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W
ith recent advances in machine-learning techniques for 
automatic speech analysis (ASA)—the computerized 
extraction of information from speech signals—there is 
a greater need for high-quality, diverse, and very large 

amounts of data. Such data could be game-changing in terms of 
ASA system accuracy and robustness, enabling the extraction 
of feature representations or the learning of model parameters 
immune to confounding factors, such as acoustic variations, 
unrelated to the task at hand. However, many current ASA data 
sets do not meet the desired properties. Instead, they are often 
recorded under less than ideal conditions, with the correspond-
ing labels sparse or unreliable. 

In addressing these issues, this article provides a com-
prehensive overview of state-of-the-art ASA data exploita-
tion techniques that have been developed to take advantage 
of knowledge gained from related but unlabeled or different 
data sources to improve the performance of a particular ASA 

task of interest. We first identify three primary data chal-
lenges: sparse, unreliable, and unmatched data. We then review 
the corresponding approaches. The conditions, advantages, 
and drawbacks of using a range of differing data-mining 
techniques are also discussed. Finally, other data chal-
lenges and potential future research directions in this field 
are presented.

Introduction to automatic speech analysis
ASA has long been regarded as one of the most vital areas in 
achieving natural and friendly human–machine interactions 
[1], [2]. The goal of ASA is to empower machines to automati-
cally discern information of interest from human speech, e.g., 
identifying what is being said (the linguistic content), who is 
saying it (the speaker’s identity), and how they are saying it 
(the paralinguistic content). More formally, typical ASA tasks 
in the literature include, but are not limited to,

 ■ automatic speech recognition (ASR), which aims to extract 
linguistic content (e.g., words) by recognizing and translat-
ing spoken speech
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 ■ speaker identification/verification, which targets obtaining 
the speaker’s identity from speech signals

 ■ computational paralinguistics, which attempts to distill 
nonlinguistic information mainly concerning the speaker’s 
short-term states (e.g., emotions), medium-term states 
(e.g., health condition and attitude), and long-term traits 
(e.g., personality, age, and gender) from  spoken speech.
A serious obstacle to the broad application of ASA is the 

lack of sufficiently labeled data in terms of both quantity and 
quality. For example, many available com-
putational paralinguistics corpora contain 
only a few hours of audio data at most [3]. 
Similarly for ASR, many of the world’s lan-
guages are in a low-resource setting, where 
the electronic speech resources and linguis-
tic expertise are lacking. According to a 
2010 United Nations Educational, Scientif-
ic, and Cultural Organization report [4], approximately 2,500 
languages are in danger of becoming extinct. In this scenario, 
it is exceptionally difficult to obtain a large-scale amount of 
transcribed speech data to perform reliable ASR.

The requirement for large-scale labeled data is not new 
in machine leaning. Prevailing paradigms are often conduct-
ed in a supervised manner, and a substantial increase in the 
amount of available training data usually brings encouraging 
performance improvements [5]. Because of the advancement 
of deep-learning technologies [6], [7], this need for data has 
become more compelling than ever. Deep-learning models 
are often designed with millions of parameters, and, if trained 
with insufficient amounts of data, are vulnerable to being 
trapped in a locally optimized minimum, resulting in overfit-
ting to the training data [6]. When sufficiently trained, how-
ever, deep models reach unprecedented levels of performance. 
For example, Amodei et al. [7] utilized approximately 12,000 
and 9,000 h of speech data to model English and Mandarin 
ASR systems, respectively, by employing deep-learning mod-
els with more than 35 million trainable parameters, achieving 
a performance breakthrough that exceeds the capability of 
even human perception. Sufficient and reliably labeled data, 
when available, provide the opportunity to train robust ASA 
models whose resulting recognition is largely invariant in the 
face of the abundance of acoustic variations naturally present 
in speech data.

Opportunities
Traditionally, tasks such as data collection and annotation have 
been performed by small groups of experts in a laboratory set-
ting. This conventional work paradigm is often tedious, time 
consuming, and costly. However, the ongoing information and 
communication technologies revolution and related technolo-
gies, such as the Internet of Things (IoT) and cloud computing, 
are providing us with opportunities to exploit larger amounts of 
speech data in more effective ways than ever before.

The IoT, as a global infrastructure of the information soci-
ety, is expected to offer advanced services (i.e., data collection) 
by interconnecting a wide variety of contemporary recording 

devices, such as smartphones, wearable devices, and tablets. 
Furthermore, as these devices often have microphones, social 
media apps, and Internet connectivity, they can be considered 
distributed sensors or entryways for speech collection and pro-
cessing. Thus, the advance of Internet technologies and the 
ubiquity of smart devices can drastically reduce the cost and 
time associated with collecting and processing speech data.

Cloud computing, or Internet-based computing, is expected 
to provide an on-demand computing resource. Thus, it gives 

an opportunity to store, access, and analyze 
the volume of speech data generated by the 
distributed devices mentioned previously. 
Cloud computing has been shown not only 
to minimize the costs associated with an 
ever-increasing demand for greater compu-
tational resources but also to reduce the cost 
associated with infrastructure maintenance 

and user access. Motivated by these advantages, most major 
speech technology providers have already shifted their prima-
ry research and application attention from embedded systems 
to cloud computing platforms.

Generalized automatic speech analysis: 
Problem statement and notation
The aforementioned technologies provide great potential to 
generate and process a large amount of speech data. However, 
there are three main challenges—data sparsity, unreliability, 
and nonmatching (Figure 1)—that limit the dissemination of 
these data in research and industry. Before formally defining 
these challenges, we first overview the generalized mathemat-
ical problem statement and notation commonly used in both 
ASA and throughout the remainder of this article.

First, let us define a domain { , ( )}P XD X=  that com-
prises a feature space X  and a marginal probability distri-
bution P(X), where X denotes a set of feature vectors, i.e., 

{ , , } ;xX x Xn1 f !=  while P(X) indicates the distribution 
of X in .X  In the case that each feature vector x  consists of 
d attributes, i.e., { , , },x x x Xd1 f=  is a d-dimensional space. 
The most commonly used feature space X  for ASA is argu-
ably the Mel-frequency cepstral coefficients (MFCCs) that 
are extracted via filtering a speech frame by a bank of nonlin-
ear bandpass filters (Mel filters) whose frequency response 
is based on the cochlea of the human auditory system [8]. 
Other exemplary feature spaces include the i-vector repre-
sentation often used for speaker identification/verification [9], 
and mixed brute force feature representations, such as the 
broadly used ComParE feature set, which contains 6,373 
static features (i.e., statistical functionals including mean 
and variance) of low-level descriptor (LLD) contours (i.e., 
MFCCs) often used in tasks such as recognition of emotion 
from speech [10].

We further define a generic ASA task , ( )fF Y $= " , that 
consists of a label space Y  and a predictive function (·)f  (or 
a conditional distribution ( | )P Y X ). The goal of this task is to 
build an effective and robust predictive function (·)f  that is 
capable of learning transformation rules from the feature space 

A serious obstacle to the 
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X  to the label space ,Y  i.e., .X Y
( )f $
"  Then, when given a 

test sample, it maps this feature vector x*  into a specific label 
,y* i.e.,

( ),y f x* *=  (1)

where x X* !  and .y Y* !  As an example, when performing 
ASR, y Y* !  denotes a phoneme or a word; (·)f  is then 
trained to predict a phoneme or a word from, e.g., MFCCs. In 
speaker identification/verification, y Y* !  denotes a speaker 
identity; the (·)f  is trained to predict speaker identity, e.g., from 
i-vectors. Similarly, in speech emotion recognition, y Y* !  
denotes an emotional state, and (·)f  is trained to recognize the 
emotional state, e.g., from high-dimensional statistical features.

Given a domain D  and a task ,F  we define D to denote a 
speech database. As the majority of available pattern recognition 
approaches are supervised paradigms [the input and expected 
output for (·)f  are provided during training]. A database is normal-
ly given by two parts: the feature vectors { , , }X x x Xn1 f !=  
and the corresponding labels { , , } .Y y y Yn1 f !=  However, in 
real life, the labels yi are often only partially provided (or not even 
provided) because of the difficulty of labeling. In this case, we 
denote the labeled data partition as {( , ), , ( , )}L y yx xn n1 1 l lf=  
and the unlabeled data partition as { , , },U x xn1 uf=  where 
nl  and nu  are the total number of labeled and unlabeled in -
stances, respectively. In this sense,

,D L U,=  (2)

and .n n nl u= +

Furthermore, we define the domain for the target task to be 
the target domain .T  The data in this domain might be insuf-
ficient for training an effective and robust prediction function 
( ) .f $  For example, when performing ASR on a low-resource 

language, T  could be a language such as Assamese, Bengali, 
Haitian, Lao, Pashto, Tamil, Tagalog, Xitsonga, or Zulu [11]. In 
this case, we define other domains from which data could be 
leveraged for the target task as source domains .S  For exam-
ple, for low-resource ASR, one S  could be a high-resource lan-
guage such as English or Mandarin [11]). According to (2), then

,D L UT TT ,=  (3)

and

.D L US SS ,=  (4)

In this article, we use the term data interchangeably with 
instance, turn, record, utterance, segment, sample, or exam-
ple. Similarly, the term annotator is interchangeable with 
evaluator, transcriber, labeler, or translator; and the word 
annotation is used to denote any labeling task, i.e., transcrip-
tion for ASR or labeling the emotion or other speaker states 
and traits associated with an utterance.
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FIGURE 1. A taxonomic overview of the three main data challenges associated with ASA and their potential solutions as discussed in this article. Note that 
N(Y ) denotes no or yes, which indicates the possible combination of techniques. TL: transfer learning; AL: active learning; SSL: semisupervised learning; 
CL: cooperative learning; URL: unsupervised representation learning.
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Data challenges
This section offers a detailed overview into the data sparsity, 
data unreliability, and unmatched data challenges. Techniques 
to adequately cope with these challenges will play an essen-
tial role in the development of the next generation of reliable 
ASA systems.

Sparse data challenge
While there is an abundance of raw speech data, the corre-
sponding annotations needed for many ASA tasks are often 
scarce (i.e., ,LT 4!  but ,n Nl %  where 4 denotes the empty 
set and N is a required number), or nonex-
istent (i.e., ).LT 4=  For example, outside 
of speech recognition tasks on a handful of 
widely used languages (e.g., English and 
Mandarin), the labels needed to conduct 
ASR on other languages are particularly 
scarce (see the Intelligence Advanced 
Research Projects Activity [IARPA] Babel 
project [11]). Similarly, most databases 
available for computational paralinguistics 
tasks, such as emotion recognition and per-
sonality analysis, may contain 5 h of labeled data at most [12], 
[13], which is insufficient for building highly robust models.

However, thanks to the pervasive sensing opportuni-
ties offered by smart devices and social media, the gather-
ing of speech data has become a somewhat easier task. For 
example, it is reported that some 500 h of video content is 
being uploaded to the video-sharing website YouTube every 
minute [14]. Nonetheless, labeling these data demands huge 
amounts of expert manual labor, which is regarded as being 
prohibitively expensive and time consuming. Taking speech 
transcription as an example, it can take up to approximate-
ly 6 h to accurately transcribe 1 h of speech at an average 
price of US$150/h [15], [16]. While a few Internet giants 
(e.g.,  Amazon, Google, and Microsoft) have the capability of 
obtaining many thousands of annotated speech data for 
ASA tasks, such as speech recognition, these labeled data 
are, however, rarely made freely available to interested 
research groups.

If DT  does not contain any labeled data, i.e., ,LT 4=  a 
naïve solution is manual annotation. An efficient way to do this 
is using a crowdsourcing platform, which is an Internet-based 
system that utilizes a large group of individuals to perform a 
common service. Alternatively, spoken-term detection/discov-
ery can be considered as a means of detecting predefined pat-
terns in the data or discovering unknown patterns there.

If DT  contains some labeled data, i.e., ,LT 4!  it is then 
necessary to assess whether or not the available labeled data 
are sufficient in terms of quantity and diversity to develop a 
robust model. If the data are found to be insufficient, data aug-
mentation approaches, which seek to enrich the number and 
variety of existing labeled speech data, might be an appropri-
ate option. A further option is the use of speech synthesis to 
automatically generate data with predefined labels. If a large 
scale of unlabeled data are available, i.e., ,UT 4!  alterna-

tive solutions could include unsupervised representation 
learning (URL), semisupervised learning (SSL), active learn-
ing (AL), and cooperative learning (CL). These techniques 
are becoming prominent paradigms to efficiently leverage 
massive unlabeled data via a small amount of labeled seed 
data [17].

Unreliable data challenge
This is the scenario in which the total amount of speech 
data is large, but the data reliability is low. Data sets col-
lected in real-life settings, and even many collected in con-

trolled laboratory settings, are susceptible 
to a range of problems, such as distortion 
by environmental noises, recording devic-
es, or interfering speakers [18]. Besides, 
the associated annotations may be unreli-
able because of mistakes or high uncer-
tainty among multiple annotators [18]. 
Furthermore, in many cases, the distribu-
tion of collected speech data can be high-
ly unbalanced over the classes of interest. 
All these factors can give rise to noisy 

and unreliable data, leading to nontrivial difficulties when 
training models [18], [19].

Additionally, the reliability of the labeled data should 
be evaluated in terms of properties such as acoustic qual-
ity, annotation certainty, and data balance degree. Poor 
data quality has frequently shown its detrimental effect on 
system performance. In this scenario, data selection should 
be considered for eliminating the noisy, unrelated, and 
unreliably labeled data or data balancing for balancing the 
data distribution.

Unmatched data challenge
This is the situation where data from a target domain T  are 
not sufficient or reliable enough to train a robust model for 
a task of interest. However, as previously discussed, there 
are often data from a source domain S  that are easy to 
obtain and somehow related to the target data. This moti-
vates researchers to explore leveraging source domain data 
to aid the target ASA task. For example, one of the goals of 
the IARPA Babel project is to utilize the available and 
large-scale speech data in, e.g., the English language 
for speech recognition in low-resource languages. Never-
theless, in many real-world applications, the source and tar-
get domains are often highly unmatched in respect to 
acoustic signal conditions, speakers, tasks, or even recording 
devices [20]. These mismatches lead to a marked perfor-
mance degradation of the analysis in such models in real-life 
settings [20], [21].

Mathematically, the source domain can differ from 
the target domain (i.e., )S T!  in terms of 1) modalities, 
i.e., X XS T!  (this case is considered out of the scope of this 
article, which is focused only on speech), 2) marginal prob-
ability distributions, i.e., ( ) ( ),P X P XTS !  3) label spaces, i.e., 

,Y YS T!  and/or 4) conditional probability distributions, i.e., 

Thanks to the pervasive 
sensing opportunities 
offered by smart devices 
and social media, the 
gathering of speech data 
has become a somewhat 
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( ) ( ) .P Y X P Y XS T TS !  A more in-depth explanation of these 
discrepancies can be found in [21].

An idealized solution to mitigate these differences is to 
obtain access to all possible variations by acquiring data on 
a massive scale. However, it is either practically impossible to 
anticipate all variations or such data would require exhaustive 
annotation. In such unmatched scenarios, transfer learning 
(TL) [21] is regarded to be a highly promising technique to take 
advantage of the knowledge from the source 
domain for the target domain.

Finally, it is important to note that all 
of the aforementioned techniques for each 
challenge can be performed either individu-
ally or jointly. This is illustrated in Figure 1, 
where possible combinations that can occur 
are indicated through the use of the N(Y) 
symbol, which denotes no or yes. For exam-
ple, crowdsourcing can be used no matter 
whether the labeled target data are available 
or not. Likewise, AL can be executed on either unlabeled tar-
get data or unlabeled source data. All of the key techniques 
mentioned in this section are reviewed in detail in the follow-
ing sections.

Contributions of this article
The literature shows a few surveys relevant to the topic of this 
article. Deng et al. [22] offered a comprehensive overview of 
machine-learning paradigms for speech recognition systems. 
Wang et al. [20] provided a TL survey for speech and lan-
guage processing, drawing the conclusion that TL has the 
potential to overcome the data-mismatch challenge. None of 
these surveys, however, perform a complete analysis of the 
sparse, unreliable, and unmatched data challenges or provide 
a comprehensive overview of the corresponding approaches.

Extending from a previous abstract [12], this article is the 
first to offer a thorough and in-depth overview of the most 
prominent and state-of-the-art techniques in this direction, 
including crowdsourcing for efficient data labeling; spoken- 
term detection/discovery to facilitate learning when there are 
no labeled data; data augmentation, speech synthesis, URL, 
SSL, AL, and CL to enable learning when only a limited 
amount of labeled resources are available; data selection and 
balancing techniques to facilitate learning from unreliable or 
unbalanced resources; and TL and data agglomeration to learn 
unmatched resources.

Rather than simply enumerating a list of associated papers 
and techniques, the focus of this article is on the analysis of 
the various data conditions and on how to better explore data 
under the different conditions. In doing this, ASA research-
ers and developers, new and established, can profit from 
the approaches introduced and discussed for the aforemen-
tioned applications.

Efficient data labeling: Crowdsourcing
The most straightforward solution to address a shortage of 
labeled data is to organize a group of workers (i.e., annotators) 

to perform the required annotations. By doing this, we create a 
new or additional labeled data set ,Lcs  and then ASA models 
can learn from the increased labeled data set .L L Lcs,=l  
Manual annotation is, however, costly in terms of time and 
money. Therefore, strategies to reduce these costs are of 
particular importance.

Crowdsourcing is one method to gather the needed data in 
a cost-efficient manner. In crowdsourcing, human intelligence 

tasks (HITs) such as data annotation are dis-
tributed via the Internet to a large number 
of potential workers (annotators). The users 
perform the tasks for usually low compensa-
tion. The assumption behind crowdsourcing 
is that the use of nonexperts is less onerous 
and more rapid than the use of experts. Fur-
thermore, the aggregated opinion of many 
nonexperts has been shown to approach the 
quality of the opinion offered by compara-
tively fewer experts [15], [23], [24].

Popular crowdsourcing platforms include Amazon Mechani-
cal Turk (MTurk), CrowdFlower, and Crowdee. MTurk is 
likely the most popular crowdsourcing platform for ASA-
related tasks. While MTurk provides access to a larger number 
of potential annotators, it is considered relatively expensive 
when compared to other platforms [15]. The CrowdFlower 
platform is steadily increasing its market share. When com-
pared to Mturk, it provides customers with a steady number 
of contributors and has a higher degree of quality control. 
An emerging trend, as implemented by Crowdee, involves 
moving the platform from the web to a mobile platform. 
Participants associated with this platform have the poten-
tial to undertake a task at any time and place.

Another emerging trend for crowdsourcing is the gamifica-
tion of the service, which is used to introduce a sense of fun 
into what are often simple and recurring tasks. This is also 
interesting from an ethical point of view, aiming to improve 
working conditions of crowd workers. The iHEARu-play 
platform, for example, offers annotators a chance to perform 
labeling, or prompted recording tasks, in return for scores and 
prizes, which are computed on the correctness and workload 
of their annotations [25].

Generally, the procedure of crowdsourcing speech resourc-
es can be broken into four stages. The first step is to define the 
project parameters, such as an appropriate platform, quality 
control strategy, budget, and time scale. The second step is to 
prepare the data. The third step is to distribute tasks. This gen-
erally involves splitting the whole task into many small units 
and then assigning each unit to several annotators. The final 
step is to aggregate and evaluate the resources (e.g., speech 
data or annotations).

For speech processing, crowdsourcing has been widely 
employed for a range of tasks, including speech data col-
lection/acquisition, speech annotation, speech perception, 
assessment of speech synthesis, and dialog system evalua-
tion [15], [26]. With particular respect to speech annotation, 
many studies have shown crowdsourcing’s benefit in terms 
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of both increased transcription quality and decreased costs. 
For example, in [27], the authors proposed a two-stage ap -
proach to transcribe speech via a crowdsourcing platform (i.e., 
microworkers). Specifically, the utterances that were labeled 
with the lowest agreement level among annotators would be 
selected for a second-stage translation. In 
doing this, more than 250,000 utterances 
(156 h) of spoken dialog from real callers 
were translated, being of comparable quan-
tity to the same corpora labeled by experts 
but at considerably less cost. Similar work 
has been presented for the transcription of 
meeting data [24], addressing the business 
name queries from a publicly accessible 
telephone directory service [16], and label-
ing the emotional state of speakers [28]. All of these works 
show that  crowdsourcing is a relatively affordable and effi-
cient way to address the task of speech annotation, compared 
with conventional methods.

Despite the advantages, controlling the quality of the labels 
is important to ensure they are as reliable as those given by 
experts. In this regard, quality control measures are required. 
A range of quality control mechanisms have been proposed in 
the literature, which can be grouped into one of the following 
five categories:
1) Worker filter: This mechanism evaluates annotation 

quality through the use of control questions (a question 
with a restricted answer set) and filters out inappropri-
ate annotations.

2) Intraworker: The reliability of an annotator can be evalu-
ated by the consistency of the response to the same ques-
tion asked multiple times. Alternatively, this could be 
established by a self-confidence value chosen by the 
annotator [27].

3) Interworker: Normally, a gold standard is calculated via 
techniques such as majority voting, using responses from a 
multitude of annotators. The quality of an individual anno-
tator can then be evaluated by calculating the response dis-
similarity to the gold standard. This method is, of course, 
susceptible to the risk that the majority results are wrong.

4) Gold-standard comparisons: This is a particular case of the 
interworker mechanism, where the gold standard is pro-
vided by trustworthy experts. This mechanism has been 
shown to be effective in eliminating intentionally mali-
cious annotators, albeit at the cost of expert intervention 
[27], [29].

5) Third-party review: Here, quality control is carried out by a 
third party, e.g., another independent crowdsourcing task 
[30], or by the output of an intelligent system [16], [27]. 
However, this requires extra quality evaluation or computa-
tional costs.

Learning from no labeled resources
This section discusses paradigms suitable for the extreme oper-
ating scenario where no labeled data are available, i.e., ,L 4=  
and .UD =  In this scenario, techniques such as spoken-term 

detection and spoken-term discovery, or related methods of 
targeted detection of speech-related information and phenom-
ena of interest and according discovery in the sense of novelty 
detection can be used to identify salient information (i.e., pat-
terns) directly from an unlabeled data set without any manual 

intervention. The premise of these tech-
niques can be thought of as analogous to 
infant language acquisition, i.e., the learn-
ing of linguistic information from the raw 
speech of an unknown language during the 
first few years of an infant’s life. The two 
techniques (i.e., targeted detection and 
novelty discovery) are distinguished by 
whether, e.g., spoken terms have been pre-
viously identified (spoken-term detection) 

or not (spoken-term discovery). Next, we focus on terms; 
however, similar methods can be applied to retrieve speech 
related to other phenomena of interest.

Spoken-term detection
The goal of spoken-term detection is to retrieve a set of occur-
rences from a speech repository for given acoustic queries or 
terms (normally spoken words or phrases). Compared with 
conventional speech recognition approaches, spoken-term 
detection offers the capability to detect corresponding patterns 
from speech in the absence of any text information.

The predominant spoken-term detection methods involve 
template-based acoustic models and typically rely on dynam-
ic time warping (DTW) [31]. Specifically, they search for the 
predefined terms in a lattice. In a no-labeled-resource sce-
nario, DTW has been shown to be an effective way to find 
the matched patterns [31]. Nevertheless, DTW alignment 
requires substantial computational resources to compare seg-
ments [32], [33]. Tackling this runtime-scalability problem 
is an active and ongoing research direction [32], [34]. Key 
approaches proposed in the literature include information 
retrieval-based DTW [35]. This approach first estimates the 
regions of an utterance that are more likely to contain the spo-
ken query and then uses a standard DTW to find the exact 
start and end times of each pattern. This approach was further 
extended in [34] via the introduction of a hierarchical k-means 
clustering, contributing to a substantial speedup when com-
pared with classic DTW.

An alternative approach is to embed the arbitrary-length 
segments into fixed-dimensional spaces [32]. This technique 
greatly reduces the computational load without any perfor-
mance compromise. Following this idea, the novel frame-
work of audio Word2Vec was recently proposed [36]. Audio 
Word2Vec uses a sequence-to-sequence autoencoder [a neural 
network (NN) commonly used as an unsupervised learn-
ing algorithm; for more details, see the “Deep Belief Net-
works and Stacked Autoencoders” section] to represent any 
arbitrary-length audio segment as a fixed-length vector. 
This framework was determined to outperform conventional 
DTW-based approaches at substantially lower computational 
requirements [36].

Crowdsourcing is a 
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Spoken-term discovery
Spoken-term discovery, also known as spoken-term indexing, 
is the task of searching potentially large, untranscribed speech 
collections for recurring words and phrases without using any 
language-specific resources other than the collection itself 
[37]. Specifically, spoken-term discovery 
differs from spoken-term detection in that 
spoken-term discovery systems automati-
cally find an inventory of lexical units 
(words or phrases) without being given any 
user-specific terms. Furthermore, spoken-
term discovery is distinct from conven-
tional ASR systems, where a lexicon is 
always specified.

Typically, spoken-term discovery con-
sists of three steps [13]: 1) pairwise match-
ing, 2) clustering, and 3) parsing. The aim 
of pairwise matching is to identify pairs of segments, taken 
from unique continuous spoken utterances, that have high 
acoustic similarity. Similar to spoken-term detection, the dom-
inant techniques in this step are based on DTW.

The discovered segments are then clustered into classes 
(indices) that correspond to a set of likely words and phrases 
present in the data. Typically, an abstract adjacency graph 
[31] is used to represent the relationship between all of the 
segmented pairs. The nodes of this graph correspond to the 
locations in time of the segments, and its edges correspond to 
the measures of similarity between those time indexes. A pre-
defined threshold is then applied to the edge weights, which 
results in clusters of highly connected nodes. While the edge 
thresholding is regarded as the de facto clustering method 
for  spoken-term  discovery, there is a range of fast and effi-
cient algorithms for automatic graphic clustering that could 
be applied. For example, the work in [31] utilized the New-
man algorithm, which first removes all edges and then merges 
potential groups together in a greedy fashion by adding edges 
back to the graph.

Finally, the discovered speech segments are used to parse 
the utterances. The identification of the segment (term) 
boundaries is challenging; the alignment segments are often 
overlapping in a particular node, and the ending times of 
their respective time intervals can differ. A straightforward 
solution for this issue is to calculate the average start and 
ending times for all of the alignment segments belonging to 
one node [31].

While considerable advances have been made for fully 
unsupervised speech processing, the majority of studies are 
limited to small-size data sets. Studies have shown that perfor-
mance is dramatically degraded when facing a large data set 
[26] or a large variety of speakers [38]. However, this approach 
is still quite attractive for many low-resource ASA tasks, e.g., 
early language acquisition.

Learning from limited labeled resources
Rather than starting with a completely unlabeled data set, we 
are often in the better situation of having a limited number of 

labeled resources, i.e., some few and expensive labeled 
speech data exist ,L 4!  while ,n Nl %  where N  denotes an 
opportune number of annotations. In this scenario, a range of 
other techniques besides the aforementioned no-labeled-
resource methods can be utilized. These are generally imple-

mented in one of two ways: 1) increasing 
the size and diversity of the existing 
labeled data by means of manually modi-
fying the speech variations (i.e., data aug-
mentation) or artificially generating new 
speech with predefined labels (i.e., speech 
synthesis) or 2) the efficient leveraging of 
information gained from big unlabeled 
data, through a priori knowledge of the 
labeled data. Typical techniques here 
include URL, SSL, AL, and CL. In the fol-
lowing text, each of these techniques is 

discussed in detail, with key contributions from the literature 
summarized in Table 1.

Data augmentation
Data augmentation artificially generates more data by trans-
forming existing speech samples using certain transforma-
tions that preserve the original class labels and speech 
content. By taking this approach, an augmented data set 
Laug  is obtained from the original data set L , i.e., 

( ),AUGL Laug =  which is then added to an updated labeled 
data set .L L Laug,=l  The popularity of data augmentation 
is indeed highly relevant to the ongoing development of 
deep learning, the success of which strongly depends on 
having large amounts of training data. Many studies have 
reported that training on data of limited quantity and variety 
leads to a failure of deep-learning systems owing to factors 
such as overfitting [6].

Variations in speech data are strongly influenced by numer-
ous factors, such as the speaker’s age, gender, and cultural back-
ground, and even the content of the background noise. Data 
augmentation techniques, through a series of transformations 
(perturbations), allow us to artificially increase both the quan-
tity and variations present in some training data, consequently 
improving the generalizability of the classifiers trained on 
this data. Conventional data augmentation approaches mainly 
involve artificially adding noise of various types, including 
convolutional noise, and levels to the original training speech 
for training a noise-robust acoustic model in multiple acoustic 
conditions [39].

Recently, research efforts have focused on using more com-
plex perturbation approaches, such as vocal tract length per-
turbation (VTLP) [40], or stochastic feature mapping (SFM) 
[41]. In VTLP, an alternate replica of an utterance is created by 
distorting its spectrum [40]. First, Mel-filter banks are applied 
over the spectrum. Then, the center frequencies ( f ) of all of the 
filter banks are mapped to new frequencies ( )f l  by employing 
a warping procedure:

( ),f f·z a=l  (5)

Data augmentation 
artificially generates more 
data by transforming 
existing speech 
samples using certain 
transformations that 
preserve the original class 
labels and speech content.
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Table 1. Selected data-exploitation studies on the limited labeled speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Weng et al. 2014 [39] DAU Adding noise Recurrent DNN ASR WSJ0 (En) 

Amodei et al. 2015 [7] DAU Adding noise CNN, DNN, CTC ASR WSJ0 (En), Switchboard (En), Fisher 
(En), Baidu (En, Ma), LibrisSpeech (En)

Jaitly and Hinton 2013 [40] DAU VTLP DNN, CNN ASR TIMIT (En) 

Cui et al. 2015 [41] DAU VTLP, SFM DNN, CNN ASR, KWS IARPA Babel program (As, Ha) 

Tüske et al. 2014 [42] DAU VTLP BN-MLP ASR, KWS IARPA Babel program (five lang.) 

Ko et al. 2015 [43] DAU Tempo-/speed based Time Delay NN ASR Switchboard (En), Gale database 
(Ma), LibriSpeech (En), Tedlium (En)

Peddinti et al. 2015 [44] DAU Volume based Time Delay NN ASR Switchboard (En) 

Milde and Biemann 2015 [45] DAU Pitch based CNN Eating condition 
classification 

iHEARu-EAT corpus (En) 

Schuller et al. 2012 [46] SS Waveform-based SVM ER Two synthesized + eight human 
corpora 

Gales et al. 2009 [47] SS Parameter-based SVM, HMM ASR WSJ Corpus (En) 

Dahl et al. 2012 [51] URL DBNs DBNs ASR Business Search Dataset (En) 

Seide et al. 2011 [64] URL DBNs DBNs ASR Switchboard-I (En) 

Deng et al. 2010 [54] URL SAEs and DBNs SAEs and DBNs Speech coding TIMIT (En) 

Mohamed et al. 2012 [65] URL DBNs DBNs ASR TIMIT (En) 

Lei et al. 2014 [66] URL DNNs DNNs Speaker recognition NIST SRE‘12 (En) 

Liu et al. 2014 [67] URL DBNs DBNs Speaker identification NIST 2005 SRE (En) 

Stuhlsatz 2011 [68] URL DNNs DNNs ER Nine emotional corpora 

Sánchez-Gutiérrez et al.
2014 [69] 

URL DBNs DBNs ER Spanish emotional speech 
database (Sp) 

Kim et al. 2013 [70] URL DBNs DBNs Audiovisual ER IEMOCAP (En) 

Hau and Chen 2011 [57] URL Deep CNNs Deep CNNs Speaker/gender 
identification
Phone classification 

TIMIT (En) 

Lee et al. 2009 [58] URL Convolutional DBNs Convolutional 
DBNs 

Speaker/gender 
identification
Phone/music 
classification 

TIMIT (En), music data 

Kemp and Waibel 1999 [71] SSL Self-training GMM–HMM ASR View4You broadcast news database 
(Ge)

Wessel and Ney 2005 [72] SSL Self-training HMM ASR BROADCAST NEWS96/7 corpora 
(En) 

Fazakis et al. 2015 [73] SSL Self-training NB, SVM, LR Speaker identification CHAINS Corpus (En) 

Hsiao et al. 2013 [74] SSL Self-training MLP KWS IARPA Babel Program (Tu, Vi) 

Thomas et al. 2013 [75] SSL Self-training DNN ASR Callhome Corpora (En, Ge, Sp) 

Zhang et al. 2013 [76] SSL Cotraining SVM Emotion/sleeping/
age/gender 
classification 

Six emotional corpora 

Cui et al. 2012 [77] SSL Multiview learning RDT, HMM ASR Broadcast News corpus (En) 

Liu and Kirchhoff 2016 [78] SSL Graph-based 
learning

DNN ASR Switchboard (En), DARPA RM (En) 

Riccardi and Hakkani-Tür 
2005 [79]

AL Uncertainty sampling HMM ASR “How May I Help You?” database (En) 

Varadarajan et al. 2009 [80] AL Uncertainty sampling HMM ASR Directory assistance data (En) 

Fraga-Silva et al. 2015 [81] AL Uncertainty sampling GMM–HMM ASR, KWS IARPA Babel Program (six languages) 

(continued)
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where ,a  the wrapping factor, is randomly chosen from 
[ . , . ]0 9 1 1 . The results presented in [40] indicate that, in 
terms of the phone error rate, deep networks trained on a 
VTLP-augmented version of a small database can outper-
form the deep networks trained on the original data set. 
Based on that work, a deterministic perturbation (i.e., a  
changes in the range of warping factors with a fixed 
step) rather than a random perturbation was proposed and 
investigated [42].

SFM, inspired by voice conversion paradigms, seeks to 
utilize the acoustic-feature-space relationship among speak-
ers when augmenting a data set [41]. Specifically, it augments 
training utterances by statistically converting one speaker’s 
speech data to another’s using

,·x x M=l  (6)

where M  is a transformation matrix of the feature spaces 
between two speakers. The experimental results given in [41] 
show that SFM offers improved performance over VTLP on 
both ASR and keyword spotting (KWS) tasks.

Other data augmentation approaches include tempo-based, 
speed-based, and volume-based perturbations [43]. Tempo-
based perturbation modifies the speech tempo while retaining 
the pitch and the spectral envelope. Speed-based perturbation 
varies the speech speed by resampling, whereas volume-based 
perturbation changes the amplitude of signals.

While data augmentation approaches have frequently been 
effective in ASR tasks [7], [44], this has not proved to be as 
much the case in other ASA tasks, particularly in computational 
paralinguistics [45]. A potential reason for this might be that the 
detection of speaker states and traits (e.g., emotion, age, and gen-
der) is more sensitive to changes in speech variation. Therefore, 
training on inappropriately transformed speech would lead to a 
worse model. Emotion, for example, is known to be related to the 
speech tempo; speech with faster tempo is inclined to be recog-
nized as higher arousal in emotion  recognition, so changing the 
associated speech tempo from fast to slow would potentially lead 
to badly labeled training data.

Continued research efforts being undertaken to distin-
guish features that are task specific or task invariant could 
help facilitate the application of data augmentation to other 
speech analysis tasks. In addition, most recent applications of 
data augmentation are performed for deep learning [7]. The 
effectiveness of these techniques on shallow discriminative or 
generative models is yet to be established.

Speech synthesis
Similar to data augmentation, the speech synthesis approach 
aims to synthesize additional labeled data, i.e., ( ),L SS Lsyn =  
such that the new labeled data set Ll  is updated by 

.L L Lsyn,=l  Theoretically, speech synthesis can produce an 
infinite amount of labeled data via altering speech content or 
modifying the parameters of a speech synthesizer. However, as 
the parameters of the synthesizers have a limited range, the 
simulated speech data often face the problem of limited varia-
tions. This can consequently result in the overfitting issue when 
training models. Combining the synthesized speech data with 
natural instances has been shown to help minimize this overfit-
ting issue [46]. For emotion recognition in speech, it has been 
shown that systems trained on synthesized speech (the test data 
was natural speech) can deliver competitive performance when 
compared to equivalent systems trained on natural speech [46]. 
In this article, two synthesizers rendering emotional speech—
Emofilt and Mbrola—were utilized to artificially generate 
speech colored with predefined emotions [46].

Rather than directly synthesizing waveforms, an alternative 
is generating parameterized speech that can be used directly 
for training a discriminative classifier. Gales et al. [47] used 
a hidden Markov model (HMM)-based statistical synthesis to 
generate missing words in a training set, when building word-
based support vector machines (SVMs) for ASR. The results 
presented indicate that this HMM-based synthesis approach 
was able to yield gains over the baseline. Inspired by the suc-
cess of deep learning, an emerging research trend is to use NNs 
rather than HMMs to generate speech samples [48], which may 
also mature in terms of the variation of synthesized speaker 
states and traits.

Table 1. Selected data-exploitation studies on the limited labeled speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Hamanaka et al. 2010 [82] AL Query by committee GMM–HMM ASR Corpus of Spontaneous Japanese (Ja) 

Zhang and Schuller 2012 [83] AL Meta query SVM ER FAU AEC (Ge) 

Zhang et al. 2015 [84] AL Meta query SVM ER FAU AEC (Ge) 

Riccardi and Hakkani-Tür 
2003 [85] 

CL Confidence score HMM ASR “How May I Help You?” database (En) 

Yu et al. 2010 [86] CL Confidence score HMM ASR Broadcast Conv. and News corpora (Ma) 

Zhang et al. 2015 [17] CL Confidence score SVM ER FAU AEC (Ge), SUSAS (En) 

Yu et al. 2010 [87] CL Global-entropy based HMM ASR Directory assistance data (En) 

BN: Bayes network; CTC: connectionist temporal classification; NB: naive Bayes; LR: logistic regression; RDT: randomized decision making; DAU: data augmentation; SS: speech 
synthesis; ER: emotion recognition; As/Da/En/Fr/Ge/Ha/Ja/Ma/Sp/Tu/Vi/Xi/Zu: Assamese/Danish/English/French/German/Haitian Creole/Japanese/Mandarin/Spanish/
Turkish/Vietnamese/Xitsonga/Zulu. 

(continued )

                                                                                                                                               



116                                                    

Unsupervised representation learning
In contrast to data augmentation and speech synthesis, URL 
techniques attempt to leverage massive unlabeled data, rather 
than sparsely labeled data. URL is closely related to the pre-
training process of deep learning, which aims to learn the 
underlying representations xl embedded in speech signals via 
multiple unsupervised transformations, i.e., ( ),URLx x!l  
where .D L Ux ,! =  To train a recognition model for a spe-
cific task, the pretrained model is then updated in a supervised 
manner via a small amount of labeled data. This step is gener-
ally referred to as fine-tuning or discriminative learning.

A typical model structure for URL is 
often composed of multiple processing lay-
ers of NNs for linear and nonlinear trans-
formations (Figure 2). To efficiently train 
such a DNN, Hinton and Salakhutdinov [49] 
introduced a greedy layer-wise unsuper-
vised algorithm to initialize multiple-layer 
feedforward NNs. Since then, this training 
algorithm has been frequently shown to have 
a powerful capability to capture representa-
tive features via massive unlabeled data, and 
has obtained tremendous success in a variety of applications, 
particularly in the context of ASA [7], [50], [51]. The remainder 
of this section introduces several of the most important deep 
architectures for URL, including deep belief networks (DBNs), 
stacked autoencoders (SAEs), convolutional NNs (CNNs), and 
recurrent NNs (RNNs).

Deep belief networks and stacked autoencoders
Two of the most established deep-learning architectures are 
DBNs and SAEs. These topologies are formed by stacking 
multiple layers of restricted Boltzmann machines (RBMs) or 

feedforward autoencoders, respectively. The unsupervised pre-
training of these architectures is done one layer at a time.

For SAEs, each layer is trained with an encoder ( )h $  and 
a decoder ( )g $  by minimizing the reconstruction error at its 
input :x

( ( )) .g h x x.  (7)

The output of the encoder ( )h x  forms an alternative represen-
tation of the input x  and is fed into the successive layer as 
input. This procedure is repeated layer-by-layer until all pre-

defined layers are initialized. The training 
of the stacked layers in this manner allows 
a deep network to incrementally learn a 
more robust representation when compared 
to training the whole network, in ensemble, 
from a random initialization of weights. For 
further insights into the advantages of pre-
training with autoencoders and RBMs, see 
[52]. This observation is particularly true 
for stacked denoising autoencoders [53], 
extensions of SAEs where the initial input 

x  is partially corrupted into another version xu  by means of 
stochastic mapping, i.e., ~ ( | ).qx x xdu u  The robustness of the 
high-level representations formed using this technique is 
improved when compared to the aforementioned SAE [53].

An early attempt at applying deep-learning technologies 
to learn speech representations was proposed by Deng et al. 
[54], where the authors utilized DBNs and deep SAEs to com-
press (represent) speech directly from spectrograms. When 
compared with the traditional compression approach of vector 
quantization, this technique showed a much lower log-spec-
tral distortion over the entire frequency range of wide-band 
speech. Expanding on the work of this article,  DBNs have 
been extensively tested as an acoustic modeling paradigm for 
speech recognition and have shown encouraging performance 
in comparison with the conventional Gaussian mixture model 
(GMM) and HMM-based acoustic models for ASR [51]. For an 
overview of deep URL models for ASR and the corresponding 
performance gains, the reader is referred to both [6] and [50]. 
Inspired by these achievements, deep URL techniques have 
started to become the dominant approach in almost all areas 
of speech processing.

Convolutional neural network
Another deep architecture currently exciting great interest is 
the CNN [55], [56]. CNNs are a biologically inspired variant 
of the multilayer perception (MLP) originally developed for 
visual perception tasks [55]. Typically, they consist of one or 
more convolutional layers (often with a subsampling layer), 
followed by one or more fully connected layers.

CNNs are normally trained in a supervised manner. How-
ever, unsupervised training approaches are gaining in popular-
ity. Inspired by the unsupervised learning algorithm for DBNs, 
Hau and Chen [57] constructed a deep architecture using 
a CNN trained in an unsupervised manner as an alternative 
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FIGURE 2. An illustration of typical deep URL. Usually, each layer of the 
network is individually trained in an unsupervised manner; this allows the 
network to incrementally learn a more robust representation than the one 
learned by training the network as a whole. 

In contrast to data 
augmentation and speech 
synthesis, URL techniques 
attempt to leverage 
massive unlabeled data, 
rather than sparsely 
labeled data.
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building block to retrieve effective hierarchical speech repre-
sentations. Specifically, the authors utilized an unsupervised 
predictive sparse decomposition algorithm to train the weights 
of the encoder and decoder [57].

Furthermore, a combination structure of CNNs and DBNs 
was proposed in [58], in which the authors constructed convo-
lutional DBNs (CDBNs) with convolutional RBMs (CRBMs) 
as the building blocks. The CRBM is an extension of the 
conventional RBM to a convolutional setting. The weights 
between the hidden units and the visible units are shared 
among all locations in the hidden layers [59]. By leveraging a 
large amount of unlabeled data, the authors demonstrated that 
the learned hierarchical CDBN representations are competi-
tive with conventional features (e.g., MFCCs) when evaluated 
across multiple audio classification tasks.

Long short-term memory recurrent neural networks
Unlike the aforementioned NN architectures, RNNs allow 
cyclical connections, which consequently endow the network 
with the capability of accessing previously processed infor-
mation (i.e., context sensitivity). An advanced version of this 
paradigm, the long short-term memory (LSTM)–RNN [60], 
has recently attracted a large amount of attention. An LSTM 
unit contains one input, one output, and one forget gate to 
control the memory cell, which enable it to store and access 
information over a long temporal range. Therefore, the 
LSTM–RNN combination has a powerful capability for 
sequence learning.

In utilizing the advantages associated with LSTM–RNNs, 
Srivastava et al. [61] recently proposed and explored an unsu-
pervised sequence-to-sequence learning paradigm where the 
LSTM–RNNs are constructed as an encoder–decoder. By 
doing this, the system efficiently learns the underlying repre-
sentations of video sequences for future frame prediction or 
sequence reconstruction. This model has been further investi-
gated by Chung et al. [36] for audio segment representations, 
where the authors demonstrated its effectiveness for spoken-
term detection when compared with classic DTW. More 
recently, the gated recurrent unit has emerged as a computa-
tionally simpler alternative to the LSTM unit [62].

Overall, deep unsupervised learning paradigms have seem-
ingly great potential for learning useful representations of 
large-scale unlabeled speech data. Nevertheless, in most cases, 
it is necessary to implement additional supervised training, 
such as fine-tuning, to ameliorate the system for a specific 
application [51], [63]; therefore, a small amount of labeled data 
is often additionally required to produce state-of-the-art per-
formance.

Semisupervised learning
Unlike URL, which aims to distill representative features 
from unlabeled speech, SSL is designed to enhance recogni-
tion models. Given a seed set of labeled data, SSL exploits 
information from a large set of unlabeled data in an efficient 
manner with minimal intervention from human annotators. 
SSL methods are generally distinguished as being conducted 

in either an inductive or transductive manner [88]. The 
primary discrepancy between them lies in whether the distri-
bution information of the unlabeled data is utilized for their 
own prediction.

Inductive approaches require the construction of a classi-
fication model f based on a priori knowledge of labeled data. 
The predictive model f is then used for predicting the unla-
beled data, no matter whether they are presented in an online 
(afterward) or offline (beforehand) manner. Hence, inductive 
approaches are also known as a supervised learning + addi-
tional unlabeled data paradigm. Mathematically, this can be 
expressed as

{( , ), , , } , { , , , } .y l n f f y u n1 1xl l
l

u
u7 7f f= =  (8)

Once the automatically predicted annotations have been 
obtained from the unlabeled data set ,Lssl

)  the labeled training 
set is updated, i.e., .L L Lssl,= )l

In contrast, transductive approaches do not need to prebuild 
a classification model f but instead perform predictions direct-
ly on the unlabeled data by exploiting the joint probability dis-
tributions of labeled and unlabeled data sets. In this technique, 
the unlabeled data set should be available beforehand. When 
new samples arrive, the transductive algorithms have to be 
rerun, which consequently increases the computational load. 
Hence, the transductive approaches are also referred to as the 
unsupervised learning + additional labeled data paradigm. 
That is,

{( , ), , , } { , , , } { , , , }.y l n u n y u n1 1 1x xl l
l

u
u

u
u7,f f f= = =

(9)

Note that both the inductive and transductive approaches can 
be jointly deployed, as in  transductive SVMs in which unla-
beled data are also considered when determining the hyper-
plane [89].

The ASA literature is dominated by inductive SSL 
approaches. This is possibly due to inductive approaches 
being more flexible to the availability format of unlabeled 
data (i.e., online or off line). Among the inductive SSL 
approaches proposed, self-training (i.e., self-teaching) is 
arguably the most representative and has been widely and 
efficiently used for ASR [71], [72], emotion recognition 
[90], and speaker identification [73]. (In the context of 
ASR, SSL is often referred to as unsupervised learning or 
unsupervised training.)

A typical self-training paradigm is based on prediction 
uncertainty. That is, those samples { }x i

ul  recognized with high 
confidence C are picked up and combined into a selected sub-
set S, and those { }x j

u  with low confidence remain in the unla-
beled data set U:

( ) ( ) .C Cx x
\

u

S

u

U Sx xu u
$

6 6! !

l
l

(10)

The selected data set S  (together with their pseudolabels) is 
then combined with the initial training set L  to form a new 

                                                                                                                                               



118                                                    

data set ,L L Lssl,= )l^ h  which is sequentially employed to 
refine the previous model and retest the remaining unlabeled 
data. This process is repeated several times to incrementally 
upgrade the initial model.

Self-training is simple and can be easily applied to 
an existing model. However, it is open to the risk of error 
accumulation, which is introduced by the selection of mis-
classified data in early learning iterations. Commonly used 
techniques to mitigate such a detrimental effect include 
1) using an additional development partition to determine the 
stopping point of learning, 2) using generalized expectation 
maximization to assign weights to the automatically labeled 
data based on the prediction confidence [74], and 3) retest-
ing previously selected data for subsequent reevaluations and 
selections, such that the mislabeled data in previous iterations 
are possibly corrected in future iterations with an improved 
model [91].

Another commonly used inductive SSL paradigm in ASA 
is cotraining. Compared with self-training, cotraining attempts 
to exploit the mutual information between two learners (trained 
on different views or feature domains X1  and ).X2  That is, 
each learner uses its own predictions to teach not only itself, 
but also the other learner [92].

Successful cotraining relies on two assumptions: suffi-
ciency and conditional independence [92]. Sufficiency infers 
that each view is sufficient for classification on its own, i.e., 
the two hypotheses :f X Y1 1 7  and :f X Y2 2 7  are good 
enough for recognition. Conditional independence denotes 
that the views are conditionally independent, given the class 
label, i.e., ( ) ( ) ( ) .P y P y P yx x xi i i1 2!  Although these two 
assumptions are restrictive, the work presented in [76] shows 
the capability of cotraining for retrieving emotional infor-
mation in unlabeled data via separating the acoustic feature 
set into two pseudo views (i.e., not completely conditional 
independence) in the speech domain. Similar verification of 
cotraining has also been reported for other computational 
paralinguistics tasks [76]. Additionally, a more general 
framework called multiview learning requires less restric-
tion in terms of conditional independence than cotraining 
and has been successfully applied in speech recognition 
by using several types of acoustic features and randomized 
decision trees [77].

More recently, SSL research in ASA has started to explore 
the advantages of deep-learning techniques [75], [93]. A typi-
cal implementation is ASR for a low-resource language [75], 
[93]. First, an initial DNN is trained in an unsupervised  manner 
using multilingual data to learn the generalized representa-
tion of speech. Next, this model is fine-tuned as a seed model 
by using limited amounts of monolingual data from the low-
resource language. The seed model is then employed to decode 
the untranscribed utterances, with the predicted hypotheses 
being regarded as the training transcripts for the next itera-
tion. Various discriminative criteria (e.g., maximum mutual 
information or minimum cross entropy) can be adopted to 
obtain the prediction confidence scores for each frame, word, 
or utterance [75], [93]. Similar to traditional self-training and 

cotraining, the data (i.e., frame, word, or utterance) predicted 
with high confidence are assumed to be of high quality and are 
then incorporated to update the initial DNN or GMM–HMM 
acoustic model.

Apart from the inductive approaches, a graph-based trans-
ductive approach can also be integrated into DNN-based 
speech recognition systems at either a late or early stage [78]. 
For the late-stage integration, a graph is first constructed over 
the labeled and unlabeled data sets, where the node repre-
sents a data instance and the edge indicates the similarity 
between a data instance pair. Then, using a graphic-based 
learning algorithm, a new set of posterior distributions for 
each instance of unlabeled data is produced. After that, the 
posteriors are converted into a graph likelihood and are inte-
grated with the original acoustic scores given by the DNN for 
a subsequent rescoring of the unlabeled data [78]. A major 
drawback of this late integration approach is a substantially 
increased computational cost, as the graph has to be recon-
structed after each learning iteration. To overcome this prob-
lem, an early-stage integration algorithm has been proposed 
[78]. This algorithm employs a graph embedding approach 
in which the data in the graph is transformed into a com-
pact feature vector, which is then used as additional input for 
the DNN.

Active learning
Similar to SSL, AL attempts to improve recognition models 
by exploring unlabeled data. However, unlike SSL, which per-
forms automatic machine (model) annotation, the focus of AL 
approaches is to efficiently select the most informative data S 
in the unlabeled collection U for manual annotation. Partly 
because of the growing amounts of data to be handled and the 
popularity of crowdsourcing (see the “Efficient Data Labeling: 
Crowdsourcing” section), AL strategies for ASA are currently 
more important than ever.

One of the central goals of AL is to determine the informa-
tiveness of unlabeled data, a process known as query strategy. 
The following sections briefly review the most commonly used 
strategies with relevance to ASA, which include the uncertain-
ty sampling, query by committee, and metaquery strategies.

Uncertainty sampling
This strategy uses confidence measures as a criterion to select 
the most informative data. The basic idea is to use a pretrained 
model (an active learner) to determine the uncertainty of pre-
dictions for a specific ASA task. The instances with the least 
certain predictions are then sent to an oracle (a human) for the 
annotation.

Formally, the selected data can be expressed as

( ),Qargmin ;x x
U

c
x

i=
!

l (11)

where i  indicates the model parameters trained on the labeled 
data set L and Qc  denotes the confidence measure function.

When using a probability model (e.g., Bayesian networks), 
this function is usually estimated using either the posterior 
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probability, the probability margin between the two most likely 
class labels, or the entropy of prediction [94]. In the context of 
speech recognition, word posterior probabilities or the HMM-
state entropy are frequently used as confidence measures [79], 
[81]. When using a nonprobability model (e.g., an SVM), simi-
lar measures can be constructed from discriminant functions. 
Considering the SVM as an example, pseudoprobabilistic 
values can be transformed from the output distances from the 
SVM hyperplane (see [17] for more details). The effectiveness 
of this approach has been extensively assessed for emotion rec-
ognition from speech [83].

Despite the reported performance improvement, many stud-
ies have found that uncertainty-based AL is inclined toward 
selecting noise and garbage data (i.e., outliers from the main 
data distribution) for human labeling. This issue occurs even 
more frequently when using AL to annotate data collected in 
the wild, i.e., not under controlled laboratory conditions, where 
environmental noises severely distort the speech, and many 
unexpected words are potentially uttered. Labeling these outli-
ers is usually difficult and time consuming [95]. Furthermore, 
these data often offer little information on the overall system 
performance [17], [95]. A straightforward solution to address 
this outlier problem is to raise the threshold of a confidence 
score. For example, the authors of [17] used a median uncer-
tainty strategy instead of the least certainty one for actively 
selecting spontaneously emotional utterances, which delivered 
a positive performance improvement.

Sampling by uncertainty and density (SUD) is a more 
sophisticated method that was introduced for ASR in [96]. In 
this approach, unlabeled instances that are both near the deci-
sion boundary and very close to other examples are assumed to 
be more important than those that are isolated (i.e., likely to be 
outliers). Hence, SUD considers not only the most informative 
data in terms of uncertainty but also the most representative 
data in terms of density. That is, those data predicted with least 
certainty and distributed in a low-density area are ignored.

A similar idea was proposed in [80], where the global crite-
rion was used in ASR to maximize the expected lattice entro-
py reduction over all nontranscribed data. Specifically, it first 
measures the entropy among the lattices generated by decod-
ing unlabeled utterances. It then estimates the expected entro-
py reduction over the whole data set for each given utterance, 
and selects the utterances that should deliver the highest entro-
py reduction for human labeling. After that, the transcribed 
utterances can be weighted according to the number of similar 
utterances in the whole data set to achieve better performance 
for speech recognition. This algorithm is also analogous to the 
error-rate reduction strategy introduced in [95].

Query by committee
This strategy uses a committee (group) of weak models (learn-
ers), denoted by { , , },k1 fi iH =  to select unlabeled data by 
the principle of maximal disagreement among these models 
[97]. Mathematically, this can be expressed as:

( ; ).argmaxQx x
U

d
x

H=
!

l (12)

The two key problems in committee-based approaches are 1) 
constructing a committee H  that represents competing 
hypotheses and 2) defining a disagreement measurement .Qd

To alleviate the first problem, the models are usually built by 
employing multiple different classifiers (e.g., HMMs, SVMs, 
and RNNs) with the same training data, or by splitting the 
training data or features into partitions for training several dif-
ferent versions of the same type of classifier, or by a combina-
tion thereof. For the second problem, the commonly used 
disagreement measures are vote entropy and Kullback–Leibler 
divergence (see [94] for more details). In speech recognition, 
this strategy has been applied to both acoustic and language 
models, resulting in a significant data annotation reduction 
while achieving the same word accuracy [82].

Meta query strategies
One often deals with imbalance across classes of interest in 
the data. As an example, for emotion recognition, the emo-
tional speech of interest usually appears sparsely within a data 
set, while the less interesting nonemotional speech often 
appears at a much higher frequency. In this scenario, an initial 
coarse model can be used to first decide which data are of 
interest by distinguishing between neutral and emotional 
speech. A subsequent finer model can be then used to recog-
nize different emotions or respective other classes in other 
tasks in the selected emotional speech data. An example of 
such an approach is the sparse-tracking query strategy [83]. It 
tracks only sparse (emotional) instances, via iterative retrain-
ing and labeling, using a novelty detection paradigm.

One issue when analyzing subjective speaker states and 
traits (e.g., emotion and personality) is the requirement of mul-
tiple annotations per sample to obtain a reliable gold standard, 
which linearly increases the annotation workload. Recently, 
dynamic active query strategies have been shown to be suc-
cessful in overcoming this issue [84]. These approaches, e.g., 
sequentially query human annotators to label a specific instance 
up to the achievement of a predefined agreement level (i.e., a 
certain number of votes for a specific class). The general idea 
is to learn and exploit the varying reliability of raters to discern 
whom to best trust and when. The results presented indicate 
that this approach can contribute to a meaningful reduction of 
annotation effort [84].

Cooperative learning
As discussed previously, SSL techniques can perform annota-
tion work from machines with a bare minimum of human 
intervention. However, the performance of SSL is hampered 
by the issue of potential error accumulation [94]. Alternatively, 
AL techniques have the potential to achieve higher accuracy 
with fewer training labels by actively selecting the data it can 
learn the most from. However, AL still requires a considerable 
amount of human intervention.

To take advantage of the best of both approaches, it is plau-
sible to jointly conduct AL and SSL in a unified CL frame-
work [17]. A general CL flowchart is illustrated in Figure 3. CL 
allows the sharing of the labeling effort between human and 
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machine oracles, while being able to mitigate the limitations 
of SSL and AL. This is achieved by successively fusing the 
data subset selected by the AL Lal^ h and the one selected by 
SSL Lssl

)^ h into the original training set in an iterative fashion. 
In this case, the labeled data set Ll is continuously updated by 

.L L L Lal ssl, ,= )l  To minimize the effects 
relating to error accumulation, AL is often 
conducted before SSL.

Early studies of CL mainly focused on 
text classification. McCallum and Nigam 
were the first to investigate the idea of 
integrating the query by committee-based 
AL and the expectation maximization-
based SSL for text classification [98]. 
Later, motivated by the success of cotrain-
ing (see the “Semisupervised Learning” 
section), a similar idea of jointly using multiple views was 
taken into account, contributing to the new CL algorithm of 
coexpectation-maximization testing [99].

For speech processing, the first CL efforts were undertaken 
by Riccardi and Hakkani-Tür [85] for ASR. This approach 
assigned confidence scores to transcribed utterances based on 
the lattice output, from which the utterances were determined 
to be manually or automatically labeled. A similar idea was 
also investigated by Yu et al. [86] for speech recognition. In this 
approach, the data recognized with high confidence are trans-
lated automatically by machine, while the ones recognized at a 
low confidence are selected and translated manually. Similar to 
the uncertainty-based AL, this uncertainty-based CL is as well 
inclined to choose noise and garbage utterances that typically 
have low confidence scores.

Motivated by the success of the global entropy reduction 
maximization criterion [80] for AL (see the “Active Learning” 
section), Yu et al. [87] extended the work of [80] by integrat-
ing this approach with SSL. The results presented indicate that 
this technique achieves a notable performance increase when 

compared to the uncertainty-based CL 
approaches for speech recognition. Besides, 
Zhang et al. [17] recently combined SSL 
with a median uncertainty-based AL for 
emotion recognition, which efficiently helps 
to avoid choosing garbage data as well. Fur-
thermore, in the same article, multiview CL 
(i.e., where two views are used for both AL 
and SSL) was exemplified and demonstrat-
ed to achieve better performance than the 
single-view CL [17].

Experimental results obtained in the aforementioned stud-
ies indicate that, when compared to SSL and AL, CL is indeed 
a productive, highly efficient way to exploit unlabeled speech 
data to enhance the performance of preexisting models while 
minimizing human work. Moreover, its potential is expected 
to be further evoked when implemented with a crowdsourcing 
platform (see the “Efficient Data Labeling: Crowdsourcing” 
section and/or, incorporated with deep-learning techniques, 
the “Unsupervised Representation Learning” section).

Learning from unreliable or unbalanced resources
In contrast to both the no- and limited-resource techniques, 
which address the speech data quantity challenge, this section 
focuses on the methods that aim to tackle the speech data qual-
ity challenge. In particular, it covers techniques designed to 
operate in the presence of unreliable or unbalanced resources.

Data selection
Data quantity and diversity are both vitally important proper-
ties when building a robust ASA system. However, they can 
introduce a range of confounding factors. For example, 
speech utterances that are severely distorted by noise might 
be present in a prototypical data set. Owing in part to a lack 
of annotators’ concentration, these data are often improperly 
labeled or even mislabeled. This gives rise to the necessity of 
data selection to discard such garbage data, as accurate 
decisions made by a pattern recognition engine are largely 
related to high-quality training data.

The goal of data selection is to select a smaller data source 
S that is most representative (i.e., most informative) of the 
entire data L, i.e., ( )S DS L=  and ,S L3  thus omitting any 
superfluous or garbage data. The concept of data selection 
discussed in this section differs from that for AL or SSL, 
which is carried out on unlabeled data (see the “Semisuper-
vised Learning” and “Active Learning” sections). It also dif-
fers from feature selection methods (e.g., filter or  wrapper 
selection), which select the most informative features for a 
particular ASA task. Instead, the data selection techniques 
reviewed are designed to select labeled samples or instances 
that will serve as learning units.

Labeled
Set L

Train

Unlabeled
Set U

Classify

AL SSL

Selected
Subset Sa
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Machine
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FIGURE 3. A general overview of a CL framework that aims to take advan-
tage of both AL and SSL. 

CL is indeed a productive, 
highly efficient way to 
exploit unlabeled speech 
data to enhance the 
performance of preexisting 
models while minimizing 
human work.
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Within the ASA literature, Wu et al. [100] selected the 
samples that had a uniform distribution across speech units 
(i.e., words and phonemes) by the principle of maximum 
entropy for ASR. The experimental results presented indi-
cate that a system trained on a 150-h selection of data could 
achieve competitive results with a system 
trained on the full 840-h data set.

When performing subjective ASA rec-
ognition tasks (e.g., emotion recognition), 
a learning and testing target has to be gen-
erated usually by fusing the labels of mul-
tiple annotators to reduce subjectivity. In 
addressing the unreliable label problem, 
Erdem et al. [101] performed the RANSAC 
data selection algorithm to remove poten-
tially mislabeled instances when training 
a model, and obtained better emotion rec-
ognition performance. This algorithm operates in an iterative 
fashion. First, it uses a small subset of the data to determine the 
initial model parameters. Then, the unused data instances are 
tested against this model, and those that fit the model within a 
predefined tolerance, denoted as ,e  are considered to be a part 
of the consensus set. When the size reaches a predefined limit, 
the model parameters are updated using all of the consensus 
data and initial data. This procedure is repeated several times. 
More recently, Zhang et al. [102] reported that annotation 
reliability can be assessed using the human-agreement level 
among multiple annotators. Data with a low human-agreement 
level are considered to be mislabeled data and are removed 
from the data set.

Data balancing
When collecting data for a specific ASA task, such as model-
ing speaker states (e.g., affection or intoxication) or character-
istics (e.g., likeability), one often faces issues relating to class 
scarcity. While interesting speech samples are required, the 
majority of the ubiquitous speech data are essentially neutral. 
This can result in highly imbalanced class distributions and 
recognition systems that perform poorly when attempting to 
recognize the target classes [103].

Numerous studies in the context of machine learn-
ing have tackled this issue by data balancing [103], with the 
purpose of balancing the data distribution over classes, i.e., 

...L L L Ln1 2bl , ,=  where , , ...,L L Ln1 2  denote labeled data 
from n different classes that contain approximately the same 
amount of data. Among the methods proposed, data sampling is 
seen as a simple and efficient method. Data sampling is the pro-
cess of either repeating preexisting data, regenerating new data 
to modify the imbalanced data distribution, or randomly remov-
ing part of the data to produce a data set with a more balanced 
class distribution.

One common method is random sampling, either by 
oversampling (i.e., upsampling) or by undersampling (i.e., 
downsampling). The former approach essentially involves 
randomly selecting a subset of instances Lminl  in the minor-
ity class Lmin  and adding them back into the original 

training set L, .L L Lmin,= l  In contrast, the latter technique 
involves the random selection of a subset of instances Lmajl  
in the majority class Lmaj  and removing them from the orig-
inal training set L, .\L L Lmaj= l  However, this process may 
result in a loss of important information pertaining to the 

majority class.
Another frequently used and effective 

method for data sampling is SMOTE [104]. 
The underlying idea is the creation of a new 
set of artificial examples belonging to the 
minority class. Data sampling has been wide-
ly used for computational paralinguistics 
with notable effects [17], [105]. Even in ASR 
systems, balancing the sample distributions 
among all phonemes has been shown to out-
perform the baseline by a large margin [106].

Learning from unmatched resources
Conventional machine-learning approaches operate under the 
assumption that instances from both the source and the target 
domains are independent and identically distributed. However, 
in real-world scenarios, this is very rarely the case; one will 
inevitably encounter the problem of distribution mismatch 
(also known as the data set bias) or covariate shift between 
the data in the target and source domains ( . ., ).i e S T!  Such 
discrepancies often give rise to a substantial downgrade in the 
performance of affected speech analysis systems. TL is a 
potential solution to bridging the mismatch gap.

The objective of TL is to improve the predictive function 
in the target domain T  using the knowledge from a different 
but related source domain S  (Figure 4). A wide range of TL 
approaches have been proposed in the machine-learning and 
data-mining literature. TL has also been applied to many ASA 
tasks, including low-resource language ASR, speaker adapta-
tion, and emotion recognition.

TL approaches can be mostly grouped into one of three 
categories according to the properties of the knowledge 
transferred: instance-, feature-, and model-based TL. These 
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FIGURE 4. An illustration of TL: knowledge learned in the source domain 
is used to aid analysis in the target domain. This transfer can take place at 
either the instance, feature, or model level. 

TL approaches can be 
mostly grouped into one of 
three categories according 
to the properties of the 
knowledge transferred: 
instance-, feature-, and 
model-based TL.
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approaches as well as data agglomeration are elaborated 
upon in the following. These sections are intended to be a 
succinct overview of these techniques for ASA. For a more 
general survey of TL, see [20] and [21]. A selection of typical 
TL studies for ASA are listed in Table 2.

Instance-based TL 
Instance-based TL assumes that certain 
subsets of the data in the source domain 
can be used for learning in the target do -
main by means of reweighting. Instance-
based TL essentially assigns more weight 
to those source domain data that are similar 
in terms of distribution to the target data, 
and less weight to those that poorly reflect 
the distribution of the target data. The technique of weighting 
the input data based on the target data is known as impor-
tance weighting for covariate shift or sample selection bias. 
With the aim of minimizing the expected classification error, 
the estimation of the importance weights b  is achieved as a 
ratio calculation problem:

( )
( )
( )

,
P
P

x x
x

T

S
b =  (13)

where ( )P xS  and ( )P xT  are the probability densities of the 
source and target domain data, respectively [107].

The most straightforward approach to calculating this den-
sity ratio is to directly estimate the target and source densities 
separately. However, this approach tends to perform poorly 
because of the inherent difficulty of density estimation, par-
ticularly in high-dimensional cases. In this regard, instance-

based TL techniques, which estimate the 
importance ratio without estimating the 
densities, have been proposed. For example, 
Huang et al. [108] proposed a kernel-based 
method known as kernel mean match-
ing (KMM). It reweights the instances by 
matching the means between the source 
domain data and the target domain data 
in a reproducing-kernel Hilbert space. The 
downside of KMM is that its performance 

is highly dependent on the choice of hyperparameters (model 
selection), which need to be heuristically tuned.

To overcome this issue, Sugiyama et al. [109] introduced the 
Kullback–Leibler importance estimation procedure (KLIEP) 
algorithm. KLIEP estimates the importance ratio by mini-
mizing the Kullback–Leibler divergence between the original 
target data density and its corresponding estimation. Owing to 
the convex property of the involved optimization problem, the 
KLIEP algorithm can obtain unique global solutions. In addi-
tion, the tuning parameters can be objectively optimized, based 
on a variant of cross validation. While KLIEP is seemingly 

Instance-based TL 
assumes that certain 
subsets of the data in the 
source domain can be 
used for learning in the 
target domain by means 
of reweighting.

Table 2. Selected TL studies on the unmatched speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Hassan et al. 2013 [111] Instance KMM, KLIEP, uLSIF SVM ER FAU AEC (Ge) 

Doulaty et al. 2015 [113] Instance Submodular data 
selection

DNN ASR Data collected in six settings 

Narayanan and Wang 
2013 [115] 

Feature Denoising DNN ASR Aurora-4 

Deng et al. 2013 [116] Feature SAE SVM ER Six emotional corpora 

Kocscor and Tóth 2004 
[117]

Feature KPCA, KLDA GMM, ANN, etc. Vowels/phoneme 
classification 

Hungarian (Hu), TIMIT (En) 

Jafari and Plumbley 
2011 [118] 

Feature Sparse coding / Speech representation/
denoising

Freesound 

Dahl et al. 2012 [51] Feature DNN, signal task DNN–HMM ASR Bing mobile voice (En) 

Amodei et al. 2015 [7] Feature CNN, signal task CTC–RNN ASR English (En) and Mandarin (Ma) 

Heigold et al. 2013 [119] Feature SHL–DNN, multitask Softmax layer Multi-/cross lingual 
ASR

Data in various languages 

Huang et al. 2013 [120] Feature SHL–DNN, multitask Softmax layer Multi-/cross lingual 
ASR

English (En) and Mandarin (Ma) 

Miao et al. 2015 [121] Feature SAT–DNN, i-vector DNN ASR TEDLIUM (En) 

Deng et al. 2014 [122] Feature SHL–DNN SVM ER Three emotional corpora 

Giri et al. 2015 [123] Feature SHL–DNN DNN Robust ASR REVERB Challenge corpus (En)

Leggetter and Woodland 
1995 [124] 

Model MLLR GMM–HMM ASR ARPA RM (En) 

Deng et al. 2014 [112] Model DAE, multitask SVM ER Three emotional corpora 

En/Ge/Hu/Ma: English/German/Hungarian/Mandarin; ER: emotion recognition; ulSIF: unconstrined least-squares importance fiting; KLDA: kernal linear discriminant analysis; 
SHL: shared hidden layer; SAT: speaker adaptation training; DAE: denoising autoencoder; KPCA: kernel principal components analysis.
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more advantageous than KMM, it is actually less computation-
ally efficient because of the high linearity of the objective func-
tions to be optimized.

This issue was addressed by Kanamori et al. [110] by means 
of least-squares importance fitting (LSIF). The LSIF algorithm 
formulates the direct importance estimation problem as a least-
square function fitting problem: casting the optimization prob-
lem as a convex quadratic program that can be efficiently solved 
using a standard quadratic program solver. This algorithm was 
further extended to be unconstrained LSIF (uLSIF), which 
greatly improved the computational efficiency [110]. For emo-
tion recognition, the approaches of KMM, 
KLIEP, and uLSIF have shown great suc-
cess in alleviating the discrepancy between 
different speech resources [111], [112].

An alternative to the aforementioned ap -
proaches is binary reweighting. It selects the 
data from the source domain based on the 
data distribution to reduce the discrepancy 
between the source domain and the target 
domain. This strategy is related to the data 
selection strategy used for AL (see the “Active 
Learning” section), which can be viewed as a 
specific data selection case in a source-data unlabeled setting. It 
is also related to the data selection strategy discussed in the “Data 
Selection” section, which attempts to improve the quality of the 
data only in the target domain.

A prominent binary reweighting approach is based on 
using submodular functions to simulate the acoustic similarity 
between the target and source domain data [113], [114]. The 
process identifies a subset Ll of the complete source data set 

,LS  so that any subsequent subset Lm added to this selected sub-
set will not increase the value of the submodular function f, i.e., 

{ ( ) ( ),  , }.argmaxL f L L f L L L L L Lwhere, =1 3 3=l l m l l m l  
In doing this, only the positive transfer is exploited across 
domains. In ASA, submodular function-based data selection 
has been extensively evaluated for multidomain speech recog-
nition and has shown superior performance [113], [114].

Feature-based transfer learning
The goal of feature-based TL approaches is to find a transforma-
tion function (·)U  that can be used to convert the source feature 
space and/or target feature space into an approximately matched 
distribution space while preserving the important properties of 
the original data. Mathematically, this can be expressed as

( ( )) ( ( )),P X P XT S ST .U U  (14)

or

( ( )) ( ( )) .P Y X P Y XT T S S ST .U U  (15)

In achieving this, two possible strategies exist: asymmetric 
and symmetric strategies. The asymmetric strategy keeps 
either the source or target feature space unchanged, and maps 
the other one onto it (i.e., :T ST "U  or :S TS "U ). By 

contrast, the symmetric strategy transforms both source and 
target feature spaces into a new latent one (i.e., :T ZT "U  
and :S ZS "U ), in which they share the same distribution 
and knowledge relationship.

In achieving this, two possible strategies exist: asymmetric 
and symmetric strategies. The process of denoising distorted 
(noisy) speech can make the feature space (target) of noisy 
speech closer to that of clean speech (source). In doing this, the 
cleaned speech can be evaluated by preexisting acoustic mod-
els, which are often trained on the clean speech. An emerg-
ing research trend in the speech enhancement community is 

to use DNNs (e.g., deep LSTM–RNNs) to 
map noisy speech into its clean counterpart 
or ratio mask on a frame-by-frame basis. 
Preliminary results have proved that this 
method is quite effective, particularly for 
alleviating nonstationary noise [115]. For 
more details of speech denoising technolo-
gies, see [125].

Apart from speech denoising, a more 
general TL method to reduce the database 
bias was proposed in [116] and is based on 
an SAE—an autoencoder with sparsity 

enforced in the hidden layer (see the “Unsupervised Represen-
tation Learning” section). This method is a fully supervised 
approach. First, using the target data, class-specific SAEs are 
trained, and then treated as the transforming models ( (·)U ). 
The source data are then fed into SAEs corresponding to its 
class, and thus a new source representation is constructed. In 
doing this, the distribution of the new source feature space 
is expected to be inclined to the target one. Finally, the new 
source data are used to train a standard classifier.

As for the symmetric strategy, early studies were mainly 
conducted using principal component analysis (PCA), linear 
discriminant analysis (LDA), and sparse coding. The goal of 
these approaches is to learn a low-dimensional latent feature 
space or a shared space. The resulting feature space can serve 
as a bridge for transferring meaningful knowledge from the 
source domain to the target domain [20]. PCA is typically 
used to project the data along the direction of maximal vari-
ance in an unsupervised way. LDA, or Fisher’s LDA (FDA), on 
the other hand, is used to project the data onto a line that can 
maximize the distance between the means of the two classes 
(in a binary classification case) while minimizing the variance 
within each class.

Both PCA and LDA are linear transformations that 
limit their applicability to most real-world data. In this 
regard, kernel functions (e.g., Gaussian, Cauchy, and poly-
nomial kernels) can be used in conjunction with PCA and 
FDA, resulting in kernal PCA (KPCA) and kernel FDA 
(KFDA) paradigms that transform data in a nonlinear 
manner. Owing to their simplicity and effectiveness, KPCA 
and KFDA have been widely used in the speech process-
ing community [117]. Similarly, kernel canonical corre-
lation analysis has been applied to cross lingual emotion 
recognition [126].

A prominent binary 
reweighting approach 
is based on using 
submodular functions 
to simulate the acoustic 
similarity between 
the target and source 
domain data.
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Sparse coding, also termed dictionary learning, attempts to 
find succinct representations (i.e., atoms or elements of the dic-
tionary) of the input data such that the input data can be repre-
sented as a linear combination of these sparse representations 
[127]. Compared to the aforementioned feature transforma-
tion methods, sparse coding has been demonstrated to be able 
to produce a more robust signal representation in speech recon-
struction and denoising tasks [118].

Conventional feature transformation ap   proaches are typi-
cally executed at a shallow level. Recently, deep-learning 
approaches for feature-based TL have begun 
to attract a lot of of research attention. 
Deep learning is regarded as a natural TL 
paradigm; it provides a powerful capability 
of learning high-level abstracts or repre-
sentations that are more robust against the 
variation of conventional speech features 
(i.e., log Mel-filter banks and MFCCs) over 
different domains [50] (see the “Unsuper-
vised Representation Learning” section). These represen-
tative features can then be used as normal features to train 
conventional discriminative or generative models, such as 
NNs, HMMs, and SVMs. Thanks to the invariant property 
of these representations, they can potentially deliver remark-
able performance improvements for almost all ASA tasks [7], 
[50], [51], [58].

In addition to the basic representation learning approaches 
mentioned previously, more advanced topologies have begun 
to emerge, which explicitly involve several related tasks in a 
multitask learning paradigm. Multitask learning is the process 
of learning multiple tasks at the same time to learn a shared 
representation among different tasks. Mathematically, when 
training the model with multiple tasks, we aim to minimize 
the objective function as follows:

,( ) ( , ; )L y
2

xJ ki ki k
ik

K

0
1

0
2i i

m
i= +

=

//  (16)

where K is the number of tasks, (·)L  denotes the loss func-
tion, and 0i  stands for the general model parameters.

When performing deep multitask learning for multilin-
gual or cross lingual speech recognition, it is typical to share 
the hidden layers across all languages [119], [120]. If learned 
appropriately, the hidden layers serve as increasingly com-
plex feature transformations, sharing common hidden fac-
tors across the acoustic data from different languages. The 
final softmax layers, however, are not shared. Instead, each 
language has its own softmax layer to estimate the poste-
rior probabilities specific to that language, using the most 
abstract representation from the topmost hidden layer. The 
strong result gained using this topology [119], [120] indicates 
its potential; it opens up the possibility for quickly building 
a high-performance recognition system for a new language 
using an existing multilingual DNN.

Many other deep multitask learning derivatives have been 
investigated to overcome the feature variation problems caused 

by factors such as different speaker characteristics, noisy envi-
ronments, and poor recording channels. For example, Deng et 
al. [122] treated different corpora as different tasks for emo-
tion recognition; Giris et al. [123] regarded noise type as an 
auxiliary task for speech recognition; and Seltzer and Droppo 
[128] treated phone label, phone text, and state context as dif-
ferent tasks when performing phoneme recognition. Recently, 
a universum autoencoder was proposed [129]. This technique 
uses a small amount of labeled data from the target domain and 
unlabeled data from a source domain to jointly minimize the 

reconstruction error and the universum lean-
ing loss. Motivated by these achievements 
of learning representations among multiple 
related tasks, researchers have started to 
investigate the learning of robust represen-
tations over multiple modalities (e.g., audio 
and video) [130]. This topic, however, is 
beyond the scope of this overview.

Model-based transfer learning
Model-based TL, also known as parameter-based TL, aims to 
learn a new model from an existing model that has been well 
trained on rich source data. Unlike feature-based TL 
approaches, which usually transform the feature spaces, 
model-based TL approaches modify the pretrained model 
parameters ( )i  to account for the differences that may exist 
between the domains. This can be formulated as

( , ; ) ( , ; )P X Y P X YS S T T TS "i i  (17)

for a generative model or

; ;P Y X P Y XS S T T TS "i i^ ^h h (18)

for a discriminative model.
Early-stage model-based TL approaches in the speech com-

munity included maximum a posteriori (MAP) estimation and 
maximum likelihood linear regression (MLLR), which are 
designed for generative models (e.g., GMM–HMM). These 
techniques have been applied successively to speaker adap-
tation [131], where the speech from each specific speaker is 
supposed to be in a different domain with the initial training 
data. They have also been shown to be useful in computational 
paralinguistics tasks, such as depression detection [132].

Specifically, MAP uses the speaker-independent models 
(i.e., universal background models) as a prior probability 
distribution over the model parameters, and then performs 
maximum likelihood estimates by considering the model 
parameters obtained on the speaker-dependent data. Alter-
natively, MLLR calculates a set of linear regression trans-
formations to shift both the means and the covariances in 
an initial Gaussian mixture HMM system so that each state 
in the system is more likely to have generated the speaker 
data the model is being adapted to [131]. Compared with 
MAP, MLLR requires fewer adaptive data. Aside from 
speaker adaptation, these methods have been applied to 

Researchers have started 
to investigate the learning 
of robust representations 
over multiple modalities 
(e.g., audio and video).
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other acoustic variation adoption scenarios, such as noise 
adaptation [125].

Due largely to the recent advancements in deep learning, 
discriminative model-based TL has recent-
ly become an active research topic. In deep 
learning, the simplest way to adjust the pre-
trained model parameters when adapting to 
a specific task is through fine-tuning. As 
discussed in the “Unsupervised Represen-
tation Learning” section, pretraining is a 
down–up unsupervised algorithm, which 
can be considered as a model initialization 
process that attempts to produce a model 
that has a global optimization attribute. By contrast, fine-
tuning is an up–down supervised algorithm to optimize all of 
the NN weights jointly with the labeled target data. This pro-
cedure is usually  performed using backpropagation of error 
derivatives [63].

Another paradigm to adapt the model to the target data, the 
adaptive denoising autoencoder, is highly related to multitask 
learning [112], [133]. This paradigm is usually undertaken in 
two steps. In the first step, a source model is trained on the 
source data. In the second step, the trained model parameters 
are used as prior information to regularize the adaptation pro-
cess of the model on the target data, so as to minimize the 
objective function as follows:

n

,( ) ( , ; )L y
2

xJ
i

i i
1

2
T T T Si i

m
i bi= + -

=

T

/ (19)

where nT  is the number of labeled target data, (·)L  denotes 
the loss function on the target data, Si  represents the well-
trained model on the source data (source model), Ti  denotes 
the expected new model on the target data (target model), and 
b  is the adaptation coefficient. Since the discrepancy between 
the source and target models is explicitly considered as a penal-
ty term in the objective function, this approach is also known as 
regularized adaptation [133]. In emotion recognition applica-
tions, this approach has started to show promising results [112]. 
Note that such model-based multitask learning paradigms dif-
fer from the feature-based approaches covered in the “Learning 
from Unmatched Resources” section, where the model is 
trained in only one step by calculating the joint loss of all of the 
tasks in the objective function [see (16)].

Data agglomeration
In contrast to the more sophisticated TL approaches discussed, 
a simpler solution to utilize multiple sources of data is data 
agglomeration [134]. In this approach, one or more source 
databases are directly concatenated with the target database to 
form a large-size data pool .P L L LS ST k1, , ,f=  This 
approach is suitable only when the various data sources are for 
similar tasks and share a common feature set.

To help ease any potential database biases, it is desirable 
to apply 1) normalization techniques such that the scattered 
feature spaces can be unified into a shared one and 2) task 
mapping to retain label consistency. The three normalization 

methods frequently applied in the literature are centering, min–
max normalization, and standardization. Applied not only to 
each corpus separately (i.e., before data agglomeration), these 

methods can be also used after building a 
joint training set from multiple databases. 
Thanks to these normalization approaches, 
data agglomeration has been frequently 
applied to, e.g., emotion recognition [134]. 
As for task mapping, it is necessary to find 
the relationship between different tasks. For 
example, in emotion recognition, the pro-
totypical emotions (e.g., anger, contempt, 
disgust, fear, interest, joy, sadness, and sur-

prise) can be mapped onto the emotional dimensions of arousal 
and valence [134].

Conclusions and challenges for future work
To continue building on the success of machine-learning 
methods for ASA, there is a need for large amounts of labeled 
data. However, the work of collecting such data is costly and 
time consuming. Clever engineering can go a long way toward 
solving this problem by helping to leverage unlabeled, unreli-
able, or unmatched data. Motivated by this, we systematically 
presented an overview of the very recent and prominent tech-
niques that intend to semiautonomously enrich the data quan-
tity and enhance the data quality.

Crowdsourcing was discussed as an efficient data annota-
tion approach, with the caveat that it requires quality control 
management. The integration of crowdsourcing with AL or CL 
strategies to intelligently and dynamically select data for label-
ing has the potential to further reduce the annotation workload 
and improve overall data quality.

Spoken-term detection and discovery and related means 
of retrieval of speech-related phenomena were discussed in 
relation to addressing the sparse data challenge. While these 
techniques can automatically find patterns in speech utter-
ances without any labeled resource, the associated computa-
tional complexity limits their application to smaller databases. 
Reducing the computing complexity of these techniques is an 
essential direction of future research. Other techniques dis-
cussed on the sparse data challenge were data augmentation 
and speech synthesis. These techniques can artificially gener-
ate labeled speech data in a limited-labeled-resource setting. 
A key concern about their ongoing use is how to guarantee 
that the speech samples generated have a positive effect on 
the analysis being performed. Research into identifying task-
invariant features has been identified as one potential solution 
in this regard.

With its capability to leverage information from large-scale 
unlabeled data, deep URL has delivered breakthrough results 
in a variety of ASA tasks. Future research efforts, particularly 
those focused on network construction strategies, are expected 
to increase the generalizability of the extracted features and 
thus improve on the already impressive capabilities of this par-
adigm. AL, SSL, and CL are other efficient techniques to take 
advantage of unlabeled data. In this regard, we identified the 

In contrast to the 
more sophisticated TL 
approaches discussed, a 
simpler solution to utilize 
multiple sources of data 
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integration of SSL and deep learning as a particularly promis-
ing future research direction.

To handle the unreliable-data challenge, data selection 
and data-balancing techniques were also reviewed. Despite 
the conventionality of the reviewed algorithms, dynamically 
selecting and balancing data is of great importance to the 
machine-learning process. The role and importance of these 
well-practiced techniques in relation to deep learning are still 
being established.

To deal with the unmatched data challenge, TL strategies 
and data agglomeration were discussed. TL in particular, owing 
to its effectiveness, has attracted increasing amounts of research 
attention. However, when improperly used, these techniques 
substantially degraded overall system performance. There-
fore, how to achieve positive transfer while preventing negative 
transfer between appropriately related tasks is an important and 
open research issue.

Although great opportunities are offered by the techniques 
reviewed, many additional risks may be brought to light 
through their practical application. For example, with the 
growing popularity of the use of microphones, the Internet, 
crowdsourcing, and cloud computing, personal speech signals 
easily run the risk of being disclosed to the public domain. 
Furthermore, from such data it is largely possible to extract 
confidential speaker information, such as a speaker’s age, 
gender, or identity. Therefore, how to best protect the security 
and privacy of users has become a major area of concern in 
this field [135].

A potential solution in this regard is a distributed recognition 
system, such as the one proposed for computational paralin-
guistics in [136]. In this system, functionals are applied over the 
LLDs to extract features. These statistical features, rather than 
the LLDs or the raw signals, are transmitted from the client side 
to the server side. The procedure of generating these feature 
vectors is irreversible. Therefore, as the LLDs cannot be recon-
structed, the contents of the original speech signals are pro-
tected. Recently, a decentralized SSL paradigm was proposed 
in [137], in which privacy-preserving matrix completion algo-
rithms are used, so that only learned knowledge is transferred 
between different clients, while the raw data are incommutable. 
However, as these approaches cannot fully guarantee client 
security and privacy or maintain the original performance, con-
tinued research addressing privacy concerns is required.

The techniques discussed in this article are mainly applied 
in an offline manner. However, the realistic application of a 
specific task offers the opportunity to collect truly massive 
amounts of real-world data in an online fashion. For example, 
Google reported that 55% of teenagers and 41% of adults in 
the United States [138] used their voice search more than once 
a day in 2014. Hence, research is needed into techniques to 
dynamically make use of future data to enhance the adaptive-
ness of preexisting models to various speakers, environments, 
and tasks. Such techniques are commonly referred to as online 
and incremental learning [139], [140].

Finally, the recent developments in dialog management 
systems, the computerized spoken language understand-

ing and generation of natural and meaningful responses during 
speech-based human–computer interactions, means it is now 
more feasible than ever to explore cues extracted from an entire 
conversation process to aid ASA systems. Such cues could 
indicate the correctness of previously performed analyses and 
as such would be considered a form of reward or punishment 
information. This information could be sequentially exploited 
using reinforcement learning strategies to dynamically update 
the decision mechanism of the predictive model. Deep rein-
forcement learning, in particular, has become an active and 
growing research topic in machine learning [141]. But despite 
being widely applied in related fields, such as dialog manage-
ment, research into reinforcement learning for ASA is currently 
in its infancy. We firmly believe that research into deep rein-
forcement learning has the potential to move ASA technologies 
out of controlled laboratory settings and into diverse, practical 
everyday environments leading to more intelligent (even emo-
tionally and socially intelligent) and adaptive ASA systems.

Despite these risks and challenges, the techniques reviewed 
in this article will play a key role in opening up new research 
opportunities to explore the value of big unlabeled, unreliable, 
and unmatched speech data. It is our strong belief that the 
continued growth in the research and applications discussed 
will facilitate the emergence of novel techniques to fill the gap 
between no-labeled-resource and reliable big data and usher in 
the next generation of ASA technologies.
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