, vℓ)0,Ω , vℓ ∈ Vℓ, (8b)

εuℓ + yℓ ∈ Kℓ := {vℓ ∈ Sℓ | vℓ ≤ ψℓ in Ω}. (8c)

We proceed as in the continuous regime and introduce the Lagrangian Lℓ :
Vℓ × Sℓ × Vℓ × (Sℓ ∩ L2

+(Ω)) by

Lℓ(yℓ, uℓ, pℓ, σℓ) := Jℓ(yℓ, uℓ) + 〈Ayℓ − uℓ, pℓ〉 + (εuℓ + yℓ − ψℓ, σℓ)0,Ω (9)

such that (8a)-(8c) is equivalent to the saddle point problem

inf
yℓ,uℓ

sup
pℓ,σℓ

Lℓ(yℓ, uℓ, pℓ, σℓ). (10)

The optimality conditions turn out to be

∇xLℓ(xℓ, σℓ) = 0, (11a)

∇σLℓ(xℓ, σℓ)(µℓ − σℓ) ≤ 0 , µℓ ∈ Sℓ ∩ L
2
+(Ω), (11b)

where xℓ := (yℓ, uℓ, pℓ) ∈ Xℓ := Vℓ × Sℓ × Vℓ. Again, (11a) comprises the
discrete state equation (8b), the discrete adjoint state equation

a(pℓ, vℓ) = (yd
ℓ − yℓ − σℓ, vℓ)0,Ω , vℓ ∈ Vℓ, (12)

and the equation
pℓ = α(uℓ − ud

ℓ ) + εσℓ. (13)

On the other hand, (11b) represents the discrete complementarity conditions

σℓ ∈ Sℓ∩L
2
+(Ω) , ψℓ−(εuℓ+yℓ) ∈ Sℓ∩L

2
+(Ω) , (εuℓ+yℓ−ψℓ, σℓ)0,Ω = 0. (14)

We define the discrete active set Aℓ according to Aℓ := {x ∈ Ω | εuℓ(x) +
yℓ(x) = ψℓ(x)} and refer to Iℓ := Ω \ Aℓ as the discrete inactive set.
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3 Error representation in the quantity of interest

We derive an error representation in the quantity of interest which in-
volves the second derivative of the Lagrangian L with respect to x. Since
this second derivative does depend neither on x nor on σ, we simply write
∇xxL(z, z′), z, z′ ∈ X, instead of ∇xxL(x, σ)(z, z′). We will use the same sim-
plifying notation for the second derivative of Lh.

Theorem 1. Let (x, σ) ∈ X×L2
+(Ω) and (xℓ, σℓ) ∈ Xℓ × (Sℓ ∩L

2
+(Ω)) be the

solutions of (3) and (10), respectively. Then there holds

J(y, u) − Jℓ(yℓ, uℓ) = −
1

2
∇xxLℓ(xℓ − x, xℓ − x) (15)

+ (εuℓ + yℓ − ψ, σ)0,Ω + osc
(1)
ℓ ,

where osc
(1)
ℓ stands for the data oscillations

osc
(1)
ℓ :=

∑

T∈Tℓ(Ω)

osc
(1)
T , (16)

osc
(1)
T := (yℓ − yd

ℓ , y
d
ℓ − yd)0,T + α(uℓ − ud

ℓ , u
d
ℓ − ud)0,T +

+
1

2
‖yd − yd

ℓ ‖
2
0,T +

α

2
‖ud − ud

ℓ‖
2
0,T .

Proof. We note that for zℓ = (δyℓ, δuℓ, δpℓ) ∈ Xℓ there holds

L(x, σℓ) = L(x, σ) + (εu+ y − ψ, σℓ − σ)0,Ω , (17a)

∇xL(xℓ, σℓ)(zℓ) = ∇xL(xℓ, σℓ)(zℓ) + (εδuℓ + δyℓ, σℓ − σ)0,Ω . (17b)

Using the optimality conditions (4a),(4b) and (11a),(11b) as well as (17a),(17b),
Taylor expansion yields

J(y, u) − Jℓ(yℓ, uℓ) = L(x, σ) − Lℓ(xℓ, σℓ) =

= L(x, σ) − Lℓ(x, σℓ) −∇xLℓ(x, σℓ)(xℓ − x) −
1

2
∇xxLℓ(xℓ − x, xℓ − x)

= J(y, u) − Jℓ(y, u) − (εu+ y − ψℓ, σℓ)0,Ω

−∇xLℓ(x, σℓ)(xℓ − x) −
1

2
∇xxLℓ(xℓ − x, xℓ − x)

= −∇xL(x, σℓ)(xℓ − x) −
1

2
∇xxLℓ(xℓ − x, xℓ − x)

− (εu+ y − ψℓ, σℓ)0,Ω + osc
(1)
ℓ

= −
1

2
∇xxLℓ(xℓ − x, xℓ − x) − (εu+ y − (εuℓ + yℓ), σℓ)0,Ω

+ (εuℓ + yℓ − (εu+ y), σ − σℓ)0,Ω + osc
(1)
ℓ

= −
1

2
∇xxLℓ(xℓ − x, xℓ − x) + (εuℓ + yℓ − ψ, σ)0,Ω + osc

(1)
ℓ ,

from which we conclude. �
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Remark 1. We note that the error representation (15) reduces to the result
from [5] in the unconstrained case, i.e., when σ = σℓ = 0.

For a further evaluation of the error, we introduce interpolation operators

i
y
ℓ : V → Vℓ , i

p
ℓ : V → Vℓ , i

u
ℓ : L2(Ω) → Sℓ , i

σ
ℓ : L2(Ω) → Sℓ, (18)

such that for all y, p ∈ V and u ∈ L2(Ω) there holds

‖iyℓy − y‖2
0,T + h

1/2
T ‖iyℓy − y‖2

0,∂T � hT ‖y‖1,DT
,

‖ipℓp− p‖2
0,T + h

1/2
T ‖ipℓp− p‖2

0,∂T � hT ‖p‖1,DT
,

‖iuℓ u− u‖0,T , ‖iσℓ σ − σ‖0,T → 0 as hT → 0.

where DT := {T ′ ∈ Tℓ(Ω) | Nℓ(T
′)∩Nℓ(T ) 6= ∅}. We may choose, for instance,

Clément-type quasi-interpolation operators (cf., e.g., [35]) or the Scott-Zhang
interpolation operators (cf.,e.g.,[8]).

Theorem 2. In addition to the assumptions of Theorem 1 let ixℓ = (iyℓ , i
u
ℓ , i

p
ℓ )

be the interpolation operators as given by (18). Then there holds

J(y, u)−Jℓ(yℓ, uℓ) = −r(iyℓ y−y)−r(i
p
ℓp−p)+µℓ(x, σ)+osc

(1)
ℓ +osc

(2)
ℓ , (19)

where r(iyℓy − y) and r(ipℓp− p) stand for the primal-dual residuals

r(iyℓy − y) :=
1

2

(

(yℓ − yd
ℓ + σℓ, i

y
ℓy − y)0,Ω + (∇pℓ,∇(iyℓ y − y))0,Ω

)

, (20a)

r(ipℓp− p) :=
1

2

(

(∇yℓ,∇(ipℓp− p))0,Ω − (uℓ, i
p
ℓp− p)0,Ω

)

, (20b)

Moreover, µℓ(x, σ) is the primal-dual mismatch in complementarity and osc
(2)
ℓ

a further data oscillation term given by

µℓ(x, σ) :=
1

2

(

(εuℓ + yℓ − ψ, σ)0,Ω + (ψℓ − (εu+ y), σℓ)0,Ω

)

, (21a)

osc
(2)
ℓ :=

1

2
(yd − yd

ℓ , yℓ − i
y
ℓy)0,Ω +

1

2
(yd − yd

ℓ , i
y
ℓ y − y)0,Ω+ (21b)

+
α

2
(ud − ud

ℓ , uℓ − iuℓ u)0,Ω +
α

2
(ud − ud

ℓ , i
u
ℓ u− u)0,Ω .

Proof. Using (11a) and (17b), for zℓ = (δyℓ, δuℓ, δpℓ) ∈ Xℓ we find

0 = ∇xL(x, σ)(zℓ) = ∇xL(xℓ, σℓ)(zℓ) + ∇xxL(x− xℓ, zℓ)

+ (εδuℓ + δyℓ, σ − σℓ)0,Ω = ∇xxL(x− xℓ, zℓ)

+ (εδuℓ + δyℓ, σ − σℓ)0,Ω + (yd
ℓ − yd, δyℓ)0,Ω + α(ud

ℓ − ud, δuℓ)0,Ω ,

from which we deduce
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∇xL(xℓ, σ)(x− xℓ − zℓ) = ∇xxL(xℓ − x, x− xℓ − zℓ), (22a)

∇xxL(xℓ − x, xℓ − x) = ∇xxL(xℓ − x, xℓ − x+ zℓ) (22b)

− (εδuℓ + δyℓ, σ − σℓ)0,Ω .

Taking advantage of (22a),(22b) in (15), it follows that

J(y, u) − Jℓ(yℓ, uℓ) =
1

2
∇xxL(x, σℓ)(x− xℓ, xℓ − x+ zℓ)

+
1

2
(εδuℓ + δyℓ, σ − σℓ)0,Ω +

1

2
(yd

ℓ − yd, δyℓ)0,Ω

+
α

2
(ud

ℓ − ud, δuℓ)0,Ω + (εδuℓ + yℓ − ψ, σ)0,Ω + osc
(1)
ℓ

= −
1

2
∇xL(xℓ, σℓ)(xℓ − x+ zℓ) +

1

2
(εuℓ + yℓ − (εu+ y), σℓ + σ)0,Ω

+
1

2
(yd − yd

ℓ , yℓ − y)0,Ω +
α

2
(ud

ℓ − ud, δuℓ)0,Ω + osc
(1)
ℓ .

We conclude by choosing zℓ = (iyℓy − yℓ, i
p
ℓp − pℓ, i

u
ℓ − uℓ) and observing (7)

and (14). �

Remark 2. The primal-dual residuals r(iyℓy− y) and r(ipℓp− p) will be further
estimated in the following section and will be made fully a posteriori in a
standard way (cf.,e.g.,[4]). The term µℓ(x, σ) as given by (21a) represents
the primal-dual mismatch in complementarity due to a possible mismatch in
the approximation of the active and inactive sets A and I by their discrete
counterparts Aℓ and Iℓ. In its present form it is not yet a posteriori. In the
subsequent section, we will show how µℓ(x, σ) can be made fully a posteriori
and thus be included in the refinement strategy. A similar remark applies

to the term osc
(2)
ℓ which is essentially a data oscillation term, but as given

by (21b) not a posteriori due to the occurrence of y. It will be made fully a
posteriori as well.

4 Weighted primal-dual a posteriori error estimator

By straightforward estimation of the right-hand sides in the representations
(20a),(20b) of the primal-dual residuals the following result can be easily
established.

Theorem 3. The primal-dual residuals can be estimated according to

|r(iyℓy − y)| �
∑

T∈Tℓ(Ω)

ω
y
T ρ

y
T , (23a)

|r(ipℓp− p)| �
∑

T∈Tℓ(Ω)

ω
p
T ρ

p
T . (23b)
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Here, ρ
y
T and ρ

p
T are the L2-norms of the residuals associated with the state

and the adjoint state equation

ρ
y
T :=

(

‖uℓ‖
2
0,T + h−1

T ‖
1

2
ν · [∇yℓ]‖

2
0,∂T

)1/2

, (24a)

ρ
p
T :=

(

‖yℓ − yd
ℓ − σℓ‖

2
0,T + h−1

T ‖
1

2
ν · [∇pℓ]‖

2
0,∂T

)1/2

. (24b)

The corresponding dual weights ω
y
T and ω

p
T are given by

ω
y
T :=

(

‖ipℓp− p‖2
0,T + hT ‖i

p
ℓp− p‖2

0,∂T

)1/2

, (25a)

ω
p
T :=

(

‖iyℓy − y‖2
0,T + hT ‖i

y
ℓy − y‖2

0,∂T

)1/2

. (25b)

Remark 3. If the state y of the purely state constrained problem (i.e., ε = 0)
is in W 1,r(Ω) for some r > 2 and hence represents a continuous function, the
adjoint state p lives in W 1,s(Ω) with s being conjugate to r. The multiplier σ
turns out to be a bounded Borel measure, and the discrete multipliers σℓ are
chosen as a linear combination of Dirac delta functionals associated with the
nodal points of the triangulation. In this case, the primal-dual residuals have
to be estimated in the respective Lr- and Ls-norms and the multipliers have
to be treated separately (cf. [19]).

There are several ways to provide approximations of the weights ω
y
T and

ω
p
T , T ∈ Tℓ(Ω). We refer to [4] for a detailed discussion. Here, we use piecewise

quadratic interpolations iyℓ,2yℓ and ipℓ,2pℓ of the computed P1 approximations
yℓ and pℓ of the state y and the adjoint state p with respect to the coarser
triangulation Tℓ−1(Ω). This results in the computable weights

ω̂
y
T :=

(

‖ipℓ,2pℓ − pℓ‖
2
0,T + hT ‖i

p
ℓ,2pℓ − pℓ‖

2
0,∂T

)1/2

, (26a)

ω̂
p
T :=

(

‖iyℓ,2yℓ − yℓ‖
2
0,T + hT ‖i

y
ℓ,2yℓ − yℓ‖

2
0,∂T

)1/2

. (26b)

We now concentrate on the primal-dual mismatch in complementarity µℓ(x, σ)
where for notational simplicity we drop the argument (x, σ). Taking the com-
plementarity conditions (7) and (14) into account, we find
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µℓ|I∩Iℓ
= 0, (27a)

µℓ|A∩Iℓ
=

1

2

(

(εuℓ + yℓ − ψ, iσℓ σ)0,A∩Iℓ
+ (27b)

+ (εuℓ + yℓ − ψ, σ − iσℓ σ)0,A∩Iℓ

)

,

µℓ|I∩Aℓ
=

1

2
(ψℓ − (εu+ y), σℓ)0,Ω (27c)

=
1

2

(

(ε(uℓ − iuℓ u) + yℓ − i
y
ℓy, σℓ)0,I∩Aℓ

+ (ε(iuℓ u− u) + i
y
ℓy − y, σℓ)0,I∩Aℓ

)

,

µℓ|A∩Aℓ
=

1

2

(

(εuℓ + yℓ − ψ, σ)0,A∩Aℓ
+ (ψℓ − (εu+ y), σℓ)0,A∩Aℓ

)

(27d)

=
1

2

(

(ψℓ − ψ, iσℓ σ + σℓ)0,A∩Aℓ
+ (ψℓ − ψ, σ − iσℓ σ)0,A∩Aℓ

)

.

We further need to provide computable approximations of the sets A and I.
Following [17, 26], we estimate the continuous coincidence set A by

χA
ℓ := I −

ψℓ − (εuℓ + yℓ)

γhr
ℓ + ψℓ − (εuℓ + yℓ)

,

where 0 < γ ≤ 1 and r > 0 are fixed. Obviously, χA
ℓ |Aℓ

= 1. Moreover,
denoting by χ(S) the characteristic function of S ⊂ Ω, for T ⊂ A we find

‖χ(A) − χA
ℓ ‖0,T ≤ min(1, γ−1h−r‖εu+ y − (εuℓ + yℓ)‖0,T )

which converges to zero whenever ‖εu + y − (εuℓ + yℓ)‖0,T = O(hq
ℓ), q > r.

Likewise, for T ⊂ I one can show as well that ‖χ(A)−χA
ℓ ‖0,T → 0 as hℓ → 0.

This motivates the approximations

χ(A ∩Aℓ) ≈ χA
ℓ χ(Aℓ) ,

χ(I ∩ Aℓ) ≈ (I − χA
ℓ )χ(Aℓ) ,

χ(A ∩ Iℓ) ≈ χA
ℓ χ(Iℓ) .

We set TA∩Aℓ
:=

⋃

{T ∈ Tℓ(Ω) | χA
ℓ χ(Aℓ)(x) 6= 0 for some x ∈ T} and specify

TI∩Iℓ
, TI∩Aℓ

and TA∩Iℓ
analogously. We further define

ω̃
y
T := ‖iyℓ,2yℓ − yℓ‖0,T ,

ω̃u
T := ‖iuℓ,2uℓ − uℓ‖0,T ,

ω̃σ
T := ‖iσℓ,2σℓ − σℓ‖0,T ,

where iuℓ,2uℓ and iσℓ,2σℓ are also given by piecewise quadratic interpolation.
Then, we can estimate the contributions to the primal-dual mismatch in com-
plementarity in (27b)-(27d) according to
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|µℓ|A∩Iℓ
| ≤

∑

T∈TA∩Iℓ

µ̄
(1)
T , (28a)

µ̄
(1)
T :=

1

2
‖εuℓ + yℓ − ψ‖0,T (‖iσℓ,2σℓ‖0,T + ω̃σ

T ),

|µℓ|I∩Aℓ
| ≤

∑

T∈TI∩Aℓ

µ̄
(2)
T , (28b)

µ̄
(2)
T := ‖σℓ‖0,T (εω̃u

T + ω̃
y
T ),

|µℓ|A∩Aℓ
| ≤

∑

T∈TA∩Aℓ

µ̄
(3)
T , (28c)

µ̄
(3)
T :=

1

2
‖ψℓ − ψ‖0,T (‖iσℓ,2σℓ + σℓ‖0,T + ω̃σ

T ).

This leads to the following upper bound for the primal-dual mismatch in
complementarity

|µℓ(x, σ)| ≤
∑

T∈Tℓ(Ω)

µ̄T , (29)

where

µ̄T :=



















0 , T ∈ TI∩Iℓ

µ̄
(1)
T , T ∈ TA∩Iℓ

µ̄
(2)
T , T ∈ TI∩Aℓ

µ̄
(3)
T , T ∈ TA∩Aℓ

.

The oscillation term osc
(2)
ℓ as given by (21b) is treated analogously which

results in

|osc
(1)
ℓ + osc

(2)
ℓ | ≤

∑

T∈Tℓ(Ω)

oscT , oscT := osc
(1)
T + osc

(2)
T , (30)

where osc
(1)
T is given by (16) and osc

(2)
T by

osc
(2)
T := ω̃

y
T ‖y

d − yd
ℓ ‖0,T + ω̃u

T ‖u
d − ud

ℓ‖0,T .

Hence, we end up with the computable upper bound

|J(y, u) − Jℓ(yℓ, uℓ)| �
∑

T∈Tℓ(Ω)

(

ω̂
y
T ρ

y
T + ω̂

p
T ρ

p
T + µ̄T + oscT

)

. (31)

5 Numerical results

The marking strategy for selection of elements of the triangulation for re-
finement is based on a bulk criterion (cf. [11, 30]) where we select a set
Mℓ ⊂ Tℓ(Ω) of elements such that with respect to a given constant 0 < Θ < 1
there holds



Goal Oriented Mesh Adaptivity 11

Θ
∑

T∈Tℓ(Ω)

(

ω̂
y
T ρ

y
T + ω̂

p
T ρ

p
T + µ̄T + oscT

)

≤
∑

T∈M

(

ω̂
y
T ρ

y
T + ω̂

p
T ρ

p
T + µ̄T + oscT

)

.

The bulk criterion is realized by a greedy algorithm (cf., e.g., [23]). The re-
finement is realized by newest vertex bisection.

We conclude this section with the results for an example which was chosen as
a test case in [28]. The data of the problem are as follows

Ω := B(0, 1) , ΓD = ∅ , α := 1.0 , c = 1.0 ,

yd(r) := 4 +
1

π
−

1

4π
r2 +

1

2π
ln(r) ,

ud(r) := 4 +
1

4π
r2 −

1

2π
ln(r) , ψ(r) := r + 4 .

The optimal solution in the pure state constrained case is given by:

y(r) ≡ 4 , p(r) =
1

4π
r2 −

1

2π
ln(r) ,

u(r) ≡ 4 , σ = δ0 .

As regularization parameter ε for the Lavrentiev regularization we have chosen
ε = 10−4. The finite element discretized optimal control problem has been
solved by the Moreau-Yosida based active set strategy from [7]. Moreover,
Θ = 0.4 has been used for the bulk criterion in the step MARK of the adaptive
loop.

Fig. 1. Optimal state (left) and optimal control (right)

Figure 1 shows the computed optimal state (left) and optimal control
(right). We note that the peaks at the origin are numerical artefacts due
to the singularity of the optimal adjoint state in the origin (see Figure 2
(left)). Figure 2 (right) displays the computed adaptively refined mesh after
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Fig. 2. Optimal adjoint state (left) and adaptively refined triangulation after 14
refinement steps of the adaptive loop (right)

14 refinement steps of the adaptive loop. Finally, Figure 3 shows the decrease
of the error δℓ := |J(y, u)− Jℓ(yℓ, uℓ)| measured in the quantity of interest as
a function of the total number of degrees of freedom on a logarithmic scale
both for adaptive and uniform refinement.

Fig. 3. Decrease of the quantity of interest δℓ := |J(y, u)− Jℓ(yℓ, uℓ)| as a function
of the total number of degrees of freedom for adaptive and uniform refinement

Acknowledgements. The first author acknowledges support by the Aus-
trian Science Foundation (FWF) within the START-program Y305 ’Interfaces
and Free Boundaries’. The work of the second author has been supported by
the NSF under Grant No. DMS-0511611 , DMS-0707602 as well as by the DFG
within the Priority Program SPP 1253 ’PDE Constrained Optimization’.



Goal Oriented Mesh Adaptivity 13

References

1. Ainsworth M, Oden J T (2000) A Posteriori Error Estimation in Finite Element
Analysis. Wiley, Chichester

2. N. Arada N, Raymond J P (2000) Optimal control problems with mixed control-
state constraints. SIAM J. Control Optim. 39, 1391–1407

3. Babuska I, Strouboulis T (2001) The Finite Element Method and its Reliability.
Clarendon Press, Oxford

4. Bangerth W, Rannacher R (2003) Adaptive Finite Element Methods for Dif-
ferential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser, Basel
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