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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental dis-
order usually diagnosed in or beyond toddlerhood. ASD is de-
fined by repetitive and restricted behaviours, and deficits in so-
cial communication. The early speech-language development
of individuals with ASD has been characterised as delayed.
However, little is known about ASD-related characteristics of
pre-linguistic vocalisations at the feature level. In this study, we
examined pre-linguistic vocalisations of 10-month-old individ-
uals later diagnosed with ASD and a matched control group of
typically developing individuals (N = 20). We segmented 684
vocalisations from parent-child interaction recordings. All vo-
calisations were annotated and signal-analytically decomposed.
We analysed ASD-related vocalisation specificities on the ba-
sis of a standardised set (eGeMAPS) of 88 acoustic features
selected for clinical speech analysis applications. 54 features
showed evidence for a differentiation between vocalisations of
individuals later diagnosed with ASD and controls. In addition,
we evaluated the feasibility of automated, vocalisation-based
identification of individuals later diagnosed with ASD. We com-
pared linear kernel support vector machines and a 1-layer bidi-
rectional long short-term memory neural network. Both classifi-
cation approaches achieved an accuracy of 75% for subject-wise
identification in a subject-independent 3-fold cross-validation
scheme. Our promising results may be an important contribu-
tion en-route to facilitate earlier identification of ASD.
Index Terms: autism spectrum disorder, early identification,
infant vocalisation analysis, speech-language pathology

1. Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental dis-
order defined by patterns of repetitive and restricted behaviours,
and persistent deficits in the socio-communicative domain [1,
2]. According to recent estimates from the Autism and De-

velopmental Disabilities Monitoring (ADDM) Network of the
Centers for Disease Control and Prevention (CDC), ASD has a
prevalence of about 1 in 68 children and occurs about 4.5 times
more common in males than in females [3]. There is an in-
creased recurrence risk of up to 18% for children with older sib-
lings diagnosed with ASD [4, 5]. ASD is not curable, but there
is increased evidence of early intervention being beneficial for
affected individuals [6]. Early intervention requires early detec-
tion, and even though progress has been made in ASD screen-
ing, ASD is usually not diagnosed before toddlerhood [3].

Early speech-language development of children with ASD
has repeatedly been characterised as delayed and deviant: Late
onset canonical babbling, reduced volubility, and/or monotony
in intonation are among the reported signs (e. g., [7, 8, 9, 10]).
Only a few studies focussed on early ASD-related vocalisation
specificities at the feature level (e. g., [11]). However, most of
these studies assessed crying vocalisations by extracting single
acoustic features, such as fundamental frequency or (cry) dura-
tion (e. g., [12, 13, 14]).

This study builds on our experience in depicting
early speech-language phenomena in individuals with
(neuro)developmental disorders, such as fragile X syndrome
or Rett syndrome (e. g., [15, 16, 17]). In the present study,
we aimed to gain better understanding of ASD-related char-
acteristics of pre-linguistic vocalisations in order to identify
potential early acoustic markers. Encouraged by our promising
results for vocalisation-based early identification of infants
with Rett syndrome [18], we aimed to evaluate the feasibility
of automatic identification of infants later diagnosed with ASD.

To the best of our knowledge, this is one of the first at-
tempts to explore ASD-related specificities in pre-linguistic vo-
calisations based on a wide range of acoustic parameters. Our
ultimate goal is to initiate further research on signal-analytic ap-
proaches that might – one day – lead to an earlier identification
of ASD, and thus, to an earlier entry into intervention.
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2. Methods
In this study, we retrospectively analysed data collected in
the framework of the project EASE1 (Early Autism Sweden).
EASE is a longitudinal study following infants at increased risk
for ASD, i. e., younger siblings of children with an ASD diag-
nosis.

2.1. Material

We reviewed audio-video recordings of 20 infants (10 males) in
parent-child interaction settings2. Each recording had a length
of 12 minutes resulting in a total audio-video length of 240 min-
utes. The parent-child interaction settings were recorded in a
closed room. Parents were instructed to play with their chil-
dren on a mat with toys as they would do at home. The study
personnel left the room for the recordings. Apart from parental
voice and sounds caused by playful manipulation of toys, no
background noises were present. For audio-video recording,
Panasonic HC-V700 cameras were mounted at the ceiling in
the corners of the room in order to guarantee that a multitude
of infant behaviours can be continuously assessed irrespective
of the infant’s orientation in the room. Audio information was
extracted from one of the cameras and converted to single-
channel 44.1 kHz AAC format for further analyses. At the time
of recording, all infants included in this study were 10 months
old. Ten infants (five males) stem from a Swedish population at
heightened risk for ASD (younger siblings of children already
diagnosed with ASD) and were diagnosed with ASD at 3 years
of age using DSM-5 criteria [1]. Henceforth, we refer to this
group of infants as “ASD group”. The remaining ten infants
(five males) stem from a Swedish low risk population with a
normal outcome at 3 years of age. Henceforth, this group of
typically developing (TD) infants is referred to as “TD group”.
Side note: One female subject from the ASD group and two
male subjects from the TD group (temporarily) had pacifiers in
their mouths during the recordings.

2.2. Segmentation

All 20 audio-video recordings were manually segmented for in-
fant vocalisations using the video coding tool Noldus Observer
XT3. Vocalisation boundaries were set on the basis of distinct
vocal breathing groups [19]. Vegetative sounds, such as smack-
ing sounds, breathing sounds, or hiccups, were excluded. We
identified and segmented a total of 684 pre-linguistic vocalisa-
tions (Table 1) with a mean vocalisation length of 2.01s (median
= 1.39s). A proportion of 37.9% (259) of the vocalisations were
segmented from the material of the ASD group and a proportion
of 62.1% (425) from the material of the TD group.

In order to estimate each subject’s level in speech-language
development, we annotated all types of vocalisations that were
more complex than single canonical syllables (e. g., canonical
babbling) usually well in place in TD infants at 10 months of
age. Annotation was based on the Stark Assessment of Early
Vocal Development-Revised (SAEVD-R) [20]. In Table 1 the
occurrence of an annotated vocalisation type is specified per
subject.

Segmentation and annotation was done by the first author,
who was not informed about each subject’s group membership
(ASD group or TD group) during the segmentation and annota-
tion process.

1http://www.earlyautism.se
2The ethical review boards of the various centres approved the study.
3http://www.noldus.com

Table 1: Specification of gender, number of segmented vocal-
isations (#voc), vocalisation rate in vocalisations per minute
(#voc/min), and assignment to partition in the 3-fold cross-
validation scheme for ten ASD subjects and ten TD subjects.
The vocalisation rate is rounded to two decimal points. (‘*’ in-
dicates that at least one of the produced vocalisations was more
complex than a single canonical syllable.)

Subject Gender #voc #voc/min Partition
ASD01 f 10 0.83 3
ASD02 m *38 3.17 1
ASD03 f *42 3.50 2
ASD04 f *26 2.17 1
ASD05 m 19 1.58 3
ASD06 f *31 2.58 1
ASD07 m 28 2.33 2
ASD08 m 9 0.75 2
ASD09 m 17 1.42 3
ASD10 f 39 3.25 3

Σ 259
TD01 m 18 1.50 3
TD02 m 45 3.75 3
TD03 m 35 2.92 2
TD04 f 15 1.25 1
TD05 f *98 8.17 2
TD06 f *29 2.42 3
TD07 m *59 4.92 1
TD08 f 52 4.33 1
TD09 m *37 3.08 2
TD10 f 37 3.08 3

Σ 425

2.3. Analysis

2.3.1. Volubility

We calculated each subject’s vocalisation rate in vocalisations
per minute (see Table 1) and applied the Mann-Whitney U-test
(group-specific data were not normally distributed; α = 0.05)
to analyse the difference in volubility between the ASD group
and the TD group.

2.3.2. Feature extraction

To build the basis for acoustic vocalisation analysis and classifi-
cation experiments, we extracted acoustic features from the vo-
calisations using the open-source tool kit openSMILE4 [21, 22].
We used the recently defined extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [23] representing a ba-
sic standard feature set of 88 acoustic parameters selected for
a wide range of automatic voice analysis applications, includ-
ing applications of clinical speech analysis. The set comprises
statistical functionals calculated for a compact composition of
25 frequency-related, energy-related, and spectral low-level de-
scriptors that are extracted on a short-term basis and smoothed
over time [23].

2.3.3. Feature analysis

Using the Mann-Whitney U-test (group-specific feature values
were not normally distributed; α = 0.05), for each feature we
tested the null hypothesis that feature values extracted from vo-

4http://www.audeering.com
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calisations of the ASD group and feature values extracted from
vocalisations of the TD group were samples of continuous dis-
tributions with equal medians. The effect size r (z-value divided
by the square root of the number of samples) was calculated for
each significant group difference.

2.3.4. Classification

The binary classification paradigm ASD versus TD was tested
on the basis of a subject-independent 3-fold cross-validation
scheme. Therefore, we split our dataset into three partitions of
subjects matched for gender and diagnosis, and containing an
approximately equal number of vocalisations. We further tried
to obtain a constant balance between the number of vocalisa-
tions of the ASD group and the TD group in each partition. As
indicated in Table 1, we created two partitions (partitions 1 and
2) of six subjects each (three ASD and three TD) and one par-
tition (partition 3) of eight subjects (four ASD and four TD).
Partition 1 contained 221 vocalisations (95 ASD and 126 TD),
partition 2 contained 249 vocalisations (79 ASD and 170 TD),
and partition 3 contained 214 vocalisations (85 ASD and 129
TD).

For each of the three validation runs, we used one partition
as training set, another as development set, and the remaining
partition as test set. Throughout the 3-fold cross-validation pro-
cedure, each partition was used as training, development, and
test partition exactly one time.

To evaluate the feasibility of vocalisation-based identifi-
cation of class ASD versus class TD, we chose linear kernel
support vector machines (SVMs) as baseline classification ap-
proach. SVMs are known to be robust, not sensitive to feature
overfitting, and achieved good recognition performances in sim-
ilar classification tasks (e. g., [18]). For SVM training, we ap-
plied the sequential minimal optimisation algorithm using the
widely spread data mining tool kit Weka5 [24]. For each of the
three validation runs, SVMs were trained on the basis of vocali-
sations in the training partition. Next, the complexity parameter
C ∈ {1, 10-1, 10-2, 10-3, 10-4, 10-5} was determined to achieve
the best unweighted average recall (UAR) on vocalisations in
the development set. Finally, the training and development par-
titions were merged to an ultimate training partition and valida-
tion was done on the basis of vocalisations in the test partition.

As a topical alternative to the baseline classification ap-
proach, we employed recurrent, bi-directional long short-term
memory neural networks (BLSTM NNs). BLSTM NNs have
been proven to be powerful models in many speech-related ar-
eas (e. g., [25, 26, 27]) and the incurred delay is of no con-
cern in the task considered in this study. We used the vanilla
BLSTM implementation described in [28] and trained our mod-
els with TensorFlow6 [29] on 10 ms time steps utilising the first-
order gradient-based Adam optimisation algorithm [30]. Inter-
estingly, we found that cross-entropy loss worked best when
averaging the posterior probabilities across the full utterance.
Since Adam is an adaptive-learning rate algorithm, we followed
a patience-based approach, where we stopped training, if there
was no improvement of the UAR on the development set for
more than five epochs and chose the best model. Finally, we did
a grid search to determine the optimum number of cells and lay-
ers and found that, a single-layer BLSTM NN with eight cells
performed best.

Building on vocalisation-wise classification decisions, we
additionally generated subject-wise judgements. An ASD ratio

5http://www.cs.waikato.ac.nz
6https://www.tensorflow.org
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Figure 1: Comparison between ASD group (grey) and TD group
(black) by means of probability density estimates of feature
values extracted from either group’s vocalisations. (amean =
arithmetic mean; UV = for unvoiced segments)

was computed for each subject by counting all vocalisations of
this subject classified as class ASD, divided by the total number
of vocalisations of this subject. In case this ASD ratio exceeded
a specific threshold, the subject was judged to be an infant from
the ASD group. In a first approach, the threshold was set to
0.5 (majority voting). In a second approach, the threshold was
optimised in the 3-fold cross-validation procedure on the basis
of the respective merged training and development partitions of
each validation run. As optimisation criterion for the threshold
we defined a maximum distance between the mean ASD ratio
for subjects from the ASD group versus the mean ASD ratio for
subjects from the TD group.

3. Results
Eight subjects (four ASD and four TD) produced vocalisation
types more complex than single canonical syllables. Moreover,
there was no significant difference in volubility between the
ASD group and the TD group (p = 0.104).

For 54 of 88 analysed features, significant differences be-
tween the feature value distributions related to vocalisations
from the ASD group versus vocalisations from the TD group
could be found. Table 2 lists the top ten features according to
the effect size r. For five features, moderate effects (|r| > 0.3)
were identified. For both the ASD group and the TD group,
value distributions of the feature with the highest differentiation
effect are shown in Figure 1.

For vocalisation-wise classification, the SVM approach and
the BLSTM NN approach showed similar performances. Using
SVMs, we achieved the highest UAR of 64.5%±3.3% over the
three validation runs. Detailed results including confusion ma-
trices for both the SVM approach and the BLSTM NN approach
are given in Table 3.

In our subject-wise judgement scenario, both the SVM ap-
proach and the BLSTM NN approach achieved an accuracy of
75% when using optimised decision thresholds. Eight of ten in-
fants later diagnosed with ASD could be correctly assigned to
the ASD group. Seven of ten TD infants could be correctly as-
signed to the TD group. A detailed overview of the subject-wise
decisions is given in Table 4. Side note: One of the incorrectly
assigned TD subjects was using a pacifier during the recording.
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Table 2: Top ten acoustic features for differentiation between
the ASD group and the TD group according to the (magnitude
of the) effect size r. r is rounded to four decimal places. (amean
= arithmetic mean; f0 = fundamental frequency; MFCC =
Mel-frequency cepstral coefficient; pctlR = percentile range;
stddNorm = normalised standard deviation, UV = for unvoiced
segments)

Feature r
amean(spectral slope 0− 500 Hz UV ) 0.3966
stddNorm(MFCC 4) 0.3402
mean unvoiced segment length −0.3371
amean(Hammarberg index UV ) 0.3369
amean(spectral slope 500− 1500 Hz UV ) −0.3355
amean(f0 semitone from 27.5 Hz) 0.2932
amean(alpha ratio UV ) −0.2911
voiced segments per second 0.2551
pctlR20− 80(f0 semitone from 27.5 Hz) 0.2540
stddNorm(MFCC 1) −0.2502

Table 3: Classification results of subject-independent 3-fold
cross-validation in form of class-specific numbers of test vocal-
isations (in-)correctly classified as class ASD or TD (confusion
matrix), and mean and standard deviation (SD) of weighted and
unweighted average recall (WAR and UAR) for SVMs and the
BLSTM NN. WAR and UAR are given in [%] and rounded to
one decimal place.

SVM BLSTM NN
classified as→ ASD TD ASD TD

ASD 131 128 155 104
TD 83 342 141 284

WAR UAR WAR UAR
mean 69.0 64.5 70.7 62.9
SD 2.6 3.3 2.6 2.0

4. Discussion
In this study, we could not confirm a deviant volubility in 10-
month old individuals later diagnosed with ASD. Nonetheless,
we were able to provide evidence of acoustic parameters in pre-
linguistic vocalisations as potential early markers for ASD and
ASD-related neural mechanisms on the basis of our dataset. Our
classification experiments could demonstrate basic feasibility of
automated vocalisation-based identification of ASD. However,
the impact of our results is limited due to the small number
of subjects included in this first feasibility study. A significant
performance difference between an SVM approach and a deep
learning approach might only become evident on a dataset with
a considerably higher number of vocalisations.

The number of incorrectly classified vocalisations of sub-
jects from the ASD group indicates that, a certain proportion of
vocalisations of an individual later diagnosed with ASD does
not bear atypicalities in the acoustic signal domain. There-
fore, compared to a vocalisation-wise classification approach,
subject-wise judgements based on evaluating a set of vocalisa-
tions might be a more realistic scenario for practical applica-
tions. Imagine for example, a scenario in which early preven-
tative judgements could be made on individuals on the basis of
vocalisations produced during standard paediatric examinations
in the first year of life.

Table 4: Subject-wise judgements based on vocalisation-wise
classification decisions of SVMs and the BLSTM NN by check-
ing ASD ratios (RASD) against a 50% threshold (Th0.5) com-
pared to an optimised threshold (Thopt). ASD ratios are
rounded to two decimal places. (‘3’ indicates that the subject
was assigned to correct group. ‘7’ indicates that the subject
was assigned to incorrect group. Thopt for SVMs: 0.33 for par-
tition 1; 0.42 for partition 2; 0.31 for partition 3. Thopt for the
BLSTM NN: 0.46 for partition 1; 0.44 for partition 2; 0.39 for
partition 3.)

SVM BLSTM NN
Subject RASD Th0.5 Thopt RASD Th0.5 Thopt

ASD01 0.40 7 3 0.60 3 3
ASD02 0.68 3 3 0.71 3 3
ASD03 0.52 3 3 0.67 3 3
ASD04 0.77 3 3 0.81 3 3
ASD05 0.53 3 3 0.63 3 3
ASD06 0.45 7 3 0.45 7 7
ASD07 0.00 7 7 0.29 7 7
ASD08 0.33 7 7 0.78 3 3
ASD09 0.59 3 3 0.41 7 3
ASD10 0.56 3 3 0.64 3 3

TD01 0.83 7 7 0.72 7 7
TD02 0.04 3 3 0.31 3 3
TD03 0.06 3 3 0.23 3 3
TD04 0.00 3 3 0.00 3 3
TD05 0.06 3 3 0.17 3 3
TD06 0.38 3 7 0.52 7 7
TD07 0.54 7 7 0.54 7 7
TD08 0.06 3 3 0.25 3 3
TD09 0.22 3 3 0.35 3 3
TD10 0.11 3 3 0.16 3 3

Accuracy 70% 75% 70% 75%

5. Conclusions and outlook
In this study, we elaborated on the potential of an automated
pre-linguistic vocalisation-based analysis approach for an early
acoustic identification of individuals with ASD. Our exami-
nations were based on a small but well gender- and family-
language-balanced sample of subjects later diagnosed with
ASD and TD controls recorded in semi-standardised parent-
child interaction settings.

En-route to – potentially – enabling a reliable earlier identi-
fication of individuals with ASD, a number of more fine-grained
studies on larger datasets are warranted. From a technological
point of view, the capabilities of various acoustic feature sets,
feature pre-processing strategies (e. g., bag-of-words process-
ing [31]), and different classification approaches (e. g., different
deep learning architectures) should be evaluated in detail.
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