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Abstract—As a highly active topic in computational paralinguis-
tics, speech emotion recognition (SER) aims to explore ideal repre-
sentations for emotional factors in speech. In order to improve the
performance of SER, multiple kernel learning (MKL) dimension-
ality reduction has been utilized to obtain effective information for
recognizing emotions. However, the solution of MKL usually pro-
vides only one nonnegative mapping direction for multiple kernels;
this may lead to loss of valuable information. To address this issue,
we propose a two-dimensional framework for multiple kernel sub-
space learning. This framework provides more linear combinations
on the basis of MKL without nonnegative constraints, which pre-
serves more information in the learning procedures. It also lever-
ages both of MKL and two-dimensional subspace learning, combin-
ing them into a unified structure. To apply the framework to SER,
we also propose an algorithm, namely generalised multiple ker-
nel discriminant analysis (GMKDA), by employing discriminant
embedding graphs in this framework. GMKDA takes advantage
of the additional mapping directions for multiple kernels in the
proposed framework. In order to evaluate the performance of the
proposed algorithm a wide range of experiments is carried out on
several key emotional corpora. These experimental results demon-
strate that the proposed methods can achieve better performance
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compared with some conventional and subspace learning methods
in dealing with SER.

Index Terms—Dimensionality reduction, discriminant analy-
sis, multiple kernel learning (MKL), speech emotion recognition
(SER), two-dimensional framework.

I. INTRODUCTION

S PEECH Emotion Recognition (SER), a core area of re-
search within computational paralinguitics [1], focuses on

exploiting abstract representations of speech for the classfica-
tion or prediction of a range of human affect behaviours [2]–[8].
Emotion recognition from speech has been applied in various
real-world cases [9]–[11], including: Human-Computer Inter-
action (HCI) [12], [13], diagnosis and treatment of autism for
children [14], [15], and the detection of negative emotions in
extreme conditions [6].

The use of functionals, to generate a single high dimensional
representation of an utterance from a set of underlying low-
level acoustic descriptors, is generally regarded as the default
method for capturing paralinguistic information in speech [1].
Previous investigations consistently demonstrate the usefulness
of this technique when applied to a range of different SER prob-
lems [14], [16], [17]. Popularity notwithstanding, a major draw-
back of using this feature representation is its non-specificity
to the task at hand. Intuitively, an utterance level feature vec-
tor should be representative of all categories of information,
both linguistic and paralinguistic, present within the particular
utterance being modelled.

Therefore for specific applications, such as SER, there is a
need to consider the techniques which help minimise the con-
founding effects of unwanted acoustic information present in
the speech signal whilst retaining as much effective information
as possible for the task at hand. Subspace learning is considered
one such technique to help improve the performance of SER
systems [6], [18]. Other such techniques could include segmen-
tation and multi-task learning. However, when compared to sub-
space learning for SER, segmentation [19] only focuses on the
stage prior to feature extraction, whilst multi-task learning [20]
requires substantially more (manually annotated) information
to successfully recognise the multiple tasks.

Conventional subspace learning algorithms can be employed
to carry out dimensionality reduction. Popular examples for
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SER tasks include: Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA) / Fisher Discriminant
Analysis (FDA), Linear Discriminant Projections (LDP) [21],
Locally Linear Embedding (LLE) [22], Isomap [23], Local-
ity Preserving Projections (LPP) [24], Locally Discriminant
Embedding (LDE) [25] and Graph-based Fisher Analysis
(GbFA) [26]. Following up on the benefits these, and other such
techniques offered to SER, various frameworks have been pro-
posed to combine subspace learning, manifold learning, compo-
nent analysis, and dimensionality reduction together [27]–[30].

Recent advances in multiple kernel subspace learning tech-
niques indicate the advantages this paradigm brings to dimen-
sionality reduction. Approaches such as the Multiple Kernel
Learning Dimensionality Reduction (MKL-DR) proposed in
[31] learn a unified, low-dimensional, subspace to exploit the
information of high-dimensional data representations gained
through the use of Multiple Kernel Learning (MKL). However,
this optimisation combines the multiple kernels by employing
only one nonnegative linear mapping direction. Compared with
using multiple mapping directions, MKL implicitly uses only
one feature when representing a combination of multiple ker-
nels. Since more optimised features often means a more ef-
fective information representation for certain tasks, MKL may
potentially result in loss of valuable information in MKL-DR,
as it does not take other potential mapping directions into
consideration.

Fortunately, two-dimensional subspace learning [25], [32]–
[36] makes it possible to obtain more mapping directions with-
out nonnegative constraints. The two-dimensional trick, as a case
of tensorisation, has been employed to solve subspace learning
directly for grey-scale image data with two-dimensional fea-
tures (i. e., matrix). Reconstructing the original feature space
opens possibilities to accomplish other learning tasks. Along
with improving the learning performance, this trick has also
been proven to be efficient in preserving the original structure
of data and in processing large-size features [25], [34], [36].

It has been shown that, the performance of SER systems
benefits from utilising multiscale kernels to describe paralin-
guistic features [6]. This makes the features represented by two-
dimensional forms. In addition, multiple kernels can bring mul-
tiple views to reconstruct the original feature space. Potentially,
these views provide more possibilities on fitting training models.

However, most of the paralinguistic feature sets are originally
represented as one-dimensional form (i. e., vector) in the appli-
cation of SER. Therefore, applying current two-dimensional
subspace learning methods to a SER task is not straightforward.
Nevertheless, MKL dimensionality reduction has provided a
possibility to solve this problem on the basis of Graph Embed-
ding (GE) frameworks [27], by optimising nonnegative linear
combinations of multiple kernels [6], [31].

In this regard, we propose and explore a two-dimensional
subspace learning framework based on multiple kernel learn-
ing. This framework provides a solution on handling one-
dimensional paralinguistic features in SER via a two-
dimensional structure. The framework seeks to extend the
current MKL methods, by jointly employing two parts (with
and without nonnegative constraints) for combining multiple

kernels. Specifically, for the application of SER, we further
propose a discriminant-based two-dimensional algorithm,
namely Generalised Multiple Kernel Discriminant Analysis
(GMKDA), to process one-dimensional features in SER. The
proposed GMKDA makes use of the framework to obtain opti-
mal solutions with the discriminant analysis.

The proposed approach is also compared with some highly
related existing works. Kim et al. [37] proposed to use Ker-
nel Fisher Discriminant Analysis (KFDA) in combination with
multiscale kernels for binary classification tasks. However, the
authors did not extend their technique to consider the multi-class
case. Lin et al. [31], [38] proposed to learn one linear mapping in
a framework for MKL-DR; again, the authors did not extend the
framework to the two-dimensional form. Following Lin et al.’s
research, we keep the alternative-optimisation way and make use
of two-dimensional optimisation steps. Wang et al. [39] made
improvements on designing more valid local Fisher embedding
graphs by maintaining the optimisation structure of [31], while
the research in [40]–[42] utilises different optimisation forms
based on MKL.

Compared with these works, our research takes advantage of
employing multiple linear mapping directions for multiple ker-
nel combinations, by constructing a two-dimensional subspace
learning framework for MKL dimensionality reduction [31]. It
expands on our previous research into the use of multiscale
kernels for SER [6]. Further, this research provides a solution
to process a one-dimensional form of features using the two-
dimensional scheme, which enables SER to be solved directly
by this scheme.

The main contributions of this paper are as follows:
1) A two-dimensional framework is proposed to learn an op-

timal subspace for one-dimensional features in SER, by
leveraging MKL and additional subspace mapping direc-
tions.

2) A novel algorithm, namely GMKDA is proposed based
on this framework, taking benefit of a discriminant opti-
misation object.

3) Concerning the application of SER, the proposed algo-
rithm with multiscale kernels is taken into consideration to
achieve better performance compared with conventional
methodologies.

The remainder of this paper is organised as follows. In
Section II, the theoretical preliminaries are shortly described.
Section III introduces both the two-dimensional framework for
one-dimensional features, and the algorithm of GMKDA based
on this framework, where nonnegative constraints and multi-
ple linear combination directions for multiple kernels are taken
into consideration. Afterwards, experimental results on multiple
emotional corpora in speech are shown in Section IV. Finally,
Section VI offers a succinct conclusion and highlights potential
future research directions.

II. PRELIMINARIES

In subspace learning for SER, in order to better describe data,
it is expected to learn an optimal mapping f(·) from a certain
sample, with features x ∈ �n×1 , to its corresponding new-space
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feature vector y = f(x) ∈ �d×1 , where n and d represent the
feature numbers of the two spaces respectively.

A. Notations

This section introduces commonly used notation within
this paper. X = [x1 , x2 , . . . , xN ] ∈ �n×N will be used to
denote the set of N training samples with each column
standing for one training sample in the original feature space
with the dimensionality of n. Y = [y1 , y2 , . . . , yN ] ∈ �d×N

represents the set of N training samples with each column
standing for one training sample in the dimensionality-reduced
feature space with the dimensionality of d. Every column of
φ(X) = [φ(x1), φ(x2), . . . , φ(xN )] is a Reproducing Kernel
Hilbert Space (RKHS) of the corresponding columns in X .
K = φT (X)φ(X) is the Gram matrix. We also assume that,
any sample (including any training and testing sample) in the
original and reduced dimensionality is represented by column
vectors x ∈ �n×1 and y ∈ �d×1 respectively. For sample x, its
kernelised coordinate is Kx = φT (X)φ(x), where φ(x) lies in
the RKHS of x.

Each column of S = [s1 , s2 , . . . , sN ]∈�c×N represents the
label information of every corrsponding training sample, where
c is the number of classes. Sij = 1 when sample j belongs
to class i, otherwise Sij = 0, where i = 1, 2, . . . , c and j =
1, 2, . . . , N . I is the identity matrix and every element of e ∈
�N ×1 is equal to 1.

B. Graph Embedding Frameworks

Graph embedding frameworks have been proposed to com-
bine subspace and manifold learning together [27]. Embedding
graphs, data mapping types and optimisation forms are com-
prehensively considered in the graph embedding frameworks.
Setting yi = f(xi), the optimisation of graph embedding frame-
works is shown with the constraints of penalty and scaling re-
spectively, as in (1) and (2):

min
N∑

i,j=1

‖ yi − yj ‖2W
(I )
ij s.t.

N∑

i,j=1

‖ yi − yj ‖2W
(P )
ij = t,

(1)

min
N∑

i,j=1

‖ yi − yj ‖2 W
(I )
ij s.t.

N∑

i=1

yi
2Dii = t, (2)

where W (I ) and W (P ) denote the adjacency matrices of the
intrinsic graph and penalty graph respectively [27]. D is a diag-
onal matrix to control weights of samples. t is a positive constant
value. With one mapping direction a ∈ �n×1 for sample i in the
linear case, yi = aT xi , while for the training set with multiple
mapping directions A ∈ �n×d , Y = AT X .

As a special case in graph embedding, FDA employs the
embedding graphs only including label information. For FDA
and Kernel FDA (KFDA), since N ≥ c, with

{
W (I ) = W (I )F DA = ST (SST )−1S,

W (P ) = W (P )F DA = 1
N eeT ,

(3)

the optimisation of FDA in graph embedding frameworks can
be achieved accordingly.

C. Multiple Kernel Learning Dimensionality Reduction

Combining multiple kernels [31], [38] in GE frameworks, Kx

is written as the linear combination of different kernels, namely

Kx =
M∑

m=1

βm φT
m (X)φm (x) = Ωxβ, (4)

where the multiple kernel coordinate matrix

Ωx = [φT
1 (X)φ1(x), φT

2 (X)φ2(x), . . . , φT
M (X)φM (x)]

∈ �N ×M (5)

and β ∈ �M ×1 is the column vector with corresponding el-
ements βm for kernel m. M represents the number of ker-
nels. Each column of Ωx is the corresponding coordinate for
sample x.

Defining the optimised data mapping as α ∈ �N ×1 , we can
draw the MKL form as

arg min
α

N∑

i=1

N∑

j=1

‖ αT (Kxi
− Kxj

) ‖2 W
(I )
ij

s.t.
N∑

i=1

N∑

j=1

‖ αT (Kxi
− Kxj

) ‖2 W
(P )
ij = t.

(6)

By extending the mapping α to A = [α1 , α2 , . . . , αd ] ∈
�N ×d , we obtain multiple mappings by solving the optimisation
problem. αi is the ith mapping vector with i = 1, 2, . . . , d.

Similar as in FDA, Multiple Kernel Learning Fisher Dis-
criminant Analysis (MKL-FDA) utilises the embedding graphs
of W (I )F DA and W (P )F DA , represented by W (I ) and W (P )

respectively. The optimisation of MKL is shown as

arg min
A,β

N∑

i,j=1

‖ AT Ωxi
β − AT Ωxj

β ‖2 W
(I )
ij

s.t.

{∑N
i,j=1 ‖ AT Ωxi

β − AT Ωxj
β ‖2 W

(P )
ij = t,

βm ≥ 0, m = 1, 2, . . . , M.
(7)

On solving (7), it has been proposed to use the alterna-
tive form, to optimise A and the linear weights β of multiple
kernels [31]. To obtain an optimal A, the Generalised Eigen-
value Problem (GEP) is utilised to solve the approximate ratio-
trace form, while Semi-Definite Programming (SDP) relaxation
provides a solution for the nonconvex problem in optimising
β [31], [43].

D. Two-Dimensional Subspace Learning

Two-dimensional subspace learning has been shown in
previous research as a special case of tensorised subspace
learning [44], e.g., Two-Dimensional PCA (2DPCA) [33],
Two-Dimensional LDA (2DLDA) [34], [35], Two-Dimensional
LPP (2DLPP) [36], or Two-Dimensional LDE (2DLDE) [25].
By defining yi = LT ΞiR in (1), the two-dimensional subspace
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learning [25] is shown as

arg min
L,R

N∑

i,j=1

‖ LT ΞiR − LT ΞjR ‖2
F W

(I )
ij

s.t.
N∑

i,j=1

‖ LT ΞiR − LT ΞjR ‖2
F W

(P )
ij = t, (8)

where the two-dimensional samples Ξi and Ξj∈ �p×q . p and
q are respectively vertical and horizontal sizes of a sam-
ple described by two-dimensional features. L ∈ �p×d(L )

and
R ∈ �q×d(R )

represent the mapping matrices on the two di-
mensions respectively. W (I ) and W (P ) are the same as stated
above.

We do not list the case of the scaling constraint, especially
for 2DPCA and 2DLPP, since it is similar to the form in GE.
In order to deal with the two-dimensional subspace learning,
alternative optimisation on L and R by GEP has been utilised
with the approximate ratio-trace form [34].

III. METHODOLOGY

A. Two-dimensional Subspace Learning With Multiple Kernels

The MKL dimensionality reduction in (7) shows that, the
dimensionality-reduced features for a given training or testing
sample x can be written as AT Ωxβ, where the newly gener-
ated two-dimensional features Ωx ∈ �N ×M are constructed by
N training samples and M kernels. Thus the linear mapping
vectors A = [a1 , a2 , . . . , ad ] lie in an N -dimensional space.

However, the MKL dimensionality reduction differs from
the two-dimensional subspace learning mainly on the aspect of
constraints. In detail, the linear combination of multiple ker-
nels contains one nonnegative linear mapping vector β in MKL
dimensionality reduction, while in two-dimensional subspace
learning there are several mapping vectors without nonnega-
tive constraints. Hence, by replacing the β with a matrix B
including several mapping directions, removing the nonnega-
tive constraints, we change the form of MKL into the case of
two-dimensional subspace learning:

arg min
A,B

N∑

i,j=1

‖ AT Ωxi
B − AT Ωxj

B ‖2
F W

(I )
ij

s.t.
N∑

i,j=1

‖ AT Ωxi
B − AT Ωxj

B ‖2
F W

(P )
ij = t, (9)

where B = [b1 , b2 , . . . , bd(B ) ] and d(B ) is the number of linear
mapping directions for a multiple kernel combination.

Similar to the solving procedures in [31] and [34], the opti-
misation of (9) is generally solved by the alternative steps of
(10) and (12):

min
B

tr
(
BT Q(I )(A)B

)

tr
(
BT Q(P )(A)B

) , (10)

where tr(·) represents the operator calculating trace, and
⎧
⎨

⎩
Q(I )(A)=

∑N
i,j=1(Ωxi

− Ωxj
)T AAT (Ωxi

− Ωxj
)W (I )

ij ,

Q(P )(A)=
∑N

i,j=1(Ωxi
− Ωxj

)T AAT (Ωxi
− Ωxj

)W (P )
ij .

(11)

min
A

tr
(
AT Q

(I )
0 (B)A

)

tr
(
AT Q

(P )
0 (B)A

) , (12)

where
⎧
⎨

⎩
Q

(I )
0 (B) =

∑N
i,j=1(Ωxi

− Ωxj
)BBT (Ωxi

− Ωxj
)T W

(I )
ij ,

Q
(P )
0 (B) =

∑N
i,j=1(Ωxi

− Ωxj
)BBT (Ωxi

− Ωxj
)T W

(P )
ij .

(13)
In essence, the case of (9) indicates a two-dimensional form

and it can be solved through the same way as in two-dimensional
subspace learning. Therefore, it changes MKL dimensionality
reduction on the following two aspects: 1) The nonnegative
constraints for kernel weights are removed and thus weights
without nonnegative constraints are both considered; 2) Mul-
tiple mappings for kernel weights are considered, instead of
using only one mapping direction in MKL. When Fisher dis-
criminant embedding graphs are utilised in the form of (9), we
denote the corresponding method as 2DMKDA with the relaxed
constraints.

B. Proposed Framework

The proposed two-dimensional subspace learning with mul-
tiple kernels makes it possible to obtain multiple mapping
directions for multiple kernel combinations. However, these
mapping directions do not include nonnegative constraints,
which have been utilised in MKL to achieve one nonnegative
mapping direction. In order to leverage this, we propose a frame-
work presenting extended mapping directions based on MKL
dimensionality reduction.

1) Problem Formulation: First, with parameter γ, we define
the extended mapping directions for multiple kernels as

B̄ =
[
γβ (1 − γ)B

] ∈ �M ×(d(B ) +1) , (14)

where the parameter γ ∈ [0, 1] regulates the relationship be-
tween nonnegative and other mapping directions for multi-
ple kernel combination. The nonnegative linear combination
of multiple kernels, namely β ∈ �M ×1 , obeys βm ≥ 0, with
m = 1, 2, . . . , M .

Thus, we can obtain the optimal A∗, β∗, and B∗ by solving

arg min
A,β ,B

J =

∑N
i,j=1 ‖ AT (Ωxi

− Ωxj
)B̄ ‖2

F W
(I )
ij

∑N
i,j=1 ‖ AT (Ωxi

− Ωxj
)B̄ ‖2

F W
(P )
ij

=

∑N
i,j=1 ‖ AT (Ωxi

− Ωxj
)
[
γβ (1 − γ)B

] ‖2
F W

(I )
ij

∑N
i,j=1 ‖ AT (Ωxi

− Ωxj
)
[
γβ (1 − γ)B

] ‖2
F W

(P )
ij

s.t. βm ≥ 0, m = 1, 2, . . . , M, (15)
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where W (I ) and W (P ) stand for the intrinsic and penalty em-
bedding graphs as in Section II. In this framework, selections of
the embedding graphs depend on distribution of data. The pa-
rameter γ balances the weights between multiple kernel learning
and the two-dimensional form. To make it normalised for reg-
ulating γ, we set βT β = 1 and BT B = Id(B ) , where Id(B ) is a
d(B ) identity matrix.

The framework of (15) shows that, we can obtain an integral
form with the help of MKL and the two-dimensional structure
in subspace learning. This framework contains certain designed
embedding graphs as in GE frameworks. As shown in the pro-
posed 2DMKDA and previously utilised MKL-FDA [6], the
algorithm of GMKDA is proposed by choosing the embedding
graphs as in FDA according to (3), which can be found in
Section II.

When γ = 0, GMKDA turns to be 2DMKDA with orthonor-
malisation constraints, while GMKDA deceases to be MKL-
FDA if γ = 1.

As in [31], [34], [35], we can alternatively optimise B̄ and A
here with the objective function (15). The alternative iteration
of the solution procedure is presented as follows:

2) Optimising B̄: With fixed A, (15) can be reformulated
into

min
B̄

tr
(
B̄T Q(I )(A)B̄

)

tr
(
B̄T Q(P )(A)B̄

) s.t. B̄ =
[
γβ (1 − γ)B

]
,

(16)

where the matrices of Q(I )(A) and Q(P )(A) are shown in (11).
We pose the Iterative Trace Ratio (ITR) algorithm [45], [46] to

simplify (16) since it is a trace-ratio problem, which is calculated
by iteration of an inner ITR loop. This results in

min
B̄

[ tr
(
B̄T Q(I )(A)B̄

)
− λ tr

(
B̄T Q(P )(A)B̄

)
],

(17)
where λ > 0 represents the iterative value updated in each step
of the inner ITR loop. By changing B̄ into

[
γβ (1 − γ)B

]
, (17)

can be rewritten as

min
β ,B

J0(β,B) = [ γ2 J1(β) + (1 − γ)2 J2(B) ], (18)

where
{

J1(β) = βT (Q(I )(A) − λ Q(P )(A))β,

J2(B) = tr
(
BT (Q(I )(A) − λ Q(P )(A))B

)
,

(19)

where the values of β and B can be optimised separately with
fixed λ. Then, we present the steps of the inner ITR loop to
iteratively optimise β, B, and λ with fixed A:

Updating β with fixed λ, A: As in (18), optimising β leads
to

min
β

J1(β) = βT (Q(I )(A) − λ Q(P )(A))β

s.t. βT β = 1, βm ≥ 0, m = 1, 2, . . . ,M, (20)

which is a Quadratically Constrained Quadratic Programming
(QCQP) problem [43] with nonnegative normalisation con-
straints. This can be relaxed to obtain the SDP form [31].

By adding the auxiliary matrix P ∈ �M ×M for the relaxation,
we can draw the SDP form

min
β ,P

tr
(
(Q(I )(A) − λ Q(P )(A))P

)

s.t.

[
P β

βT 1

]
� 0, tr(P)= 1, βm ≥ 0, m = 1, 2, . . . ,M.

(21)

Hence, the optimal β is calculated using (21).
Updating B with fixed λ, A: The optimisation for B depends

on minimising J2(B). Therefore, the optimisation form of (18)
is presented with orthonormalisation constraints as

min
β

J2(B) = tr
(
BT (Q(I )(A) − λ Q(P )(A))B

)

s.t. BT B = Id(B ) , (22)

which is solved by calculating eigenvalues to obtain an optimal
orthonormalised B.

It is worth noticing that, we can utilise parallel computation
to calculate β and B since the two procedures are independent
to each other.

Updating λ with fixed β, B, A: The calculation of ITR [46],
[47] indicates the update criterion of λ as

λ =
tr

([
γβ (1 − γ)B

]T
Q(I )(A)

[
γβ (1 − γ)B

])

tr
([

γβ (1 − γ)B
]T

Q(P )(A)
[
γβ (1 − γ)B

]) .

(23)
3) Optimising A: The form of (15) also can be transformed

into a form with regard to A. Since B̄ is a constant matrix when
β, B, and γ are fixed, the form can be represented as

min
A

tr
(
AT C

(I )
0 (B̄)A

)

tr
(
AT C

(P )
0 (B̄)A

) , (24)

where
⎧
⎨

⎩
C

(I )
0 (B̄) =

∑N
i,j=1(Ωxi

− Ωxj
)B̄B̄T (Ωxi

− Ωxj
)T W

(I )
ij ,

C
(P )
0 (B̄) =

∑N
i,j=1(Ωxi

− Ωxj
)B̄B̄T (Ωxi

− Ωxj
)T W

(P )
ij .

(25)
For simplicity, the trace-ratio problem of (24) is then approx-

imately expressed as a ratio-trace form [31] of

min
A

tr
(
[AT C

(P )
0 (B̄)A]−1 [AT C

(I )
0 (B̄)A]

)
, (26)

which is equivalent to solving the GEP of

C
(I )
0 (B̄) αi = λ′ C

(P )
0 (B̄) αi, (27)

by considering A = [α1 , α2 , . . . , αd ], where i = 1, 2, . . . , d. λ′

is the corresponding generalised eigenvalue. It is assumed that,
each column of A obeys

αT
1 C

(I )
0 (B̄)α1

αT
1 C

(P )
0 (B̄)α1

≤ αT
2 C

(I )
0 (B̄)α2

αT
2 C

(P )
0 (B̄)α2

≤ . . . ≤ αT
d C

(I )
0 (B̄)αd

αT
d C

(P )
0 (B̄)αd

.

The initial value of A can be selected as AAT = I accord-
ing to [31], while the initial value of λ can be a large positive
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Algorithm 1: Two-Dimensional Framework for Multiple
Kernel Subspace Learning (i.e., GMKDA).
Input:

training samples X = [x1 , x2 , . . . , xN ], testing sample x;
embedding graphs W (I ) and W (P ) ;
iteration number T , parameter γ;

1: normalisation on X and x;
2: calculate two-dimensional features {Ωx1 ,Ωx2 , . . . ,ΩxN

}
and Ωx , corresponding to X and x;

3: initialise A(0)A(0)T
= I , l = 1;

4: while l ≤ T do
5: initialise λ(0) > 0, l′ = 1;
6: while l′ ≤ T ′ do
7: update β(l ′) using (21), with fixed A(l−1) , λ(l ′−1) ;
8: update B(l ′) using (22), with fixed A(l−1) , λ(l ′−1) ;
9: update λ(l ′) using (23), with fixed A(l−1) , β(l ′) ,

B(l ′) ;
10: l′ = l′ + 1;
11: end while
12: B̄(l) =

[
γβ(T ′) (1 − γ)B(T ′)

]
;

13: update A(l) using (24), with fixed B̄(l) ;
14: l = l + 1;
15: end while
16: optimal A∗ = A(T ) , B̄∗ = B̄(T ) ;
17: obtain y∗ by vectorising on A∗T ΩB̄∗;
18: obtain y by calculating PCA on y∗;
Output:

y, A∗, B̄∗.

value. To avoid the theoretical zero values of the tr(·) terms
in (16) and (24), the terms of t0tr(B̄T B̄) and t0tr(AT A) can
be added to the numerators and denominators of the two equa-
tions respectively, with a very small value t0 > 0. Note that the
vectorised features may include some noise caused by the com-
putational accuracy. We therefore perform PCA following the
GMKDA procedure to denoise the features whilst preserving
the structure of the data.

To clarify the proposed two-dimensional framework for Mul-
tiple Kernel Subspace Learning (i.e., GMKDA) in detail, the
key procedures are outlined in Algorithm 1. The maximal num-
bers of iterations are T (for the outer loop) and T ′ (for the inner
loop). The output values are shown as: the new features y for
the testing sample x; the optimal mapping matrices A∗ and B̄∗.

In SER, original paralinguistic features are firstly usually ob-
tained by a feature extractor [14], [16], [48], [49]. However, the
original feature sets often include factors which are disadvanta-
geous for emotion recognition [13], [50], [51]. Hence, GMKDA
is employed in the stage of dimensionality reduction to extract
discriminative components from the features for SER.

The whole procedure of GMKDA in paralinguistics (e.g.,
SER) is shown in Fig. 1. As shown in Fig. 1, for a speech ut-
terance sample x, one-dimensional paralinguistic features are
firstly extracted. Then, we reconstruct these features by M
kernels respectively, which leads to two-dimensional features
with a dimensionality of N × M . Using the two-dimensional

features, we put training samples into the iterative procedure to
obtain optimal projections β∗, B∗, and A∗.

Though GMKDA is utilised in SER with the embedding
graphs of FDA, we can also change the embedding graphs
to achieve higher performance if there are embedding graphs
better depicting the structure of a certain data set. However, un-
suitable embedding graphs may cause a worse result since the
optimisation object is misleaded, and vice versa.

C. Theoretical Analysis

1) Convergence: For the loop of optimising A and B̄, the
convergence analysis of the proposed method can be drawn
according to the existing research [31], [35], [56], since the pro-
cedure of the optimisation is presented as a trace-ratio form. For
the inner ITR loop, the theoretical convergence can be proven
as in Appendix A.

2) Computational Complexity: The computational com-
plexity of the proposed algorithm depends on the number of
training samples (N ), the number of selected kernels (M ), the
number of outer-loop iterations (T ), and the number of inner-
loop iterations (T ′).

For 2DMKDA, the computational complexity is given by
O(Tmax(N,M)3). When N >> M , the complexity turns to
be O(TN 3). For the two-dimensional framework for multiple
kernel subspace learning (i.e., GMKDA), the inner loop costs
O(M 3) stem mainly from solving SVD in optimising B, with-
out considering the complexity of utilising the interior point
approach in solving SDP, since it is usually not high. There-
fore, the complexity of the inner loop is O(T ′M 3). Then, ob-
taining an optimal A using GEP demands O(N 3). Thus, the
algorithm requires the upper bound of O(Tmax(N 3 , T ′M 3)).
When N >> M while T and T ′ are small, the complexity is
O(N 3), which is similar as in [31].

As shown in the analysis, the computational complexity
mainly comes from solving eigenvalues or Singular Value
Decomposition (SVD). To reduce this complexity, Lanczos
method [45] or the Nyström method [57] can be employed in
dealing with the large-scale case.

IV. EXPERIMENTAL SETUP

A. Corpora

In our experiments, three paralinguistic corpora are utilised
to validate the proposed methods in SER. In detail, the corpora
are the GEneva Multimodal Emotion Portrayals (GEMEP) [14],
[54], [55], the Airplane Behavior Corpus (ABC) [52], and eN-
TERFACE’05 (eNTERFACE) [53] respectively. Only the audio
parts of the corpora are taken into consideration to evaluate
the performance of the proposed SER system. In our experi-
ments, speaker-independent ways are adopted for fair compar-
ison, which means that, the samples from some speakers are
selected in training while the samples from the other speakers
are used for testing. As a result, the same speakers cannot appear
in both training and testing sets. The corpora of ABC, eNTER-
FACE, and GEMEP stand for the cases of small size of the
sample set, balanced categories, and larger number of emotions,
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Fig. 1. Schematic diagram of the proposed GMKDA. For any speech signal utterance sample, paralinguistic features are firstly obtained as one-dimensional
features by our extractor. Then, the second dimension of features are generated according to multiple kernels. Afterward, the proposed approach is adopted in
solving the dimensionality reduction problem to achieve optimal β , B , and A, where γ is between zero and one.

TABLE I
SMALL DESCRIPTION OF THE EMOTIONAL CORPORA ABC, ENTERFACE, AND GEMEP FOR THE AUDIO SECTIONS

Corpus Language Sampling Rate # Classes # Speakers # Samples Evaluation

ABC [52] German 16 kHz 6 8 (4 female) 430 2-fold CV
eNTERFACE [53] English 16 kHz 6 42 (here 40, 8 female) 1 277 (here 1 200) 2-fold CV
GEMEP [54], [55] French 44.1 kHz 18 (here 12) 10 (5 female) 1 260 (here 1 080) Training-Testing 2-fold CV

Fig. 2. Speech spectrograms of each used emotion in GEMEP with a certain speaker uttering the same French sentence.

respectively. We depict the audio sections of the three corpora
on various aspects as in Table I and follows.

GEMEP is a French-content corpus with 18 speech emotional
categories and 1 260 utterance samples. We choose 12 categories
of emotions (amusement, pride, joy, relief, interest, pleasure,
hot anger, panic fear, despair, irritation, anxiety, sadness) in
our experiments as in [58]. Those are totally 1 080 samples by
ten speakers belonging to the chosen categories, which leads
to 90 samples per emotion. In Fig. 2, we exemplify the speech
spectrograms of each emotion in GEMEP when a certain speaker
says the same short sentence, in order to show the spectral
characteristics of specific emotions in speech. Note that the
emotional states corresponding to the upper part of Fig. 2 have
higher valence compared to those displayed in the lower images.

We perform two experiments on GEMEP: 1) In order to
be in accordance with the challenge settings in [6], [14], the
corpus in the experiments is firstly divided into the sets train-
ing and testing, which are corresponding to six speakers (three
female, three male) and four speakers (two female, two male)

respectively. Hence, there are 648 and 432 samples in the sets
of training and testing respectively. 2) In order to show results
by different experimental ways, we divide the corpus into two
folds, including five speakers in each fold (three female and two
male for the first fold / two female and three male for the second
fold). One fold is for training and the other is for testing, and
vice versa. This leads to a two-fold Cross-Validation (CV).

ABC consists of the six emotions aggressive, cheerful, intoxi-
cated, nervous, neutral, tired. There are eight German speakers
(four female, four male) with totally 430 samples. For the six
emotions, the number of samples are 95, 105, 33, 93, 79, and
25 respectively. The corpus is separated into two folds contain-
ing 236 and 194 samples respectively, with four speakers (two
female, two male) for each fold. Two-fold CV is again adopted
in our experiments.

eNTERFACE contains the six basic emotions (happiness, sad-
ness, surprise, anger, disgust, fear) by 42 speakers in English.
40 speakers (8 female) are selected in our experiments to obtain
balanced numbers of samples in emotional and speakers’ cate-
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gories. This results in 1 200 samples in total and 200 samples
for each emotion. Then, the corpus is divided into two folds (20
speakers in each fold) with the same size of samples. Similar as
above, two-fold CV is adopted in the experiments.

B. Features

The feature extractor adopted in the experiments is our open-
source tool openSMILE [59], [60]. We use the configuration
of the INTERSPEECH 2013 Computational Paralinguistics
Challenge (ComParE) [14], which also has been used in the
INTERSPEECH 2014 to 2017 Computational Paralinguistics
Challenges [61], [62]. The feature set of ComParE with the orig-
inal dimensionality of 6 373 is obtained for each utterance. This
set includes the features of 65 Low-Level Descriptors (LLDs) on
different acoustic characteristics, with various statistical func-
tionals, as well as some prosodic aspects. 54 functionals are
applied to 59 LLDs, while 46 functionals are applied to the
delta values of the 59 LLDs. To the other 6 LLDs and the corre-
sponding delta LLDs, 39 functionals are applied. Additionally,
5 global temporal statistics are contained in this set. For full
details of the ComParE features, the reader is referred to [63].

C. Preparations

The critical procedures of our proposed GMKDA are shown
in Fig. 1. The algorithms of MKL-FDA and 2DMKDA are used
for comparison in our experiments. In addition, experiments
related to some basic dimensionality reduction methods (i.e.,
PCA, LDA or FDA, LPP, LLE, Isomap, LDP, GbFA) and classi-
fiers (i.e., k-Nearest Neighbors (kNN), Naive Bayesian classifier
(NB), generalised Ridge Regression (denoted as RR) [64], and
Support Vector Machines (SVM)) are also provided to show the
performance of our proposed algorithms. The SVM adopts a
‘one-against-one’ strategy, with the violation level in Sequen-
tial Minimal Optimisation (SMO) set as 0.001. The weight of
the l2-norm minimisation term in RR is set as 0.001. In ini-
tial testing we tested the SVM with both linear and Gaussian
kernels, where the Gaussian parameters in the kernelisation are
chosen as 0.1n, n, and 10n. However, as the kernalised SVM
did not perform as well as the linear set-up, the decision was
made to proceed with a linear SVM.

Firstly, for each utterance sample, 6 373 features are extracted
by openSMILE. Then, two-dimensional features are generated
by M kernels and N training samples. In our previous re-
search [6], satisfying results can be achieved by using multiscale
Gaussian kernels. Therefore, we continue to keep this form and
choose M = 10. The elements in the two-dimensional features
for any sample x, corresponding to kernel m and training sample
xi , are

Ωxi ,m = φT
m (xi)φm (x) = e

− (x i −x ) 2

σ 2
m , (28)

where m = 1, 2, . . . ,M and i = 1, 2, . . . , N . φm (x) is the col-
umn vector in RKHS corresponding to kernel m and sample x.
σm > 0 are the scaling parameters of Gaussian kernels.

The Gaussian scaling parameters {σ1 , σ2 , . . . ,σM } are set
as {0.001n, 0.005n, 0.01n, 0.03n, 0.05n, 0.1n, 0.3n, 0.5n,

Fig. 3. The J value in each inner-loop iteration exemplified on (a) GEMEP,
(b) ABC, (c) eNTERFACE, respectively.

0.75n, n} [6]. Thus, we choose d(B ) from 1 to 10, which results
in maximal 11 mapping directions for multiple kernels, as in (4)
and (14).

We then perform (two-dimensional) dimensionality reduction
on the generated two-dimensional features. The weight γ can be
chosen as values between zero and one; results from multiple
trials for different values of γ are given in Section V. The num-
ber of (outer loop) iterations in MKL-FDA, and the proposed
2DMKDA and GMKDA, is set as T = 6; it has previously been
shown that the optimisation objects usually converge rapidly in
very few iterations [31], [34]. For the inner loop, we set T ′ = 10.
We exemplify the cost function J = λ in (23) of each inner-loop
iteration in Fig. 3.

The maximal dimensionality in all the dimensionality reduc-
tion methods is chosen as 100. The reduced dimensionalities are
set as 15 for the corpus GEMEP, while as 8 for the corpora ABC
and eNTERFACE, due to the mixing of maximal and minimal
values of the optimisation problems involved in solving GEP, as
well as considering the accuracy in numerical computation.

In the stage of final decision or classification, as adopted in our
previous research [6], a kNN classifier is taken into considera-
tion to highlight the basic performance of the proposed methods.
We simply choose k = 1 as the nearest-neighbour case [65]. In
addition, RR is also used in the decision stage, since the kNN
classifier requires relatively high space complexity when there
exists a pile of training samples [66].

The evaluation metrics here are Unweighted Accuracy (UA)
(i.e., recall per class added and divided by the number of classes)
and Weighted Accuracy (WA) [67].

V. EXPERIMENTAL RESULTS

A. Performance Comparisons

The comparisons between GMKDA and other subspace-
learning / conventional methods are now presented to com-
pletely demonstrate the performance of the proposed methods.
Table II shows recognition accuracies (UA and WA) of some
common existing subspace learning methods, including PCA,
LDA or FDA, LPP, LLE, Isomap, LDP, and GbFA, as well
as some conventional methods, including kNN, NB, RR, and
SVM, comparing with the results of MKL-FDA, 2DMKDA,
and GMKDA (using kNN and RR).

Results gained indicate that our proposed GMKDA paradigm
achieves higher performance across all the three emotion
corpora, when compared with the subspace-learning and
conventional methods, as well as MKL-FDA and 2DMKDA
(Table II). In particular, GMKDA obtained UA rates of 42.5%,
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TABLE II
SMALL RECOGNITION ACCURACIES (UA AND WA) (%) OF SPEECH EMOTIONS ON THE CORPORA ABC, GEMEP, AND ENTERFACE RESPECTIVELY, USING THE

EXISTING MKL-FDA METHOD, AS WELL AS OUR PROPOSED 2DMKDA AND GMKDA

Corpus GEMEP (Training-Testing) GEMEP (2-fold CV) ABC eNTERFACE

Methods UA WA UA WA UA WA UA/WA

Subspace Learning Methods PCA 30.5 29.2 26.5 26.4 40.8 45.8 39.7
LPP [24] 20.6 20.2 20.2 20.3 32.5 37.3 35.3
LLE [22] 24.6 24.3 21.7 21.8 35.9 40.0 36.5

Isomap [23] 28.3 27.3 22.4 22.3 35.2 40.2 33.3
LDA/FDA 34.6 33.8 33.8 33.5 43.9 52.2 55.2
LDP [21] 33.7 32.9 33.1 32.8 41.6 50.2 55.1
LDE [25] 36.5 35.7 35.5 35.4 47.0 56.4 58.7
GbFA [26] 34.3 33.8 33.4 34.6 41.6 50.2 58.6

Conventional Methods kNN 28.4 27.8 25.2 25.2 38.0 42.9 39.6
NB 28.6 27.6 28.0 28.0 33.7 38.4 37.5

RR [64] 33.0 32.9 33.3 33.2 41.9 49.6 55.7
SVM 41.2 39.6 38.4 38.2 43.6 51.7 52.2

MKL-FDA [6] with kNN 41.2 39.1 38.8 38.2 47.7 57.7 59.2
with RR 28.9 28.5 31.0 29.4 34.9 43.9 58.6

2DMKDA with kNN 37.8 36.3 35.6 35.0 44.3 53.5 57.2
with RR 39.9 38.9 40.1 39.9 42.4 50.9 55.8

GMKDA with kNN 42.5 40.7 39.4 39.0 49.4 59.0 60.9
with RR 42.4 41.7 42.1 41.9 45.8 55.8 60.5

TABLE III
RECOGNITION ACCURACIES (UA AND WA) (%) OF SPEECH EMOTIONS ON THE

CORPORA GEMEP (2-FOLD CV), ABC, AND ENTERFACE RESPECTIVELY,
USING THE TOP-THREE-PERFORMANCE KERNELS RESPECTIVELY, COMPARED

WITH GMKDA (WITH KNN)

Corpus GEMEP ABC eNTERFACE

Methods UA WA UA WA UA/WA

KFDA (σ ( 1 ) ) 37.6 37.1 46.7 56.3 60.4
KFDA (σ ( 2 ) ) 36.7 36.4 46.6 56.1 58.7
KFDA (σ ( 3 ) ) 36.4 36.1 46.1 54.9 58.3
GMKDA 39.4 39.0 49.4 59.0 60.9

42.1%, 49.4%, and 60.9% on the corpora GEMEP (Training-
Testing), GEMEP (2-fold CV), ABC, and eNTERFACE respec-
tively, whilst the corresponding UA rates for MKL-FDA were
41.2%, 38.8%, 47.7%, and 59.2% respectively. For the linear
methods, results indicate that the supervised methods (LDA /
FDA, LDP, LDE, and GbFA, etc.) generally perform better than
the unsupervised ways (PCA, LPP, LLE, and Isomap, etc.). For
this reason, we keep adopting the Fisher embedding graphs in
our proposed methods.

We next present the top-three best recognition accuracies
(UA and WA) (%) among the ten kernels [6] for KFDA (MKL-
FDA with single-kernel structure) in Table III. It is indicated
in Table III that, GMKDA outperforms KFDA by using a com-
bination of multiple kernels. It is worth noting that, although
the performance of KFDAs sometimes may be able to approach
GMKDA, it is difficult to keep a stable performance as the
parameters of the kernels change.

Then, Fig. 4 shows the UAs of SVM, RR, MKL-FDA, and the
proposed GMKDA / GMKDA(raw) (respectively using NN and
RR) on the corpora, where ‘GMKDA(raw)’ represents GMKDA
without processing of PCA. According to the comparisons of
the recognition accuracies, one can see that, the GMKDA /

GMKDA(raw) is able to achieve relatively satisfying recogni-
tion results compared with MKL-FDA, SVM, and RR. This
means that, the proposed framework and GMKDA enhance the
performance of multiple kernel learning with multiscale Gaus-
sian kernels in recognising speech emotions.

Statistical significance tests using a one-tailed z-test [68] sug-
gest that, the GMKDA is significantly better compared with
SVM and RR, at the significance levels of 0.05, 0.05, and
0.005, on the corpora of GEMEP, ABC, and eNTERFACE, re-
spectively. Further, on the GEMEP corpus, GMKDA achieved
significantly better performances when compared with the con-
ventional subspace learning methods tested at the significance
level of 0.05.

In addition to these comparisons, we also conduct exper-
iments using some conventional feature selection methods,
namely Fisher Score, Relief-F [69], and mRMR [70], in order
to compare GMKDA with other subset-feature based methods.
The number of the selected features was varied from 1 000 to
6 000, with the step size of 500. A linear SVM is chosen as
the classifier for feature selection. On the GEMEP, ABC, and
eNTERFACE corpora, Relief-F obtains the best UAs of 40.3%,
45.9%, and 53.7%, respectively. Thus, the GMKDA with UAs
of 42.1%, 49.4%, and 60.9% respectively outperforms the fea-
ture selection methods, where the UA is significantly better on
the eNTERFACE corpus at the significance level of 0.005.

B. Parameter Influence

The selection of γ can affect the performance of our pro-
posed recognition system as it is changing the relation be-
tween MKL-FDA and 2DMKDA. For GMKDA, γ ∈ [0, 1]. As
γ changes, GMKDA can decease to MKL-FDA (when γ = 1)
and 2DMKDA (when γ = 0). In exploring this effect, we firstly
show the UA of GMKDA, GMKDA(raw), MKL-FDA, and
2DMKDA, on the corpora GEMEP, ABC, and eNTERFACE
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Fig. 4. Row charts of the UAs for the algorithms GMKDA (with kNN and RR), GMKDA(raw) (with kNN and RR), MKL-FDA (with kNN and RR), SVM, and
RR, on the corpora (a) GEMEP (2-fold CV), (b) ABC, and (c) eNTERFACE, respectively. GMKDA(kNN): GMKDA using a kNN classifier; GMKDA(raw)(kNN):
GMKDA using a kNN classifier without PCA processing; MKL-FDA(kNN): MKL-FDA using a kNN classifier; GMKDA(RR): GMKDA using an RR classifier;
GMKDA(raw)(RR): GMKDA using an RR classifier without PCA processing; MKL-FDA(RR): MKL-FDA using an RR classifier.

Fig. 5. Line charts of the UAs for the algorithms GMKDA and GMKDA(raw) with various parameters γ , as well as MKL-FDA and 2DMKDA, using the
classifiers kNN, on the corpora (a) GEMEP (Training-Testing), (b) GEMEP (2-fold CV), (c) ABC, and (d) eNTERFACE, respectively.

Fig. 6. Line charts of the UAs for the algorithms GMKDA and GMKDA(raw) with various parameters γ , as well as MKL-FDA and 2DMKDA, using the
classifier RR, on the corpora (a) GEMEP (Training-Testing), (b) GEMEP (2-fold CV), (c) ABC, and (d) eNTERFACE, respectively.

using kNN in Fig. 5, when different values of γ are adopted
from 0.3 to 0.9 in steps of 0.1. Similarly, Fig. 6 investigates the
effects of changing γ when using a RR classifier.

Results presented in Fig. 5 indicate that, when kNN is
adopted, the selection of the parameter γ affects the UA by
a large margin. It can be seen that, the proposed GMKDA was
able to outperform both MKL-FDA and 2DMKDA. However,
the advantage in the performance of 2DMKDA is not so clear
cut when comparing to MKL-FDA. The choice of γ also ap-
pears to be database dependent; the fluctuations of UA with the
changes of parameter γ keep relatively stable on the copora of
GEMEP and ABC. However, the fluctuation on eNTERFACE
turns to be better when γ is relatively small in our selections.
This may be caused by the problem of computational accuracy
in choosing the maximal numbers of reduced dimensionality.

In Fig. 6, the previously utilised MKL-FDA holds low perfor-
mance on the corpora of GEMEP and ABC with the classifier
of RR, while the proposed 2DMKDA can achieve better results.

This may result from the fact that 2DMKDA provides more in-
formation in the step of regression for RR. Further, depending on
choosing suitable parameters γ, the proposed GMKDA is able
to outperform 2DMKDA, though there exist some fluctuations
as γ changes, probably due to the computational accuracy. How-
ever, this trend changes on the eNTERFACE database, where the
performance of MKL-FDA exceeds 2DMKDA. One can learn
from Figs. 5 and F6 that, the classifier RR shows more stable
performance compared with kNN.

Based on the experiments with regard to the parameters, we
further show a set of brief results on recognition accuracies (UA
and WA) using kNN and RR in Table IV. The γs corresponding
to the highest performance are also listed in the two tables. Note
that we choose multiple numbers of column vectors for A and B̄
or B, due to the influence from nontrival eigenvectors in solving
GEP, and the computational accuracy in the iterative steps.

It can be concluded from Table IV that, when kNN is utilised
as the classifier, the proposed 2DMKDA (without nonnegative
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TABLE IV
RECOGNITION ACCURACIES (UA AND WA) (%) OF SPEECH EMOTIONS ON THE CORPORA GEMEP, ABC, AND ENTERFACE RESPECTIVELY, USING THE EXISTING

MKL-FDA METHOD, AS WELL AS OUR PROPOSED 2DMKDA, GMKDA, AND GMKDA(RAW) METHODS, WITH THE CLASSIFIERS KNN AND RR

Corpus GEMEP (Training-Testing) GEMEP (2-fold CV) ABC eNTERFACE

Methods UA WA UA WA UA WA UA/WA

Classifier: kNN
MKL-FDA 41.2 39.1 38.8 38.2 47.7 57.7 59.2
2DMKDA 37.8 36.3 35.6 35.0 44.3 53.5 57.2
GMKDA(raw) 42.3 (γ = 0.5) 40.3 (γ = 0.5) 38.8 (γ = 0.7) 38.3 (γ = 0.7) 48.8 (γ = 0.7) 59.0 (γ = 0.7) 60.4 (γ = 0.4)
GMKDA 42.5 (γ = 0.8) 40.7 (γ = 0.6) 39.4 (γ = 0.5) 39.0 (γ = 0.5) 49.4 (γ = 0.6) 59.0 (γ = 0.7) 60.9 (γ = 0.4)

Classifier: RR
MKL-FDA 28.9 28.5 31.0 29.4 34.9 43.9 58.6
2DMKDA 39.9 38.9 40.1 39.9 42.4 50.9 55.8
GMKDA(raw) 42.3 (γ = 0.8) 41.2 (γ = 0.8) 41.7 (γ = 0.9) 41.5 (γ = 0.9) 45.6 (γ = 0.7) 55.7 (γ = 0.7) 60.3 (γ = 0.4)
GMKDA 42.4 (γ = 0.9) 41.7 (γ = 0.9) 42.1 (γ = 0.9) 41.9 (γ = 0.9) 45.8 (γ = 0.8) 55.8 (γ = 0.6) 60.5 (γ = 0.4)

For GMKDA and GMKDA(raw), the γ s corresponding to the best results are also presented.

Fig. 7. Recall matrix when using GMKDA with RR on GEMEP.

constraints) fails to outperform MKL-FDA (with nonnegative
constraints). Even though the relaxation in 2DMKDA does not
result in an improvement, our proposed GMKDA is still able
to achieve better performance compared with MKL-FDA, by
balancing the linear combinations with and without nonnegative
constraints. Table IV also indicates that when using RR, the
proposed GMKDA outperforms the systems MKL-FDA (with
γ = 1) and 2DMKDA (with γ = 0).

C. Emotional Analysis

Finally, we investigate the emotion analysis on the GEMEP
database with 12 emotional classes. The recall matrix using
the proposed GMKDA with RR on the GEMEP database is
presented in Fig. 7. It is learnt from Fig. 7 that compared
with the remaining emotions, the emotional classes amusement,
pride, despair, irritation, anxiety, and sadness are relatively
easier to recognise. These emotions achieve the recalls of 84%,
47%, 60%, 53%, 71%, and 53% respectively, while for MKL-
FDA, the recalls corresponding to the emotions are 59%, 41%,
38%, 50%, 62%, and 40% respectively. This indicates that the
proposed GMKDA achieves higher accuracies on recognising
these emotions. Thus further improvements, i.e., methods fu-
sion, could be employed on the basis of the analysis.

Fig. 8. The analysis of emotions on the dimensions of valence and arousal,
on GEMEP when using GMKDA with RR.

Further, employing the general psychological classification
on the dimensions of valence and arousal [55], the emotions of
GEMEP are analysed in Fig. 8. As shown in the figure, most
of the easily recognised emotions possess high valence and
arousal, or low valence and arousal. In addition, for the remain-
ing emotional classes, most of their easily-confused classes do
not lie in their ‘opposite’ parts in the valence-arousal space,
which indicates that it is less likely to confuse high-valence /
low-arousal and low-valence / high-arousal emotions. Compar-
ing the recalls of MKL-FDA and GMKDA, it is more likely
to correctly recognise these emotional pairs. In addition, we
specifically investigated the emotional state of ‘despair’, which
has a relative high recall as a low-valence / high-arousal case.
Results presented in Fig. 7, indicate that this emotional state
is easy to be classified as ‘pride’, which also has high arousal.
This partially supports a commonly reported finding for emotion
recognition in speech, that classifying valence is more difficult
than classifying arousal.

VI. CONCLUSION

In this paper, a two-dimensional multiple kernel subspace
learning framework is proposed to be applied in speech emotion
recognition. By extending the optimisation of multiple kernel
learning subspace learning, this framework leverages both mul-
tilple kernel learning and two-dimensional subspace learning
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and combines them into a unified structure. On the basis of the
framework, we develop the algorithm GMKDA by using Fisher
discriminant embedding graphs. The proposed GMKDA bene-
fits from jointly employing the nonnegative linear combination
and the mapping directions without nonnegative constraints for
multiple kernels.

This gives rise to learning more optimised information repre-
sentations effective for recognising emotions. The experimental
results gained on the emotional corpora when using multiscale
kernels indicate that, the proposed GMKDA achieves improved
performance when compared with both the previously proposed
MKL-FDA and conventional methods.

An initial set of experimental results indicates that the pro-
posed GMKDA method generally outperforms conventional
methods on the emotional corpora. A secondary set of exper-
iments focused on comparing the GMKDA, MKL-FDA, and
2DMKDA methodologies. These results indicate that, the reg-
ulation of the weight of the nonnegative kernel combination,
γ, allows our proposed method to obtain better results when
compared with MKL-FDA and 2DMKDA, both of which are
special cases of GMKDA. Further analysis on emotions exem-
plified on GEMEP indicates the detailed performance of the
proposed method for further applications.

Future work includes the following aspects. First, although
the proposed framework is theoretically reasonable, the cal-
culation in an application cannot be guaranteed to be conver-
gent, since the solution in optimising the mapping directions
A is usually not optimal. Thus, constraints on A should be
added in the optimisation. Second, the current research only
employs multiscale kernels in generating two dimensional fea-
tures. Hence, in our future research, a more desirable genera-
tion of two-dimensional features will be investigated in order
to obtain better performance. Third, the embedding graphs in
GMKDA only contain discriminant information, without con-
sidering neighbouring relationship of training samples. Accord-
ingly, it is promising to work on constructing embedding graphs
with a relatively valid representation for paralinguistic applica-
tion. In addition, following our research, tensorised extensions
on this two-dimensional framework are expected to be con-
ducted in more applications.

APPENDIX A
PROOF OF THE THEORETICAL CONVERGENCE OF THE INNER

ITERATIVE TRACE RATIO LOOP

For the first time of the inner-loop iteration, we have

J0(β(1) , B(1) , λ(0)) = tr(G0(β(1) , B(1) , λ(0))) ≤ 0, (29)

where

G0(β(1) , B(1) , λ(0)) =

[
γβ(1)T

(1 − γ)B(1)T

]

× (Q(I )(A) − λ(0)Q(P )(A))
[
γβ(1)(1 − γ)B(1)

]
(30)

is negative semi-definite with a large positive initial value λ(0) .

Then, it can be drawn according to (29) that,

λ(0) ≥

tr
([

γβ(1) (1 − γ)B(1)
]T

Q(I )(A)
[
γβ(1) (1 − γ)B(1)

])

tr
([

γβ(1) (1 − γ)B(1)
]T

Q(P )(A)
[
γβ(1) (1 − γ)B(1)

]) ,

(31)

since Q(P )(A) is positive semi-definite. With the right part of
(31) equal to λ(1) , we have λ(0) ≥ λ(1) .

For l′ ≥ 2, it is obtained that,

J0(β(l ′) , B(l ′) , λ(l ′−1)) ≤ J0(β(l ′−1) , B(l ′−1) , λ(l ′−1)) = 0,
(32)

which results in

λ(l ′−1) ≥ λ(l ′)

=
tr

([
γβ(l ′) (1 − γ)B(l ′)

]T
Q(I )(A)

[
γβ(l ′) (1 − γ)B(l ′)

])

tr
([

γβ(l ′) (1 − γ)B(l ′)
]T

Q(P )(A)
[
γβ(l ′) (1 − γ)B(l ′)

]) .

(33)

Combining (31) and (33), we draw that, λ is monotonically
non-increasing in calculating the inner-loop iteration, which in-
dicates that the objective function of (16) is monotonically non-
increasing in each step of the iteration. In addition, liml ′→∞ ‖
[γβ(l ′+1) (1 − γ)B(l ′+1) ] − [γβ(l ′) (1 − γ)B(l ′) ] ‖= 0 is sim-
ilarly drawn according to [46]. �
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