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Abstract

Self-adaptive systems are increasingly endowed with Artificial Intelligence technol-
ogy in order to enhance system autonomy. Most prominently, algorithms from the
research field of Machine Learning are utilized to allow autonomous agents to con-
tinually strive for increasing the system’s utility based on experiences made over
time. The resulting self-learning adaptive systems are typically deployed in dynamic
non-deterministic environments which are characterized by continuing change and
stochasticity regarding condition observations and utility measurements. This often
leads to circumstances where the inner learning mechanisms are exposed to so far un-
seen and unanticipated system states for which they lack sufficient knowledge about
how to react appropriately. In this thesis a novel, technical notion of Knowledge
Gaps in self-learning adaptive systems is developed in order to characterize exactly
this challenge. Knowledge gaps are assumed to be existent within the continually
growing but limited knowledge bases of these systems. This gap-centric perspective
is transferred to the acquisition process of incrementally knowledge building sys-
tems. Accordingly, it is intended to (1) pave the way for the development of novel
techniques which aim at countering such knowledge gaps, and, (2) to strengthen the
self-reflective capability of self-learning adaptive systems with regard to their cur-
rent knowledge. The former aspect constitutes the main topic of this thesis. On the
basis of a well-known Evolutionary Rule-based Machine Learning technique, which
has been applied several times in the context of Organic Computing research, the al-
gorithmic structure of this type of algorithms is enhanced toward explicitly counter
existing gaps in their incrementally evolving knowledge bases. It will be demon-
strated how the exploitation of so far acquired knowledge elements can be improved
by further incorporating raw experiences in a transductive manner. Transduction
here means to immediately leverage already made and remembered experiences in-
stead of inducing a model first and deducing to new situations afterward. Fur-
thermore, the initialization of newly constructed knowledge elements is enhanced.
Again, it will be explained how to make transductive use of already existing but
not directly matching knowledge elements in the proximity of the currently queried
problem space niche about which the algorithm is not confident yet. This knowl-
edge transduction is realized by utilizing methods from the domain of scattered data
interpolation within the XCS Classifier System – the most prominent representative
from the class of Michigan-style evolutionary rule-based machine learning systems.
Results on a range of conducted empirical validation studies are reported to cor-
roborate the hypothesized benefits of transductive knowledge inference in XCS by
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means of interpolation. Additionally, plausibly applicable parts of the introduced
methodologies are transferred to a realistic application scenario in the context of
self-adaptive traffic light control. In order to capture the aforementioned second ad-
vantage of knowledge gap-centric learning – the advance of the self-reflection prop-
erty of self-learning adaptive systems – a novel research direction for autonomous
learning which is termed Proactive Knowledge Construction is proposed and first
steps toward Proactive Learning Classifier Systems are taken. It is elaborated on
how concepts from the domain of Active Learning can be incorporated within the
Organic Computing Multi-layer Observer/Controller reference architecture in order
to actively seek and bridge knowledge gaps within these systems. Furthermore, in
order to substantiate the rationale behind the general concept of proactive knowl-
edge construction, an initial formal proof is outlined and a first methodology to
implement the envisioned proactive behavior is delineated in the last part of this
thesis.
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Chapter 1.

Introduction

During the past decades, a continuing rise in system complexity has been observed.
Modern Information and Communication Technology (ICT) systems are comprised
of a large number of subsystems, each coming with their own set of configurable
parameters. These subsystems can interact with each other and, thus, need to be
interconnected to a certain degree. Additionally, such systems are not deployed
in stationary environments, free of uncertainties and other influencing conditions.
Actually, ICT systems are typically deployed in the real world, i.e., surrounded
by an environment that exhibits challenging characteristics. Examples are non-
determinism, coincidence, time-dependent influences, or other external factors that
are not part of the systems themselves. Such surroundings are typically referred to
as Non-Stationary Environment (NSE) [Dit+15].

The resulting system complexes, which can also be understood as System-of-Systems
(SOS) [Tom+14; BTW14], are virtually impossible to manage by a single human
administrator anymore. In order to allow for an appropriate functioning even in the
presence of these highly complex system structures and their changing environments,
one viable way is to increase the systems’ autonomy. Decisions that used to be felt at
the design time by the system engineers, are now postponed to the actual runtime of
the systems. This comes at the cost of hardly predictable system behavior. On the
other hand, during the design time it is nearly impossible to anticipate all possible
system states for which the engineer might “hard code” an appropriate response a
priori. In order to achieve autonomy, the systems need to be equipped with certain
mechanisms that pave the way for on-demand decision making and the initiation
of reconfiguration processes at runtime. One solution for achieving such a desirable
self-adaptive behavior is provided by the field of Machine Learning (ML) [Mit97;
Alp10].

ML is a branch of computer science, as well as one of the most important subfields
of Artificial Intelligence (AI) [RN95] today. Research in ML is concerned with the
understanding of techniques that, roughly speaking, allow machines, i.e., computers,
to learn from data. One of the most common definitions of ML was coined by Tom
M. Mitchell in [Mit97], who states that:
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“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

The integral components according to Mitchell’s definition are experience, perfor-
mance measures and tasks. From a systems engineering perspective, each technical
system is developed for a certain purpose which constitutes its task. A system is
monitored and assessed in terms of certain utility measures, which can be mapped
to the performance measures of Mitchell’s definition. Finally, a running system
experiences new situations every time it is exposed to some input that has to be
processed further and subsequently results in some sort of output. A more detailed
introduction to the field of ML will be given in Chapter 2.

ML is not the only field concerned with building autonomously learning systems –
which therefore might become self-adaptive and self-organizing. Related research
directions which share common aspirations are for instance: (1) Methods from the
domain of numerical optimization [WN99], a field which is strongly related to ML,
and its subarea ofmetaheuristics. (2) System theory, which includes attempts to gain
an understanding of how to cope with complexity. (3) Concepts from social sciences,
e.g., ways to establish a notion of trust and reputation in distributed computing
systems [Rei+16]. Methods from all these domains have been investigated in order
to accomplish increasing system autonomy.

Research initiatives have been founded to establish communities that cooperatively
advance the development of intelligent systems. Among them, Organic Computing
(OC) [MT17a], as well as Autonomic Computing (AC) [KC03], are two prominent
representatives. Both are concerned with building Self-Adaptive and Self-Organizing
(SASO) systems that relieve the human administrators but at the same time allow
for viable and robust system functioning in spite of changing conditions and goals,
as well as other disturbances such as component failures.

The scenario of self-adaptive traffic light control at urban intersections (as already
thoroughly investigated in e.g., [Tom12; Pro11]) shall serve as a tangible running
example for a realistic application in the course of the present thesis: Consider a
number of interconnected embedded technical systems, here traffic lights, equipped
with self-learning computation units (the traffic light controllers running the learning
program). These subsystems are deployed in a highly dynamic environment, i.e.,
the traffic system with all its autonomously acting participants. The Self-Learning
Adaptive System (SLAS) has to fulfill the task of preserving an appropriate degree of
traffic flow (performance measure) by autonomously adapting the green phases of all
traffic lights installed at the observed intersection (the environment). At arbitrary
points in time, disturbances can challenge the self-learning system with unforeseen
situations and system states. For example, road blocks can be established due to
lacking water pipes, or traffic accidents might happen occasionally. When the system
was (1) not explicitly designed to handle such exceptional situations a priori, and, (2)
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also has no rule or other knowledge acquired by itself via its learning mechanisms, it
faces a circumstance regarded as Knowledge Gap (KG) in this thesis. For instance,
such a KG could prevent the system to adequately reconfigure the green times in
spite of severe unexpected changes in the traffic load of a particular intersection
leading to jams and increasing delays.

The development of first principles and building blocks for a general methodology
based on scattered data interpolation to ‘bridge such knowledge gaps’ in SLAS con-
stitutes the main objective of the present thesis. Therefore, a family of incrementally
knowledge constructing learning algorithms is focused. In the context of OC, these
algorithms have proven successful in endowing complex technical systems with the
capability of self-learning robust adaptation strategies. The subsequent section out-
lines this thesis’ scientific contribution in a more detailed way.

1.1. Scientific Contribution

In this thesis, it is focused on ML methods which have been successfully utilized
several times in OC systems. These methods, called Learning Classifier Systems
(LCS), belong to the class of Evolutionary Rule-based Machine Learning (ERBML).
Throughout this thesis, only Michigan-style Learning Classifier System (LCS) are
considered (cf. Sect. 2.4 for more details). ERBML algorithms following this learn-
ing style incrementally build up a knowledge base. Each knowledge element targets
a certain subspace of the entire learning problem. These techniques are capable of
Online Learning (OL), which means that they adapt their solution (i.e., knowledge
base, hypothesis or model) each time a new observation is available. Especially
in the case of Self-Adaptive Systems (SAS) which are asked to learn continually
at runtime, OL plays an important role. Furthermore, ERBML algorithms make
use of computational evolution, which endows them with the inherent capability of
adapting to change in NSEs. The rule-based knowledge representation constitutes
another advantage of these techniques. Encoded in an IF-THEN rule style, these
knowledge elements are directly interpretable and understandable for humans (at
least in theory). Explainable AI (XAI) [GA19], or Interpretable ML [Mol19] at-
tracts huge research attention these days. This is due to the outstanding progress
made in solving vastly complex tasks which is clearly dominated by Deep Neural
Network (DNN) and general Deep Learning (DL) approaches [GBC16]. However,
these achievements come to the expense of explainability. This, however, constitutes
a crucial aspect in guaranteeing autonomous systems to comply with exploration
boundaries in safety-critical tasks, e.g., where humans are involved. A topical exam-
ple of such a safety-critical scenario is Autonomous Driving. Erroneously interpreted
sensor perceptions at the time when the employed algorithms are updating their in-
ternal world model regarding the traffic context might lead to dangerous situations.
For instance, inappropriate control or steering signals can have fatal consequences
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for the occupants or others. For the sake of transparency and traceability of the
decisions an autonomous system continually fells, the self-learned internal models
need to facilitate a “view into the blackbox”. So-called symbolic methods of ML
or rule-based systems as considered in this thesis fulfill this requirement. They
learn knowledge representations which are naturally human comprehensible, such as
production rules or decision trees.

This thesis aims at extending the competence of a certain representative of the
ERBML field – the XCS Classifier System (XCS) – for the purpose of a more robust
use in SLAS. Secondarily, the awareness about the general class of LCS algorithms
as viable candidate solutions for the utilization in autonomous systems is to be
increased. This work is furthermore intended to push the research field concerned
with ML in SAS a step toward a unifying understanding regarding the aspects and
challenges specific to SLAS.

Accordingly, a system model will be derived in Chapter 3. It introduces a unified
notion and basic definitions to provide a common terminology for this thesis. When-
ever we think about ‘learning’, the goal is to acquire knowledge about a certain task
by making experiences with this task (recall Mitchell’s definition).

Looking at this notion from a different angle, a common model that illustrates the
relationships between raw (sensory) data, information and knowledge can be found
in Figure 1.1. It shows the well-known concept of the Wisdom Pyramid [Row07].

SISSY'18 - Proactive Knowledge Construction

Data

Information

Knowledge

Wisdom

Raw (sensory) data

Annotation/Structure

Experiences/Feedback 

Self-Awareness for lack of knowledge?
Knowledge accumulation & transfer?

Appropriate reactions to any situation?

Motivation
Knowledge in Self-Adaptive Systems

Figure 1.1.: The pyramid of wisdom, adapted from [Row07]

The tip of the pyramid is wisdom – a goal every learning entity is pursuing. However,
until wisdom can be reached, a couple of intermediate steps have to be done. Starting
from raw data, one has to add some semantics to gain information. This could be
the scale and domain of a sensory measurement, coupled with some implication. For
instance, a temperature sensor that measures -5 degree Celsius could be annotated
with the implication “cold”. If a learner repeatedly receives such an annotated
information together with some sort of feedback, it will gain experience regarding
this information, which results in knowledge. Whenever we are able to further
assess the acquired knowledge in terms of some criteria, this leads to the wisdom
each learning entity is (more or less urgently) striving for.
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This thesis introduces a novel concept of thinking beyond the strictly technical means
of inducing models from data and assessing resulting hypothesis as a whole – the
concept of Knowledge Gaps (KGs). Learning systems should gain awareness of their
own KGs and consequently the ability to steer the learning process in order to close
them. This KG-centric view on learning algorithms is deemed to be promising and
viable, especially in the context of SAS. However, in this thesis only the tip of the
iceberg can be touched upon, since it is at its very beginning, yet.

The major contribution of this thesis, is to develop first principles and techniques to
implicitly overcome KGs in the course of online learning at runtime. More precisely,
a methodology will be developed that takes advantage of already existing knowledge
that could be acquired via similar experiences previously made. This methodology
is termed Transductive Knowledge Inference. The overall goal is to improve the
knowledge exploitation and construction processes by interpolating novel knowledge
based on collected raw experiences with the environment (the task to solve) or
already existing knowledge elements learned for similar situations.

To break the above stated down to a concise research statement, the main objective
of this thesis can be summarized as providing a scientific confirmation of the following
hypothesis:

Consider an incremental ERBML algorithm L(K) as briefly sketched above. L(K)
incrementally builds up a knowledge base K, which is comprised of single knowledge
elements k ∈ K. L(K) is employed within a SLAS which is deployed in an NSE
facilitating the occurrence of knowledge gaps kg which are not covered in K of L.

Hypothesis. The transductive exploitation of collected experiences as well
as the transductive construction of new knowledge elements k∗ /∈ K on the basis
of existing k ∈ K by means of scattered data interpolation yield an improved
learning (or sample) efficiency of L in terms of faster decreasing initial prediction
errors.

In what follows, different derivatives of the XCS Classifier System (XCS) [Wil95]
introduced by Stewart W. Wilson in 1995, will serve as representatives for the class
of ERBML algorithms which follow the Michigan-style. XCS constitutes the most
thoroughly investigated system today. Several variants and further descendants have
been proposed in the course of the past two decades. Due to this fact, nearly all
extensions and insights gained in the last ten years can be fed back to the original
XCS system, which renders it an ideal candidate for serving as case study in this
work.

As a further innovation, novel approaches for creating knowledge in a (pro)active
manner are initially elaborated during a discussion of future research directions at
the end of this thesis. This proactive means of constructing novel knowledge elements
stays in contrast to the reactive way most systems rely on. Therefore, concepts from
the domain of Active Learning (AL) [Set09] have been adopted for the use within
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XCS for the first time. The main idea behind AL is to bring a so-called oracle
into the learning loop which is supposed to answer posed queries about the learning
task. Most often, a human expert is assumed to take on the role of the oracle. In
this thesis, however, this assumption is loosened by also considering simulations,
heuristics, or even the interpolation methodology to be introduced in the first part.
A picture of a novel research direction for Proactive Knowledge Construction is
drawn and corroborated by informal as well as formal definitions that pave the way
for future research activities.

As a last objective, this thesis is intended to promote the visibility of LCS in general
and to convey an understanding beyond what these systems are sometimes deemed
to be – yet simply another machine learning algorithm. Michigan-style LCS such
as XCS should be more generally seen as a rich framework for interpretable and
online machine learning based on an evolving ensemble of individual models that
collectively solve the underlying learning problem. This alternative view is supposed
to open a wide variety of promising research activities devoted to the incorporation
of LCS in modern AI applications.

1.2. Structure of this Thesis

The present work is organized into the following parts:

• The first three introductory chapters sketch the scientific context, provide nec-
essary background information and pose a corresponding problem statement.

• In the main part of this doctoral thesis comprising six chapters, it is elabo-
rated on the development and the evaluation of several novel methodologies
to attempt the identified problem.

• An elaborate discussion of future research directions points toward two con-
crete methodologies for advancing and carrying on the results of this work.

• The thesis is then closed with a summary of the results and an outlook on
related scientific fields where the outcomes of this thesis might further con-
tribute.

Subsequent to this first introduction chapter, the thesis proceeds as follows: Chapter
2 provides a comprehensive introduction of the basic concepts and methods used
in this thesis. Section 2.1 starts with a brief review of the Organic Computing
(OC) research initiative which was started back in 2002 and focuses on engineering
technical, self-adaptive and self-organizing systems for survival in the real world.
Since this work focuses on the self-learning aspects of SAS, an overview of the field
of Machine Learning is given in Section 2.2. A formal definition of the interpolation
problem as well as a short description of selected interpolation methods can be
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found in Section 2.3. Afterward, a comprehensive introduction into the field of
Learning Classifier Systems (LCS) and the XCS Classifier System (XCS) is provided
in Section 2.4.

The succeeding Chapter 3 revisits the challenges SLAS face when they are deployed
in NSEs. A detailed problem statement is formulated descriptively and formally.
The chapter begins with the introduction of a general notion of Learning in Organic
Computing Systems in Section 3.1. On that basis, Section 3.2 derives a unifying sys-
tem model and integrates the most challenging aspects which are deemed catalysts
for knowledge gaps to occur. A formal notion of the aforementioned challenge of
knowledge gaps is developed in Section 3.3. Subsequently in Section 3.4, LCS-based
learning is brought in line with the just derived system model, the potentials and
advantages, but also the drawbacks of LCS are discussed.

After the introduction of all basic concepts, a unified system model and the prob-
lem statement, the main part of this thesis starts – the augmentation of XCS by
means of integrating interpolation into its algorithmic structure. Chapter 4 starts
out with an architectural view on XCS. A generic Interpolation Component (IC) is
introduced in Section 4.1. The generic IC can be used in combination with nearly
any ML algorithm (here XCS) in its loose coupling approach (cf. Sect. 4.2). A
tightly interwoven variant especially designed for XCS is presented in Section 4.3.
Potentials and shortcomings of both variants are further discussed in Section 4.4
followed by an appreciation of related work.

The succeeding Chapters 5, 6, 8 and 9 introducing the interpolation-based strategies
to counter KGs share a common structural blueprint:

1. A recap of the basic mechanisms used in the conventional XCS variants.

2. The introduction of the newly devised interpolation incorporating strategies.

3. A dedicated empirical validation study that demonstrates the beneficial effects
on XCS’s learning behavior.

4. A discussion section that further discusses the obtained results along with
current limitations and aspects of future work.

5. A dedicated appreciation of related work is presented at the end of each chap-
ter.

In Chapter 5, a novel interpolation-assisted action selection regime is developed.
Chapter 6 focuses on an XCS-specific reactive knowledge construction mechanism,
also known as Covering in the LCS literature. Specifically, the initialization of newly
constructed knowledge elements is enhanced by transductive knowledge inference by
means of interpolating between existing rules. The so far developed techniques are
applied to a realistic scenario in Chapter 7. A case study utilizing a special-purpose
XCS modification within the Organic Traffic Control (OTC) system is subject of
investigation. Due to the specific adaptations regarding the substantially adapted
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XCS, a transfer of the novel approaches developed in the succeeding Chapters 8 and 9
is not plausible. The approach developed in Chapter 6 is then taken a step further
and transferred to the initialization of offspring rules as created by the evolutionary
component of an LCS in Chapter 8. As a last interpolation-based methodology, in
Chapter 9 one of the most crucial steps in nearly any ML technique – the actual
prediction step – is considered and a novel interpolation-based prediction modeling
technique is devised.

The subsequent Chapter 10 is intended to provide an elaborate discussion about two
concrete directions of future research. The outlined research directions are inspired
by the main insights as will be obtained throughout this thesis and take the respec-
tive research a step further toward an entirely novel methodology in the domain of
LCS as well as SLAS – Proactive Knowledge Construction. Therefore, in Section 10.1
the concept of Active LCS is briefly introduced. It starts with a clarification of why
its current knowledge construction process is deemed to be mostly reactive. Af-
terward, ways to adopt specific AL techniques in order to extend the knowledge
construction process are presented. Preliminary results on a novel multi-class toy
problem are reported which corroborate the expected benefits and are then further
discussed. As a next reasonable step toward Proactive Learning Classifier Systems,
Section 10.2 starts with introducing the notion of Proactive Knowledge Construc-
tion. The reasonableness of this concept is then formally proved for the first time. A
possible solution to proactively construct new knowledge elements for insufficiently
explored problem space niches based on Kernel Density Estimation (KDE) is out-
lined. Finally, the findings are discussed. The chapter ends with another literature
review on existing and recent research aspirations to introduce concepts similar to
proactivity into ML algorithms.

The last Chapter 11 briefly summarizes the main results of this thesis (Sect. 11.1)
and finally spends a few concluding thoughts on possibly impacted research fields in
the last Section 11.2.
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1.3. Integration of the Author’s Published Works

Parts of this doctoral thesis have been previously published in several scientific
contributions where this thesis’ author has taken the role of the leading investigator.
The following paragraphs briefly indicate which publications integrate into which
chapter of this doctoral thesis.1

Chapter 2 introduces the theoretical backgrounds and prerequisites necessary for
this work. Among these prerequisites, a comprehensive introduction to Learning
Classifier Systems (LCS) is provided which is mainly based on [Ste17b].

For the problem statement described in Chapter 3, core challenges of learning in
Organic Computing (OC) systems and a formal notion of Knowledge Gaps (KGs)
are introduced. Parts of the thoughts on these challenges have been presented
in [Ste16; Ste17a]. A first formal description of KGs has been recently introduced
in [Ste+18].

Chapter 4 introduces an architectural extension of XCS to allow for incorporating
interpolation. The architectural variant has been initially presented at a doctoral
symposium [Ste14]. It was later published as a conference contribution [Ste+16b],
and finally as an extended journal version [Ste+17]. The same contributions also
form the basis for the interpolation-based approaches Action Selection Integration
(ASI), Covering Intialization Integration (CII) and Offspring Initialization Integra-
tion (OII) which are going to be introduced in Chapters 5, 6, and 8.

Parts of the details, insights and results regarding the novel CII and OII strategies
as will be introduced in Chapters 6 and 8 are furthermore based on [Ste+16a].

In Chapter 7, particular aspects of the introduced techniques are adapted and eval-
uated in the context of a real world self-adaptive urban traffic light control scenario.
This chapter is based on the work published in [Ste+16c].

The idea of the interpolation-based prediction modeling has been initially published
in [SMH18], on which the corresponding Chapter 9 is mainly based.

At the end of this thesis, Chapter 10 provides an elaborate introduction to two future
research directions: (1) An integration of Active Learning (AL) concepts with XCS
Classifier System (XCS) (Sect. 10.1). (2) The proposition of a new methodology
called of Proactive Knowledge Construction in Section 10.2. This chapter’s contents
are based on the author’s publications [SMH17] and [Ste+18].

1For the detailed references, please refer to the author’s publication list at the beginning of this
document.
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Chapter 2.

Background & Prerequisites

The following sections introduce the theoretical as well as the contextual background
of the present thesis. Starting with the aims and scope of the research initiative
Organic Computing, basic paradigms and concepts from the domain of Machine
Learning are subject of discussion. Subsequently, the discipline of scattered data
interpolation which originates from the more general field of approximation theory
is briefly introduced, followed by an elaboration of selected interpolation method-
ologies. The biggest part of this chapter constitutes the thorough introduction of
Michigan-style Learning Classifier Systems in general, and of the XCS classifier sys-
tem in particular. This chapter lays the necessary foundation in order to allow for
the adequate comprehension of the extensions that will be developed throughout
this work.

2.1. Organic Computing

Back in 2002, researchers from Germany started thinking about a new research
initiative to meet the predicted increasing demands for the steadily rising complex-
ity in computing systems which could be observed over the last decades. Organic
Computing (OC) [MT17a] was born and the ball was set rolling for a major re-
search project which has shaped today’s profile of OC. Originating mainly from the
Systems Engineering domain, OC was deemed a paradigm shift for the engineer-
ing of complex systems which are largely interconnected and purposefully designed
to fulfill critical tasks in real world environments [MSU11]. The continuing rise in
complexity was recognized as the “nightmare” of system engineers and administra-
tors [KC03], since the multitude of interacting (sub-)systems would make it nearly
impossible to control the overall system complex by the same means as done in the
past. On the one hand, the envisaged paradigm shift and, thus, the overarching goal
of OC can therefore be found in moving decisions that have been conventionally
felt at design-time to the systems’ runtime in order to allow for robust and flexible
systems. This, however, involves the acceptance of the circumstance that not all
possible environmental condition and resulting system states can be anticipated at
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the time of system development (the design time) by the human engineers. Accord-
ingly, the autonomy of the individual subsystems needs to be increased by endowing
them with the ability to learn from experience made with the task environment.
This comprises the observation of system states and a subsequent decision making
regarding appropriate reactions to be realized during the system’s runtime. On the
other hand, this paradigm shift demands for a deeper understanding of the collec-
tive behavior of the interacting subsystems as a whole – which is expected to be
governed by a single central authority any longer. The autonomous entities shall be
able to organize themselves via local interactions and on the basis of their own local
knowledge about the tasks for which they are deployed. In order to achieve the en-
visaged shift, a strong focus was set on leveraging the potentials of self-organization
as can be observed in nature. Inspired by social and natural sciences, OC mainly
postulates that complex tasks can be attempted most effectively by collectives of
(semi-)autonomous systems (or agents), in such a way as has been demonstrated
by nature myriad times. This demands for different angles to look at the involved
systems, i.e., from macroscopic and microscopic perspectives which define the re-
spective contexts. An overarching OC system which is observed from a macroscopic
viewpoint has to be aware of its own environmental and situational context. How-
ever, it still comprises several sub-systems or lower level hierarchies of them, each
bearing its individual microscopic (or mesoscopic) context. More details on organi-
zational aspects of OC systems can be found in [MT17b]. Nonetheless, what each
abstraction view of an OC system has in common is an individual context which
shapes the problem space to which a learning entity is exposed. Following [MT17b],
it is distinguished between single context-aware adaptive systems and multi context-
aware adaptive systems, which can be be further divided into open collective and
goal-oriented holonic systems. For the sake of simplicity, the focus is set on the first
category of single context-aware adaptive systems. However, the techniques and
concepts developed in this thesis are not deemed to be restricted to this category.
As stated before, each abstraction level brings its individual context which spans the
problem space that is to be learned. This context may change over time and, thus,
feeds the risk of occurring knowledge gaps, simply at another level of abstraction.

OC systems have been envisioned to exhibit life-like characteristics making them
viable in dynamic real world environments – more generally referred to as NSEs.
A number of so-called self-x properties have been mentioned to obtain the pursued
life-like behavior, among which the capabilities of

• Self-organization

• Self-adaptation

• Self-optimization

• Self-configuration

• Self-protection

• Self-healing

• Self-explanation, and naturally

• Self-learning
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have been explicitly formulated as expected attributes with which full-fledged OC
systems should be endowed. These properties are not necessarily mutually exclusive
but rather overlap. For instance, self-configuration can be seen as part of self-
adaptivity both of which realizable via self-learning mechanisms. The methodology
introduced in this thesis can be deemed as being mainly targeted at the self-learning
property, though, but also affects the self-explanatory possibilities of OC systems.

A very basic OC system usually follows the so-called generic Observer/Controller
(O/C) architecture as introduced in [Ric+06; Tom+11b]. The architectural blueprint
of this reference model is detailed in Chapter 3.1.

Over the years, a variety of OC systems have appeared in several application do-
mains. For example, the self-adaptive traffic management system referred to as Or-
ganic Traffic Control (OTC) [Pro+11] was among the first systems developed in the
scope of OC research. An Organic Robot Control Architecture (ORCA) [ALM08]
which equips a six-legged robot with self-healing mechanisms to make it fault-
tolerant and acting more life-like is another example. Bernauer and Zeppenfeld
et al. proposed a two-stage method implementing a lightweight LCS to combine
the advantages of software and hardware solutions in [Ber+11; ZH11]. During the
first stage, the approach harnesses the adaptivity of a simplified LCS to learn a basic
control strategy for a given problem based on simulation. In a next step, the learned
rule set is transferred to a piece of high-performing hardware called “Learning Classi-
fier Table”. At this point, the learned production rules are not updated any longer.
This concept has been further refined and applied to an Autonomic System on a
Chip (ASoC) to achieve a self-management of CPU workload [Zep+11]. For more
examples and a summary of the achievements the Organic Computing initiative has
spawned until 2011, the reader is referred to [MSU11].

Nearly at the same time when OC emerged, Autonomic Computing (AC) [KC03] was
founded by IBM to deal with similar problems. Here, the motivation originated from
a more application-oriented and industry-driven view such that a first focus was set
on the autonomic management of large-scale data and computing centers. AC was
mainly inspired by the autonomic nervous system. The so-called self-CHOP (i.e.,
-configuration, -healing, -optimization, -protection) properties were initially defined.
Today, the OC and AC communities share common scientific conferences and mostly
pursue similar research goals.

Beside OC and AC, the Self-Adaptive and Self-Organizing (SASO) systems commu-
nity has established as an umbrella for general research in this area [BS07]. Annual
conferences on this overarching topic have been organized since 2007. During the
the 2019 edition it was announced that the international conferences on SASO and
on AC will be finally merged into a single conference on Autonomic Computing and
Self-Organizing Systems (ACSOS)1. The focus of SASO is to bring in line the con-
cepts and insights of Self-Organization in biological systems [Cam+03] with research

1http://acsos.org/ (last accessed August 7, 2019)
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on technical SAS in order to cope with the explicit and implicit interconnectedness
of (sub-)systems and the resulting complexity. Also the principles and foundations
of collective system behavior are in the spotlight. Thus, the SASO community seeks
for foundations and a principled approach to understanding and building complex
systems – a perfect match for OC research.

The study of Complex Adaptive Systems (CAS) [Hol92] is another strongly related
field strongly propelled by John H. Holland and colleagues since the 1960s [Hol62].
Holland’s initial attempt to the challenge of CAS was the invention of the today
well-known Genetic Algorithm (GA) [Hol75]. He saw a viable solution to complexity
due to highly changing system structures in Darwin’s theory of evolution and the
principle of the survival of the fittest. Holland was also the researcher who set up
the stage for decades of LCS research. Together with Reitman, he was the one who
proposed the first ERBML system – the Cognitive System (CS-1) [HR78]. Thus, also
LCS themselves have their roots in research on complex adaptive systems, what in
turn underpins the reasonableness of choosing a LCS technique as the subject of
investigation in this thesis.

Beside AC, SASO, CAS, further overlapping research fields such as Cybernetics
preceded OC, or rather emerged at nearly the same time as OC did as is the case for
Proactive Computing [Ten00]. For more details in this regard, the interested reader
is referred to the chapter on the “Major Context” in [MT17b].

Obviously, the demand for building autonomous SAS in order to cope with the
complexity of upcoming computer-supported technical systems has been recognized
nearly two decades ago – and still there exist a lot of aspirations in that respect. This
thesis is elaborated sharing the mindset of OC and, thus, adheres to the definitions
and insights spawned since its foundation. Please note that this is not about denying
the right to exist of any of the complementary initiatives mentioned before. Rather,
it is about mainly sticking to the terminology and generic architectures stemming
from OC, which will be picked up again in Section 3.1.

In OC, AI technology is considered a key enabler and essential ingredient to build
SAS with an increasing degree of autonomy. Intelligence is often connected with
the ability to learn, as is also done in this thesis. It is differentiated between (1)
Self-Adaptive Systems (SAS) which are rendered adaptive by means of integrating a
priori defined production rules that enable the system to reconfigure as a response
to changing conditions anticipated at design time, and, (2) SLAS which build up
and further evolve their knowledge bases (i.e., self-learned production rules) which
determine their adaptation strategies during the runtime.

Most research aspirations that attempt to build in intelligence into SAS make strong
use of methods from the AI domain, more specifically of its probably most important
subfield these days – Machine Learning (ML). In the next section, basic terms and
concepts of ML are briefly sketched and the methods and approaches used in this
thesis are brought in line with the overarching field.
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2.2. Machine Learning

The field of Machine Learning has emerged as the study of design and analysis of
algorithms that allow machines, or programs, to learn from data. It is considered as
a branch of AI. Historically, the investigations mainly focused on intelligent agents
that learn to act in their living environments by continuing interaction, i.e., it was
attempted to mimic natural intelligence observed in animals or humans. Over time,
however, ML evolved into a much broader research field mainly concerned with
the improvement of some learning entity in terms of a performance measure on a
specified task. The assumption is, that when exposed to more and more past data,
the learner will get more experienced with regard to its task reflected by higher
performance measures. Due to achieved advances over the last decades, the focus has
shifted from mimicking human or animal intelligence toward exploiting the revealed
potentials of ML algorithms on tasks where the cognitive capabilities of humans
reach their bounds. The exploration of large amounts of structured or unstructured
data collected over a certain time period constitutes an example. Automatically
recognizing patterns in complex data or leveraging the prevalent correlations to
induce a predictive model can be done much more efficiently – or even achieved
at all – by ML and data mining algorithms. Computational Learning Theory is
concerned with understanding the fundamental working principles of ML algorithms
and whether a given problem can be provably solved (cf. e.g., [MRT12]). Bounding
the expected errors of ML algorithms given a certain amount of data on the other
hand is subject of Statistical Learning Theory [Vap98].

As already briefly discussed in Chapter1, a common and concise definition of ML is
provided by Mitchell [Mit97]:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

This definition is chosen because it is abstract enough to comprise all paradigms
of ML that have emerged over the years, but also sufficiently simple to provide an
intuitive understanding of the core principle.

In the following paragraphs, the most prominent subfields of ML which are deemed
relevant for this work will be briefly discussed. Subsequently, the scope of the
techniques and concepts that will be developed in this thesis is brought in line
with these categories. The categorization and the according descriptions are mainly
adopted from seminal introductory books on ML [Mar09; SB14; Alp10; SB98].
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Supervised Learning

When reading about the latest advances in ML, the articles often refer to achieve-
ments with regard to the category of Supervised Learning (SL). This ML paradigm
is about learning from a vast number of training examples. These are data instances
which are annotated, i.e., provided with the correct target value, and made avail-
able by a “supervising” entity a priori. In the era of Big Data, large collections of
digital records do not constitute an issue anymore for many problems. This fact
accompanied by the achievements in computing efficiency paved to way for the rise
of Artificial Neural Networks (ANNs) and their descending Deep Neural Networks
(DNNs). The term supervised is inspired by assuming a teacher (or domain expert)
that provides annotated data comprising the ground truth upon which the algorithms
shall build a hypothesis. In that way, the teacher is supervising the algorithm in a
certain sense. This is also referred to the inductive way of learning, i.e., inferring
from the particular (i.e., available training cases) to a general rule (the hypothesis
or model). Advances in large-scale computing due to General Purpose Graphical
Processing Units (GPGPUs) and the leveraging of single instruction multiple data
instruction sets have opened the possibility of highly efficient computation of sta-
tistical learning models which is often referred to as vectorization. ANNs are the
most prominent example of algorithms that highly profit from this technological
development.

In SL the task can be formally described as follows: Given a set D of m labeled (or
annotated) training instances of the form

D =
{
(~xi, yi)

}
i=1...m

where ~xi ∈ X constitutes a vector from a feature space X comprising descriptive
features2 and yi ∈ Y is a target value out of a target space Y assigned to the i-th
training instance. The task of a SL algorithm is then to find a hypothesis, or else a
predictive model based on the training data

h(~x) : X → Y, ~x 7→ y,

which maps the feature space onto the target space.

This trained model is then supposed to be applied to new, unseen data instances
which are not contained in D. To train such an algorithm, the available training
instances in D are typically split up into a dedicated training set Dtrain and a hold
out or test set Dtest. The latter is used to evaluate the predictive performance of the
obtained model h(~x). Usually, the feature space X is spanned over n dimensions,

2The space of inputs has various notations in the ML literature. Sometimes it is referred to as
state or situation space S, feature space X or simply called input space. In this thesis the notations
X and S are used interchangeably in order to adhere to the typical notations used in the current
context’s literature. See Appendix A for an overview of notations used in this work.
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where each dimension j = 1 . . . n refers to another descriptive feature of a data
instance d ∈ D in the training sample. For example, the salary, the age and the
civil status would be descriptive features for an automated credit status decision.
The entirety of features is also referred to as covariates or independent variables. To
induce the desired hypothesis, the algorithms often have to learn, or rather optimize,
a number of model parameters θ. These learning parameters are sometimes also
referred to as weights or coefficients in the literature. However, they should not
be confused with an algorithm’s hyperparameters, which are – at least in the usual
sense – not subject to learning. Rather they need to be configured a priori by the
human expert applying the ML algorithm. Nevertheless, research branches such
as hyperparameter optimization or Automated Algorithm Configuration [HNT+17]
exactly deal with this subproblem.

The most prominent tasks in SL are known as classification and regression. In clas-
sification, the target variable (or dependent variable) is categorical. This means that
there is no inherent order in the possible targets y ∈ Y . It also implies discreteness.
Technically, one would usually encode Y ⊂ N to represent the classes in a program.
Subcategories of classification are: (1) Binary classification, where only two classes
Y = {0, 1} exist (e.g., a tumor can be benign= 0 or malignant= 1). (2) Multi-
class classification, where |Y | > 2, meaning that there are more than two categories
or classes. (3) Multi-label classification, where each data instance can be assigned
multiple classes (or labels), i.e., Y = P(Y ) \ ∅ (e.g., genres of a song in a music
library). Many of the theoretical insights assume the first subcategory of binary
classification, however, the transfer to the other categories is often straightforward.
Typical applications of SL techniques are for instance, credit card fraud detection,
spam filters, medical diagnosis, or customer churn prediction. Further prominent
results reported since the rise of DNNs come from the application to the task of
object recognition in images.

Regression, on the other hand, refers to predicting a scalar (continuous) target value
Y ⊆ R. As for classification, the applied models typically need to capture non-linear
relationships between the covariates and the target variables. Exemplary application
scenarios would be the prediction of house prices, forecasting of energy consumption,
or even stock trading. Another application domain, which also serves as benchmark
scenario in this thesis, is the more abstract task of function approximation. Here,
an unknown function f(~x) : Rn → R is to be reconstructed on the basis of a number
of available samples

(
~xi, f(~xi)

)
of that function.

Unsupervised Learning

In contrast to the SL task, in Unsupervised Learning (UL) scenarios the data in-
stances are not annotated, i.e., no ground truth yi ∈ Y exists. This means that
the task shifts from learning a mapping of an input ~x ∈ X onto a target variable
y ∈ Y , to finding regularities, correlations or similarities in the available data. This
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is accomplished only on the basis of the n features x(j)
i (j = 1 . . . n) of the avail-

able data instances in D := {~xi}. Revealed structures can then be used to reduce
the dimensionality of the feature space, a task called (dimensionality reduction), or
to figure out the most influencing or irrelevant features by applying feature selec-
tion. Clustering, i.e., automatically grouping instances in order to form “clusters”
of similar data instances constitutes another task achievable with this paradigm.
UL techniques for instance can be incorporated to preprocess the available data in
order to reveal certain patterns or to reduce the data complexity for a more efficient
processing by the applied algorithms. In this thesis, UL takes a back seat. Never-
theless, in Section 10.2, it will be made use (at least conceptually) of Kernel Density
Estimation, which can be regarded as kind of a Statistics means to UL.

Semi-Supervised & Transductive Learning

Between SL and UL, a further category called Semi-Supervised Learning (SSL) [HS13]
can be found in the literature. Here, it is assumed that the available data can be split
up into a set of labeled instances L and a set of remaining unlabeled data instances
U such that D = L ∪ U . The underlying task is still a SL one. However, with the
implicit assumption that it is beneficial for the algorithms’ predictive performance
to further incorporate the unlabeled data instances in U during the construction of
the model. At this point, the term Transductive Learning (TL) is introduced, which
stays in contrast to the inductive means of learning as mentioned before. The term
TL or transductive inference is due to Vapnik [Vap98; GVV98]. Vapnik’s motiva-
tion is to omit the intermediate step of learning a general model via induction which
he deems as solving a more general problem in the first place. His transductive
approach is to directly solve the actual problem, i.e., assigning a target value to a
formerly unseen data instance (i.e., not present in L), via using only the particular
data examples available in D – regardless of being labeled or not. Transduction
can therefore be regarded as a third category complementing induction (inferring a
general rule from particular cases) and deduction (concluding from a general rule
to a specific case). TL and SSL are closely related. However, the motivations differ
quite a bit [CSZ06].

Case-based Reasoning

In analogy to human reasoning, the field of Case-based Reasoning (CBR) deals
with analogies found in previous cases, i.e., experiences regarding certain problems
and their corresponding solutions [AP94]. Also known under the name instance-
based reasoning, CBR approaches are centered around a so-called case base (or case
memory) which can be queried in case of new situations for which an ML algorithm is
asked to obtain an appropriate output. A typical CBR cycle comprises four phases:
(1) retrieve the most similar case from the case memory. (2) reuse the determined
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‘most similar’ case for solving the current problem instance at hand. (3) revise, i.e.,
adapt the memorized case to better fit to current and future situations. Finally,
(4) retain the adapted case or parts of it by storing it as new memory in the case
base if it is deemed useful for the future. As becomes apparent, CBR strongly
relies on the assumption of similarity in its reasoning process. Instead of building
a model in an inductive manner and deducing solutions for new cases from the
model, in CBR conclusions are drawn directly from memorized experiences. This,
in turn, is reminiscent of transductive inference as discussed above and as stated by
Gammerman et al. in [GVV98]. In general, the term CBR does not refer a certain
set of algorithms directly, but can be understood as a general working principle for
reasoning based on past experiences. It is not clearly prescribed how cases have
to be represented. This can be either by simple data instances in terms of feature
vectors and target variables, or by rather rich knowledge representations such as
subsumptions of similar cases or ontologies. However, this thesis shares the common
mindset with CBR in that the direct utilization of past experiences are deemed
highly beneficial in terms of accelerating early phases of learning where an accurate
model can usually not be assumed so far.

Active Learning

Conventional SL algorithms can be thought of learning in a passive manner. They
process incoming data instances either provided online or by existing training sets
and attempt to learn a corresponding hypothesis. They take the data as it is and
do not reflect on whether some data instances might be of higher value than others.
In the field of AL [Set09], the learning algorithm is extended with the capability to
query a so-called oracle for providing the correct label of a selected data instance, or
at least a confident guess about it. The oracles are typically expected to be human
experts which are now explicitly taken into the learning loop. According to Settles’
survey [Set09], three main categories of AL can be found in the literature: (1) Pool-
based AL strongly adheres to the SSL mindset. Also a small set of labeled L and
a disjoint set of numerous unlabeled instances U is assumed. The rationale behind
considering unlabeled data is the assumption that the acquisition of unlabeled exam-
ples from a given learning task comes at far lower costs. In contrast, the annotation
by a human expert is expected to bind a huge amount of monetary resources. Thus,
an AL algorithm is enabled to actively seek data instances from U that contribute
most to effectively reducing the prediction error of the SL algorithm. (2) Stream-
based AL differs from the former approach in terms of the decision when to query the
oracle. Here the decision is felt for each incoming data instance individually at the
time it appears for the first time. Thus, in this setting, the SL algorithm is expected
to learn in an incremental or online manner. That is, roughly speaking, building a
model instance by instance from a continuing stream of incoming data (cf. to the
corresponding section below). (3) Query Synthesis constitutes the third category.
It is concerned with generating artificial data instances from the feature space X
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and to subsequently query the oracle for the target value. This methodology was
found to bear the risk of potentially obscuring human oracles, since the synthesized
data instances might be either irrelevant or, even worse, implausible [BL92]. As
an extension to the AL framework, in [DC08] Donmez and Carbonell introduced
Proactive Learning (PAL). With PAL, a new ML branch is proposed that aims to
overcome certain limitations of the original AL setting. Among these, the restriction
to only one oracle, the omniscience and absence of oracle reluctance, as well as the
assumption of equal costs for all queries are explicitly focused. Even if the name
conveys the impression of a “proactive” learning behavior, Donmez’s and Carbonell’s
perspective on proactive learning is rather different from the perspective which is to
be conveyed in this thesis’ Chapter 10.

Reinforcement Learning

Besides SL and UL, usually a third overarching category of ML appears in most
overview articles and books – the field of Reinforcement Learning (RL). In this
paradigm, a learning agent exists and acts within an environment in which it has
to learn a certain task via interactions. Following the principle of trial-and-error,
this agent learns how to “survive” by successively performing actions from an action
space a ∈ A to move within or modify the environment in other ways. This leads to
a transition of the current state st to the next state st+1, where all possible states
are from a state space S. The agent continually perceives the current state in each
step. I then always decides on the next action based on the currently observed state
s retrieved from the environment. Depending on the appropriateness of the real-
ized action, the agent receives a so-called reward which can be positive (payoff) or
negative (penalty). It reinforces or discourages the agent to perform this particular
action again with respect to the observed state, respectively. A conventional RL
agent always acts goal-oriented. That is, it tries to maximize the received cumu-
lative reward over time. Thus, the reward signal implies the degree of the agent’s
goal achievement due to its actions. Typical tasks for RL agents are (sequential)
control problems. Consider the previously introduced running example: An intelli-
gent traffic light controller (agent) monitors the incoming traffic flows (states) and
adapts the green phases of the traffic lights (actions) installed at an urban intersec-
tion (environment). The task can either be modeled as single-step mode-switching
task, i.e., a simple selection of another signal plan as a response to the current traffic
situation. Or as sequential control task, where the green times of the traffic light
are successively increased or decreased instead of exchanging the entire signal plan
(cf. Ch. 7 for a brief introduction to traffic terminology).

From an RL perspective, a control problem is modeled by means of a Markov Deci-
sion Process (MDP). A deterministic MDP can be defined by:

1. A state (or situation) space S,
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2. An action (or configuration) space A,

3. A state transition function τ : S ×A→ S,

4. A reward function r : S ×A→ R.

It is called “Markov” since it is assumed that the environments dynamics, i.e., state
transitions and rewards, depend only on the immediately preceding state and action.
A state is regarded as to fulfill themarkov property if it includes all information about
past agent-environment interactions that make a difference for the future. [SB98] For
the sake of simplicity, the explanations are restricted to the deterministic case here.
This implies that the state transitions and rewards are not subject to stochastic
influences and always evaluate to the same values. In non-deterministic settings,
the transition function would be defined as probability distribution τ(st, st+1, at) =
P (st+1|st, at) over the possible states st+1, given the current state st as well as
the executed action at. In the same fashion, the reward function would be defined
as r(st, at) = P (rt|st, at) from which the expected values can then be calculated.
The task of an RL algorithm (here called agent) is to figure out an optimal policy
π∗ : S → A on the basis of subsequent interactions with the environment. A policy
determines an agent’s action selection strategy. Depending on its internal working
principle, it tries to select those action that maximizes the expected return in the
long run. An often pursued approach is then that each state-action pair gets assigned
a quality value Q(s, a) which has to be estimated over time.

Generally, it can be differentiated between single-step problems with only one single
reward received after deciding for a particular action. Afterward the problem ends,
and a new instance is presented to the agent. This mostly resembles SL tasks,
where no sequence of state-action decision is necessary to solve a given problem. For
instance, a classification can be learned by providing a reward of 1000 if the selected
action (e.g., a class) was correct for a given state (e.g., a patient data record) and
0 if not. The more common type are multi-step problems (or sequential decision
problems) modeled by the abovementioned MDPs. Here the difficulity arises due
to the so-called credit assignment problem. Until a certain goal is reached (e.g., an
agent attempting to exit a maze), possibly only rewards of 0 are payed out. In case
of reaching the goal, finally a positive reward is received. For the latter category, the
Q values are estimates of the expected value of the cumulative reward obtainable
until the end of the learning task. If tasks have a particular goal to be achieved
(e.g., maze exit), have a specified end due to a maximum time limit (e.g., restricted
battery capacity), or where an agent can fail (e.g., a pole balancing scenario where
the pole falls over) this implies a so-called episodic task. In the case of infinite
duration (or at least undefined or unknown endings) tasks are regarded as being
continuous. An example was already given above. The traffic light control scenario
is a continuous task with no predefined ending. The concept of discounting by a
factor γ ∈ (0, 1), eventually realizing a geometric series, needs to be incorporated to
guarantee finite cumulative reward sums.
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With these two ingredients, the agent can iteratively learn a policy π(s) to decide
which action to choose to maximize the expected cumulative reward in the long run,
on the basis of the current Q value estimates Q̂(s, a). The possibly most prominent
algorithm to achieve this is Q-learning [WD92].

RL approaches can be further divided into model-free approaches such as Q-learning
or SARSA [SB98], which try to find a policy without building explicit models of
τ and r. A second category are the model-based approaches, as realized by the
DYNA approach [Sut91], for instance. Explicit models of the environment and its
dynamics are build via function approximation. Afterward, based on the learned
models the optimal policy is determined via e.g., planning approaches. At this place,
the mixture of the RL with the SL paradigm becomes apparent.

As Sutton and Barto state in [SB98], another key aspect that distinguishes RL from
other ML paradigms is the existence of the so-called exploration vs. exploitation
dilemma. This dilemma captures the fact that the agent has to learn the quality of
actions in certain states by means of trial and error, i.e., by exploring the effects of
different actions in the same state. This naturally involves performing inadequate
actions which results in penalties from the environment. This trade-off is also of very
high relevance for OC and thus for this work. OC systems are expected to comply
to exploration boundaries guaranteeing functional safety, which stays in contrast to
freely exploring the problem space via trial-and-error.

Offline, Incremental and Online Learning

A further distinction can be made with regard to the time when the data becomes
available to the ML algorithms. In a typical SL setting, the data is assumed to
be available a priori in form of a labeled data set D, which is then split up into a
training portion and a test portion (and possibly a further validation portion) for
evaluation purposes. This kind of learning is also called batch learning, because the
training data is available as a whole batch and can be feed at once to the algorithms.
As the data is already available at the design time, it is also called offline learning.
The applied algorithms can be trained with data on which preceding preprocessing
operations were performed, and only the final trained model is deployed at runtime
when the system acts online, i.e., with actual influence on the productive system.

At the other end of the spectrum, the Online Learning (OL) setting can be found
(cf. [CC06; OR01; NCK11]). In this setting, the data arrives instance-by-instance.
Accordingly, the algorithms have to update their models on-the-fly. There exist
variants which further require that each data instance must only be considered once
and then thrown away. With that, the memory costs for storing samples shall be kept
at a minimum. This is called one-pass learning. In Online Machine Learning (OML),
there is no clear separation between training and testing instances. Therefore, a so-
called test-the-train or prequential learning strategy is pursued in order to allow the
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algorithms to learn from made experiences. This means that each time a new data
instances is presented to the algorithm, it first tests its current hypothesis on it, then
compares the output with the true target value, and afterward incrementally adapts
(i.e., trains) the model for this particular instance. It should be noted that not
the entire model is supposed to be completely retrained based on all data instances
collected over time. This would rather be regarded as lazy learning or instance-based
learning in the literature, where a ML algorithm postpones the model building step
until a new data item upon which a prediction is to be made arrives. The k-nearest
neighbor algorithm constitutes an instance of this learning approach. Clearly, the
lazy learning notion is reminiscent of what previously was introduced as transductive
inference. However, it depends on the working principle of the lazily performed
prediction step. When a model is induced at the postponed time of prediction, this
again contradicts the TL philosophy.

A synonym for OL which can be found in the Data Mining domain is Data Stream
Mining. OML algorithms reveal their power in settings where an a priori acquisition
of training data is too expensive or simply unfeasible – maybe because the system
is too complex to anticipate all possible situations offline at the design time. This
kind of ML approach is also viable for learning in NSEs. Due to the inherent
dynamics of the underlying concepts and data generating processes the ground truth
might gradually drift or abruptly shift over time. This circumstance gave rise to the
formulation of the stability-plasticity dilemma [Dit+15]. It captures the trade-off
between the forgetting of older and possibly obsolete knowledge in favor of newly
constructed knowledge as a response to the most recent observations. Forgetting
older knowledge might turn out to be detrimental as soon as the situations which
where covered by the deleted knowledge parts occur again. A related term that
mainly focuses on the plasticity side of the aforementioned dilemma can be found
under the term catastrophic forgetting. This issues becomes even more important
when the memory for realizing an OML algorithm is limited. In the era of the
Internet of Things this might often be the case in view of the small and special-
purpose embedded systems brought out.

When facing Big Data scenarios, the vast amount of available records is too large to
be computed at once within the limited random access memory of most computers.
Therefore, a further category between the extremes of batch and online learning
exists which is called incremental learning. Here, the strict requirement for one-pass
and instance-by-instance learning is attenuated. Incrementally learning algorithms
are assumed to learn from small increments of data, also referred to as mini-batches,
which are provided via streams of incoming data. The size of these mini-batches
can be fixed or else variable. The employed algorithms are typically batch learning
algorithms enhanced with the capability to adapt to new data without the necessity
to be completely retrained from scratch. Accordingly, the learning appears to be
incremental. ML algorithms that make extensive use of data increments in order

23



Chapter 2. Background & Prerequisites

to overcome the aforementioned stability-plasticity dilemma can be found in the
branch of Ensemble Learning (cf. e.g., [Pol+01; DP13].

In the scope of this thesis, a learning technique that builds its knowledge base via
OL is in the spotlight. However, the strict requirement for one-pass learning will
be attenuated for the method introduced in Chapter 9, since naturally interpolation
needs a set of sampling points. Nevertheless, always only a small subsample of all
the data instances presented to the algorithm so far is stored and gets continually
updated in order to also consider the stability-plasticity dilemma.

Imbalanced Learning

The difficulty of learning problems exhibiting drifting data distributions which in
turn feed the stability-plasticity dilemma can be further increased by prevalent im-
balances in the data. A well-recognized issue for the classical SL task of classification
is the so-called class imbalance problem. The existence of class imbalances is a well-
studied issue in the domain of ML [Cha05; HG09; Wei04]. Class imbalances occur
when the available data set for training an SL algorithm can be divided into so-
called majority and minority classes. A majority class is represented by far more
data instances than the minority class what causes sparseness of samples from the
latter. This leads to overestimates in the model regarding the majority class and
consequently negligence of instances from the other. Most learning algorithms as-
sume balanced training data which naturally leads to accuracy losses in the presence
of class imbalance. A lot of research has been conducted to cope with this issue.
(Re-)Sampling approaches such as oversampling of the minority class and under-
sampling of the majority class are popular methods to recreate a balance in the
available data set (see [HG09] for a comprehensive survey).

Weiss [Wei04] classifies imbalanced data into the following categories: (1) rare
classes, and (2) rare cases. The former issue corresponds to the well-understood but
still important class imbalance problem. The latter issue on the other hand points
to the sparseness resulting from the distribution of the data instances over the input
space. That is, some feature vectors ~x appear seldom so that the algorithm has
difficulties to learn and thus to generalize appropriately – clearly a cause for knowl-
edge gaps. A sort of combination of both issues is termed small disjuncts [Lóp+13].
Those can be understood as rare cases that are surrounded by instances from the
majority class. There exist a variety of approaches to alleviate the negative ef-
fects caused by imbalanced data. For instance, the aforementioned (re-)sampling
methods [WMY15; Cha05]. A more sophisticated approach, however, is introduced
by Chawla et al. in [Cha+02]. The Synthetic Minority Oversampling Technique
(SMOTE) synthesizes new minority class instances on a straight line between two
actually received instances from that underrepresented class. A comprehensive sur-
vey on dealing with imbalanced data is provided by Lopez et al. in [Lóp+13]. Open
challenges such as regression in imbalanced scenarios, multi-class problems bearing
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imbalances as well as online learning from imbalanced data streams are reviewed by
Krawczyk in [Kra16]. A rather recent research issue is the challenge of online class
imbalance learning (OCIL) [NCK11; WMY13; WMY15]. It addresses the issue of
how to cope with class imbalances when no finite set of training data is available at
design time which precludes a preprocessing by means of resampling. When data
instances arrive one-by-one, no statistical distribution analysis can be conducted at
the design time. This renders it difficult for the OML algorithm to generalize appro-
priately without neglecting the minority class. Thus, OCIL combines the challenges
of class imbalances with the specific issues OL bears.

Since this thesis focuses on dealing with KGs at the system’s runtime, for which data
imbalances constitute a possible cause (cf. Sect. 3.1), the techniques presented in
the following chapters also constitute countermeasures against the OCIL problem.

Evolutionary Machine Learning

As a last category of ML algorithms, the class of Evolutionary Machine Learning
(EML) is mentioned in order to reflect its high relevance in this thesis. EML stud-
ies ML algorithms that generally leverage the power of Evolutionary Algorithms
(EAs). Kovacs in [Kov12] reviews the field and provides a comprehensive introduc-
tion to Genetics-based Machine Learning – a designation that is superseded by the
term EML today. EAs have proven very efficient in complex black-box optimiza-
tion tasks. These are tasks where no information about the structure or gradients
of the underlying function under consideration exists. As population-based meta-
heuristics, EAs rely on probabilistic genetic operators such as selection, recombi-
nation and mutation. With those operators, specific pressures are exerted to the
population of individuals (i.e., possible solution candidates) that guide the evolu-
tion over generations. Selective pressure, genetic drift, the Baldwin effect, etc. All
are concepts inspired by evolution theory that need to be considered and can be
leveraged to obtain effective and efficient optimization performance. In contrast,
non-evolutionary ML algorithms mainly make use of gradient-based optimization
techniques, such as the popular gradient descent algorithm, in order to find opti-
mal coefficients for the predictive models to be learned. A downside of EAs and
probabilistic metaheuristics in general is the fact that it cannot be guaranteed that
the global optimum will be found. In many practical applications, however, a near
optimal solution is often sufficient. Especially in highly complex objective functions,
e.g., with a high degree of multi-modality, algorithms that solely rely on gradient
information show deficiencies in terms of escaping local optima. The underlying
objective functions are also referred to as fitness functions in the Evolutionary Com-
putation (EC) context. This is where EAs reveal their strengths. They do not rely
on gradients but rather on fitness values of individuals alive in the current genera-
tion which can then be captured by the evolutionary process following the survival
of the fittest principle. The population of individuals can be considered as moving
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through the search space. Furthermore, under the presence of concept drift affect-
ing the surface of the fitness function, evolution is deemed a viable candidate to
adequately deal with that issue. Leveraging the aforementioned strengths of EAs
and EC in general in the context of designing competent learning algorithms con-
stitutes the research goal of EML. In EML, EC techniques can be applied to nearly
any subproblem of ML, such as coefficient optimization, hyperparameter configu-
ration, ensemble formation, etc. A huge variety of algorithms emerged in the last
decades and they have found to perform competitively compared to conventional,
non-evolutionary approaches [OCB08]. Evolutionary variants of many algorithms
have been devised, among them: (1) Evolved ANNs, also found under the umbrella
of Neuroevolution [Yao99; Sta+19]. (2) Genetic Fuzzy Systems [Her08]. (3) Evolu-
tionary Ensemble Machines [SC06]. But also idiosyncratic techniques emerged. For
instance Genetic Programming [Ban+98] and Learning Classifier Systems [LSW00].
The latter initiated a thoroughly investigated subcategory of EML which is still un-
der active research and also is in the spotlight of the present thesis – Evolutionary
Rule-based Machine Learning (ERBML).

Integration of this Thesis into the Scientific Landscape of ML With this
classification of ML algorithms at hand, eventually the methods that will be devel-
oped in this thesis can be ranged in:

It will be demonstrated how XCS, an ERBML algorithm, can be extended with in-
terpolation and AL techniques. XCS working in a single-step RL manner, which can
be mapped to a SL setting, constitutes the main subject of investigation. Due to the
fact that XCS is an OML technique, a priori available batches of data instances are
not assumed. Empirical results corroborating the beneficial effects of the enhanced
XCS will mostly be obtained by the application to the tasks of online classification
as well as online regression for function approximation purposes.

Furthermore, the idea of transductive learning plays an important role in this thesis.
Even if the concepts and approaches introduced by Vapnik et al. (cf. e.g., [GVV98])
are not adopted directly, techniques that interpolate new knowledge elements from
collected experiences or already existing elements in the knowledge base are going to
be developed. This way of knowledge construction can be regarded as transductive.
New knowledge, which is aimed to predict on particular, yet unseen cases, is directly
inferred from existing knowledge elements for similar cases without inducing a model
first. For instance, instead of making a detour over assessing the overall solution
to infer the target value for a new case (deduction), particular cases accommodated
within existing knowledge elements are directly used for the prediction (cf. Ch. 9).

In the last part of this work, Chapter 10, the concept of AL takes a central role.
XCS is extended toward an Active Learning Classifier System via adopting pool-
based and query synthesis techniques.
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Last but not least, XCS belongs to the class of Michigan-style LCS, an ERBML
technique that makes strong use of Genetic Algorithms (GAs). As will become clear
in Section 3.4, the inherent evolutionary dynamics of XCS, and EML systems in
general, is considered a key ingredient to deal with non-stationary nature of SLAS.

2.3. Multivariate Scattered Data Interpolation

The general problem formulation for interpolation can be defined as follows:

Definition (Interpolation problem). Given a limited set of so-called sampling points
SP := {si =

(
~xi, f(~xi)

)
}i=1...m, find a continuous function f̃ : X → R that maps a

so-called query point ~xq = (x(1)
q , . . . , x

(n)
q ) ∈ X from an unknown function’s domain

(or input space) X ⊆ Rn, to a function value f̃(~xq) that ideally equals the real
function value f(~x) of the unknown function f such that f̃(~xi) = f(~xi) holds.

The desired continuous interpolation function is sometimes referred to as interpolant.
The known sampling points si are represented by 2-tuples si = (~xi, f(~xi)) each com-
prising a sampling point coordinate ~xi = s

(1)
i , as well as an associated true function

value f(~xi) = s
(2)
i . The latter is abbreviated by fi in the following. In contrast to

the more general task of approximation, previously observed or otherwise available
sampling points si ∈ SP are not just taken into account for fitting a parametric
model which attempts to minimize a particular error between the approximated
and the true function value. As stated in the definition above, for interpolation, the
available sampling points must be exactly passed by f̃(~x). Therefore, the additional
constraint f̃(~xi) = f(~xi), ∀si ∈ SP must hold.

Figure 2.1 depicts this distinction:

𝑥𝑥 𝑥𝑥

𝑓𝑓(𝑥𝑥) 𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑥𝑥)

𝑠𝑠𝑖𝑖 = 𝑥𝑥, 𝑓𝑓(𝑥𝑥)

Figure 2.1.: Intuition of the difference between approximation (left) and interpolation
(right), following [SK11]
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In this thesis, the focus is set on multivariate interpolation, where the domain of
the functions are of dimensionality n > 1, i.e., X ⊆ Rn. This naturally restricts
the available methods that can be considered in this work. For the interpolation
of a query point’s function value, not any available sampling point needs to be
taken into consideration. Accordingly, interpolation methods can be roughly divided
into two categories [Fra79]: (1) Global methods, that consider each of the available
sampling points for interpolating the function value f̃ of the query point ~xq. (2)
Local approaches, that only incorporate sampling points in a certain proximity of
~xq.

Another distinction can be made between grid-based and scattered data interpola-
tion. The former category assumes that the sampling points are structurally orga-
nized in a regular grid what allows for the exploitation of mathematical conveniences.
In this work, however, only the second category can be applied reasonably. This is
because the acquisition of the sampling points constitutes a part of the self-learning
system which is invariant and thus can hardly be actively biased. This aspect will
become more clear in Chapter 4.

All methods considered in this thesis have in common that they are (at least implic-
itly) distance-based. More precisely, the influence of each considered sampling point
is directly related to the distance to the query point ~xq within the usually real-valued
input space X. This is a common approach to deal with scattered sampling points.
Nevertheless, these techniques are usually straight-forwardly applicable to sampling
points that are organized in a grid.

In the following, selected interpolation techniques from different classes which are
used in this thesis will be described. Some are based on triangulation, others simply
need to calculate Euclidean distances between the sampling points and the query
points The most sophisticated interpolation method considered here relies on Radial
Basis Functions (RBFs). At the end of this section, a discussion about the suitability
of the introduced techniques is given.

2.3.1. Direct Neighborhood-based Interpolation

Neighborhood-based interpolation techniques belong to the class of local methods,
since they rely solely on sampling points si in the direct proximity of the query
point ~xq. In contrast, global methods use all available sampling points what results
in an increased (re-)calculation complexity. Global methods are thus in general more
sensitive to an increasing number of sampling points, where this is not directly the
case for neighborhood-based variants [LH10]. Therefore, two representatives of the
category of neighborhood-based interpolation methods – Nearest Neighbor (NeNe)
interpolation and Natural Neighbor (NaNe) interpolation – are first described.
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Voronoi Diagrams

The basis of both NeNe and NaNe forms a so-called Voronoi tessellation and its
geometric dual the Delaunay triangulation. Figure 2.2 illustrates this duality rela-
tionship. Voronoi tessellation is a technique for partitioning the entire input space
X into a unique graph which consists of a finite number of Voronoi cells determined
on the basis of the sampling points ~xi = s1

i . The resulting graph is called Voronoi
diagram. Each Voronoi cell appears as a convex polyhedron within an n-dimensional
metric space. For instance, the Euclidean space with its Euclidean metric derived
from the 2-norm.

According to de Berg, a Voronoi cell can be defined as follows [Ber+08]:

Definition (Voronoi cell). For each sampling point si, its associated Voronoi cell
Vsi comprises all points ~x ∈ X that are closer to its coordinate ~xi, than to any other
sampling point’s coordinate s(1)

j = ~xj.

Vsi
:=
{
~x ∈ X

∣∣∣ d
(
~x, s1

i

)
2
≤ d

(
~x, s1

j

)
2
, ∀j 6= i

}
(2.1)

Here, d (x, y)2=‖x− y‖2 denotes the Euclidean distance between two arbitrary vec-
tors x and y. Each time a new site s∗i is added to a Voronoi diagram, a new cell V∗si

appears. Thus, a Voronoi diagram can be expressed as the set of all Voronoi cells
build upon a set of sampling points SP :

VDSP :=
{
Vsi

}
i=1...|SP | (2.2)

For the two-dimensional case and provided that all m sampling points are known
a priori, a complete Voronoi diagram can be constructed in O(m logm) time and
O(m) space by using Fortune’s algorithm [For86]. Due to the inherent dynamics
of NSEs which results in the necessity for OL or at least incrementally working
algorithms, this assumption does usually not hold for the application within SLAS.
To cope with such a continually changing set of sampling points SP , knowledge
about the duality relationship (depicted in Fig. 2.2) is essential for the algorithmic
implementation of the concrete interpolation techniques which will be described in
the next two paragraphs. For more details about this relationship, please refer
to [Ber+08; LH10].

Naïve Approach: Nearest Neighbor Interpolation

The NeNe interpolation method searches for the coordinate ~xi of the i-th sampling
point si that has the shortest distance to the current query point ~xq. It then assigns
the associated function value fi to the queried data point ~xq. More formally, this can
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Figure 2.2.: Duality relation between Voronoi tessellation (black solid lines) and Delaunay
triangulation (red dashed lines)

be expressed as follows (remember that the first component of a sampling point’s
tuple is its coordinate, i.e., s(1)

i = ~xi):

snearest = argmin
si∈SP

d
(
~xq, ~xi

)
2 (2.3)

Thus, snearest is the sampling point whose coordinate ~xi minimizes the distance to
the query point ~xq. The actual interpolation is then performed by assigning

f̃(~xq) := fnearest = f(~xnearest) = s
(2)
nearest. (2.4)

Given a Voronoi diagram of the available sampling points si ∈ SP , the NeNe in-
terpolation would first identify the Voronoi cell which contains the query point xq.
In second step, exactly the function value of the site si that determines the cell
Vsi would be assigned as stated above. In the planar, or 2-dimensional case, the
identification of the Vsi encompassing the query point can be achieved in O(logm)
time, where m is still denoting the number of sites in the sampling point set SP
(cf. [Ber+08]). However, this efficiency holds only true for an already constructed
static Voronoi diagram and for input dimensions up to n = 2.

This naïve approach results in a step-wise and non-smooth interpolant f̃ . Intuitively,
the function value assigned by Equation 2.4 does not change as long as a query point
~xq finds its minimal distance to another sampling point. The computational com-
plexity of this interpolation method depends on the realization of the point location
challenge. This is also known as the nearest neighbor search problem. An exhaustive
search would calculate the distance to any available sampling point si and returns the
one with the smallest distance to ~xq. This results in a linear computation complex-
ity, i.e., O(m), assuming a constant query time for each dimension. However, more
efficient algorithms for exact nearest neighbor search, even for dimensions higher
than n = 2, exist. Examples are BSP-trees or kd-trees which can solve the nearest
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neighbor location problem with sub-linear computational time [Ber+08]. However
most often these methods come at the expense of super-linear space complexity
which grows exponentially with the number of dimensions [AI18].

Natural Neighbor Interpolation

In contrast to NeNe, the NaNe technique not only considers the closest sampling
point snearest for the interpolation of a query point ~xq, but particular surrounding
si. More precisely, in a given Voronoi diagram VDSP , all sampling points sj ∈ SP
sharing an edge with the Voronoi cell Vsi of a specified sampling point si ∈ SP are
taken into account. These sj are called natural neighbors of si. For example, in
Figure 2.2, the natural neighbors of site ~x4 are ~x2, ~x3, ~x5 and ~x6.

In terms of the dual Delaunay tessellation, the natural neighbors can be defined as
all vertices which share a common edge with a reference site si [LH10].

Definition (Natural neighbors). Let si be a sampling point under consideration
and Vsi the corresponding Voronoi cell, then according to [BU08], the set of natural
neighbors is given by:

SPNaNesi
:=
{
sj ∈ SP

∣∣∣ Vsj ∩ Vsi 6= ∅
}
⊂ SP (2.5)

Based on the notion of natural neighbors, Sibson in the 1980’s devised the so-called
Sibson weights or else natural neighbor coordinates which he used for smooth inter-
polation purposes [Sib81]. The interpolation based on the natural neighbors works
as follows:

As a first step, a new so-called second-order Voronoi cell V+
~xq

is virtually added to
the Voronoi diagram VDSP . This second-order cell can be interpreted as a new
cell that would appear, if ~xq became a new sampling point s+. By means of this
virtual addition, potentially overlapping areas with the first-order Voronoi cells Vsi ∈
VDSP can be identified. The volumes of these overlapping areas, normalized by the
volume of the second-order cell V+

~xq
exactly determines the Sibson weights or natural

neighbor coordinates (cf. [Sib81; LG04]).

Definition (Sibson weight). Let V ol(V) denote the volume of a Voronoi cell, or a
polytope that resulting from the intersection Vsi ∩V+

~xq
of a first- and the second-order

Voronoi cell. Then a Sibson weight can be calculated by:

w~xq
sj

=
V ol(Vsj ∩ V+

~xq
)

V ol(V+
~xq

)
(2.6)
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Figure 2.3.: Natural Neighbor Interpolation – Formation of overlapping areas (also Sibson
Weights) by virtual insertion of second-order Voronoi cell (blue-rimmed area)

In Figure 2.3 this relationship is illustrated. The blue-rimmed convex polygon shows
the second-order cell V+

~xq
. The area highlighted in dark blue depicts the specific

overlap area for the natural neighbor s2 with its coordinate ~x2.

Having determined the Sibson weights w~xq
sj , in a second step the interpolation is

realized by calculating the weighted sum of the function values fj corresponding
to the natural neighbors of ~xq. Equation 2.7 summarizes this calculation step. It
essentially consists of a convex combination of the function values corresponding to
the potential natural neighbors of ~xq.

f(~xq) =

∑
sj∈SPNaNe

~xq
w
~xq
sj · f(sj)∑

sj∈SPNaNe
~xq

w
~xq
sj

(2.7)

The NaNe technique leads to a smooth interpolant that is continuous except at the
given sampling points [Bob+09]. Another advantage is the implicit adaptation to
different sampling point densities within the domain (or input space) X, which is
directly captured by the Voronoi diagram. Most of the Voronoi diagram calculations
can be carried out on the dual Delaunay graph which allows for a more efficient
computation. For implementation details of this algorithm the reader is referred
to [LG04; LH10; SBM95; Sib81].

2.3.2. Shepard’s Methods

The next class of interpolation methods is due to Shepard [She68]. Both NeNe
as well as NaNe interpolation rely on the neighborhood of sampling points in SP .
Thus they only implicitly consider distances among the known and the queried data
points. Back in 1968, Shepard has already proposed an approach similar to NaNe
interpolation. The similarity becomes apparent by having a look at the general
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way of formulating the interpolant as a linear combination of the sampling points’
function values and corresponding weights that here explicitly consider the distances
to the query point.

Inverse Distance Weighting

Shepard’s first approach falls in the class of global interpolation techniques. Thus,
all available sampling points si ∈ SP are taken into account. He defined the basic
form, also called Inverse Distance Weighting (IDW), as follows [She68]:

f̃(~xq) =
∑
iwi · fi∑
iwi

(2.8)

with i = 1 . . . |SP | and the weights wi defined by

wi =
(

1
d
(
~xq, ~xi

)
2

)p
(2.9)

Thus, the weights constitute the inverse distance of the query point ~xq to the i-th
sampling point’s coordinate ~xi. The power parameter p controls to which degree the
weights wi decrease when the distance to ~xq increases and vice versa. Essentially, the
IDW method interpolates any query point ~xq ∈ X by calculating a weighted average
of the already known function values fi. Hence, it is theoretically not restricted
to any dimensionality as is the case for the NaNe technique which requires the
calculation of n-dimensional polytope volumes.

The method is therefore straightforward to implement. Considering the time com-
plexity of IDW, the calculation effort grows linear with the number m of available
sampling points. It has been recognized that too much influence is assigned to sam-
pling points located relatively far away from the actual query point (cf. e.g., [DD16]).
In order to overcome this issue, modifications have been proposed in the litera-
ture [She68; FN80]. The most essential one will be presented in the subsequent
section. Another disadvantage directly identified by Shepard in his original article
is the so-called flat-spot problem, also mentioned in related studies [GW78; MT03;
DD16]. In the succeeding section this aspect is revisited.

Modified Shepard’s Method

The name Modified Shepard’s Method (MSM) is an umbrella term that summarizes
various extensions of Shepard’s original method. One of the most distinguishing
aspects is the enhancement toward a local interpolation scheme. To transform Shep-
ard’s original method into a local approach, the weight calculation has to be modi-
fied. Franke and Nielson comprehensively developed such a modification in [FN80].
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In order to overcome the aforementioned issue of IDW that too much influence is
attributed to sampling points far away from the query point, according to Shep-
ard [She68], simply not all available sampling points si ∈ SP should be considered.
To restrict the set of considered si, a radius Rw is defined, which serves as a spherical
boundary in a sense that only sampling points within the resulting hypersphere are
assigned non-zero weights. More precisely, only those sampling points si satisfying
d
(
~xq, ~xi

)
2 ≤ Rw are taken into account and actually impact the interpolated value

f̃(~xq).

Accordingly, the weights for local Shepard interpolation are calculated following
Equation 2.10 (adopting the notation of [Ren88]):

Wi(~xq) =


(
Rw − d

(
~xq, ~xi

)
2

)
+

Rw · d
(
~xq, ~xi

)
2


2

(2.10)

Rw > 0 defines the radius within which sampling points are considered for interpola-
tion. Formally, this is guaranteed by applying the function (·)+ := max {0, ·}. With
this modification, Shepard’s interpolation now constitutes a local-support method.

An adequate choice of Rw is crucial for an effective application of MSM. If the radius
is chosen too large, MSM possibly degenerates to a global method reminiscent of
IDW. On the other hand, if it is chosen too small, maybe too few sampling points
are considered for an accurate interpolation. To relieve the user from choosing an
appropriate radius, Franke and Nielson [FN80] proposed to automatically determine
the radius Rw dependent on a hyperparameter Nw. This parameter determines the
desired number of sampling points that should actually be used for the interpolation.
Assuming sampling points that are uniformly distributed over X, a suitable radius
is given by:

Rw = D

2

√
Nw

m
, (2.11)

where D = maxi,j d
(
~xi, ~xj

)
2 and m still denotes the number of all available sam-

pling points. The size of Nw is, however, still a hyperparameter which needs to be
carefully configured and it is highly dependent on the dimensionality of the func-
tion’s domain. Thacker et al. provide a summary of suggestions for the right choice
of Nw in [Tha+09]. The adaptive choice of Rw is considered valuable for the aims
pursued in this thesis – especially for problem spaces where the bounds are not
known a priori. An additional advantage is that the restriction to a certain subset
of sampling points reduces the computational effort for the interpolation.

The second modification thoroughly investigated in the literature, is the replacement
of the constant terms fi from Equation 2.8 by inverse distance weighted least square
approximations, also called nodal functions, denoted Qi(~x) in the following. This
treatment shall wipe out the recognized shortcoming referred to as the flat-spot
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2.3. Multivariate Scattered Data Interpolation

problem the interpolant bears at the sampling points si. Shepard stated that at
these locations the interpolant has zero directional derivatives, which he deemed an
undesirable and arbitrary constraint on the interpolation surface [She68]. To retain
the interpolation property of f̃ the constraint Qi(~xi) = fi must hold. For instance,
considering the n = 2 dimensional (i.e., bivariate) case, Franke and Nielson defined
Qi(~xq) as a quadratic polynomial:

Qi
(
x(1)
q , x(2)

q

)
= ai,1

(
x(1)
q − x

(1)
i

)
+ ai,2

(
x(2)
q − x

(2)
i

)
+ ai,3

(
x(1)
q − x

(1)
i

)2
+

ai,4

(
x(1)
q − x

(1)
i

)(
x(2)
q − x

(2)
i

)
+ ai,5

(
x(2)
q − x

(2)
i

)2
+ fi

(2.12)

The above notation can be interpreted as roughly resembling a Taylor series up to
the second order about the point ~xi, where the coefficients ai,j , j = 1 . . . 5 resem-
ble the partial derivatives with respect to the independent variables x(1)

q and x
(2)
q

(cf. [Tha+09; DD16]). The constant term fi at the end of the quadratic given in
Equation 2.12 ensures the fulfillment of the constraint mentioned above. This is
true since all differences within the expression evaluate to zero whenever the query
point equals the i-th sampling point’s coordinate.

To figure out a nodal function that reconstructs the underlying function f as good
as possible, Franke and Nielson proposed to again select a subset of the available
sampling points to retain the local-support property of the overall interpolant. Anal-
ogously to the selection of the sampling points that are considered for the linear
combination in Equation 2.8, a radius Rp and the corresponding weights W p

i are
determined as follows:

Rp = D

2

√
Np

N
(2.13)

W p
i (~xk) =

[(
Rp − d (~xk, ~xi)2

)
+

Rp · d (~xk, ~xi)2

]2

(2.14)

The index k refers to those sampling points that are considered for the optimization.
Again, Np is the desired number of sampling points that shall take part in the opti-
mization step. Based on the sampling points that fall within the sphere determined
by Rp, the following optimization problem needs to be solved to obtain the inverse
distance weighted least square approximation, Qi, of f around ~xi.

For all k = 1 . . .m
min
~ak

m∑
i=1
i 6=k

W p
i (~xk)[Qk(~xi)− fi]2 (2.15)
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Thus, coefficients ~ak = (ak,1, ak,2, . . . , ak,l) are seeked that minimize the squared
difference between the local approximation around ~xi, i.e., Qi(~xk), and the actual
function value fi, for all sampling points ~xk that fall inside the sphere (determined by
the radiusRp) multiplied with resulting weightsW p

i (~xk). The number l of coefficients
ak,j depends on the degree of the polynomial d which was chosen to approximate f
locally, as well as on the dimensionality n of the sampling point coordinates. More
precisely l =

((n+d
d

)
− 1

)
. The reduction by one is due to the constant term fixed

at fi in Qi.

Several implementations of MSM exist and have been published [Ren88; BM99;
Tha+09]. Each of these methods describes the use of the local inverse distance
weighted approximations Qi(~x) of the underlying function f . Variations for Qi(~x)
realized as polynomials of the second or third degree for two or three-dimensional
sampling points have been proposed. Berry and Minser extend Renka’s implementa-
tion to work with up to five-dimensional data in [BM99]. For this thesis, methods are
searched which are not restricted to the dimensionality of the input space X in gen-
eral. MSM interpolants indeed can be used for arbitrary-dimensional data when the
use of the local approximations are omitted. An alternative pointed out by Thacker
et al. in [Tha+09] would be to apply Qi(~x) to be a first-degree polynomial. Regard-
less of which local approximation is used, the number of available sampling points
plays an important role. In general, to find an approximation via a d-degree poly-
nomial for n-dimensional data, the optimization problem of Equation 2.15 involves
finding

(n+d
d

)
coefficients. To achieve this, at least the same number of sampling

points need to be available. For instance, to interpolate an n = 10 dimensional
function with MSM using nodal functions Qi(~x) realized by a polynomial of degree
d = 3, a total of

(10+3
3
)

= 286 coefficients have to be fitted and 286 sampling points
(supposed to be “nearby” to still remain a local method) are needed. This is often
infeasible and the computational minimization costs are considerably high (depend-
ing on the employed optimizer). Therefore, Thacker et al. propose to either choose
the constant values of fi as initially proposed by Shepard. Or to revert to linear
functions which only demand n+1 samples for the coefficient optimization step. For
the scope of this thesis, these suggestions of Thacker et al. appear to be plausible
and will be followed.

2.3.3. Radial Basis Function Interpolation

The use of Radial Basis Function (RBF) interpolation [Buh03] is another prominent
means for approaching the multivariate scattered data interpolation problem. The
assumption is that the function to be interpolated can be reconstructed by a linear
combination of certain basis functions φ(·) that exhibit certain characteristics. More
formally, this can be expressed by the following equation:
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f̃(~xq) =
m∑
i=1

αiΦi(~xq) (2.16)

with ~xq ∈ Rn and αi being scalar coefficients from the reals. Thus, the basis of
the linear space of all interpolants is chosen to be by {Φi}i=1...m, where each Φi

constitutes a shifted variant of a basic function Φ. More precisely, Φi(~xq) can be
written as Φ(~xq−~xi) which makes the “shift” more obvious. With that definition, the
reason why it is called basis function should be clarified. This technique, however,
also contains the term “radial” in its name.

A basis function Φ is said to be radial, when it satisfies

Φ(~x) = φ(||~x||), ~x ∈ X ⊆ Rn,

where φ : [0,∞) → R is univariate and || · || constitutes a norm on a vector space
such as the Euclidean norm || · ||2 on Rn.3 Accordingly, the value of Φ(~x) solely
depends on the radius. Put another way, it is spherically symmetric about its center
which is given by its argument ~x.

According to the more general notion of calculating a linear combination of certain
basis functions in order to build an interpolant (see Eq. 2.16), the most basic RBF
interpolation model can be formulated as follows:

f̃(~xq) =
m∑
i=1

αiφ(||~xq − ~xi||2) (2.17)

Again, ~xq constitutes the unknown query point for which the function value shall be
interpolated. And the i-th sampling point’s coordinates are denoted by ~xi. So far,
only the sampling points’ coordinates ~xi have been used in the RBF interpolation
model, but not the corresponding function values yi = f(~xi). At this point, the
coefficients αi come into play. These coefficients are determined by enforcing the
interpolation constraints f̃(~xi) = f(~xi)(= yi), i = 1 . . . |SP | and then solving the
resulting system of linear equations D~α = ~y. This linear equation system can be
written in matrix form as follows:

φ(||~x1 − ~x1||2) φ(||~x1 − ~x2||2) · · · φ(||~x1 − ~xm||2)
φ(||~x2 − ~x1||2) φ(||~x2 − ~x2||2) · · · φ(||~x2 − ~xm||2)

...
... . . . ...

φ(||~xm − ~x1||2) φ(||~xm − ~x2||2) · · · φ(||~xm − ~xm||2)


︸ ︷︷ ︸

D


α1
α2
...
αm


︸ ︷︷ ︸

~α

=


y1
y2
...
ym


︸ ︷︷ ︸

~y

(2.18)

3In the remainder, the value of the norm will sometimes be simply written as r denoting the
“radius”, i.e., φ(|| · ||) = φ(r).
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Here D turns out to be a symmetric m ×m (recall m = |SP |) matrix, which can
be interpreted as distance matrix (also called kernel matrix in the ML context). It
is defined by D := (φ(||~xi − ~xj ||2))1≤i,j≤m and ~α = (α1, α2, . . . , αm)T is a vector
representing the coefficients to solve for. The right hand side of the linear system,
~y, is a vector containing the actual function values f(~xi) of all m available sampling
points si ∈ SP . In that way, the linear equation system is uniquely solved for the
coefficients ~α which, incorporated in the interpolation equation, perfectly reconstruct
all sampling points si ∈ SP .

One obvious fact is that the quality in terms of the interpolation error strongly
depends on the choice of the (radial) basis functions. The solvability of the linear
equation system given in Equation 2.18 is a crucial issue when the choice for the
RBF to be used is made.

There exist a variety of often used RBFs. In this background chapter at least the
two important classes of (strictly) positive definite (radial) functions and (strictly)
conditional positive definite (radial) functions will be briefly introduced.

It is well-known that a real symmetric N×N matrix A is called positive semi-definite
if its quadratic form is non-negative for its coefficients ~c ∈ RN (cf. [Fas07]), i.e.,

N∑
i=1

N∑
j=1

cicjAi,j ≥ 0.

This property can be extended to positive definiteness if the aforementioned quadratic
form becomes zero only when the coefficient vector ~c is the null vector. If the distance
matrix D is positive definite, then it follows that it is non-singular, i.e., uniquely
solvable. This follows from the fact that for positive definite matrices their eigen-
values are positive. [Fas07]

One can obtain a positive definite distance matrix D when the selected RBF φ(·)
belongs to the class of strictly positive definite functions.4 With this in mind, one
could argue that it is straightforward to only incorporate RBFs of this particular
type into the Equation 2.17 in order to yield a well-posed interpolation problem.
However, there exist a variety of very useful functions that unfortunately do not
meet this requirement. These functions belong to the second class of conditionally
positive definite (radial) functions.

4As can be seen, the property of positive definiteness occurs at two interrelated sites – at the
distance matrix site, and the RBF function site. Here, only the importance and intuition of why
the aspect of positive definiteness is relevant for RBF interpolation is outlined, since a complete
review of the mathematical details would clearly go far beyond the scope of this thesis. For the
exact mathematical definitions of (strictly) positive (semi-)definite functions and further theory
regarding scattered data interpolation by means of RBFs, the reader is referred to e.g., [Fas07;
CHS05; Buh03].
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When functions of this kind shall be used, the system of linear equations from 2.18
has to be extended to assure non-singularity. The extension consists of adding a
polynomial term to Equation 2.17 as follows:

f̃(~xq) =
m∑
i=1

αiφ(||~xq − ~xi||2) +
M∑
j=1

βjpj(~xq) (2.19)

The number M is the number of monomial terms of the polynomial to be added.
It calculates as M =

(d−1+n
d−1

)
. Thus, M also constitutes the dimension of the linear

space of n-variate polynomials of degree less than d, denoted Πn
d−1. The basis B

of Πn
d−1 is given by B = {p1, p2, . . . , pM}. By extending the interpolation model

f̃ in that way, not only the prerequisite for non-singularity of the resulting linear
equation system is obtained. Also another mathematical finesse can be recognized.
Given that the set X of sampling point coordinates from SP is d − 1-unisolvent,
then polynomial precision on X is guaranteed. This means that when the sampling
points as well as the unknown query points stem from an unknown polynomial of
degree at most d− 1, they will be exactly fitted by the interpolant [Fas07].

Since the extended system now has |SP | + M degrees of freedom, but so far only
m = |SP | conditions, namely f̃(~xi) = yi, i = 1, . . . ,m, additionalM side constraints
have to be included in the formulation of the system. Therefore, the coefficients αi
are further constrained by the subsequent conditions:

m∑
i=1

αipj(~xi) = 0, j = 1, . . . ,M (2.20)

Accordingly, the linear equation system now reads(
D P
P T O

)(
~α
~β

)
=
(
~y
0

)
, (2.21)

where A, ~α, ~y are the same as for the previous formulation. P is a m ×M matrix
comprising the M basis polynomials pj for each sampling point ~xi with entries
Pi,j = pj(~xi) with i = 1, . . . ,m and j = 1, . . . ,M . P T is the transpose of P and
O is a M × M zero matrix. ~β = (β1, . . . , βM )T is the vector of the polynomial
coefficients. As can be seen in the system, ~α is multiplied with P T and solved for
the zero vector 0 which ensures the incorporation of the additionalM side conditions
of Equation 2.20.

Unique solvability of the resulting system of linear equations can be guaranteed
when the following requirements are met:

1. The applied RBF φ(·) is strictly conditionally positive definite of order d on
Rn.
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2. The sampling point coordinates ~xi are distinct and together they form a (d−1)-
unisolvent set.

An example of such a required Strictly Conditional Positive Definite (SCPD) RBF
is the so-called Thin-Plate-Spline (TPS) basis function defined by

φTPS(r) = r2 log r (2.22)

which is of order d = 2. According to [Du 08] and [Fas07], the need for unisolvency
is a rather weak requirement. For the case of the TPS which has the order d = 2 and
a bivariate interpolation problem (i.e., n = 2), the coordinates ~xi of the sampling
points si ∈ SP must not lie on a straight line, since otherwise a polynomial of degree
(d− 1) = 1 interpolating these collinear points can not be uniquely determined. d-
unisolvency with regard to a set X requires that the only polynomial p of degree
at most d which interpolates zero data on X is the zero polynomial itself. Put
another way, given unisolvence, this means that there must exist a unique polynomial
p ∈ Πn

d−1 of lowest possible degree that interpolates the sampling points. (d − 1)-
unisolvency can also be assumed on the ~xi when them×M matrix P has full column
rank, i.e., the columns are all linearly independent.[Fas07]

An example for a strictly positive definite radial basis function is the Gaussian RBF,
which is defined by

φGAUSS(r) = e−(εr)2 (2.23)

with ε denoting a so-called shape parameter where lower or higher values determine
how flat or peaked the bell-shape will appear, respectively. An even simpler case
where it is known that the resulting distance matrix D becomes non-singular would
be to let φ be simply the Euclidean norm ||~xq||2. Reducing further to the absolute
value function |~xq| and substitute this function into Equation 2.16 yields a piece-wise
linear interpolation.[Fas07]

2.3.4. Discussion on Suitability

In this section, various types of scattered data interpolation techniques have been
introduced. It was explicitly focused on methods that allow for an interpolation of
multivariate functions f : Rn → R from a set of sampling points with coordinates
~x ∈ X ⊆ Rn without any regularity in their positions. This methods are called
mesh-free or scattered data interpolation techniques.

For the methods as will be developed in this thesis, especially local interpolation
techniques are considered valuable. They can reduce the additional computational
effort in comparison to global methods.

In general, the introduced interpolation methods vary quite a lot regarding their
computational complexity. NeNe interpolation essentially requires to deal with the
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point location problem of nearest neighbor identification, which can be accomplished
in logarithmic time on average, i.e., O(logm). Despite being very efficient, the
interpolation surface appears to be rough and staircase-shaped. This might cause
higher errors when the query point falls between two available sampling points.
Smoothing can be achieved by incorporating not only the single nearest neighbor,
but also the k-nearest neighbors in order to average their function values.

The NaNe technique constitutes another methodology that takes more than one
sampling point into account. It is based on the direct neighborhood, introduced as
the set of natural neighbors. This technique is based on the Voronoi diagram and
most of the necessary calculations are based on its dual form, i.e., the Delaunay
tessellation. This fact imposes limitations related to computational geometry. In
dimensions higher than n = 3, the computations of convex polytopes or n-simplexes
become extremely complicated [LG04] and computationally expensive. Since gen-
eral methodologies are seeked which can be applied to problem spaces of arbitrary
dimension, in this thesis the NaNe method is mostly neglected, except of the very
first experimental evaluation conducted in Chapter 5.

The next type of interpolation techniques that have been discussed – Shepard’s
methods – provide a well-applicable alternative free of the abovementioned limita-
tion on the problem dimensionality. Furthermore, they allow for both global and
local interpolation schemes. Shepard’s initial approach, also called IDW, considers
any available sampling point. Although, this leads to higher computational demands
compared to naïve nearest neighbor methods, it still fall in the rather efficient class
of O(m). However, the IDW method was found to attribute too much influence to
sampling points relatively far away from the queried position. This deficiency can
be alleviated with the more sophisticated MSM approach, which constitutes one of
the first local interpolation approaches. Here, only a subset of the available sam-
pling points is used for interpolation, eventually leading to sub-linear computational
complexity for the actual interpolation step. Therefore, however, a predefined num-
ber of surrounding samples which lie within a dynamically calculated radius has
to be identified from SP . This in turn increases the overall computational com-
plexity depending on the incorporated identification techniques and data structures
(such as space partitioning trees for instance). In order to overcome further limi-
tations of the original method such as the flat spot problem, it has been proposed
to add polynomials of certain degrees to the interpolation function. This however
comes at the expense of solving an approximation problem via least square methods.
Such an approximation can be expensive especially when matrix inversion operations
(complexity up to O(N3) when N denotes number of rows/columns) are involved.
More specialized methodologies that store and remember previous intermediate re-
sults (such as matrix inversions) are possible when a fixed SP set can be assumed.
Since in this thesis an online learning setting, where continuing changes due to the
non-stationary nature of the environment are set in the spotlight (cf. Ch. 3), the
aforementioned assumption unfortunately does not hold true in the general case.
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Even the nodal function’s coefficients that need to be optimized, basically would
have to be recalculated whenever SP changes. This limits the applicability of these
improvements to the techniques that will be developed in the remainder of this
work.

The last class of mesh-free interpolation techniques that has been described is RBF
interpolation. Next to the MSM approach with added polynomials that increase the
interpolation accuracy and counter the flat spot problem, this RBF interpolation
constitutes the most sophisticated technique considered in this work. However, a
high degree of “sophisticatedness” most often comes at the cost of increased com-
putational complexity. Even the basic model as presented in Equation 2.17 involves
the necessity of matrix inversion for solving the resulting system of linear equations.
This system needs to be even more extended when SCPD RBFs shall be reliably
utilized. Fortunately, Skala proposed an incremental version of RBF interpolation
in [Ska13]. Here, the computational complexity is reduced to the quadratic class
by means of remembering the previous inverse matrix. The interpolation-strategy
as presented in Chapter 9 can make use of this enhancement, since only a single
sampling point is replaced at a time.

Another aspect that should be considered is the number of hyperparameters the in-
dividual interpolation techniques add to the configuration space of the SLAS. While
for all of the methods an appropriate number of sampling points to be stored in
SP needs to be selected, which constitutes a rather simple decision mainly affected
by the available memory, particular techniques require further configurations. For
example, the MSM technique needs an additional configuration for the number of
sampling points Np that should be involved for the additional polynomial fitting.
Thacker et al. [Tha+09] provide valuable guidelines for the selection of these pa-
rameters. With regard to the RBF interpolation, on the one hand, the RBF itself
has to be selected. On the other hand, depending on whether the choice yields a
strictly or else a conditionally positive definite radial function, in the first case a
shape parameter ε needs to be carefully determined. The choice of an appropriate
value for ε is crucial for the interpolation quality, since the “optimal” choice de-
pends strongly on the underlying function to be interpolated. As will be shown in
Chapter 9, the parameter-free TPS RBF yields promising results without adding a
further hyperparameter.

2.4. Learning Classifier Systems

Learning Classifier Systems (LCS) comprise a family of ERBML techniques. Their
invention dates back to 1976 when John H. Holland firstly presented the notion of
Cognitive Systems in [Hol76]. Since that time, two main branches of LCS emerged
in the literature: Firstly, the so-called Michigan-style LCS due to Holland appeared.
As a second, alternative paradigm the Pittsburgh-style (or simply Pitt) approach has
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established since its introduction by Smith [Smi80] in 1980. The latter style is not
subject of discussion in this thesis, since these systems demand for a higher extent
of computational resources and lack the OL capability [UM09]. This capability,
however, constitutes an essential requirement as will be described in Chapter 3. Pitt-
style systems usually learn in a batch-wise (or offline) manner. They are evolving
a population of entire rule sets (which constitute the candidate solutions) once per
generation instead of incrementally evolving individual rules. Thus, Pitt-systems
are far better suited to data mining tasks with fixed data sets where quick reaction
times not constitute a critical issue.

In contrast, Michigan-style LCS, actually evolve one single solution in an iterative
fashion following the principle of OL. This single solution is represented by a popula-
tion of rules. In the context of LCS, these rules are also called classifiers, what is the
main reason for this algorithm family’s name. In each iteration, selected individual
rules are updated as a response to the data instance presented to the system and the
gained reward after performing a selected action (test-then-train). Michigan-style
LCS received the most research attention over the past four decades. The inven-
tion of the XCS classifier system in 1995 probably constitutes the most influential
stepping stone. In this section, a generic Michigan-style LCS will be described at
first. Afterward, the focus is set on the XCS derivative. Necessary adaptations
that allow for an application to real-value encoded feature (or input) spaces be fur-
ther discussed. At the end, a special-purpose XCS variant for the task of function
approximation is briefly introduced.

2.4.1. A Generic Modern Michigan-style LCS

This section provides a thorough introduction of the working mechanisms behind
modern Michigan-style LCS.5 Accordingly, in the remainder Michigan-style LCS
are simply denoted by LCS. For the sake of brevity, a comprehensive review of the
historical development of LCS is omitted. The interested reader is referred to various
surveys available in this regard, e.g., [WG89; LR00; UM09; Bul15].

Modern LCS are mostly inspired by Stewart W. Wilson’s work. He recognized that
the rather complicated architecture proposed by Holland could be one of the reasons
of stagnating progress in LCS research at that time. With his Zeroth-level Classi-
fier System (ZCS) [Wil94], Wilson proposed to get rid of the rather complicated
message-list mechanism at the core of Holland’s primary system. This and further
modifications have laid the foundation for a fresh impetus regarding research on LCS.
But a major stepping stone for LCS history was reached only one year later in 1995.
Again due to Wilson, a further extension toward the probably most important and
most investigated LCS today was introduced – the XCS Classifier System [Wil95].

5LCS that appeared after Wilson’s revolutionary modifications in the mid 90s are regarded as
“modern” here
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With XCS, Wilson paved the way for a more deeper understanding and insightful
theoretical advances regarding the complex interactions of the system’s main com-
ponents. For instance, the synergy of the incorporated RL techniques for local rule
refinement with the globally acting GA for input space coverage optimization.

More precisely, a modern LCS can be subdivided into three main components: (1)
The performance component that manages the interaction with the learning envi-
ronment (or the System under Observation and Control (SuOC) in OC terminology,
cf. Sect. 3.1). (2) The discovery component which is responsible for optimizing the
classifier coverage of the input space as well as for constructing new knowledge on
demand by means of a steady-state GA and a so-called covering mechanism, respec-
tively. (3) The reinforcement component which updates the inner parameters of the
evolved classifiers (or production rules) in order to judge on their accuracy in pre-
dicting a reasonable response (action) for a particular set of situations (condition).
In the following, each of these three components is described in more detail.
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Figure 2.4.: Schematic of a generic modern LCS. The colored ellipses illustrate the mech-
anisms which belong to one of the three main components. The analogously
colored arriving and outgoing arrows show their interactions with other com-
ponents and integral parts of the system depicted as rectangles.

Figure 2.4 depicts a schematic of a generic modern LCS and illustrates a basic
iteration through the main loop. All classifiers are stored in the population [P ].
Classifiers that match the current incoming situation σt form a so-called match set
[M ]. The action set [A] ⊆ [M ] contains all classifiers from [M ] which advocate
the same action as selected by the action-selection-regime. Subsequent to action
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execution and a reward signal is retrieved, classifiers in [A] are going to be reinforced.
Additionally, [A] serves as mating pool for the steady-state GA.

In this thesis, the following notation is used (cf. Appendix A): The current situation
(or system state, data instance, feature vector) which arrives at the learning system
at time t is denoted by σt.6 The predicted target variable with respect to the learning
task at hand is denoted by the action aexec here, which stands for the “action to be
executed”. The numerical feedback, or reward, which is delivered immediately by
the environment after executing aexec is denoted by rimm. The environment here
is defined analogously to the RL terminology. It comprises the learning task and
delivers the situations perceived via the detector, takes the actions realized by the
effector, and eventually provides the rewards. Whenever a particular classifier is
referred to, cl∗ serves as a reference, where here the ∗ is a placeholder for an index
or another descriptor clearly identifying a specified rule. Additionally, an overview
of any notations used throughout this thesis, including a dedicated section for LCS-
related designations, is provided in Appendix A.

Performance Component

Once an environmental situation σt is perceived by the LCS’s detector interface,
the performance component initiates an iteration through the system’s main cycle.
The first procedure is called matching. It is responsible for checking whether the
condition part of any classifier cl contained in the rule-base [P ] at that time, is
fulfilled by the current σt. All cl ∈ [P ] for which this check evaluates true form the
so-called match set [M ]. To entirely comprehend how this can be achieved, first a
closer look at the structure of an individual classifier has to be taken.

Classifier In its very simplest form, a classifier is defined by a triple cl := (C, a, s).
In the following, the dot-notation cl.∗ is used to refer to the components or else
learning parameters (specified by ∗) of a classifier. Within the aforementioned basic
triple describing an individual classifier, cl.C encodes the condition that has to be
satisfied for “classifier activation”. Thus, if the condition is satisfied the classifier
cl matches the current situation σt. A condition determines a certain subspace of
the input space (denoted by X in the following). Depending on the domain of the
input space, the concrete encoding of cl.C can differ significantly. For instance, in a
binary domain, each bit of a binary input string is matched against a corresponding
string of symbols from the ternary alphabet {0, 1,#}. Thereby, only congruence of
the entire bit string with a particular classifier’s condition is sufficient to positive
matching. The only exception where differences in the strings are permitted is at
those places within the conditions where the wildcard or “don’t care” symbol #

6At some places where the subject of discussion is not immediately related to LCS, σt can be
used interchangeably with the notation for a feature vector ~x.
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is present. This allows for the crucial capability of LCS to generalize over similar
inputs. Two of the most important condition representations will be introduced
below in the section explaining XCS.

As for the general RL setting, cl.a ∈ A denotes the action from a specified ac-
tion space A that a certain classifier cl advocates. At this point, the analogy to
production rules becomes apparent. Accordingly, a classifier can be interpreted as
a

IF(cl.C matches σt) : THEN(execute cl.a) rule.

Finally, each classifier stores an estimate of quality, termed strength cl.s. The intu-
ition is again similar to that of Q-values in general RL. It estimates the expected
return when executing action cl.a in the current situation σt, or in the case of
LCS, any other situation which satisfies the classifier’s condition cl.C. The last
statement is important, since it again points to one of the major differences be-
tween LCS and standard tabular temporal difference learning techniques, such as
Q-learning [WD92]. Namely, the ability of LCS to generalize over more than one
single state. The strength value cl.s also serves as fitness for the involved GA.

Population The entirety of classifiers cl constitute the so-called population [P ],
also simply called rule set. With regard to the terminology which will be introduced
in the succeeding chapter, the population constitutes the knowledge base of LCS.
The size of [P ] is limited to a maximum number of N classifiers. This essentially
exerts a sort of competition for survival among existing classifiers cl ∈ [P ], since
each time a new classifier is to be added to an already filled up population, another
classifier has to be removed. This kind of set pressure is due to the interplay of the
involved GA of the discovery component and a replacement mechanism that ensures
to satisfy the limit of [P ], i.e., |[P ]| ≤ N . The maximum size of [P ] is strongly
application dependent. Generally, it should be chosen large enough to allow for
a complete coverage of the input space during the initial learning phase when the
population is initialized by means covering (cf. the paragraph on the discovery
component below). This prevents a so-called covering-deletion cycle which results
in continuing detrimental forgetting. That is, classifiers covering already explored
niches are replaced in favor of newly “covered” classifiers before a reasonable number
of updates can apply to increase their fitness and, thus, reduce their probability of
being deleted. This aspect is briefly revisited again in the next section.

Now with the established notion of the general classifier structure and of the popu-
lation [P ] at hand, it can be proceeded with a more detailed description of a single
iteration through the system main loop cycle.

Main loop iteration As outlined above, the matching procedure checks which
cl ∈ [P ] match the current situation σt. Each classifier whose condition is satisfied
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becomes a member of the match set [M ] ⊆ [P ]. The match set [M ] typically
contains classifiers that advocate different actions at the same time. This is where
the action-selection regime comes in. It is responsible for resolving this conflicting
situation. This is accomplished by determining the action which promises the highest
expected reward when the evolved knowledge should be exploited. On the other
hand, the action-selection procedure can also decide probabilistically which action
to be executed next in order to explore the problem space and to gain new, but
perhaps negative experience. This well-known exploration vs. exploitation trade-off
is one of the most challenging issues in RL as already discussed before. It is usually
dealt with by the policy π the system or agent follows. In terms of LCS, often an
interleaving strategy is applied. That is, switching between randomly and greedily
chosen actions after each detected incoming situation. Once a decision on aexec has
been made, another subset of [P ], or rather [M ] is formed: The action set [A]. As
the name indicates, [A] contains all classifiers from [M ] whose advocated action cl.a
equals aexec. More formally, [A] := {cl ∈ [M ] | cl.a = aexec}. Eventually, aexec is
executed on the environment via the effector interface which translates the abstract
encoded aexec into applicable actuator signals. Subsequently, the immediate reward
rimm for performing the selected action in the current situation is received, what
completes the performance cycle and triggers the reinforcement mechanisms to be
described next.

Reinforcement Component

The immediate reward rimm is then further used to update all classifiers cl ∈ [A].
Accordingly, the strength values for all classifiers in [A] are incrementally adjusted
in the course of interaction with the environment, or else cycles through the main
loop. Two scenarios of this credit assignment procedure have to be distinguished –
the single-step and the multi-step update.

Single-step The former case of single-step updates can be understood as a sequen-
tial control task with an episode length of exactly one (what essentially resembles an
online classification task). Each learning iteration (environment interaction) ends
after executing a single action aexec for the current state σt. Thus, the immediate
reward rimm serves as direct feedback signal whether the selected action was ap-
propriate or not. The succeeding problem instance σt+1 is assumed to be entirely
independent of the preceding situations. This means that the Markov property is
not assumed. Thus, the challenge of delayed reward, which requires techniques that
allow for a successive distribution of payoff among all classifiers that established the
action chain leading to the reward, can be neglected here.
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Multi-step This changes when multi-step problems are considered. Here, the
credit assignment problem comes into play. In primary LCS, the Bucket Brigade
Algorithm (BBA) [Hol85] was conceived to approach this problem. Holland drew
an analogy to an economy, where he interpreted classifiers as both customers and
suppliers in a market. A classifier trades with its preceding active classifiers and
the potentially succeeding ones. The strength values serve as budget. Roughly
speaking, classifiers bid for being active in the current step and pay a fraction of
their strength to the preceding, i.e., stage setting classifiers, when they win. Later
in 1994, Dorigo and Bersini drew an analogy between an LCS using BBA and the, at
that time recentQ-learning algorithm in [DB94]. This was also the year when Wilson
introduced ZCS, where another credit assignment mechanism, the so-called implicit
bucket brigade was introduced. This implicit version differs to Holland’s initial
BBA in certain respects [Wil94]. Finally, for XCS the multi-step credit assignment
mechanism was again modified toward an even stronger relation to the temporal
difference mechanics of Q-learning. Lanzi conducted a formal analysis in this respect
in [Lan02]. The exact update rules for each of the two scenarios are explained in
detail for XCS below.

Discovery Component

As described above, the performance component of a generic modern LCS is respon-
sible for “sensing” the environmental state σt, for filtering all matching classifiers
into a match set, and finally for selecting an appropriate action aexec on the basis of
a certain action-selection regime. Afterward, the reinforcement component updates
the rules that made it in the action set [A] on the basis of the reward rimm received
after realizing the selected action aexec. What remains is the third component of the
introduced generic modern LCS – the discovery component. This component is re-
sponsible for the system’s exploratory behavior. Therefore, it creates new classifiers
via its “creative” component – the involved steady-state niche GA. Additionally, in
order to ensure an always non-empty match set [M ] what in turn allows for even
responding to situations the system has never been exposed to so far, a so-called
covering routine constitutes the second part of an LCS’s discovery component.

Covering Following their order of appearance in Figure 2.4, the covering mecha-
nism is explained first. Each time an entirely new situation σt = (x1, . . . , xn) arrives
for which the LCS would not have any matching cl ∈ [P ], the system would simply
stall when there was no fallback mechanism. In order to prevent that, the covering
mechanism has been introduced as a first reactive classifier creating component. It
creates at least one new classifier clcov at each invocation. The actual number of clas-
sifiers to be generated during one covering execution depends on the hyperparameter
θmna (see Appendix B for a complete list and explanations). This hyperparameter
should be configured in view of the size of the action space A for the learning task
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at hand. For example, if the system only permits two distinct actions, e.g., turn left
and move forward, then it is most often sensible to create one classifier for each of
them in order to cover the entire problem space more quickly. Accordingly, θmna
would be set to 2. However, when A is large, covering one classifier for each ac-
tion could quickly guide the system into the abovementioned covering-deletion trap.
Lack of matching classifiers is not the only case when covering applies. It is often
also activated when [M ] does actually contain classifiers, but the represented di-
versity of actions in [M ] is smaller than the configured minimum number of actions
θmna required to be represented within each [M ]. Naturally, selecting an appropriate
covering policy requires knowledge about the number of possible actions |A|. This
becomes impossible when |A| → ∞, or put another way, a continuous action space is
assumed. Conventional LCS derivatives are not capable of dealing with continuous
actions off-the-shelf. However, a few approaches to deal with continuous actions have
been introduced already, confer for instance [Wil07; IBZ12]. Assuming a discrete
action space as typical for LCS, covering creates at least one novel classifier clcov
by initializing it with a predefined strength value clcov.s = sini. It further assigns
a random action which is not already represented by any other classifier in [M ].
The condition clcov.C is initialized to the current situation σt and then generalized
to match similar situations in a restricted probabilistic manner (see the details for
XCS below)

Niching GA As a second ingredient of an LCS’s discovery component, a steady-
state niche GA is brought into operation. A steady-state GA differs from a (stan-
dard) generational GA. Here not the entire population of individuals (recall that
in the context of Michigan-style LCS these are the classifiers in [P ]) is replaced by
newly created offspring classifiers in each generation. Instead, only a certain subset
of the entire population is replaced while the remaining classifiers are taken over to
the next generation. However, the usual genetic operators selection, recombination
and mutation are still performed in each iteration. In an LCS the GA creates two
new offspring classifiers cloff by selecting two parental classifiers clpar on the basis
of their strength estimates clpar.s. The parents are deeply copied to produce the
offspring rules in a first step. Next, a recombination (or crossover) of the offsprings’
copied conditions are conducted by chance (dependent on the crossover probability
χ). As a last operation, the condition, and maybe the actions as well, are altered
by applying the mutation operator. Again the actual application is probabilistic
and controlled by the mutation probability µ. Finally, the modified offspring classi-
fiers are added to [P ], provided that they are not subject to subsumption as detailed
shortly. The replacement mechanism as briefly outlined in the description of the per-
formance component ensures the satisfaction of the population size limit. It further
checks whether exactly congruent classifiers are already present in [P ] what would
again result in subsuming the offspring. Instead of simply keeping the copied values
for the strength estimates cloff .s, those are set to the parents’ average values and
typically are reduced by a predefined discount factor. This is supposed to require
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the new classifiers to prove themselves in view of their modified input space coverage
cloff .C and possibly modified actions cloff .a. In the schematic illustration depicted
in Figure 2.4, the GA is applied on the action set [A]. Accordingly, it directly acts
on classifiers that all match at least a small fraction of similar situations σi ∈ X and
advocate the same action a ∈ A. The action set [A] can also be understood as an
approximation of a particular environmental niche in the problem space. Applying
the GA to either [A] as initially proposed by Wilson in [Wil95], or more commonly
to [A] [Wil98] results what is called niche GA. In early variants of LCS, the GA was
applied panmictically, i.e., to the overall population [P ]. The rationale behind the
shift from a panmictic to a niche GA is revisited in the following sections regarding
XCS. The invocation of the GA is usually controlled by the hyperparameter θGA. It
determines the required minimum mean time since the last GA invocation. Hence,
it is not necessarily triggered at every learning iteration but periodically.

The preceding paragraphs are intended as a brief introduction to the general con-
cept of modern Michigan-style LCS. The general framework has been introduced
as a subdivision into three main components and their respective tasks have been
outlined. On that basis, in the next sections the details of the probably most promi-
nent and today mostly investigated descendant of LCS – the XCS Classifier System
(XCS) – is subject of discussion.

2.4.2. The XCS Classifier System

Back in 1995, a major milestone in the field of LCS research was reached by Stew-
art W. Wilson. He introduced a novel derivative of Michigan-style LCS, namely the
XCS Classifier System (XCS). This variant paved to way for a major category within
the LCS domain – accuracy-based LCS. Wilson proposed to base the fitness of indi-
vidual classifiers not only on the strength estimate any longer but on the accuracy
regarding the payoff prediction. Following his idea, he separated the quality related
learning parameters of a single classifier into a triple consisting of p, ε, F . Thereby,
cl.p is an estimate of the reward or payoff an individual classifier expects when its
advocated action is executed. The cl.p parameter thereby has the same semantics
as the strength attribute cl.s as introduced before. cl.ε defines the estimated abso-
lute prediction error, i.e., the absolute difference between the reward prediction cl.p
and the actually received payoff quantity P . The P quantity can be the immediate
reward rimm for single-step problems, or the sum of the immediate and the expected
discounted future reward for multi-step problems. The most essential innovation,
however, was the explicit fitness attribute cl.F that estimates a classifier’s relative
accuracy in predicting the reward. Roughly speaking, cl.F can be seen as a sort
of inverse of the prediction error cl.ε. It is niche-relative, i.e., estimated based on
the prediction errors of partially overlapping classifiers clj sharing the same environ-
mental niche (i.e., clj ∈ [A]). Instead of the payoff prediction cl.p or strength cl.s,
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from now on the designated fitness attribute cl.F is used by the selection operator
of the involved steady-state niche GA and other calculations.

Before diving deeper into Wilson’s fundamental thoughts leading to the invention of
XCS, the extended architecture of the system is analyzed first. Figure 2.5 shows an
augmented schematic of the XCS, adapted from the original illustration that can be
found in [Wil98].

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

gradient-
based

update 
of 𝑝𝑝, 𝜖𝜖,𝐹𝐹

ac
tio

n
se

ec
tio

n

𝜎𝜎𝑡𝑡 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

Environment / SuOC

𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐𝑙𝑙1: (𝐶𝐶,𝑎𝑎2,𝑝𝑝, 𝜖𝜖,𝐹𝐹)
𝑐𝑐𝑙𝑙2: (𝐶𝐶, 𝑎𝑎1,𝑝𝑝, 𝜖𝜖,𝐹𝐹)

…
𝑐𝑐𝑙𝑙𝑁𝑁: (𝐶𝐶, 𝑎𝑎3, 𝑝𝑝, 𝜖𝜖,𝐹𝐹)

[P]

𝑐𝑐𝑙𝑙3
𝑐𝑐𝑙𝑙6
𝑐𝑐𝑙𝑙19
𝑐𝑐𝑙𝑙127
…

[M]

[A]
𝑐𝑐𝑙𝑙6
𝑐𝑐𝑙𝑙127

covering

Performance Component
Reinforcement Component
Discovery Component

+ 𝑐𝑐𝑙𝑙𝑒𝑒𝑐𝑐𝑐𝑐

+ 𝑐𝑐𝑙𝑙𝑐𝑐𝑜𝑜𝑜𝑜

steady-state GA

Detector Effector

m
at

ch
in

g

+

max
𝑎𝑎∈A

𝑃𝑃𝑃𝑃(𝑎𝑎) 𝑐𝑐𝑙𝑙5
…

A 𝑡𝑡−1

discount:
𝛾𝛾max

𝑎𝑎
𝑃𝑃𝑃𝑃(𝑎𝑎)

𝑃𝑃

𝑃𝑃𝑃𝑃 𝑎𝑎𝑖𝑖 =
∑𝑒𝑒𝑙𝑙∈[𝑀𝑀]|𝑒𝑒𝑙𝑙.𝑎𝑎=𝑎𝑎𝑖𝑖 𝑐𝑐𝑙𝑙.𝑝𝑝 � 𝑐𝑐𝑙𝑙.𝐹𝐹
∑𝑒𝑒𝑙𝑙∈[𝑀𝑀]|𝑒𝑒𝑙𝑙.𝑎𝑎=𝑎𝑎𝑖𝑖 𝑐𝑐𝑙𝑙.𝐹𝐹

PA (of size |𝑃𝑃|)

in
se

rt
/d

el
et

e

Figure 2.5.: Schematic of the XCS classifier system

The main loop depicted in the schematic only reveals marginal changes in comparison
to the generic LCS as shown in Figure 2.4. The reinforcement component is refined
to indicate more explicit operations. As can be seen, these operations are performed
on the action set [A]t−1 of the previous time step t − 1. Having a closer look, a
certain similarity to Q-learning becomes apparent, which will be more clearly stated
below. The classifiers’ parameters cl.p, cl.ε, cl.F are indicated to be updated via
gradient-based techniques. The standard update rule incorporated in XCS is the
Widrow-Hoff update procedure [WH88], also referred to as delta rule according
to [Mit97]. This technique adjusts the classifier parameters toward the direction of
the steepest decent (negative gradient) in the underlying error surface. The gradient
is simply approximated by the current deviation of the old estimate and the current
value. Urbanowicz and Browne more intuitively introduce this approach as time-
weighted recency averages (TWRA) in [UB17]. Furthermore, the action-selection
mechanism as part of the performance component is now based on a new integral
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part of the system called prediction array (PA). The PA contains one scalar entry
for each possible action a ∈ A. The entries calculate as the fitness-weighted sum
of the reward predictions of those classifiers in [M ] that advocate the equal actions.
More formally, one particular PA entry for action ai which is denoted by PA(ai)
calculates as follows:

PA(ai) =
∑
cl∈[M ]|cl.a=ai

cl.p · cl.F∑
cl∈[M ]|cl.a=ai

cl.F
(2.24)

Accordingly, the PA provides accuracy-weighted estimates of the expected rewards
for each action that is a potential candidate for execution in the current time step.
The PA entries are thus also referred to as system predictions. At this point, the
cooperation of individual rules becomes apparent. Overlapping classifiers in [M ]
that propose to execute the same action are “mixed” based on their niche-relative
fitness values. By means of this classifier mixing a collective system prediction for
each possible action is modeled. Basing the action-selection on the fitness- or rather
accuracy-weighted system predictions has the following effect: Classifiers which in-
accurately predict high rewards via thier cl.p parameter are selected with lower
probability except for purely random choices during exploration. If not every action
a ∈ A is advocated by at least one classifier in [M ], the PA contains a nil entry.
Thus, these actions are neglected for participation in the action-selection competi-
tion. At this point it is useful to revisit the exploration vs. exploitation trade-off
issue once again. When the system is supposed to explore, the PA calculation es-
sentially has no effect on the actual choice since the action to be executed is usually
selected purely by chance. This has found to be necessary for learning agents to
not get stuck in local optima. For example, when an agent learns action sequences
(movements) that indeed lead to a desired target position, but maybe including un-
necessary cyclic trajectories or overly long movement paths. In case of exploitation,
a greedy strategy such as simply selecting the action with the highest PA entry
seems reasonable. The alternation between those two selection strategies appears to
be the default case for standard XCS implementations. This is plausible when these
systems are applied to non-critical sequential or single-step (classification) tasks.
However, it is not always legitimate to choose such an alternation strategy which
essentially results in a 50% exploration rate. Considering safety-critical control tasks
with humans involved, the system cannot freely discover action effects by numerous
trial-and-error attempts. Thus, it should be restricted in its exploratory behavior.
OC systems are often confronted with such a type of tasks. To deal with these cases,
there exist mixed policies such as roulette-wheel selection [Gol89] or ε-greedy [SB98]
policies, for instance. The former policy sets the selection probability of a particu-
lar action ai proportional to the calculated system prediction PA(ai) [Wil95]. The
latter regime has a fixed or decaying probability ε for random selection assigned.
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Based on these informal explanations regarding the structural changes of the ex-
tended version of the previously introduced generic LCS, the subsequent paragraphs
will focus on the more technical and algorithmic parts of XCS.

XCS for Binary Input Domains

In primary LCS, the input spaces X have typically defined to be binary, i.e., X ⊆
{0, 1}n. This is due to the fact that LCS were initially conceived around Hol-
land’s probably most prominent invention – the GA and the corresponding theory
of schemata [Hol75]. In the binary case, the conditions cl.C are encoded as strings
composed by symbols out of a ternary alphabet Σ := {0, 1,#}. More precisely, each
condition is a concatenation of n symbols from Σ, where # defines a so-called wild-
card or “do not care” symbol. The semantic of this symbol is that it evaluates true
when matched against both 0 and 1. For example, an incoming situation σt = 101
would theoretically match seven different conditions, for instance 101 (the fully spec-
ified case), ### (the fully general or non-specified case) or one of the remaining
intermediate cases such as 1#1.

[𝑃𝑃] 𝐶𝐶 𝑎𝑎 𝑝𝑝 ϵ 𝐹𝐹
𝑐𝑐𝑙𝑙1 01# 01 700 200 0.8

𝑐𝑐𝑙𝑙2 111 00 990 110 0.9

𝑐𝑐𝑙𝑙3 010 01 500 500 0.5

𝑐𝑐𝑙𝑙4 ##0 11 900 600 0.1

𝑐𝑐𝑙𝑙5 1#1 10 300 500 0.4

𝑐𝑐𝑙𝑙6 0#0 11 200 50 0.9

𝑐𝑐𝑙𝑙7 #10 01 500 400 0.7

… further non-matching classifiers

[𝑀𝑀] 𝐶𝐶 𝑎𝑎 𝑝𝑝 ϵ 𝐹𝐹
𝑐𝑐𝑙𝑙1 01# 01 700 200 0.8

𝑐𝑐𝑙𝑙3 010 01 500 500 0.5

𝑐𝑐𝑙𝑙4 ##0 11 900 600 0.1

𝑐𝑐𝑙𝑙6 0#0 11 200 50 0.9

𝑐𝑐𝑙𝑙7 #10 01 500 400 0.7

[𝐴𝐴] 𝐶𝐶 𝑎𝑎 𝑝𝑝 ϵ 𝐹𝐹
𝑐𝑐𝑙𝑙1 01# 01 700 200 0.8

𝑐𝑐𝑙𝑙3 010 01 500 500 0.5

𝑃𝑃𝐴𝐴
00 01 10 11

nil 580 nil 270

𝜎𝜎𝑡𝑡 = 010

𝑃𝑃 𝑎𝑎𝑖𝑖 =
∑𝑐𝑐𝑙𝑙∈[𝑀𝑀]|𝑐𝑐𝑙𝑙.𝑎𝑎=𝑎𝑎𝑖𝑖 𝑐𝑐𝑙𝑙. 𝑝𝑝 � 𝑐𝑐𝑙𝑙.𝐹𝐹
∑𝑐𝑐𝑙𝑙∈[𝑀𝑀]|𝑐𝑐𝑙𝑙.𝑎𝑎=𝑎𝑎𝑖𝑖 𝑐𝑐𝑙𝑙.𝐹𝐹

greedy selection: 
argmax

𝑎𝑎
𝑃𝑃𝐴𝐴(𝑎𝑎)

𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 = 01

Figure 2.6.: A handcrafted example to illustrate the matching process and the calculation
of the prediction array

Figure 2.6 illustrates an exemplary matching process on a handcrafted classifier
population and the resulting PA. According to Equation 2.24, the PA entry for the
specified action 01 for instance calculates as follows:
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PA(a = 01) = 700 · 0.8 + 500 · 0.5 + 500 · 0.7
0.8 + 0.5 + 0.7 = 580 (2.25)

In the depicted example, the action-selection is conducted deterministically, or rather
greedily. More formally, aexec = argmaxa∈A PA(a). As can be seen, the action set
[A] contains only those classifiers from [M ] that advocate the action aexec which was
selected for execution.

Reinforcement After aexec was applied to the environment, the reward rimm
is received. At this point, it is important to distinguish between single-step and
multi-step problems again. First, it is concentrated on the more complicated multi-
step task. In this case, the learning parameters cl.p, cl.ε, cl.F, . . . of the classifiers
contained in the previous action set [A]t−1 are subject to reinforcement. Thus, the
previous action set is temporarily stored and a state transition happens from t to
t+1. It is explicitly noted here, that the immediate reward denoted by rimm for the
action aexec realized at the preceding time step t as a response to the system state
σt is assumed to be received after the transition, i.e., at time t + 1. This detail is
important for the correct interpretation of the update formulas stated below.

For all cl ∈ [A]t−1 first the estimates for cl.ε, cl.p and cl.F are updated in the given
order. Please note that there are a few more so-called book-keeping parameters of
which a classifier keeps track. For the sake of simplicity, these are neglected at this
point and only introduced when necessary.

The prediction error estimates cl.ε for all classifiers in the previous action set are
adjusted following the Widrow-Hoff (or simply delta) rule:

cl.ε← cl.ε+ β(|P − cl.p| − cl.ε) (2.26)

with
P = rimm + γ max

a∈A
PA(a) (2.27)

Here, the hyperparameters β and γ are learning rates. β determines the speed
or step size of adjustment by weighting the old estimate, e.g., cl.p, and the new
observation, e.g., P , in a convex combination. On the other hand, γ, also called the
discount factor, controls the impact of rewards expected in the future. It is thus
sometimes referred to as ‘urgency of life’ in the RL literature referring to the time
left for an artificial agent to reach the goal before the episode ends. Thus, higher
values of γ attribute higher influence to future reward estimates so that the agent
becomes more far-sighted, and vice versa. A value of γ = 0, on the other hand,
completely neglects the future and results in an agent behavior strictly pursuing the
goal to maximize immediate rewards.
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After the adjustment of the prediction errors, the payoff prediction estimates cl.p
are updated:

cl.p← cl.p+ β (P − cl.p) (2.28)

Rewriting Equation 2.28 by substituting Equation 2.27 yields:

cl.p← cl.p+ β (rimm + γ max
a∈A

PA(a)− cl.p) (2.29)

Again, rimm denotes the reward received after executing action aexec in state σt. It
is, however, received with a delay of 1, i.e., at time t+ 1. Also only in this current
time step, the PA included in Equation 2.29 can be calculated. By then updating the
classifiers in the previous action set [A]t−1 (or simply [A]−1) information “from the
future” can be incorporated to backup preceding rules. By means of this mechanism,
the credit assignment problem is handled in XCS.

The complete update formula for cl.p is reminiscent of the well-known Q-value up-
date rule. This insight highlights the obvious relation to conventional temporal
difference learning approaches such as Q-learning. The distinguishing aspect is,
however, that instead of updating just one single entry of a Q-table, i.e., the Q(s, a)-
value for a particular state-action pair (s, a), in XCS the update affects multiple state
values or situations comprised by a classifier’s condition cl.C. Furthermore, instead
of the maximum Q-value for the resulting state after executing aexec, the maximum
entry of the next PA, i.e., the system prediction that promises the highest expected
reward in the succeeding learning step, is used. Figure 2.7 depicts this algorithmic
step and shows an exemplary adjustment of the payoff prediction estimate cl.p of
cl1.

𝐴𝐴 −1 𝐶𝐶 𝑎𝑎 𝑝𝑝 ϵ 𝐹𝐹
𝑐𝑐𝑙𝑙1 01# 01 700 200 0.8

𝑐𝑐𝑙𝑙3 010 01 500 500 0.5

𝑃𝑃𝐴𝐴
00 01 10 11

720 nil 360 nil

max
𝑎𝑎∈A

𝑃𝑃𝐴𝐴(𝑎𝑎) = 720
𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = 1000+0.9 � 720 = 648

discount by 𝛾𝛾 immediate reward

refine attributes using 
Widrow-Hoff delta rule

e.g. 𝑝𝑝 of 𝑐𝑐𝑙𝑙1: 

𝑃𝑃 = 1648

Environment

𝑐𝑐𝑙𝑙1.𝑝𝑝 ← 700 + 0.2 1000 + 0.9 max 720,360 − 700
𝑐𝑐𝑙𝑙1.𝑝𝑝 = 889,6

Figure 2.7.: Illustrative example for updating the cl.p parameter of an exemplary classifier
(here cl1) from the previous action set [A]−1. In this example, the learning
rate β is set to 0.2 and the discount factor γ is 0.9.
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In the more simple case of single-step problems, the quantity of P is directly set to
rimm and the updates of cl.p, cl.ε and cl.F are performed for all classifiers within
the action set of the current time step t. Thus, the temporal dependence between
succeeding situations of sequential decision tasks can be neglected for single-step
tasks.

For the reinforcement of the fitness estimate cl.F , a few more steps are necessary.
First, the absolute accuracy cl.κ for each classifier in the respective action set needs
to be temporarily calculated:

cl.κ =

α
(
ε
ε0

)−ν
if cl.ε ≥ ε0

1 otherwise
(2.30)

This function establishes an inverse relationship between a classifier’s absolute ac-
curacy in predicting the reward and the current estimate of the prediction error cl.ε.
Here, ε0 serves as a tolerance hyperparameter that defines the level of error that is
acceptable to assume a classifier as being fully accurate. It is therefore also regarded
as target error. ε0 is a critical hyperparameter. It controls not only the sensitivity
to noise, but also the even more important fitness pressure that applies. Setting ε0
too low might let the XCS struggle in identifying accurate rules and thus prevents
the distinguishing between accurate and inaccurate rules. This, in the worst case,
leads to random selections, and thus undirected innovations by the GA. Setting ε0
too high on the other hand causes similar effects. A rule of thumb is to let ε0 be 1%
of the maximum reward that can be receive in single-step problems. For multi-step
problems, however, this choice is not that obvious, and needs some sort of expert
knowledge. Nevertheless, current research is concerned with analytically deriving
optimal values for ε0 and other hyperparameters [Nak+17].

The additional hyperparameters α and ν control the impact of larger prediction
errors in terms of steeper descents in accuracy. These hyperparameters are typically
set to default values α = 0.1 and ν = 5 and are only rarely adjusted.

Since the fitness estimate was introduced as a measure of relative accuracy, in a
second step, the absolute accuracy values cl.κ are normalized to obtain action set,
or else niche relative accuracy values κ′:

cl.κ′ = cl.κ · cl.num∑
cl∈[A] cl.κ · cl.num

(2.31)

According to Equation 2.31, the relative accuracy cl.κ′ sets the absolute accuracy
of an individual classifier cl in relation to the sum of all classifiers covering the
same environmental niche. At this point, the first book-keeping parameter cl.num
called the numerosity of a classifier needs to be briefly introduced. As will be
described more thoroughly below, classifiers can subsume others. Subsumption here
means that instead of storing an identical physical copy of an existing classifier,
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simply the numerosity of the existing one can be increased. This is also done when
the classifier to be added can be replaced by a more general and fully accurate
classifier. In both cases, the subsumed classifier is dropped in favor of increasing
the numerosity parameter of the subsuming one. Accordingly, classifiers with a
higher numerosity should also gain a larger fraction during the normalization of the
absolute accuracy estimates. As might be recognized, this normalization implements
the concept of fitness sharing into XCS, which in general is a mechanism to maintain
niches in populations. More detailed information on that advanced topic can be
found in [BGL07].

Eventually, the fitness estimates cl.F of all classifiers in the respective [A] are up-
dated by means of the usual Widrow-Hoff update rule using the previously calculated
relative accuracy values κ′:

cl.F ← cl.F + β(cl.κ′ − cl.F ) (2.32)

Beside the use of the Widrow-Hoff rule, another concept called Moyenne Adaptive
Modifiée (MAM) [Ven94] is applied for the update of cl.ε and cl.p (and cl.as to
be defined below). In essence, MAM applies an incremental averaging update for
the first 1/β steps, where β denotes the learning rate as usual. The motivation
behind MAM is that during the first updates, the parameter approximations are
expected to reach their expectation values more quickly. This can be understood
as an adaptive learning rate for the first 1/β updates which would be β = 1/n,
where n = 1 . . . 1/β constitutes a counter of the updates performed so far. After
this initial MAM phase, the Widrow-Hoff rule takes over to account for the pre-
sumed non-deterministic characteristics of the learning environment. At this place,
another book-keeping parameter is introduced. The so-called experience cl.exp of
a classifier. A classifier’s experience is initialized with 0 when it is newly created.
It gets incremented each time the reinforcement component acts on it. It is thus
a measure of how often this particular classifier has been active so far throughout
the course of learning. Accordingly, classifiers with low experience have not had
enough opportunities to prove themselves. Thus, convergence of their inner learning
parameters cannot be assumed.

Micro- vs. Macroclassifiers The aforementioned numerosity parameter cl.num
is only one of the additional book-keeping parameters of which classifiers keep track.
It determines how many syntactically equivalent rules has been subsumed by this
classifier. Syntactically equivalent means that two classifiers have equal conditions
and advocate identical actions. There are different places within XCS’s algorithmic
structure where classifiers are checked for being subsumable: (1) Whenever a new
classifier is about to be inserted into [P ]. (2) During the application of the GA,
offspring classifiers are checked against their parents or even against all classifiers
in their niche determined by [A]. Subsumption is an essential ingredient for the
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generalization capability of XCS. This aspect will become more clear, when Wil-
son’s generalization hypothesis is subject of discussion. Classifiers with a numerosity
greater than 1 are called macroclassifiers. Otherwise they are referred to as micro-
classifiers. Important to note is that the satisfaction of the population size limit
is based on the sum of the numerosity values of all classifiers in [P ]. Accordingly,
N ≤

∑
cl∈[P ] cl.num is evaluated and not the number of physically stored micro- or

macroclassifiers is considered in this regard. Thus, a single classifier with cl.num > 1
actually represents cl.num microclassifiers that would advocate an identical action
a ∈ A for the same or else a smaller but entirely comprised set of situations σ ∈ X.

The next algorithmic steps to be described belong to the discovery component of
XCS. According to Figure 2.5, there are three mechanisms that are responsible for
the exploratory behavior of XCS: Covering, the steady-state niche GA, and the
deletion/insertion mechanism which as of yet deliberately only took a back seat at
the introduction of the generic LCS.

Covering As already discussed, covering is triggered whenever a situation σt oc-
curs that is not covered by any classifier in [P ], or whenever [M ] contains less than
θmna distinct actions. Thus, it guarantees an instant reaction of the system at any
time. However, at the expense of a probably high prediction error due to the prob-
abilistic and partially arbitrary initialization of the newly created classifiers clcov.
For the ternary case, the hyperparameter P# determines the initial generality of a
classifier generated by covering. The higher P# is set, the more general the cov-
ered classifiers are expected to be initially. Consider the following example which
illustrates the general covering process presented in Figure 2.8.

Figure 2.8.: The covering mechanism of XCS illustrated
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A situation σt = 100110 is detected by the system. Let θmna = 2. The set of possible
actions is given by A := {00, 01, 10, 11}. The wildcard probability is set to P# = 0.5.
Further, let mna be the number of distinct actions in [M ] and Amna ⊆ A denote
the set of actions that are already present in [M ]. Accordingly, mna = |Amna|.
Performing covering creates a new classifier clcov and temporarily sets its condition
to the current situation. For each bit in cl.C, the covering routine individually
decides to replace it by a wildcard # symbol with probability P#. In the figure, the
second and fourth value are replaced by a #. The values for clcov.p, clcov.ε, clcov.F are
set to predefined initial values pini, εini, Fini. The action parameter clcov.a is assigned
an action which is chosen randomly from A \ Amna, denoted by rand(A \ Amna) in
the example. The experience cl.exp is set to 0. Another book-keeping parameter
that keeps track of the time of creation and the time of the last GA operation is
called the time stamp cl.ts. It is initialized with the current time step t. Finally,
clcov is added to both [M ] and [P ]. Depending on the value of θmna the covering
process is repeated until mna = θmna is satisfied.

Covering occurs mainly at the beginning of a learning task. An important rule of
thumb is to choose P# sufficiently large such that the input space can be entirely
covered in view of the population size restriction. Setting it too high, the population
is initialized with classifiers belonging to the class of over-general rules. It might be
necessary to choose P# small enough to allow the GA to distinguish between accurate
and inaccurate classifiers, i.e., to provide a sufficient fitness signal as discussed above.
The choice depends strongly on the complexity of the underlying problem space.

XCS then has to automatically discover classifiers with an appropriate degree of
generality or else specificity. The appropriateness is subject to a trade-off relation-
ship between generality and accuracy. The overarching goal of XCS is to construct
a state-action-payoff mapping X × A → P which fulfills the desired properties of
being (1) maximally accurate, (2) maximally general, (3) compact and (4) complete.
These properties are considered with regard to the rule set [P ] [Wil95; Kov98]. This
objective can be interpreted as a multi-objective optimization problem. In XCS, a
solution to this problem can be achieved by exerting several learning pressures to
the system. A great amount of this pressure is due to the steady-state GA, which
is explained in the next paragraph.

Niche Genetic Algorithm For the purpose of discovering new rules and, there-
fore, exploring the underlying problem space, XCS incorporates a steady-state niche
GA. The GA is regarded as niching since it acts on environmental niches which are
approximated by a set of matching and, thus, partially overlapping classifiers. The
GA is periodically invoked whenever the following criterion is fulfilled:

t−

∑cl∈[A] cl.ts · cl.num∑
cl∈[A] cl.num

 > θGA (2.33)

59



Chapter 2. Background & Prerequisites

Accordingly, the GA is invoked when the average time since its last activation (given
by the time stamp book-keeping parameter cl.ts) over all classifiers in [A] exceeds a
predefined threshold θGA. Again, this calculation is performed on the level of mi-
croclassifiers, since the numerosity values are factored in. In essence, three genetic
operators are used in standard XCS: (1) Selection of the two parental classifiers
(cl1par, cl2par). (2) Crossover of the conditions of the two generated (i.e., copied) off-
spring classifiers (cl1off , cl2off ) (3) Mutation of the offsprings’ conditions and possible
their actions.

Parental selection is traditionally performed by means of fitness proportionate se-
lection, often implemented as roulette-wheel selection. That is, the probability of a
classifier cl ∈ [A] to be selected as a parent for reproduction increases proportion-
ally with increasing fitness cl.F . In [BSG03], the alternative tournament selection
variant has been investigated. It was found to yield better properties in terms of
an improved differentiation between accurate and inaccurate classifiers. This even-
tually leads to more stable fitness pressure. Tournament selection can be viewed as
today’s standard technique in the context of XCS. Each time the GA is invoked,
two parental classifiers are selected for reproduction.

Subsequent to the selection of the parents for mating, two offspring classifiers cl1off .C
and cl2off .C are created by simply copying the parents. The conditions cl1off .C and
cl2off .C are then altered by means of recombination. That is, by crossing a cer-
tain subset of the bits/symbols between the offsprings’ conditions by chance. The
probability of crossover happening at all again is determined by the XCS hyperpa-
rameter χ which is usually set to a high value (χ = 0.8). It can be distinguished
between different crossover variants: (1) If each symbol of the respective conditions
is considered individually and exchanged with the a probability p = 0.5, this variant
is called uniform crossover. (2) Other approaches are so-called n-point crossovers.
Usually n = 1 or n = 2 crossing points are determined at random or at design time
in advance. The latter can be done when it is assumed that specific bits at specific
locations are interrelated. Then only the resulting substrings, e.g., the right, or the
inner parts of the offsprings’ conditions, are exchanged [But05a]. See Figure 2.9 for
an illustrative example of an n = 2-point crossover.

1 # 0 # 1 #

1 1 # 0 1 0

1 1 # 0 1 #

1 # 0 # 1 0

crossover𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜1 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜2 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜1 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜2 .𝐶𝐶
rand 0,1 ≤ 𝜒𝜒

Figure 2.9.: An illustrative example of an n = 2 point crossover
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The last genetic operator applied is called mutation. As for crossover, mutation acts
on the offsprings’ conditions cl1off .C and cl2off .C. However, it works individually on
both. Mutation permutes each symbol in the corresponding condition with proba-
bility µ (typically set to to a small value, µ = 0.04). If a certain bit (gene) within
the condition cloff .C (chromosome) is subject to mutation, the value (allele) of this
particular position (locus) is flipped from 0 to 1 and vice versa. In case of a wildcard
# being the current allele, this gene is mutated to 0 or 1 with equal probability. The
terms in the parentheses shall denote the terms from the genetics domain sometimes
used in the literature.

For binary input spaces, mutation exerts a specific form of evolutionary pressure to
the classifiers, which is called mutation pressure. Considering the 6 possible permu-
tations it becomes apparent that the probability of specifying a bit is twice as high
as for generalizing it. More precisely, general-to-specific mutations (e.g., # → 1)
have a probability of 2/6 = 1/3. Indeed, specific-to-general mutations, e.g., 1 → #
are equally likely. However, there remains the specific-to-specific case, which also
adds a one-third chance toward specificity. Accordingly, the overall mutation prob-
ability of resulting in a more specified condition is p(specify) = 2/3. In contrast,
the generalization probability is only p(generalize) = 1/3. This is an important
property of the applied GA, since this is the only algorithmic part which explicitly
pushes toward specification of classifiers, except of the condition initialization during
covering. Figure 2.10 shows an exemplary mutation operation.

1 1 # 0 1 #
# 1

1 # # 1 1 #mutation

1 # 0 # 1 0

rand 0,1 ≤ 𝜇𝜇
0 1

1 0 1 # # 0mutation
#

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜1 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜2 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜1 .𝐶𝐶

𝑐𝑐𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜2 .𝐶𝐶

Figure 2.10.: An example for the genetic operator mutation

Another possibility for mutation is on the actions cloff .a. When action mutation is
activated, the corresponding action of an offspring classifier cloff is exchanged with
one of the other possible actions a ∈ A \ {cloff .a}. The probability is the same as
for the condition alleles, i.e., µ. Action mutation increases the exploratory behavior
of the system and facilitates a faster coverage of the entire problem space. However,
in most of the studies reported in the literature it is turned off.

Subsequent to crossover and mutation, two novel classifiers have been created with a
certain probability. Sometimes, however, due to the probabilistic nature of the GA,
exact copies of the parents constitute the result. Either way, as of yet the parameter
values for cl.p, cl.ε and cl.F (as well as for the other book-keeping parameters) are

61



Chapter 2. Background & Prerequisites

identical to the immediate parent, e.g., cl1off .p = cl1par.p. When crossover has been
applied to the offspring classifiers, all aforementioned values are set to the average
of both parents, e.g.,

cl1off .p = cl2off .p =
cl1par.p+ cl2par.p

2 .

This is done analogously for cl.ε and cl.F . Independent on whether crossover was
performed or not, the estimates for fitness and prediction error are then discounted
by so-called reduction factors Freduction and εreduction. Typically, these are set to
0.1 and 1.0, respectively. With a fitness reduction of 0.1, the offspring classifiers
have their fitness estimates reduced by 90 %. Thus, the new classifiers have to prove
themselves again to be still accurate or maybe even more accurate with regard to
their new conditions cloff .C and possibly their new actions cloff .a. Due to the
applied fitness reduction, new classifiers just produced by the GA will usually not
be selected immediately for reproduction. However, if the “inherited” parameters
for the payoff prediction cloff .p turn out to be correct, the corresponding fitness
values will increase quickly. The prediction error is usually directly adopted (due to
the default error reduction factor of 1). The numerosity parameter cl.num is set to
1 and the time step parameter cl.ts is set to t. The experience of a newly created
classifier is set to 0, since it has not been applied so far. Additionally, all classifiers
in the current mating pool, i.e., [A], get their time stamp parameters set to the
current time step t.

In the previous paragraphs, the concept of subsumption has been mentioned a couple
of times. There are several places, where a classifier ready to be inserted in [P ] can
be checked to be subsumable by a more general and also fully accurate one. One way
is to check, whether the generated offspring classifiers cl1off and cl2off are directly
subsumable by one of their direct parents cl1par and cl2par. If possible, the numerostiy
of the respective parent is increased by one and the subsumed offspring is discarded.
More precisely, a classifier cl1 subsumes another classifier cl2 if all of the following
requirements hold:

1. The number of wildcards in cl1.C is greater than the number in cl2.C and the
remaining symbols at those loci where both classifiers are specified are equal.

2. The prediction error of the potential subsumer cl1 is sufficiently small, i.e.
cl1.ε < ε0.

3. cl1 has been updated sufficiently often, i.e., cl1.exp > θsub.

Recall that cl.exp denotes the number of performed reinforcement updates, and
θsub is another threshold a potential subsumer has to exceed before subsumption is
permitted.
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An even more radical form of subsumption is action set subsumption. Here, the
offspring classifiers are not only compared against their direct parents, but also
against all classifiers of the mating pool, here [A].

Subsumption is an essential concept in XCS, since it supports generalization and
compactness of the final problem solution which is represented by the classifiers in
[P ] [Wil98] after learning is completed.

Classifier Insertion and Replacement Whenever a new classifier is to be in-
serted into [P ], regardless of whether generated by covering or the GA, a few pre-
conditions have to be met. First of all, the size of [P ] must not exceed the maximum
number of (micro-)classifiers N . Thus, if after the insertion of a new classifier the
assertion |[P ]| = ∑

cl∈[P ] cl.num > N evaluates true, |[P ]| −N classifiers have to be
deleted in favor of the new one(s). It is important to note that although the GA
generates new classifiers within a certain niche, the deletion candidates are chosen
from the set of all classifiers [P ]. This combination again stresses the population
towards consisting predominantly of general but accurate classifiers, as will be ex-
plained more thoroughly below. To decide on candidates for removal, a deletion vote
is calculated for each cl ∈ [P ]. This vote depends on three factors:

1. The average action set size of a certain classifier: cl.as 7.

2. The mean fitness within the entire population [P ], denoted by F̄ =
∑

cl∈[P ] cl.F∑
cl∈[P ] cl.num

3. A classifier’s experience cl.exp

Based on the aforementioned factors, a classifier’s deletion vote is calculated as
follows:

vote(cl) =

cl.as · cl.num ·
F̄

cl.F/cl.num if cl.exp > θdel ∧ cl.F
cl.num < δ · F̄

cl.as · cl.num otherwise,
(2.34)

Here δ (often set to 0.1) determines the fraction of the population’s mean fitness F̄
a classifier’s microfitness cl.F/cl.num has to exceed. Otherwise, its deletion vote is
increased by a factor F̄ / cl.F

cl.num . The threshold θdel is another hyperparameter which
defines the minimum number of updates a classifier is required to experience before
its deletion vote can be increased based on its microfitness. After all classifiers in [P ]
have their deletion votes calculated, the deletion candidate is determined by means
of roulette-wheel selection and eventually “removed”. That said, if the deletion can-
didate’s numerosity is greater than 1, its numerosity is simply decremented instead

7cl.as is the last book-keeping parameter to be introduced. Its estimate is initialized with 0
and incrementally adjusted by the reinforcement component in a similar fashion as for cl.p or cl.ε,
including the MAM bootstrapping procedure.
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of an actual removal of it. In case of a selected microclassifier, i.e., cl.num = 1, it is
completely removed from [P ].

As briefly mentioned above, the insertion of new classifiers is the second site where
subsumption can take place. If a new classifier cl∗ is about to enter the population,
[P ] is first checked for a congruent classifier, i.e., with identical condition and action.
More formally, if the assertion ∃cl ∈ [P ] : cl.C = cl∗.C ∧ cl.a = cl∗.a evaluates true,
then cl∗ is discarded and the numerostiy of the existing classifier is incremented.

With all the concepts and algorithmic steps formally described in the previous para-
graphs, the basic understanding of the general functioning is now established. In
the next section, the focus is shifted to considerations regarding the real-world ap-
plicability of XCS. Therefore, necessary modifications that allow XCS for dealing
with real-valued input domains are explained in the next paragraphs.

XCS for Real-valued Input Domains

So far, only binary input spaces have been assumed for the introduction of XCS’s
working mechanisms. Naturally, in real-world applications the situations and state
representations of systems and their surrounding productive environments are often
represented by real-valued numbers. An encoding in binary strings is possible, but
seems not plausible since this would lead to tremendously large input spaces and
involves other problems such as the preservation of order (depending on the applied
binary encoding). It is clearly desirable allow for a straightforward utilization of
XCS in the presence of numerical, and even continuous input spaces. Therefore,
σt is now represented by a vector ~xt = (x1, . . . , xn)T , where n denotes the number
of different features or the dimensionality of the input space X ⊆ Rn. In order to
allow for the application of XCS in nominal- and real-valued input domains, Wilson
introduced modifications to XCS, which he called simply XCS Classifier System for
Integer-valued Input (XCSI) [Wil01] and XCS Classifier System for Real-valued Input
(XCSR) [Wil00], respectively. It is important to note that these extensions only
provide a solution for the discrete- or continuous-valued input spaces. The action
representation still remains categorical, thus the action spaces are still required to
be discrete.

Most of the XCS mechanisms discussed so far remain unaffected by Wilson’s modifi-
cations. However, particular changes are necessary for the condition representation,
as well as for all mechanisms that work with a classifier’s condition cl.C. In par-
ticular, these are the matching and covering mechanism as well as the GA. In the
following paragraphs, only the most common modifications are discussed. This,
however, suffices to provide a solid basis for comprehension of the techniques which
will be developed in this thesis, as well as for a further self-study. Furthermore, it
is focused on the more general case of real-valued inputs and, thus, on XCSR.
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Conditions with Interval Predicates In a real world learning environment,
where e.g., sensors constitute the source of system state descriptions, it is hardly
feasible to encode the current state σt only in binary form. Hence, a classifier’s con-
dition cl.C cannot be represented by a string of symbols from the ternary alphabet
{0, 1,#} anymore. Instead, several encoding schemes have been proposed in the lit-
erature that deal with continuous-valued inputs. Among them, simple interval-based
representations [Wil00; SB03], but also complex hyper-ellipsoidal forms [BLW06] and
a few more. To provide a basic intuition, in the following the most straightforward
approach – the interval-based hyper-rectangular representation – is introduced.

The designation of this representation originates from the geometric interpretation
of a condition cl.C when visualized in a real-valued input space X ⊆ Rn. For each
dimension i = 1 . . . n in X, a classifier encodes a so-called interval predicate (li, ui).
Each interval predicate contains a lower bound li as well as an upper bound ui, with
li, ui ∈ R. Without loss of generality, in the following it is assumed that all input
space dimensions are normalized to [0, 1]. Accordingly, li, ui ∈ [0, 1] ⊆ R holds. The
condition now is represented as a concatenation of interval predicates, and not as a
string of symbols from the ternary alphabet as done for the binary case. Figure 2.11
provides an illustrative intuition.
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Figure 2.11.: Visualization of a hyper-rectangular condition in a two-dimensional input
space X := [0, 1]2

The condition appears as a rectangle within the two-dimensional input space X :=
[0, 1] × [0, 1] ⊆ R2. In higher-dimensional input spaces, the geometric shapes are
referred to as hyperrectangles. The current σt is represented by a vector ~x =
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(0.4, 0.75)T which is matched by the depicted classifier’s condition

cl.C = [(0.30, 0.70), (0.55, 0.95)].

Modifications to Matching and Covering According to the illustrated exam-
ple in Figure 2.11, generally a classifier cl matches a certain input σt = (x1, . . . , xn)T
if and only if

li ≤ xi ≤ ui, ∀i = 1 . . . n.

The so far introduced interval predicate encoding is also referred to as Ordered
Bound Representation (OBR) [SB03]. It is called “ordered” since it implies that
li ≤ ui. Since it was shown that this introduces an unintended bias to the explo-
ration performance of XCSR for specific problem domains, Stone and Bull introduced
the so-called Unordered Bound Representation (UBR) to alleviate the identified de-
ficiencies. With the UBR the ordering of the lower and upper bounds within the
interval predicates are neglected. Instead, the matching procedure has to take care of
temporarily establishing the correct order. This allows for a less biased exploratory
behavior during the recombination and permutation of the conditions during GA op-
eration. As for the conventional XCS, all classifiers that fulfill the above matching
criterion become members of the match set [M ].

In case of not fully covered input spaces, still situations might occur where the
population does not contain matching classifiers and covering needs to be activated.
Accordingly, also the covering operator needs slight modifications. As for the binary
case, covering begins with creating a new classifier clcov whose condition is initialized
maximally specific, i.e., it exactly matches σt. This is realized by setting both the
lower and the upper bound to the value of the corresponding input dimension. In
order to generalize from the completely specified condition (li = xi, ui = xi), ∀i =
1 . . . n, a new hyperparameter r0 is introduced that replaces (or complements) P#.
This default spread r0 determines the maximum deviation of li and ui from the
current xi. Thus, the interval width for each dimension is at most 2r0. The condition
of clcov is then altered by

clcov.C =
[ (
xi − rand[0, r0], xi + rand[0, r0]

) ]
, ∀i = 1 . . . n, (2.35)

where rand[0, r0] yields a uniformly distributed random number between 0 and r0.
When using the UBR, the lower and upper bounds can be shuffled afterward to pre-
vent bias. Any further steps of the covering routine remain unchanged for XCSR.

The choice of an adequate value for r0 is crucial for ensuring adequate learning
success. It directly controls the initial generality of classifiers as is done by P# for
the ternary case. If it is set too large, mainly overgeneral classifiers occur at the
beginning and the GA has to push the population toward an appropriate degree of
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specificity. On the other hand, if it is set too small and the maximum population
size N is set too small as well, then XCSR might not able be to construct a complete
state-action-reward mapping X×A→ P for large input spaces. Under the assump-
tion of uniformly distributed input data, his phenomenon appears when covering is
continually active because the input space cannot be completely covered. This might
lead to the situation that new classifiers are continually inserted into [P ] although N
is already reached. This in turn results in a continuing replacement of other classi-
fiers covering different niches in the problem space. This trap is also regarded as the
covering-deletion cycle which in the end causes detrimental forgetting. On the other
hand, for learning problems with frequent changes in the payoff levels within the
corresponding payoff surface X × A → P , however, starting from the overspecific
side might be advantageous. This is because otherwise XCSR might not be able
to capture the complexity of the underlying problem in terms of distinguishing the
diverse payoff levels present in the possibly numerous niches. This is also called the
problem’s modality [UB17]. It becomes intuitive, that complex problems require a
population size that is chosen sufficiently large to prevent the pitfall of the so-called
covering challenge.

One might think, that the obvious solution is to set r0 to a large value. Clearly, this
would ensure full coverage of the input space, while keeping the necessary population
size small. In this case, XCSR faces the second well-known trap called the schema or
more expressively the representation challenge. Recall the discussion of the mutation
pressure above. It was stated that mutation stresses the offspring classifiers toward
specification in binary domains. This explicit specification pressure, however, does
not apply for real-valued input spaces any more. Thus, specification purely occurs
by chance. If the population is filled up with only overgeneral classifiers, XCSR will
likely take a long time to evolve classifiers with conditions that identify the underly-
ing structure correctly, i.e., specify toward the problem-dependent appropriate level.
This is because no sufficient fitness signal can be provided to the GA. Without a
sufficient fitness signal that distinguishes accurate from inaccurate classifiers, the
GA mostly acts randomly and, thus, the learning progress stalls. The provision of a
sufficient fitness signal is crucial to ensure effective solution growth and sustenance.
The resulting stress toward accuracy is referred to as fitness pressure.

Modifications to the Genetic Algorithm Beside the covering mechanism, also
the incorporated GA affects classifier conditions. Recombination (or crossover) now
acts on the level of interval predicates instead of a string from the ternary alphabet.
Theoretically, n-point crossover can split up the conditions of the offspring classi-
fiers between interval predicates or even in-between them. The latter would imply
that possibly not the entire interval predicate for a corresponding dimension is ex-
changed, but only one bound. This depends on the interpretation of what is actually
encoded as a single gene within the chromosome. If it is desired to allow crossing the
conditions between closed interval predicates, a gene would be defined as the entire
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interval predicate (li, ui). Alternatively, any lower bound li and any upper bound ui
can constitute an individual gene. This results in the number of genes in the chro-
mosome being doubled. Thus, the only noticeable change for crossing the offsprings’
conditions is that a gene is not represented by a single symbol anymore, but rather
by (1) one scalar value that represents a lower or upper bound from the interval
predicate, or, (2) the entire predicate (li, ui). However, if crossover in-between in-
terval predicates is desired and OBR is used then the crossover mechanism has to
ensure that li ≤ ui is satisfied thereafter. If not the case, the bounds need to be
switched. The combination of UBR with in-between predicate crossover appears to
be the most exploratory variant. It arguably might happen that the recombination
of two offspring conditions results in a new condition that covers a very different part
of the input space which even not matches the current input σt anymore. It is to be
assessed individually whether this behavior is desirable or not for the problem task
at hand. The same rationale applies to uniform crossover, where for each predicate
or else bound it is decided individually and with equal chance whether or not it is
exchanged.

Mutation in XCS for binary inputs flips certain specified bits to one of the other
two possibilities, e.g., 1 can be changed to 0 or #. Here, the individual genes
of the chromosome (condition) are represented by the particular bounds. Thus,
the number of possible alleles is theoretically infinite. To still allow the GA to
permute the conditions of the offspring classifiers, another hyperparameter has to
be introduced: m0 defines the maximum deviation from the starting value before
mutation. Accordingly, for each gene in the chromosome the following mutation rule
is applied with probability µ:

li, ui := li, ui ± rand[0,m0], ∀i (2.36)

Again, rand[0,m0] yields a uniformly distributed random number between 0 andm0.
The decision whether the quantity is added or subtracted is also felt probabilistically
with equal chance. As for crossover, under the utilization of OBR, li ≤ ui has to
be satisfied for all i = 1 . . . n. Accordingly, for UBR, this validity check can be
omitted.

As a last place, the GA subsumption is affected by the real-value representation of
classifier conditions. The prerequisite that a subsuming cl1 has to be more general
than a potentially subsumable cl2 is now given by

cl1.C.li ≤ cl2.C.li ∧ cl1.C.ui ≥ cl2.C.ui, ∀i = 1 . . . n.

This completes the discussion of necessary modifications to allow XCS to be applied
to real-valued input spaces. The intuition of the inner working principles of XCS
have now been introduced. Before discussing another special-purpose derivative
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designed for the task of function approximation, a brief overview of the theoretical
advances in the field of XCS shall be provided.

2.4.3. Theory of Generalization in XCS

The two fundamental changes to prior versions of LCS, i.e., basing the fitness of
classifiers on their prediction accuracy and the shift from a panmictic to a niche
GA have paved the way for a new era of LCS research that is still progressing. But
which rationales have led Wilson to make these changes? What was his fundamental
hypothesis in this regard?

In [Wil95], Wilson elaborates that the goal of designing XCS is to learn accurate and
complete state-action-payoff mapping X × A → P (also termed payoff landscapes).
At the same time the system should be prevented from creating overgeneral rules
that eventually take-over the population due to reward sparsity in starving niches.
It has been found, however, that XCS is not only able to evolve maximally accurate
but at the same time maximally general rules. These two objectives, that seemed
somewhat contradictory at that time, can be achieved due to interacting learning
pressures exerted by the newly introduced concepts.

Wilson summarized that observation qualitatively in his generalization hypothesis:

He suggested to consider two classifiers cl1 and cl2 with identical actions. cl2 is
assumed to be a generalization of cl1, meaning that cl2’s condition matches more
inputs than the counterpart of cl1. Further it is assumed that both classifiers have
an equal prediction error, i.e., cl1.ε = cl2.ε. Each time both classifiers are members
of the same action set [A], their fitness values cl.F are updated by the same amount
according to 2.32. Wilson further realized that, due to the more general condition
of cl2, it will appear in more match sets than cl1. Thus, cl2 is supposed to get more
reproductive opportunities due to the applied niche GA (at that time, the GA was
applied on [M ] rather than [A], but this was revised three years later [Wil98]). In
conjunction with GA subsumption, the increase in cl2’s numerosity is expected to
outnumber the numerosity of cl1 over time. This, again referring to 2.32, would lead
to a higher fitness share for cl2 than for cl1 when both are members of the same [A].
Speaking in microclassifier terms, cl2 is assumed to have more offspring classifiers
subsumed in the course of learning than cl1. Thus, a higher portion of the shared
accuracy κ is allocated to cl2. This in turn increases the chance for being selected
and reproduced by the GA compared to the probability of cl1. According to Wilson,
this is assumed to finally results in cl1 being superseded in [P ] by cl2 itself or its
offspring classifiers.

The process of generalization is expected to continue until a further increase in
generality of the classifiers stemming from cl2 would result in an accuracy drop, or
else to an increase of their prediction errors. The criterion of maximum accuracy is
controlled by the parameter ε0 (cf. 2.30). These interactions stress the population

69



Chapter 2. Background & Prerequisites

toward comprising classifiers that are maximally accurate and maximally general at
the same time.

Shortly after the formulation of Wilson’s generalization hypothesis, Kovacs extended
it toward the so-called optimality hypothesis [Kov98]. He showed for a certain class
of single-step problems (i.e., the multiplexer problem) that XCS is not only able to
evolve an accurate and maximally general solution, but also a complete and minimal
one, denoted by [O].

A few years later, the qualitative hypotheses around XCS’s generalization capability
have been analytically examined by Butz et al. in [But+04a]. In their work, the
learning biases of XCS were separated into several evolutionary pressures whose
interaction forms the basis of the learning process. Wilson’s initial generalization
hypothesis has carried on and was termed set pressure.

Butz in [But05a] analytically derives several bounds that need to be satisfied in or-
der to ensure XCS to learn appropriately. Initially, these bounds have been derived
following the assumption of binary input domains. Parts of the facetwise theoret-
ical results have been transferred to real-valued problem domains by Stalph et al.
in [SB10a; Sta+12a].

Further Theoretical Advances in XCS Research

A further XCS derivative specifically introduced for supervised learning tasks, termed
Supervised Classifier System (UCS) [BG03], has been investigated formally regard-
ing its competence on learning in imbalanced domains [OB06; Orr+07]. Drugowitsch
pursued a rigorous formal approach to model LCS from first principles following a
probabilistic ML perspective [Dru08; DB08]. Recent theoretic work aims at fig-
uring out optimal hyperparameter settings in binary problem domains [Nak+17;
NBH18] enabling XCS to cope with very complex instances of the well-investigated
multiplexer problem.

Since the advancement of theoretical insights about the underlying working princi-
ples of XCS is not the main goal of this thesis, a more thorough elaboration on the
current state of theory is included here. A sensible starting point to become famil-
iar with the theory behind LCS can be found in [But05a]. A recent comprehensive
survey on formal theoretical advances in XCS research is provided in [PSH19].

2.4.4. XCS for Function Approximation

So far, both XCS and its real-valued extension to XCSR have been introduced
as techniques for single- and multi-step RL problems. As already outlined at the
beginning of this thesis, XCS is a very flexible system that allows to be applied
to various problem domains with only minor changes in its algorithmic structure.
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Accordingly, in 2002 Wilson proposed a modification to XCSR in order to allow
for a piecewise online approximation of functions defined over the reals [Wil02] –
XCS Classifier System for Function Approximation (XCSF). Since XCSF serves as
reference system later in this thesis, the following paragraphs describe the necessary
algorithmic and architectural modifications to XCSR in order to yield a learning
algorithm capable of regression.

Algorithmic and Architectural Modifications to Reach XCSF

XCSF, in contrast to conventional XCS variants, strives to approximate functions
in a piecewise, i.e., local fashion. No action space is assumed which reduces the
payoff landscape to X → P . As before, a single classifier cl comprises all of the
ordinary parameters. However, for XCSF, only one so-called dummy action ad is
defined, yielding a pseudo action space A = {ad}. Of course, the action attribute
could also be omitted, but it is often still mentioned in the literature to adhere to the
conventional XCS structure. Another important modification that was introduced
concerns the payoff prediction scalar cl.p. It is replaced by a prediction model,
initially defined to be a first-order polynomial cl.p(~x), i.e., a linear function

cl.p(~xt) = (~x∗t − ~c∗)T ~w. (2.37)

Here, ~w is defined as an n+ 1 dimensional weight vector (w0, w1 . . . , wn). w0 deter-
mines an offset (or bias term). ~x∗t and cl.~c∗ represent an extended input vector and
the extended center point of a classifier’s condition cl.C, respectively. The extension
constitutes a leading 1 and 0, respectively. The subtraction of cl.~c∗ constitutes a
translation of the input (vector) space. It sets the origin to the center point cl.~c of
a classifiers condition cl.C. This translation is not mandatory but has been found
to yield beneficial effects.

Instead of estimating a scalar value for the predicted payoff cl.p as before, in XCSF
a weight (or coefficient) vector cl. ~w is stored and updated as follows [BLW08]:

~w ← ~w + η
(
y − p(~xt)

)
p(~xt) (2.38)

According to Equation 2.38, the weights are updated using a slight modification of
the Widrow-Hoff rule. Since the resulting search space for finding optimal weights
for a linear model and given a certain loss function yields a uni-modal optimization
surface, gradient-based techniques were found to be the adequate choice [Wil02].
Accordingly, the η hyperparameter serves as step size (or learning rate) for the
gradient-descent procedure. The remaining classifier parameters, however, are still
updated with the conventional update rule using the β learning rate.

The number of weights to be learned varies dependent on the degree of the polyno-
mial used for the local approximation of the underlying target function (cf. [Lan+05b]).
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For the sake of simplicity, the following elaborations focus on the linear case. The
semantics of the remaining classifier attributes is analogous to standard XCS. Since
now, only one single dummy action ad can be selected, the prediction array reduces
to a single variable. Thus, the match set [M ] always equals the action set [A].
Eventually, this makes [A] obsolete. The obsoleteness of [A] also implies that an
environmental niche is now approximated by the according match sets, and the GA
is therefore applied on [M ].

The system prediction PA(a) still calculates as the fitness-weighted sum of the
matching classifiers predictions. The predictions, however, are now so-called com-
puted predictions that are obtained by passing the current input vector ~xt as an
argument to the locally defined polynomial (Eq. 2.37) which is determined by the
current model parameters (or coefficients) stored in cl. ~w.

PA(ad) =
∑
cl∈[M ] cl.p(~xt) · cl.F∑

cl∈[M ] cl.F
(2.39)

It is locally defined, since it only accepts input vectors that fall in the range of match-
ing classifiers’ conditions cl.C. Accordingly, the underlying function is approximated
in a piecewise fashion.

Function approximation falls under the (supervised) learning task of regression.
Thus, the output of XCSF needs to be a continuous value (a scalar) y ∈ R from
the co-domain of an unknown function f(~x) to be approximated. To realize that,
for each incoming situation σt = ~xt, XCSF directly outputs the system prediction
PA(ad) and receives an according feedback signal in return. More precisely, no des-
ignated reward function that delivers an immediate reward rimm is needed anymore.
Instead, simply the actual function value f(~xt) is returned. This allows for the cal-
culation of the error measure cl.ε as usual. It is assumed that in the succeeding time
step t + 1 at the latest the actual function value of the preceding input vector ~xt
becomes available.8 With the actual f(~xt) at hand, XCSF calculates the absolute
error of the predicted payoff P (ad). This absolute error is then used to update the
matching classifiers’ parameters cl.ε and cl. ~w.

With that, the most important modifications to XCSR have been outlined. The
aspect of prediction modeling will be revisited again in Chapter 9 when it is replaced
by a interpolation-based approach.

8In the context of SLAS this assumption is indeed reasonable. Consider learning task where the
utility surface should be modeled and the assessment of just realized adaptations takes a certain
amount of time (an evaluation cycle) to capture the impacts on the system utility.
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Major Extensions to the Initial XCSF

For the sake of providing a comprehensible understanding of the inner workings of
XCSF, so far the elaborations on the algorithmic part have been narrowed down
mostly to the rudimentary form proposed in [Wil02]. However, since its first pro-
posal, plenty of research was concerned with improving the performance and capa-
bilities of XCSF. In the following paragraphs, an overview of the current state of the
art regarding XCSF will be provided along with the corresponding references.

In [But05b], Butz presents a sophisticated approach for classifier condition represen-
tation, which impacts the partitioning of the input space. Instead of the conventional
hyperrectangular representation as already described before, he proposes to modify
the geometric shape of classifier conditions to hyperspheres. Especially in smooth
functions with a certain degree of curvature, the corners of hyperrectangles might
cause higher prediction errors. In the same breath, Butz extends the hyperspher-
ical conditions to hyperellipsoidal conditions. This allows for distinct stretches in
each dimension of the input space. So far, however, these hyperellipsoidal condi-
tions are limited in their orientations. More precisely, only axis-parallel conditions
can be encoded. In order to overcome this limitation and to deal with the issue of
oblique functions, Butz et al. further enhanced the hyperellipsoidal condition rep-
resentation to allow for explicit rotations of the evolved hyperellipsoids in [BLW06].
Figure 2.12 shows an exemplary population of classifiers using this general, rotating
hyper-ellipsoidal condition representation.

Figure 2.12.: Exemplary population of classifiers evolved by XCSF employing rotating hy-
perellipsoidal conditions

As can be seen, the ellipses are not restricted to the input space bounds, since oth-
erwise, the bounding regions can not be captured appropriately by the classifiers.
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In [BLW08], this condition scheme is further enhanced. The so far utilized multivari-
ate Gaussian kernel and the according covariance matrix used to encode the hyper-
ellipsoidal condition is replaced by an explicit angular representation. This avoids
disruptive effects during the GA-driven evolution. Various investigations confirmed
the beneficial effects of the general, rotating hyperellipsoidal condition representa-
tion. The revealed advantages are attributed to the ability of XCSF to much better
capture the complexity of the underlying functions to be approximated.

Another major modification to Wilson’s initially proposed XCSF is the replacement
of the incremental update procedure for the coefficient vector ~w. In [BLW08], the au-
thors incorporated the Recursive Least Squares (RLS) method which, among others,
has been initially applied to XCSF in [Lan+05a]. The RLS update procedure, which
can be regarded as an incremental version of linear least squares technique, yields
highly significant improvements in terms of learning speed and prediction accuracy.
Further update algorithms have been examined: For instance gain adaptation and
the utilization of the Kalman filter in [Lan+06]. Neural Networks have been applied
in [LL06]. [LML07] reports on experiments with Support Vector Regression. And
also Evolution Strategies [TSD08] have been explored within XCSF. All of these
methods have been found to exhibit individual strengths and weaknesses with re-
gard to several functions with different degrees of complexity. From a comprehensive
literature review it becomes apparent that RLS has been most often used in reported
experiments. This is due to the overall competitive or rather superior performance
of this technique compared to alternative approaches that have been tried out over
time. For details on RLS and comparative studies, the interested reader is referred
to [Lan+05a; Lan+06; BLW08].

In [Lan+05b], Lanzi et al. investigated polynomials beyond linear functions to
accomplish the local approximation of functions with XCSF. For complex functions,
higher-order polynomials up to a degree of three have been investigated. They have
been found to improve both the accuracy and the generalization capability what
in turn results in more compact final solutions. In Chapter 9 a novel concept for
approaching local predictions based on interpolation is presented and compared to
polynomials up to the third degree.

In [BLW08], the authors further introduced a novel compaction strategy. This greedy
compaction methodology in conjunction with a closest classifier matching (CCM)
procedure can drastically decrease the size of the final population. With this ap-
proach, XCSF has been found to be able to decrease its population size by 90%
on average. This is accompanied by only a marginal increase regarding the system
error. Approaches to condense the final population have already been proposed
by Wilson in [Wil95; Wil98]. Those early variants of compaction essentially apply
the GA frequently at the end but with mutation and crossover inactive. This is
intended to strictly reproduce the fittest classifiers in their corresponding niches in
order to allow for subsumption and niche takeover. Since the focus of this thesis is
not directly set on the comprehensibility of the final population in terms of their
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compactness but rather on the robustness against gaps in the rule-base, the impacts
of post-hoc compaction are not investigated further.

Another extension introduced by Butz et al. in [BS12] is intended to counter the
problem of detrimental forgetting effects when the function domain is sampled non-
uniformly. The niche-based reproduction coupled with population-wide (panmictic)
classifier deletion can cause sparsely sampled niches to be “forgotten” due to a lack
of reproductive opportunity and niche support. The local deletion mechanism is
proposed to alleviate this effect. As concluded by the authors, neither significant
improvements nor adverse effects could be observed during the online learning phase.
In view of the application of compaction techniques, however, local deletion was
found to yield more stable final solutions in terms of accuracy.

In their work reported in [SB12], Stalph and Butz introduced the concept guided
evolution to XCSF. Each classifier is extended to hold a set of past samples it
has matched. On the basis of an accuracy-weighted covariance matrix, the devised
guided mutation operator is able to identify dimensions with lower, or else higher
impact. In consequence, XCSF is able to steer the evolution of the condition struc-
ture accordingly. Presented results show that guided evolution leads to a strongly
increased learning speed. Additionally, this technique enables XCSF to approximate
higher-dimensional functions that used to be rather intractable for standard XCSF
so far.

In this section, the fundamental ideas and the algorithmic structure of XCS have
been thoroughly discussed. Necessary modifications to “vanilla” XCS that allow for
handling real-valued inputs have been explained. Afterward, a basic theoretic un-
derstanding what causes the generalization in the system has been conveyed. Lastly,
a further extension to XCSR that enables the system to accomplish regression was
the subject of discussion. The conducted modifications to reach XCSF as well as an
overview of the most essential extensions have been mentioned. In Section 3.4 of the
next chapter, the potentials and drawbacks of XCS when incorporated in SLAS will
be discussed. Furthermore, a strongly modified XCS variant, called XCS Classifier
System for the Observer/Controller architecture (XCS-O/C) will be outlined that
has been designed to overcome most of the present drawbacks in this regard.

2.5. Chapter Summary

Throughout this chapter, the necessary background information regarding concepts
and techniques used in the remainder of this thesis have been introduced. Start-
ing from a brief introduction and motivation of the OC initiative, fundamental
paradigms and terms of the field of ML have been explained. Subsequently, the
domain of multivariate scattered data interpolation was the subject of discussion.
Concrete approaches from the classes of global and local interpolation have been
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described along with a discussion on their suitability. The last part of this chapter
was then dedicated to the field of Michigan-style LCS in general and the XCS algo-
rithm in particular – the central ERBML approach under investigation in this thesis.
Based on the now provided prerequisites, the next chapter brings these concepts in
line with each other and eventually derives the central problem statement.
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Problem Statement

This chapter is intended to delineate the problem domain into which the research
topic of this thesis integrates. Starting from an OC point of view on SLAS, a system
model is derived afterward in order to provide a basis for the actual problem state-
ment – the existence of Knowledge Gaps (KGs) in Self-Learning Adaptive Systems
(SLAS) systems. This chapter closes with a discussion of why LCS constitute viable
candidates for dealing with the stated research problem.

3.1. Learning in Organic Computing Systems

OC systems approach the complexity challenge by means of transferring design-
time decision to the runtime in order to achieve a flexible and robust operation in
spite of continuing change. Therefore, the systems need to be self-organizing and
self-adaptive. This latter property can be achieved by equipping OC systems with
the runtime ability to self-learn from experiences, e.g., control decisions and the
resulting utility changes. During its runtime, an OC system is continually required
to adapt to occurring changes in its typically Non-Stationary Environment (NSE).
These systems therefore steadily observe the current system state. State information
is derived through gathering raw sensory data in order to perceive the environmental
conditions as well as considering further internal parameters of the observed system.
As a response to detected changes, OC systems have to react appropriately and
within a certain time. One possibility how these reactions can be brought into the
systems is by the designers which rely on their expert knowledge. However, this
necessitates for a sort of “omniscience” regarding all possible system states that
might appear in the course of the system’s lifetime. Unfortunately, this assumption
is usually not plausible for complex interconnected systems deployed in dynamic real
world environments. Therefore, a second way of acquiring appropriate reactions for
changing conditions is reaction learning [Ste17].

The OC way to build systems with the desired self-adaptation capability is to equip
the productive systems (SuOC) with a control mechanism that provides a complex-
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ity reduction for the human operators. They shall be relieved by means of only
specifying what is to be achieved and not how exactly this should be done.

For the purpose of facilitating self-adaptation through learning in OC systems, a
generic architectural blueprint has been devised [Ric+06; Tom+11b] – the O/C
architecture. Figure 3.1 illustrates the most generic variant of this pattern.
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Figure 3.1.: The generic Observer/Controller architecture.

At the bottom level, the underlying System under Observation and Control (SuOC)
is encapsulated. It is expected to be instrumented with particular sensors to per-
ceive the current conditions of the surrounding productive environment1. Further-
more the SuOC is typically expected to be equipped with actuators (or effectors)
in order to allow for alterations within its productive environment. In order to
facilitate data exchange with the desired control mechanism, here realized by an
observer/controller tandem, the encapsulated SuOC itself further has to provide
interfaces for: (1) Granting access to its internal parameters and the gathered raw
sensor data reflecting the environmental conditions. (2) Passing control signals (ac-
tions) from the control mechanism back to the SuOC that initiate a reconfiguration
of its controllable parameters or actuation of its effectors. Together the internal and
the environmental conditions constitute the raw data which can be provided by the
SuOC and which can be directly observed by the control mechanism’s layer set on
top.

The continual perception of internal states and externally measured environmental
conditions, enriched by the applied control actions is illustrated a data stream DS.
A feedback loop is established from which the applied learning algorithms have to
build their (predictive) models. Since the SuOC is assumed to be applied in an
NSE, certain challenges are imposed on this data stream which will be defined more
clearly in the system model derivation (cf. Sect. 3.2).

1With “productive environment” the relevant and measurable part of the environment in which
the technical system is deployed is meant. Typically, the surrounding environments are closed and
there exist hidden conditions that cannot be observed through sensors.
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The control mechanism is designed as follows: An observer is set on top of the
SuOC to continually perceive the current conditions through the raw data provided.
The observer is intended to generate an appropriate abstracted situation descrip-
tion at certain points in time t. The terms (system) state and situation are used
interchangeably in the following and will be denoted by σt. This abstraction might
comprise further measures derived from the incoming stream of data. For example,
system sate forecasts can be conducted [SSH16a; SSH16b] or dimensionality reduc-
tion techniques can be applied to select the most expressive data features. Also
anomaly detection algorithms are imaginable that attempt to detect changes in the
underlying data generating processes [GS16]. As becomes apparent, the observer
part of the O/C pattern constitutes a place to accommodate Unsupervised Learning
(UL) techniques.

The observer then reports σt to the controller component which on that basis de-
cides on the necessity for a reactions or else control actions at. In case that the
controller decides to intervene, how does the it know which control actions are most
appropriate to be applied? A crucial ingredient for ML in general is an adequate
performance measure (recall Mitchell’s definition as stated in the introduction). In
OC terminology, such a measure of performance is provided by a utility function u.
It provides a feedback (or learning) signal based on which the system can evaluate
the “appropriateness” of the action applied at a current state. This utility function
comprises the system’s goals, which in turn are passed to the control mechanism via
a goal management interface by the human operators in the simplest case. Assuming
system hierarchies, also a superordinate system working on a higher abstraction level
can cause goal changes. 2. The controller is responsible to evaluate the utility of its
performed adaptations. It therefore takes the next delivered situation description
into account and compares the current utility level to the previous one. With these
ingredients, the feedback loop is finally established.

A further designated component in the generic O/C architecture is the monitoring
interface. It is designed for the sake of allowing an inspection of the current system
performance and operation. It therefore facilitates system transparency in view of
the important self-explanation property of OC and general AI-based systems.

Another question that should be answered is how the observer knows which type
of system state abstraction to build. Considering a vast amount of raw sensory
data due to high sampling of the observed data stream, the observer has to select an
appropriate window of sensory data which is to be included. Another decision would
be on which part of the incoming data to concentrate. Different goals might render
particular sensor data irrelevant. A so-called observation model which is determined

2Although beyond the scope of this thesis, it should be noted that this basic O/C pattern
can be applied in a hierarchical fashion to build even more complex OC systems. Goal-oriented
Holonic Architectures [Dia+16] are an example where such a setting can be imagined. In this thesis,
however, it is focused on a single-context SLAS. Nevertheless, the developed techniques can operate
on any level of abstraction given a well-defined context and learning task.
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by the controller is responsible for felling such decisions. Such an observation model
should be flexible and, thus might be replaced by a refined one depending on changed
goals for instance.

Example. An imaginable scenario in the introduced traffic management system ex-
ample would be the compliance to newly enacted legal constraints. For instance,
instead of striving for reducing the traffic noise in housing areas by means of lower
speed limits, now minimum pollution in the same area is pursued. These are con-
tradicting goals which demand for different sensory data on which the system should
set a stronger focus. Also the evaluation window for assessing the satisfaction of the
prescribed goals (the system’s utility) might appear different.

As of yet, the learning task of an OC system involves the following ingredients:

1. Continually observed system states σt at discrete points in time t.

2. Selected control actions at to adapt when necessary.

3. A utility function u which assesses the degree of appropriateness with regard
to the fulfillment of the system’s goals.

In Section 2.2, the notion of RL has already been introduced. The aforementioned
learning setting of controlling the SuOC via actions learned and selected by controller
on the basis of perceived states perfectly fits the RL paradigm of ML. As briefly
outlined above, ML can also be applied directly within the observer, e.g., SL for
predictive model building (i.e., utility function approximation) or for unsupervised
dimensionality reduction purposes. Later in this chapter, it will be abstracted from
specific learning tasks. The RL formulation will then be reduced to a SL notion
in order to derive the unifying system model for this thesis. For now it is focused
on the probably most intuitive system control task in view of applying ML in OC
systems.

In the following, the control task of an OC system is formulated by aMarkov Decision
Process (MDP):

• The system state abstractions σt stem from a space of possible states S

• The realizable control actions at are determined by an action space A

• A transition function τ : S × A → S determines the system state transitions
after realizing actions

• A utility function u : S × A → R serves as reward function to provide the
learning entity with necessary feedback

Parts of the state space S are determined by the value ranges of the sensors for
perceiving productive environment with which the system is equipped. The spanned
space might be modeled discrete up to a certain degree, e.g., due to the numerical
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precision of values the sensors deliver. However, it can also be expected continuous
which demands for learning algorithms capable of that. The state space can also
be enriched with observer derived measures or current conditions from within the
system. The final system state description σt on which the applied learning algorithm
is eventually making decisions is thus determined by the observer component. It has
the ability to analyze and preprocess the sensory data, to extract more descriptive
or reduce to relevant features on that basis, and even to forecast future states to
extend the abstract system state description σt.

Based on the actuators with which the SuOC is equipped and the internal control
parameters which can be directly accessed and adjusted by the controller, the ac-
tion space A can be derived. The controller’s tasks are to self-learn and to decide
on the most adequate control actions at any given state σt delivered by the ob-
server. These actions can be encoded as abstract control signals that might need
to be translated into applicable actuator signals. This translation, however, is not
considered to be a part of the learning problem here. Depending on the number of
the SuOC’s control variables and actuators, the size of the action space can become
large or even theoretically infinite. Often predefined discretizations are necessary in
order to successfully apply RL algorithms. One alternative way to deal with that
issue would be to employ an offline learning layer which optimizes particular con-
trol action solutions out of a possibly large or continuous action space by means of
simulation. The extension of the O/C architecture toward a variant capable of that
will be introduced shortly. In Chapter 7 a concrete example of that methodology is
outlined.

Usually, realized control actions for alterations of the controlled system might yield
differing sensor measurements afterward. This in turn might yield a changed system
state σt + 1 at the next time of measurement t + 1 due to the observer. This
transition from a current state σt to a subsequent state σt+1 after performing action
at is usually unknown. The transitions also might be subject to stochastic influences
which cannot be determined a priori at design time. An explicit modeling of such
an unknown state transition function τ , more precisely of an estimated probability
distribution over the succeeding states σt+1, is a designated subtask of model-based
RL algorithms. Such approaches can be valuable in real world scenarios, where the
exploration of the system needs to be restricted. With models of the environment,
i.e., for the transition τ and the reward function u, the trial-and-error behavior can
be replaced by performing planning. Simulation-based or Anytime Learning [GR92]
is a related concept which is followed by the O/C architecture extension which will
be introduced below.

As already described, the utility function u represents the system goals to be achieved.
These goals can be multifaceted in terms of involving a number of subgoals. These
subgoals can be contradictory what leads to the problem of multi-criteria optimiza-
tion. The utility function is assumed to be composed of the individual subgoals here.
Priorities among those subgoals could be reflected by applying different weights for
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instance. When the system goals change, the current weighting might change or
even further subgoals might be added. This results in changes regarding the utility
surface (also called fitness landscape in the OC context). Again model-building al-
gorithms could be applied to approach this issue. However, they need to be capable
of OL in order to detect and quickly adapt to the occurring changes. The relevance
of the ML branch of concept drift adaptation becomes apparent in this regard.

Remark In the preceding paragraphs, essential elements and aspects of modeling
an OC system’s learning task have been discussed. For instance, the importance
of the utility function u and the meaning of a state transition function τ . The
latter component maps certain states σ ∈ S and a correspondingly selected actions
a ∈ A to a succeeding state σt+1 ∈ S. With such a deterministic state transition
function as defined above, it is implicitly assumed that the succeeding state σt+1
only depends on the previous state σt and the executed action at. Since the observer
continually creates system state descriptions σt for periodic adaptation cycles of the
control mechanism, the time domain is assumed to be discrete. For example, in the
self-adaptive traffic light control system, each action, i.e., signal plan adaptation,
necessitates a certain activation interval. This could be two complete cycles through
the traffic light phases and interphases for instance for instance in order to allow for
an appropriate evaluation of the utility gain (in this example a decreased average
delay at the observed intersection) or utility drop. The more general assumption
that σt+1 depends only on σt is known as Markov property in the literature [SB98].
More precisely, σt is actually required to comprises all necessary information of past
state transitions which might become relevant in the future. When furthermore the
action is considered in the state transition, as assumed for the OC learning scenario
as introduced above, this is referred to as MDP or controlled Markov process.

3.1.1. The Multi-Layer O/C-Architecture

In order to continually self-optimize, SLAS need to explore. At least at early stages
or whenever changes occur, new knowledge elements which sufficiently cover the
current problem space have to be acquired by the systems. Without sufficient ex-
ploration, the systems probably get stuck in local optima of the fitness landscape
determined by the utility function u. Unfortunately, exploration implies trial-and-
error. This refers to the unrestricted realization of random actions which never
have been tried before in the same situation. Such an exploratory behavior might
either yield low system utility or can even cause damage regarding the system it-
self or other involved parties. In the worst case, free exploration can lead to injury
of human participants. Consider just an industrial robot having a heavy object
attached and which freely discovers different kinematic trajectories in its operation
area. In order to cope with this exploration-exploitation dilemma (cf. Sect. 2.2), the
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generic O/C architecture discussed before can be extended toward the Multi-Layer
Observer/Controller (MLOC) architecture as depicted in Figure 3.2.
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Figure 3.2.: Schematic of the Multi-layer Observer/Controller architecture

This multi-layered variant stacks two distinct layers each with a dedicated observer
and controller component on top of the SuOC. It additionally defines an overarching
third layer for collaboration and communication with external authorities and neigh-
boring systems. The individual tasks of each layer can be summarized as follows:

Layer 0 - Productive System At the lowest zeroth layer, the SuOC placed
within its productive environment is encapsulated. The layer comprises the adapt-
able managed resource, which might be either a physical system or a pure software-
based system, as well as the surrounding environment. Examples for the letter
are weather conditions or participating humans in cyber-physical systems, or the
software ecosystem in which an self-adaptive software component is embedded. As
before, the communication paths to the superordinate O/C tandem are realized by
means of well-defined interfaces which allow for gathering sensory data (observation)
and realizing control actions (control). Together the SuOC and the surrounding en-
vironment constitute an NSE. Such a dynamic learning environment is expected
to continually challenge the involved self-learning mechanisms and, thus, the en-
tire SLAS with unforeseen situations. These might be caused by internal issues
(e.g., component failure) or external disturbances (e.g., weather conditions or traf-
fic accidents). Again, the periodically conducted observations, enhanced with the
realized adaptation reactions (or control actions), constitute a data stream. The
runtime adaptation layer (L1) is asked to learn from the data provided by this data
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stream. It directly follows the requirement for online or incremental ML algorithms
as explained in Section 2.2.

Layer 1 - Runtime Adaptation Layer This online learning layer establishes
the feedback control loop. The task of the observer L1-O is the same as before, i.e.,
analyzing the incoming raw data and deriving an abstracted situation description σt.
The controller’s (L1-C) task is still the determination of appropriate reactions. It
conducts this decision making process based on the delivered situation description
σt and on the basis of the so far acquired production rules stored in a dedicated
knowledge base. The controller has often been realized by online rule learning sys-
tems, such as provided by XCS. The applied algorithm is expected to incrementally
learn IF(system state)-THEN(control action) rules and to maintain a corresponding
rule or knowledge base. As already described in more detail in Section 2.4, these
rules constitute the system’s knowledge and are incrementally refined toward higher
predictive accuracy and maximum generalization over the system’s state space.

Layer 2 - Offline Learning Layer The second O/C layer is designed to observe
and analyze the behavior of the lower runtime adaptation layer and to enhance the
knowledge base of the reactive learning component situated at L1-C. In particular,
it is responsible for reactive on-demand construction of novel rules whenever L1-C
has no knowledge for the current system state delivered by L1-O. Therefore, the
second-layer controller (L2-C) is equipped with (1) an arbitrary black-box optimiza-
tion heuristic, and, (2) with a computational (simulation) model that simulates the
behavior of the productive system (L0). It thus provides a “sandboxed” environment
without direct impact on the productive SuOC. With this layer 2, the MLOC-based
SLAS is enabled to learn offline by means of creating optimized (not necessarily
optimal) rules via simulation for instance. Depending on the incorporated optimiza-
tion method, this reactive knowledge construction can demand for a vast amount
of computation time. Thus, depending on the time-criticality the optimized rules
are usually not expected to be immediately available but only after a certain opti-
mization time. These knowledge elements can then be utilized at one of the next
occurrences of at least a similar situation for the first time. As initially outlined
by Tomforde et al. in [TCH09], one particular aspect for improvement would be to
leverage stand-by times of the offline learning layer in order to optimize the cover-
age of the problem space. In the same work, another aspect has been mentioned as
part of the presented research roadmap, namely the use of “[. . . ] intelligent inter-
and extrapolation mechanism(s)[. . . ]” in order to increase the efficiency of the rule
creation process. In this thesis, both aspects are explicitly targeted. Initial methods
for interpolation-assistance and proactive knowledge construction for LCS will be
developed in the following chapters.
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Layer 3 - Collaboration Layer Layers 0 to 2 define an autonomously learning
SAS with a single-context, i.e., local, scope. In order to allow for cooperation and
collaboration among neighboring SLAS as well as to provide a clearly defined in-
terface for user access, a third, so-called collaboration layer exists. The dedicated
interfaces for monitoring and goal management have the same meaning as before.

Again, enabling external authorities to change system goals at runtime requires what
is called flexibility in the OC context. This refers to the capability of the system
to automatically maintain or at least effectively recover to acceptable utility levels
in spite of structural changes in the system’s underlying fitness landscape due to
goal modification. Additionally, a further collaboration component is included for
communication and negotiation purposes between neighboring systems. This shall
allow for a self-organizing collective achievement of the system’s goals which a single
entity can not or only hardly manage. An example would be the establishment of
progressive signal systems in order to pursue green waves and accordingly to achieve
far reaching continual traffic flows.

The MLOC architecture as depicted in Figure 3.2 again constitutes a generic blueprint.
It can be easily extended to incorporate further O/C layers and individually equipped
with capable learning and optimization techniques for which the problem at hand
demands.

As follows from the previous elaborations on the individual layers’ responsibilities,
the exploration-exploitation dilemma can be approached by moving the exploratory
knowledge discovery behavior to the offline learning layer L2. The runtime adapta-
tion layer L1 can then simply keep exploiting sufficiently reinforced knowledge. It
is also reminiscent of Grefenstette’s anytime learning approach [GR92].

This type of restricted knowledge exploration [Tom+11a] has already been applied a
couple of times and in combination with XCS as particular rule learning component
at L1-C. The modifications to XCS that have been found necessary in this regard
will be discussed in the following.

3.1.2. XCS in Organic Computing Systems

In the following, one particular modification of XCS toward an OC variant de-
noted by XCS-O/C will be presented. This modification allows for restricted on-
line learning and exploration has been especially designed to fit the MLOC scheme
presented above. In essence, two crucial modifications have been introduced (cf.
e.g., [Tom+11a; Pro+08]):

1. The steady-state niche GA is removed from the conventional main-loop and
replaced by an evolution strategy [BS02] which serves as the optimization
heuristic situated at L2-C. It is utilized to figure out optimized actions by
using the sandboxed offline simulation or other models of the environment.
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2. The covering operator was modified to prevent the purely probabilistic creation
of conditions and the exploratory random assignment of actions. Instead,
it considers classifiers in a restricted proximity and builds upon the nearest
neighbor’s condition. It then creates a copy of this condition and widens it to
encompass the so far uncovered situation.

Figure 3.3 integrates the three main components of XCS (see Sect. 2.4) with the
generic MLOC architecture.
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Figure 3.3.: XCS-O/C integrated with the Multi-layer Observer/Controller architecture

The performance, reinforcement and discovery components are spread among the
controllers of layers 1 and 2. XCS’s performance and reinforcement component are
positioned at the runtime adaptation layer 1 on top of the SuOC. Thus, whenever
a reward signal is evaluated by the controller, the active classifiers in the action
set are adjusted as usual. Also the conventional main-loop of XCS (performance
component) is situated at L1-C. Matching, the calculation of the prediction array as
well as the action-selection regime are applied as for standard XCS. The discovery
component, however, is outsourced to the controller of the offline learning layer L2.
The standard steady-state niche GA is replaced by an generational evolution strat-
egy which serves as the optimization heuristic at L2-C. The evolutionary discovery
process is now invoked whenever the rule-base situated at L1-C contains no classi-
fier that matches the current situation σt. Another reason for invocation is given
when the modified covering operator cannot find a neighboring classifier within an
acceptable distance. The operation of the evolutionary component of XCS is thus
not periodical anymore, but rather occasionally happens on demand.

The exploration mechanism of XCS-O/C outsourced to L2-C essentially needs two
components:
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1. An optimization heuristic, such as the evolution strategy utilized here

2. A fitness evaluation method

The latter ingredient might be realized by a computational simulation as mentioned
before, for instance. In the simplest, and least likely, case it can be realized by
means of an a priori known model of the fitness landscape. Another option might be
to use existing domain-specific mathematical or physical models or else approxima-
tion formulas which capture at least parts of the behavior of the underlying SuOC.
Naturally, appropriate and available options for fitness evaluation highly depend on
the specific application domain. In contrast to the GA involved in standard XCS
which optimizes the input space coverage, the optimization component at L2-C seeks
optimized actions. The final all-time best action candidate is then put into a new
rule and evaluated against the same acceptance metrics as for the widening routine.
If positively evaluated, the new rule is eventually passed to the knowledge base at
the runtime adaptation layer, i.e., XCS-O/C’s population. From this time on, the
offline generated rule can be applied and directly affect the SuOC.

As can be imagined, a generational (or iterative) optimization algorithm with a
fitness evaluation based on a computational simulation model can hardly produce
solutions promptly at the time of request. Since the optimization is conducted
offline, the productive system at layer 0 as well as the (online) runtime adaption
layer remain responsive. To still assure immediate real-time reactions in spite of
missing rules, the so-called widening covering mechanism has been developed. Its
intuition is illustrated in Figure 3.4.
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Figure 3.4.: The rule widening operation illustrated

It is activated as conventional covering, i.e., whenever the population does not con-
tain any classifier matching the current situation. Within a certain radius deter-
mined by a predefined distance threshold, it seeks for nearby classifiers covering
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similar situations. The condition of the nearest classifier within the acceptance area
is then copied and widened to barely include the current situation. In the case that
no classifier falls within the accepted distance, layer 2 is triggered to optimize a rule
offline. In the simplified setting depicted in Figure 3.4, the Euclidean distance is
utilized as similarity metric. The action of the nearest neighbor is retained. The
remaining classifier parameters can then be initialized by different means (for a con-
crete examples cf. Ch. 7). Ideally, if there exist approximation formulas that model
the behavior of the underlying SuOC, the widened rules can be assessed for meeting
predefined acceptance criteria before added to the knowledge base. This is to address
the aspect of safety in terms of bounded exploration again. Such acceptance metrics,
however, are non-trivial to define and depend strongly on the learning task.

Example. For the running example of an intelligent traffic control system, such an
acceptance criterion could be the compliance to known maximum capacity of a road
lane which leads into the observed intersection. Further concrete examples of such
acceptance metrics and situation descriptions as well as for a domain-specific utility
function can be found in [Pro11; Tom12].

For the indeed relevant case that widening cannot satisfy the predefined constraints
and the evolution strategy on L2-C has not finished the optimization process yet,
the rule base on L1-C should be equipped with at least one default rule to serve
as a viable fallback solution. This could be a human-engineered default signal plan
for the traffic light control scenario. Alternatively, the system could decide to just
keep the previous configuration. Except for severe abrupt changes in the detected
conditions, this can be plausible since the system should currently follow an op-
timized configuration for a similar situation that appeared before. The interplay
between the new rule widening covering operator, and the outsourced evolutionary
optimization mechanism results in a situation in which only safely exploitable rules
are created and applied by the learning system. These rules should not be expected
to be optimal, but at least fulfill minimum criteria as defined by the users. However,
this circumstance does not prevent the occurrence of knowledge gaps during the
systems runtime. Whenever a system is exposed to a entirely unforeseen situation,
neither rule widening, nor the rule exploration on L2 can be expected to deliver
high-quality rules just in time. Even more capable mechanisms are needed to com-
pensate for such situations. The interpolation-based techniques as will be developed
in this thesis constitute a possible solution.

Remark One important aspect on which it is worth to spend a couple of further
thoughts is that the steady-state GA, conventionally used for global optimization
of the state space coverage, is replaced by a generational evolution strategy that
does not consider the coverage at all. This means that it does not select from a
mating pool of existing classifiers sharing a common environmental niche. Instead,
the evolution strategy initializes a certain number of random actions from the action
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space A and applies mutation over a predefined number of generations. Accordingly,
it seeks an action a ∈ A for the current situation σt which is nearly optimal in
terms of the utility (or fitness) that was returned by the applied fitness evaluation
component. This utility value can then be further used for the initialization of the
prediction parameter cl.p of the classifier to be created. Thus, the generalization
pressure of XCS-O/C is exerted only by the widening mechanism. As a consequence,
Wilson’s generalization hypothesis does not apply directly, since reproduction is not
based on the action set anymore. Conversely, the covering mechanism now stresses
the classifiers to generalize but without considering their current fitness estimates.
In summary, however, the pursued aim to constrain the exploratory behavior of
XCS-O/C is indeed met with this approach. The consequence of

1. feeding the population with one or more handcrafted default rules which serve
as fallback,

2. only creating new classifiers with optimized actions at the offline learning layer
L2 on demand, and

3. handling so far uncovered situations by widening existing (and thus optimized)
rules,

leads to the situation that the rule base on layer 1 consists only of classifiers that sat-
isfy predefined and domain-specific acceptance criteria. In this way, safety-critical
trial-and-error situations are mitigated and the system can be assumed to act within
adequate exploration bounds. Nonetheless, the removal of the steady-state niche
GA, results in limited generalization pressure. Furthermore, the application of a
generational evolution strategy instead of the conventional steady-state approach
weakens XCS’s ability to remain responsive to NSEs that are subject to change.
While the steady-state GA steadily considers the fitness of already existing classi-
fiers and pushes fitter rules toward a maximum level of generality, the offline opti-
mization process has to explicitly reflect detected changes in the environment in the
fitness evaluation components (e.g., in the simulation model). Of course, this can
be achieved by the system operator who monitors the system’s behavior. Another
means would be to apply novelty detection methods [GS16] to let the recognize such
changes by itself. However, this does not feedback the detected changes into the
fitness evaluation components at L2. The acceptance criteria as well as the current
fitness evaluation methods still need to be adjusted in order to capture the changed
conditions.

3.1.3. Four Core Challenges of Learning in SAS

As becomes apparent, the OC-related task of online learning bears several challenges.
Many of them have already been addressed, others remain unsolved and are under
current investigation. The research field of ML in OC systems still provides a variety
of open questions. These open research questions should be approached in order to
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meet the rising demand of SLAS which will appear the future. In the context of
this thesis, identified challenges which are deemed most critical are summarized as
follows:

I. Knowledge gaps which appear due to prevalent sparsity and imbalances in the
incoming data

II. Non-stationarity of the learning environments in which the systems are asked
to act flexibly and robustly

III. Behavioral guarantees by means of assuring explainability, interpretability and
exploration boundaries

IV. Problem space complexity in terms of (the curse of) dimensionality, uncertainty,
continuity, obliqueness and curvature

This thesis addresses the first challenge of dealing with KGs. A more detailed no-
tion will be defined shortly in Section 3.3. Nevertheless, also the aspect of NSEs
is partly touched upon in the last part of this thesis. It is also already captured
in the formal system model which will be derived in the subsequent section. The
need for behavioral guarantees constitutes a huge topic in the AI community these
days. This seamlessly applies also to research concerning SLAS which are sup-
posed to act autonomously based on AI technology. The aspect of interpretability
of the evolved knowledge bases is implicitly seized by the utilization of ERBML
techniques. These algorithms represent their knowledge in form of IF-THEN rules
that, depending on the condition representation used, are far better human compre-
hensible than subsymbolic methods such as ANNs. Methods to further compact the
resulting rule bases [TMU13] and visualization techniques which allow for post-hoc
analysis already exist. Examples are feature dependency trees [But+04b], attribute
tracking [Urb+18] and more [LXB17], each of which increasing the interpretability
property of LCS. Despite not falling in the scope of this thesis, they are definitely
worth to receive more research attention. The same is true for establishing and
proving guarantees regarding the exploratory behavior of autonomously learning
systems. Apparently, interpretability and explainability can be seen as first step-
ping stones in this direction. Last but not least, the complexity of the underlying
problem spaces is not exclusive to SLAS. The outlined properties also challenge ML
and optimization algorithms since the year one.

3.2. System Model Derivation

In this section, the scope of technical systems which are deemed to facilitate the
problem of KGs which this thesis’ centrally approaches is narrowed down to a concise
system model. Starting with an informal description of the targeted type of systems,
a formal notion related to the ML point of view is presented.
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There exist various architectural approaches of how SAS can be designed [Kru+15].
Two of the probably most prominent architectures are: (1) The Monitor-Analyze-
Plan-Execute (MAPE) cycle [KC03] originating from IBM’s AC initiative. (2) The
generic O/C architecture from the OC domain [MT17a], and its more sophisticated
MLOC version, as introduced in the previous section. Both architectures share very
similar ways to structure single components dedicated to specific tasks. However, in
this thesis the MLOC architecture serves as reference case for an architectural model,
since it clearly defines the incorporation of rule-based online learning mechanisms
already in its generic blueprint.

In the remainder of this chapter, SLAS with a local scope, i.e., single-context systems
(cf. Ch. 2.1), composed by adhering to the MLOC scheme (see Fig. 3.2) are con-
sidered. The SuOC of such a SLAS is assumed to be deployed in an NSE [Dit+15]
which is subject to ongoing change. This affects the encapsulated data stream in
a sense that drifting input distributions P (X)3 affecting the derived system states
σ ∈ S are presumed. This means also that the systems are subject to uncertainties
(e.g., noisy sensor data) and unforeseen internal or external disturbances. Further-
more, occasional system goal changes which demand for ongoing reconfiguration at
runtime are expected. As a result, the initially unknown data distributions are
expected to be non-uniform. All the aforementioned assumptions are deemed to
eventually facilitate sparsity and imbalances regarding particular regions of the sit-
uation space. In technical terms, these assumptions can be abstracted to a notion of
data generating processes (encapsulated by the NSE datastream, cf. Fig. 3.2) that
follow an unknown probability distribution function. Whenever at least one of these
processes changes over time or due to other influencing aspects, those changes are
regarded as gradual drifts or abrupt shifts in the underlying concepts. The technical
notion of Concept Drift [Web+16] provides technical models in this regard. In the
literature it is usually differentiated between real concept drift and virtual concept
drift (cf. e.g., [Gam+14]). In general, SLAS are presumably subject to both forms
of concept drift.

As of yet, in own previous work regarding the KGs, only the former kind of virtual
concept drift has been taken into account as a major cause. This implies that the
main factors leading to the occurrence of KGs are expected to be due to changes
in the underlying input data distributions, i.e., the prior or marginal probability
P (X). Real concept drift in contrast affects the a posteriori probabilities P (Y |X),
roughly speaking changes regarding the correct targets given particular situations.
Input distributions changes (virtual drifts) are in turn assumed to arise due to unex-
pected disturbances (e.g., internal component failures) or more subtle changes over
time (e.g., gradual changes due to ongoing sensor drift) that eventually move the
currently derived system state abstractions (represented as state vectors σt ∈ S)
to other niches within the system’s state space S. Different niches within a sys-
tem’s state space are assigned different levels of system utility. These sort of “state

3X here denotes the domain of raw values as delivered by the data stream DS
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preferences” are usually specified by an external authority such as a human adminis-
trator in charge. By specifying objectives instead of entire solutions, and letting the
systems themselves learn how to solve the task at hand, a complexity reduction is
pursued. The consequence of considering only the first kind of concept drift for the
following KG definitions is that these preferences, i.e., utility levels, regarding the
system states remain unchanged over the entire learning period. The incorporation
of real concept drift would also involve changes regarding the externally specified
utility function u, which essentially determines the typically unknown (i.e., black
box) fitness landscape (or problem function surface) which in turn is approximated
by the learning algorithms during runtime (see more detailed explanations below).
This even worse kind of real concept drift would render so far learned state-utility
mapping approximations invalid to a certain degree, eventually decreasing their pre-
dictive quality. This, in turn, opens a second reason for KGs to occur which will be
introduced as type-2 KGs in the next Section 3.3.

Please note that for the sake of a general formal problem description as will be
introduced below, both types of concept drift are incorporated. In the evaluation
sections of this work, however, the consideration of concept drift is excluded. The
focus of the experiments is restricted to the achievable benefits of using interpola-
tion in order to enhance the learning capabilities of SLAS under the presence of
KGs. The actual occurrence is provoked by utilizing uniform input distributions
applied to selected theoretical problems which have been found to be challenging
for a learning mechanism that alreay proved successfully utilizable in self-learning
OC systems – the XCS classifier system. Therefore, the focus is mainly set on the
algorithm’s progress at early stages of learning, where no appropriate knowledge
can be assumed. By following this methodology, the pure beneficial effects of the
developed KG-countering strategies on the learning behavior of XCS can be fath-
omed. Possibly biased insights due to incorporation of specifically designed concept
drifts that occur repeatedly are therefore avoided. Nonetheless, virtual concept drift
is implicitly reflected in Chapter 7 where a real world application in the context of
self-adaptive traffic control serves as evaluation scenario. Furthermore, the influence
of virtual concept drift realized by using different sampling techniques has already
been investigated in preliminary studies (cf. e.g., [Ber18; Mei17]) where the benefits
of interpolation-assisted XCS could be confirmed. A thorough elaboration on that
issue, however, falls beyond the scope of this thesis. Further including real concept
drift in the experimental setups would amplify the aforementioned plasticity-stability
dilemma prevalent in OML settings (cf. Sect. 2.2). The circumstance that so far
learned knowledge might become entirely obsolete would have to be taken into ac-
count. It would then need to be decided whether it is more efficient to adapt the
existing knowledge elements to the changed underlying problem concepts, or if it
would be better to entirely learn from scratch. This decision would have strong
impacts on the interpolation-based methodologies as developed throughout the sub-
sequent chapters. An analysis of those impacts with respect to varying degrees of
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both types of concept drift goes far beyond the scope of this thesis but certainly
constitutes an important step of future research.

With the formerly introduced assumptions, the first two identified core challenges
that affect the actual modeling of a general learning task – knowledge gaps and
non-stationary learning environments – are explicitly incorporated into the system
model. To cope with these challenges, a learning algorithm is considered that is ca-
pable of building models in an online or reinforcement learning manner. This means
that the current knowledge base is updated each time a new situation is encountered.
Therefore, an initial data set that can be used for a priori analysis and hyperparam-
eter tuning is not expected to be available. The algorithm family of LCS is selected
to represent as such a learning component in this thesis. More precisely, it is focused
on the XCS classifier system. Variants of XCS have already been applied in several
autonomous systems deployed in various real-world domains, for instance: Self-
adaptive traffic control [Pro+09; STH16], self-adaptive network protocols [THH11;
THH11], hardware-software co-design of a System-on-a-Chip [ZH11; Zep+11], as
well as self-configuring smart camera networks [Ste+17b]. A more detailed rationale
for this choice is given in the last section before the chapter summary.

Formal Problem Description

As discussed in the previous section, the SuOC encapsulates the system to be adap-
tively controlled by a superordinate layer that constitutes the active control mech-
anism. The continuing cycle of sensory data and control signals can be interpreted
as a data stream (or sequence)

DS :=
(
(s1, a1), . . . , (st, at), . . . , (sn, an)

)
(3.1)

of situations (or system states) σt from the systems state space S combined with
corresponding control actions at ∈ A over a period of time t = 1 . . . n. Assume that
the situations σt as well as the possible actions at are d- and c-dimensional vectors
of the corresponding state space S ⊂ Rd and action space A ⊂ Rc, respectively.

Remark By relying on such a real-valued encoding for the state and actions spaces,
the formal model should be generic enough to comprise a wide variety of real world
problems. On the other hand, it should be expressive enough to also capture sim-
pler problems using integer encoding (holds since N ⊂ R) or even binary problem
domains. In the end, possible limitations are related to the distance metrics which
are applicable on the respective normed vector spaces defined over the reals. With-
out a natural order, it is hardly possible to calculate distances in order to yield
a measure of similarity between two elements of a state space. For instance, how
should a similarity between system state “code red” and system state “code blue”
be calculated, if those are encoded categorically, i.e., by arbitrary integer numbers
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or other symbols? The notion of distance or at least another quantifiable type of
similarity is necessary for a lot of ML techniques applied to real world data in gen-
eral and for the interpolation-based approaches developed here in particular. Some
basic learning algorithms, such as Q-learning [WD92], only require and countable
number of states without any order between them to work appropriately. However,
these techniques usually struggle with very large input or state spaces and cannot be
applied to continuous spaces at all without substantial modifications – a restriction
that shall be avoided by the applied real-valued encoding.

To assess the system’s performance, a mapping onto a utility space4 U ⊆ R is needed
which provides a utility measure for state-action pairs (σt, at). This mapping is given
by a utility function u : S × A → U . The actual problem space PS is given by the
Cartesian product of the situation space S ⊂ Rd and the action space A ⊂ Rc, i.e.,
PS := S×A. For the techniques developed in this thesis, the state and action spaces
as well as the combined problem space PS are interpreted as vector space over the
reals, which is further assumed to be Euclidean. This is a common assumption made
in the field of ML, since many methods heavily rely on the field of linear algebra of
which vector spaces and linear combinations constitute essential parts. 5 As already
discussed above, this assumption is necessary for this work, since the interpolation
techniques applied in the next chapters, will use the state vectors σt ∈ S as sampling
point coordinates ~x, whereas actions from A or any other numerical value (the output
or target values) will be used as the function values f(~x) of the unknown functions
interpolated.

In the following, at first the actual learning task is modeled from two different ML
angles – from the Supervised Learning (SL) and the Reinforcement Learning (RL)
perspectives. Afterward, a more general notion is modeled in order to abstract from
concrete learning tasks.

Supervised Learning From a SL point of view, the task is to figure out and
model the relationship between a number of features, here the state vectors σt ∈ S,
and a target variable (independent variable), e.g., an adequate action at ∈ A or
an utility estimate ut ∈ U . For the training step, examples comprising features
and the desired targets are presented to an SL algorithm. Usually, features are
represented as d-dimensional vectors ~x ∈ X ⊆ Rd, whereas the target can be a
categorical value t ∈ T ⊂ N (e.g., one out of a few possible control actions), or a
scalar t ∈ T ⊂ R (e.g., an utility estimate). Thus, the task of an online SL algorithm
L is to create a hypothesis h that takes features ~x as input and approximates a

4Please note that the term “space” is not necessarily intended to refer to the strict mathematical
definition of spaces here if not explicitly stated otherwise. This “abuse of notation” seems to have
somehow established in the literature.

5See also
https://machinelearningmastery.com/examples-of-linear-algebra-in-machine-learning/
(last accessed August 5, 2019)
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mapping h : Rn → T onto the targets based on the training examples made available
so far. For classification tasks, this modeling often involves the calculation of a set
of continuous output variables t ∈ [0, 1] in a first step. Then a certain decision
mechanism fells a decision for one (ordinary multi-class) or many (multi-label) of
the possible categorical values on the basis of these scalar scores. This approach is
also called scoring and is used within the logistic regression algorithm or ANNs for
instance (cf. e.g., [PF13]).

Reinforcement Learning From an RL perspective, a control problem can be
modeled by means of an MDP as done before. Again, the components of an MDP
include a state (or situation) space S and an action (or configuration) space A
among others. In contrast to the SL approach, the learner L is asked to figure out an
optimal policy π∗ on the basis of an unknown state transition function τ : S×A→ S
(here deterministic) in combination with a utility (usually called reward) function
u : S×A→ U . For a stochastic problem, the transition function can also be defined
as τ(st, at, st+1) = P (st+1|st, at). This yields a probability distribution over the
possible states st+1 ∈ S, given the current state st as well as the selected action
at. With these two ingredients, the learning agent L can learn a policy π : S → A
to decide which action to choose in order to maximize the expected cumulative
reward over time t. In fact, this policy is another function that can be formulated
by a probability distribution or rather a parameterized model (see e.g., the policy
gradient approach [SB98]). In that fashion, model-free RL approaches try to find a
policy without building explicit models of the environment dynamics. On the other
hand, model-learning RL approaches strive for explicitly approximate the unknown
functions τ and u to improve the present or find the optimal policy [SB98].

As can be recognized, both approaches involve the necessity to find a particular
mapping from states vectors s ∈ S, and sometimes combined with actions a ∈ A, to
certain targets. These targets might be the correct class or action to be executed,
a scalar utility estimate, or the probabilities for the succeeding states (transition
function) or actions (policy). Bearing this in mind for the system model formulation,
the learning task is now abstracted toward a unified notion which abstracts from
particular (sub-)tasks or (sub-)models that are build by different learning approaches
to approach the overarching problem at hand. This abstracted notion is then used for
motivation of the method developments and evaluations conducted in the remainder
of this thesis.

The learning task abstraction is therefore defined as the induction of an approxima-
tion f̃ of an unknown problem function f ,

f̃ ≈ f, f : PS → U, (3.2)

where PS := S ×A substitutes the feature space X ⊆ Rd of the SL notion, and the
utility space U substitutes the target space T . According to this reformulation, the
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learning task of a SLAS is abstracted from the particular definitions of SL and RL
toward a unifying function approximation task.

To bring the simplified learning task of Equation 3.2 in line with the formerly intro-
duced notion of learning in NSEs, the factor time needs to be added to the model.
As outlined above a couple of times already, SLAS are subject to change caused by
e.g., changing high-level goals and unforeseen situations or disturbances. When the
system goals change from one point in time t to another point t + x, the knowl-
edge (hypothesis or models) built by the SLAS (e.g., state-action-utility mappings)
also need to be adjusted properly in order to assure goal compliance. Or in other
words, the knowledge a learning algorithm L has acquired until time t, is not guar-
anteed to be appropriate at time t+x anymore. When the underlying goals change,
the actual mapping f of the problem space PS onto the utility space U , which
essentially can be interpreted as fitness landscape or utility surface, also changes.
Furthermore, the problem space PS is also assumed to be subject to alterations
over time. For example, mutual influences between interfering subsystems might
be detected [Rud+15] and, thus, corresponding additional information (new state
vector components) would need to be integrated into an individual agent’s situation
space. Regarding the notion of inherent dynamics in NSEs, also the utility space
U is allowed to change. For instance, the utility space’s scale and dimensionality
could increase or decrease when novel goals are added or obsolete goals are removed,
respectively. The following statement summarizes these thoughts by stating an in-
equality regarding the abstracted learning task with the factor time incorporated:

f̃t ≈ ft, ft : PSt → Ut 6= ft+x : PSt+x → Ut+x (3.3)

The aforementioned occurrences of possible change can be brought in line with the
notion of real concept drift, where all components of a learning task can be subject
to change over time t. This, however, does not imply that only the factor time causes
the components to change. Due to the stochastic nature of NSEs, abrupt changes
can occur without any indication at any point in time.

So far, the learning problem is modeled as the task of automatically inducing a
model or approximation f̃ of an underlying non-stationary problem function ft on
the basis of abstracted situation observations σt ∈ S and corresponding control
actions at ∈ A gathered from a continuing data stream DS as defined before. In
NSEs, a typical assumption is that the system state observations stem from a data
generating process that follows an unknown probability distribution:6

Pt(S) = Pr(St+1 = σt+1|St = σt, At = at) (3.4)

Naturally, this data generating process is directly influenced by the control actions
realized on the SuOC in order to improve the system’s utility.

6With a slight abuse of notation, the symbols for the state and action spaces are temporarily
used as random variables in a stochastic process.
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Thus, with changing goals corresponding to real concept drifts, that also directly
impact the utility mapping (i.e., the problem function f), also the aforementioned
system state distribution might change. This is because those niches within the
problem space which yield higher utility values are shifted to other locations as
a consequence to the changed structure of the fitness landscape. The task of the
SLAS is then to successively steer the system to exactly those high utility niches
again. The system state trajectories through the problem space in turn impact the
probability distributions Pt(S) over time.

Further reasons for virtual (or covariate) concept shift which causes abrupt changes
in the system state distributions, i.e., Pt(S) 6= Pt+x(S) are internal or external dis-
turbances. Disturbances are unforeseen events that abruptly shift the system’s state
σt to another region within the state space S. This abrupt shift differs from a gradual
drift in that no successive steps (movement trajectory) through the problem space is
assumed. The runtime adaptation mechanism at L1-C of the MLOC-based SLAS is
then responsible to guide the system state back to regions within the problem space
PS that yield the targeted level of utility. The difference to the real concept drift
case is that not the entire problem function ft is changed, since the utility mapping
remains the same. But only the system state generating process, i.e., the probability
distribution Pt(S) again changes.

At this point, the system model is now informally as well as formally defined. A
unified notion for the task of learning in SLAS as considered in this thesis has been
developed. The developed system model now serves as common basis and motivation
for the actual problem statement which is derived in the next section – the definition
of Knowledge Gaps (KGs).

3.3. Knowledge Gaps in Self-Learning Adaptive
Systems

The purpose of this section is the introduction of the notion of Knowledge Gaps
(KGs) and related terms such as knowledge base and knowledge elements in the
context of knowledge-based SLAS.

Therefore, first the general term of knowledge shall be revisited on the basis of
the well-known Wisdom pyramid [Row07] which is depicted in Figure 3.5. This
hierarchical model defines knowledge as a result of the repeated use of information.
That is the system has made experiences with the information, e.g., by feedback
after its application. Information in turn constitutes raw data which is structured
and annotated with a certain form of semantics. For instance, sensor data provided
with a certain encoding and annotated with the actual meaning of the values. The
tip of the pyramid is given by wisdom, which again takes knowledge to a higher
level. According to Rowley [Row07], there seems to be no consensus of the concept
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SISSY'18 - Proactive Knowledge Construction
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Figure 3.5.: The pyramid of wisdom model, adapted from [Row07] to fit the introduced
system model

of wisdom, especially when considered in the context of knowledge-based information
systems. However, Rowley outlines the interpretations of a few authors that relate
wisdom with: (1) The ability to accumulate knowledge and understand how to apply
it from the original domain to new situations or problems. (2) The highest level of
abstraction and vision foresight. (3) “(...) the ability to act critically or practically
in any given situation.” [Row07].

In order to bring in line the above notion with and to provide a more intuitive
understanding of knowledge in technical systems, consider a simplified version of the
introduced running example of self-adaptive traffic light controllers (cf. Chapter 7
for a more detailed introduction):

Example. Detectors situated at a road in front of a single traffic light deliver simple
integer values counting the number of vehicles passing this road. Augmenting this
raw data with the semantics that this detected integer represents the counted number
of vehicles that used this particular road and annotating it with a unit such as vec

h
yields information. Let this information be further related with (1) an applied con-
trol signal, here the adaptation of the green phase by applying an alternative signal
plan, and, (2) with a corresponding utility feedback obtained, here e.g., the average
waiting time of cars at this traffic light. “Experiencing” this extended information
a certain number of times increases the confidence of the utility estimate and thus
yields applicable knowledge in form of an IF(x vec

h )-THEN(signal plan B) production
rule.

To reach a level of wisdom, however, would require the SLAS to be able to: (1)
Respond to any new situation with an appropriate control action. (2) Foresee up-
coming system states far in the future. (3) Critically assess each decision, and thus
its current set of production rules which represent its knowledge base. In more com-
plex scenarios, this state of wisdom is hardly reachable, because not any situation is
encountered often enough to reach the necessary level for begin regarded as safely
applicable knowledge. In fact, the opposite is the case. Typical situations occur far
more frequently than even more important special cases that might impose severe
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utility degradation when not handled appropriately. Exactly this missing knowl-
edge in a system’s knowledge base constitutes what will be defined as KG in the
following.

According to this intuitive model, technical representations of the terms knowledge
and knowledge gap are successively defined formally as follows. The defined sub-
categories of KGs are further underpinned with examples from the traffic control
scenario sketched above.

Definition (Knowledge element). Let k denote a single knowledge element which
is part of a finite knowledge space KS. 7 The space of any describable k is given by
the problem space PS extended with the natural numbers (assumed to be bounded to
a maximum number) and the system’s utility space U .

KS ⊂ PS × N0 × U (3.5)

Thus, k represents a four-tuple as defined by:

k := (Di, ai, expi, qi) ∈ KS (3.6)

In the above definition, Di ⊆ S constitutes a finite subset of possible states σ of the
state space S. The incoming data as gathered by the system’s observer from the data
stream DS provided by the SuOC can be understood as raw data. If this raw data
is preprocessed or (re)structured by the observer, descriptive meta-information is
added (semantics), and eventually an abstracted situation description σt is derived
the level of information is reached. ai ∈ A in Definition 3.6 is the action, e.g., a
possible control action to adapt the SuOC’s configuration. The action enriches the
derived situation description such that it becomes applicable information, i.e., in
this particular system state, apply this particular action. However, to judge on the
quality of this information, it has to be further enriched by some sort of feedback.
With increasing application of this information the learning system gains experience
expi ∈ N0 which, in combination with the aforementioned quality feedback qi ∈ U
eventually yields knowledge. The successively received quality feedbacks provided
by utility measures from U allow for an estimation of the expected utility of this
particular information.

To sum up, knowledge elements sort of encode rules that allow for a derivation of
policies that determine whether or not to apply them in certain situations. Consider
the following example to gain a deeper intuition.

7For simplicity, in this thesis, KS is deemed to comprise only a finite number of knowledge ele-
ments. This assumption can be justified by considering the fact that computational representations
are typically discretized and limited in some sense. Thus, this also holds for the potential knowledge
which can be sensibly represented in such a computational model. For example, the state space can
be discretized to represent values up to a precision of five decimals. Analogously, the action and
utility spaces A and U might be restricted. Experience is countable and can thus be restricted to
a maximum number of experiences necessary to be regarded as “fully-experienced”.
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Example. In the self-adaptive traffic light control scenario, a single knowledge ele-
ment ki ∈ KS could comprise an adaptation rule which comprises a specific signal
plan B as action ai which is valid for detected incoming traffic flows in the range
Di := [20, 50] vecmin . This rule has evaluated to an average utility measure qi of 5 secveh
delay averaged over the last expi = 10 experienced applications.

Having defined the term knowledge in a technical sense, next the notation of a
knowledge base K can be defined by:

Definition (Knowledge base). A knowledge base K is a finite collection with a
maximum number of N knowledge elements ki that are continually acquired by the
utilized learning algorithm L(K) over time.

K := {ki}, i ≤ N,N ∈ N (3.7)

It is to be noted explicitly that K might contain ki that are of low quality and
low experience. This means that they might be insufficiently experienced, just con-
structed and arbitrarily initialized, or transient knowledge elements. However, over
time, insufficient ki might gain experience and, thus, might become more useful.8

According to the definition of the learning task in the previous section, the knowledge
base K can also be subject to change over time t. Again, this is the main reason
why ML algorithms L(K) capable of online learning, i.e., working by incrementally
building up and continually adjust their knowledge base K, are considered in this
thesis.

With the definition of knowledge elements ki stemming from a large knowledge space
KS and the notion of a knowledge base K that is subject to continual improvement
over time t by means of a learning algorithm L(K), the theoretical concept of a
knowledge gap can eventually be defined.

Whenever it attempted to learn an entirely new task, that is a task the system has
not been exposed to in the past, the existing knowledge about this task is expected
to be quite low and thus K is nearly empty. Approaching a learning task with a
completely empty knowledge base is also sometimes referred to as learning tabula
rasa. Accordingly, in the following gaps are always defined in relation to the current
knowledge baseK with respect to some point in time t. For the sake of readability, an
index t indicating the point in time is omitted throughout the following definitions.

In a first step, a set of type-1 knowledge gaps KG1 is defined to comprise all knowl-
edge elements ki from the knowledge space KS that are not part of the knowledge
base K yet, i.e.,

KG1 := KS \K.
8From this time on, it is not distinguished between inexperienced and experienced knowledge

elements to be just applicable information or actual knowledge. Since inexperienced ki can improve
over time, all elements of K are assumed to be knowledge elements.
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With this first definition, the size of KG1 will be enormous, depending on the
cardinality of the state space S, A, and U , as well as the lifetime horizon of the
system which bounds exp ∈ N0. Indeed, each ki ∈ K reduces |KG1|, but each
D ⊂ Di and the empty set ∅, combined with all possible experience and utility
values, again would constitute a gap kgjinKG1. Thus, type-1 knowledge gaps are
redefined as follows:

Definition (Type-1 Knowledge Gaps). Regions Dj within the state space S,
regardless of their experiences expj, qualities qj, as well as the advocated actions
aj ∈ A, which are not already covered by any knowledge element in the learning
system’s knowledge base K so far are type-1 KGs kgj.

KG1 := {kgj ∈ KS | @ki ∈ K : Dj ⊆ Di} (3.8)

With this redefinition, the theoretical magnitude of the set of type-1 knowledge gaps
|KG1| can be reduced by |P(Di)| − 2 gaps for each ki ∈ K (under the simplifying
assumption of non-overlapping ki). P(X) denotes the power set of a set X including
both, X as well as the empty set ∅.

In Figure 3.6, a schematic of an exemplary two-dimensional state space is depicted
that provides an intuitive understanding of KGs. Therefore, the subspaces Di of ex-
isting ki as well as for the exemplarily shown knowledge gaps kgj (appearing shaded)
are chosen to be represented by rectangles. Naturally, in higher-dimensional state
spaces the comprehensibility of such an intuitive geometric representation vanishes,
however, the formal definitions still apply.

Example. In the context of the self-adaptive traffic light scenario, a type-1 KG
might occur whenever a completely unexpected traffic condition is perceived by the
system’s sensory equipment. Such a rising road congestion could be caused by unex-
pected accidents or water-pipe bursts that require blockages of parallel roads. In such
unanticipated situations, the rule base initially contains no knowledge element at all
and does not know how to react appropriately.

Each ki is assigned a quality estimate qi. This allows to judge on whether knowledge
is either of higher or lower quality. To also include low quality knowledge elements
in the definition of KGs, the former definition is complemented by the notion of
type-2 KGs:

Definition (Type-2 Knowledge Gaps). Already existing knowledge elements ki ∈
K which exhibit only poor quality qi and an insufficient degree of experience expi
are regarded as type-2 KGs.

KG2 := {ki ∈ K | qi ≤ θq ∧ expi ≤ θexp}, (3.9)

In the above Definition 3.9, θq and θexp constitute thresholds which determine suffi-
ciency.
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𝑘𝑔𝑜𝑢𝑡 ∈ 𝐾𝐺1

𝑘𝑔𝑖𝑛 ∈ 𝐾𝐺1

𝑘𝑖 ∈ 𝐾

𝑐𝑜𝑛𝑣(𝐾\𝐾𝐺2)

Figure 3.6.: A schematic illustration of the different types of knowledge gaps in an n = 2
dimensional input space. The color scheme indicates the quality or fitness
(abbreviated as “Fit.”) of the plotted knowledge elements, with highly to low
fit elements colored in a range from red to white. Exemplary knowledge gaps
of the defined types are depicted as shaded rectangles.

The thresholds θq and θexp involved in the above definition can be set to fixed values
at design time or rather self-adaptively set during runtime, e.g., by assign them to
the corresponding mean values ofK at time t. Having a look at Figure 3.6 again, also
knowledge gaps of type 2 can be found. A collection of knowledge elements ki ∈ K
is shown, colored with their according quality estimates, called fitness (Fit.) in
the schematic. Again, rectangles represent the scope Di of the individual knowledge
elements ki, which are colored from white (low fitness), over orange (medium fitness)
to dark red (high fitness). All elements appearing in the color range of light orange
toward white can be considered of insufficient quality (the threshold is indicated by
the arrow pointing to the temperature bar on the right hand side).

Example. In the outlined traffic control system, a type-2 KG would be an adapta-
tion rule that was reactively created to handle a rarely occurring situation that the
system was exposed to only once in the past. For example, a demonstration near
the city hall for which a couple of roads need to be blocked on demand has caused
a circumnavigation over the observed and controlled road. There might indeed exist
a rule that captures this rare situation. However, the signal plan adaptation does
not yield an adequate compensation of the increased traffic demand yet and needs to
be further optimized in terms of more fine-grained situation intervals Di or better
control actions ai.
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Finally, the union of both types constitutes the entirety of KGs denoted KG, i.e.,

KG := KG1 ∪KG2 (3.10)

As follows from the previous definitions, KG is not necessarily disjoint from the
knowledge base K, i.e., KG ∩K 6= ∅ might hold.

Additional to the previous definitions of type-1 and type-2 KGs, the following lines
further introduce the concepts of inner and outer knowledge gaps, denoted KGin
and KGout, respectively.

Inner knowledge gaps are surrounded by existing knowledge elements ki ∈ K, thus,
intuitively they more probably belong to the second type of gaps which are due
to insufficient experience and quality. In Figure 3.6 inner KGs of type 2 are the
yellow rectangles within the indicated black dashed convex hull. More formally,
inner knowledge gaps are defined as follows:

Definition (Inner knowledge gaps). Knowledge gaps kgj whose finite state space
subset Dj is entirely enclosed by the convex hull which is built from the subset of
knowledge elements ki in the knowledge base K which have a sufficient degree of
experience and estimated quality and thus do not constitute type-2 KGs.

KGin :=
{
kgj ∈ KG | ∀σ ∈ Dj : σ ∈ conv(K \KG2)

}
, (3.11)

with,

conv(K \KG2) = conv

|K|⋃
i=1

Di \
|KG2|⋃
j=1

Dj

 , (3.12)

In the above definition, conv(·) denotes the convex hull of a set of vectors. According
to de Berg [Ber08] it can be defined by conv(X) := ⋂

X⊆K⊆V K, where K denotes all
convex supersets of X, which are at the same time convex subsets of a vector space
V . An alternative definition is given by the set of all possible convex combinations
of a finite set of vectors x ∈ X, i.e., conv(X) := {∑|X|i=1 λixi | (∀i : λi ≥ 0) ∧∑i λi =
1}. Thus, inner knowledge gaps are kgj ∈ KG surrounded by existing knowledge
elements ki from within the system’s knowledge base K without all contained type-2
KGs KG2. Although intuitively inner KGs seem to be more likely of type-2, also
type-1 KGs are possible as depicted by the bluely shaded rectangles in Figure 3.6.

Inner knowledge gaps are expected to occur mainly due to the rule discovery mech-
anisms of an ERBML-based SLAS which introduce type-2 KGs due to arbitrary or
non-informed rule initialization.

Example. For example, when the self-adaptive traffic control system attempts to
self-optimize, it could explore the problem space by discovering novel rules that focus
on a more specified subset of observable situations accompanied with further adjusted
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signal plans. Such an exploratory behavior often follows the trial-and-error princi-
ple and yields inferior utility until the right parameterization, for instance slightly
increased green times in a more specific range of incoming vehicles per minute, has
been found in the course of optimization.

As follows from the definition of inner KGs, outer knowledge gaps can be straight-
forwardly defined as follows:
Definition (Outer Knowledge Gaps). The set difference between KG and KGin
is defined to contain all outer KGs since they essentially constitute the opposite of
inner KGs kg ∈ KGin.

KGout := KG \KGin. (3.13)
Example. Outer knowledge gaps can occur due to extreme cases in each dimension
of the state space. For instance, consider a world championship soccer game which
takes place only once in a number of decades. This situation might not be foreseen by
the system engineers at design time. A couple of hours before the games starts, the
traffic situation in the city will dramatically increase in terms of road congestion.
This leads to extreme values measured through the sensory equipment of the self-
adaptive traffic light controller. This moves the system state vector away from the
usually observed state space niches toward outer regions where no knowledge elements
might be present within the system’s knowledge base so far.

This particular distinction between inner and outer knowledge gaps is introduced in
order to decide the means of how to close identified gaps later on. For example, if
an kgj ∈ KGin is identified, maybe an interpolation (clearly distinguished from an
extrapolation here) can be favored over asking the human expert for assistance by
actively posing a query. For the case of an outer knowledge gap on the other hand,
the lack of surrounding high-quality knowledge might result in poor extrapolation
results. Thus, triggering an optimization process at L2-C could be more sensible in
this situation. Furthermore, presenting such outer knowledge gaps as a query might
obscure human experts and, thus, should be prevented to not making them reluctant
and distrustful of the system. Hence, this convex hull modeling approach enables the
learning algorithm L(K) to self-decide on which strategy to follow, or even whether
to pose a query to a human expert in order to let her close the encountered knowledge
gap at all. Figure 3.6 again can be used for illustration purposes. The dotted line
encompassing certain knowledge elements illustrates a rough approximation of the
convex hull conv(K \KG2) around all knowledge elements ki for which ki ∈ K∧ki /∈
KG2 holds true. Accordingly, the exemplary knowledge gaps outside this convex
hull are outer knowledge gaps (shaded in dark red), whereas the bluely colored gaps
surrounded by several knowledge elements of sufficient fitness can be seen as inner
knowledge gaps.

At this point, again, the necessity of the input space defined as a normed vector
space becomes apparent. Without a given order and thus the possibility for a no-
tion of similarity defined on distance, the geometric intuition of KGs as introduced
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here is not straightforwardly applicable. The possibility to generalize over more than
one particular vector from the state space is a necessary criterion to allow for the
application of the investigated LCS-based algorithms on very large or continuous
input spaces. Since the notion of gaps in the knowledge bases of such incrementally
knowledge building algorithms builds upon their problem space partitioning working
principle, the applicability of this concept on problem spaces modeled by different
representations needs more research. A first attempt might be to embed an arbi-
trarily represented state space into another space where similarity metrics can be
defined, for example by using self-organizing maps.

At this point, also the concepts behind KGs in SLAS has been established by means
of an intuitive informal description as well as a formal definition. With that, the
central problem statement of this thesis is provided.

3.4. Potentials and Drawbacks of LCS-based Learning

This section is intended to shed light on the potentials and various advantages but
also on the drawbacks of using LCS-based learning mechanisms in order to endow
SAS with the self-learning capability.

3.4.1. Ideal Candidate for KG-Centric Learning

One aspect might already have become apparent in the previous section where a
technical notion for KGs has been developed. The knowledge representation of
LCS in form of classifiers cli constitutes a perfect match for a KG-centric learning
intuition as envisioned in this thesis.

Clearly, the condition cli.C suits the understanding of the state subspace Di of a
knowledge element ki. There already exist various approaches to explicitly represent
such a continuous state or input subspace ranging from rather naive hyperrectan-
gles [Wil00; SB03], over hyperspheres and their extension to general hyperellip-
soids [But05b; BLW08], to convex hulls [LW06], and more. Each classifier advocates
one particular action (vector) from A in its action parameter cl.a, which directly
maps to ai from the knowledge element definition. It further maintains an experi-
ence count, so that cli.exp ≡ expi. The last component of an abstract knowledge
element is defined to be a quality estimate qi. A single classifier in the XCS has sev-
eral parameters, namely cli.p, cli.ε and cli.F as well as some sort of confidence value
cli.num, what can be interpreted as the number of supporters for that classifier.
These parameters can be used to estimate the quality of a classifier. Either they can
be combined in a meaningful functional relationship to calculate a quality estimate
q(cl.p, cl.ε, cl.F, cl.num). Or simply the predicted payoff cl.p can be used which is,
however, only expressive in combination with the fitness attribute. Accordingly,
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brought in line with LCS terminology, the knowledge elements are contained in a
population of IF-THEN rules, i.e., classifiers cl ∈ [P ].

Thus, the following similes apply:

K ≡ [P ] and ki ≡ cli.

Accordingly, type-1 KGs can be formalized by

kg ∈ KG1 := {cl}cl/∈[P ]

and KGs of the second type are denoted by

kg ∈ KG2 := {cl | cl.exp < θexp ∧ q(p, ε, F, num) < θq}cl∈[P ].

Apart from that mappings, XCS’s knowledge base, i.e., the population [P ], is limited
in size and built up (and improved) incrementally. All these fulfilled requirements
facilitate the development of implicit KG closing strategies (see Ch. 4 to 9) as well
as the conception of explicit KG identification mechanisms (see Ch. 10).

3.4.2. Human-Interpretable Knowledge Construction and
Extraction

As already outlined before, the use of rule-based learning algorithms bears distinctive
advantages. Rules of the generic form IF(condition)-THEN(action) are in principal
directly interpretable and comprehensible by human operators. XCS evolves such
rules. Even if the input dimensionality is high, the interval-based (hyperrectangular)
condition representation is easy to understand and to represent (e.g., in tabular
form). On the other hand, however, if the condition representation schemes become
more powerful (e.g., general hyperellipsoids), then the comprehensibility naturally
suffers. Nevertheless, the representation in form of rules has another advantage:
It allows the injection of initial or default rules, optimized by domain experts and
framed in the intuitive IF-THEN shape. In the scenario of self-adaptive traffic light
control, this is indeed done by using a human-engineered standard signal plan that
serves as backup solution whenever the system is unable to immediately respond
with a self-learned rule.

As already mentioned in Section 3.1, various ways to further increase the inter-
pretability of the evolved knowledge bases have been proposed in the literature. Con-
densation [Wil95] and compaction techniques [BLW08; TMU13] serve the purpose of
distilling the most expressive and accurate rules from a non-filtered final population
which usually also comprises transient rules. Feature dependency trees [But+04b],
so far only presented for binary-coded input domains, provide a means to create

106



3.4. Potentials and Drawbacks of LCS-based Learning

a tree-based structure which allows insights regarding the dependency and the im-
portance of single features from the state space. A related endeavor is pursued
with the attribute tracking (and feedback) mechanism proposed by Urbanowicz et
al. in [UBM14; Urb+18]. It can can be used to reveal epistatic relations and het-
erogeneity [UM10] in the input data. Liu et al. recently proposed another way to
extract knowledge from the combination of evolved solutions to specific problems
from multiply set-up XCS instances in [LXB17].

3.4.3. Evolutionary Online Learning

Besides the interpretability of the evolved knowledge, XCS strongly relies on the
powerful method of computational evolution. The evolutionary part of the discov-
ery component, the incorporated steady-state GA, continually strives for classifiers
within the numerous environmental niches, that maximize the generality and accu-
racy at the same time. Thus, it is inherently geared up to deal with the second
identified core challenge of learning in SLAS – the non-stationarity of real world
learning environments. Due to the evolutionary pressures that guide the learning
process in XCS, formerly accurate rules may become inaccurate, when e.g., the fit-
ness landscape changes due to changes in the system’s goals. Consequently, over
time these outdated classifiers will be removed from the population and eventually
replaced by novel classifiers created by covering and further evolved by the GA. The
speed of such a recovering phase after a change, strongly depends on a variety of
XCS’s hyperparameters that will be subject of discussion below. When this implicit
adaption, driven by the evolutionary pressure exerted by the GA, shall be trans-
ferred to the modified XCS-O/C variant, the question of applicability arises. Since
the conventional GA is replaced by a generational evolution strategy situated at the
offline learning layer L2, the generalization theory as outlined in Section 2.4 does not
apply anymore. Can the XCS-O/C still be deemed responsive to change? With the
only reactive activation criterion of the offline optimization process described so far,
no. In contrast to standard XCS, the discovery of new rules in XCS-O/C is not in-
voked periodically, but only on-demand. For instance, when the population does not
contain a matching rule at all. This coincides with the introduced notion of type-1
knowledge gaps in a sense that it constitutes a possible solution to handle them.
In standard XCS, the involved GA is periodically invoked regardless of how well a
particular niche is already covered by the match set [M ]. Thus, considering that
a similar situation occurs various times repeatedly, the GA will continue to create
new classifiers what overpopulates this niche and eventually causes subsumption or
the deletion mechanisms to remove knowledge. At the same time, the niche-relative
fitness estimates of the matching classifiers will drop due to fitness sharing – possibly
leading to type-2 KGs. This again increases the deletion probability further. Final
removal (not only decreasing the numerosity) from the population might result in
new type-1 gaps, which will be implicitly handled by the covering mechanism with a
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predefined number of new classifier advocating different actions each. Hopefully (de-
pending on θmna) these comprise the now appropriate one which yields high utility
(reward) again and satisfies the changed goals.

Applying the new theory of KGs to XCS or else XCS-O/C allows for new mechanisms
to detect such changes more quickly and to initiate countermeasures. This could be
done by (proactively) triggering e.g., the optimization component at layer 2. First
concepts for this conjecture are presented in Chapter 10.

3.4.4. LCS are More than just Yet Another ML Technique

In Section 2.4, it was outlined that LCS have been proposed incorporating various
extensions realized by means of other ML techniques such as ANNs, Support Vector
Regression, RBF interpolation, and more. This fact gives rise toward an alternative
perspective on LCS. Considering the problem space partitioning learning intuition in
conjunction with the various possibilities of utilizing existing ML techniques within
the locally defined models is to a certain degree reminiscent of the notion of ensem-
ble learning. Each rule can then be interpreted as individual (weak) learner, each
possibly utilizing a different ML technique for predictive modeling. Since the classi-
fiers are partly overlapping, this necessitates some mechanisms for conflict-resolving.
In XCS, this is accomplished by the applied classifier mixing strategy, most com-
monly realized by the PA-based action-selection regime. Of course, other ways are
imaginable [DB07]. The evolutionary nature of LCS even more extends the hybrid
ensemble view to an evolutionary ensemble learning technique. Internalizing this
alternative view on the learning paradigm of LCS opens a variety of possibilities
to leverage it. For instance, the aforementioned possibility to automatically select
the most appropriate ML technique to model a classifier’s reward prediction in de-
pendence on the underlying part of the problem surface, for which a classifier is
responsible.

To sum up, LCS should be understood as a capable evolutionary machine learning
framework instead of being regarded just yet another old-fashioned ML algorithm.

3.4.5. Hyperparameter Configuration

Despite the various aforementioned advantages and potentials of using LCS-based
learning mechanisms, hyperparameter configuration constitutes a clear downside.
With around 20 configurable hyperparameters (see Table B.1), finding the optimal
configuration for XCS is an intensive non-trivial task. To be fair, though, not every
parameter has to be adjusted every time XCS is deployed to a new learning problem.
The most crucial hyperparameters are to be adapted are:

• The maximum population size N
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• The values for determining the initial classifier generality P# and r0

• The mutation step size for real-valued condition structures m0

• The error tolerance ε0 determining the fitness pressure.

As a second shot, the learning rate β, the mutation and cross-over probabilities
µ and χ, as well as the thresholds for GA invocation θGA, subsumption θsub and
deletion θdel should be revisited whenever a lack of convergence is encountered.
Urbanowicz and Browne provide a helpful guide how to parameterize accuracy-based
LCS in [UB17].

Parameterization of an LCS algorithm demands for a certain degree of experience
as well as a deep understanding of the inner working principles. An exhaustive
hyperparameter study before deploying an LCS to the actual problem at hand, re-
quires a vast amount of time and computational resources as well as the existence
of a representative training set reflecting the real environmental dynamics. In the
era of DL and DNN such a high number of hyperparameters is not exceptional
anymore. Of course, recent advances from the field of automated algorithm configu-
ration [HNT+17] and AutoML [Tho+13] can be directly applied to tackle this issue.
Current research aims at deriving optimal parameter settings theoretically [Nak+17;
NBH18], however, yet the theory is limited to the use in binary problem domains.
For a learning task as defined in Section 3.2, however, techniques that allow for
hyperparameter self-configuration, such as the self-adaptive learning rate approach
of Dam et al. [DLA07], might be preferable. Even if not the focus of this work, with
the interpolation-based classifier generation technique developed in Chapter 6, a few
hyperparameters for initializing new classifiers will become nearly obsolete, which
constitutes a first step in that direction.

3.4.6. Learning in High-Dimensional Input Spaces

It is common sense that traditional forms of LCS struggle with high-dimensional in-
put spaces. A recent study captures the implications of the curse of dimensionality
on LCS in great detail [DS17]. As follows from the theoretical insights of learning
bounds and generalization in XCS and its supervised derivative, the UCS, conver-
gence of these systems can only be assured when certain challenges are met. Among
them, the covering challenge as well as the challenge that classifiers receive repro-
duction opportunities are most essential. A direct implication is that the maximum
size of the classifier population directly depends on the dimensionality of the input
space in an exponential relationship. Larger population sizes, in turn have a direct
impact on the computational demands, since the computational effort of the match-
ing procedure only scales linearly with the number of classifiers. The expected time
to convergence also increases tremendously when the dimensionality gets higher.
Several approaches exist that overcome this problem with either injecting domain-
knowledge [UM15; UGM12a], or by using dimensionality reduction techniques such
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as Principal Component Analysis [Beh+12] or Deep Auto Encoders [Mat+18]. Re-
cent advances regarding computational capacities, for instance using GPGPUs, allow
for an increased learning efficiency when measured in real time and, thus, yield faster
training times for higher-dimensional data.

However, often it cannot be assumed that such powerful machines are available in
SLAS deployed in real world scenarios, such as an embedded traffic light controller.
On the other hand, those scenarios often do not exhibit state spaces of several
hundreds of different state vector components. For example, in the self-adaptive
traffic light controller scenario, typical values of situation space dimensionality for
realistic urban intersections situated e.g., at metropolitan cities such as Hamburg,
Germany, appeared to be less than 20.

For the system model assumed in this thesis, severely high-dimensional state spaces
are not considered to constitute an issue.

3.5. Chapter Summary

The purpose of this chapter was to propose a uniform notion of aspects regarding
learning in OC systems. A special-purpose modification of XCS has been introduced
along with four identified core challenges of learning in SAS. From that viewpoint,
a system model was derived which comprises also a formal problem description of
an abstracted learning task as considered in this thesis. The identified problem of
KGs in SLAS was explicitly stated and substantiated with a formal definition. At
the end of this chapter, it was elaborated on the unique potentials but also on the
drawbacks of endowing SAS with self-learning capabilities by means of LCS technol-
ogy. With the established theoretical backgrounds as well as the cleary formulated
problem statement at hand, the introductory part of this thesis is complete. In the
following chapters, methodologies to attempt the identified research problem will be
developed. Therefore, the succeeding chapter starts with presenting architectural
approaches to augment the algorithmic structure of XCS to allow for the integration
of interpolation.
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Architecture for Interpolating
Learning Classifier Systems

In order to alleviate the negative impacts of KGs of both types in XCS-based SLAS,
in the main part of this thesis starting with this chapter, the stated problem will
be approached by utilizing techniques from the domain of scattered data interpola-
tion.

As initially stated in the research hypothesis, it is assumed that the application of
scattered data interpolation techniques on memorized experiences or existing knowl-
edge elements k in the learning algorithm’s knowledge base K leads to an improved
learning progress in terms of decreasing initial system errors and, thus, faster con-
vergence to the reachable error level.

This transductive means of constructing and initializing novel knowledge elements
constitutes the focus of the following chapters. Therefore, in this chapter a novel
designated component to augment the algorithmic structure of LCS in general and
XCS in particular will be designed to allow for the incorporation of various inter-
polation techniques during the online learning process. The subsequent Chapters 5
to 9 are concerned with the development of various interpolation integration strate-
gies. These strategies enhance algorithmic steps where interpolation can be plausibly
applied in order to support (1) the knowledge construction or else KG closing pro-
cess, and, (2) the actual prediction step of XCS. It should be noted that even the
secondly mentioned integration strategies which shall support the decision and pre-
diction steps of XCS are related to the existence of KGs. Whenever an incrementally
knowledge acquiring learning algorithm L(K) has insufficient knowledge for certain
situations, also the prediction step will implicitly be affected negatively. Interpo-
lation can also help to increase the reliability of autonomously made decisions for
this type of learning algorithms by guiding the internal calculations through the
incorporation of interpolation. Throughout the subsequent chapters, four integra-
tion strategies will be developed and empirically validated in order to fathom their
unique impacts on the learning performance of XCS.

In the following sections of this chapter, a novel dedicated architectural extension
called the Interpolation Component (IC) is introduced. The IC is intended to com-
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plement the generic algorithmic structure of LCS as discussed in Chapter 2. Two
separate modes of integration are described. The first allows for the incorporation
of the IC in nearly any type of OML algorithm. And a second for the specific use
with XCS. The advantages and shortcomings of both modes are then discussed.

4.1. Generic Design of the Interpolation Component

In order to develop an independent software component that provides the function-
ality to perform interpolations on the basis of sampling points which successively
arrive in an instance-by-instance manner, the following functional requirements have
to be met:

• To be independent, a clearly defined interface for data exchange is required.

• To cope with the online learning nature of the IC-attached Machine Learn-
ing Algorithms (MLAs), a dynamic storage of sampling points needs to be
provided.

• To ensure space and time requirements, the capacity of the sampling point
storage have to be limitable.

• The according storage limitation demands for a decision logic in order to decide
which sampling points to keep or remove in the case of capacity exceedance.

• The component have to keep track on their reliability by continually measuring
the interpolation errors, which also needs to be accessible by the MLA.

• To perform interpolations, the components need to comprise at least one ap-
plicable interpolation algorithm to be applied.

Figure 4.1 illustrates the proposed generic architecture of the IC.

𝐼𝐶

𝑆𝑃𝑀𝐿𝐼

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

𝐸 𝑇𝐼𝐶

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

𝐴 𝑠∗
+/−

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡

𝐼 𝑜𝑖𝑛𝑡

𝑀𝐿𝐴

Figure 4.1.: Schematic illustration of the generic Interpolation Component (IC) with its
five core components and indicated data flows
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In order to meet the aforementioned functional requirements, it comprises five sub-
components as described below:

1. The storage or set of sampling points SP . It is more formally defined by
SP := {s1, . . . , sm} and its capacity is limited by m ≤ NSP . SP serves as the
internal memory of already made experiences of the MLA with the learning
task of at hand.

2. The interpolant part encapsulates at least one scattered data interpolation
technique I and calculates the output values oint. The interpolated outputs
are subsequently fed back to the MLA algorithm via the Machine Learning
System Interface (MLI).

3. The adjustment component provides a decision logic A to manipulate the SP .
Decisions that are felt here comprise: (1) Whether or not to add a new sam-
pling point s∗. (2) When and which obsolete sampling point s ∈ SP have to
be deleted in favor of a new s∗. The adjustment component further takes care
of preventing duplicates within SP or any other prerequisites to guarantee a
valid interpolation solution.

4. The evaluation component provides an evaluation function E which assesses
the level of interpolation quality. It is used in order to continually calculate
a scalar metric called the IC’s trust-level TIC . This trust metric reflects the
current reliability of the interpolation component IC. It needs to be accessible
by the MLA via the MLI. This allows the MLA to decide whether or not the
IC should be utilized or else to which degree its output shall affect the internal
calculations (i.e., for weighting purposes).

5. Finally, the Machine Learning System Interface (MLI) is responsible for com-
munication and data transfer between the MLA and the IC. The minimal
required data flow between the IC and the extended algorithm is:

a) Reporting of the feature vector ~x or current situation σt used as query
point for the interpolant subcomponent.

b) Reporting of the selected action aexec or any other target variable as
predicted by the MLA.

c) Provision of the interpolated value oint back to the MLA.

d) Provision of the current trust level TIC from the evaluation subcomponent
to the MLA.

e) Pass-through of any kind of numerical feedback from the MLA to the
evaluation subcomponent to allow for an ongoing update of the trust
level by E.
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f) Pass-through of any kind of numerical feedback from the MLA to the
adjustment component to create new sampling points s∗. The feedback
signal allows for a decision regarding addition to SP or better discarding
it. Here, the numerical feedback could a reward, the observed utility
gain/drop, or simply the actually correct target value if available. The
latter one might be made available with a delay by the offline optimization
component of an MLOC-based SLAS).

The generic IC is principally designed to extend any OML algorithm. The imple-
mentation details of the sketched subcomponents depend on the particular algorithm
to be extended as well as on the targeted learning task. These tasks can be entire
learning problems, or rather subproblems to be solved by the particular MLA, e.g.,
building a model of the environment dynamics for a model-based RL setting. If,
for example, the augmented algorithm aims at solving a binary classification task,
the IC can be used to interpolate the membership score of the positive class. The
evaluation component could track whether the interpolated membership was correct
or not. If it was, a new sampling point with the most recent data instance ~x and
a membership probability (i.e., a score) of 1.0 as its “true” function value can be
added to SP . In the contrary case, the same can be done by setting the according
score to 0. Even if this seems to be a realization of a simple binary classification
algorithm by its own, it should be clearly noted that this is not the intended pur-
pose of the IC. Rather, it should be understood as a surrogate model which can
be quickly obtained and accessed due to straightforward interpolation between al-
ready gained experiences in form of purposefully collected sampling points. This is
intended to allow for an improved initial learning progress by sort of bootstrapping
the succeeding phase of model or rule convergence. Moreover, the capacity of the
experience memory (or sampling point set) SP is limited which also bounds the
achievable level of accuracy of the IC alone. Following Vapnik’s thoughts on learn-
ing by transduction [GVV98], the IC omits the step of inducing a model in order
to be applied to novel data instances via deduction. Rather, it directly interpolates
between incrementally collected and steadily updated sampling points in order to
support an arbitrary inductive algorithm during its knowledge acquisition process
(i.e., while incrementally building up its model) and in its actual prediction step
(i.e., deduction from the current model to a novel case).

The general idea of the IC is thus to provide an independent complementary com-
ponent that can be utilized for obtaining transductive information to be further
processed by the MLA to support its individual learning (sub)tasks.

As of yet, the IC was introduced as a more or less standalone software component
with its purpose to augment existing OML algorithms and to support them by means
of serving as a quickly available surrogate for a certain learning (sub-)task. At the
end of this chapter, possible extensions and further ways to use the generic blueprint
of the IC will be discussed.
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In the following sections, a more detailed picture regarding the actual integration of
the introduced IC with XCS as a concrete instance of an attached OML algorithm
(the MLA) is drawn. Two architectural extensions of XCS are presented along with
their corresponding advantages and disadvantages.

4.2. XCS-IC: A Loosely Coupled Extension

This first variant, denoted XCS-IC, follows the initial ideas of the generic IC. It is
schematically illustrated in Figure 4.2 and depicts the XCS on the left-hand side,
and the IC on the right. Both parts are connected via the MLI.
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Figure 4.2.: Schematic illustration of the XCS-IC variant for a loosely coupled integration
of the IC and XCS

Whenever a new situation σt is detected by XCS, this data vector is reported as
a new query point ~xq to the IC via the MLI. The IC in turn interpolates a corre-
sponding output value oint which is fed back to XCS immediately. XCS then follows
its (possibly interpolation-assisted, cf. Ch. 5) action-selection regime and realizes
the selected action aexec on the environment. As soon as the reward is available,
it is also passed-through to the IC which further forwards it to the evaluation and
the adjustment subcomponents. One advantage of this loosely coupled approach
becomes apparent here: The evaluation component can continuously determine the
interpolant’s quality in terms of TIC . This possibility is due to the small variety of
interpolatable values. These values, such as an action aexec or the system prediction
PA(aj), are system-wide numerical values which result from the internal calcula-
tions of XCS based on its current knowledge base. This allows for a straightforward
evaluation by simply considering the received reward rimm and comparing the in-
terpolated values oint with those values XCS has actually calculated. By means of
the evaluation metric E, the IC is enabled to decide whether or not the interpolated
values would have been more appropriate than the values actually determined by
XCS. In a subsequent step, this also allows the adjustment component to adequately
create new s∗ for updating SP . This automated decision provides sort of a pres-
election of suitable sampling point candidates s∗, which in turn assures a certain
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level of quality regarding all si ∈ SP . Essentially, oint can be any value which is
system-wide and does not belong to a single rule. Accordingly, the action to be
executed aexec, or the corresponding system prediction PA(a) of the reward can be
subject of interpolation with regard to XCS. Also a tuple of the current input σt and
the selected action aexec, i.e., (σt, aexec), can serve as the sampling point coordinate.
The sampling point’s function value could then comprise the received reward rimm,
which is possibly extended by the discounted maximum value from the current PA in
order to yield a state-action, or Q-value estimate. The aforementioned approach of
interpolating the system prediction is clearly plausible in the context of function ap-
proximation tasks, i.e., value function approximation. The other approach outlined,
however, is sensible in single- and multi-step RL settings, ideally with continuous
state-action spaces.

In Chapter 5 a particular integration strategy for using the IC in the way that
particular actions are interpolated is presented. Also for the outlined integration
approach that proposes to interpolate the system prediction a methodology will be
developed in Chapter 9.

4.3. XCS-CIC: A Tightly Integrated Extension

The second extension variant to be introduced in the following paragraphs inter-
weaves the subcomponents of XCS and the IC more strongly.
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Figure 4.3.: Schematic illustration of the tightly integrated variant for integrating XCS and
the IC

As Figure 4.3 illustrates, from an architectural point of view, this results in a stronger
coupling of the two components. However, this opens a wider variety of possibilities
for incorporating interpolation into the algorithmic structure of XCS.

The most obvious change in comparison to the former XCS-IC approach is that
now the population of classifiers [P ] serves as the set of available sampling points
SP . This innovation implies that the base algorithm, here XCS, is responsible for
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managing SP by its own. This in turn makes the adjustment component of the
generic IC design obsolete as depicted in Figure 4.3.

At each time step t, the population yields an up-to-date set of possible sampling
points si ∈ SP which can be extracted from the currently existing classifiers cli ∈
[P ]. Accordingly, with a slight abuse of mathematical notation, the sampling points
can be redefined as si := cli. This further implies an increased variety of possible
function values to be interpolated.

Let the i-th sampling point’s coordinate ~xi ∈ S ⊆ Rn be represented by an arbitrary
point extracted from a classifier’s condition cli.C, i.e., ~xi ∈ cli.C ⊆ S. Consider this
coordinate to be the condition’s center point, calculated from the interval predicates
(lj , uj), i.e.,

x
(j)
i = lj + (uj − lj)/2, j = 1 . . . n.

Of course, more than one sampling point can be extracted from an individual clas-
sifier. However, depending on the interpolated function values this might cause
unwanted effects regarding the interpolant’s function surface comparable to noise.
For instance, plateaus or a high degree of ruggedness might occur when classifiers
with different experiences overlap.

With this second way of XCS extension, it is possible to introduce further inte-
gration strategies into the internal calculations of XCS. Interpolation can now be
incorporated within the covering routine (cf. Ch. 6). The initialization of offspring
classifiers cloff when the GA is invoked constitutes another possible place for inte-
gration (see Ch. 8). With the XCS-CIC extension, nearly at any algorithmic step
where classifiers cli are involved sampling points can be constructed in an ad-hoc
fashion and used for interpolating different types of function values. For example,
the initial values for classifier parameters cl.p, cl.ε, cl.F, cl.exp, . . . can be interpo-
lated from surrounding classifiers. Since for the sake of exploring the problem space,
the population contains transient knowledge during the learning process. This refers
to classifiers that have been constructed but will evaluate to poor accuracy/fitness
(type-2 KGs). This needs to be considered when sampling points shall be extracted
from classifiers. Therefore, the task of the already deemed obsolete adjustment
component can be reduced to provide a straightforward filter mechanism which is
responsible for considering only classifiers (knowledge elements) of sufficient quality.
The definition of an appropriate quality measure is not a trivial task. It needs to be
carefully selected with regard to the integration strategy to be applied. This aspect
will be picked up again at the corresponding places in this work.

4.4. Discussion

In the previous paragraphs, a generic component to extend existing OML algorithms
with interpolation capabilities have been introduced. The aim is to provide a sort
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of blueprint instead of a concrete implementation by stating the minimum number
of subcomponents deemed necessary as well as the interplay between them. An
intuitive interpretation has been given. Namely, that the IC can be understood as an
independent complementary software component that provides the functionality to
quickly provide a so-called surrogate model which is intended to support the attached
algorithm via a transductive inference mechanism. Again, it is clearly noted that the
predictive accuracy of the IC itself is limited by the number of considered sampling
points in SP . However, the solution of the MLA’s overarching learning task is not
the aim of the complementary IC. Rather, it is to support the extended algorithm
at the initial learning, or knowledge acquisition phase, its actual prediction steps, or
even in idiosyncratic subtasks of the MLA. A further use in later phases still seems
plausible, considering the occurrence of concept drifts in the course of the systems
runtime.

Two architectural variants to extend the XCS with this novel component have been
presented. The first one follows the loose coupling principle. It adheres more strictly
to the generic blueprint. The second variant is a more conflating approach, tightly
integrating XCS and the IC with each other. This conflation, however, allows for
further, more sophisticated integration strategies where interpolation can support
various algorithmic steps of XCS.

An interesting way to further enhance the IC would be to allow multiple interpolants
I at the same time. Each individual interpolation technique Ij with j ∈ N, could
then interpolate the same target variable. Subsequently, the different interpolations
could be combined into one aggregate value. On the other hand, each single Ij might
be assigned a separate trust level. Based on that, a meta selection algorithm could
then decide which interpolation output to return to the MLA over the MLI. This
is reminiscent of a hybrid ensemble approach, which are well-known to outperform
individual, so-called strong predictors in certain cases.

When applied with the proposed loosely coupled XCS-IC extension approach, for
instance because the MLA offers no algorithmic steps where a tighter integration
is possible, another way to extend the generic IC concept would be to allow for
multiple sampling point storages SPj . In this case, several ML-related subproblems,
necessary to solve the overarching learning problem, could be supported with one
instance of the IC at the same time. This might be more advantageous in comparison
to an instantiation of multiple IC’s, especially in systems that are not capable of
multi-threading.

As already suggested in the XCS-CIC extension variant, the notion of sampling
points might slightly differ from its strictly mathematical meaning. They can be
replaced by objects that only need to allow for an extraction of sampling point
coordinates and at least one target function value. In the case of XCS this could be
the replacement of si by the classifiers themselves cli which opens the possibility to
extract several sampling points from them. For example, in the case of XCS, a single
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classifier contains several candidates to serve as function values to be interpolated.
The sampling points’ coordinates do not need to change and can be kept even if the
target function values are exchanged. For instance, the fitness cli.F could be replaced
with the prediction cli.p. Thinking in geometric terms, what would change is the
interpolants function surface, since the domain remains the same, but the co-domain
changes. Since the classifiers comprising the population [P ] are subject to continual
evolution, naturally the sampling points change steadily. This, however, does not
constitute an issue for the IC due to its transductive working principle. Since no
model is inductively built from the current sampling points in SP , no model has to
be adapted and kept up-to-date by the IC. Each time the IC is activated it simply
interpolates on the basis of the current composition of sampling points in SP .

A last point of discussion is the selection of appropriate evaluation functions E. As
for the loss functions to train a classifier, also at this place a plausible choice should
be made. However, it is not necessarily obvious what is the best choice. And some-
times a feedback signal which lets even the MLA barely judge on its quality is only
sparsely available. For supervised learning tasks, similar metrics as for the evalua-
tion of the predictive accuracy of the MLA can be used to determine the reliability
of the IC, too. In the case of reinforcement learning tasks, the reward signal might
serve as the figure of merit to derive the proposed trust-level TIC . In the simplest
case, the definition of an appropriate evaluation metric can be omitted and it is
only relied on the precision guarantees of the interpolants themselves (remember
the polynomial precision of RBF interpolants). Accordingly, the maintenance of SP
is a highly problem-dependent and thus non-trivial task, since both, the evaluation
metric E as well as the adjustment logic A need to be purposefully defined for dif-
ferent problems. Again, this last aspect corroborates the potential of the integrated
XCS-CIC variant.

4.5. Related Work

The introduction of the IC and its integration with XCS is reminiscent of other
concepts from within and beyond the domain of LCS research. The following para-
graphs indicate the, to the best of the author’s knowledge, only existing work that
proposes an interpolation concept to be used with XCS. Additionally, works farther
related in terms of integrating interpolation with other RL algorithms are summa-
rized. At the end of this section, recent but only barely related works from the
domain of ANNs are mentioned.

Interpolation in an LCS

To the best of the author’s knowledge, the only work which mentions to utilize in-
terpolation in the scope of LCS is due to Wilson, who investigates the question how
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XCS in general can be extended to cope with continuous action spaces. In [Wil07],
he presented three architectures to approach this problem. One of these is called
Interpolating Action Learner (IAL) which clearly suggests a relation. However, what
Wilson actually proposes is to apply XCSF in a hierarchical fashion. With this tech-
nique, the system on the second layer actually approximates between the best found
discrete action values from the first layer, and therefore learns an approximation of
the mapping form an input to the optimal action value. These approximations can
then be applied in the environments that are observed by the immediately inter-
acting XCSF instance. Wilson’s approach differs clearly from the techniques which
will be proposed in this thesis, since the idea is to incorporate explicit interpolation
techniques as an integral part of XCS’s algorithmic structure in order to achieve
different goals beyond continuous actions.

Interpolation in other RL algorithms

Wire fitting as introduced in [BK93] is another technique for allowing RL in high-
dimensional and continuous action spaces. It achieves fast calculations of actions
that yield maximum reward given particular states. In wire fitting, so-called wires
are learned by means of function approximation which, depending on a chosen
smoothing coefficient, can also be regarded as being interpolated. However, the
wires can be interpreted as high-dimensional sampling points or so-called control
points which are subject to training (i.e., the wires are fitted) and, thus, do not
reflect actual experiences with the environment. The interpolation property as in-
troduced in Section 2.3 is further used to proof the property that the maximum
control point is always the maximum of the approximated function, which allows it
to be quickly evaluated and maximized. Wire fitting can indeed be understood as
bringing interpolation into RL systems, however again with a completely different
objective, namely allowing for learning with continuous actions.

Davies introduced interpolation to RL tasks with continuous actions spaces in [Dav97].
He extended model-based value iteration, Q-learning and model-learning value itera-
tion by incorporating grid-based multilinear and simplex-based interpolation. These
extensions are evaluated on two widely investigated continuous state space problems
– Mountain Car and Acrobot. Results revealed that the necessary grid-size which
was typically used at that time next to neural networks can be significantly reduced
by interpolation. This work shares common ideas with this thesis and can be seen as
primary attempt to exploit the benefits of using interpolation in RL systems. How-
ever, the techniques presented in the course of this thesis take this concept further by
adopting mesh-free and local interpolation techniques in model-free and generalizing
RL systems (i.e., LCS) for their utilization in real-valued input domains.

Interpolation-based Q-learning has been introduced by Szepesv́ari and Smart in [SS04].
Although the name clearly suggests a strong relation to the topic of this thesis, study-
ing the contents reveals significant differences. The overall objective of this work is
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to apply Q-learning (again) to continuous state spaces and prove its convergence.
More precisely, a function approximator is derived which provably converges to the
optimal Q-values under the problem of continuous state spaces. The approach is
denoted interpolation-based since particular assumptions for the derived function
approximators are made. However, neither of the interpolation techniques and inte-
gration strategies which are developed here have been utilized, nor similar concepts.
Again, the objectives show strong differences to those pursued in this thesis.

In a more recent work [Gu+17], another RL technique called policy gradient is
extended to an interpolating variant for Deep RL. With their interpolated policy
gradient, the authors propose to mix on-policy likelihood ratio policy gradient with
a deterministic gradient based on an off-policy fitted critic. This mixing is essentially
achieved by a convex combination of the aforementioned approaches. Accordingly,
this technique does not constitute an interpolation-based extension in a similar sense
as proposed in this thesis. Sampling points in terms of actually made experience
tuples (s, a, r) are neither collected, nor created out of existing knowledge elements
and then further used for interpolation as done in this work, e.g., for the interpolation
of several classifier parameters which are subject to incremental updates via RL.

Looking Farther Away: Interpolation in Artificial Neural Networks

While not being directly related to the research reported in this thesis, the conducted
literature review revealed recent further utilization of interpolation techniques in
ANNs. For the sake of brevity and due to the lack of direct relation, these works
are only very briefly mentioned here.

Scardapane et al. propose to learn activation functions by means of cubic spline
interpolation in [Sca+19]. They argue that in most of today’s neural network ar-
chitectures, the neurons’ activation functions are selected from a small set of well-
investigated alternatives. The presented approach attempts to mitigate this short-
coming by incorporating interpolation to learn the activation functions for each
neuron individually and, thus, obtain data-dependent adaptations.

In [Wan+18], harmonic extensions are used to interpolate the output activations in
deep neural networks in order to improve the generalization accuracy and the ability
to deal with insufficient training data. The approach is not directly applicable to
online learning settings.

Williams introduced Shepard Interpolation Neural Networks (SINN) in [Wil16]. The
proposed architecture is reminiscent of RBF networks. Essentially, SINN networks
map Shepard’s interpolation methods to a ANN architecture. As a result, memory
and computation consumption can be reduced in comparison to fully connected
networks while maintaining competitive accuracy.
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4.6. Chapter Summary

This chapter laid the foundation for facilitating the integration of interpolation
techniques in XCS. First, a generic IC has been designed based on clearly iden-
tified requirements. Afterward, two architectural variants have been discussed: (1)
XCS-IC, a loosely-coupled extension variant, where not only XCS but basically any
OML algorithm can be attached to the IC via a so-called MLI. (2) XCS-CIC, a
special-purpose variant for a tighter integration with XCS. Resulting possibilities
and design decisions as well as ideas for further extensions of the IC were then thor-
oughly discussed. Related research aspirations that aim at integrating interpolation
facilities in ML techniques have been appreciated in the last part of this chapter.
With the developed IC at hand, the next chapter will introduce the first strategy
to integrate interpolation in the algorithmic structure of XCS. More precisely, the
action-selection step in the case of knowledge exploitation is supported by means of
using the IC as transductive surrogate model.
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Chapter 5.

Interpolation-Assisted Action Selection

The first strategic point for the integration of interpolation into XCS’s algorithmic
structure to be described in the following is the action-selection mechanism. This
mechanism (also called action-selection regime in the literature), is responsible to
decide for the next action to be executed aexec. The decision is felt on the basis of
the classifiers that match the current situation σt and, thus, can be interpreted as
a mapping S → A. In the context of RL, this mechanism is often called an agent’s
policy and denoted by π. Put in the context of SAS, it can also be understood as
the adaptation strategy, which determines an adaptation in terms of control actions
in response to the currently derived system state abstraction.

This chapter introduces a novel integration strategy that allows for making use of
interpolation to facilitate adequate action-selection decisions – also in the presence
of type-2 knowledge gaps. The IC is utilized to serve as a surrogate model for the
aforementioned state-action mapping. It can be quickly accessed to retrieve trans-
ductively derived information from the sampling points collected thus far. Figure 5.1
illustrates this aspect and contrasts transductive with deductive inference.
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Figure 5.1.: The difference between transductive inference and the conventional two-step
induction/deduction way

It should be clearly noted that this technique does not aim at closing KGs in the
sense of creating new or refining existing knowledge elements (i.e., classifiers) in order
to deal with KGs of both types. Rather it is intended to support the SLAS to select
and realize adequate adaptations in spite of missing or inexperienced knowledge
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elements. This integration strategy therefore strengthens the robustness against
KGs. Figure 5.1 also illustrates the resulting difference in operation mode.

In the following sections, first the basic action-selection regimes are briefly recapit-
ulated. Subsequently, the so-called Action Selection Integration (ASI) strategy is
developed. Action Selection Integration (ASI) leverages interpolation weights de-
rived from the distances of (neighboring) sampling points to the current situation
in order to temporarily increase the prediction array value (the system prediction
PA(a)) of those entries whose action is also transductively inferred by the IC. This
technique will be introduced for both architectural extension variants of XCS by the
IC, i.e., XCS-IC and XCS-CIC. An empirical validation of the introduced techniques
on a common benchmark problem underpins the increased learning performance in
comparison to a non-interpolation-assisted version of XCS. The chapter closes with
a discussion about advantages and limitations of the ASI strategy for both manifes-
tations and an appreciation of related work.

5.1. Basic Action-Selection Regimes

As already roughly described in Section 2.4, the basic action-selection regime of
XCS depends on the current execution mode. This means, whether it currently
explores the problem space or rather exploits the so far acquired knowledge base
by greedily selecting the expected highest-rewarding action. The actual decision is
based on the current prediction array PA. It contains the system prediction PA(aj)
for each possible action aj ∈ A. There exist a variety of action-selection regimes in
the literature. The most frequently applied versions are:

• Roulette wheel selection, also more generally known as fitness proportionate
selection in the GA domain

• Greedy selection, which chooses the best action with the highest system pre-
diction

• Random selection, which ignores the system prediction and chooses an action
purely by chance

• ε-greedy selection, a mixture of greedy and random selection

Where the concrete workings of greedy and random selection trivially follows from
their designation, the first and the last one need to be clarified.
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Roulette wheel selection This regime assigns each action aj ∈ [M ] a share of
an imaginary roulette wheel that is directly proportionate to its system prediction
PA(aj). The system then “throws the ball”, i.e., it draws a random number between
0 and the sum of all entries in PA. Given that the action shares are sorted in
ascending order, the point where the “ball hits” a share, i.e., the action where the
accumulated system predictions is only just greater than the random number, is
eventually selected. This selection strategy implies that actions having a greater
system prediction have a higher probability to get chosen. Nevertheless, by chance
also actions with a smaller amount of share can be hit.

ε-greedy selection This technique constitutes a mixture of a pure greedy action-
selection and a completely randomized choice. It is a well-known strategy to handle
the exploration vs. exploitation trade-off in RL. With probability ε ∈ [0, 1] it selects
an action by chance which corresponds to pure exploration of the problem at hand.
Therefore, again a uniformly distributed random number between 0 and 1 is drawn.
In case it is smaller than the selected ε, the agent explores its environment by
discovering the effects of a randomly selected action. In the other case, the action
is selected purely greedy, i.e.,

aexec := argmax
a∈[M ]

PA(a). (5.1)

Naturally, when the system is in exploitation mode, the greedy selection is typically
used. However, it also depends on the activated switching mode which determines
when the system explores and when it is asked to exploit. In online learning settings
with which XCS is typically confronted, an interleaving strategy between explore
and exploit operations is often applied. Depending on the criticality of the learning
problem at hand, this might result in unwanted trial-and-error situations. That is,
when the system tries out a random action which might yield negative impacts on
the system performance. In the context of real-world systems, in the worst case
this could lead to human injury. Therefore, a 50% exploration rate might not be
an adequate choice. In such cases, the ε-greedy strategy with a small ε alleviates
the chance of such unwanted circumstances. One could also imagine to decay the
value of ε with a growing number of situations the system has been exposed to. Of
course, in situations where training data is available a priori, a training phase of full
exploration could precede the exploitation phase which then only applies exploration
with little or zero probability anymore (e.g., via roulette wheel selection).

The way OC proposes to handle this severe trade-off is to make use of simulation-
based machine learning [Tom+11a; GR92]. The idea is to let the system explore
offline on the second O/C layer without any effect on the productive SuOC at layer
0. As detailed in Section 3.1, this can be accomplished by relying on available
simulation tools in combination with a capable optimization heuristic which seeks
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appropriate actions for a given simulated situation. The most adequate choice is,
however, highly dependent on the problem characteristics and, thus, has to be made
with caution – as is often the case in engineering SLAS.

5.2. Interpolation-Guided Action-Selection Regime

What all the conventional action-selection mechanisms have in common is that they
only depend on the current prediction array, which can be interpreted as a sum-
mary of the currently available knowledge about a particular situation σt. The PA
contains information about what the system expects to return (in terms of reward),
when a particular action is realized. These values are calculated based on the sev-
eral predictions cl.p from classifiers that match the current situation and are further
weighted by their niche-relative accuracy estimates cl.F . However, these classifiers
might not have reached a sufficient level of accuracy. This would render them knowl-
edge gaps of type 2. Therefore, one enhancement that is proposed in this thesis is to
also incorporate information gained from past experiences. Here, these experiences
are given by (σ, a)-pair sampling points, the system was able to collect so far. Two
different means of how XCS can gain and further use such experiences are discussed
below.

5.2.1. XCS-IC Approach

For the loosely coupled architectural variant of utilizing the IC as introduced in
the previous chapter, the ASI strategy works as follows: Whenever a new σt is
detected by XCS, the IC is triggered to calculate the interpolation weights wi for
any available sampling point si ∈ SP . Therefore, for the realization of this strategy,
only interpolation methods of the class of distance-based or neighborhood-based
approaches that explicitly calculate their interpolations on the basis of some sort of
weights (cf. Sect. 2.3) constitute plausible candidates. The IC is configured to store
sampling points of the form si = (σt, aexec). Since actions (or classes) a ∈ A are
usually discrete categorical values, it is not sensible (but nevertheless possible) to
interpolate between them, since this would imply that the actions are scalars from
continuous domain. In order to still make use of transductively obtained values, for
the ASI strategy only the interpolation weights are calculated and further used to
guide the action-selection decision. The interpolation weights reflect the similarity
(most often in terms of distance) between the sampling points’ coordinates ~xi and the
query point ~xq. This information is deemed valuable to support the action-selection
decision of XCS transductively.
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Let the set of all weights wi of corresponding sampling points si whose function
values f(~xi) (here encoding an action a ∈ A) are equivalent to aj be denoted by

Waj
:=
{
wi|f(~xi) = aj

}
. (5.2)

Then the accumulated weight of all sampling points that advocate action aj is be
defined as follows:

w
aj
acc =

∑
wi∈Waj

wi (5.3)

Without loss of generality all waj
acc are normalized to the range [0, 1].

Based on the normalized accumulated weights, the action to be suggested by the IC
is determined by

aint = argmax
a

waavg. (5.4)

In order to reflect the transductive information obtained via the IC within the action-
selection step, the prediction array calculation is modified as follows:

PA′(aj) = min
[
PA(aj) · (1 + w

aj
acc · TIC), Rmax

]
(5.5)

In the above equation and in the following, the constants Rmin and Rmax denote the
lowest and highest possible rewards rimm ∈ R to be retrieved from the environment,
respectively. As can be seen, the initial system prediction value is increased by
w
aj
acc · 100%, discounted by the trust-level TIC ∈ [0, 1].

The trust-level TIC tracks the current interpolation quality of the IC. In the simplest
form, TIC is determined by the average accuracy determined by a sliding window
over the latest interpolations. For instance on the basis of the last twindow rewards
rimm reported to the IC over the MLI. Combined with the accessible information
of the actually executed action aexec and the action as suggested by the IC (aint),
theIC’s evaluation metric E can straightforwardly infer whether or not its guess was
adequate. Beside such an accuracy measure, other metrics are imaginable. Examples
are action (or class) sensitive measures from the classification / SL learning context
such as precision or recall. However, a more thorough investigation of this particular
aspect is left for future work.

With the ASI strategy, XCS’s internal calculation to select an appropriate action
aexec is enhanced by transductive information obtained from the IC. More precisely,
actions which more prominently appear among the current experiences si ∈ SP
in the proximity of the current situation σt gain higher system prediction values
in the PA. Paired with a greedy selection, the ASI strategy constitutes a novel
interpolation-based action-selection regime.

As for the evaluation metric E, based on the retrieved reward rimm and the actually
selected action aexec, the IC’s adjustment component can automatically decide on
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whether or not to create a new sampling point s∗ and add it to SP . It is explicitly
stated that this sharing of experiences between the XCS and the IC can be done in
every step, regardless of whether it is an exploration or an exploitation step. Espe-
cially when the system explores the problem space by means of randomly selecting
actions in situations where the classifiers are not experienced (i.e., are type-2 KGs),
surprisingly successful actions should be added to SP . Thus, in the next exploitation
step the IC can guide the action-selection toward this recent positive experience. One
plausible way to implement this function is to check whether rimm = Rmax. If this
assertion holds, a new sample s∗ = (~xq, aexec) will be created. In realistic problems,
the extremes of the reward signal are sometimes unknown. Then it might become
necessary to define a threshold of minimum reward (or system utility) which needs
to be surpassed in order to add a new sample s∗. The concrete design of a deci-
sion function A again strongly depends on the learning task at hand and typically
requires a certain degree of domain knowledge. As a simple self-adaptive heuristic,
the threshold could be set to the average reward the IC has seen so far.

As discussed in Chapter 4.2, the size of sampling point set SP is restricted to
|SP | ≤ smax. The choice of this limit is not always straightforward and, again,
dependent on the learning problem’s complexity.

Remark If some sort of expert knowledge exists about how many environmental
niches the problem at hand bears, a very simplistic rule-of-thumb could be: Let n
denote the dimensionality of the input space S ⊆ Rn and Ñ be an estimate of the
number of environmental niches characterizing the problem space. When further-
more a determines the desired number of sampling points for each environmental
niche, then the maximum number of sampling points can be assigned the following
value:

smax := an · Ñ (5.6)

This heuristic implies that if the problem consists of many niches (demanding for
many specific classifiers), the number and the density of sampling points as well in-
creases proportionally, and vice versa. Furthermore, the size of SP is exponentially
increased with the number of input dimensions in order to pay tribute to the curse
of dimensionality. As might be quickly recognized, this rule-of-thumb is only ap-
plicable for problem spaces with moderate input dimensionality n when more than
one sampling point per niche is desired. Furthermore, the assumption of having a
clue about the number of niches is probably not reasonable in most cases. Another
implicit assumption is that any niche is expected to be of the same size.

As becomes apparent, the first introduced XCS-IC approach for realizing ASI comes
at the cost of a number of design choices. An entirely different means to implement
the ASI approach which completely omits part of those design choices, such as the
size of SP or the decision function A, is introduced in the subsequent section.
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5.2.2. XCS-CIC Approach

One of the obvious shortcomings of the previously introduced loosely coupled IC
approach, is the moderate number of decisions that have to be made to incorporate
ASI effectively and obtain the desired benefits. Two important IC-related hyper-
parameters to be set include: (1) the maximum number of sampling points to be
collected smax, and, (2) the choice of an appropriate decision function A (within IC’s
adjustment component) to control the maintenance the experience storage SP .

So far, a suggestion for smax has been provided to serve as a first attempt. With that
rule-of-thumb, the size of SP grows exponentially with the input space dimensions of
the problem, as well as linearly with the estimated number of distinct environmental
niches. However, this initial suggestion is not plausibly applicable in higher dimen-
sional problem spaces. Nevertheless, for the use in SLAS as considered here the
dimensionality of the system’s state space (usually constructed out of certain sensor
measurements and additionally derived metrics) is assumed to stay in lower ranges
as discussed in Chapter 3. But even for problems of moderate dimensionality, it is
not always possible to estimate the number of different niches a priori. Instead, the
learning system itself is required to figure out an appropriate state-action mapping
and the corresponding environmental niches during its runtime.1

A second SP -related issue is the applied policy to decide when new sampling points
are added and, due to the limited size, which ones should be deleted. But at the
same time without loosing useful experiences (detrimental forgetting). Depending
on whether the learning agent is faced with single-step (typical in classification and
regression tasks) or multi-step (sequential problems where the agent influences the
state space sampling through its action sequences) problems, the aforementioned
decisions have to be felt differently. The firstly mentioned single-step case can be im-
plemented according to the methodology outlined above. More generally, this holds
for all problems where a binary rewarding scheme (e.g., 0/1000 for false/correct)
which clearly indicates the correctness of action decisions can be assumed. Typical
episodic multi-step RL problems are often characterized by delayed reward signals.
That is, a single high reward is only payed out when a predefined goal state is
reached (e.g., the exit of a maze). The intermediate steps are rewarded with zero or
small negative values. The second scheme stresses the search for shortest trajectories
through the state space (e.g., to reflect limited battery resource of a robot). For the
multi-step case, a sampling point of the form si = (σt, at) inserted on the basis of

1Another related factor is of course the representational power of the individual XCS classifiers.
As briefly mentioned in Chapter 2.4, various possibilities to encode a classifiers condition and, thus,
the subspace for which it is responsible exist. Furthermore, the predictive capabilities of single
classifiers strongly depend on the selected prediction model. Highly sophisticated techniques for
condition representation and prediction modeling usually reduce the number of necessary classifiers.
But on the other hand, they increase the algorithmic complexity and decrease the interpretability
of the evolved solutions.
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the received immediate reward rimm is not sufficient anymore. Entire episode trajec-
tories of the form (σ1, a1, r1, σ2), (σ2, a2, r2, σ3) . . . , (σn−1, an−1, rn−1, σn) are needed
in order to estimate the value (expected long-term reward or return) of a certain
state-action pair (also Q-value [SB98]). The adaptation of the ASI technique based
on the loosely coupled IC variant to allow for the use in multi-step problems with
delayed rewards is not part of this thesis and therefore left for future work.

Remark Storing sampling points of this type is reminiscent of a technique which
recently has become known as experience replay. It has gained a lot of interest and
plays an essential role in reaching human-level performance in various games with
(Deep) RL agents [Mni+15].

The aforementioned thoughts motivate the second methodology of realizing the ASI
strategy as will be introduced now. This approach is based upon the tightly inte-
grated architectural variant of incorporating the IC into XCS – XCS-CIC. It allows
for moving the decisions regarding the sampling point management from the IC
to the responsibility of XCS itself. Furthermore, this variant eradicates the non-
applicability to multi-step problem, which will become obvious in the next para-
graphs.

As already described in the preceding chapter, the sampling point set SP is replaced
by the current rule base [P ], or at least by particular subsets of it. More precisely,
each classifier cli serves as (at least) one sampling point si and provides a variety of
possible function values to be interpolated. For instance, cli.p, cli.ε, cli.F , etc.

In order to being used with the ASI technique, the sampling points are extracted
from the classifiers as follows:

Let cli.~c ∈ cli.C ⊆ S ⊆ Rn denote the center point of the interval-based condition
of a classifier cli defined by

cli.~c = 1
2
(
(u1 − l1), (u2 − l2), . . . , (un − ln)

)T
. (5.7)

Then an individual sampling point si extracted from the respective cli is given by
the tuple:

si := (cli.~c, cl.a) (5.8)

In contrast to the former approach, no sampling points (experiences) are actively
collected anymore. Instead, they are extracted from the existing classifiers cli in an
ad-hoc fashion. Thus, the sampling point store (experience memory) now continually
changes with progressing evolution of [P ]. XCS is thus enabled to completely handle
the insertion and deletion of sampling points (i.e., classifiers) by means of its internal
replacement mechanisms (cf. Ch. 2.4). This, in turn, renders the IC’s adjustment
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component and consequently also the decision function A obsolete. Also the size of
the sampling point set SP is now directly controlled by the XCS hyperparameter
N , which limits the maximum number of microclassifiers kept in the population. It
should be emphasized that the sampling points are constructed from macroclassifiers
which are actually stored in the data structure [P ]. In learning problems where
the prevalent niches demand for more general classifiers, the number of available
sampling points decreases and vice versa. In order to counteract this dependence,
more than one sampling point can be extracted from one particular classifier as
discussed in Chapter 4 before. One possibility to reach a number of sampling points
equal to N is to draw exactly cli.num sampling points from each classifier cli ∈ [P ].
A thorough investigation of this aspect is another aspect of future work.

The size of [P ] must be chosen adequately in order to overcome several learning
challenges of XCS [But05a]. It needs to be chosen large enough to guarantee a com-
plete input space coverage, schema supply, sufficient opportunities for reproduction
as well as solution sustenance. To master all the aforementioned challenges, LCS
populations naturally do not contain only accurate and maximally general rules. In-
stead, they also bear a great share of so-called transient rules. These transient rules
are necessary for exploring the problem space, i.e., to discover niche representations
that should be optimized further by the GA. If such a transient rules proves to be
successful, it will get promoted further and is likely to survive. Otherwise, after
some time it will be selected for deletion in favor of a novel rule which has been
constructed by the discovery component. Transient rules clearly bear the risk of
being type-2 knowledge gaps and should be excluded from interpolation. Therefore,
a classifier filter which omits weak classifiers which cannot surpass a certain quality2
threshold θq is defined below:

Let q(cl) be a function q : [P ]→ R, cl 7→ q which fulfills the following properties:

1. Quality estimates are positive including zero

2. Classifiers with greater experience gain increasing quality

3. Classifiers predicting high rewards cl.p with high fitness (niche-relative accu-
racy) cl.F gain higher quality

A reasonably simple function which entirely reuses existing classifier parameters and
completely meets the above requirements is given by:

q(cl) = cl.exp · cl.F · cl.p (5.9)

2The term “quality” in this specific context solely refers to the value of a classifier for being
considered as a sampling point for the upcoming interpolation.
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Accordingly, the filtered sampling point set SP ′ in view of its utilization with the
ASI strategy can be defined as follows:

SP ′ :=

(cli.~c, cli.a)
∣∣∣ q(cli) > 1

|[M ]|
∑

cli∈[M ]
q(cli)


i=1...|[P ]|

(5.10)

As can be noticed, instead of involving the entire population, only the current match
set [M ] is considered for constructing sampling points. The rationale behind this
decision is to exclude specialized (i.e., non-general) classifiers situated too distant
from the current situation σt within the state space S, even if they might be highly
accurate. It is assumed that the valuable knowledge for transductively modifying the
system prediction is found in the immediate input space niches which are represented
by the current classifiers in [M ]. The rest of the ASI approach works analogously to
the XCS-IC variant introduced in the previous section.

Since the active maintenance of an adequately collected set of sampling points SP
is now obsolete, certain shortcomings of previously introduced XCS-IC approach
to realize ASI are eradicated as well. With the just defined methodology, the ASI
technique is now straightforwardly applicable to (multi-step) RL tasks even without
the simplifying binary reward scheme. This is due to the fact that the classifiers in
[M ] are filtered by their fitness weighted prediction values. When a classifier is not
able to predict the expected long-term reward correctly (estimated by cl.p), its fitness
decreases exponentially, what in turn yields lower quality estimates. By applying the
designed filter (Eq. 5.10), only more accurate and higher reward predicting rules will
be considered for the sampling point extraction. Accordingly, when ASI is applied,
those actions promising higher long-term rewards are supposed to be higher influence
on the prediction array modification as given by Equation 5.5.

In general, the decision which sampling points are considered for interpolation, is
now implicitly felt by the applied classifier filter. By additionally considering only
[M ], more situation-dependent sampling point sets SP ′ are created. This stays in
contrast to one dedicated central SP which contains experiences from all niches that
have been visited so far. The effect is that misleading sampling points from weak
classifiers are discarded and the IC-based surrogate is enabled to better support the
decision on appropriate actions.

Regarding the transductive nature of the ASI approach, the XCS-CIC variant follows
a similar but slightly different way. Instead of reusing raw experiences collected
within SP , here the additional transductive information is directly inferred from
already existing knowledge elements (i.e., cl ∈ [P ]), again without the intermediate
steps of induction and deduction.
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5.3. Evaluation

In order to validate the benefits of the ASI technique for both architectural variants,
the following paragraphs are concerned with the results of an empirical evaluation
regarding the impacts of interpolation-guided action-selection in XCSR.3

5.3.1. Checkerboard Problem

For the purpose of evaluation, it is relied on a well-known benchmark problem for
LCS applied to real-valued input domains – the Checkerboard Problem (CBP) as
introduced in [SB03]. According to the theoretical analysis of Butz in [But05a], the
CBP constitutes one of the maximal challenging problems for XCS, since its general
structure can prevent it from overcoming the challenge of guaranteeing a sufficient
fitness signal and thus niche supply, growth and finally sustenance. The general
form of a CBP instance is depicted in Figure 5.2.

Figure 5.2.: An exemplary CBP instance with two dimensions and eight divisions each

The illustrated CBP instance has n = 2 dimensions and nd = 8 divisions in each
dimension. This results in a typical checkers or chess board (from which its name
hails). It is denoted by CBP(n = 2, nd = 8). The task of a learning agent is to decide
for any possible state σt ∈ S := [0, 1]n of which color the field is which encompasses
the situation vector σt. Thus, the action space A is A := {white, black}. The CBP
constitutes a single-step (or classification) problem with binary reward scheme, i.e.,
rimm ∈ {0, 1000}. A reward of 1000 is payed out for correct answers, and a 0 reward
for incorrect guesses. In order to control the problem complexity, the parameters n
and nd can be modified to arbitrarily high-dimensional and partitioned hypercubes.
The problem difficulty results from the numerous, i.e., n ·nd input space niches that
need to be identified and sustained. XCS has to achieve this without (1) steering

3Please note that the incorporation within XCSF [Wil02] is not plausible, since it is targeted at
approximating functions what refers to a regression task, rather than a control problem. In later
chapters, more interpolation-based XCS extensions will be developed and evaluated within XCSF’s
algorithmic structure.
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toward a covering-deletion cycle, or else, (2) population take-over by overgeneral
classifiers due to a lack of fitness signal. The CBP was devised to eradicate the
weaknesses of the formerly often used real multiplexer problem [Wil00], which was
found to respond to biases of early real-valued condition representations (cf. [SB03]
for a detailed analysis). It also has been noted in the study that CBP resembles
real-world problem characteristics more strongly.

Remark on the Relation to Realistic Problems In order to bring the choice
of this particular “toy” problem and the general class of single-step problems in line
with the formulated learning tasks of SLAS (cf. Ch. 3), the exemplary traffic man-
agement scenario shall again be adduced for clarification purposes. Different traffic
situations, that is input-output vehicular flows between the possible turnings of an
urban intersection, demand for different traffic signal timings, which are provided
via specific signal plans. Assuming a somewhat simplified view in the following, a
signal plan can be modeled as follows: For each of n traffic signal groups (individual
traffic lights electrically wired to show the same light signal), the duration d of the
green phase (in sec.) can be adapted freely within certain bounds. This yields a
large (theoretically continuous), multi-dimensional action space A := [dmin, dmax]n.
Since XCSR is not designed to handle continuous action spaces, consider further,
that an optimization procedure obtains a number of solution candidates ai ∈ A
that have to compete against each other and against a predefined human-engineered
signal plan as well. A conceivable learning task for a SLAS would then be to learn
which signal plan to apply in which situation. Therefore, XCSR would approximate
the complete S×A→ P payoff map. This is reminiscent of classical mode switching
in technical systems. As a feedback signal, the learning agent receives a positive
reward when the mode switch leads to an increase in system utility. A negative or
zero reward is received otherwise. Assuming more than two distinct modes (here
signal plans), also more fine-grained reward levels would support the learning of a
capable adaptation strategy.

5.3.2. Experimental Setup

For the sake of evaluating both ASI methodologies and in order to gain insights of
XCS’s learning behavior, benchmark problems such as the CBP are often selected.
Such synthetic problems allow for a straightforward analysis of the problem com-
plexity, for derivable hyperparameters and for an intuition regarding the expected
behavior of the learning algorithm under investigation.

Standard XCSR [Wil00] serves as a baseline here.4 All reported experiments are
conducted for 30 independent, identically distributed (i.i.d.) repetitions with indi-
vidual random seeds. All depicted plots show the learning curves averaged over

4In the following XCS and XCSR are used interchangeably.
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the 30 runs over a predefined learning period of alternating explore/exploit trials.
Only the exploit trials are plotted and further assessed for pure system performance
evaluation.5 The plotted points of all figures of merit show aggregated values over
a predefined number of exploit trials each. The error bars depicted for each point
represent the standard deviation (±1SD).

Any evaluation metric is assessed beforehand with respect to whether it follows a
normal distribution. Therefore, Quantile-Quantile Plots (QQ-plots) and Shapiro-
Wilk tests have been conducted. If not stated differently a paired t-test is used for
hypothesis testing of statistical significance between two configurations. Otherwise,
if the requirements for using parametric significance tests are not fulfilled, the non-
parametric Wilcoxon’s signed-rank test will be used instead. The significance results
are shown in the corresponding tables, where a single asterisk (*) indicates a signif-
icant differences with a significance level of α = 0.05, and two asterisks (**) denote
highly significant differences (α = 0.01) between the particular configuration and
the baseline.

For the CBP, two instances with different complexity are selected – CBP(3,3) and
CBP(3,6). They have found to be sufficiently challenging for XCS to learn, but not
too complex to run into computational time issues due to slow convergence. XCSR
with hyperrectangular conditions by virtue of its problem space partitioning learning
intuition seems to be a perfect fit to solve this problem. However, as already stated
above, it is really difficult to capture all perfectly disjoint environmental niches and
to evolve an optimal solution [O] as defined by Kovacs in [Kov98]. An optimal
solution for CBP(3,6), would comprise exactly nnd · |A| = 63 · 2 = 432 rules, for
instance. As can be seen below, a maximum number of classifiers with a factor of
approximately 20 is needed to get a nearly accurate result. The sampling of the
input space follows a uniform distribution since for the case of CBP this constitutes
the most challenging configuration.

Evaluation Metrics The performance of XCS is evaluated by means of observing
the progress of three figures of merits as is typically done in the literature: (1) the
fraction of correct classifications (Fraction Correct) which reflects a ratio of correct
and incorrect actions over the last 100 steps when XCS decided in its exploitation
mode. For instance, when XCS guesses correct for 30 out of 100 problem instances σt,
than the metric evaluates to 0.3. This metric is equivalent to the accuracy measure
which is typically used in the supervised learning domain. (2) A mean absolute error
(MAE) measure which determines the difference of the system prediction PA(aexec)
and the actually received reward rimm, again averaged over the last 100 exploit trials.
For the utilization of the ASI strategy, the interpolation-assisted prediction array
calculation PA′(aexec) is used instead. (3) The average number of macroclassifiers

5This is a standard methodology to account for the exploration/exploitation trade-off and which
is mostly applied in the literature studying LCS.
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present in [P ] to indicate the generalization success of the system, again averaged
over the last 100 exploit trials. The plots depicted in the following thus show the
progressions of these metrics over the observed learning periods.

5.3.3. Configuration of ASI Strategy

For the XCS-IC implementation variant of ASI, the maximum number of sampling
points to collect is set to smax = 2000 for the CBP(3,3) and to smax = 20000 for
the CBP(3,6), respectively. This yields a comparability with the XCS-CIC approach
which will be evaluated below, since here the maximum number of sampling points
is limited by the maximum number N of microclassifiers allowed in the population.
XCS shares experience triplets of the form (σt, aexec, rimm) in each exploitation step
with the IC, which in turn simply decides on the basis of the reward rimm whether
to create and insert a new sampling point s∗ = (σt, aexec) into SP .

The both IC-extended XCS variants using ASI are compared with standard XCS as
a baseline.

Three different interpolation methods, namely

• Nearest Neighbor (NeNe)

• Inverse Distance Weighting (IDW)

• Modified Shepard’s Method (MSM),

are applied to fathom their individual potentials of being used within the IC. Those
particular interpolation methods have been selected, since they constitute repre-
sentatives from different categories of interpolation techniques: (1) NeNe serves as
naïve baseline method, (2) IDW represents the class of global interpolation, and, (3)
MSM covers the local techniques. The NaNe interpolation technique is restricted in
being plausibly applicable to higher input dimensions with regard to stable and ef-
ficient computations [LH10]. MSM does not exhibit comparable restrictions. Thus,
it was decided for using MSM interpolation as representative of the local-support
methods.

Experiment 1 - XCS on CBP(3,3) In the first experiment, XCS is asked to
learn a 3-dimensional, 3-fold-divided hypercube (CBP(3,3)). This configuration
hardly challenges a standard XCSR. It is selected to demonstrate that even for
non-challenging problems, an increase in learning efficiency can be achieved. Based
on suggestions from the literature [SB03; But05a], XCS is configured as follows:
N = 2000, α = 0.1, β = 0.2, δ = 0.1, ε0 = 10, ν = 5, θmna = 2, θGA = 12, θsub =
20, θsub = 20, pini = 10, εini = 0, Fini = 0.1, Freduce = 1.0, εreduce = 1.0, µ = 0.04, χ =
0.8, r0 = 1/nd = 0.33,m0 = 0.1. GA subsumption is active. Action are not mutated.
Hyperrectangular condition representation with UBR encoding is used. Uniform

136



5.3. Evaluation

crossover and niche-relative tournament selection with a proportion of τ = 0.4 was
used in the GA. An interleaving strategy with alternating explore and exploit trials
for handling the exploration vs. exploitation trade-off is applied. For a detailed de-
scription of the standard parameters please refer to Appendix B. As can be noted,
the maximum number N of microclassifiers is restricted to 2000. Accordingly, the
maximum number of sampling points smax is set to N , as this allows for a compar-
ison between the XCS-IC and the XCS-CIC concept. This restriction only affects
the former approach, since for the latter the sampling points are determined by the
current population, i.e., SP ′ ⊆ [P ]. For this first experiment on CBP(3,3), XCS
learns for 100k explore/exploit trials for each repetition.

Experiment 2 - XCS on CBP(3,6) In the second experiment the number of
divisions nd is doubled to increase the task complexity. This causes a challenging
rise of necessary learning steps for XCS. More precisely, 400K explore/exploit trials
are needed to observe a convergence of the learning progress. Parameters are set as
for the first experiment, except of: N = smax = 20000, r0 = 1/nd = 0.167.

5.3.4. Results

The following paragraphs discuss the impacts of ASI on XCS’s learning behavior
and describe general findings. Tables 5.1, 5.2 and 5.3 summarize the results for each
interpolation technique on both CBP instances. Bold values indicate statistically
significant improvements in comparison with standard XCS. The table entries are
the mean values and standard deviations obtained from the conducted 30 i.i.d. ex-
periment repetitions. The * (**) symbols indicate statistically (highly) significant
deviations of the reported metrics compared to standard XCS. This means that for
the p-values of paired t-tests the assertion p < α = 0.05 (0.01) is true. Up and down
arrows indicate whether the value has increased (↑) or decreased (↓) in comparison
to standard XCS.

Performance of ASI

By means of using the ASI strategy clear differences in XCS’s learning performance
can be noticed. When utilized in the loose-coupling variant (XCS-IC), the ASI
strategy always leads to an increased average fraction of correct predictions as well
as to a substantially decreased averaged system error compared to standard XCS.
Since the ASI strategy is intended as an exploitation action-selection regime, it has
no direct effect on the creation of classifiers and accordingly on the average number
of macroclassifiers. If ASI would also be used in the exploration phase, the dis-
covery of the problem space would be restricted to already seen sampling points,
what contradicts the idea of exploring the problem space by allowing trial-and-error

137



Chapter 5. Interpolation-Assisted Action Selection

Table 5.1.: Summary of ASI results on CBP(3,3) and CBP(3,6) using Nearest Neighbor
interpolation

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-IC w/ ASI 951.53↑∗∗ ± 2.93 64.15↓∗∗ ± 3.30 669.51= ± 11.99
¸ XCS-CIC w/ ASI 945.75↓∗∗ ± 4.19 64.02↓∗∗ ± 4.44 669.51= ± 11.99

Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-IC w/ ASI 898.79↑∗∗ ± 3.05 130.04↓∗∗ ± 4.64 8761.07= ± 76.05
XCS-CIC w/ ASI 867.14↓∗∗ ± 5.17 154.98↓∗∗ ± 7.27 8761.07= ± 76.05
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05

Table 5.2.: Summary of ASI results on CBP(3,3) and CBP(3,6) using Inverse Distance
Weighting interpolation

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-IC w/ ASI 950.72↑∗∗ ± 3.79 62.42↓∗∗ ± 4.06 669.51= ± 11.99
XCS-CIC w/ ASI 947.96↓ ± 4.03 61.23↓∗∗ ± 4.24 669.51= ± 11.99
Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-IC w/ ASI 880.68↑∗∗ ± 4.36 149.68↓∗∗ ± 6.91 8761.07= ± 76.05
XCS-CIC w/ ASI 874.87↓∗∗ ± 4.80 146.80↓∗∗ ± 6.42 8761.07= ± 76.05
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05

Table 5.3.: Summary of ASI results on CBP(3,3) and CBP(3,6) using Modified Shepard
Method interpolation

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-IC w/ ASI 955.18↑∗∗ ± 3.04 56.80↓∗∗ ± 3.26 669.51= ± 11.99
XCS-CIC w/ ASI 947.85↓ ± 4.04 61.26↓∗∗ ± 4.25 669.51= ± 11.99
Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-IC w/ ASI 902.76↑∗∗ ± 2.78 122.79↓∗∗ ± 4.43 8761.07= ± 76.05
XCS-CIC w/ ASI 874.61↓∗∗ ± 4.86 146.96↓∗∗ ± 6.64 8761.07= ± 76.05
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05
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experiences. The MSM technique for local interpolation yields superior performance
compared to both NeNe and IDW. The global IDW approach obtains the smallest
improvements. Figures 5.3 to 5.8 corroborate this observation visually for both CBP
instances. In summary, using XCS-IC with ASI increases the fraction correct met-
ric slightly (up to 0.76% for MSM) over the entire learning steps for the CBP(3,3)
scenario. Nevertheless, the improvements have been found statistically significant
for each of the applied interpolation techniques. More prominently appearing im-
provements are observable for the more complex CBP(3,6) scenario, where up to
2.98% for the MSM technique have been obtained. It has to be noted that the
stated percentages cover the entire learning periods of 100k and 400k exploit trials
for CBP(3,3) and CBP(3,6), respectively. However, the most distinct differences
between the interpolation-assisted XCS-IC and standard XCS appear at the early
learning phases (until ≈ 20k for CBP(3,3) and ≈ 200k for CBP(3,6)). Especially in
these initial phases, knowledge gaps of both types are highly present. Accordingly,
much higher improvements regarding the fraction correct metric become apparent
in these learning periods (cf. the corresponding plots).

Inspecting the second metric, the MAE or system error, strong improvements up to
46.19% for MSM interpolation on CBP(3,3) and up to 44.43% on CBP(3,6) can be
observed. This indicates a more accurate approximation of the underlying S×A→ P
payoff landscape XCS strives to learn. Again, these relatively stated improvements
involve the entire learning process and even higher differences can be observed during
the initial learning phases.

Another insight is that for each figure of merit, the standard deviations turned out
to be smaller in contrast to standard XCS. This points toward a slightly increased
robustness with regard to the stochastic nature of the system, which is attributed
to the deterministic way of obtaining tranductively inferred information in order to
the guide the action-selection step.

As for XCS-IC and throughout all experiments, the ASI strategy leads to a substan-
tially reduced average system error when utilized in the XCS-CIC variant. However,
in contrast to the results obtained with XCS-IC, slight and partially statistically
significant degradations in terms of the average fraction of correct predictions can
be recognized. The revealed reductions are up to 0.23% on CBP(3,3) and 1.08% on
CBP(3,6) for the NeNe interpolation technique which has been found to perform
worst. The occurrence of this effect is attributed to the reliability of the classifier-
extracted sampling points. Especially at the beginning of a learning task, the classi-
fiers are less accurate what in turn leads to a lower mean quality for the preselection
filter of classifiers to appear in SP ′. Furthermore, most of the niches are initially
covered by different classifiers advocating both possible actions of the action space
A (controlled by θmna). This in turn leads to a higher accumulated weight waj

acc

for the actually incorrect action at early stages of learning. The observations are
further substantiated by slightly increasing standard deviations with regard to the
obtained values for the fraction correct metric. In order to eradicate this limitation,
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(a) CBP(3,3): NeNe
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(b) CBP(3,6): NeNe

Figure 5.3.: Comparison of XCS against XCS-IC using ASI with naïve NeNe interpolation
on CBP(3,3) (top) and CBP(3,6) (bottom)
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(a) CBP(3,3): IDW
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(b) CBP(3,6): IDW

Figure 5.4.: Comparison of XCS against XCS-IC using ASI with global IDW interpolation
on CBP(3,3) (top) and CBP(3,6) (bottom)
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(a) CBP(3,3): MSM
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(b) CBP(3,6): MSM

Figure 5.5.: Comparison of XCS against XCS-IC using ASI with local MSM interpolation
on CBP(3,3) (top) and CBP(3,6) (bottom)
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one approach would be to define a trade-off function that controls the impact of the
transductively (i.e., interpolation-assisted) derived prediction array modification of
Equation 5.5. The derivation of such a functional relationship that trades off the
reliability of the interpolation-assisted transductive means against the conventional
deductive action selection step (cf. again Fig. 5.1) is, however, left for future work
on the ASI strategy.

Regarding the system prediction error (MAE), still substantially improved results
can be observed. Interestingly, the IDW technique yields the best result in terms of
numbers, reducing the system error by 42% and 33.57% on average for CBP(3,3) and
CBP(3,6), respectively. Nevertheless, the actual differences between IDW and MSM
can be considered neglectable. On both CBP instances, the naïve NeNe technique
yields the worst results regarding the MAE. Nevertheless, the reported improvements
regarding the system error metric for all interpolation methods have been found to
be statistically significant.

A further relevant insight from the reported experimental results is that MSM con-
stitutes the most promising technique to be incorporated for ASI in XCS-IC and
in XCS-CIC as well. In most of the reported cases MSM has been found to out-
perform the contending interpolation techniques NeNe and IDW. This observation
is attributed to the fact that MSM only uses a local neighborhood of the current
situation out of all the available sampling points. This seems to be beneficial in
highly multi-modal problem domains such as the CBP where frequent changes of
the correct actions and, thus, reward levels characterize the problem landscape (i.e.,
S×A→ P ). Incorporating too many sampling points in the actual determination of
the accumulated weight waj

acc, might lead to detrimental effects which lessen the pos-
sible benefits of utilizing transductively obtained information on past experiences.
However, this is expected to be highly dependent on the characteristic of the under-
lying problem space – as is the case for nearly any decisions that have to be made a
priori at design time. On the other hand, using the naïve NeNe approach turns out
to incorporate too few knowledge from already experienced situations stored in SP
or rather encoded within the currently available classifiers in [M ]. Local interpo-
lation techniques such as MSM turn out to constitute a plausible middle way with
the possibility to change the size of the considered neighborhood. Such a locality
adaptation could also be achieved in a self-adaptive manner at runtime. However,
concrete techniques to accomplish this behavior is out of the scope of this work.
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(a) CBP(3,3): NeNe
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Figure 5.6.: Comparison of XCS against XCS-CIC using ASI with naïve NeNe interpolation
on CBP(3,3) (top) and CBPs(3,6) (bottom)
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(a) CBP(3,3): IDW
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Figure 5.7.: Comparison of XCS against XCS-CIC using ASI with global IDW interpolation
on CBP(3,3) (top) and CBPs(3,6) (bottom)
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(a) CBP(3,3): MSM
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Figure 5.8.: Comparison of XCS against XCS-CIC using ASI with local MSM interpolation
on CBP(3,3) (top) and CBPs(3,6) (bottom)
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5.4. Discussion

The preceding sections confirm, that the presented interpolation-assisted action-
selection regime, the ASI strategy, achieves an increased learning efficiency. Espe-
cially at the beginning of a learning task, where a SLAS usually faces KGs of both
types, the application of an action-selection surrogate that allows for transductive
inference by means of scattered data interpolation techniques yields superior per-
formance over the conventional two-step induction-deduction mechanism of XCS.
By making transductive use of previously made experiences, the decision compo-
nent of the learning agent can be guided to choose more adequate actions faster.
These insights support the initially posed research hypothesis that the integration
of interpolation techniques into the algorithmic structure of online learning algo-
rithms decreases their prediction errors in situations where their knowledge bases
lack sufficiently reinforced knowledge elements.

Two approaches to implement the ASI strategy have been presented. The first
one is based on a loosely coupled extension of XCS by the novel IC. Following
this approach, a set of sampling points is maintained within the IC that reflects
collected experiences the environment. The management of the stored sampling
points constitutes a key task to successfully employ the IC. The evaluation of the IC’s
current predictive quality in terms of a certain evaluation metric is another important
aspect. So far, this approach is thoroughly investigated on a well-adopted and
challenging benchmark problem, the so-called Checkerboard Problem (CBP). This
task is characterized by configurable dimensionality and specificity of the resulting
environmental niches (or problem subspaces). CBP is a two-action single-step RL
task, which can also be interpreted as a binary classification problem. Thus, a
binary reward scheme is applied and discounting of possibly deferred future rewards
is not necessary. For such problems, the ASI strategy has been well-defined and
solutions for any decision to be felt in order to obtain an appropriately composed IC
have been presented. Among the aforementioned decisions, the most important one
is clearly an appropriate choice for the adjustment components decision function
A. It is responsible for managing the insertion (and removal) of new sampling
points in the experience memory SP . Accordingly, the question might appear how
other problem types, such as multi-class classification, possibly with layered reward
schemes (e.g., assuming different misclassification costs for several classes), or multi-
step RL problems bearing the delayed credit assignment challenge, can be handled
by the proposed methodology. How should the adjustment component A decide
when to add a new sample s∗ = (σt, aexec) when there might exist another action a′
that would yield a higher reward in the same situation? What if there is only zero
reward until a certain goal state is reached, which is the only state rewarded with
high payoff?

One possible way has already been investigated in a more detailed fashion – the
more tightly integrated XCS-CIC variant for implementing ASI. It constructs the
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sampling points out of the current set of classifiers [P ] and, thus, renders decisions
on which adjustment strategy to choose for managing the sampling points in SP
obsolete. However, due to the necessity of applying an appropriate quality filter to
omit type-2 KGs for the sampling point extraction, the beneficial effects of the ASI
method naturally depends more strongly on the learning success of XCS itself. Em-
pirically obtained results also revealed performance gains in comparison to standard
XCS. However the overall performance increase is inferior in contrast to the inde-
pendently hold experience store SP as used in the XCS-IC approach. Nevertheless,
the secondly introduced XCS-CIC approach to deploy ASI has further advantages.
These will become apparent in the subsequent chapters. XCS-CIC in general allows
for the integration of interpolation techniques at other places of XCS’s algorithmic
structure such as the covering routine and the involved GA.

A further solution for coping with more realistic and harder problem types based
on the loosely coupled XCS-IC variant can be achieved as follows. Instead of main-
taining only exactly one set of sampling points SP , a distinct set SPa is to be hold
for each possible action a ∈ A. These SPa sets would then comprise state-reward
pairs sai = (σt, rimm) instead of a state-action pairs (σt, aexec). Intuitively speaking,
the action would be “cut out” of the problem space S ×A by maintaining separate
SP ’s. Thus, in essence, the IC approximates parts of the overall problem space, i.e.,
S → P mappings, by slicing it at the possible actions a ∈ A. In an extreme case
of continuous action spaces over the reals, a more sensible way would be to extend
the sampling point coordinate σt ∈ S ⊆ Rn by the applied action aexec ∈ A ⊆ R.
This would yield sampling point coordinates of the form ~x′ = (σ1, σ2, . . . , σd, aexec).
Accordingly, the SP would then comprise experiences of the form si = (~x′i, ri), with
ri denoting the reward received. This would also impact the actual modification
of the PA that effectively guides the action-selection (Eq. 5.5). Instead of relying
on the discrete values for Rmax and Rmin for the decision of creating new sampling
points s∗ and the resulting calculation of PA′(aj), it would also be possible to di-
rectly interpolate the expected immediate reward for each possible action (class),
i.e., oaint ≈ r(σt, a), a ∈ A.

For sequential RL tasks, which face the credit assignment problem, a further mod-
ification regarding the SP store becomes necessary. Instead of considering each
sampling point si ∈ SP individually, chains of (s, a, r) triplets need to be estab-
lished. These chains allow for the maximization of the IC interpolated long-term
reward over entire problem space trajectories which in turn can be used to modify
the PA entries accordingly. This form of interpolative fore-tracking constitutes an
interesting point for further investigation, but nevertheless goes beyond the scope
of this thesis.

The general idea of using a loosely coupled IC instance for supporting the learning
mechanism in a SLAS reveals further potentials. The collected experiences, stored
in SP , can be used for further offline (or “mental”) exploration of the problem
space. Especially in sequential RL problems, the collected experiences can be used
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to implement a form of experience replay [Mni+15] in order to boost the convergence
of a classifier’s learnable parameters cl.p, cl.ε, cl.F . Another possibility would be
to interpolate the utility function u. Based on this approximation, optimization
algorithms can be employed to seek system configurations which yield high utility.
The previously introduced MLOC architecture already defines a designated layer for
offline learning purposes.

Another important aspect is how an adequate maintenance of the sampling point
set SP can be accomplished with regard to different requirements. Depending on
the characteristic of the problem domain at hand, it might be better to seek a dis-
tribution of the collected experiences that is closer to a uniform distribution (e.g.,
equidistant samples si) A purposeful collection of experiences and the decision which
sampling points can be considered obsolete and therefore removed from SP are the
tasks of the IC’s adjustment component. Considering a highly dynamic NSE which
challenges the learning agent with frequently changing input data distributions, a
simple time-recency based strategy that keeps the latest experiences and drops the
oldest ones might be the right choice. This behavior is straightforwardly achieved
by realizing SP as a First-In-First-Out (FIFO) queue. For problems that are char-
acterized by seasonal and, thus, recurrent situation occurrences, the former strategy
can result in a loss of useful experiences. Therefore, a replacement strategy which
actively steers the sampling point collection toward a uniform distribution within
SP should be preferred. For obtaining such an SP update behavior, methods based
on the notion of entropy and according estimators might be utilized in the future.

One particular limitation of the current approach is that it is so far designed for
application in deterministic MDPs only. This means that non-stochastic reward
functions r are assumed. In the case that for a state-action pair (σ, a) it is not
guaranteed that always the same reward is payed out, this would also needed to
be considered in the collected experiences, at least for the case that sai = (σ, rimm)
tuples are remembered. For enumerable (discrete) state spaces S this can be achieved
by simply calculating the mean value of all rewards seen so far for a particular state-
action pair. This would essentially “average out” the noisy reward signals. This
can also be achieved by an estimation in a time-recency weighted manner using
e.g., the Widrow-Hoff rule. This would lead to recently arrived measures gaining
higher influence than older ones. However, for continuous state spaces S ⊆ Rn this
turns out to be more complicated. The currently applied solution is to define a very
small similarity threshold ε such that whenever the Euclidean distance between two
sampling point coordinates ~x1 and ~x2 is smaller than ε, the vector defining the center
on a straight line between ~x1, ~x2 serves as new sampling point coordinate and the
function value is set to the average.

Finally, it should be explicitly noted that ASI strategy has no explicit effect on
the evolution of XCS’s rule base. Rather, it supports the learning agent to choose
appropriate actions in situations where the knowledge base has not converged to an
accurate approximation of the problem space, yet. This makes a SLAS more robust
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whenever a context change appears gradually or else abruptly. Such circumstances
confront the system with perpetually novel state descriptions σt. Even if the IC
might not have exact experiences for the so far unknown incoming situations σt in
its SP , due to its transductive learning manner it is still expected to provide reliable
“hints” to alleviate a potential utility degradation of the system.

5.5. Related Work

5.5.1. Memory in an LCS

With the introduction of a novel IC in Chapter 4, a form of memory is added to
XCS. Primary endeavors in equipping LCS with temporary memory in order to bet-
ter cope with Non-Markov environments can be found in [CR94]. Lanzi introduced
further memory-based mechanisms to XCS in [Lan98a; Lan98b] and together with
Wilson demonstrated their superiority on aliased learning environments in [LW00].
A further XCS-based system called TP-XCS, which is also capable of learning par-
tially observable markov decision processes (POMDPs), is presented by Pickering
and Kovacs in [PK15]. The primary works mainly approach the problem of per-
ceptual aliasing via adding a register-bit to the systems in order to disambiguate
aliased states. In contrast, the latter TP-XCS maintains a window of the last n
situations perceived and extends the input perception as well as the condition of
each classifier accordingly. This inhibits scalability when large memories would be
needed. All aforementioned approaches are only evaluated on binary problem do-
mains which constitutes a first major distinguishing aspect to the work presented
in this thesis. Additionally, in contrast to the kind of experience memory SP as
introduced in this chapter, none of the aforementioned approaches make use of their
memories in terms of interpolating between previously encountered states in order
to transductively infer additional knowledge for the current situation σt.

5.5.2. Interpolation and CBR in RL

Emigh et al. propose a methodology for utilizing NeNe interpolation in Q-learning
for playing an arcade game called Frogger in [Emi+16]. Their approach is to deter-
mine the nearest neighbors within the Q-table and then use the NeNe-interpolated
Q-value for (1) the actual action selection step, and, (2) for the update in cases
where no entry exists so far. Additionally, an approach to metric learning is pre-
sented, that constitutes an interesting means to control the emphasis of particular
state features when nearest neighbors are to be determined. Promising results are
reported in terms of speeding up convergence when their presented extensions to Q-
learning are applied. In contrast to the ASI scheme as introduced in this chapter, no
trade-off between inductively acquired Q estimations and transductively determined
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values is considered. Furthermore, in the proposed NeNe-based Q-learning approach
interpolation only takes place when no entry in the current Q-table is present.

Another branch that can be found in the context of RL is the combination of case-
based reasoning (CBR) with RL methods. Gabel and Riedmiller [GR05] use func-
tion approximation based on CBR to increase learning efficiency for state value
approximation in RL. They apply k-nearest neighbor regression for the use in high-
dimensional continuous state spaces. The authors describe promising data man-
agement techniques to maintain the case memory. These techniques might also be
adopted for utilization within the adjustment component which is responsible to
update SP .

Considering the second approach as presented in this chapter, XCS-CIC, where the
set of sampling points SP is replaced by the current rule base [P ] of XCS, further
similarities to the work of Glatt et al. reported in [GSC17] become apparent. In
their paper, the case-based policy inference (CBPI) is presented. CBPI aims at
transferring knowledge from previously learned tasks (in terms of policies) to related
and similar tasks. Therefore, a case base comprising previously solved RL tasks
with their corresponding policies is maintained. As can be seen, the authors of this
work introduce CBR in the context of RL in a different way. More precisely, entire
problems defined by an MDPs constitute cases with their solutions given by the
policies solving these MDPs. CBPI then works by selecting the most similar cases
from the case base and by evaluating the importance for each of the selected ones.
This evaluation is done by conducting a limited number of training episodes. Based
on these importance values, the selected cases are blended to yield a policy for the
new target task. Furthermore, a trade-off mechanism is proposed for successively
letting the actually learned policy take over the control. Even if not directly related
to the approaches as developed in the previous sections, interpreting the population
of classifiers as case base, and the interpolation between the filtered classifiers as
sort of blending, at least rudimentary similes can be drawn.

5.5.3. Heuristically Accelerated RL

Bianchi et al. in [BRC04; BRC08] present the concept of heuristically acceler-
ated RL (HARL). The objective of their HARL approach shares clear similarities
with the ASI strategy. A heuristic is to be formed, either by incorporating domain
knowledge, or in an online fashion during early learning stages, in order to guide
the action-selection mechanism of RL agents. The authors apply their concept by
proposing HAQL, an heuristically accelerated variant of Q-learning, which is evalu-
ated on robot navigation scenarios. Two main phases are mentioned: (1) Structure
extraction which attempts to build a map sketch of the environment. (2) Heuristic
backpropagation which uses that map to compose a heuristic. Thus, the approach es-
sentially approximates a model of the underlying problem and subsequently applies
planning to figure out adequate action choices. This is reminiscent of model-learning
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RL techniques and contrasts with the transductive, i.e., no model building, approach
presented in this chapter. However, in the context of LCS-based RL, ASI can be
understood as a HARL approach extracting a heuristic online during the learning
progress by means of interpolating between a set of previous experiences stored in
SP .

5.5.4. Experience Replay in Deep RL

As already discussed in the previous section, the IC comprises all components that
are required to perform experience replay [Mni+15]. Experience replay is used
to prevent overfitting in DNNs which are used to approximate the Q-function in
DQN. Therefore, previous experiences in the form (s, a, r, s) are stored in a so-called
replay memory. For each update of the Q-network, a small minibatch is sampled
uniformly at random from that memory. This minibatch is used, together with the
just experienced transition, to conduct backpropagation. The means of how the
stored experiences are used differs clearly from the ASI techniques as introduced
here. However, in future work it is planned to combine these two techniques. More
sophisticated approaches that take the idea of experience replay even further can be
found in [Han+18] and [Sch+15], for instance.

5.5.5. Memory-based and Model-learning RL approaches

In the seminal book of Sutton and Barto [SB98], a rather short section is dedicated to
Memory-based RL approaches. The potentials of memory-based approaches, such as
the attenuating effect regarding the curse of dimensionality by using directly stored
experiences and making only use of instances in the proximity of a current state or
state-action pair in contrast to fitting a global parametric model are indicated. They
further provide a short list of relevant work in this domain, which mainly narrows
to Memory-based Dynamic Programming (MBDP) by Peng [Pen95] and the work of
Schaal and Atkeson et al. on Locally Weighted Regression [AMS97; SA94]. Where
the former is an early approach applied to dynamic programming techniques and
not to temporal difference learning, the latter approach indeed uses local instances.
However, it does this for learning a local but parametric regression model which
again constitutes an approximation in the end. Thus, it can be concluded that
the attention on the explicit use of interpolation techniques remains sparse in the
literature on RL.

Beside, model-learning and value function approximating techniques from the do-
main of RL can be regarded as related farther away. Examples are Sutton’s Dyna-
architecture [Sut91] or Actor-Critic models [SB98]. These methods have in common
that they build explicit models of at least parts of the underlying problem by ap-
proximation. These models are then combined with RL methods. Even if these
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approaches often use DNNs as approximators and, thus, do not rely on interpola-
tion directly, the approach of having a sort of surrogate model for improving the
performance of learning algorithms at different aspects of the learning task indeed
is reminiscent of the loosely coupled structural extension of XCS by the IC.

5.6. Chapter Summary

In this chapter, an interpolation integration strategy has been developed that sup-
ports the action-selection step of XCS during exploitation. The IC was used as a
transductive surrogate model to support the actual selection by modifying the pre-
diction array entries. This modification was realized by transductively calculating
accumulated interpolation weights from collected experiences. Both architectural
variants, i.e., XCS-IC and XCS-CIC, have been considered for implementing this
so-called ASI strategy. An empirical study was conducted on two instances of a
challenging benchmark problem known as the CBP. Results indicated superior per-
formance for both variants regarding the system error for expected reward predic-
tion. However, the fraction of correct classifications (average accuracy) was only
found to be superior for the loosely-coupled XCS-IC approach. More research has
to be done for the XCS-CIC variant in this regard, since slightly decreased average
accuracy values have been observed so far. A thorough discussion on possible im-
provements followed the evaluation section. As before, the chapter was closed with
the appreciation of related work comprising memory-based approaches and model-
learning in LCS and RL in general, interpolation-based concepts from the domain
of RL, heuristically accelerated RL, as well as experience replay in deep RL. While
this chapter mainly focused on making transductive use of so far collected experi-
ences given by situation-action pairs, the next chapter pursues a different objective.
XCS’s reactive fallback mechanism to handle type-1 KGs is enhanced by the concept
of transductive knowledge inference in order to improve the initialization of a novel
classifier’s learning parameters.
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Chapter 6.

Interpolation-Based Covering

The covering routine is a fallback solution for situations where the rule base of
XCS does not contain any classifier that matches the current state vector σt. Thus,
XCS per default provides a reactive solution for type-1 KGs. Novel knowledge
elements, i.e., classifiers, are created almost, however, not entirely at random. The
means how a newly covered classifier clcov is initialized can be controlled via several
hyperparameters which determine the initial generality of the condition as well as
the initial values for the predicted payoff cl.p, the error estimate cl.ε, as well as
the fitness cl.F . Except for the first parameter, most often denoted by r0 or s0
in the literature, the configurations for the initial values of the remaining classifier
parameters are changed seldom if ever. Thus, the initialization just covered rules’
learning parameters is mainly arbitrary and “blind”. Initializing a novel rule in
that manner bears the potential for type-2 KGs being created. In order to at least
attenuate this circumstance by more radically updating the parameter estimates
during the very first reinforcement updates, the MAM technique has been introduced
to XCS in [Wil95] (cf. Sect.2.4). It will be briefly revisited below.

The interpolation-based covering operator developed in this chapter constitutes an-
other means of integrating interpolation with XCS’ algorithmic structure. The so
far rather arbitrarily initialized covered classifiers clcov, will undergo a more in-
formed initialization procedure which takes the already learned parameters of ad-
jacent classifiers from neighboring problem space niches into consideration. This
second strategy for interpolation integration is therefore named Covering Intializa-
tion Integration (CII).

The hypothesis behind this methodology, i.e., of incorporating values from neigh-
boring but non-matching classifiers for novel classifier initialization purposes, is that
high-quality classifiers from adjacent niches presumably possess valuable insights re-
garding the expectation values of the parameters to be estimated. For instance, the
achievable error level or the amount of fitness, which is shared among the classifiers
defining the niches, might also – at least approximately – apply to the currently con-
sidered but yet uncovered niche. This assumption however implies a certain degree
of smoothness of the underlying problem structure, i.e., similar actions in similar
situations lead to similar rewards, errors and consequently fitness estimates. Basing
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the design of learning algorithms on this assumption is also known as nearest neigh-
bor inductive bias). However, for the abstracted general learning problem as defined
in Chapter 3, i.e., the online approximation of continuous utility functions over a
problem space f̃ ≈ f : PS → U , this assumption turns out to be indeed reasonable.
Even if the resulting utility surface is not continuous is a mathematical sense, an
LCS is still very capable of learning such problems. This can be expected when-
ever discrete action spaces A with nominal, i.e., non-ordered, possibilities factor into
the problem space PS, for instance. As a consequence, the utility or reward might
change quite abruptly for different actions. However, this issue can be circumvented
by applying an appropriate classifier filter that restricts the considered classifiers out
of which the sampling points are constructed to those that advocate only identical
actions.

Accordingly, in contrast to begin the classifier parameter estimation completely from
scratch for each classifier newly created by covering, the Covering Intialization Inte-
gration (CII) technique provides an informed means of classifier construction which
relies more strongly on the immediate classifier neighborhood.

Additionally, and in line with the overarching research hypothesis1.1 this thesis
is posing, the interpolation-based covering technique is supposed to increase the
learning efficiency, especially at the early phases of learning, by counteracting KGs of
type 1 in a more sophisticated manner. The incorporation of learned knowledge from
neighboring problem space niches can be understood as a form of transfer learning
in terms of effectively transferring learned parameters from one or more particular
problem space niches to another, so far unexplored one in the same problem space.

The next paragraphs briefly recapitulate on the basic covering scheme that is applied
in XCS. Afterwards, the novel CII strategy is introduced. The benefits of this
interpolation-based covering strategy is then evaluated on the task of continuous
function approximation applied to three different functions of varying complexity
in terms of dimensionality and curvature from the numerical optimization domain.
Finally, the results and further insights are discussed and an overview of related
work is given.

6.1. Basic Covering

As previously explained in Section 2.4, the covering process occurs when any of the
following cases is true:

1. Whenever [P ] does not contain any matching classifier for the current situation
σt = ~xt and thus [M ] is empty.

2. Whenever the number of distinct actions represented by classifiers in [M ] is
less than θmna.
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3. Whenever the average quality of [M ] is poor, i.e., the average fitness F̄[M ] of
cl ∈ [M ] is less than the mean fitness of the population F̄[P ].

In consequence, XCS generates at least one novel classifier clcov to cover the yet
unexplored environmental niche. The condition of the novel classifiers clcov.C is ini-
tialized with ~xt and for each dimension i = 1 . . . d a so-called interval predicate (li, ui)
is calculated as follows: li = max{l∗i , xi − U [0, r0]} and ui = min{u∗i , xi + U [0, r0]}.
U[0,r0) returns a uniformly distributed random number between 0 and r0 excluded,
where r0 is a predefined default spread parameter. l∗i and u∗i denote the minimal
and maximal bounds of the problem space for the i-th dimension, respectively. For
a more detailed description of covering please refer to Section 2.4. Classifier parame-
ters for cl.p, cl.ε, cl.F, cl.exp are initialized with predefined values (hyperparameters)
pini, εini, Fini and 0, respectively. In the case of XCSF, the weight vector ~w for the
polynomial prediction approximation is initialized with wi = U [−1, 1], i = (1 . . . n).
If known, the offset weight w0 is initialized randomly in between the value range of
the function f to be approximated. Otherwise, it is also initialized randomly with
w0 = U [−1, 1]. In classification and RL tasks, the action is selected by chance among
those which are not already present in [M ]. Other works on XCS assume that the
actual target value, e.g., the correct class a or the function value y = f(~xt), is im-
mediately known when the situation vector ~xt arrives, i.e., each trial XCS receives
a complete sample (cf. e.g., [Sta14]). Accordingly, in the case of XCSF e.g., the
offset weight can be set to the actual output value, i.e. w0 = f(~xt), and the initial
prediction error drops. The same holds for the correct action during the covering
phase in standard XCS in RL or classification tasks. This is a plausible assumption,
when XCS is asked accomplish a typical supervised learning task based on a data
set available a priori. In contrast, this work focuses on the challenge of learning
some unknown target concepts or functions at the runtime of SLAS. Thus, at time
t, XCS gets not presented a complete sample, but only the situation vector ~xt. The
correctness of the prediction which is deduced can only be determined on the basis of
the retrieved immediate reward rimm. Nonetheless, the interpolation-based classifier
initialization techniques introduced in the following sections as well as in Chapter 8
are straightforwardly applicable to LCS variants utilized to solve supervised learning
problems.

6.2. Interpolation-Based Covering Initialization
Strategy

As already discussed, the problem with predefined initial values is that they are often
set arbitrarily. More precisely, the initialization depends on particular hyperparam-
eters that are rarely changed if ever. Following the usually applied MAM technique
(cf. Ch. 2.4), some of the arbitrarily set initial values are quickly eliminated by ap-
plying a simple average over the first 1/β updates. This procedure is applied for the
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initial prediction value cl.p, as well as for the absolute error estimate cl.ε. However,
for the fitness estimate, this procedure is usually not applied. Also for the case for
XCSF using computed predictions, where the scalar prediction parameter cl.p is re-
placed by a vector of weights cl. ~w which constitutes the coefficients for a polynomial
approximation (cf. [Wil02; BLW08]). Furthermore, the influence of MAM and its
expected effect that the parameter estimates would converge more quickly to their
expected values, entirely depends on the choice of the learning rate β. Here, lower
learning rates lead to more frequent applications of the running average calculation
instead of the gradient-approximating Widrow-Hoff update.

Approaching the expected error estimates cl.ε quickly is specifically crucial to supply
an adequate fitness signal to the evolutionary component of XCS. Lower absolute
prediction errors lead to exponentially higher absolute accuracy values (cf. Sect. 2.4
for details regarding the fitness calculation and update). The absolute accuracy
values determine the share of fitness that is attributed to a particular rule within
its environmental niche. Thus, the faster the prediction error drops, the quicker a
higher fitness can be assumed. This in turn leads to a more distinct fitness signal
on which the applied GA bases its selection, resulting in a higher reproductive op-
portunity and, thus, niche exploration in the end. When it is possible to speed up
the time needed to figure out the correct estimates, strong classifiers will be pro-
moted and poor classifiers will be ‘sorted out’ faster. The CII approach introduced
next, therefore, takes the estimates of classifiers from adjacent niches into account
when a new classifier in a so far unexplored niche is to be created by means of the
covering operator. Therefore, it is explicitly made use of already existing knowledge
elements in the rule base in order to estimate appropriate initial values for a newly
created one. Following the previously introduced notion of transductive knowledge
inference, the already learned parameters (e.g., cl.p, cl.ε, cl.F ) of classifiers in the
direct proximity of the currently unknown situation are used to transductively infer
initial values for the new classifier to be created via covering. Figure 6.1 is intended
to convey the intuition of this approach. As for XCS-CIC, the sampling points
are constructed from available classifiers cli ∈ [P ]. Again, the center points of the
conditions serve as sampling point coordinates ~xi. In contrast to ASI, however,
the sampling points’ function values to be interpolated yi are different as will be
explained next. It is explicitly noted here, that the shape of the condition is not
interpolated so far. However, first thoughts in this direction have already been spent
and will be investigated for deeply in the future.

The influence of classifiers that lie farther away from the newly created one decreases
depending on the distance metric utilized for the particular interpolation technique.
Consider a large problem space with a high dimensionality and non-uniformly dis-
tributed instances from the problem input domain at hand. At the beginning, the
covering mechanism acts frequently but a complete coverage of the entire problem
space is unlikely due to the non-uniform sampling and the high-dimensional space.
When a situation occurs for the first time, the population contains no classifier which
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Figure 6.1.: Intuition of the interpolation-based covering operator using CII

yields adequate predictions about this environmental niche. However, nearby clas-
sifiers from surrounding niches that are sampled more frequently and, thus, can be
expected to predict with higher accuracy might be present. With this transductive
incorporation of such available knowledge, a more appropriate initialization of newly
generated classifiers is pursued resulting in decreased initial prediction errors and,
thus, higher robustness against unforeseen situations.

Technically, the CII lessens the influence of XCS’ hyperparameters for classifier ini-
tialization. Instead of assigning new classifiers’ parameters with predefined initial
values such as pini, εini or Fini, using the CII approach the IC as introduced in Chap-
ter 4 is employed to interpolate these values. Essentially, any classifier parameter
which is represented by a numerical value can be transductively initialized by means
of interpolation. Preliminary experiments have revealed that specifically the inter-
polation of cl.p (in case of XCSF cl. ~w), cl.F and cl.exp leads to increased learning
efficiency in terms of faster prediction error drops at early stages of learning with
empty rule bases, i.e., high presence of type-1 KGs. The CII strategy can be under-
stood as an explicit countermeasure against type-1 KGs, since it is only activated
during the covering routine. Depending on the used triggers for activating covering
itself, it is also imaginable that CII supports effective reduction of negative impacts
due to type-2 KGs (see the abovementioned covering activation case 3). However,
since traditionally covering in XCS is only activated when the match set [M ] is
empty, an experimental evaluation with alternative covering activation schemes is
not reflected in the experiments reported in this thesis.

Equation 6.1 exemplarily formalizes the interpolation procedure based on local Shep-
ard interpolation (MSM) for the more complex case of XCSF which replaces scalar
reward predictions cl.p by computed predictions where the learnable classifier param-
eter is represented by a weight (or coefficient) vector cl. ~w. A classifier’s parameters
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subject to interpolation in the following study can be represented by a function value
vector as follows:

~fcov =



clcov. ~w
(0)

clcov. ~w
(1)

. . .

clcov. ~w
(d)

clcov.F
clcov.exp


The function value vectors ~fi (defined analogously to ~fcov) of the considered classi-
fiers cli out of which the sampling points are constructed are multiplied component-
wise with a corresponding interpolation weightWi (cf. Ch. 2.3). Further, SP ′ ⊆ SP
defines the filtered set of sampling points constructed from [P ]. It was decided to
not apply a quality filter, since especially during early stages of learning, it was
expected that any available knowledge elements positively contribute to classifier
initialization. However, it is explicitly noted that the application of an appropriate
filter, e.g., as proposed in the previous chapter might be meaningful in later phases
of runtime learning. For the CII strategy, the entire population [P ] instead of the
current input space niche [M ] serves as candidate pool of classifiers. Since it is
focused on a function approximation (regression) task here, a further filtering for
classifiers with respect to the actions they advocate is not necessary. In the case of
typical RL or online supervised learning tasks, such as the CBP classification prob-
lem, the sampling points need to constructed out of a set of classifiers with equal
actions. Empirical results that reflect this aspect in the experimental setup have
also been conducted in [Ste+16b; Ste+17a].

Equation 6.1 shows the calculation of the function value vector ~fcov for each classifier
clcov that is created throughout one activation of the covering routine. The shape
of the condition clcov.C as well as the action clcov.a are determined probabilistically
as usual.

~fcov =
∑|SP ′|
i=1 Wi · ~fi∑|SP ′|
i=1 Wi

, with cli ∈ SP ′ (6.1)

The CII strategy can be regarded as sort of knowledge transfer and bootstrapping
for newly created classifiers in a sense that already available knowledge (learned
parameters cl. ~w, cl.F, cl.exp) of adjacent classifiers is transductively inferred.

In case of an initially empty population where no sampling points an be constructed
out of neighboring rules, standard covering serves as fallback solution.
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6.3. Evaluation

For the sake of validating the benefits of interpolation-based covering, in this chapter
three benchmark scenarios from the domain of function approximation are investi-
gated. Thus, the XCSF derivative is employed here. The learning task is to recon-
struct, i.e., approximate, a particular function surface online instance by instance –
or in terms of SLAS, at runtime. It is explicitly noted that the learning i.e., an ap-
proximate reconstruction, of the underlying functions is the objective here and not
the search for a global minimum. Further results have been obtained in a study that
investigates the potential of CII and further interpolation strategies within XCSR
applied to the previously introduced CBP task. For the sake of brevity, the results
are not included in this chapter, but can be found in Appendix C. For details please
confer [Ste+16b; Ste+17a].

6.3.1. Function Approximation

As discussed earlier in Chapter 3, the approximation of unknown functions during
a system’s runtime constitutes a generic learning task. Possible functions which
are sensible to be learned at runtime are for instance: 1) the overall or partial
utility function(s) which determine the appropriateness of certain systems states in
terms of fulfilling the objectives provided by an external authority (e.g., for trig-
gering self-adaptation processes via the control mechanism to achieve robustness
and flexibility). 2) The value function of an employed RL agent which is asked to
solve a sequential control problem such as successively adapt a control variable of
interest (e.g., for using model-free policy gradient approaches). 3) Any other un-
known functional relationships where only input-output pairs can be observed and
on which a gradient-based optimization technique should be applied to figure out
the most appropriate inputs with as few steps as possible (model-based learning or
planning).

The function surfaces of the aforementioned examples are usually not known a priori
and, thus, constitute black-box problems. To reflect this aspect, in the following
study, functions of different shapes are investigated.

The following paragraphs present the results from the experimental evaluation of
the proposed techniques. Experiments on three test functions with different de-
grees of complexity in terms of dimensionality and curvature have been conducted.
Figure 6.2 depicts the 3-dimensional surface plots of the considered functions for
2-dimensional input domains.
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6.3.2. Experimental Setup

If not stated differently, for the empirical study presented next, XCSF has been
configured following the suggestions by Lanzi et al. [Lan+05a]: α = 0.1, β = 0.2,
δ = 0.1, ν = 5, θGA = 50, ε0 = 0.01, θdel = 50, θsub = 50, χ = 0.8, µ = 0.04,
εI = 0.0, FI = 0.01, r0 = 0.1, m0 = 0.2, fitnessreduction = 0.1, δrls = 1000,
λ = 1. Linear approximation in conjunction with the RLS method [Lan+05a;
BLW08] has been used to incrementally adjust the prediction coefficients stored
in the classifiers as weight vectors cl. ~w – effectively replacing the prediction scalar
cl.p by computed predictions. Furthermore, tournament selection as introduced by
Butz et al. in [BSG03] is utilized for parental selection within the GA. Based on the
insights regarding the performance of different interpolation techniques obtained in
the previous chapter, it has been decided to set the focus on the use of local interpo-
lation via the MSM technique. Preliminary investigations in the scope of a master’s
thesis [Rau16] supervised by the author corroborate this decision. The number of
considered sampling points for local interpolation was set to Nw = 19, following
the suggestion of Thacker et al. [Tha+09]. This hyperparameter is kept constant
throughout all the experiments on functions of different complexity in order to gain
an intuition about the importance regarding the choice of Nw. It turns out that
even with such a small number of sampling points, significant improvements can be
achieved. It is clearly noted that this decision is not meant to replace a sensitivity
study of this hyperparameter. However, the conduction of an elaborate and compu-
tational highly expensive sensitivity analysis is beyond the scope of this thesis. It is
expected, though, that a higher value for Nw will result in even larger improvements
regarding the initial prediction errors. This hypothesis could also be corroborated
with preliminary results conducted in the scope of student’s theses supervised by
the author, cf. e.g., [Rau16; Mei17; Wag17].

All reported results are averages over 30 i.i.d. runs with different random seeds. Each
repetition is performed for 200k learning trials. At each trial, XCSF is presented
an input vector ~xt which is uniformly sampled from the domains of the benchmark
functions. To assess the obtained results on statistical significance, paired t-tests
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Figure 6.2.: Surface plots of the considered test functions to be approximated for dimen-
sionality n = 2
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(see Table 6.1) have been conducted. For this reason, the results of all 30 runs have
been confirmed to follow a normal distribution beforehand using Shaprio-Wilk test
as well as by visual inspection of QQ-plots. The plotted results depicted in the
Figures 6.3 to 6.6 compare the normalized system error (i.e., normalized MAE) and
the number of evolved macroclassifiers of standard XCSF with the interpolation-
assisted XCSF-CIC using CII. Points show the averages over the last 100 trials and
the error bars indicate the standard deviation (±1SD). The y-axes of the plots, are
log-scaled in order to better illustrate the interesting ranges of the system error. The
number of macro-classifiers is also depicted on a log-scale (right-hand y-axis of each
plot). This representation is adopted from Stalph and Butz (cf. e.g. [SB12; SB10b]).
Since covering – and therefore CII – almost exclusively acts at the beginning of a
learning task, the plots concentrate on the initial learning phases up to 10k trials
to allow for a better illustration of the potential benefits. However, for the results
reported in Table 6.1 as well as for the conducted t-tests, still the entirety of learning
steps (200k) is actually used.

6.3.3. Results

The following paragraphs describe the unique characteristics of the particular func-
tions used to validate the CII strategy as well as the results obtained when testing
both standard XCSF and XCSF-CIC on them. Table 6.1 summarizes the results ob-
tained from the conducted empirical studies. * (**) indicates statistically (highly)
significant differences regarding the reported metrics compared to standard XCSF,
i.e., that for the p-values of paired t-tests holds p < α = 0.05 (0.01). Bold values
indicate significant improvements compared to standard XCSF and the arrows, ↑ or
↓, indicate increased or decreased values, respectively.

Results for Simple RMS-like Function f1

In [Wil02], Wilson proposed a rather simple, but easily scalable function to test
XCSF on higher-dimensional problems. Figure 6.2a depicts the surface of this func-
tion for n = 2 dimensions. Wilson describes it as a ‘RMS-like’ function resulting in
a flat but rising hyper-plane. It is defined as follows:

f1(~x) = [(x2
1 + · · ·+ x2

n)/n]1/2, 0 ≤ xi < 100 (6.2)

Wilson has shown in his article [Wil02] that XCSF is very capable of learning this
function even in a decent number of input dimensions (n = 6). Accordingly, the
parameterization of XCSF is based on Wilson’s previous work for this first exper-
iment which only slightly differs from the abovementioned default settings for the
following hyperparameters: N = 3200, β = 0.1, θsub = 200. However, instead of the
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Table 6.1.: Summary of results for XCSF-CIC using the CII strategy on the selected test
functions f1−3

f1 RMS-like 6D System Error Macro Classifiers
(target error ε0 = 1) mean±1SD mean±1SD
XCSF-CIC w/ CII .5394± .005 ↓** 1680.62± 12.80 ↑
XCSF .6690± .013 1676.59± 16.95
f2 Styblinski-Tang 3D System Error Macro Classifiers

XCSF-CIC w/ CII .0227± .0002 ↓** 3280.61± 17.09 ↑**
XCSF .0260± .0003 3250.96± 16.75
f2 Styblinski-Tang 6D System Error Macro Classifiers

XCSF-CIC w/ CII .0689± .0006 ↓** 18288.88± 79.30 ↑**
XCSF .0699± .0005 18201.20± 125.49
f3 Eggholder 2D System Error Macro Classifiers

XCSF-CIC w/ CII .0520± .0006 ↓** 2954.93± 12.57 ↓
XCSF .0553± .0006 2955.01± 9.37

modified Widrow-Hoff update rule as proposed in his article, here the more power-
ful RLS update rule is used which generally has been found to perform significantly
better (cf. e.g., [Lan+06; BLW08]) in terms of increased system error decrease and
convergence.

Table 6.1 summarizes the results obtained for f1.1 Figure 6.3 furthermore shows the
effect of CII which can be clearly observed at the beginning of the learning phase
where per definition KGs of type 1 are predominantly present what causes covering
to act frequently. With CII the system error drops significantly faster during the
first 10k trials. The population size develops similar but marginally increases during
the initial 2k steps in comparison to standard XCSF.

Although the n = 6 dimensional RMS-like function f1 does not constitute a chal-
lenge for standard XCSF, the utilization of the CII strategy yields beneficial effects
in terms of a significantly reduced system error (19.37% over the entire experiment)
which is additionally reached more quickly and within a tighter standard devia-
tion. The average number of classifiers over the entire 200k learning steps, however,
marginally increases in terms of absolute measures (0.24%). The difference has not
been found to be statistically significant and thus can be considered as caused by
chance.

1Please note that the value range of the RMS-like function is [0, 100). Thus, the targeted error
level of 1% corresponds to an absolute error of 1 and the values reported in Table 6.1 are above the
results of the other test functions.
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Overall, it can be noticed that for a rather low complex function with moderate di-
mensionality such as the RMS-like f1, where neither high curvature nor obliqueness
characterizes the function surface, the transductive inference of a covered classi-
fier’s parameters from neighboring rules yields a faster decrease regarding the initial
prediction errors while the average population size nearly stays the same.
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Figure 6.3.: Learning curves of XCSF-CIC with CII and XCSF on 6D RMS (f1).

Results for Curved Styblinski-Tang Function f2

The second test case, the Styblinski-Tang function2 [ST90], is a common benchmark
function from the domain of numerical optimization [JY13]. It is characterized to
be non-convex, smooth and multimodal, i.e., by having multiple local optima. Thus,
it shows a moderate degree of curvature. Figure 6.2b shows a surface plot for n = 2
input dimensions. For the general case of n dimensions, i.e., ~x ∈ [−5, 5]n, the
Styblinksi-Tang function is defined as follows:

f2(~x) =
∑n
i=1 x

4
i − 16x2

i + 5xi
2 , −5 ≤ xi ≤ 5 (6.3)

2W.l.o.g., both the domain and co-domain are normalized to the range [0, 1] .
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n=3-dimensional case The approximation capabilities of XCSF is evaluated
for n = 3 and n = 6 dimensions. For the 3-dimensional case, XCSF parameters
were set as described before in the experimental setup following Lanzi’s sugges-
tions [Lan+05a] except for the maximum population size which is N = 6400.

As for the previous experiment, the CII-extended XCSF outperforms the conven-
tional XCSF in terms of a distinctly steeper descent of the system prediction error at
the beginning of the learning phase during the first 10k learning steps (see Fig. 6.4)
as well as a decreased overall system error over the entire 200k learning steps by
−12.69%. Similar as for the RMS function (f1), a slight but statistically significant
increase in the average magnitude of [P ] (+0.91%) throughout the entire 200k step
experiment (cf. Tab. 6.1) can be observed. Overall, XCSF is not able to reach the
target system error of ε0 = 1% which corroborates the Styblinski-Tang function’s
complexity even for the rather low 3-dimensional case. However, the interpolation-
based covering operator yields beneficial effects which are mainly attributed to the
interpolation of the coefficient vector components wi ∈ ~w used for computing the
classifiers’ predictions. Instead of initializing the coefficients with random numbers
from a predefined range, the already gained experiences of surrounding classifiers in
close niches are taken into account and allow for a more informed initialization. On
that basis, the stochastic gradient-descent RLS update is expected to start from a
more appropriate initial position within the search space spanned by the coefficient
vector cl. ~w.´

n=6-dimensional case Next, the dimensionality has been doubled to n = 6.
XCSF is configured as for the previous experiment, except for the maximum popu-
lation size N = 25600 and the expected initial condition spread r0 = 0.5. This has
been decided in order to allow XCSF to explore the problem space effectively and
prevent it from being trapped in a covering-deletion cycle due to initializing the clas-
sifier population process from the over-specific side during covering (cf. [Sta+12a]).
However, a higher value for r0 usually results in a reduced number of covering op-
erations since less initial classifiers are sufficient to at least cover the entire input
space – effectively reducing KGs of type 1 but in the same breath creating those of
the second type.

As summarized in Table 6.1, XCSF struggles to reach the desired target error level
ε0 = 0.01 and to find a suitable approximation for the test function f2 with a
6-dimensional input domain. This limited approximation capability is mainly at-
tributed to the linear model utilized for the prediction computation. A way to im-
prove on this will be demonstrated in Chapter 9, where the 6-dimensional Styblinski-
Tang function is revisited again and XCSF is evaluated using different polynomial
degrees for the prediction modeling step as well as with a new interpolation-based ap-
proach. For now, however, with the CII interpolation strategy activated, a marginal
but nonetheless statistically significant reduction by −1.43% on average can already
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Figure 6.4.: Learning curves of XCSF-CIC with CII and XCSF on 3D Styblinski-Tang
function f2.

be achieved with regard to the system prediction error. However, the number of nec-
essary classifiers to reach this error level again has marginally increased by +0.48%,
which is still found to be statistically significant. Having a look at the standard
deviation, a slight increase for XCSF with CII can be observed for the system error,
while a strong reduction with regard to the population size has appeared. Figure 6.5
reveals that the activation of the CII strategy still yields benefits during the very
early stages of learning when covering is utilized. As noted before, the choice of a
larger value for r0 causes a reduced number of covering operations which in turn
lessens the positive impacts of CII in this scenario. It also becomes apparent that
the room for improvements through interpolation-based strategies seems to strongly
depend on the principal ability of XCSF to learn a certain problem.

Results for the Highly Multimodal Eggholder Function f3

The Eggholder function [JY13] is well-known as another benchmark function within
the domain of numerical optimization. It is defined only for two dimensions and for
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Figure 6.5.: Learning curves of XCSF-CIC with CII and XCSF on 6D Styblinski-Tang
function f2.

the input domain ranges x, y ∈ [−512, 512] as follows:2

f3(x, y) =− (y + 47) sin
(√√√√∣∣∣∣∣x2 + (y + 47)

∣∣∣∣∣
)

− x sin(
√
|x− (y + 47)|), −512 ≤ x, y ≤ 512

(6.4)

Figure 6.2c illustrates the Eggholder function’s characteristics. As can be seen the
function surface appears to be continuous and highly multimodal with a large num-
ber of local optima. The repeating curvatures in both dimensions render this func-
tion a challenging approximation task for XCSF. XCSF is parameterized as for
previous experiments except: N = 6400, r0 = 0.05 and m0 = 0.02. Due to the
complex shape of function f3, XCSF would not able to receive a sufficient fitness
signal when initially generated classifiers would cover a too large fraction of the
input space. Thus, following the recommendation of Butz et al. [BLW08; SB10a],
r0 and m0 are set to small enough values in order to guarantee a sufficient fitness
pressure toward accurate classifiers. Previously conducted parameter studies con-
firmed that smaller spread values are most suitable. Consequently, smaller initial
condition hyperrectangles are created by covering which cover only small parts of
the variety of valleys and peaks. Since here a linear approximation is used for the
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prediction computation, XCSF needs to divide peaks into several classifiers to cap-
ture the underlying function surface complexity. As for the previous function f2,
also the Eggholder function is revisited in Chapter 9, where an interpolation-based
prediction modeling approach is introduced that is capable of approximating this
challenging function with an accuracy far below the target error level ε0. At this
point, it clearly becomes apparent that hyperparameters are partially dependent
what makes the configuration of XCSF a challenging and time consuming task – a
hurdle that many modern ML approaches bear.

Having a look at the results given in Table 6.1, again the CII strategy turns out to
accelerate the learning speed especially at the beginning (see Fig. 6.6) what results in
a decrease of the system error by −5.97% while showing a similar standard deviation.
Also the evolved number of macroclassifiers decreases non-significantly by −0.003%
which can be considered to be due to chance.
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Figure 6.6.: Learning curves of XCSF-CIC with CII and XCSF on 2D Eggholder (f3).

6.4. Discussion

Overall, it can be summarized that the interpolation-based covering strategy intro-
duced in this chapter yields faster error declines at the early stages of learning when
the covering operator is activated to counter KGs of type 1. For all investigated
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functions with their varying characteristics, XCSF-CIC using CII has obtained sta-
tistically significant reductions of the overall system prediction error over the entire
learning task and averaged over the conducted 30 i.i.d. repetitions. For the simpler
functions f1 and f2 in 3 dimensions, the observed standard deviations have also
decreased in contrast to standard XCSF. This points toward a higher robustness
against different sequences of situations to which XCSF is exposed. For the second
metric investigated, the average number of macroclassifiers present in the rule base
[P ], the use of CII leads to only slight increases, except for function f3. However,
the statistical significance has only been confirmed for the Styblinski-Tang function
instances, where the relative amount of increase always stays below 1% which is
deemed neglectable. Thus, CII can be considered an effective means to counter-
act completely uncovered regions of the input space and, therefore, the knowledge
space, i.e., kg ∈ KG1 ⊂ KS. It turns out to never have considerable detrimental ef-
fects on the learning performance, at least for the problem functions investigated in
this chapter and for the supplemental results on the CBP provided in Appendix C.
Accordingly, this novel interpolation-based covering operator constitutes a candi-
date for default utilization in XCS and related systems such as Supervised Classifier
System (UCS) [BG03] and further derivatives.

The success however is dependent on the number of covering operations conducted
during the learning phase of XCSF. Choosing high values for the initial spread
hyperparameter r0 leads to a quick coverage of the entire input space what prevents
covering to be activated in conventional XCS implementations. An option to increase
the number of covering steps would be to also analyze the formed match sets [M ]
for their average qualities. If this quantity would fall below a predefined threshold
then again covering could be activated in order to benefit from the CII interpolation
strategy.

Further room for improvement is expected when not only the learning parameters
are interpolated as introduced in this chapter, e.g., cl. ~w, cl.F and cl.exp, but also
the conditions themselves. A first approach in this direction would be to inter-
polate the volume of the selected geometric representation of the conditions (e.g.,
hyperrectangles or hyperellipsoids). The interpolated volume could then be used
to initialize an axes-parallel condition with equal stretches in each dimension, effec-
tively forming hypercubes or hyperspheres as a first step. The involved GA would
then be asked to act upon this informed condition initialization in order to form
offspring with more appropriate orientations and stretches. With this extension to
the CII strategy firstly explored in this thesis a reduction of XCS’ sensitivity to the
r0 hyperparameter is deemed to be possible. In a later attempt, also the orientation
of hyperellipsoidal conditions (which is encoded by explicit angles) could be subject
to interpolation to take even more advantage of the interpolation-based covering
approach.

By enabling XCS to transductively infer entire classifiers from neighboring ones it is
also expected that the negative impacts of phenomena such as detrimental forgetting
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sometimes occurring in online learning settings (cf. e.g., [BS12]) can be attenuated
to a certain degree. XCS never removes knowledge, i.e., rules, from more than one
niche at a time when being trapped in a covering-deletion cycle. In the case that
a just deleted rule was the only representative of a particular problem space niche
and a situation occurs that exactly hits this now uncovered region, the CII strategy
should be able to close this knowledge gap much more appropriately than standard
covering.

Such situations also arise in problem domains which are sampled non-uniformly
and are subject to covariate drift. Preliminary experiments already confirmed the
hypothesis that interpolation-based classifier initialization strategies such as CII
and the strategy which is introduced in Chapter 8 are especially valuable in such
situations (cf. e.g., [Mei17]). However, the aim of this thesis is to develop the initial
techniques for interpolation-based classifier systems and to provide first insights on
their benefits on different problems. Therefore, an in-depth investigation of the
discussed aspects for improvements would clearly exceed the scope and is thus left
for future research.

6.5. Related Work

6.5.1. Rule Covering Schemes

Urbanowicz et al. propose to guide the covering of new rules by the incorpora-
tion of expert knowledge in [UGM12a]. By means of using Spatially Uniform RelieF
(SURF) scores as a measure of feature quality, probabilities for further use in the
covering and GA routines are derived using the logistic function. SURF works on
the feature level of all instances in the available training set and estimates feature
importance based on genotypic contradictions (feature manifestation) among the
nearest neighbor instances. On the basis of the derived probabilities, the covering
mechanism is guided in the sense of increasing or decreasing the chance of specifi-
cation or generalization of the condition counterpart for the respective feature. For
the SL scenario investigated in this study, the EK-guided covering operator yields
superior accuracy performance in contrast to standard UCS [BG03].

Another version of covering is presented in the context of OC. To account for safety
requirements in real-world environments despite using non-deterministic learning
algorithms such as XCS, Tomforde [Tom11] and Prothmann [Pro11] introduced a
strongly modified variant of XCS called XCS-O/C (cf. also Sect. 3.1 and Ch. 7). In
this specific variant, the conventional covering routine was replaced by a widening
approach [Pro+08]. In case of an empty match set, instead of creating a novel rule
with more or less random initialization for the condition structure, the nearest neigh-
bor classifier within the population is determined, copied and eventually its condition
is widened to barely match the so far uncovered situation. If the distance to the

171



Chapter 6. Interpolation-Based Covering

closest classifier exceeds a certain threshold, a default action is realized. Anyways,
an offline learning component equipped with an evolution strategy is activated that
creates a novel rule and initializes it with optimized parameters and a reasonably
general condition that conforms to domain specific expert knowledge. A concept
to take this approach a step further toward proactive knowledge construction is
presented in Chapter 10.2.

For endeavors regarding theoretical insights, populations in XCS have also been pro-
posed to be seeded with random rule initially (cf. e.g., [But05a] and the statement
of Kovacs and Bull in [KB07]), instead of incrementally creating new rules when-
ever [M ] is empty. However, this methodology has been quickly replaced with the
standard covering routine as introduced by Wilson in [Wil95] for vanilla XCS and
as recapitulated in this chapter when applied to more practical problems beyond
purely theoretical investigations.

6.5.2. Further approaches to deal with sparse input domains in
LCS

Since the interpolation of the classifiers’ initial parameter values during covering is
intended as a means to deal with KGs due to sparsity in the input domains (or data
imbalances), related works on dealing with this issue have been researched.

Orriols-Puig et al. in [Orr+07] analyze the scalability of XCS with regard to the
number of classifiers needed to appropriately learn imbalanced data. The derived
theoretical models are partially empirically validated, however deviations are also re-
ported when evaluating one of the presented evaluation scenarios. Furthermore, the
theory is derived for binary input spaces, a fact that limits the transferability on real
world data. Nonetheless, the insights provided by this study are definitely important
for the utilization of XCS in problem domains exhibiting data imbalances.

In [OB05] Orriols and Bernadó Mansilla presented an algorithm-level adaptation of
UCS, a derivative of XCS for supervised learning tasks. The authors propose to make
the fitness adaptation class-sensitive to attribute more value to the learning steps
when the minority class is to be classified. They discuss possible limitations when
the training data is noisy or contains misclassified samples what possibly results in a
limited generalization due to classification boundaries that are tailored too strongly
to the training data. Furthermore, as the name of the algorithm suggests, an initial
training set is necessary that is re-sampled certain times what contradicts the online
learning capability OC systems usually require. Another point is that the techniques
are clearly fitted to classification tasks. This is not the case for the CII method which
is also applicable to function approximation tasks without further modification.

The question on the learning capabilities of XCS and UCS on imbalanced data is also
thoroughly investigated and theoretically modeled by Orriols-Puig et al. in [OB08;
Orr+09]. In their work, mainly the issues of rare classes and rare cases are focused
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and alleviated by online adaptation of XCS parameters such as the learning rate β
and the threshold determining the GA activation θGA. This is an entirely comple-
mentary way to deal with this issue. Combinations of the techniques presented in
this thesis and the aforementioned hyperparameter self-adaptation approach consti-
tutes an interesting direction for future research.

6.5.3. Interpolative Fuzzy Rule Inference Systems

Looking in a entirely different direction as LCS research, another rule-base approach
can be found in Fuzzy Rule-based Systems (FRS). These systems make use of fuzzy
rule inference mechanisms based on fuzzy rules encoding antecedents (or premises)
and consequents (or conclusions) which can be understood as the counterparts of
conditions and actions in an LCS. A fuzzy rule base comprises several IF-THEN
rules which evaluate a so-called crisp instance (e.g., a real-valued feature vector)
after a fuzzification via the degree of membership to fuzzy sets which are typically
encoded as linguistic terms. In the same manner, the consequents are decoded fuzzy
and eventually need to be defuzzified to crisp (e.g., nominal) outputs again. More
than one fuzzy rule can be active at a time, which makes a sort of mixing of the
conclusions based on the membership degrees necessary. One the other hand, in
sparse rule bases situations might occur where no fuzzy rule fires and no consequent
can be calculated. This is where interpolative fuzzy reasoning [KH93] comes into
operation. Regions in the universe of discourse which are not covered by any fuzzy
rule are bridged via interpolation. A generalized concept is presented in [BKG04].
Fuzzy rule interpolation has been combined with RL, e.g., in the FRIQ-learning ap-
proach [Vin17]. Here, the consequents constitute the Q-value for certain crisp state
action pairs which are interpolated. This allows for compact knowledge bases pre-
venting overpopulation by unnecessary fuzzy rules. Clearly, the idea is related with
the CII approach as developed in this chapter. New knowledge is obtained by making
use of interpolation techniques applied to adjacent rules in the knowledge base. How-
ever, fuzzy rule interpolation works in the ‘fuzzy world’ whereas LCS directly deal
with the crisp or real-valued data. The methodology of interpolative fuzzy reason-
ing have thus been found to not being directly transferable to interpolation-assisted
LCS. Furthermore, whereas fuzzy rule interpolation mostly aims at interpolating the
consequent (i.e., the action in LCS terminology), the approaches presented in this
thesis can be seen more general. Besides the ASI technique that also interpolates the
action for further use in a PA modification, also the learnable classifier parameters
are subject to interpolation. Nevertheless, adopting the concept of only interpolating
consequents without creating new rules in order to obtain more compact knowledge
bases, and thus increase the comprehensibility of the overall solution for humans, is
an interesting aspect of further research.
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6.6. Chapter Summary

This chapter introduced an interpolation-based approach to covering in XCS. It was
demonstrated how interpolation can be utilized to initialize selected learning pa-
rameters of a newly constructed classifier, i.e., cl.p or cl. ~w, cl.F and cl.exp during
covering. Adjacent classifiers from neighboring niches serve as basis for transduc-
tive knowledge construction. The center points of each classifier served as sampling
point coordinate. The current learning parameter estimates of the classifier consid-
ered for the interpolation were used as function values to be interpolated. Based on
an empirical study targeted at the task of function approximation, the XCSF deriva-
tive was shown to yield superior performance in terms of strongly reduced system
(or approximation) errors at early stages of learning where type-1 KGs are highly
prevalent. This, however, was found coming at the cost of marginally increased av-
erage population sizes – a bearable shortcoming that usually not compensates the
benefits. Current limitations and room for further advances have been discussed
and related work targeting similar aspects was appreciated. Throughout the next
chapter, the so far devised techniques ASI and CII are adopted within the so-called
OTC system. This realistic scenario of self-adaptive traffic light management has
been approached by using a strongly modified version of XCS by previous work in
the context of OC. The modified XCS will therefore serve as testbed for the newly
developed interpolation-based approaches to action selection and covering in the
next chapter.
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Chapter 7.

Application to Self-Adaptive Traffic
Light Control

Autonomously adapting signaling strategies to changing traffic demands in urban
areas have been frequently used as application scenario for SLAS [Kru+15]. The
Organic Traffic Control (OTC) system [Pro11; Tom11] is one of the most prominent
representatives in this domain. OTC implements the MLOC architecture and utilizes
the purposefully adapted XCS-O/C modification as introduced in Chapter 3 for self-
adaptation purposes. In this section, XCS-O/C is extended by the interpolation-
based transductive inference techniques ASI and CII which have been developed
in the preceding Chapters 5 and 6, respectively. The positive impacts in terms
of reduced delay times are demonstrated by using a near-to-reality simulation of
realistic traffic conditions obtained from a census in Hamburg, Germany.

Although a remarkable effort has been spent on developing SLAS that utilize effi-
cient and safety-oriented solutions (cf. e.g., [Pro+11]), another important aspect has
received only sparse research attention so far – How to instantaneously and at the
same time robustly react to knowledge gaps when the offline generation of appro-
priate behavior by means of simulation-based learning (e.g., as proposed in [GR92;
Tom+11a]) exceeds required time constraints?

This chapter starts with a short introduction to basic terminology in the domain
of traffic management. Afterward, the OTC system is described in more detail.
The proposed approach to incorporate purposeful adaptations of ASI and CII to
counteract knowledge gaps in an ad-hoc fashion, constitutes the main focus of this
chapter. The term ad-hoc refers to omitting the need to wait for an optimized
solution received from a sandboxed offline-learning layer on top of the self-adaptive
feedback loop system (the online learning layer). More details in this regard can
be found in Chapter 3. The results of a conducted empirical study based on a
commercial microscopic traffic simulator are then described and further discussed.
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7.1. Traffic terminology

Urban traffic networks usually consist of a large number of intersections where two
or more incoming and outgoing sections cross each other. Consider the case of
a simple four-armed intersection: Traffic participants are able to enter and leave
the intersection from every direction which clearly bears the risk of traffic jams
or accidents due to vehicles or pedestrians passing it simultaneously. Therefore,
traffic light signals indicate the permission of traffic participants to proceed for each
possible turning. Each turning is related to a specific class of traffic participants,
e.g., motorized vehicles or pedestrians. Of course not every traffic light is controlled
separately. Traffic lights that consistently show the same signal form so-called signal
groups. Figure 7.1 depicts four signal groups with their corresponding junctions, each
surrounded by a circle.
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Figure 7.1.: An example of four signal groups with their corresponding signal plans

It also depicts the current signal plan for controlling the junctions. A signal plan
determines the transitions between different phases that control the traffic flows
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into an intersection. This includes the periods of time for phases of green, yellow,
and red signals. Signal phases comprise those periods that show green or else red
signals concurrently. The elapsed time for one entire iteration through a signal
plan is called the cycle time. Its duration is denoted by tC . Each phase has a
predefined activation time, which is called phase duration td. The time slot between
activating two different phases is called interphase. Interphases are important for
clearing purposes, i.e., to allow traffic participants which got stuck in the middle of
a junction to leave it without causing traffic jams or accidents. The length of such
interphases is usually regulated by a public authority. The number of maximally
allowed vehicles on a turning is referred to as saturation flow S and it is measured in
vehicles per hour (vehh ). The currently observable traffic flow at a turning is denoted
by M .

In general, it is differentiated between two types of traffic light controllers (TLC)
whose task is to manage the traffic light signaling.

Fixed-time controllers strictly follow a predefined signal plan that is estimated by
traffic engineers. Once a signal plan is activated, it does not change. Hence, using
fixed-time controllers, the only way to adapt to changing traffic demands is to deploy
an alternative signal plan (mode-switch). Accordingly, sequences of signal plans are
engineered that are supposed to closely match observed traffic demands. Variables
that are considered in this process include the demand throughout the day, as well
as the distinction between work days, weekends and holidays.

Traffic-actuated controllers allow for a different approach to the optimization of sig-
nal plans as a response to changing conditions. Using this type of TLC, signaling
is not based on predefined plans, but rather on logical and temporal constraints
observed and fine-tuned by traffic engineers in advance. Because of temporal re-
strictions that must not be violated, a traffic-actuated controller’s ability to adapt
to unforeseen situations is limited.

In the next section, the OC approach to face the challenge of missing adaptivity in
the context of traffic light control is presented.

7.2. Organic Traffic Control

OTC [Pro+11] has been developed as one of the first OC systems which make
extensive use of XCS-based online learning. The overall goal of OTC is to achieve a
robust and optimized vehicular flow in urban traffic networks.

A majority of actually installed traffic control solutions in urban areas relies on fixed-
time signal plans. OTC is built upon such a state-of-the-art solution and allows for
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Chapter 7. Application to Self-Adaptive Traffic Light Control

a situation-dependent adaptation of the its configuration. More precisely, in self-
adapts the green phases and strives for a continuing self-improvement regarding this
adaptation policy.

Figure 7.2 illustrates the architectural design of OTC and emphasizes the integration
of learning components.
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Figure 7.2.: Architecture of the OTC system, adapted from [Tom12]

As can be seen, the MLOC scheme serves as basis. On the bottom layer, a standard
fixed-time traffic controller is encapsulated as the SuOC and equipped with interfaces
to sense environmental conditions via detectors and manipulate the behavior in
terms of switching the current mode, i.e., the traffic light controller configuration
(TLC). The SuOC’s control parameters are adapted by an online adaptation loop
realized as an O/C instance as introduced in Section 3.1.

Figure 7.3 illustrates how such a TLC is composed by considering an exemplary
three-armed intersection.
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Condition                          Action    p 𝜀𝜀 F
[420,530] [700,800][…]  : TLC05  26 03 .99

Classifier:

1 2
3

4

5
6

Action (TLC):

(Ordering of phases and length of interphases are fixed and not subject to OTC control.)

1
2
3
4
5
6

Phase 1: 35 sec

Phase 2: 15 sec

Phase 3: 30 sec
TLC = (35, 15, 30)

Figure 7.3.: Illustration of an exemplary action (here TLC05) as contained in an XCS-O/C
classifier, adapted from [Ste+16a]

The green durations are specified for situated traffic lights (depicted by numbers 1
to 6 in the example intersection on the right) which are grouped to signalization
phases. Both the phase ordering and phase lengths of so-called interphases (for
clearing purposes, not depicted) are static. The lengths of the green periods are
stored into a vector that encodes the TLC. The set of all possible TLC vectors
constitutes the action space A of the learning task.

The self-adaptive control mechanism is separated into two layers according to the
different tasks performed by the MLOC instance. Layer 1 is responsible for the
online selection of a suitable control action, here a TLC, and for performing the
reinforcement updates of matching classifiers which advocate the eventually selected
TLC.

The observer component monitors the traffic flows arising at the controlled intersec-
tion. It processes the determined flow values into a situation vector representing the
local traffic conditions at time t (denoted by σt). This information is periodically
reported to the right-hand side controller. On that basis, XCS-O/C selects suitable
classifiers from its knowledge or rule base [P ].

New classifiers for so far unseen traffic conditions are not created by covering as in
usual XCS implementations. Rather novel rules are safely created by invoking the
offline learning layer 2. In this second O/C layer, an Evolution Strategy (ES) [BS02]
seeks TLCs for a specified traffic situation as observed from the first layer. The
quality, i.e., fitness, of the computed TLCs is evaluated using either a computa-
tional simulation or else a specialized heuristic. This separation of concerns between
feedback learning and offline rule generation follows Grefenstette’s and Ramsey’s
concept of anytime learning [GR92].
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In the following paragraphs, the operational process of OTC and XCS-O/C is de-
scribed.

Figure 7.4 illustrates online decision and learning process of XCS-O/C.
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Figure 7.4.: Illustration of OTC’s online learning process at layer 1, adapted from [Ste+16a]

This adaptation cycle can be described by an 8-step process as follows:

1. In a first step, the current traffic conditions at the underlying intersection
are perceived using detectors and then processed into an abstracted situation
description vector σt. The situation vector represents the accumulated traffic
flows of each signal group. Accordingly, the dimensionality of σt depends on
the number of signal groups present at the controlled intersection.

2. Next, σt is matched against all classifiers contained in [P ] as usual (Step 2).

3. In the succeeding step, all matching classifiers are collected to form the match
set [M ].

4. The prediction array (PA) is constructed as described in Section 2.4 in Step 4.

5. From the PA, one action is selected based on a greedy selection regime in the
fifth step. In this scenario, a smaller system prediction value PA(a) “wins”,
since the objective is to minimize delays.

6. Afterward, the selected action (here a TLC) alters the signal plan and, thus,
the green duration of the traffic light controller (Step 6).

7. Subsequent to this adaptation process, and after a certain amount of time,
a feedback signal has to be provided in order to complete the learning cycle.
After running through all phases and interphases1 for at least two cycles,

1Interphases denote the periods where the traffic lights show yellow or red.
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the average delay for all traffic participants at the intersection is calculated
according to Equation 7.1 (Step 7).

8. Finally, the payoff prediction estimate cl.p, which in this case estimates the
expected flow-weighted delays, the prediction error cl.ε and the fitness cl.F
for all classifiers from the last action set [A] (not to be confused with [A]t−1
in multi-step tasks) are updated based the feedback signal obtained in the
previous step.

The utility (or reward) function as required in Step 7 is given by the average delay
for the entire intersection as determined by Equation 7.1.

tD =
∑
i(Mi · td,i)∑

iMi
(7.1)

Mi corresponds to the current traffic flow at the i-th turning (or junction) of the
observed intersection. td,i denotes the average waiting time with respect to a single
turning ti which is also measured by the system. This metric is also referred to as
Level of Service (LoS) [Tra00].

Figure 7.5 illustrates the interplay of both O/C learning layers.
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Figure 7.5.: Illustration of OTC’s offline rule-generation process at layer 2, adapted
from [Ste+16a]
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As before, the process can be best described as a 5-step operation sequence:

1. Initially, Layer 1 reactively responds to the observed situation as described
before.

2. In the case of missing knowledge, i.e., if the knowledge base [P ] does not
contain an appropriate rule (type 1 KG), OTC applies a so-called rule widening
operation.

a) It selects the classifier from the population with the smallest Euclidean
distance to the current situation σt (as described in more detail below).

b) Given, that the distance does not exceed a predefined similarity threshold,
the TLC action of the nearest neighbor classifier is applied to the system.

3. Simultaneously, OTC triggers a reactive knowledge construction process for the
current situation by activating Layer 2. It performs a simulation2 initialized
to the currently observed traffic flows to obtain an appropriate TLC for the
next occurrence this particular, or sufficiently similar situation.

4. Based on Equation 7.1, the ES optimizes the green phases for a predefined
number of generations. Therefore, the fitness is determined either on the basis
of simulations or by means of analytical models (heuristics) such as Webster’s
approximation formulas [Web58]. The best configuration of green phases is
then used to generate a new classifier in the last step.

5. Finally, a new classifier is created and added to the knowledge base at Layer 1.

a) The new classifier gets assigned an appropriately selected interval condi-
tion which encompasses the current situation description σt.

b) The evolved signal plan TLC retrieved by the optimization process of
layer 2 serves as its action.

c) The obtained approximated flow-weighted delays are set as its initial re-
ward prediction cl.p.

d) The error estimate cl.ε is initialized with 25 and the fitness cl.F with
0.01.

This newly constructed rule is thus available for productive online adaptation
from now on.

As can be recognized, the OTC system entirly adheres to the extended MLOC
references architecture as introduced in Section 3.1 before.

2In this work, the proprietary traffic simulation tool Aimsun [Bar+05] which features a topo-
logical model of the underlying intersection is used.
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7.3. Approach

In this section, the interpolation-based techniques ASI and CII are adapted to be
used within the XCS-O/C and in the realistic context of self-adaptive traffic light
control. Due to the removal of the standard GA from the modified XCS structure
introduced elsewhere, the Offspring Initialization Integration (OII) technique is not
applicable here. The initialization of the payoff prediction values is also modified in
contrast to standard XCS. As will already outlined above, these values stem from an
alternative evolutionary process that returns already appropriate estimates along-
side. For that reason, also the Interpolated Prediction Integration (IPI) technique
(to be introduced in Ch. 9) is not adopted in this scenario.

As discussed in the preceding paragraphs, the action space within OTC is determined
by a set of multidimensional vectors that represent the possible green phase duration
of the controlled signal groups. This action space is thus not only multi-dimensional,
but also near to continuous. The boundaries of the action space are determined by
legal constraints which prescribe minimum and maximum green phases. With re-
gard to the CII technique, this circumstance opens a possibility that has already
been discussed in Chapter 5 – a direct interpolation of actions instead of a modi-
fied argmax selection based on the cumulative interpolation weights. Therefore, in
addition to the interpolation of a classifier’s quality parameters (such as the fitness
cl.F ), here also the TLC action vectors, i.e., cl.a are interpolated during the cover-
ing process. Since, the CII approach is applied, the second architectural variant of
integrating XCS with the IC is chosen – the tightly integrated XCS-CIC approach
(cf. Sect. 4.3.

For the case of XCS-O/C applied to the OTC scenario, a classifier maps a certain
traffic situation σt, which comprises the current traffic flows in vec

h per turning, to
a traffic light configuration (TLC). Each TLC that can be selected by the adapta-
tion logic of the system (layer 1) is evolutionary optimized by the offline learning
layer 2. For exceptional cases and formerly unknown situations, a human-engineered
standard signal plan serves as fallback solution. This standard configuration, how-
ever, is only used when XCS-O/C cannot respond directly. This can be due to long
completion times of the offline optimization process.

In OTC, a classifier action cl.a is always set to one of the optimized and validated
TLCs as obtained by Layer 2. In the remainder, a distinct action for XCS-O/C is
denoted by TLCk. Again, a TLCk is represented by a vector with j = 1 . . . p values,
each encoding the green duration of one of the p signal group phases. Accordingly,
the duration of the j-th phase of TLCk is given by TLCkj .

In order to construct the sampling points si from the classifiers cli ∈ [P ] the rudi-
mentary approach as introduced in Section 6 is chosen. Accordingly, the center point
of a classifier’s condition is applied as sampling point coordinate, i.e.,

183



Chapter 7. Application to Self-Adaptive Traffic Light Control

~xi = cli.C.~l + (cli.C.~u− cli.C.~l)/2,

where cli.C.~l and cli.C.~u define the n-dimensional vectors encoding the lower and
upper bounds of the traffic flows which are accepted to meet the condition of cli.

For the utilization in OTC, the sampling point function values are selected as follows:
The duration of each signal group phase in cli.a = TLCk and the quality parameters
cli.p, cli.ε and cli.F serve as individual function value fi. Accordingly, all function
values fi together make up a function value vector ~fi. For instance, in case of a
p = 3-phased TLC, ~fi is of the form

~fi = (cli.TLCk1, cli.TLCk2, cli.TLCk3, cli.p, cli.ε, cli.F )T . (7.2)

As introduced for the CIC architecture in this thesis, the population of classifiers
[P ] serves as set of sampling points SP . The weights Wi are calculated as defined
for IDW in Equation 2.8.

With all the necessary ingredients defined, the interpolation-assisted XCS-O/C is
enabled for performing interpolations. For this study, the IDW interpolation tech-
nique as defined in Section 2.8 has been applied since the population size within
OTC is typically set very low such that local-support methods would presumably
reduce to global techniques.

The following paragraphs shed light on how the selected strategies for interpolation
integration, ASI and CII, are adapted for the application to the OTC scenario.

Interpolation-assisted Signal Plan Selection with ASI

In order to support the selection of appropriate signal plans transductively, the ASI
strategy is adopted in the following way. To account for the additional information
obtained from existing knowledge elements in [P ], the system prediction PA(a) is
again increased to influence the action-selection process. Therefore, as a first step
the accumulated weight is calculated as follows:

W acc
TLCk =

∑
i

Wi ∀i : cli.a = TLCk (7.3)

This accumulation implicitly reflects the presence of sampling points in the prox-
imity of the current situation σt which advocate exactly TLCk . To account for
a possible poor quality of the interpolation at initial learning phases, a trust-level
TIC is continually estimated to control the influence of W acc

TLCk, as proposed earlier
in this thesis (cf. Ch. 5). TIC here is defined as the ratio (thus ∈ [0, 1]) of the last
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ten situations at which the interpolated classifier yielded more appropriate signaling
adaptations in terms of a LoS approximation using Webster’s formulas [Web58].

As a next step, the ordinary system prediction PA(a) (for simplicity directly denoted
by PA(TLC) in the following) needs to calculated as usual:

PA(TLCk) =
∑
cli∈[M ]|cli.a=TLCk cli.p · cli.F∑

cli∈[M ]|cli.a=a cli.F
(7.4)

Based on the ordinarily calculated system prediction values, ASI can act by modi-
fying the PA:

PA′(TLCk) = PA(TLCk) · (1 + (W acc
TLCk · TIC)) (7.5)

Since negative delays are not possible and IDW is utilized, the application of a
max operator in Equation 7.5 in order to satisfy the utility bounds is not necessary
here.

Interpolation-based Covering for Unknown Situations using CII

As briefly outlined above, covering in XCS-O/C selects the closest non-matching
classifier from [P ], creates a copy of its condition, and widens the copy to barely
match the current input. This widening approach generalizes the subspace that
is covered by the new classifier. However, this generalization is done in a rather
arbitrary manner, i.e., without being controlled via the accuracy criterion as done
by the GA in standard XCS. In consequence, the covered classifier indeed matches
more possible inputs, but likely at the expense of its accuracy.3

The condition cl.C of a CII interpolated classifier is initialized analogously to those
created by Layer 2. Interval predicates encoding a lower (li) and upper (ui) bound
for each dimension i = 1 . . . n of a certain traffic condition σt = (σ1 · · ·σn) at time
t are created. (~l, ~u) is a vector notation for the lower and upper bounds. More
formally, the intervals are calculated as follows:

(li, ui) =
(
min[σi − τ, 0],min[σi + τ, κi]

)
, ∀i = 1 . . . n, (7.6)

Here, τ denotes a tolerance range (or allowed spread) for the actually measured flow
σi. κi denotes the maximum capacity of all turnings that belong to the i-th signal
group. Thus, as typical for XCS, a classifier generalizes over similar situations –
in this case traffic conditions observed at the controlled intersection. Still, the GA

3Activation of the standard steady-state niche GA would alleviate this limitation, however, the
designers of OTC decided to reduce the degree of XCS’s non-determinism for safety considerations.
For the sake of comparability of results, this design choice has been kept for the experiments reported
here.
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does not optimize the input space coverage further as usual for XCS. However, the
condition creation process introduced above can be deemed to directly incorporate
expert knowledge in terms of a priori defined reasonable interval ranges.

As the last step to bring the CII strategy to XCS-O/C, the learning parameters
of the newly constructed classifier are interpolated. The function values ~fi that
comprise the desired classifier parameters to be interpolated are chosen as defined
by Equation 7.2 above.

The actual interpolation is then performed by building the sum of the component-
wise multiplications of the weightsWi with all ~fi over all considered sampling points
si ∈ SP . Accordingly, the interpolation is calculated as follows:4

~f(~xq) =
∑|[P ]|
i=1 Wi · ~fi∑|[P ]|
i=1 Wi

(7.7)

To further account for the current level of interpolation quality, a probabilistic ap-
proach for deciding between a just interpolated and the standard signal plan is ap-
plied. Whenever the condition U [0, 1] ≤ TIC is satisfied, the interpolated classifier
is selected. Otherwise, the human-engineered standard signal plan for the observed
intersection comes into operation. This allows for a legitimate traffic signaling even
at very initial stages of the system’s runtime. Since the trust-level increases with
system experience, the probability of selecting the interpolated classifier grows as
well.

7.4. Evaluation

This section reports on the results obtained from an empirical case study where
near-to-reality simulations of the application scenario have been applied.

7.4.1. Experimental Setup

An intersection situated at Hamburg, Germany5 (also denoted as K3) serves as
evaluation scenario. Figure 7.6 depicts the topology of this intersection.

4W.l.o.g., the weights Wi have been normalized to the range [0, 1]. Thus, the denominator of
Equation 7.7 can be neglected since the values of all weights sum up to 1.

5The K3 intersection is defined by the crossing of the following streets: Borsteler Chaussee,
Alsterkrugchaussee, Deelböge, and Rosenbrook.
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Figure 7.6.: Topology of a realistic intersection situated in Hamburg, Germany (K3) which
is used to evaluate XCS-O/C with ASI and CII within the OTC system

The illustration shows the topological mapping of this intersection modeled with
the Aimsun microscopic traffic simulator [Bar+05]. The Aimsun simulation model
is configured with realistic and actually applied signal plans for this intersection
(provided by the local authorities in charge). Finally, traffic data, which has been
made available from a census performed by the local authorities on May 4, 2004, is
used to simulate realistic traffic flows. The experiment covers the main part of the
day, i.e., it is conducted for a simulation period from 5.30 am to 7 pm. This particular
intersection was subject of investigation in more extensive studies of OTC [Pro11;
Tom12]- It constitutes a more complex scenario compared to artificial intersection
models, such as regular Manhattan-style typologies.

As already mentioned, the simulations are carried out by using the Aimsun simula-
tor. Three approaches are subject of comparison:

1. The reference solution, i.e., the fixed-time control strategy actually installed
in reality

2. An instance of the existing OTC system as introduced before, i.e., utilizing
XCS-O/C without interpolation

3. The novel interpolation-assisted OTC system based on XCS-O/C with ASI
and CII integrated

The last configuration is also denoted by XCS-O/C-CIC in the following. The
performance of the three considered solutions is assessed in terms of typical traffic
metrics which have a local scope (i.e., consider an individual intersection):

1. The Level of Service (LoS) as defined Equation 7.1
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2. The averaged waiting time over all simulated vehicles

The presented experimental results are given as the averages over 10 i.i.d. runs for
each solution. Additionally, in order to judge for statistical significance regarding
obtained differences in performance, a paired t-test with significance level α = 0.05
is performed.

XCS-O/C is configured as follows: N = 200, α = 0.1, β = 0.2, ε0 = 2, ν = 5, δ =
0.1, θdel = 20, εini = 25, Fini = 0.01, τ = 120. Interval-based conditions using the
OBR are utilized. The GA and respective mechanisms are set inactive. Payoff
predictions are initialized based on the fitness value for the winning solution as
obtained by the optimization process situated at Layer 2. XCS-O/C starts with an
empty knowledge base, i.e., tabula rasa. This facilitates the occurrence of knowledge
gaps especially at early stages of learning and simulates the occurrence of entirely
unforeseen traffic conditions during the systems runtime.

The ES at Layer 2 is applied with the following configuration: 64 generations are
evolved. The Webster approximation formula [Web58] is used as fitness evaluation
function. In each generation λ = 24 children are created, where the best µ = 16 indi-
viduals are potential parental candidates for the next generation. The probabilities
for mutation and crossover are set to 1. Crossover is performed as a discrete recom-
bination for each allele, i.e., the offspring’s final value is randomly chosen from one
of the two parents (uniform crossover). Mutation adds noise to each allele following
a Gaussian distribution N(0;σ), where the standard deviation σ itself is included
in an individual’s chromosome and accordingly directly affected by the evolutionary
process (self-adaptation). The initial value of σ for new individuals is set to σ = 0.2.
This values are adopted from [Pro11], where a thorough sensitivity analysis has been
conducted.

7.4.2. Results

The approach is evaluated by means of two metrics, the LoS value and a similar
time-delay metric that reflects the network-wide delay with respect to the considered
intersection (in sec

km). The results of all variants are presented in Table 7.1.

Figure 7.7a depicts the average LoS values along with their standard deviations over
a simulation horizon from 5.30 am until 7.00 pm.

Since the performance metrics of the human-engineered solution are already out-
performed by the standard OTC approach without interpolation-assistance, in the
following the focus is set on the comparison between the two OTC based solutions.
The corresponding performance graphs are depicted in Figure 7.7b. As becomes
apparent when having a look at the performance plots of the second experiment,
the interpolation-extended XCS-O/C is able to slightly depress the steeply rising
peak in the morning. More precisely, this effect can be observed starting from 6
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am, reaching its maximum at 8 am, and recovering to a normal level again until 10
am.

More importantly, the recovery time required until a normal level of delay is reached
can be noticeably reduced. Similar effects can be observed whenever the detected
traffic conditions rise quickly, e.g., from 11 am until 11.30 am and even to a higher
extend when compared to the human-optimized signal plan. Since the population
is empty at the beginning of the system’s runtime, the traffic conditions arising at
this time can be interpreted as knowledge gaps of type 1 (or entirely unforeseen
situations). Just before the quick rise of the average delay as a consequence of an
increasing traffic demand, a few classifiers are generated offline by means of the
evolutionary component situated at Layer 2. Since this operation requires a certain
amount of time, covering, and thus CII, is performed in order to deal with unforeseen
situations.

The distinct improvements in terms of reduced average delay are attributed to the
ability of the interpolation-assisted XCS-O/C-CIC to immediately make use of the
early optimized signal plans in terms of a transductive on-demand inference of novel
classifiers.

Compared to standard XCS-O/C, the interpolation-extended variant decreases the
average delay by 2.17 sec

km (15.15 sec
km in comparison to the reference signal plan)

which underpins the potential benefits more quantitatively. Table 7.1 summarizes
the results of the experiments and further confirms the statistical significance. Re-
sults presented in bold indicate statistically significant (p < 0.05) reductions in
comparison to both XCS-O/C and the human-optimized solution.

Table 7.1.: Summary of the experimental results on the case study intersection K3

LoS (sec/veh) Avg. Delay (sec/km)
Mean (SD min|ø|max) Mean (SD min|ø|max)

XCS-O/C-CIC 14.60 (0.26|1.86|5.85) 131.90 (2.60|17.27|62.74)
XCS-O/C 14.79 (0.35|1.90|5.87) 134.07 (3.08|18.03|55.42)
Human 16.47 (0.37|2.06|6.42) 147.05 (4.00|18.95|64.52)

Figure 7.8 depicts the progress of the second performance metric, i.e., the average
network-wide delay in s

km for the investigated intersection for all three considered
solutions. Again a superiority of the interpolation-assisted solution with regard to
robustness (i.e., recovery time) after unexpected and so far never seen situations
becomes apparent.
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Figure 7.8.: Average delay performance of the OTC system compared to a human-
engineered signal plan on the case study intersection K3

7.5. Discussion

Experimental results on a realistic case study intersection K3 that is actually imple-
mented in Hamburg, Germany indicated that the integration of the ASI and CII tech-
niques as developed in this thesis prove successfully applicable. The interpolation-
assisted XCS-O/C-CIC yields superior performance in contrast to standard OTC as
well as to a reference solution engineered by human experts. Especially in highly
demanding conditions such as morning rush-hours the positive effects became ap-
parent. This insight is relevant, since peak loads pose the most severe challenges
to adaptive traffic control system. However, the focus of this experiment was set
on the reaction of the involved online learning system, XCS-O/C, to unanticipated
and unforeseen situations. Such situations constitute knowledge gaps within the
system’s knowledge base. Therefore, the system was assumed to learn tabula rasa,
i.e., without an already initialized knowledge base. The only expert knowledge that
has been assumed is the presence of a standard signal plan as developed by traffic
engineers. This serves as fallback solution in situations where OTC can not yield an
appropriate reaction – regardless of with or without interpolation assistance.

The objective of the reported study is to validate whether the benefits revealed for
the transductive knowledge inferring techniques ASI and CII, which as of yet have
been validated on artificial problem domains, also apply to realistic applications.
This can be confirmed at least for the present case study of traffic flow optimization
at an urban intersection situated at Hamburg, Germany.
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Chapter 7. Application to Self-Adaptive Traffic Light Control

The capabilities of the interpolation-based approaches have even taken a step fur-
ther in this chapter. The CII strategy was extended to allow for dealing with large
(or even continuous) actions spaces by means of interpolating between continuous
actions (vector of green phase durations) as advocated by existing classifiers in the
population. This constitutes a promising contribution to the field of RL in continu-
ous domains and will be subject to more thorough investigations in the future.

7.6. Chapter Summary

In this chapter, it was demonstrated how the interpolation-based action-selection
strategy called ASI and the interpolation-based covering scheme introduced as CII
can be adopted to one of the most thoroughly investigated OC applications thus
far – the OTC system. First, basic terms of traffic management have been briefly
introduced along with the necessary details of the OTC system. In order to fit
the modified structure of the specifically designed XCS version called XCS-O/C,
a couple of adaptations have been described. Experimental results on a realistic
intersection situated at Hamburg, Germany, which was simulated by means of the
Aimsun microscopic traffic simulator, have been reported. The results further cor-
roborate the benefits of using interpolation-assisted XCS for the sake of runtime
learning in real-world scenarios. Due to the purposeful modifications to XCS-O/C
necessary to account for safety requirements in such a safety-critical scenario where
humans are immediately involved, only the novel approaches ASI and CII can be
plausibly adopted in the OTC system. In the next two chapters, however, further
strategies to incorporate interpolation in the XCS are going to be presented.
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Chapter 8.

Interpolation-Based Offspring
Initialization

In this chapter, another step toward an interpolation-assisted classifier system is
taken. Having extended the action-selection mechanism in Chapter 5 as well as the
covering routine in Chapter 6, the involved steady-state niche GA is now the subject
of investigation. One of the major shortcomings of the interpolation-based covering
operator is that typically it is only performed at early stages of learning until the
population [P ] entirely covers the underlying input space. After this phase, covering
usually occurs only sporadically. Possible reasons are e.g., detrimental forgetting or
the occurrence of rare or unforeseen situations caused by non-uniform input distribu-
tions or, even worse, covariate drift. Accordingly, another part of XCS’s algorithmic
structure is to be found which acts throughout the entire learning process. The
involved steady-state GA constitutes exactly such a component. It is activated pe-
riodically depending on the configured activation threshold hyperparameter θGA.
In order to extend the GA to also take advantage of transductive inference from
neighboring classifiers by means of interpolation, the novel Offspring Initialization
Integration (OII) strategy is introduced in this chapter.

Therefore, it will be recapitulated how novel classifiers produced by the GA are
created and initialized in conventional XCS implementations first. The novel OII
strategy for extending XCS’s GA by means interpolation is then introduced. As
for the previously developed CII technique, the initialization values for the learning
parameters of newly created classifiers serve as subjects for interpolation. The bene-
fits of interpolation-based offspring initialization will again be validated on the basis
of empirical experiments. The same benchmark problems as for the CII approach
are considered. Additionally, the combination of CII and OII will be subject of
discussion. The results and their statistical significance in comparison with the con-
ventional approach is assessed subsequently. A discussion on current limitations and
potential extensions complements the empirical results. At the end of this chapter,
a dedicated section on related work is presented.
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Chapter 8. Interpolation-Based Offspring Initialization

8.1. Basic Offspring Creation

XCSF applies a niche GA on [M ] whenever the mean time since the last GA in-
vocation surpasses a predefined threshold θGA. Therefore, each classifier maintains
another book-keeping parameter cl.ts which serves as timestamp when the last GA
was applied on the match set to which this particular classifier belongs. If the GA
is activated, two parental classifiers from [M ] are chosen by means of tournament
selection as described by Butz et al. in [BSG03]. For the standard offspring creation,
the selected parents cl1par and cl2par are copied to construct two offspring classifiers
cl1off and cl2off . Afterward, crossover is applied to the children by chance with rather
high probability χ (typically χ = 0.8). Crossover can be performed uniformly, i.e.,
each allele is switched between the two children with equal probability, or via so-
called n-point variants. For the latter, n crossing points are selected randomly, and
the resulting parts in between are switched among the offspring rules. Eventually,
crossover alters the geometrical condition structure in order to explore more suitable
partitions within the current environmental niche. Mutation modifies the conditions
probabilistically as described in [Wil02]. Whereas in conventional XCS for binary in-
puts the mutation applied exerts pressure toward more specific conditions [But05a],
for real-valued XCS variants, this pressure does not apply anymore. Thus, in stan-
dard XCSR and XCSF specialization purely occurs by chance. The only exception is
when mutation alters the lower (upper) condition bounds to exceed the input space
bounds. In this case, clipping at the boundaries implicitly leads to more specific
classifiers, i.e., conditions with smaller volumes.

In XCS(F)’s standard GA, values for the parameters cl.ε and cl.F are set to be
the mean of both parents. Subsequently, these means are discounted by predefined
factors εreduction and Freduction (see Appendix B for an overview of all hyperparame-
ters). Regarding standard XCS, the prediction scalar cl.p is set to the average of both
parents. In contrast, for XCSF or any XCS that utilized computed predictions, the
weight vectors are directly inherited by the parents according to [Wil02; Lan+05a].
Assuming a true supervised learning task as done in [SB12; Sta14] for instance, the
offset weight w0 could be set to the actual function value y = f(~x), given that it is
passed to XCSF along with the input vector ~x. However, as previously stated, for
the stated learning problem as defined in this thesis, this assumption does not hold.
Thus, it is expected that the actual value is received after the actual prediction step
in form of the immediate reward rimm = y. The bookkeeping parameters cl.exp and
cl.num are set to 0 and 1, respectively, following the conventional approach.

After this typical application of the genetic operators selection, crossover and mu-
tation and the initialization and adjustment of the offsprings’ learning parameters,
a GA subsumption attempt is performed before the novel rules are finally inserted
into the population [P ] (cf. Sect. 2.4 for more details).
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8.2. Interpolation-Based Offspring Initialization

The actual interpolation of the offspring classifiers’ parameter vectors ~foff works
analogously to the CII procedure, as Equation 8.1 suggests.

~foff =
∑|[A]|
i=1 Wi · ~fi∑|[A]|
i=1 Wi

, with cli ∈ [A] (8.1)

A major difference between OII and CII is that for OII the set of considered sampling
points is defined to be the action set [A]1, which assures to interpolate within the en-
vironmental niche of interest. Furthermore, for the OII strategy, the interpolation of
the weight vectors ~wi is omitted, since a range of preliminary experiments indicated
inferior performance. This can be attributed to the fact that the fittest rules within
a certain action set [A] have gained their higher fitness estimates through being
accurate in their predictions. Thus, their prediction scalars cl.p or their coefficient
vectors cl. ~w should already be most appropriate. Including the coefficient vectors
of further less fit rules in the same niche during interpolation is thus deemed to be
detrimental at this place. Accordingly, the function value vector for the interpolation
step as used in Equation 8.1 is made up of only two components:

~foff =
(
cloff .F
cloff .exp

)

A third difference is the selection of the query point ~xq. In contrast to CII, not
the current situation vector σt = ~xt, but the center point of the individual offspring
classifier cloff .C.~c is chosen. With that, the parent whose center point is closer to
the offspring’s center in terms of the Euclidean distance gains a higher interpolation
weight and, thus, a stronger influence regarding the initialization of its child. The
created two offspring classifiers are then initialized with the interpolated values for
their fitness cloff .F and experience cloff .exp. Subsequently, the fitness correction is
applied by multiplying the Freduction factor to the interpolated fitness values. This
is done to account for the fact that the offsprings numerosity values are initialized
to 1 what impacts the receivable fitness share during reinforcement (see Sect. 8.4 for
more details).

As usual, after the parameter initialization and adjustments of the created offspring,
subsumption is performed to check whether one of the immediate parents or any
classifier from the environmental niche [A] is a valid subsumer (cf. Sect. 2.4 for
details).

Figure 8.1 is intended to convey the intuition of the OII technique.

1In the case of XCSF, the action set [A] is equivalent to the match set [M ].
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Figure 8.1.: Intuition of the interpolation-based offspring initialization technique OII

The schematic illustrates an exemplary niche of an arbitrary problem space currently
covered by four classifiers (depicted in different colors). The dashed yellow rectangle
shows an offspring’s condition shape after the application of the genetic operators
crossover and mutation. The star symbol indicates the current situation σt based
on which the action set is formed. The small squares in the center of each classifier
correspond to the center points of the conditions, which make up the sampling point
coordinates for the interpolation. The yellow square in the middle of the offspring
classifier clcov serves as the query point ~xq.

The main idea of OII is to take advantage of the knowledge present in the direct
proximity, i.e., the same problem space niche, when novel rules are created by means
of the involved GA. This can be interpreted as the introduction of some sort of
influence from the “social surrounding” on young classifiers. More precisely, at this
primal stage of the OII strategy, newly created classifiers are supposed to benefit
from niche-wide experience cl.exp and fitness values cl.F (which is by definition a
niche-relative estimate of a rule’s accuracy) of all cl ∈ [A].

In terms of the introduced notion of knowledge gaps, the OII strategy is intended
to alleviate type-2 KGs. Since the GA acts on the action set in case of standard
XCS(R) and on the match set in case of XCSF, type-1 KGs are by definition ex-
cluded. Nevertheless, the application of the GA bears the risk to produce KGs
of type 2 due to inappropriate recombinations of probabilistically selected parental
classifiers by chance. Interpolating the experience and fitness estimates between the
values of classifiers sharing the same niche is hypothesized to enable the deletion
mechanism to act more against such poor quality offspring rules. As is described
more detailed in the corresponding Section 2.4, the rule deletion mechanism favors
classifiers which (1) exceed a predefined experience threshold θdel, and, (2) show
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smaller microfitness values cl.F/cl.num than a predefined fraction δ of the popula-
tion’s average (micro)fitness F̄ = ∑

cl∈[P ] cl.F/
∑
cl∈[P ]cl.num.

If an offspring classifier is now initialized by means of OII, exactly its experience and
fitness values are more strongly influenced by closer rules in a common niche. In
the case that the genetic operators produced an inappropriate condition structure
cloff .C, its center point is expected to lie closer to other inappropriate rules (i.e.,
type-2 KGs). Therefore, the fitness value is modified to reflect the insufficent qual-
ity more strongly in contrast to only consider the immediate parents’ high fitness
estimates. This pushes weak offspring rules toward the calculation of higher deletion
votes. This effect is even more amplified by not simply initializing the offspring ex-
perience to 0 as usual, but instead assigning a value reflecting the distance-weighted
niche average. In consequence, due to a more effective removal of GA-created type-2
KGs, the effective size of [P ] in terms of actually stored classifiers is expected to
shrink.

8.3. Evaluation

In order to validate the effect of the OII strategy to be utilized in the IC-extended
XCSF-CIC, the same procedure as for the previously introduced CII technique is
pursued. The same three functions to be approximated by XCSF serve as benchmark
for the evaluation.

Since OII is also intended to eradicate the shortcoming of CII which only applies at
early stages of the learning process, the combination of both is additionally investi-
gated in this chapter in order to fathom the potential synergistic benefits.

For the sake of brevity, again only the results of the study focusing on XCSF are
presented in this chapter. Supplemental results obtained from integrating OII and
the combination with CII in XCSR applied to the CBP scenario can be found in Ap-
pendix C and together with more detailed discussions are provided in [Ste+17a].

8.3.1. Experimental Setup

XCSF is configured exactly identical as before in Chapter 6. Again, MSM inter-
polation is used throughout the experiments. In the case that the action set [A]
contains less than the desired number of sampling points Nw = 19 for the local
interpolation performed by MSM, the global IDW technique automatically serves
as fallback solution by simply taking all available sampling points, i.e., classifier in
[A], into consideration for interpolation. 30 i.i.d. repetitions with 200k learning
steps each have been conducted. The outcomes of paired t-tests which have been
conducted in order to assess the statistical significance of the results are indicated in
Table 8.1. To make sure that t-tests are appropriate, the experimental results have

197
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been positively evaluated to follow a normal distribution using the Shaprio-Wilk
test and visual inspection of QQ-plots. As before, the approximation results on
three different functions of varying complexity are reported and further discussed in
the next paragraphs. The test functions comprise: (1) the n = 6-dimensional con-
vex RMS-like function f1, (2) the multimodal Styblinski-Tang function f2 in n = 3
and n = 6 dimensions, as well as, (3) the complex n = 2-dimensional Eggholder
function f3 with its high degree of curvature. For a graphical representation of the
investigated test functions confer Figure 6.2.

8.3.2. Results

Table 8.1 summarizes the results obtained from the conducted empirical studies.
* (**) indicates statistically (highly) significant differences regarding the reported
metrics compared to standard XCSF. This means that for the p-values of paired
two-sided t-tests the assertion p < α = 0.05 (0.01) evaluates true. In case that only
one requirement for using parametric t-tests is violated, a non-parametric Wilcoxon
signed-rank test is used instead in order to double-check the correctness of the null-
hypothesis rejection. Bold values indicate the highest significant improvements com-
pared to standard XCSF. The arrows, ↑ or ↓, indicate increased or decreased values,
respectively. Plots illustrating the prediction error curves as well as the population
size development are presented for both configurations, i.e., OII and OII+CII for
each benchmark function. The points show the aggregated values over 5000 learning
steps each. The corresponding bars indicate the measured standard deviations of
each point over the 30 i.i.d. experiment repetitions.

Results on the Simple RMS-like Function f1

On the relatively easy to approximate function f1, XCSF-CIC using the OII strat-
egy only reveals positive effects on the average number of macroclassifiers in the
population, but negative influences regarding the achieved system error. In compar-
ison to standard XCSF, the interpolation-based offspring initialization reduces the
population size by 9.87% on average. This observation underpins the hypothesized
impact of OII on the population development, i.e., that type-2 KGs created by the
GA can be more effectively identified and consequently removed from [P ]. However,
the reduced average population size comes at the cost of a slightly higher (0.9%)
overall system error on average. This small difference has still been found to be sta-
tistically significant, but only with a significance level of α = 0.05. As Figure 8.2a
reveals, the OII scheme impacts the learning progress over the entire 200k learning
steps.

Since it was intended to complement the revealed positive effects of the interpolation-
based covering operator with the CII strategy, the combination of both has also been
investigated.
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Table 8.1.: Summary of results for XCSF-CIC using the OII strategy individually as well
as in combination with CII on the selected test functions f1−3

f1 RMS-like 6D System Error Macro Classifiers
(target error ε0 = 1) mean±1SD mean±1SD
XCSF-CIC w/ OII .6750±.014 ↑* 1511.06±12.28 ↓**
XCSF-CIC w/ OII+CII .5387±.005 ↓** 1547.73±10.92 ↓**
XCSF .6690±.013 1676.59±16.95
f2 Styblinski-Tang 3D System Error Macro Classifiers

XCSF-CIC w/ OII .0269±2.5 · 10−4 ↑** 2659.01±18.96 ↓**
XCSF-CIC w/ OII+CII .0223±1.9 · 10−4 ↓** 2766.32±17.06 ↓**
XCSF .0260±2.8 · 10−4 3250.96±16.75
f2 Styblinski-Tang 6D System Error Macro Classifiers

XCSF-CIC w/ OII .0696±6.9 · 10−4 ↓** 14765.20±97.07 ↓**
XCSF-CIC w/ OII+CII .0683±5.8 · 10−4 ↓** 14805.32±77.77 ↓**
XCSF .0699±5.4 · 10−4 18201.20±125.49
f3 Eggholder 2D System Error Macro Classifiers

XCSF-CIC w/ OII .0540±4.5 · 10−4 ↓** 2518.66±12.24 ↓**
XCSF-CIC w/ OII+CII .0491±6.3 · 10−4 ↓** 2540.76±12.10 ↓**
XCSF .0553±5.7 · 10−4 2955.01±9.37
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Figure 8.2b depicts the learning curves of XCSF with and without both interpolation
integration strategies activated. As can be recognized, a smaller population size can
still be maintained while additionally a smaller overall system error is achieved. In
numbers, this means that XCSF-CIC with both interpolation strategies activated
can reduce the overall system error by 19.48% on average. The average population
size is again decreased by 7.69%. Thus, the combination of OII and CII allows to
retain the positive effects of both methods. That is: (1) A significantly reduced
system error at early learning stages as well as over the entire experiment for CII.
(2) A clearly reduced population size as achieved by OII.

Considering also the observed standard deviations, it can be noted that the com-
bination obtains the improved results with lower variability and, therefore, more
stably.

Results on the Curved Styblinski-Tang Function f2

Analogous positive effects as obtained for the RMS-like function f1 also can be
observed for the application of XCSF-CIC on the Styblinksi-Tang function f2. Again
XCSF-CIC with both OII and CII active produces smaller approximation errors as
well as decreased population sizes on average. This holds true for the n = 3 and the
more complex n = 6 dimensional case.

n=3-dimensional case Using OII in isolation yields an by 3.46% increased ap-
proximation error. The difference has been found to be statistically significant. The
upside, however, is the drastically reduced population size by ≈ 591 macroclassifiers.
This evaluates to a relative reduction of 18.21%.

Combined with CII, the overall approximation error can eventually be reduced by
14.23% on average and with a decreased variance. Although slightly worse than for
OII alone, the combination with CII still allows an effective population size reduction
by 14.91%.

n=6-dimensional case Even for the 6-dimensional instance of the non-convex
and multimodal function f2, the so far made observations are observable. This
time, the OII strategy alone in fact improves the approximation accuracy which is
reflected by a marginal but still statistically significant decrease in the system error
by 0.43% on average. The average population size can be decreased by ≈ 3436
macroclassifiers, i.e. by 18.88%.

XCSF-CIC with OII and CII involved further improves the obtained results. The
approximation error drops by 2.3% and the average number of macroclassifiers in
the rule base can be observed to decrease by 18.66% and with a significantly lower
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Figure 8.2.: Learning curves of XCSF-CIC applying OII + CII and XCSF on 6D RMS-like
function (f1)
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Figure 8.3.: Learning curves of XCSF-CIC applying OII + CII and XCSF on 3D Styblinski-
Tang function (f2)
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standard deviation. All reported improvements revealed to be statistically highly
significant.

Results on the Highly Multimodal Eggholder Function f3

For the Eggholder function f3, whose main complexity lies in the high degree of
curvature, again improvements in all figures of merit can be noted when having a
closer look to Figures 8.5a and 8.5b plotting the learning curves.

The system prediction error decreases by 2.35% for OII alone and by 11.21% for the
combined OII+CII case. Regarding the average population size, distinct reductions
have been observed again. 14.77% (≈ 437 classifiers) when OII is used individually,
and 14.02% (≈ 415 classifiers) when combined with the CII strategy. As before,
all reported improvements have been confirmed to be highly statistically significant
(i.e., calculated p-values are all < α = 0.01).
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8.4. Discussion

The reported results reveal that the introduced interpolation-based offspring initial-
ization of the classifier parameters cl.F and cl.exp results in significant reductions of
the average number of classifiers within the rule base [P ]. This observation supports
the hypothesis as stated at the beginning of this chapter. Namely, that by taking
the experience and fitness estimates of surrounding classifiers within a common envi-
ronmental niche into account, the deletion mechanism is enabled to more effectively
remove poor quality offspring rules just created by the GA. This in turn results
in an effective reduction of rules physically stored in [P ]. Such a reduction of the
overall population size is clearly desirable for efficiency reasons. Since XCS needs to
scan any rule for matching the current situation vector σt, the computational effort
scales linearly with the current population size. Furthermore, reducing the amount
of transient rules introduced by the GA yields more room for innovative rules to let
their numerosities increase. Eventually this leads to higher fitness shares received
during the reinforcement steps.

However, for the test functions f1 and the 3-dimensional f2, slightly increased mea-
sures for the approximation error have been observed. Having a look at Figure 8.2a
again, it can be noted that the main differences between the error curves of XCSF
(red) and XCSF-CIC (blue) occur during the first 50k learning steps. Afterward,
both curves converge. XCSF is able to very quickly reach the targeted error level of
ε0 = 0.01 (normalized). Whenever this threshold is undershot, the evolutionary pres-
sure toward accuracy hardly applies anymore. One possible reason for the slightly
increased approximation errors might be that this circumstance hinders the interpo-
lation from calculating proper initial values for the offspring classifiers. This might
stall the learning progress instead of accelerating it. For the same observations made
with f2, however, this rationale does not apply and so far no explanations have been
found. However, a more detailed investigation of this aspect would require a close
inspection of a number of classifiers to be identified by hand what involves numerous
experiments of carefully selected representative configurations. The corresponding
effort would have gone beyond the scope of this thesis and is thus postponed to
future research endeavors in this regard.

In spite of this missing rationale, one solution to this particular limitation has already
been presented in this chapter. By means of a combination of the previously intro-
duced CII strategy and the just developed OII scheme, the deficiency of increasing
approximation errors can be completely eradicated for the function approximation
scenarios considered in this chapter. Therefore, at this particular state of the OII
strategy, it is recommended to always use it in combination with the interpolation-
based covering scheme CII. With this combined utilization the observable slight
increases regarding the approximation errors can be prevented but it can still be
profited from the significantly reduced population sizes.
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The applied mindset of restricting the genetic material which is passed to the off-
spring to that of the direct parents is absolutely legitimate from the genetics per-
spective. However, it is yet hypothesized that the incorporation of more than the
genetic material provided by the immediate parents yields beneficial effects on the
learning efficiency. This is exactly what future work on the OII strategy is supposed
to investigate more deeply. By means of interpolating the initial values for the
offspring classifiers’ parameters on the basis of all classifiers residing in the same en-
vironmental niche, the social surrounding of the newly created offspring is taken into
account. Instead of incorporating the entire niche, another means to increase the
gene pool is imaginable. In order to extend the set of “high-fitness” sampling points
for the interpolation of the offsprings’ initial parameter values, a higher number of
selection tournaments during GA application could be conducted.

Another limitation of the current state of the OII can be identified in the way the
sampling points are extracted from the classifiers in [A]. As of yet, neither the
generality (i.e., the volumes) of the classifiers is taken into account, nor is their
relative quality. The latter aspect can be straightforwardly approached by simply
conducting a quality filter similar as the one defined in Chapter 5. However, the
quality threshold should not be set to high in order to guarantee a sufficient num-
ber of sampling points for the interpolation process. One way to self-adapt such a
threshold would be to consider the current average over the action set size estimates
cl.as of all classifiers in the population. The same indicator could be used to ap-
proach a self-adaptive configuration of the Nw hyperparameter, which determines
how many sampling points are considered during a local interpolation. The for-
merly mentioned limitation that the actual generality of the classifiers is not taken
into account yet, is expected to bear larger potential for improvements, though.
Overgeneralized classifiers might not reflect the situation of the actually relevant
problem space niche properly, since they can be expected to take part in further
action sets. Therefore, the information of the condition volumes can be immediately
used to design a purposeful filter. Furthermore, the impact of overgeneral classifiers
within the interpolation should be decreased for application with OII, since more
general classifiers are likely to be part of more action sets and, thus, get their ex-
periences increased more frequently. This might bias the interpolations toward too
high experience initializations for newly created offspring rules.

Further room for improving the novel interpolation-based offspring initialization
scheme realized by the OII strategy is expected by enlarging the vector of classi-
fier parameters subject to interpolation: As already outlined in Section 6.4, the
rationale for interpolation of the cloff .C condition volumes (or generalities) and the
geometric orientations also applies here. However, in order to not entirely ignore
the condition optimization result obtained in the course of evolution over previous
generations, a third offspring classifier with fully interpolated learning parameters
(including the condition structure) should be introduced along with the ordinary
created offspring.
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Furthermore, having a look at the formula for the initialization of an offspring’s
fitness value

cl1off .F = cl2off .F =
(cl1par.F + cl2par.F )

2 · Freduction (8.2)

and having in mind that the offsprings’ numerosity values are initialized with 1,
whereas the parents usually are macroclassifiers having a value num > 1, another
point for deeper investigation appears. Recalling the fitness update formula as intro-
duced in Section 2.4, it can be seen that higher numerosities lead to higher accuracy
(and consequently fitness) shares. By not correcting the fitness inherited from the
parents by the offspring’s numerosities, an overestimate or underestimate regard-
ing the fitness values might appear. This needs then to be corrected by the RL
component of XCS over time, which lowers the learning and sample efficiency. The
reduction discount Freduction is typically set to 0.1 and changed rarely. A value of
0.1 sort of implies a fitness correction for an assumed parent’s average numerosity of
10. Regardless of which value is set for Freduction, since it is a hyperparameter set at
design time, the aforementioned correction is static over the entire learning process.
The eradication of this issue can be accomplished by the OII interpolation strategy
by also interpolating cloff .num. Furthermore, the assumption of equal influence of
both parents for the initial values would be relaxed by determining the weights using
distance-weighted interpolation technique as introduced in Chapter 2.

The objective of this thesis is to devise first principles of interpolation-based classifier
systems by fathoming the fundamental potentials of integrating interpolation into
various sites of XCS’s algorithmic structure. Thus, a holistic investigation of all
remaining aspects and current limitations unfortunately goes beyond the scope of
this work and thus needs to be left for future work.

As a last thought regarding the just introduced interpolation-based offspring ini-
tialization strategy, OII can also be understood as follows: By means of involving
learning parameters in the genetic recombination process, the involved steady-state
niche GA can be regarded as being Lamarckian. That is, not only the “immutable”
genetic material (i.e., condition cl.C and the action cl.a) of the parent classifiers is
passed to their created offspring, but also “traits” that are learned over time – in
this case the learning parameters cl.p or cl. ~w, cl.ε and cl.F . To a certain extent the
GA conventionally applied in XCS already shows this characteristic. However, with
the newly introduced OII strategy, this behavior is more strongly enforced.
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8.5. Related Work

8.5.1. Offspring Initialization Schemes

In [KB07] Kovacs and Bull face the question of how to initialize and delete classifiers
most appropriately. They reviewed the most common and established initialization
and corresponding discounting schemes as well as deletion vote mechanisms found
in the literature at that time. Three initialization schemes, three deletion vote
calculations and further three fitness discounting approaches have been evaluated
on the well-known 6-multiplexer function (a binary problem). Results demonstrate
that the most established methods as used in reference implementations such as
Butz’s XCSJava (described algorithmically in [BW02]) appear superior in reaching
a higher percentage of the optimal population denoted %[O] as well as yielding
smaller population sizes. In this thesis, the best performing techniques are adopted
as described in Chapter 2.4. Both the OII and the CII methodologies are related
in the sense of modifying the initialization of classifiers during rule discovery. It
substantiates the need for further research in this direction, since this is the only
(short) paper which could be found in the conducted literature review and which is
directly concerned with this topic.

8.5.2. Extensions to XCS’s Rule Discovery

In their work reported in [SB12; Sta14], Stalph and Butz introduced the concept
of guided evolution. Based on the covariance matrix adaptation method, a novel
mutation operator is presented that aims at purposefully guiding the mutations of
classifier conditions to yield the most suitable structures. Therefore, each classifier
is extended to maintain a set of past input instances it has matched. On the basis of
an accuracy-like quality-weighted covariance matrix, the guided mutation operator
is able to identify dimensions with lower, or else higher impact. In consequence the
amount of mutation for the respective condition part can be decreased or increased.
Since it is deemed a heuristic, it is interleaved with standard mutation while both
having an equal chance. Presented results show that guided evolution leads to a
highly increased learning speed and facilitates XCSF to approximate more complex
and higher-dimensional functions. In contrast to the modified offspring initializa-
tion technique introduced in this chapter, guided evolution works on each offspring
classifier individually. Also, only the condition structure is affected, whereas OII
interpolates the parts of the offspring classifiers’ parameters.

In [FPS10] Fredivianus et al. proposed a novel rule discovery mechanism called rule
combining. The GA is removed from XCS and the initial generalization probabil-
ity (P# in the binary case, and r0 in the real-valued case [FKS12]) is set to zero,
resulting in fully specified classifiers after covering. The rule combination routine
is activated periodically and exerts strong generalization pressure to the system. It
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can also be interpreted as compaction technique, since more specific classifiers that
satisfy certain criteria are deleted in favor of a newly constructed general one. The
initial values for the combined classifiers’ parameters cl.F and cl.ε are set according
to equations that are “derived experimentally” [FPS10]. These equations attempt
to approximate a value similar as when updated iteratively by the reinforcement
component. The payoff prediction values are initialized by the numerosity-weighted
average of the combined or else subsumed classifiers. Experience cl.exp and nu-
merosity cl.num are accumulated over all classifiers subsumed by the combined one.
This approach has been evaluated on the multiplexer problem for both binary and
real-valued inputs. It is found to yield superior performance in terms of smaller
population size and increased accuracy. Since this modified discovery stresses no
specification to the rule base anymore, it is expected to work inferior to the conven-
tional XCS (with a steady-state niche GA activated) on multi-modal problems with
a high degree of heterogeneity. These are problem spaces where a certain number of
highly specified rules are needed to capture the underlying complexity.

The expert knowledge-guided discovery mechanisms of Urbanowicz et al. [UGM12a]
as already mentioned in a related works section before also represent a methodology
for guiding the mutation operator in a nearly analogous manner as for covering. Fur-
thermore, the same authors apply attribute feedback to the crossover and mutation
operators as described in [UGM12b; UM15; Urb+18]. To sum up, both extensions
bias the probabilities of mutation and recombination and thus only influence the
conditions. The initialization of the other offspring classifiers’ parameters is not
directly affected, which constitutes the main distinguishing aspect to the work pre-
sented here.

8.6. Chapter Summary

As the second mechanism of XCS’s discovery component, the steady-state niche GA
was subject of enhancement in this chapter. Akin to the previously presented CII
strategy, here newly created offspring classifiers were initialized by means of interpo-
lation. It was shown how surrounding classifiers that share a common environmental
niche can be taken into consideration for setting the initial values of cl.F and cl.exp
of GA-produced offspring rules. The application at this particular algorithmic part
of XCS is intended to eradicate the shortcoming of the interpolation-based cov-
ering operation which mainly acts at early stages of learning. Results obtained
from an empirical study revealed that this methodology leads to strongly decreased
average population sizes compared to standard XCSF, but at the cost of slightly
increased system errors. The latter negative result has been overcome by combining
the strengths of CII and OII, what eventually yields superior performance regard-
ing both figures of merit. Persisting limitations and further ideas to enhance this
first attempt of an interpolation-based GA in XCS were discussed as directions for
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future work. Related attempts to improve the rule discovery mechanisms of XCS
were outlined at the end of this chapter. As of yet, interpolation has been integrated
into XCS’s performance component and its rule discovery mechanisms. In the next
chapter, a last methodology that integrates interpolation into the reward prediction
calculation step is presented. This technique eventually directly affects (1) the re-
inforcement of a classifier’s prediction parameter cl.p (or prediction model cl.p(~x)),
and, (2) the way of mixing classifiers to obtain the collective system prediction.
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Chapter 9.

Interpolation-Based Prediction
Modeling

As a last strategy to counter knowledge gaps and therefore increase both the robust-
ness and learning efficiency of SLAS, the interpolation-based prediction computation
is introduced in this chapter. Each rule is extended to maintain a small window of
already seen experiences, i.e., situation vectors with their corresponding rewards.
These sort of experience memories are then used to transductively infer a prediction
for new situations. Thus, the actual inference or prediction step of XCS, here XCSF,
is replaced by a transductive, i.e., interpolation-based means. Additionally, the con-
ventional way of classifier mixing is subject to modifications. Instead of letting
each matching classifier calculate its prediction vote individually and calculating a
fitness-weighted sum of all predictions afterwards, with the new Interpolated Predic-
tion Integration (IPI) to be introduced in this chapter the union of all experiences
collected by the matching rules is used as basis for the interpolation.

Before diving into the details of the novel IPI strategy, some thoughts will be spent
on the traditional way of prediction modeling in XCS(F). The interpolation-based
prediction modeling approach is then introduced and complemented with a short
estimation of its complexity. Subsequently, the obtained results from conducted
empirical studies on a variety of test functions to be approximated by XCSF are
reported and assessed in terms of statistical significance. A summarizing discussion
of the gained insights, current limitations and aspects of further research follows. As
done in the previous parts of this work, the chapter is closed with the appreciation
of related work on prediction modeling in XCSF.

9.1. Basic Prediction Modeling

Traditionally, XCS was introduced to let each classifier encode a scalar value for its
reward prediction, denoted cl.p in the literature. This implies a constant prediction
over the entire subspace of X determined by a classifier’s condition cl.C. The re-
sult is a piece-wise constant approximation that resembles a sort of non-continuous
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step function. Apparently, this means of “modeling” a classifier’s prediction is not
appropriate to reconstruct a smooth continuous function surface.

For this reason, Wilson extended his XCS classifier system, so far mainly applied
to sequential control problems and classification tasks, toward XCSF in [Wil02]. He
approached this problem by computing predictions that are functional depending
on the current input vector ~x. Thus, the prediction scalar cl.p was replaced by a
coefficient vector ~w ∈ Rn+1 which comprises n weights, one for each dimension, as
well as one bias (or offset) term denoted w0 (one could imagine this offset weight as
the former prediction scalar cl.p). As a first attempt, a linear model was applied by
calculating the linear combination of the input ~x and the current weight vector ~w.
Accordingly, a single classifier’s prediction is modeled by a linear approximation as
given by:

cl.p(~x) = w0 +
n∑
i=1

wixi (9.1)

The weight vectors for each classifier cl. ~w are subject to stochastic optimization
in the course of learning. Initially, a modified Widrow-Hoff delta rule has been
applied [Wil02]. This was later revised by Lanzi et al. in [Lan+06] who investigated
various algorithms to find the most appropriate coefficients online – among them
Kalman filter, gain adaptation and RLS. Lanzi et al. also proposed to apply a batch
gradient descent algorithm, i.e., linear least squares in [Lan+05a]. In summary, each
classifier needs to solve its own model fitting task based solely on the data it has
matched so far.

Figure 9.1 illustrates the idea of having piece-wise constant and piece-wise linear
predictions used to locally model an exemplary one-dimensional function f(x).
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Figure 9.1.: A simplified illustration regarding the approximation capabilities of XCSF uti-
lizing traditional scalar prediction (left) and linear model prediction (right)
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As can be noted, using computed predictions bears mainly two advantages: (1) The
complexity of the underlying function can be captured more accurately. (2) To yield
such accurate predictions, classifier conditions evolve toward the most appropriate
size in the course of learning.

Of course, more complex models than a first degree polynomial can be used within
a single classifier. Lanzi et al. in [Lan+05b] proposed a way to easily extend the
abovementioned means of a linear model to quadratic, cubic or any polynomial
models of degree k. For example, in order to obtain a quadratic model (bivariate
polynomial) of a n = 2-dimensional input vector ~x ∈ R2, the input needs to be
extended as follows:

~x′ = (1, x1, x2, x
2
1, x

2
2, x1x2, x

2
1x2, x1x

2
2, x

2
1x

2
2) (9.2)

As can be seen the input space is actually extended by adding the polynomial terms.
For each of these terms one weight needs to be learned by XCS in an online fashion.
An advantage, however, is that the approximation is linear in its weights what
allows the application of powerful optimization techniques. Other ways are outlined
in [Lan+05b] but are not considered in this thesis due to their inherent drawbacks.

What should be noted at this point is the following: The selection of the polynomial
degree to be applied for approximating a certain problem function at hand needs to
be felt at the design time. Thus, by selecting the degree k, an a priori determined
model bias is injected into the system. With the IPI approach as will be introduced
next, one major objective is to free XCS from this sort of model bias.

9.2. Interpolation-Based Prediction Modeling

The novel interpolation-based approach to classifier prediction computation is based
on the IC as introduced in Chapter 4. The main focus of modifications is set on the
structure of individual classifiers as well as the means how a collective decision is
felt (classifier mixing). Thus, each classifier needs access to the IC which is provided
via the well-defined MLI. It is again focused on XCSF for function approximation to
allow for a straight-forward experimental setup in terms of a variety of benchmark
functions exhibiting idiosyncratic characteristics. In the remainder, this IC-extended
XCSF is denoted XCSF-IC.

In XCSF-IC classifiers are extended to collect a limited number of previously en-
countered situations (or experiences) and store them in a sort of experience memory.
This memory is then used as sampling point set on which the actual interpolation
operations are based. Thus, each classifier is now enabled to access the global IC
and pass its specific sampling point set over the MLI together with the current sit-
uation σt = ~xt. This is necessary to retain the competition among classifiers in the
same match set (or action set in the case of standard XCSR). More precisely, each
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classifier individually interpolates an its prediction cl.p(~x) which is then compared
to the actual function value f(~x) received as immediate reward rimm (illustrated by
the arrow from the RBF interpolant pointing to the match set in Fig. 9.2a). Based
on the derived prediction accuracy from a classifier’s prediction error estimate cl.ε,
the niche-relative fitness value cl.F can be adjusted in the course of learning. The in-
volved GA picks up these fitness estimates during parent selection which eventually
fuels the condition shape optimization over the generations as usual. Assuming a
limited experience memory, a beneficial side effect occurs – the classifier system self-
controls the density of sampling points collected within individual niches. In niches
which capture a very complex part of the underlying problem function surface (e.g.,
high curvature or ruggedness) the generality of covering classifiers usually appears
to be smaller. Accordingly, the density of sampling points in that particular regions
of the problem space increases. This effect could be even reinforced if the classifiers
would be endowed with the capability to self-adaptively choose the memory size (cf.
Sect. 9.4 for further discussion).

Although each classifier is now enabled to compute its individual prediction by
means of using the interpolation facilities of the IC, another modification to the
conventional XCSF is introduced in the following. Figure 9.2a depicts a schematic
illustration of XCSF adapted to incorporate interpolation-based system predictions
by means of using the IC. It focuses on the interplay between the IC and XCSF’s
conventional data flow for building an overall system prediction, i.e., a collective
decision of all classifiers matching the current situation (classifier mixing).
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(a) Schematic illustration of XCSF-IC using the IC
to incorporate interpolation-based system pre-
dictions.

Ԧ𝑥𝑡

(b) Classifier mixing by forming the union
(dotted circle) of experiences (dots) from
matching classifiers (ellipses). Image
adapted from [Wik]

Figure 9.2.: XCSF-IC working principle. Left: Algorithmic structure and data flow. Right:
Intuition of novel classifier mixing scheme.

As the above figure shows, the utilization of the IC takes place after the formation
of the match set. First, the union of all matching classifiers’ experience memories
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is formed (see Fig. 9.2b). Next, this collective sampling point set SP is sent to
the adjustment component of the IC. It is responsible for detecting and removing
duplicates which can be introduced during offspring generation as described below.
In noisy domains where the reward is non-deterministic, a preprocessing step is
needed to account for that. Duplicated sampling points are simply averaged in
order to center the noisy function values. Duplicates are identified by comparing
their double values in a range of a very small ε. The filtered sampling point set SP ′
is then sent to the interpolant which is depicted as an RBF interpolation method.
Throughout this chapter it is focused on RBF interpolation using the parameter free
thin plate spline basis function. A comprehensive preliminary study revealed that
RBF interpolation strongly outperforms alternative methods including MSM, IDW,
NaNe and NeNe for the task of function approximation [Men17]. The interpolation
result F̃ (~xt), with the current input vector as query point (~xq = ~xt = σt) and
based on SP ′ (collective system prediction), eventually is used as the system output.
Subsequently, and conforming to the system model described in Section 3.2, the
actual function value f(~xt) is delivered as immediate reward rimm to XCSF. The
reinforcement operations are applied as usual.

In summary, the implementation of this interpolation-based classifier prediction
technique essentially requires the following steps:

1. Add a limited set of sampling points cl.SP := {si}, where si := (~xt, rtimm)
as experience memory to each classifier cl and continually collect samples si
during the classifier’s lifetime. Thus, the experiences constitute situation-
reward tuples of the observed input vectors ~xt and the actual function value
f(~xt) received as immediate reward rtimm at time t.

2. Each time a classifier clj matches the current situation ~xt, use interpolation to
compute the individual classifier’s prediction f̃(~xt) = clj .p(~xt) by passing its
set of sampling points clj .SP via the MLI to the IC (repeat for all clj ∈ [M ]).

3. The passed sampling point sets SP have to be adjusted to not contain dupli-
cated sampling points. This is managed by the IC’s adjustment component.
Its purpose for this particular IPI strategy is to find and average duplicated
sampling points. For the results reported in this chapter, this task was ac-
complished by calculating an equally-weighted mean of the different function
values (e.g., due to noisy functions).

4. Build the union of all sampling point sets SPj from clj ∈ [M ], i.e.,⋃
j clj .SP , and pass it to the IC for further processing.

5. Use the interpolation result calculated on the basis of the union, denoted F̃ (~xt),
as system prediction for the current situation (or query point) σt = ~xt.
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6. Alternatively: Combine all interpolated classifier predictions clj .p(~xt),∀cl ∈
[M ] by means of the conventional fitness-weighted sum calculation approach
to classifier mixing.

For the results reported in this chapter, the former approach (step 4 and 5) to classi-
fier mixing has been utilized. An insight obtained during preliminary experiments is
that this approach yields superior performance compared to the conventional mixing
procedure by means of calculating a prediction array. For the latter one, it could
nonetheless be found that in comparison to the conventional model fitting approach,
using linear, quadratic and cubic polynomials, the IPI approach using step 6 still
yields improved performance [Men17]. In [DB07], Drugowitsch and Barry already
pointed out that the conventional fitness-based mixing approach can be suboptimal
in certain cases. This insight lead to the decision to further simplify the actual
system prediction formation. The outlined IPI mixing strategy allows to fully omit
the prediction array and, thus, an actual mixing based on weights to be determined
carefully on the fly. Nevertheless, the niche-relative accuracy calculation for each
classifier in [M ] is deliberately retained. As already discussed before, it implements
a fitness sharing mechanism into XCS, which was found to be beneficial in various
studies (cf. e.g., [BGL07]).

The advantage of XCSF and XCSF-IC in particular is that it provides a unique tan-
dem of global system prediction formation and niche-relative competition between
accurately predicting local models (i.e., classifiers). The involved evolutionary dis-
covery component in form of a niche GA is supposed to support the evolution of
optimized problem subspaces (i.e., environmental niches) that model the correspond-
ing parts of the underlying problem most accurately. In XCSF-IC, each classifier
attempts to achieve a best-possible interpolation of the input subspace cl.C for which
it is responsible. Therefore, a near-optimal generality (or else specificity) of the con-
dition is subject to optimization. The condition size in turn immediately affects the
resulting density of the stored sampling points. This self-adaptive density aspect is
expected to improve the capability of capturing the underlying function complexity
through individual rules, as will be discussed in more detail below.

9.2.1. Experience Memory Management

In order to take into account the online learning nature of XCSF, it should be kept
in mind that the underlying functions may change over time. This might happen
either due to changing input data distributions (virtual/covariate drift). Or, even
more challenging, through real concept drifts affecting the actual surface of the un-
derlying function to be approximated. In terms of the introduced KG notion in the
context of SLAS, unforeseen or rarely occurring situations might appear that should
be reflected in the experience memories to further take advantage of them in the
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future. Therefore, the experience memory of matching classifiers should be continu-
ally kept up-to-date in the course of runtime. The size of each classifier’s sampling
point set cl.SP is limited to a predefined number Nsp of experiences (or sampling
points si), i.e., |SP | ≤ Nsp must hold. Recalling the inherent generalization mech-
anism of XCS, one noticeable aspect can be leveraged for the IPI strategy: Due to
the self-optimization of the condition structures through the GA, XCSF manages
the density wit regard to the sampling points collected in SP by itself. Each clas-
sifier condition cl.C represents a certain subspace of the input space X. Thus, the
entire problem space is partitioned into a collective of partially overlapping local
models (i.e., classifiers). The employed GA seeks near optimal condition structures
by maintaining a maximum level of accuracy at the same time. This results in a
global optimization of the problem space partitioning, essentially following the fun-
damental divide-and-conquer principle. Imagining a function with a high degree
of curvature in certain parts of its domain, XCSF will automatically assign more
resources, i.e., classifiers, to this environmental niche since more specialized models
are needed to capture the complexity. Thus, in order to achieve high predictive
accuracy, the classifiers have to shrink to a certain level (i.e., they will evolve to be
more specialized). But still each of these classifiers shares the same sampling point
restriction |cl.SP | ≤ Nsp with its more general counterparts. Accordingly, the den-
sity of collected sampling points in that region increases, which in turn is assumed
to result in more accurate interpolations. On the other hand, it is hypothesized that
the population-wide average generality of classifiers will increase due to the inher-
ent ability (and claimed requirement) of interpolation techniques to more strictly
reconstruct complex parts of the underlying target function. Figure 9.3 illustrates
this assumption on a simplified one-dimensional target function as before.

𝑓(𝑥)

𝑥𝑐𝑙1

Linear approximation

𝑐𝑙2 𝑐𝑙3

𝑓(𝑥)

𝑥𝑐𝑙1

Linear approximation

Interpolation

𝑐𝑙1. 𝑤
(0)

𝑐𝑙2. 𝑤
(0)

𝑐𝑙3. 𝑤
(0)

Figure 9.3.: Simplified illustration of the expected impact of IPI on the classifier generality.
Left: Linear model approximation needs three specific classifiers. Right: IPI
captures the same part of the function but with a single more general classifier
and with less deviation from the ground truth compared to a single linear
model.
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Chapter 9. Interpolation-Based Prediction Modeling

As a result of both hypothesized effects, their combination is deemed to support the
generalization/specialization capability of XCS in general and XCSF in particular.
Section 9.3 will shed light on this.

Regarding the aspect of experience memory adjustment, two approaches are out-
lined: (1) The utilization of a FIFO queue. (2) A more sophisticated strategy which
purposefully works toward a uniform distribution of collected experiences over the
specific subspace a classifier covers. Although not investigated further so far, the
latter concept can be realized based on an approximate entropy measure relying
on nearest neighbors. For the scope of this work, however, the former approach of
using a FIFO queue is realized. This resembles the approach proposed by Lanzi
et al. in [Lan+05b; Lan+05a] who investigated the use of non-incremental linear
least squares approach for determining optimal model coefficients ~w. Further in-
vestigations of alternative sampling point replacement strategies are therefore left
for future work. Each time a classifier clj matches the current input ~xt, it creates
a new sampling point si as soon as the reward (the actual function value f(~xt))
is received. Afterward, the classifier clj simply replaces the oldest si ∈ clj .SP
with the just created experience (~xt, f(~xt)). A novel data structure has been im-
plemented that combines the advantages of both a queue and a set. That is, this
data structure guarantees that sampling points can not be added twice – a neces-
sary requirement to guarantee solvability of the RBF interpolation’s linear equation
system (cf. Sect. 2.3). Additionally, the efficient access operations of a FIFO queue
are retained.

As the weight vectors or the simple prediction scalar are part of the genetic ma-
terial which is passed to offspring rules, also the collected experiences should not
get lost during the recombination process. As usual, the GA selects two parental
classifiers, recombines them, and mutates the offspring rules individually by chance.
When using the IPI strategy, the offspring rules inherit the sampling points from
their parents as follows: Each cloff firstly fills up its memory with the sampling
points si ∈ clpar.SP from its immediate parent (technically, the parent from which
it was deeply copied). But only those which fall inside the mutated offspring classi-
fier’s condition (input subspace). The remaining capacity is subsequently filled with
matching sampling points from the other parent.

9.2.2. Complexity Considerations

Using IPI requires additional memory: A set of Nsp sampling points comprising d+1
scalar values each, i.e., the d-dimensional vector plus the scalar target function value
f(~x) (assuming one-dimensional outputs). These experience sets are incrementally
built up for each of the at maximum N classifiers in [P ]. However, if it is possible
for the generalization pressure to apply, the actual number of physically stored
classifiers cl ∈ [P ] is typically far below N . Accordingly, the proposed interpolation-
based prediction approach demands additional memory of O(Nsp(d + 1)N) scalar
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9.2. Interpolation-Based Prediction Modeling

Figure 9.4.: Theoretical comparison of the memory requirements per classifier (y-axis) as
a function of the dimensionality d (x-axis) of IPI with Nsp = 50 (blue line) vs.
conventional linear model fitting using RLS (red line)

values in the worst case. In contrast, RLS only needs an d × d gain matrix plus a
vector of d+1 coefficients for each classifier in the rule base. This results in a worst-
case space complexity of O((d2 + d + 1)N).1 Thus, for IPI the memory demand
increases linearly in the number of dimensions d and the size of the experience
memory Nsp. The conventional model fitting approach using RLS as coefficient
optimization technique scales quadratic in the number of dimension d only. Please
note that the maximum number of classifiers N was considered to be equal for both
versions and is thus handled as a constant in this theoretical comparison. Figure 9.4
illustrates this relationship. As can be noted, as soon as the number of dimensions d
surpasses the number of experiences Nsp to be stored per classifier (in the depicted
case 50), the memory requirements of the linear model fitting approach using RLS
overtakes the newly introduced IPI strategy. Whenever a higher-order polynomial
approximation is used, the input vector ~x needs to be preprocessed as discussed
before. This, in turn, also demands for more coefficients which also affects the gain
matrix as stored for RLS. Accordingly, the intersection point appears earlier. Despite
the theoretically increasing memory demand for IPI up to a dimensionality d < Nsp,
the additional memory actually required turns out to be reasonably small in practice
as the following example suggests: Considering an approximation problem with an
d = 6 dimensional input space, a typical population size of N = 6400, and storage of
the last Nsp = 50 samples in each classifier. Using C++ programming language and
the double data type for storing the scalars, eventually less than 50 · (6 + 1) · 6400 · 8
Bytes (≈ 17 MB in the worst case) of additional memory is needed. In view of
today’s microcomputers this should not constitute an issue in the vast majority of
cases.

1Here d denotes the dimensionality of the input space X.
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In terms of time complexity, for RLS O(n2) demanding matrix multiplications con-
stitute the most time consuming task according to [Lan+05a]. In contrast, for the
IPI strategy utilizing the computationally expensive RBF technique O(n3) demand-
ing matrix inversions are required. However, there exist more efficient ways to solve
the linear system of equations having the size n× n which only require O(n2) com-
putation time. For instance, Skala in [Ska13] proposes an incremental approach
that remembers previous inverse matrices and only replaces the necessary rows and
columns. This approach is perfectly utilizable for the IPI technique, since at each
timestep at most one experience is replaced by a newer one.

9.3. Evaluation

In order to confirm the hypothesized effects of the novel IPI strategy, empirical
experiments have been conducted. As before, the regression problem of online func-
tion approximation has been chosen for validation purposes. Therefore, XCSF-IC
is compared against standard XCSF on four carefully selected benchmark functions
to be approximated. After revealing the general potential of IPI, results obtained
from an additional experiment to fathom its sustainability under noisy conditions
are reported.

9.3.1. Experimental Setup

The results presented in this chapter have been obtained by following the subse-
quent experimental setup: Each individual experiment has been conducted with
ten i.i.d. repetitions, using differently seeded random generators each. The max-
imum number of learning problems is 200k. Longer evaluations did not yield any
noticeable learning progress thereafter. Each learning problem corresponds to a
uniformly sampled vector ~x of the function’s domain which is sent to XCSF for
prediction of the function value f(~x). Following the suggestions from the literature,
especially [Sta14] and [Sta+12b], XCSF is configured as follows: N = 6400, α =
1, β = 0.1, δ = 0.1, ε0 = 0.01, ν = 5, θGA = 50, θsub = 20, θdel = 20, µ = 0.04, χ =
1.0, Fini = 0.01, εini = 0.0, Freduction = 0.1, εreduction = 1.0. The general explicit hy-
perellipsoidal representation [BLW08] for condition encoding with self-determined
mutation size as well as tournament selection within the GA and a tournament size
of τ = 0.4 is applied. GA subsumption is active. The allowable ranges for random
selection of the initial spread values (configured by setting r0 with an additional
minimum value) for newly created hyperellipsoidal conditions are set as indicated
for each experiment individually in Table 9.1.

The results table presents the mean values over the experiment repetitions accom-
panied with their standard deviation (±1SD). The novel IPI approach is compared
against the, to the best of the author’s knowledge, so far mostly investigated n-th
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Figure 9.5.: Surface plots of the considered test functions to be approximated for input
space dimensionality d = 2

degree polynomial approximation for classifier prediction combined with the RLS
optimization technique. More precisely, XCSF-IC with RBF interpolation using the
thin plate spline basis function, as well as standard XCSF with linear, quadratic and
cubic approximation (i.e., n ∈ {1, 2, 3}) are subject to evaluation. To judge on the
statistical significance, the non-parametric Friedman’s Rank Sum test is conducted to
decide whether there are significant differences among the several methods. A non-
parametric hypothesis test is selected since the requirements for the application of
parametric Analysis of Variance (ANOVA) (normality and homoscedasticity) could
not be confirmed. If the Friedman test indicates Null-Hypothesis rejection, i.e.,
significant differences among the methods, pairwise Wilcoxon Signed Rank post-hoc
tests are performed in order to determine significance groups showing which methods
actually differ significantly from others. The significance level is set to α = 0.05.

The following figures of merit are observed: (1) The mean absolute error (MAE),
also denoted system (prediction) error in the LCS context, between the predicted
and the actual function value. (2) The average number of macroclassifiers in [P ].
(3) The population-wide average of classifier generality, i.e., the average volume of
the hyper-ellipsoids.

Curves depicted in the following plots show the aggregated values of the aforemen-
tioned figures of merit. Each point shows an aggregation over the last 8k received
learning problems (situations). Black point characters always indicate the learning
progress of XCSF-IC regarding all figures of merit. For the sake of readability, error
bars indicating the standard deviations at each point are omitted. The correspond-
ing tables 9.1 and 9.2 summarize the mean values of the conducted repetitions over
the entire experiment length of 200k learning steps as well as the corresponding
standard deviations (±1SD).

The potential of the IPI approach is examined on the following four test functions2
depicted in Figure 9.5. Each function has already been used for XCSF assessment
in the literature:

2W.l.o.g., the domains of all test functions are normalized to the range ∀i xi,∈ [0, 1]. The
co-domains of f1 and f4 are rescaled to y ∈ [−1, 1].
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f1(x1, x2) = −(x2 + 47) sin
(√√√√∣∣∣∣∣x1

2 + (x2 + 47)
∣∣∣∣∣
)
− (9.3)

x1 sin(
√
|x1 − (x2 + 47)|), −512 ≤ x1, x2 ≤ 512

f2(x1, x2) = sin(4π(x1 + sin(πx2))), 0 ≤ x1, x2 ≤ 1 (9.4)

f3(~x) = max{exp(−10a2), exp(−50b2), 1.25 exp(−5(a2 + b2))}, (9.5)

a = 1
bn/2c

bn/2c∑
i=1

xi, b = 1
dn/2e

n∑
i=bn/2c+1

xi, 1 ≤ xi ≤ 1

f4(~x) =
∑n
i=1 x

4
i − 16x2

i + 5xi
2 ,−5 ≤ xi ≤ 5 (9.6)

As previously observed in Chapter 6, the first benchmark called Eggholder func-
tion f1 has been found to be challenging for approximation with XCSF due to its
high curvature and non-linearity in both dimensions. The Sine-in-Sine function f2
shares equal characteristics with f1 and has been used as test function for XCSF
assessment in [SB10a; Sta+12b]. However, in contrast to f1 it shows a higher regu-
larity in terms of repeating structures in both dimensions. Such regularities can be
exploited by the GA in XCSF. The so-called Crossed-Ridge function f3 has its com-
plexity originating from a mix of linear and non-linear subspaces forming crossing
ridges with a centered single peak as illustrated in Figure 9.5c. It has been subject
to investigations regarding XCSF’s approximation capability and competitiveness
against Locally Weighted Projection Regression (LWPR) in [Sta+12b]. In this chap-
ter, the generalized version for n > 2 dimensions (here n = 3) as proposed by Stalph
in [Sta14] is used. Finally, again the Styblinski-Tang function f4 in its 6-dimensional
form is taken into consideration. It already turned out to be a really challenging
approximation task for XCSF in the previous Chapters 6 and 8. As Figure 9.5d
suggests, its 2-dimensional version appears rather simple at the mid-area of its do-
main. In contrast, at the edges, the function values increase steeply which seems to
let XCSF struggle with finding appropriate approximations. In higher dimensions,
the severity of this characteristic is assumed to drastically increase.
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9.3.2. Results

Table 9.1 summarizes the results for all investigated scenarios and provides insights
regarding the statistical significance of the obtained differences between the inves-
tigated XCSF configurations. All entries present the means and their standard
deviations (±1SD) over the entire learning task of 200k learning problems. Bold
entries indicate statistically significant superior performance over any other config-
uration. After each value, the corresponding significance group (A–D) determined
by the performed post-hoc tests, with A indicating best performance, is given. Fur-
thermore, the p-values obtained from the conducted Friedman tests are presented
for each scenario and each figure of merit.

2-dimensional Eggholder function f1

As can be noted by analyzing Figure 9.6, the RBF-based XCSF-IC variant em-
ploying the IPI methodology (denoted by XCSF-IC (RBF) in all plots) strongly
outperforms all other XCSF variants which make use of polynomial approximation
up to degree n = 3. For all three metrics considered, i.e., the average system
error (MAE), the average number of macroclassifiers, as well as the average gener-
ality of the evolved rules, XCSF-IC has obtained the best results. The Friedman
test suggested highly significant differences regarding all figures of merit among the
investigated modeling techniques. The pairwise conducted Wilcoxon signed rank
post-hoc tests revealed that XCSF-IC’s performance is significantly superior in all
considered metrics. XCSF-IC allows to approximate the highly non-linear Eggholder
function (f1) with an error level far below the target error ε0 = 0.01. Neither of
the other approaches is able to achieve competitive prediction accuracy. In num-
bers, this corresponds to an overall error reduction of 92.31% with respect to the
second best approach (XCSF-RLS with cubic approximation) for the entire exper-
iment.3 Furthermore, the classifiers’ generality notably increases by 159.52% on
average. This circumstance is further reflected in the average population size where
XCSF-IC needs 13.33% less rules than the strongest opponent (XCSF-RLS with cu-
bic approximation). This observation supports the initially posed hypothesis that
interpolation-based predictions allow for more general rules since more complex parts
of the underlying functions can be accurately reconstructed by the interpolant (i.e.,
without injecting model bias as required for the polynomial approach).

3Throughout this chapter, all percentage-wise improvement indications refer to the best alter-
native configuration of XCSF using RLS for polynomial approximation and are calculated based on
the mean values obtained after conducting the entire experiments of length 200k learning steps.

225



Chapter 9. Interpolation-Based Prediction Modeling

Table 9.1.: Summary of results for XCSF-IC using RBF-based IPI vs. standard XCSF with
RLS optimized n-th degree polynomial approximation for n ∈ 1, 2, 3 on f1–f4

f 1
E
gg

ho
ld
er

2D
,
r 0
∈

[0
.0

05
;0
.1

]
p
-v
al
ue
s

X
C
SF

-I
C

(R
B
F
)

X
C
SF

-R
L
S
(n
=
1)

X
C
SF

-R
L
S
(n
=
2)

X
C
SF

-R
L
S
(n
=
3)

Sy
st
em

Er
ro
r
(M

A
E)

3.
49
·1

0−
6

0.
00
37
±
0.
00
02

(A
)

0.
05
16
±
0.
00
10

(D
)

0.
04
92
±
0.
00
10

(C
)

0.
04
81
±
0.
00
01

(B
)

A
vg
.
M
ac
ro
cl
as
si
fie

rs
3.

50
·1

0−
4

49
24
.2
1±

12
.1
6
(A

)
56
87
.2
4±

6.
98

(B
)

56
83
.3
1±

8.
25

(B
)

56
81
.8
4±

5.
39

(B
)

A
vg
.
G
en

er
al
ity

5.
88
·1

0−
6

0.
01
09
±
0.
00
02

(A
)

0.
00
42
±
0.
00
01

(B
)

0.
00
41
±
0.
00
01

(C
)

0.
00
41
±
0.
00
01

(C
)

f 2
Si
ne

-i
n-
Si
ne

2D
,
r 0
∈

[0
.0

05
;1
.0

]
p
-v
al
ue
s

X
C
SF

-IC
(R

BF
)

X
C
SF

-R
LS

(n
=
1)

X
C
SF

-R
LS

(n
=
2)

X
C
SF

-R
LS

(n
=
3)

Sy
st
em

Er
ro
r
(M

A
E)

4.
71
·1

0−
5

0.
00
65
±
0.
00
16

(A
)

0.
08
42
±
0.
01
32

(C
)

0.
06
67
±
0.
01
17

(B
)

0.
07
39
±
0.
02
70

(C
)

A
vg
.
M
ac
ro
cl
as
si
fie

rs
5.

28
·1

0−
5

27
44
.9
3±

49
.2
6
(A

)
30
72
.3
8±

42
.0
1
(C

)
28
30
.9
0±

57
.3
3
(B

)
27
43
.8
8±

73
.0
3
(A

)
A
vg
.
G
en

er
al
ity

5.
59
·1

0−
3

0.
04
75
±
0.
01
74

(B
)

0.
06
71
±
0.
02
45

(A
)

0.
06
24
±
0.
01
84

(A
)

0.
07
98
±
0.
04
91

(A
)

f 3
C
ro
ss

3D
,
r 0
∈

[0
.0

05
;1
.0

]
p
-v
al
ue
s

X
C
SF

-IC
(R

BF
)

X
C
SF

-R
LS

(n
=
1)

X
C
SF

-R
LS

(n
=
2)

X
C
SF

-R
LS

(n
=
3)

Sy
st
em

Er
ro
r
(M

A
E)

1.
32
·1

0−
5

0.
00
59
±
0.
00
06

(A
)

0.
01
65
±
0.
00
21

(C
)

0.
01
47
±
0.
00
19

(B
)

0.
01
49
±
0.
00
22

(B
)

A
vg
.
M
ac
ro
cl
as
si
fie

rs
3.

49
·1

0−
6

56
13
.6
7±

53
.3
6
(C

)
55
02
.6
7±

65
.6
3
(B

)
54
11
.9
7±

49
.8
2
(A

)
53
89
.9
2±

56
.7
3
(A

)
A
vg
.
G
en

er
al
ity

4.
15
·1

0−
4

0.
08
04
±
0.
02
73

(B
)

0.
15
63
±
0.
03
64

(A
)

0.
15
67
±
0.
03
74

(A
)

0.
15
80
±
0.
03
72

(A
)

f 4
St
yb

lin
sk
i-
T
an

g
6D

,
r 0
∈

[0
.0

05
;0
.5

]
p
-v
al
ue
s

X
C
SF

-IC
(R

BF
)

X
C
SF

-R
LS

(n
=
1)

X
C
SF

-R
LS

(n
=
2)

X
C
SF

-R
LS

(n
=
3)

Sy
st
em

Er
ro
r
(M

A
E)

1.
38
·1

0−
6

0.
02
17
±
0.
00
03

(A
)

0.
08
91
±
0.
00
03

(D
)

0.
05
29
±
0.
00
04

(C
)

0.
02
68
±
0.
00
10

(B
)

A
vg
.
M
ac
ro
cl
as
si
fie

rs
9.

35
·1

0−
6

59
01
.5
0±

8.
28

(B
)

59
19
.0
5±

6.
96

(C
)

59
05
.9
5±

3.
65

(B
)

58
26
.8
1±

8.
93

(A
)

A
vg
.
G
en

er
al
ity

5.
56
·1

0−
6

0.
09
12
±
0.
00
41

(A
)

0.
07
72
±
0.
00
25

(B
)

0.
05
52
±
0.
00
31

(C
)

0.
07
32
±
0.
00
46

(B
)

226



9.3. Evaluation

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 50000 100000 150000 200000

Learning Problems

S
ys

te
m

 E
rr

or
 (

M
A

E
)

0.001

0.01

0.1

1
● XCSF−IC (RBF)

XCSF−RLS n=1
XCSF−RLS n=2
XCSF−RLS n=3

(a) f1: Avg. System Error (MAE)

0 50000 100000 150000 200000

Learning Problems

M
ac

ro
cl

as
si

fie
rs

64

640

6400

G
en

er
al

ity

0.01

0.10

1.00

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

XCSF−IC (RBF) − Macroclassifier
XCSF−IC (RBF) − Generality
XCSF−RLS n=1 − Macroclassifier
XCSF−RLS n=1 − Generality
XCSF−RLS n=2 − Macroclassifier
XCSF−RLS n=2 − Generality
XCSF−RLS n=3 − Macroclassifier
XCSF−RLS n=3 − Generality

(b) f1: Avg. # Macroclassifiers and Generality

Figure 9.6.: Learning curves showing the average results for XCSF-IC with IPI and XCSF
on the Eggholder test function f1

227



Chapter 9. Interpolation-Based Prediction Modeling

2-dimensional Sine-in-Sine function f2

Very similar results as for f1 can be observed for the second test function f2 which
has already been demonstrated to be difficult for XCSF to approximate in related
studies [SB10a; Sta+12b]. The novel IPI technique leads to a significantly decreased
MAE (−90.75%), reaching the target error already after less than 30k function sam-
ples (or learning problems). In contrast, the variants based on polynomial approxi-
mation all together fail to reach the target error of ε0 = 0.01 during the entire 200k
trials. Starting with a lower average generality at the beginning (up to ≈ 50k learn-
ing problems), XCSF-IC proceeds with evolving classifiers of substantially higher
generality until the end. However, on average, classifier generality appeared to be
40.48% smaller compared to the best alternative using cubic approximation. Al-
though third-order polynomials seem to be able to well-approximate the regularities
of the sinusoidal f2 function, the RBF-based solution accomplishes to undercut the
target error by one order of magnitude after approximately half of the experiment.
The number of macroclassifiers is significantly lower than for XCSF-RLS with n = 1
and n = 2 polynomial degrees, but not significantly different from XCSF-RLS using
cubic approximation. On average the population size of XCSF-IC is 3.83 · 10−2 %
larger which can be regarded as appearing by chance.

3-dimensional Cross function f3

For the cross function f3, the general learning capability of XCSF has already been
demonstrated in [SB10a; Sta+12b]. Using the novel IPI strategy, however, it turns
out that the learning speed is further increased. XCSF-IC is able to reach the target
error of ε0 = 0.01 within only 20k learning steps on average. In contrast, XCSF-
RLS with polynomial approximation only reached that level after approximately
50k steps. Apparently, in terms of average population size, XCSF-IC maintains a
slightly but significantly higher number of macroclassifiers (+4.15%) over the entire
learning period. This seems to be necessary to reach the superior prediction accuracy
reflected by a strong decrease in the system error by 59.86%. This observation is
further supported by the substantially lower average generality of classifiers evolved
by XCSF-IC (−49.11%). It thus clearly contradicts the hypothesis that the use
of interpolation instead of approximation always facilitates more general classifiers.
Nonetheless, the RBF-based interpolation approach still enables the system to better
capture the underlying function complexity. This appears most distinctly at the
beginning. In the course of learning, however, the classifier generality continually
increases for all configurations. Another effect worth mentioning is that the error of
the model-fitting XCSF-RLS instances and that of XCSF-IC converge to the same
level. Having a look at the average generality curve it can be noticed that as soon
as the generality starts to increase, also the descent of the MAE ends. Interestingly,
the MAE starts to increase again to a small extent. This observation is attributed
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Figure 9.7.: Learning curves showing the average results for XCSF-IC with IPI and XCSF
on the Sine-in-Sine test function f2
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to the lack of accuracy pressure which stops to act in regions beneath the target
error ε0 (cf. Sect. 2.4 for details).

6-dimensional Styblinski-Tang function f4

For the most complex 6-dimensional Styblinski-Tang function f4, XCSF-IC again
is able to outperform all XCSF variants using RLS in conjunction with polynomial
approximation. Except for the average population size, RBF-based prediction inter-
polation yields superior performance in terms of a notable system error reduction
of 19.03% on average. The population-wide average generality is significantly in-
creased by 18.13% as well over the entire experiment. With regard to the average
population size, XCSF with cubic approximation revealed to evolve the least num-
ber of macroclassifiers which corresponds, however, to an effective reduction of only
1.26% compared to XCSF-IC. The difference still can be found to be statistically
significant. Further significant differences between the investigated configurations
can not be reported. By having a closer look at Figure 9.9, it can be recognized that
starting from the approximately 125k-th problem instance, the system error level
achieved by XCSF-IC is surpassed by the model-fitting XCSF-RLS variant with
cubic approximation employed. At this point, XCSF-IC presumably would benefit
from a larger experience memory per classifier (Nsp > 50) or from a higher number
of classifiers maximally allowed in [P ]. Regarding the latter aspect, inspecting the
average population size as given in Table 9.1, all configurations make use of approx-
imately 90% of the maximum allowed size of [P ] which is set to N = 6400 in this
experiment. Still, at early stages XCSF-IC substantially reduces the approximation
error, thus, increasing the learning efficiency in the presence of KGs due to lack of
experiences.

Results for Noisy Eggholder Function

In order to gain initial insights for the applicability of the IPI approach on realistic
applications, this section examines the behavior of XCSF under the presence of noise.
Noise is a typical phenomenon in real-world settings where e.g., a variety of sensors
deliver measurements which together span the domain of the situation space. The
pursued approach to bridge the gap between synthetic and real-world scenarios is to
simulate noise for the complex highly multimodal Eggholder function f1. Therefore,
uniform noise is added to the actual function values f(~x) as follows: f(~x) + U[0,σ],
with σ ∈ {0.05, 0.1, 0.2} and U[0,σ] returning a uniformly distributed random num-
ber between 0 and σ. In order to ensure solvability of the linear equation system
of RBF interpolation, prior to each interpolation operation, a preprocessing step is
performed. As already mentioned above, sampling points in SP are searched for du-
plicates within a distance range of a very small ε. If duplicates are found, the center
of those duplicated sampling points sj is used as new coordinate ~x′ and the function
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Figure 9.8.: Learning curves showing the average results for XCSF-IC with IPI and XCSF
on the Cross test function f3
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Figure 9.9.: Learning curves showing the average results for XCSF-IC with IPI and XCSF
on the Styblinski-Tang test function f4
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value is the equally-weighted average of all corresponding function values f(~xj). For
the sake of brevity, it is focused on the particular test function f1 where XCSF-
IC shows the strongest improvements. This is done because insights regarding the
sustainability of the achievable improvements are the subject of interest here. The
presented IPI approach is compared with the most competitive configuration only,
i.e., cubic approximation (which proved to be best in the previous experiments).
Table 9.2 summarizes the results. In spite of varying degrees of noise, interpolating
XCSF-IC is still able to significantly outperform the most strongest model-fitting
configuration (XCSF-RLS with cubic polynomial approximation). For all investi-
gated degrees of noise (ranging from 5% to 20%) both the average system error as
well as the average classifier generality show significant improvements. Even for the
case of σ = 0.20, XCSF-IC achieves a system error reduction of 20.26% on average
while still evolving a classifier population with a by 24.49% increased generality.
Only the average population size appears to be marginally smaller for XCSF-RLS
with cubic approximation (n = 3). However, in numbers this corresponds to a ne-
glectable difference of only 2.4 · 10−2 % on average. Figure 9.10 reveals another
interesting fact. For both configurations of XCSF, a higher degree of noise seems
to result in more general classifiers on average. This is again attributed to the in-
ner generalization pressure of XCS which acts until the accuracy of individual rules
starts to deteriorate. In noisy domains usually the target error configured via ε0 is
slightly lifted to account for the prevalent uncertainty and to ensure an appropriate
fitness signal on which the GA can adequately select parental classifiers. By means
of using the IPI approach, the sensitivity regarding this hyperparameter seems to
be attenuated to a certain extent, which increases the system’s robustness against
noise in the end.
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Figure 9.10.: Learning curves showing the system error (left) and average number of macro-
classifiers / generality (right) comparing XCSF-IC with IPI and XCSF-
RLS (n=3) on noisy Eggholder function with different levels of noise σ ∈
{0.05, 0.10, 0.20}
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Table 9.2.: Summary of results on noisy eggholder function f1. All entries present the
mean values and their standard deviations (±1SD) over the entire experiment
length of 200k learning problems. Bold entries indicate statistically significant
superior performance over the other configuration, i.e., p < 0.05.

σ = 0.05 XCSF-IC (RBF) XCSF-RLS (n=3)

System Error (MAE) 0.0192±0.0002 0.0531±0.0006
Avg. Macroclassifiers 5788.75±7.37 5735.79±5.76

Avg. Generality 0.0050±0.0001 0.0042±0.0001
σ = 0.10 XCSF-IC (RBF) XCSF-RLS (n=3)

System Error (MAE) 0.0353±0.0002 0.0625±0.0009
Avg. Macroclassifiers 5767.69±5.87 5741.31±4.03

Avg. Generality 0.0052±0.0001 0.0045±0.0001
σ = 0.20 XCSF-IC (RBF) XCSF-RLS (n=3)

System Error (MAE) 0.0677±0.0002 0.0849±0.0007
Avg. Macroclassifiers 5747.51±5.95 5748.88±7.87

Avg. Generality 0.0061±0.0001 0.0049±0.0001

9.4. Discussion

The initially posed hypothesis that interpolation-based classifier prediction leads
to increased average generality is partially confirmed. However, it turns out that
depending on the problem complexity, the opposite effect can also appear. For the
3-dimensional Cross function f3 for instance, XCSF-IC evolves classifier populations
with smaller average generality (cf. learning curves for f3 in Fig. 9.8) but still uses
those more specific rules effectively during the actual prediction step. It would
therefore be really interesting to see the impact of condensation and compaction
techniques [BLW08; TMU13] on the average generality of the final solution produced
by the interpolation-based XCSF-IC. This aspect will be examined further in future
work. Overall, it can be concluded that the use of RBF interpolation to model the
prediction of individual classifiers leads to strongly decreased average system errors,
especially at early learning periods where KGs are highly present. Especially for the
investigated cases of the highly non-linear functions f1 and f2, the introduced IPI
approach enables XCSF to quickly reach the targeted error level. This could not be
achieved at all by any of the alternative polynomial model learning variants within
the conducted learning time. Apparently, the flexibility of the utilized parameter-
less thin plate spline basis function bears promising strengths with respect to the
ability to capture the underlying function’s complexity. The advantage of using
interpolation-techniques instead of approximation approaches as almost exclusively
done so far is that the former means does not require model hyperparameters such
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as the degree of the polynomial. By omitting such design time decisions, possibly
injected model bias that might lead to underfitting effects can be prevented.

Sort of counterintuitively, these findings hold also true for noisy functions where
uniform deviations up to 20% are added to the highly non-linear Eggholder function
f1. It might have been expected that interpolation easily falls into the trap of
overfitting to noisy data where in contrast approximation would simply minimize
the squared error as usual. However, such a behavior can not be observed in the
experimental findings so far. Due to the deduplication process to ensure solvability of
the linear equation system required to calculate the RBF interpolation, noise effects
are averaged out. In the case of sticking to the traditional fitness-weighted classifier
mixing procedure, a similar effect is expected to eventuate. Furthermore, since the
experience memory is of small limited size, classifiers will continually replace older
experience with newer ones. This last aspect is crucial in online-learning settings to
account for the stability-plasticity dilemma causing phenomena such as detrimental
forgetting.

To a certain extent, the observed benefits of employing the IPI strategy are at-
tributed to the newly introduced classifier mixing technique. Here, a system predic-
tion is calculated by means of taking the union of sampling points from all matching
classifiers into consideration during the actual prediction interpolation step. Since
still the classifiers’ learning parameters are updated on the basis of their individual
prediction errors, the generalization pressure applies as intended and the classifiers
evolve toward their near optimal condition structure. This in turn has a direct
effect on the density of sampling points which are collected within each classifier.
This implicit self-adaptive sampling point density is deemed one of the most appeal-
ing factors of this new prediction modeling technique. By increasing the number
of sampling points stored in each classifier (Nsp), classifiers might reconstruct the
underlying problem subspace with the same level of accuracy, but with more gener-
alized condition structures. This would eventually conform to the hypothesis posed
at the beginning of this chapter. This aspect as well as ways to self-adaptively adjust
Nsp as a response to currently identified accuracy levels during the system’s runtime
constitute important steps of future work.

Current limitations of this approach that also need more research effort comprise
the following aspects: The adjustment of the experience memory (or sampling point
sets) for each classifier needs more sophisticated ways to account for non-uniform
data distributions. One idea is to select experiences for removal in order to max-
imize entropy measures. This would result in a steady pressure toward uniformly
distributed experiences over a particular classifier’s subspace of responsibility (as de-
termined by its condition). So far, the approach accesses one global instance of the
IC. This implies sequential interpolation steps which naturally reduce the computa-
tion efficiency. A solution would be to equip each single classifier with a lightweight
instance of the IC in order to facilitate parallel interpolations. This would also make
hybrid interpolation methods possible which in turn leverages the hybrid ensemble
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learning nature of XCS. In view of more automated ML, this clearly constitutes a
promising direction of future work.

Having mentioned the possibility for hybridization before, an even more beneficial
combination is expected when XCSF is endowed with the capability of self-deciding
to switch between interpolation-based predictions and model-learning (i.e., approx-
imation) techniques. In periods where uncertainty, covariate drifts and resulting
KGs characterize the currently incoming situations, the novel IPI technique should
be active. During stable phases, a model can be learned by either (1) employing
the online RLS optimizer, or, (2) finding optimized weights by means of batch-wise
gradient descent or linear least squares using the collected experiences in each clas-
sifier. This hybrid approach would also contribute to the system transparency, since
linear regression still counts as one of the most human interpretable ML models
these days.

9.5. Related Work

In the literature, various attempts to model the payoff prediction parameter of a
classifier exist. However, all of them focus on approximation approaches or di-
rectly evolve the models. In [SMH18], the author has been the first who posed the
question “What about interpolation?”. Nevertheless, the numerous approaches to
computed predictions in classifiers definitely constitute related work with respect to
the interpolation-based methodology presented in this chapter.

Lanzi et al. investigated higher-order polynomials up to a degree of three for the
local prediction approximation within the classifiers of an XCSF in [Lan+05b]. The
authors have demonstrated that polynomials beyond the first order can improve
both the predictive accuracy and the generalization capabilities, and may result in
a more compact solution in contrast to standard XCSF with linear approximation.
For these polynomial models, several optimization algorithms to update the model
coefficients have been studied by Lanzi et al. in [Lan+06]. In summary, their results
indicate that RLS and the Kalman filter yield superior performance in contrast
to gain adaptation algorithms in terms of a decreasing error rate and increased
generality of the global solutions.

Another approach to classifier prediction modeling in XCSF is presented by Loia-
cono et al. in [LML07]. They introduced XCSF utilizing support vector regression
(XCSFsvm) for for that purpose. XCSFsvm turns out to converge faster than XCSF
with linear approximation in conjunction with the RLS technique, yields lower sys-
tem errors for higher dimensional test functions and can result in even more gen-
eralized solutions. However, only comparisons to XCSF with linear polynomial
approximation and RLS have been conducted. Furthermore, it seems that the axis-
parallel hyperrectangular condition representation was used, which seems not to be
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suitable for capturing dependencies between the features of the input vectors (also
called epistasis [UB17]) which appear in parts of their test functions.

Tran et al. examine the use of an evolution strategy for model coefficient optimiza-
tion in XCSF in [TSD08]. Their approach is called XCSF-ES. Assuming a linear
model for computing the classifier prediction, their findings indicate that on func-
tions with one-dimensional input, XCSF-ES generates a significantly lower system
error than the original XCSF with least mean square update (or modified delta
rule), and slightly better results than XCSF with RLS. Also, the evolution strategy
has been declared to have O(n) complexity, while RLS requires O(n2) in terms of
computation time.

Standard polynomial prediction approximation has been replaced by a feedforward
neural network in [LL06] as well. The structure of this neural network is evolved
by means of the GA in XCSF. It is shown that XCSF with neural network pre-
diction outperforms XCSF with linear approximation for highly nonlinear functions.
However, XCSF variants with higher-order polynomial approximation have not been
taken into consideration. Bull and Hurst previously proposed a more incisive ap-
proach by replacing entire rules with Multi-layer Perceptrons (MLP) in [BO02].
Here, the prediction is still approximated by the neural network and calculated by a
forward propagation through the neural net. However, also the condition represen-
tation is implicitly encoded. More precisely, whether or not a classifier is a member
of [M ] is determined by an additional output neuron.

In summary, it appears that the most investigated and among the considered studies
always at least equally effective approach for classifier prediction can be achieved
by the combination of (1) the general hyper-ellipsoidal condition structure, and, (2)
polynomial approximation in conjunction with the RLS technique. This has also
been a reason why the experiments presented in this chapter compared the novel
approach against XCSF using linear, quadratic and cubic polynomials for prediction
modeling.

Regarding the aspect of storing a set of input vectors, Lanzi et al. in [Lan+05b;
Lan+05a] have previously proposed the use of a non-incremental linear least square
method for the model coefficient optimization. The applied procedure demands for
a set of data samples which have been maintained by a FIFO queue. Ways for more
sophisticated replacement of memorized samples, however, have not been part of
their studies and therefore left for future research.

9.6. Chapter Summary

In this chapter, the prediction computation step of individual classifiers in XCSF has
been replaced by an interpolation-based means. RBF interpolation using the Thin-
Plate-Spline (TPS) basis function was shown to constitute a powerful method for
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computed predictions. Two effects caused by the ability of the novel IPI strategy to
capture more complex characteristics of the underlying function have been hypoth-
esized: (1) Higher approximation accuracy. (2) Increased average generality of the
evolved rule sets. The obtained results of conducted validation studies partially con-
firmed these hypotheses. XCSF-IC using IPI strongly increases the approximation
accuracy as well as the learning efficiency on each of the considered test functions.
Increased classifier generality could only be reported for two of the four investigated
functions. Additional results further confirmed the sustainability of this transductive
means of prediction modeling on the highly multimodal Eggholder function under
varying degrees of noise. A thorough discussion on current limitations and promis-
ing aspects for further enhancement of the IPI strategy as well as an appreciation
of related work in this regard closed this chapter. With the end of this chapter, the
main part of this thesis comes to an end. All approaches that have been developed
throughout the previous chapters have one aspect in common – they incorporate in-
terpolation as a means to transductive knowledge inference in Michigan-style LCS.
This is done in order to reactively alleviate negative impacts caused by KGs which
XCS-based SLAS might face in the course of learning. The next chapter discusses
concrete directions of future research where the goal of approaching Proactive LCS
is pursued.
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Chapter 10.

Toward Proactive Learning Classifier
Systems

All the techniques that have been developed so far, regardless of considered sepa-
rately or in combination, provide reactive methodologies to overcome present KGs
within a knowledge base at any point in time within the course of learning. These
methods are regarded as reactive since the actual invocations of a knowledge-based
learning agent’s L(K) knowledge construction processes are not directly affected.

With the methods and concepts that are going to be outlined in the following sec-
tions, an elaborate outlook on future research directions in terms of enhancing the
self-awareness of SLAS is provided. The pursued objectives are to enable the in-
volved learning agents L(K) to self-reflect their own state of knowledge by means
of proactively analyzing their current knowledge bases K evolved so far. More pre-
cisely, the L(K) of a SLAS will be endowed with the capability to proactively seek
for KGs in their knowledge bases K and, subsequently, to initiate the construction
of new knowledge elements k∗ in order to alleviate possibly negative impacts on the
system’s utility.

Therefore, a second research hypothesis, which is not confirmed comprehensively in
this thesis, but constitutes the main conjecture motivating future research can be
formulated as follows:

Hypothesis. The proactive construction of new knowledge elements k∗ /∈ K
for covering inexperienced, under-explored or uncertain regions of the problem
space PS, as approximated by K, leads to an improved learning progress of a learning
agent L(K) under the assumption that k∗ will actually become relevant during the
lifetime of L(K).

In the following sections, first steps toward approaching proactively knowledge con-
structing learning algorithms are taken. In the first Section 10.1, a methodology
recently proposed by the author in [SMH17] is briefly recapitulated to substanti-
ate the general potential of using Active Learning (AL) within XCS’s algorithmic
structure. Subsequently in Section 10.2, a novel concept for proactive knowledge
construction as recently proposed by the author in [Ste+18] is introduced formally

241



Chapter 10. Toward Proactive Learning Classifier Systems

and accompanied by a first proof confirming the general plausibility of the conjec-
ture. In the same breath, the generic MLOC architecture is revisited to allow the
incorporation of the proposed mechanisms in order to render SLAS self-reflecting
proactive learners.

10.1. From Reactive to Active Learning Behavior

The objective of this section is to provide an intuition of how to accomplish a shift
from a mostly reactive to a predominantly active construction process of knowledge
elements, i.e., classifiers cl ∈ [P ]. By means of adopting Active Learning (AL)
concepts, LCS will yield a sort of curiosity1 with respect to parts of their knowledge
bases [P ] at which the knowledge is only insufficiently experienced so far (type-2
KGs, cf. Ch. 3.3).

As a short recapitulation of Section 3.4, in an LCS, the knowledge elements are
contained in a population [P ] of IF-THEN rules, also called classifiers cl, that main-
tain certain learning parameters about their quality (cl.p, cl.ε, cl.F ) and confidence
(cl.exp, cl.num). Thus, adopting the introduced notions of KGs, the following simi-
les apply: K ≡ [P ] and ki ≡ cli. Accordingly, type-1 KGs can be formalized by

kg ∈ KG1 := {cl}cl/∈[P ],

and KGs of the second type are denoted by

kg ∈ KG2 := {cl | cl.exp < θexp ∧ cl.q(p, ε, F, num) < θq}cl∈[P ].

10.1.1. Approach: Integrating XCS with AL

The pursued approach is to devise an active knowledge creation strategy by endow-
ing XCS itself with the capability to decide which regions in its knowledge base are
only insufficiently represented yet. Thus, it shall be enabled to autonomously iden-
tify KGs. Therefore, concepts from the domain of Active Learning (AL) [Set09] are
adopted. More precisely, in a first attempt concrete AL techniques called Least Con-
fident Uncertainty Sampling [LG94] as well as Query-by-Committee (QBC) [SOS92]
will be adapted to fit XCS’s algorithmic structure. Furthermore, first steps are taken
to answer the question of whether the acquisition of knowledge in an even more ex-
ploratory fashion reveals additional benefits. It is thus examined, if it is valuable
to construct classifiers prior to actually requiring these particular knowledge ele-
ments for the first time. Therefore, so-called Query Synthesis approaches [Ang88]
are subject of preliminary investigation, even though these are restricted to a fully
randomized approach, so far.

1Computational curiosity was recently reviewed more thoroughly elsewhere [WM13].
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Adoption of Pool-based AL

AL [CAL94; Set09] shares strong similarities with the SSL paradigm which has
proven itself to enhance the efficiency of supervised learning algorithms in various
classification tasks (cf. e.g., [RCS15]). In both settings, it is assumed that only
a small set of labeled training data L is available (e.g., due to high labeling costs
or other non-monetary efforts) comprising training examples of the form (~x, y). In
addition to L, there is also a large set of unlabeled data assumed, denoted by U, since
obtaining unlabeled samples is supposed to be inexpensive. What is specific to AL,
however, is the capability of the learning algorithm to self-decide which unlabeled
instance ~x ∈ U is most beneficial to be selected and subsequently sent to a so-called
oracle for obtaining a correct label in return. In the simplest scenario, the oracle
is assumed to be omniscient and omnipresent and, thus, always yields the correct
label for the queried instance. The queried instance together with the acquired
target label is then added to the labeled set and the model is retrained with the
augmented training data. This setting is a specific form of AL called pool-based AL.
Beside pool-based AL, in essence two additional major paradigms can be found in
the literature (cf. [Set09]) – stream-based AL and membership query synthesis. So
far, the focus has been set on the former and the latter scenarios, i.e., pool-based
AL and membership query synthesis. Here, the occurring match sets [M ] as part of
XCS serve as pool of “unlabeled samples” U. As will be described in a later section,
such a pool is not needed for the synthesis scenario, where in the most naive case
arbitrary elements of the input space X are selected as queries for the oracle.

In the context of LCS, a query instance ~xQ is represented by a particular classifier
clQ, more precisely by its condition clQ.C. Thus, not only a single vector ~xQ ∈ X
is presented to the oracle, but rather a particular subspace of the input space, i.e.,
clQ.C ⊆ X. The task of the oracle is to assign the most appropriate label, or action,
for the queried classifier clQ. If the oracle is not able to answer such a query with a
predefined minimum level of confidence, the query is rejected and no answer can be
retrieved by XCS.

In case of query rejection, it is assumed that the queried (macro-)classifier clQ neg-
atively influences the overall learning process. Therefore, it is physically deleted
from [P ] (not only has its numerosity decremented). On the other hand, when an
oracle answer is received, a new classifier cl∗ is constructed with the action cl∗.a
set to the oracle’s suggestion. The condition is assigned as cl∗.C := clQ.C. The
reward prediction value is set to cl∗.p = 1000. So far a binary rewarding scheme
is assumed, i.e., XCS receives a reward of 1000 for correct decisions, and 0 other-
wise. The fitness estimate is set to cl∗.F = 0.9 (the minimum confidence level of
the oracle). The experience parameter is initialized with the hyperparameter value
of θsub to enable cl∗ to immediately act as subsumer. All remaining attributes are
initialized as usual. cl∗ is then added to [P ] and [M ] before XCS proceeds with the
action-selection step.
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The Omniscient Oracle The aforementioned assumptions about the oracle seem
to be unrealistic and often have to be relaxed when human experts are involved. Hu-
mans are not necessarily omnipresent and certainly not omniscient. Accordingly, the
uncertainty of humans as well as the interaction load with which it is confronted have
to taken into account. The perspective postulated in this endeavor, however, is to
not restrict the oracle to be realized as a human annotator. Rather, it is envisaged to
take advantage of available simulations or existing mathematically expressed heuris-
tics that model at least the crucial aspects of certain real-world problems. Such
models can then be used alongside or instead of humans. It clearly depends on
criticality of the learning task and the according time constraints whether to bring
a fast reacting and non-fatiguing artificial oracle into the learning loop, or rather a
human oracle with highly accurate domain competence but reduced availability into
the learning loop.

Figure 10.1 proposes a generic two-layer architectural blueprint to render LCS AL
algorithms.

LCS
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Figure 10.1.: Schematic for a two-layer architecture of Active LCS

The bottom layer constitutes the conventional LCS architecture, where the popula-
tion [P ] serves as the knowledge base K (denoted K̂ in the figure). The LCS works
as usual, i.e., it reacts to environmental stimuli. On the top layer, two components
are illustrated: (1) A Knowledge Gap Identifier, which is responsible for seeking
KGs in the algorithm’s knowledge base K by means of AL techniques, and (2) the
Knowledge Gap Closer, which contains the oracle having access to several sources,
e.g., a human expert, a simulation or the IC as introduced in Chapter 4. It is in-
tended to provide the possibility that all oracle types can be queried in parallel or
individually.
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The next paragraphs each briefly outline the original concept from the AL domain
and subsequently describe the adoptions of specific techniques in order to design an
AL-extended XCS (ALXCS).

Uncertainty Sampling

Uncertainty Sampling as introduced by Lewis et al. in [LG94] is an AL technique
that aims at querying instances from U about which the current model trained solely
on L is most uncertain regarding the correct output.

Least Confident (LC) uncertainty sampling is a straightforward approach to be
briefly introduced next. The formula (cf. [Set09]) for LC uncertainty sampling is
given by:

x∗LC := argmax
x

[
1− Pθ(ŷ|x)

]
, where ŷ := argmax

y

[
Pθ(y|x)

]
. (10.1)

Here, Pθ denotes the posterior probability of the current model (or hypothesis) h(θ)
parameterized by the parameters to be optimized θ. ŷ is the target label or class that
maximizes the posterior probability for the currently considered unlabeled instance
x ∈ U. Therefore, the formula yields an instance x∗LC about which the model h(θ) is
most uncertain. The above formula reveals that a posterior probability is necessary,
i.e., the probability of a label ŷ being correct given the currently considered instance
x. However, learning approaches that are centered around probability distributions
in a Bayesian fashion, such as naïve bayes classifiers, are fundamentally different
form the learning intuition of an LCS. Because XCS is not a probabilistic model
in a Bayesian sense, but rather an input space partitioning online learning system
with an evolutionary optimization heuristic at its core, another measure similar to
Pθ(ŷ|x) has to be determined. Intuitively, a classifier’s fitness estimate cl.F seems to
constitute a legitimate candidate for expressing a notion of confidence regarding the
subspace for which it is responsible. If the fitness is low, the classifier’s predictive
accuracy is poor. However, this does not necessarily indicate total incorrectness.
Covering usually initializes fitness to a pessimistically low value. Novel classifiers,
thus, first have to prove themselves. Accordingly, the accuracy of payoff prediction
might be poor for the moment but also highly uncertain since it is possible that it
turns out to be accurate in the future. In order to also consider a classifiers “age”,
its experience cl.exp is also incorporated. Accordingly, the XCS adoption of the LC
uncertainty sampling technique, referred to as Query-by-Fitness (QBF), is initially
defined as follows:

clQ := argmax
cl∈[M ]

[
(1− cl.F ) · cl.exp

]
(10.2)

clQ denotes the classifier cl ∈ [M ] to be selected for being presented to the oracle.
The above selection strategy ensures to query classifiers having rather low fitness
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estimates but have already gained highest experience in their niches. This ensures
that no classifiers are chosen that were just created.

With this primary approach, XCS is made curious about particular subspaces of X,
i.e., about regions which it is rather uncertain, despite a certain number of experi-
enced updates. Put another way, niches for which XCS has difficulties to figure out
the “correct” action. This might be due to so-called (strong) overgenerals [Kov00b]
which match in many situations where different actions might be correct. So, with
the active KG identification technique as proposed above, XCS is enabled to un-
cover such disruptive classifiers and accordingly initiate certain countermeasures.
For instance, if the oracle is not able to decide for the correct action with sufficient
confidence, this overgeneral classifier can be simply removed from the knowledge
base [P ]. On the other hand, it is also possible to explicitly seek just created clas-
sifiers by simply inverting cl.exp in Equation 10.2. In this case, classifiers with the
lowest fitness and at the same time the smallest experience are preferred. This
can be done in order to bootstrap the initial learning phase by using the oracle for
obtaining the correct actions already at an early stage of a learning.

The Committee of Matching Classifiers

Query-by-Committee (QBC) is a query selection strategy that uses a variety of
independently trained models. The approach was first introduced by Seung et
al. [SOS92]. The collection of models serves as committee

C =
{
h(θ(1)), h(θ(2)), . . . , h(θ(|C|))

}
.

QBC reveals prediction conflicts by comparing the outputs of the committee mem-
bers. A conflict’s extent is determined by a measure of disagreement between the
different models. One approach is to use vote entropy as reported in [Set09]. This
technique essentially counts the number of times the committee members vote for
a particular label, then derives a probability in terms of relative frequency, and,
subsequently calculates the Entropy [Sha48].

In order to use QBC within the context of XCS one possibility is to train several
XCS instances on different subsets of the labeled data at the same time. However,
a less computationally expensive approach is chosen which interprets each classifier
as a committee member. Let A[M ] define the set of distinct actions in [M ]. Then
the vote entropy H[M ] is calculated by:

H[M ] =
∑

a∈A[M ]

V (a) log2 V (a) (10.3)
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with the actual vote for each action a given by

V (a) =
∑
cl∈[M ](a) cl.num∑
cl∈[M ] cl.num

. (10.4)

Thereby, a subset of [M ] which contains only those classifiers advocating a specified
action a is given by:

[M ](a) := {cl ∈ [M ]|cl.a = a}.

After determining the vote entropy H[M ] for the current match set, further the
maximum entropy

Hmax = log2 |A[M ]| (10.5)

is calculated. Hmax is equivalent to a situation of maximum conflict, i.e., fully
uniform action vote distribution. The closer H[M ] is with respect to Hmax, the
higher is the decision conflict about which action is most suitable. Considering both
H[M ] and Hmax, a query is only sent to the oracle if

H[M ] ≥ Hmax · (1− θsim) (10.6)

is satisfied. θsim defines a tolerance factor to control the extent of the conflict
required to send a query to the oracle. If this condition evaluates true, the query itself
is selected by means of QBF again. Thus, QBC essentially narrows the application
of QBF to match sets with high conflicts. This, in the end, is one approach to
reduce the interaction load between the learning algorithm and the oracle. Even if
not investigated further so far, it is hypothesized that the QBC technique reveals
even higher benefits when a so-called best action mapping [Nak+15] is applied. This
mapping, in contrast to standard XCS, does not strive to a learn complete X×A→ P
mapping, also comprising classifiers which accurately predict rewards for incorrect
actions with regard to a certain niche.

Knowledge Generation by Query Synthesis

Membership Query Synthesis [Ang88] is a special case of query selection where the
queried instance ~xQ is generated de novo. This means it is synthesized within the
bounds of the problem’s input space domain X. There are several approaches for
synthesizing queries. Probably the most naive form is to generate an instance ~xQ
completely by chance as a randomly selected vector from X. A more sophisticated
approach, i.e., iteratively estimating the distribution of the underlying data gen-
erating process by means of kernel density estimation (KDE), is outlined in the
subsequent Section 10.2. For now, however, randomized query generation is subject
of preliminary investigations.
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Accordingly, the concept of Query-Synthesis-at-Random (QSR) is proposed. Here,
a completely new classifier cl∗ that also serves as the classifier clQ to be queried is
constructed de novo. Its condition is created by random selection of a vector ~x ∈
X ⊆ Rn and by choosing an interval predicate within predefined bounds, as similarly
done by covering, subsequently. For determining these bounds, it is imaginable to
use the default spread parameter r0, so that each interval predicate is bounded
by [xi − r0, xi + r0]. However, fist experiments have been conducted by using a
different spread parameters smin and smax. Thus, the randomly constructed interval
predicates are restricted to lie within xi ± s ∈ [smin, smax],∀i = 1 . . . n.

Generating queries de novo has been found to not being suitable in any kind of
learning task. For example, in handwritten character classification, completely un-
defined symbols can be produced [Set09; BL92]. However, in problem spaces where
a uniform sampling of the entire domain can be assumed, QSR is hypothesized to
be beneficial. On the other hand, considering very domain specific feature spaces
such as for medical diagnosis tasks, randomly created instances bear the risk to
easily confuse a human oracle since the attribute combination might be completely
arbitrary.

10.1.2. Preliminary Evaluation

The following paragraphs report on the first results obtained from a conducted
preliminary study.

Experimental Setup The outlined approaches have been evaluated on two dif-
ferent classification scenarios: (1) The well-known Wisconsin Breast Cancer (WBC)
dataset [MSW95] and, (2) a novel toy problem similar to the CBP problem as in-
troduced before but with a larger action space – the Mario problem. Since XCS is
asked to solve classification tasks, the 0/1000 binary reward scheme is applied.

All experiments execute XCS for 100k alternating explore/exploit trials and have
been repeated for 30 i.i.d. runs. Statistical significance of the differences between
ALXCS and XCS is determined using pairwise t-tests. A prequential, i.e., test-then-
train learning strategy for both scenarios has been applied to adhere to the online
learning nature of XCS. Instances from the WBC data set are selected uniformly at
random and with replacement. For the synthetic and continuous Mario toy problem,
the input space is sampled uniformly. Thus, for both scenarios, the occurrence of
KGs and, thus, the potential for improvements are again expected mostly at the
beginning of the learning task. For the QBF and the QSR technique, the oracle is
queried at each step. Using the QBC approach, the number of oracle interactions is
self-decided.

For these preliminary experiments, the oracles are simulated by means of simple
heuristics as described below.
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Wisconsin Breast Cancer Data Set The WBC data set [MSW95] is available
from the UCI Machine Learning Repository [Lic13] and can be found under the
category of life sciences. It consists of 699 instances each having 9 attributes which
show the results of a fine needle aspiration for the diagnosis of breast cancer. The
class labels are “2” and “4” indicating a benign or malignant tumor, respectively.
The attributes are encoded by integers in the range [1, 10]. Without loss of generality,
the attributes are normalized to the range [0, 1]. Missing attribute values are marked
as “?” in the data set are assumed to be matched in any case. This dataset has
a class imbalance ratio of 0.655 : 0.345 (benign : malignant). The WBC data
set has already been investigated in the LCS literature [Wil01; KOB08]. Thus, it
is deemed a sensible candidate for preliminary experimentation, since it allows for
straightforward validity comparisons.

For the present study, the oracle has been simulated by a rather simple heuristic:
It is realized by a simple nearest neighbor search through the available instances.
Therefore, the Euclidean distance between the center point ~c of a queried classifier’s
condition clQ.C and the instance (~xi, yi) from the set of labeled data L is calculated.
The label of the instance ~xi with the minimal distance is then returned as the oracle’s
answer, i.e.,

clQ.a := argmin
yi

d
(
clQ.C.~c, ~xi

)
2 . (10.7)

This heuristic implies a certain degree of oracle uncertainty. The nearest neighbor is
not guaranteed to yield the correct classification. Therefore, the Euclidean distance
is transformed to a similarity measure defined between [0, 1], where 1 stands for
the maximum distance. The normalized Euclidean distance is subtracted from 1.
Whenever this similarity measure is < 0.9, the query is rejected by the oracle. For
the WBC experiments, XCS is configured according to [Wil01]: N = 6400, α = 0.1,
β = 0.2, δ = 0.1, ν = 5, θGA = 48, ε0 = 1, θmna = 2, θdel = 50, θsub = 50, χ = 0.8,
µ = 0.04, pini = 10.0, εini = 0.0, Fini = 0.01, r0 = 0.4, m0 = 0.2. The interval-based
UBR condition representation is used. Uniform crossover and tournament selection
is used with τ = 0.4. Action mutation is not used. GA subsumption is active.

A Novel Toy Classification Problem: Mario Pixel Art The Mario environ-
ment consists of a 16x16 pixel art grid representing the famous video game character
Super Mario [Nin85]. Figure 10.2 depicts the problem space.

The pixel art comprises seven different colors. The inner rectangle over the yellow
knobs shows an exemplary condition of a queried classifier that is expected to be
answered by the oracle. The learning objective is to learn the correct color for
each possible position ~x ∈ R2 in the picture. This toy problem is reminiscent of
the CBP as introduced before. In contrast to CBP, however, the Mario problem
facilitates the evolution of more general classifiers. See for instance the problem
niche which represents the blue trousers of Mario in Figure 10.2. Additionally, it
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Figure 10.2.: Problem space of the novel Mario toy classification problem

entails a more complex action space A of size |A| = 7 and, thus, constitutes a multi-
class classification problem. The input space X ⊆ [0, 1]2 is continuous. Thus, each
“pixel” has a 1/16 share of the input space in each dimension.

The artificial oracle for this environment is realized as follows: The ratio of all colors
(i.e., actions) covered by the queried classifier’s condition in the problem space is
determined. Thus, a relative frequency (probability) distribution over the colors is
obtained. Whenever not a single color covers 90% of the requested area, the query is
rejected by the oracle. Otherwise, the majority color is returned as answer. XCS is
configured as follows: N = 7000, α = 0.1, β = 0.3, δ = 0.1, ν = 5, θGA = 30, ε0 = 10,
θmna = 6, θdel = 50, θsub = 50, χ = 0.8, µ = 0.04, pini = 10.0, εini = 0.0, Fini = 0.01,
r0 = 0.1, m0 = 0.1. Again, the interval-based UBR condition representation is used.
Uniform crossover and tournament selection is used with τ = 0.4. Action mutation
is not used. GA subsumption is active.

Short Discussion of Preliminary Results Examplary plots depicting the learn-
ing curves for both scenarios are shown in Figures 10.3 to 10.6. Additionally, the
statistics (means and standard deviations) obtained after conducting the experi-
ments are summarized in the Tables C.4 and C.5 which can be found in Appendix C.
Since this chapter is mainly intended as an elaborate discussion on promising future
research directions, a more thorough discussion of the results is omitted here. For
a detailed comparison and a thorough report on the results, the interested reader is
referred to [SMH17].

As is hypothesized, the main benefits of the outlined AL techniques appear at the
beginning of the investigated learning tasks. QBF as well as the related QBC ap-
proach noticeably reduce the number of needed macroclassifiers. At the same time
a significantly decreased system error can be obtained. This effect is observable
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Figure 10.3.: Learning curves of ALXCS (blue lines) using QBC with θsim = 0.20 and XCS
(red lines) over the first 20k trials on the WBC classification problem

0 5000 10000 15000 20000

Exploit Trials

S
ys

te
m

 E
rr

or
 / 

F
ra

ct
io

n 
C

or
re

ct

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
cl

as
si

fie
rs

0

1280

2560

3840

5120

6400

ALXCS (QBC) Fraction Correct (+/− 1SD)
ALXCS (QBC) System Error/1000 (+/− 1SD)
ALXCS (QBC) Macroclassifiers/N (+/− 1SD)
XCS Fraction Correct (+/− 1SD)
XCS System Error/1000 (+/− 1SD)
XCS Macroclassifiers/N (+/− 1SD)

Figure 10.4.: Learning curves of ALXCS (blue lines) using QBC with θsim = 0.01 and XCS
(red lines) over the first 20k trials on the WBC classification problem
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Figure 10.5.: Learning curves of ALXCS (blue lines) using QBC with θsim = 0.20 and XCS
(red lines) over the first 20k trials on the Mario toy problem
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Figure 10.6.: Learning curves of ALXCS (blue lines) using QSR and XCS (red lines) over
the first 20k trials on the Mario toy problem
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for both scenarios when the entire learning process over 100k exploit trials is con-
sidered. The fraction of correct classifications (classification accuracy), however, is
marginally reduced from a statistical perspective throughout all WBC experiments
when QBF and QBC is incorporated. However, overall it can be found to stay on
nearly the same level as can be seen in the corresponding plots.2

Regarding the QSR technique on the WBC problem, as of yet only negative im-
pacts on all three figures of merit have been observed. This underpins the general
disadvantage of query synthesis recognized in the literature as briefly discussed at
the beginning of this chapter. The significantly increased average population size
is deemed to result from the randomized queries (i.e., conditions). These seem to
be selected too arbitrarily to yield a performance gain. The population is expected
to be “swamped” with random classifiers which, due to the highly set initial values
for fitness and predicted reward, exerts misleading fitness pressure to the evolution-
ary process. A more thorough investigation on the impacts on the actual classifier
evolution is subject of future work.

For the Mario environment, not surprisingly, positive effects of the QSR technique
can be observed. Since the problem domain is sampled uniformly it can be expected
that any region of X is visited equally likely. Thus, as is hypothesized, the proactive
construction of random knowledge turns out to be useful (see Fig. 10.6). The average
accuracy as well as the system error measures have been found to significantly im-
prove in contrast to standard XCS. However, at the expense of an increased average
population size. Although the briefly discussed preliminary results on QSR appear to
be a sort of double-edged sword with regard to the two investigated scenarios, proac-
tive classifier construction is still deemed a powerful approach to overcome severe
challenges such as drifting input distributions and highly imbalanced data streams.
The following Section 10.2 outlines the idea for a more sophisticated method to de-
cide in which region of the knowledge base [P ] classifiers are missing and a synthesis
might be valuable.

In the exemplarily depicted learning curves, two different values for the similarity
tolerance θsim are reported. θsim controls the committee voting conflict which is
required to trigger an interaction with the oracle. Apparently, the higher value of
θsim = 0.2 yields better results since the oracle is queried more frequently. Addi-
tionally, this value is set to a reasonable small value, i.e, θsim = 0.01, to obtain first
insights on the effect of a drastically reduced number of oracle interactions. It turns
out that the positive impacts persist for all three figures of merit, even if the number
of oracle queries is significantly reduced by ≈ 76% and ≈ 92% for the WBC setting
and the Mario environment, respectively. This constitutes an interesting result since
it indicates that even with a small fraction of the learning steps at which an oracle is
asked for assistance, still significant performance improvements can be obtained.

2Please note that in the Figures 10.3 and 10.4 the developments regarding the fractions of
correct classifications for both XCS variants are nearly congruent what leads to a somewhat hidden
(red) curve indicating standard XCS.
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To consider the aspect of human uncertainty, another rudimentary experiment has
been conducted with a human oracle taken into the learning loop. Again, improved
performance over all configurations and for all metrics can be observed. Interestingly,
the best configuration revealed to be QBC with a similarity tolerance θsim = 0.01,
which resulted only a low interaction load for the human oracle. For details, please
refer to [SMH17].

10.1.3. Discussion

The objective of this section is to present the vision of (pro-)active learning clas-
sifier systems. It is outlined how XCS can be endowed with a form of curiosity
resulting in an intrinsic desire to learn more about uncertain regions within the
current knowledge base. Furthermore, it is demonstrated that proactive knowledge
construction, i.e., building classifiers prior to the first request from the incoming
data, can have beneficial effects. In particular, at the beginning of a learning task,
the proposed technique called QSR which selects target regions for new classifiers
completely at random, indicated positive effects under the assumption of uniform
input space sampling. Although first promising results can be reported, it explicitly
noted that the experiments are yet preliminary and, thus, limited in at least two
aspects: (1) Only stationary, uniform sampling of the problem’s input domain have
been considered so far. This implies that KGs mainly occurred at the beginning
of the respective learning tasks, what contradicts the idea of a proactive knowledge
construction for later appearing KGs. (2) At least for the reported QBF and QSR
query strategies, the AL component was activated in each learning step, what results
in a noticeable interaction load with the oracle. The latter aspect mainly constitutes
a problem when a human oracle is brought into the learning loop. However, as a
first countermeasure, the QBC approach, which resulted in a significant reduction
of the actual oracle load while still yielding significant performance improvements,
has been adopted for utilization within XCS.

Future Work The promising preliminary results achieved so far steer future re-
search efforts toward a more thorough investigation of the presented techniques with
a specific attention on:

1. The number of actually necessary oracle interactions to achieve significant
improvements.

2. The degree of oracle confidence required in order to expect beneficial effects

3. Idiosyncratic cognitive characteristics of human oracles, such as reluctance,
overconfidence and volatile concentration

4. An in-depth inspection of the impacts on the classifier evolution in terms of
e.g., generality, experience and mean lifetime.
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The concept of the (pro)active knowledge construction will furthermore be combined
with the transductive knowledge inference techniques as have been developed in the
main part of this thesis.

So far, ALXCS was tested on classification tasks only. In a next step, it is planned to
transfer the presented techniques to support the function approximation capability
of XCSF. In general, all techniques introduced in this section are straightforwardly
transferable to other LCS derivatives such as UCS [BG03] or ExSTraCS [UM15].
Another branch of investigation is planned to examine the use of ALXCS within
sequential decision making tasks as presented in [NSC15a] or even on more com-
plex scenarios such as coverage optimization in self-configuring smart camera net-
works [Ste+17b].

10.2. From Active to Proactive Knowledge
Construction

In the preceding section, first insights regarding the envisaged future research as-
piration to render LCS AL algorithms have been subject of discussion. Inspired
by Angluin’s memberhship query synthesis approach, one of the presented method-
ologies, QSR, already constitutes a first step ahead from a purely active toward a
more proactive means of constructing and adding novel knowledge elements k∗ to an
algorithm’s current knowledge base K at a certain point in time t (denoted by Kt

in the following). However, the preliminary experiments revealed both positive and
negative impacts on XCS’s learning performance, depending on the characteristics
of the learning problem at hand. For instance, in the WBC scenario arbitrarily
created classifiers spread randomly over the entire input space lack the property of
relevance. This, however, is a central assumption in the initially formulated hy-
pothesis. The data distribution is completely determined by the available labeled
data set. However, this data set is in turn randomly iterated over multiple epochs
(as required by an online learning system such as XCS). Thus, classifiers created in
regions within the input space X that are not hit by at least one instance from the
labeled data set L are essentially useless and waste population resources.

The main objective of this section is to push the idea of curious and self-reflecting
LCS further by introducing the novel concept of Proactive Knowledge Construction.
This concept is based upon the formerly discussed AL methodology. It is intended to
endow OML algorithms with the ability to more purposefully construct knowledge
elements, i.e., in the context of LCS, creating classifiers at insufficiently covered
regions that are deemed to gain relevance in the near future. In the end, this
idea is hypothesized to increase the learning efficiency as well as the robustness
of SLAS. Under this crucial relevance assumption, L(K) is expected to allow for
more accurate responses as would be possible through arbitrarily initialized or even
randomly created k ∈ K. Essentially, this decreases the initial prediction error and
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further leads to an improved discovery of these potentially relevant problem space
niches.

In this thesis it is focused on incrementally learning algorithms L(K) which update
their knowledge bases K every time a new situation σ = ~x ∈ X arrives. Thus, it
constitutes a non-trivial task to determine KGs, since the knowledge bases K evolve
every time L(K) is active. For the sake of introducing a generally applicable concept,
in the following it is abstracted from concrete LCS implementations. Instead, a
generic incrementally knowledge acquiring learning algorithm L(K) serves as a basis
for discussion. An exemplary generic L(K) is outlined in Algorithm 1:

Algorithm 1 Incrementally knowledge acquiring learning algorithm L(K)
Input: Kt, ~xt . Knowledge base and input situation at time t
Output: Kt+1 . Updated knowledge base
1: procedure Learn(Kt, ~xt) . Take new input ~xt and update knowledge base Kt

2: K ′ ⊆ Kt ←Analyze(Kt, ~xt) . Find matching knowledge for ~xt
3: if K ′ = ∅ then . Reactive Knowl. Constr.
4: knew ← CreateNewKnowledge(~xt)
5: AddToKnowledgeBase(Kt, knew)
6: K ′ = {knew}
7: end if
8: // Start of novel proactive knowledge construction part
9: if t mod θP = 0 then . Proactive Knowl. Constr.

10: kg ← IdentifyKG(Kt)
11: kpro ← CloseKG(kg)
12: AddToKnowledgeBase(Kt, kpro)
13: K ′ ← ReAnalyze(K ′, kpro, ~xt) . Check if kpro also matches ~xt
14: end if
15: // End of novel proactive knowledge construction part
16: at ← Predict(K ′, ~xt)
17: ut ← EvaluateOutput(at)
18: UpdateExistingKnowledge(K ′, at, ut)
19: Kt+1 ← Kt

20: end procedure

In the following, it is proposed to adapt existing algorithms which follow such an
algorithmic blueprint as follows: Let the algorithms L(K) (or shortly L) pursue
the complementary goal of implicit or explicit minimization of the magnitude of the
space of knowledge gaps |KG|.3

The achievement of the aforementioned goal involves proactive construction of knowl-
edge in those areas of the problem space PS for which L(K) has not acquired knowl-

3Since this proposition is quite formal in the beginning, the reader is referred to the definitions
of knowledge gaps in Section 3.3.
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edge elements ki so far (type-1 KGs). Additionally, it involves the improvement of
knowledge elements k ∈ K that are already part of the knowledge base K, but
have not yet reached the targeted quality and experience levels θq and θexp (type-2
KGs).

With regard to the introduced notion of incrementally learning algorithms and the
definitions of knowledge and knowledge gaps in Section 3.3, the following proposition
is posed:

Proposition 1. Assume a base algorithm L that incrementally acquires and ad-
justs knowledge elements ki ∈ K in response to observed instances from a problem
space PS. Extending L to a proactive knowledge constructing learning algorithm
L∗ which is able to self-reflect its knowledge base in order to identify and close
knowledge gaps kg ∈ KG, leads to improved knowledge bases K∗ in terms of (1)
faster and higher coverage of the problem space PS, and, (2) knowledge k ∈ K∗ of
increased average quality. Thus, the magnitude of knowledge gaps |KG| decreases
faster for L∗ than for L and the average quality q̄ of L∗’s knowledge base K∗ increases
more quickly with progressing time steps t.

Sketch of proof for Proposition 1 It is now formally proved that this proposi-
tion holds true under clearly stated assumptions. Therefore, Proposition 1 is divided
into Lemmata 1 and 2, where each targets one of the two main conjectures, i.e., (1)
the faster coverage of PS, and (2) higher average quality of knowledge.

Lemma 1. Under the assumptions of (1) an empty knowledge base Kt at t = 0,
(2) a finite K, i.e., |K| ≤ N,N ∈ N, (3) a maximum number n of learning steps
t = 0 . . . n, as well as, (4) a finite knowledge space KS, the remaining magnitude of
knowledge gaps for L∗ after t = n steps, denoted by |KGL∗t=n|, will be smaller than for
L. Further consider that L∗ additionally constructs m ∈ N knowledge elements kpro
proactively, each time L constructs a single new ki in a reactive fashion. W.l.o.g. it
is assumed that at each time step t, exactly 1 knowledge element is constructed by
L.

Proof. The number of knowledge elements in K∗t of L∗ at time t > 0 will always
be m + 1 times higher than for Kt of L, i.e., |K∗t | = (m + 1) · |Kt|. According to
the definition of type-1 knowledge gaps, i.e., KG1 = KS \ K, it follows that the
magnitude of KG1 is given by |KG1,t| = |KS|−|Kt|. According to the simplification
stated above, |Kt| can be replaced by t for L, and by (t ·m) + t = (m+ 1)t for L∗.
Thus, if t → n, |KGL1,t| = |KS| − n whereas |KGL∗1,t | = |KS| − (m+ 1)n. It clearly
follows that |KGL∗1,t | < |KGL1,t| holds true for t > 0.

Lemma 2. The average quality q̄ of the knowledge base K∗ of L∗ will always be
higher than for L when knowledge gaps of type 2, kgj ∈ KG2, are proactively closed
over time t. Additionally, it must hold that for the proactively generated knowledge
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element kpro, which replaces the identified gap kgj ∈ KG2 ⊆ K, the quality condition
qpro ≥ qj + ε is satisfied. With ε ∈ R+, qpro denoting the initial quality value of the
proactively created knowledge element kpro, and qj being the current quality estimate
of the identified type-2 gap kgj ∈ K.

Proof. Following the definitionsKG := KG1∪KG2, andKG2 := {kj ∈ K | qj ≤ θq},
the average quality of K can be written as4

q̄ = 1
|K|

∑
ki∈K

qi.

As K can be rewritten as K ′ ∪KG2, where K ′ := K \KG2, q̄ can be rewritten as:

q̄ = 1
|K ′|

∑
ki∈K′

qi + 1
|KG2|

∑
kj∈KG2

qj ,

Since qi > θq and qj ≤ θq for each ki ∈ K ′ and kj ∈ KG2 holds, it follows that
by proactively decreasing |KG2| by the same means as proven for Lemma 1, the
average quality q̄ of K will increase faster for L∗ than for L. This holds true even
if kgj remains in KG2 after the last proactive construction cycle, i.e., the qj > θq
criterion is not satisfied yet, since only qpro ≥ qj + ε is required by assumption.

The abovestated proof sketch corroborates the reasonableness of the outlined con-
cept formally. However, the initial quality of the proactively constructed knowledge
elements plays a central role. This initial quality is strongly dependent on the oracles
in the learning loop. As already discussed in the preceding Section 10.1, different
kinds of oracles can be taken into account ranging from human experts over existing
simulation or formal models to the use of the IC for transductive knowledge infer-
ence as introduced in this thesis. Without the assumption of qualitative responses
from at least either of those variants, also the benefits of the introduced concept of
proactive knowledge construction are hardly accomplishable.

10.2.1. Enhancing the MLOC Architecture

Figure 10.7 integrates the two-layered blueprint for ALXCS as depicted in Fig-
ure 10.1 with the MLOC architecture from the OC domain (see Ch. 3). As can be
seen, the first layer still contains an observer/controller tandem. The controller of
layer 1 is simplified to comprise an online learning algorithm maintaining a knowl-
edge base Kt over time t. This knowledge base serves as a basis for the newly
introduced situation analysis mechanism located at the observer of the first layer.

4Please note that for the sake of simplicity and w.l.o.g. the second criterion of expj ≤ θexp is
omitted here.
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Figure 10.7.: Schematic showing a possible integration of the Proactive Knowledge Con-
struction mechanisms into layers 1 and 2 of the MLOC architecture

The second layer is realized as another O/C pair devoted to the task of knowledge
analysis and closing of identified KGs. In order to provide the system with the capa-
bility of proactive knowledge construction, in a first step the current knowledge base
Kt is translated into a vector space. This enables the observer of layer 2 to apply
several knowledge analysis mechanisms. The output of this process is a selected
query ~q∗, which is deemed to obtain high benefit when being handled by at least one
of the available oracle models in the corresponding controller. At this place, a new
knowledge element kpro is constructed and finally fed back to the knowledge base
at layer 1, what brings the just delineated proactive knowledge construction cycle
full-circle.

These steps are deemed necessary in order to equip SLAS with self-reflection and
proactive knowledge construction capabilities. Initial thoughts of how they can be
realized are briefly described in the next paragraphs.

Mapping K into a vector space R

In a first step, the system itself needs to be enabled to perform computations on
the basis of its current knowledge base Kt. As Figure 10.7 illustrates, the required
conversion of Kt into a vector space is situated at the first layer’s observer com-
ponent of the MLOC-based system. The involved Online Rule Learning algorithm
(as exemplarily outlined in Algorithm 1) passes the current Kt to the neighboring
observer. As defined in Section 3.3, each ki ∈ Kt is assigned a subspace Di ⊂ X
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of the input space as well as an action element ai (or another target variable). In
combination, Di×{ai} comprises a certain subspace of the problem space PS. Since
PS is usually very huge in realistic applications, it might be the case that not every
possible input-output pair (~x, a) ∈ Di × {ai} of all knowledge elements ki ∈ Kt can
be incorporated into the analysis process for the sake of ensuring efficient compu-
tation. Thus, a mechanism to select representative knowledge vectors ~pj ∈ Di from
all ki ∈ Kt is needed. On the basis of the selected representatives Rt := {~pj}, in-
ferences regarding the coverage of the theoretical knowledge space KS in terms of
its underlying input space X can be drawn. Naively, a vector near the center of the
geometric shape determined by Di might be selected as one representative, as de-
picted in Figure 10.7. Intuitively this would, however, neglect the entire surrounding
area/volume of the knowledge element ki as determined by Di and, thus, only yields
a very rough approximation of the actual coverage of X. Nonetheless, for the sake of
simplicity and the scope of this chapter on future research, this mechanism is further
assumed in the following. With that, a first possibility to seek for type-1 knowledge
gaps is provided. Please note that it is assumed that the selected representatives
~pj still carry references to their corresponding knowledge elements ki. This permits
access to the remaining knowledge attributes ai, expi, qi and, thus, facilitates the
search for knowledge gaps of type 2. As described in Section 3.2, the input spaces
X are assumed to be vector spaces, typically Euclidean. Accordingly, all subspaces
of X are vector spaces and, thus, the selected representative elements ~pj ∈ R can
be regarded as vectors as well. Further steps are based on this assumption.

Knowledge Gap Identification

With the set of vectors Rt representing the system’s current knowledge at time t,
a SLAS is now enabled to apply different computations for identifying underrepre-
sented niches in the current knowledge base Kt. As Figure 10.7 suggests, the idea of
using AL techniques is carried on. In order to facilitate a more purposeful KG search,
beyond simply creating knowledge elements by chance as done with QSR before, in
the following another approach based on Kernel Density Estimation (KDE) [SS05]
is outlined.

KDE is a means to estimate the probability density function (pdf) of a random vari-
able based on a sample of concrete realizations. For the purpose of utilizing this
technique in the context of proactive knowledge construction, the random variable is
assumed to be multivariate and thus can be mapped to the input space X. Accord-
ingly, the pdf of X yields a measure of how densely the input space is populated by
knowledge elements pj ∈ Rt ⊂ X at time t. The general formula of a kernel density
estimator is given by:

f̂X(x) = 1
n

n∑
i=1
Kh(x− xi) (10.8)
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Here, Kh denotes the kernel parameterized with its bandwidth h, which is a smooth-
ing parameter for scaling purposes. Kh can be a hypercube kernel, the Parzen win-
dow, or the Gaussian kernel, for instance. Beside the univariate definition (Eq. 10.8),
there also exist variants for multivariate estimators which are needed in the present
case. Let X be a d-dimensional continuous random variable. Assume further n
samples ~x ∈ Rd. Then, the multivariate KDE can be estimated using the product
kernel [SS05]:

f̂X(~x) = 1
n

n∑
i=1

d∏
k=1

1
hdk
Kh

~x(k) − ~x(k)
i

hk

 (10.9)

Again, Kh is a univariate kernel parameterized by the smoothing bandwidth h,
which in this case can differ for each dimension k = 1 . . . d (denoted by hk). More
sophisticated multivariate KDEs exist, e.g., based on multivariate Gaussian kernels.
For the sake of simplicity, here only a methodology which is more straightforward
to implement is outlined.

With this methodology to estimate the density at arbitrary points in a vector space at
hand, the next step is to adopt it to the set of knowledge representing vectors Rt. All
~pj ∈ Rt are used as samples ~xi for the KDE. Next, let Q := {~ql | ~ql ∈ X}, l = 1 . . .m
be a set ofm query locations where the ‘knowledge density’ kd(~ql) is to be estimated.
This can be done by means of substituting ~x with ~ql in the multivariate density
estimation given by Equation 10.9. Thus, n in Equation 10.9 becomes |Rt| and ~xi
will be ~pj ∈ Rt. The query locations ~ql can be selected completely at random, or
grid-like via partitioning the input space in predefined bins. Bearing the curse of
dimensionality in mind, the number m has to be selected properly with regard to
the dimensionality of X. Finally, the query location ~q∗ is selected via

~q∗ := argmin
~ql∈Q

kd(~ql). (10.10)

This sort of greedy approach results in a strong exploratory behavior. This means
that each time the outlined proactive learning cycle is executed, it is very likely that
a knowledge element is constructed in an entirely uncovered region. This seems a
legitimate way to eradicate type-1 knowledge gaps. Apparently, the query selection
strategy is one of the most crucial decisions of the proactive knowledge construction
process. This is due to the fact that it initiates the construction of knowledge
in regions that are assumed to become relevant in the near future (see also the
discussion at the end in Sect. 10.2.2). An alternative way to decide on knowledge
gaps to be closed would be to select queries ~q∗ in regions of moderate density. In
such regions, knowledge has already been acquired in the course of learning (most
likely reactively), which suggests relevance of this niche. Finding more sophisticated
ways to determine the most valuable gap to be closed constitutes a major aspect of
future research.
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Knowledge Gap Closing

The logical next step after knowledge gaps have been identified by the knowledge
analysis mechanism in the observer at layer 2 of an MLOC-based system is to find
appropriate ways to ‘bridge’ those gaps. In Figure 10.7 it is suggested to extend
the controller situated at layer 2 toward a more general knowledge gap closer. The
envisioned main task of this controller instance is to serve as the (artificial) oracle
which can be realized by various means, as discussed before.

Putting Humans into the Learning Loop The first obvious choice for an oracle
is a that of a human expert. One requirement to realize an adequate involvement of
humans in the learning loop is to define an intuitive human-machine-interface which
can be accessed by a domain expert. These experts can be physicians in a medical
context or traffic engineers in a traffic control scenario, for instance. On the one
hand, these experts can be asked to provide entire, hand-crafted knowledge elements
kpro in form of rules comprising their expertise with the task at hand. On the other
hand, classification labels or other target variables can be requested from time to
time on demand. Challenging aspects that need thorough attention are: (1) Latency
in response when the human oracle is not immediately available or answering the
query takes time (e.g., experiments need to be conducted). (2) Idiosyncratic human
factors such as reluctance, uncertainty and presumed benevolence [DC08].

Model- and Simulation-based Approaches The incorporation of computa-
tional models and optimization (meta-)heuristics into the MLOC architecture has al-
ready been demonstrated to be beneficial in various domains such as network [TH11]
and traffic control [Pro+09]. In such convenient situations, where computational
simulations or mathematical models describing the complex problem at hand ex-
ist, the resulting simulation-optimization tandem can be adopted for the purpose
of knowledge gap closing. Strictly mathematical models provided as formulas are
referred to as heuristics to such problems. Such heuristics allow for solving the
underlying problems more efficiently in contrast to computationally expensive sim-
ulation tools. In terms of closing an identified knowledge gap, the selected query ~q∗
is taken as argument for a heuristic or as starting point for a simulation. In either
case, the system utility ut+1 serves as objective/fitness function the applied opti-
mizer attempts to maximize by seeking the most appropriate action or target value
(solution candidate). In other domains such as machine learning, such models are
also known as surrogate models. Such models can themselves be subject to learning,
i.e., approximations of the input-output relationships can be constructed and con-
tinually improved on the fly in the course of the system’s runtime. One methodlogy
that resembles this approach has been presented in Chapter 5 of this thesis. One
advantage of simulation models and heuristics is their lesser time effort compared to
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waiting for respective observations in the real world. Another advantage is the om-
nipresence and non-reluctance of such artificial oracles in contrast to human oracles,
which might be confused and negatively affected by untypical queries. However, the
advantages often come at the expense of limited expressiveness and accuracy what
needs to be taken into account when designing proactively learning systems.

Transductive Inference based on Interpolation A third method to close iden-
tified knowledge gaps has been subject of thorough investigation in the course of
this thesis – the direct, i.e., transductive inference of knowledge elements from ex-
isting ones in their neighborhood. Consider an inner knowledge gap kgin of type
2 as defined in Section 3.3. Such a kgin per definition lies within the convex hull
conv(Kt \KG2,t) and is thus surrounded by knowledge elements ki with a sufficient
degree of quality qi > θq and experience expi > θexp. These knowledge elements
ki can therefore be used to construct sampling points based on which an interpola-
tion can be calculated. More concretely, it is proposed to construct sampling points
spk := (~x, a) with properly selected sampling point coordinate vectors ~x ∈ Di ⊂ X,
and their actions ai ∈ A serving as function values to be interpolated such as in-
troduced in Chapter 5 for the ASI technique. This permits the transduction of the
actions a∗ for the identified query q∗, with which in turn a novel knowledge element
kpro can be constructed. The same methodology can also be applied to interpo-
late the quality estimate kpro.q for instance, which can be understood as a form of
knowledge bootstrapping. This concept can be straightforwardly extended in order
to allow for extrapolation. Therefore, only the condition that the queried gaps have
to lie within the convex hull of K needs to be relaxed. However, this modification
necessitates powerful techniques with reasonable properties regarding their extrap-
olation characteristics to prevent misleading or even disruptive transductions. The
transductive approach is deemed advantageous since no additional effort is required
for requesting human experts or for the development or appropriate configuration
of analytical models and computational simulations, respectively, for the problem at
hand. Instead, it is possible to simply rely on existing knowledge elements within
the system’s current knowledge base Kt.

Thorough investigations that compare the outlined oracle methodologies on various
scenarios constitute a promising direction of future research.

10.2.2. Discussion

An inevitable question that should be discussed is:

When, how and where can proactively constructed knowledge be considered sensible?
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Regardless of whether the general rationale for incorporating the just introduced
novel concept of proactive knowledge construction proofs plausible or not, the elab-
orated ideas rely on a few assumptions that are subject of the following discussion.

Problem Space and Knowledge Relevance A major assumption implicitly
made is that each existing niche in the problem space PS is equally relevant and,
thus, needs to be fully covered in order to obtain the desired system robustness and
performance. Carrying on this assumption, the PS should not be deemed to only
contain relevant and sensible combinations of situations and actions. It strongly
depends on the actual input space X, which in case of many SLAS is determined by
the ranges of e.g., the sensors and inner configurations, whether obscuring feature
combinations are possible and thus can be presented to the oracles. It is reasonable
to not assume that any niche within the problem space has to be covered to obtain a
desired utility level. Consider e.g., certain combinations of sensor readings that are
theoretically possible but practically (or physically) irrelevant. An automatic way
to figure out the important and valuable regions in PS and to rank the identified
knowledge gaps in terms of their relevance is an important aspect of future research.
A first solution to that problem might be to interpret the convex hull of Kt as
the area of relevance within PS at time t. On that basis it would be possible to
restrict the potential queries to knowledge gaps which are inner knowledge gaps,
i.e., kg ∈ KGin, and to those which are in the direct proximity to the boundaries
of conv(Kt \ KG2,t). A similar behavior can be realized by the proposed KDE
approach, when the selection criterion is set to the medium (average) instead of the
lowest density, for instance.

Oracle Reliability, Availability and Benevolence A further assumption on
which the concept relies is the omnipresence and omniscience of the knowledge gap
closing mechanisms at layer 2, at least to a certain degree. Most notably, a central
assumption is that each time a type-2 knowledge gap is identified, the newly created
kpro at least provides a marginally higher quality. As already recognized by Baum
and Lang in [BL92], synthesized queries can obscure human oracles what leads to a
rejection of the queries or, even worse, to answers with insufficient confidence and
quality. Furthermore, applied simulations can be imprecise as can be heuristics for
certain inputs. The corresponding optimization heuristics can get stuck in local
optima when the underlying fitness landscape is complex, what also might affect
the reliability of artificial oracles. In future work, model parameters for e.g., oracle
uncertainty and absence, as proposed by Donmez et al. in [DC08], will be considered
in order to account for this aspect.

Knowledge Handling of Base Algorithms L(K) So far, the proposed con-
cept is mainly thought of as extension to existing algorithms of a specific kind –
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rule-based online learning algorithms that incrementally build up their knowledge
bases K. In the context of online learning, however, specific challenges such as
the plasticity-stability dilemma [DP13] have been recognized for a long time. The
dilemma essentially poses the question of when and how much of old knowledge
(which might have become obsolete in the course of learning due to appeared con-
cept drifts) can be sensibly forgotten in favor of novel, kind of fresh knowledge that
potentially better approximates the underlying problem function Ft at the current
time t. The means of how the considered base algorithms handle this dilemma clearly
affects the outcomes of proactive knowledge construction. In order to thoroughly
analyze the impacts of different kinds of concept drifts [Web+16], it is planned to
design particular benchmark problems. In that way, revealing insights regarding
the development of knowledge bases K and the set sizes of KG1 and KG2 can be
obtained, e.g., by means of visualizing the convex hull conv(K) over time. As a
further milestone, the adoption of the proposed concept in several online machine
learning algorithms such as XCS, online learning bagging and boosting algorithms,
or Gaussian mixture models, appears to be a logical next step. In addition to that,
the development of entirely new knowledge gap-centric learning algorithms, with
specifically designed mechanisms and policies that account for the abovementioned
aspects, seems to be an interesting branch of further research.

10.3. Related Work

10.3.1. Active and Human-Assisted Learning in LCS

In an early attempt reported in a 1999 paper of Xi et al. [XLY99], an approach to
active learning for classifier systems is proposed. Even if the title suggests a strong
relation to the work presented in this chapter, by having a closer look it turns out
that their approach differs fundamentally. The authors redefine the term ‘active
learning’ for their purposes, although the concept of AL already appeared prior
to that work in the literature. In essence, what is proposed in this work is that an
artificial agent modeled by a ZCS classifier system is extended to generate, recognize
and process signals (might be interpreted as pheromones) that are spread over the
environment and lose intensity over time. These signals can then be perceived and
used to manipulate the learning process. Via so-called tuning and damped strength
operations the signals influence the agent’s perception and credit assignment. This in
turn affects its moving decisions in a way that cells with low or no signals are visited
more likely. The result is an increased efficiency when solving animat problems such
as Woods1 and Woods7.

Injecting knowledge from external sources is not a novel means to enhance the per-
formance of LCS. As already mentioned in the section on related work in Chapter 6,
Urbanowicz et al. propose to use expert knowledge to guide the discovery processes
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of LCS in [UGM12a; UM15]. This approach differs from the concept of ALXCS in
that probabilities to influence the specificity of classifiers newly generated by cov-
ering or the GA are derived in a preprocessing step based on the a priori available
training data. For the outlined work on combining XCS with AL techniques, the
learning process of XCS is guided online, i.e., during the actual learning phase.

In [NSC15b; NSC15a], Najar et al. present the Socially Guided XCS and the Social-
Value XCS. The authors introduce a model-based learning approach, where the task
model is supported by a social model as well as by a contingency model which serves
as a bridge between the former two. Their system is applied to a multi-step RL
task where a robot is asked to decide which button to press according to a visual
stimulus. A teacher can guide the robot’s decision by means of teaching signals, e.g.,
pointing to the correct button. The authors found that the learning success can be
improved in terms of the total amount of received reward, the number of steps until
the robot finds the correct button, as well as the compactness of the evolved rule-
base. In contrast to the method proposed in this thesis, the Socially Guided XCS
is a model-based reinforcement learner that may, or may not be taught by a human
teacher. Here, XCS is enabled to be curious about environmental niches where it
could not gain a sufficient level of experience so far. Furthermore, the external
source of knowledge is not necessarily assumed to be a human teacher, but can also
be realized by artificial oracles.

10.3.2. Anticipatory Classifier System

Anticipatory Classifier Systems are due to Stolzmann [Sto99] (ACS) and Butz [But02]
(ACS2). These systems are regarded anticipatory because they build up a model
of the environments in which they are asked to act, more precisely of the under-
lying state transition function, what in turn facilitates planning. Due to their
model-learning and subsequent planning nature, they are reminiscent of Sutton’s
Dyna approach [Sut91]. ACS replace the condition-action rule representation by a
condition-action-effect representation [SW07]. Thus it facilitates a one step look-
ahead for all classifiers that match the current situation what in turn allows to bias
the action-selection mechanism. ACS constitute an interesting and psychologically
inspired descendant of LCS. However, the relation to the outlined research direction
of (pro-)active LCS is somewhat limited so far. Nevertheless, the model which is
learned during the online interaction with an environment can be used to simulate
future state transitions. This can potentially be utilized to obtain hints in which
niches of the problem space a proactive construction of knowledge can be useful or
not.
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10.3.3. Detrimental Forgetting

Butz and Sigaud in [BS12] investigate the effect of global deletion on the occurrence
of detrimental forgetting and propose a novel local deletion scheme for being used
in XCSF. Especially in problems where a non-uniformly distributed sampling of the
underlying function is assumed, important but rarely sampled niches can be ‘forgot-
ten’ due to a higher deletion probability. This phenomenon clearly facilitates KGs of
the first type. The local deletion mechanism attenuates the resulting negative effects
– at least for functions with specific characteristics. However, results also indicate
that XCSF already seems to be inherently robust against non-uniform sampling – at
least for rather low complex two-dimensional functions as investigated in their study.
Since their technique is intended to lessen the effect of uncovered niches within the
knowledge base it can regarded as related in some sense. However, local deletion is
neither an active nor a proactive means of dealing with KGs. Nevertheless, it still
constitutes a valuable and complementary way to mitigate the resulting negative
side-effects of KGs.

10.3.4. State-Action Map Covering in LCS

In [Nak+15], Nakata et al. elaborate on the important question of how XCS should
cover a state-action space in noisy learning environments. By endowing XCS with
the capability to build up knowledge before it is actually requested, the input space
coverage strategy is directly affected. Nakata et al. introduce a couple of ways to
combine the advantages of accuracy-based LCS and strength-based LCS, a question
also investigated by Kovacs in [Kov00a]. A learning strategy to create a so-called
weighted complete action map is introduced which enables XCS to evolve a popula-
tion that is complete in the sense of learning the entire X×A→ P mapping, but also
assigns more classifiers to the highest-payoff niches in the environment. The authors
thus trade-off acquiring complete knowledge about the environment and purely re-
taining knowledge that yields reward, thereby omitting valuable knowledge of what
is definitely wrong in which situation. In view of the concepts as introduced in this
chapter, their approaches can neither be deemed active nor proactive in constructing
novel knowledge. Still, adopting their weighted complete action map might be ben-
eficial since the transductive interpolation-based knowledge inference approaches of
Chapters 6 and 8 could obtain better sampling points which are constructed out of
the classifiers.

10.3.5. Further Work on Active Learning

Naturally, there exists a strong relation between the proposed concepts and the field
of AL. Beside the aspects of AL research that have already been mentioned above,
the following paragraphs briefly appreciate a few further relevant works.

267



Chapter 10. Toward Proactive Learning Classifier Systems

Another similar concept constitutes the selective sampling approach of Cohn et
al. [CAL94], which defines a region of uncertainty over the class of concepts and
strictly samples from within that region to improve generalization. With respect to
our notions introduced in this chapter, their concept can be incorporated in order
to reduce the amount of type-2 KGs within the inner regions (e.g., modeled by the
convex hull) of the current knowledge base.

As an extension to the general AL framework, in [DC08] Donmez and Carbonell
introduced Proactive Learning (PAL). With PAL the authors attempt to tackle cer-
tain limitations regarding oracle assumptions often made in the original AL setting.
Among these limitations, the restriction to only one oracle, its omniscience, absence
of oracle reluctance, as well as the assumption of equal costs for all queries are explic-
itly considered. Even if the name suggests the goal of achieving ‘proactive’ learning
behavior, Donmez’s and Carbonell’s view of proactive learning is rather different
from the perspective which is intended to be conveyed in this thesis. Their focus is
set on challenges such as latencies occurring when the human oracle is not immedi-
ately available, and other factors such as reluctance, uncertainty and benevolence.
In future work, estimates reflecting uncertainty, absence and other idiosyncratic
characteristics of human oracles are integrated into the concepts outlined in this
chapter.

Calma et al. discuss different closing strategies in terms of oracle types and study
the question of how they can be used in a complementary way [Cal+17]. Their pro-
posed concept fits well with the proactive knowledge construction cycle introduced
here, especially when it comes to the eradication of gaps identified at layer 2. The
same authors have also proposed two extensions of AL toward dedicated [Cal+16]
and opportunistic [Bah+16] collaborative interactive learning, denoted D-CIL and
O-CIL, respectively. Collaborative interactive learning [Sic+18] is a newly initiated
research branch that attempts to holistically approach the challenges of today’s col-
lective systems by combining techniques form the domains of ML, AL, OC and AC.
The overall objective is to facilitate life-long learning of future complex and intelli-
gent systems that are deployed in time-variant productive environments where also
humans are involved. In order to achieve the system wide goals, all participating
entities (intelligent subsystems, human experts, workers, etc.) are assumed to inter-
act and need to collaborate. These systems are referred to as interactive, since the
exchange of knowledge – which is learned throughout the system’s lifetime – is as-
sumed to work bidirectionally among the artificial and naturally intelligent systems,
i.e., agents and humans. In D-CIL similar shortcomings to those revealed in [DC08]
regarding oracle assumptions are considered. The expertise of human oracles which
are experts in a clearly defined application domain (hence the term ‘dedicated’) is
subject to continual assessment by the D-CIL systems. This allows the exploitation
of the individual strengths and attenuation of the weaknesses identified for those
dedicated knowledge sources queried by means of AL techniques. O-CIL in contrast
focuses on the collaboration aspect and the heterogeneity of the participating en-
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tities. Humans are not necessarily deemed as experts and other knowledge sources
such as the vast amount of unstructured information available through the inter-
net or crowd-sourcing services are considered. The collective systems are open and
subject to churn which impacts the availability of knowledge sources.

10.3.6. Further Related Concepts from the AI Domain

Throughout the following paragraphs, further initiatives found in the broader field
of AI which represent promising candidates for further investigation and combina-
tion with the conceptualized curious and proactive knowledge acquiring LCS-based
agents are briefly mentioned.

Another related branch of research can be found in the domain of evolutionary
algorithms (EAs). Lehman and Stanley introduced the Novelty Search algorithm
in [LS08; LS11]. Novelty search replaces the objective or else fitness function of
EAs with a novelty metric that forces the optimization process to seek behavioral
novelty, i.e., underexplored areas in the space of unique behaviors – the so-called
novelty space. A more thorough investigation of their definition of novelty might
be also promising for the work on ALXCS as introduced here. It appears to relate
more to the adoption of AL concepts as outlined in Section 10.1. Since in ALXCS
the system is enabled to query oracles for gaining information about problem space
regions where no experience could be made thus far. This in turn results in modified
behaviors. However, a distinguishing aspect of the work of Lehman and Stanley
is that the objective of proactive knowledge construction is to seek KGs in the
evolved knowledge bases of learning algorithms instead of explicitly seeking novel
behaviors of the learning agents in order to speed up learning and facilitate open-
ended evolution.

Attenberg’s and Provost’s research on Guided Learning [AP10] is concerned with
the question of how human resources can be used to construct accurate classification
models in highly imbalanced scenarios beyond the means of classical AL. They pro-
pose to involve human experts to explicitly seek for rare objects in the data and pass
the identified rarities to the learning algorithm for targeted training. Bringing their
approach in line with the introduced notion of proactive knowledge construction, it
becomes apparent that a strong potential to involve the idea of guided learning as
a human-assisted step during the knowledge gap identification phase exists.

A psychologically inspired RL framework which is intended to enable learning agents
to autonomously build up so-called skill-hierarchies that divide the overall task into
smaller sub-learning tasks is called Intrinsically Motivated Reinforcement Learn-
ing [BSC04; CBS05]. It is based on the insight that the knowledge which is acquired
for the own sake (i.e., due to intrinsic motivation) is crucial for solving complex tasks
autonomously later on. Such skills are acquired during the exploration of the en-
vironment which happens reactively due to the perception of novel salient events.
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These basic skills are then stored in a skill knowledge base where each entry consti-
tutes an individual model producing intrinsic rewards that guide the agent’s behav-
ior. In contrast to proactively seeking KGs in an agent’s knowledge base, in their
work the agent acquires a skill knowledge base in a reactive manner where models of
smaller sub-problems (skills) are created and stored as a response to salient events.
Nevertheless, the integration of both ideas seems to be a promising and viable aspect
of future research.

Another aspiration to develop cognitive agents that integrates the psychological
model of curiosity with computer science has appeared under the name Computa-
tional Curiosity. See [WM13] for a recent survey. Already in the early 90s, Schmid-
huber investigates the possibility of equipping learning agents with curiosity and
boredom [Sch90]. In [Sch91] he proposed to extend (neural) control systems with
a so-called confidence module, which aims at learning an estimate of the main con-
troller’s prediction reliability. Schmidhuber defines curiosity as “(. . . )the desire to
improve a predictor of the reactions of an environment (a ‘world model’)” [Sch91].
Therefore, he proposes to spend reward when there exists a gap between reality and
expectations. Thus, an agent becomes curious with regard to situations where the
prediction accuracy is low. However, since the agent should improve with increasing
experience, the agent becomes also bored about states about which it has been curi-
ous before as soon as the accuracy increases. A more general approach which keeps
the agent away from states which are either too unpredictable or too predictable is
presented by Oudeyer and Kaplan in [Oud04; OKH07], who introduced Intelligent
Adaptive Curiosity (IAC).

Linden and Weber [LW93] proposed competence modeling. They used this approach
in order to steer the exploration steps of reinforcement learning agents in the direc-
tion where their so-called world model is least confident in regard of the expected
error. Therefore, a second neural network is trained to approximate the error from
past experiences which is then used to guide the agent to states where the error is still
high. Since the authors train neural networks which obtain a global approximation
of the entire problem space, the approach fundamentally differs from the knowledge
base-centric view postulated in this thesis. In the latter, the identification of uncer-
tain and entirely uncovered regions beyond simply relying on error-based measures
of competence is set in the spotlight.

Macedo and Cardoso extend the concept of curiosity modeling in learning agents
toward also considering other motivations such as suprise and hunger in their mo-
tivational agents approach [MC04]. They argue that not only curiosity affects the
exploratory behavior of natural beings. Based on single- and multi-agent settings
their exploration by motivation idea has been shown to work as intended. Unknown
environments have been efficiently explored with motivational agents selecting their
actions by minimizing negative feelings and maximizing positive ones.
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In summary, there exist different endeavors to endow learning systems with capabili-
ties to act curiously in order to guide their exploratory behavior – a number of which
have been briefly outlined above. Certainly, there are further concepts that have not
been considered yet. However, since this chapter is intended to provide an outlook
to potential future research directions a comprehensive literature review is beyond
the scope here. A thorough investigation of the aforementioned and further method-
ologies to implement purposeful exploration of the underlying problem spaces and
thereby facilitate proactive knowledge gap eradication constitutes a promising next
step.

10.4. Chapter Summary

The purpose of this chapter was to provide first insights on the potentials of design-
ing Proactive LCS that are endowed with the capability of actively seeking KGs and
creating novel knowledge elements in advance in order to close them. Therefore,
in the first part methods from the domain of AL have been reviewed and adapted
in order to be incorporated into an Active Learning XCS (ALXCS). Preliminary
results on a newly designed toy problem, called the Mario problem, and on a real-
istic data set for breast cancer classification have been briefly summarized. These
revealed that the use of AL bears strong potentials for reducing the system’s predic-
tion errors over the entire learning task. Positive benefits on the classifier evolution
in terms of smaller population sizes could also be observed. In the second part of
this chapter, this approach was taken a step further toward the notion of Proactive
LCS. It was abstracted from concrete LCS systems to a generic incremental knowl-
edge building learning algorithm which was then extended to facilitate Proactive
Knowledge Construction. It has been shown formally that the fundamental idea
behind proactive knowledge constructing algorithms leads to effective KG reduction
and quality improvements over the conducted learning period. A concrete proposal
how the MLOC reference architecture from the domain of OC can be enhanced
to facilitate proactive knowledge construction was discussed. Furthermore, a first
methodology based on KDE to proactively identify particular regions in the knowl-
edge base where the coverage is poor has been delineated. Finally, directly related
concepts and further aspirations that strive to make ML algorithms anticipatory,
curious and intrinsically motivated have been reviewed and brought in line with the
KG-centric approach proposed.
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11.1. Summary & Results

Learning is an inevitable capability to deal with the ever increasing complexity
of today’s and future Self-Adaptive Systems (SAS). Numerous Machine Learning
(ML) concepts and techniques exist but not all of them satisfy the requirements of
Self-Learning Adaptive Systems (SLAS) that are asked to act online in real world
environments. Endowing SAS with learning algorithms appears to be a double-edged
sword. On the one hand, these SLAS are enabled to adapt their control behaviors to
changing conditions. On the other hand, however, requiring these systems to further
improve (i.e., learn) at runtime implies evolving knowledge bases that determine how
appropriately these systems react to unforeseen situations. Both the exposure of
unforeseen situations to the systems and the need for continuing adaptation of their
knowledge bases elicit the occurrence of a challenging issue in SLAS – Knowledge
Gaps (KGs).

This thesis has introduced first strategies to counter such KGs immediately at the
productive runtime of XCS-based SLAS. In contrast to existing approaches that
employ offline simulations coupled with optimization heuristics in order to reactively
create new knowledge elements on demand, this thesis proposed a variety of ways
to endow a specific ML technique called XCS with internal mechanisms in this
respect. Therefore, the posed KG challenge was approached from two directions in
this thesis:

1. Bridging gaps in the knowledge base via knowledge transduction by means of
using scattered data interpolation.

2. Preventing the occurrence of gaps by endowing the learning mechanisms with
Active Learning (AL) techniques and the ability of Proactive Knowledge Con-
struction.

The first methodology formed the core topic of this thesis. For the second way of
countering KGs, initial concepts have been proposed and partly elaborated within a
specifically dedicated chapter on future research directions at the end of this work.
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After providing necessary background information and introducing theoretical pre-
requisites in Chapter 2, a system model for SLAS realized by OC concepts has been
derived in Chapter 3 which states the research problem. In the same breath, the
notion of KGs was formally introduced and the suitability of XCS, which served as
reference algorithm under investigation throughout this thesis, was justified.

The main part of this doctoral thesis was then devoted to the development of first
interpolation-based approaches for dealing with KGs. Architectural extensions to
LCS have been proposed in Chapter 4. A novel Interpolation Component (IC) was
introduced and thoroughly discussed. This component has laid the foundation for
the four novel strategies that were developed to integrate interpolation into the
algorithmic structure of XCS.

The first approach was presented in Chapter 5. It is intended to steer the action-
selection behavior of XCS-based learning agents by means of transductive knowledge
inference from collected experiences already made with the learning environment.
This integration strategy called Action Selection Integration (ASI) was introduced
in two different forms: (1) XCS-IC: A loosely coupled IC instance serves as memory
for a limited number of made experiences, which was then used for an interpolation-
based ad-hoc creation of an action-selection surrogate without the need for inductive
approximation of an entire surrogate model. (2) XCS-CIC: A tightly integrated vari-
ant where the experiences are extracted directly from the already existing knowledge
elements within XCS’s knowledge base that match similar situations. This action-
selection surrogate yields interpolated values that allow for a purposeful guidance of
the actual action-selection regimes of XCS. This first ASI strategy was demonstrated
to yield significant reductions between 30% and 40% in terms of the overall system
prediction error on the challenging checkerboard problem. This was accompanied
by slight increases of the fraction of correct decisions up to 2.98% for the first XCS-
IC approach. Slight performance degradations regarding the same figure of merit
have been observed for the tightly integrated XCS-CIC approach. A reduction of
up to 1.08% regarding the fraction of correct decisions compared to standard XCS
was observed – a result that was thoroughly discussed and deserves more research
attention in the future.

In the Chapters 6 and 8, two strategies that enhance the rule discovery mechanisms
of XCS (i.e., covering and the genetic algorithm) have been introduced. Both the
Covering Intialization Integration (CII) as well as the Offspring Initialization Inte-
gration (OII) technique change the means of how newly created knowledge elements
(i.e., classifiers) are initialized before added to XCS’s knowledge (or rule) base. The
former CII approach counteracts so-called type-1 KGs by means of interpolating
the initial values for a subset of the classifiers’ learning parameters on the basis of
adjacent knowledge elements matching similar situations. Again the desired system
error reductions could be observed when XCS-CIC was applied to several function
approximation tasks. The improvements are ranging from 19% for the most sim-
plistic benchmark function to less than 6% for the more complicated ones over the
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entire learning period of 200k steps. However, since covering only occurs at early
stages of learning, it turned out that the highest and most substantial benefits natu-
rally occur during the first 10k steps. A result that exactly supports the hypothesis
initially conjectured in this thesis. The decreased approximation errors were found
to come at neglectable costs of a marginal increase in the population sizes (number
of evolved rules), which constantly stays below 1%.

In order to gain insights on the applicability of the so far developed interpolation
strategies on a realistic application scenario in the context of self-adaptive urban
traffic light control, an additional case study has been presented in Chapter 7. The
so-called Organic Traffic Control (OTC) system was the subject of investigation. It
utilizes a substantially adapted version of XCS (called XCS-O/C) in order to imple-
ment the self-learning property. Due to the modifications of XCS-O/C, only an adop-
tion of ASI and CII appeared to be plausible. A case study focusing on an existing
intersection situated at Hamburg, Germany simulated by a microscopic traffic simu-
lator was reported. The XCS-based OTC system’s task is to observe the intersection
and self-adapt the signal plans of the installed traffic lights in order to reduce delay
times of the traffic participants. Previous studies already confirmed the superiority
of XCS-O/C in comparison to human-engineered signal plans. The obtained results
that have been discussed in this chapter revealed that the interpolation-based XCS-
O/C variant bears to potential for futher reductions of the average waiting times
up to 2.17 seckm compared to the existing system. Especially in high-demanding peri-
ods, i.e., the morning rush-hours from 6 to 8 am, the interpolation-based XCS-O/C
showed slightly depressed delay increases as well as a faster recovery from these peak
conditions. Since the systems were configured to start with empty knowledge bases
except for a human-designed default rule, these observed results clearly indicate
improved KG resistance in a realistic scenario with near-to-reality conditions.

The second approach for interpolation-based classifier initialization called OII works
similarly to CII but takes existing rules in the same problem space niche into ac-
count when creating novel classifiers. It was devised to eradicate the shortcoming of
the former CII strategy which acts mainly at early learning stages. In contrast, the
involved genetic algorithm is periodically invoked and has continual impact on the
evolution of the knowledge base of XCS. The conducted empirical studies revealed
that the OII strategy mostly impacts the number of classifiers stored in the popu-
lation. The average population sizes have found to decrease between 9% and 18%
on average, whereas the system errors partially increased up to 3.46% and partially
decreased by up to 2.35% depending on the complexity of the considered function
to be approximated. Complex functions were found to be approximated more ac-
curately using OII. In combination with CII, however, the negative impacts on the
system error can be entirely eradicated, while the positive effects on the population
size can be retained. In numbers, the combination yields system error reductions
between approximately 11% and 19% among all examined functions. Accordingly,
as of yet it is suggested to always use OII and CII in combination.
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As a last approach to integrate interpolation with XCS, the Interpolated Prediction
Integration (IPI) strategy was introduced in Chapter 9. Each classifier is modified to
maintain a small set of past experiences, i.e., data instances with the corresponding
target values. This modification is intended to allow each classifier an interpolation-
based computation of the individual reward prediction. Former approaches have
mainly focused on iteratively fitting parametric approximation models which de-
mand for a certain number of update steps before a reasonable predictive accuracy
can be assumed. In addition to that, a novel classifier mixing strategy has been intro-
duced that uses the union of all collected experiences among matching classifiers to
calculate a global system prediction. With the IPI strategy applied, a substantially
higher level of approximation accuracy could be observed. This results in possible
system error reductions up to 92% for the complex Eggholder function. The least
improvement regarding the approximation error that have been observed among
all tested functions was a system error reduction by 19% for the six-dimensional
Styblinski-Tang function which was already found to be hard to approximate earlier.
Furthermore, the experimental results revealed strong impacts of the IPI strategy
on the average generality of the evolved rules. Depending on the complexity of the
underlying functions either strong increases (up to 159%) or significant reductions
(up to 49%) regarding the average generality appeared. In the latter case, how-
ever, XCSF-IC is still able to significantly outperform the contending variants using
polynomial approximation in terms of the system’s approximation error. This has
lead to the conclusion that the IPI strategy allows for more generalized classifiers
when appropriate but forces conditions to specialize when necessary with respect
to the underlying function complexity. The sustainability of the beneficial effects
has also been confirmed on noisy functions adding random deviations up to 20% on
the target value. Even under these challenging circumstances, XCSF-IC showed ro-
bust system error reductions of approximately 20% compared to the best alternative
which employed cubic approximation.

In summary, the entirety of results obtained throughout all the conducted empirical
investigations confirm the formulated hypothesis that transductive knowledge infer-
ence within XCS based on scattered data interpolation leads to increased learning
efficiency. This insight is important in view of further corroborating the usefulness
of XCS-based learning algorithms within SLAS which are deployed in dynamic en-
vironments that facilitate the occurrence of KGs. With these initial strategies for
countering KGs in an ad-hoc fashion during the system’s runtime as presented in
this thesis, a next step toward robust SLAS has been taken.

To sum up, the results of this doctoral thesis comprise several scientific contributions
which can be condensed as follows:

1. A proposal of a unified view on and a formal description of the task of learning
in OC systems as well as the identification of resulting core challenges
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2. A derivation of a novel notion of knowledge gaps complemented with a formal
definition

3. An extension of the most prominent representative of the class of ERBML
algorithms, the XCS classifier system, in terms of:

a) Integration of several interpolation techniques to increase the learning
efficiency and thus the robustness against KGs in SLAS

b) A combination of AL concepts with XCS to endow LCS-based SLAS with
a knowledge self-reflection capability

4. A first-ever confirmation of the initially posed hypothesis regarding the bene-
ficial effects of incorporating interpolation in XCS’s algorithmic structure

5. A demonstration regarding the real world applicability of an interpolation-
assisted special-purpose XCS within in the OTC system

6. A first preliminary confirmation of the usefulness of incorporating AL concepts
in XCS on a newly proposed synthetic and a medical classification task

7. A proposal for extension of OC’s MLOC architecture in order to explicitly
identify and close KGs

11.2. Outlook

An elaborate discussion about two concrete future research directions has already
been given in Chapter 10 – the design of Active Learning Classifier Systems and the
subsequent step toward the ultimate goal of Proactive Learning Classifier Systems
endowed with the capability of Proactive Knowledge Construction.

As a more visionary outlook, the next paragraphs are supposed to shed light on
related research initiatives to which the insights and techniques that resulted from
this thesis could potentially contribute:

Collaborative Interactive Learning (CIL) This recent initiative is aimed at
facing the challenges of interconnected intelligent systems (artificial or human) that
collaborate and interactively exchange knowledge in order to facilitate lifelong learn-
ing of technical systems. Parts of these systems might solve particular subproblems
collectively what implies related problem spaces. The exchange of knowledge con-
stitutes a central aspect. These systems could also collaborate in identifying and
closing KGs and proactively share the created knowledge elements among those
systems that share a common problem space. The methodologies for a purposeful
identification of gaps in knowledge bases as outlined in Chapter 10 integrate well
with the envisaged topics of CIL. It further postulates to make strong use of AL
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techniques to exploit available knowledge sources (oracles) and continually reflects
about the gained knowledge of the participating systems – a goal for which proactive
knowledge construction constitutes a possible solution.

Autonomous Learning The developed techniques for interpolating new knowl-
edge from existing knowledge are intended to increase the learning efficiency and
the robustness of SLAS against KGs. This in turn allows for higher degrees of au-
tonomy transferable to the systems, since not any situation that might occur during
the runtime needs to be fully specified and foreseen a priori anymore. Actively cre-
ated queries that are targeted to eradicate knowledge gaps and which are posed by
the self-learning systems themselves clearly constitute a promising way to further
increase system autonomy. Thereby, initial efforts of the system designers can be
reduced during the design time. Combining the introduced KG-counter-strategies
with online novelty and other concept drift detection techniques seems to be a vi-
able next step. This would enable a proactive prediction of those regions within
the underlying problem space that will become relevant in the near future. Pro-
viding a mechanism to predict knowledge relevance is deemed a crucial aspect to
more purposefully guide the proactive knowledge construction processes of future
autonomously learning systems.

Explainable AI and Self-aware Computing The demand for self-explainability
and transparency of AI technology is indisputably present these days. Coming up
with sophisticated techniques that facilitate interpretable knowledge is an inevitable
stepping stone in that direction. Rule-based learning algorithms as considered in
this thesis exhibit implicit interpretability by design. In view of system verification,
rule-based systems have strong advantages in contrast to subsymbolic AI techniques
such as neural networks. The novel notion of KGs facilitates further analysis of
rule-bases. In a next step, this might allow for automatic test-case generation which
explicitly seek and exploit gaps in order to finally reveal where the SLAS has its
current deficiencies. The autonomous reasoning about the own knowledge base is a
key aspect of self-aware computing systems. Proactive KG identification provides
exactly such a mechanism and thus might also fertilize this research area.

A Final Thought As a last envisioned bottom line, this thesis is assumed to pos-
sess the potential for the initiation of a novel branch of ML techniques – Knowledge
Gap-centric algorithms. Envisaged research aspirations comprise the foundation of
this novel family of ML algorithms. The idea is to complement the ordinary objec-
tive of maximizing predictive accuracy with an intrinsic pressure to minimize the
amount of remaining gaps in their knowledge base. A first step toward theoretical
work has already been taken in Section 10.2, where the general rationale for proactive
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knowledge construction could be shown formally based on the definitions of KGs in-
troduced in this thesis. The overall goal is to design novel online learning techniques
based on the proposed KG framework in order to: (1) Improve the learning efficiency
in contrast to conventional techniques. (2) Increase the system robustness against
unforeseen situations, especially when regarded as to be deployed in highly-dynamic
environments which demand for autonomous and explainable runtime learning – An
ambitious goal for which this thesis developed first stepping stones.
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Appendix A.

Notations

This section provides an overview of the formal notations that are going to be intro-
duced and used in this thesis. The following table also indicates abbreviations and
terms that are used interchangeably, even if this was tried to be mostly prevented.
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Table A.1.: Notations used throughout this thesis
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Appendix B.

XCS Hyperparameter Overview

Table B.1.: Overview of hyperparameters for XCS, XCSR and XCSF

Symbol Designation Short Description
N Population size

limit
Determines the max. number of mi-
croclassifiers allowed in [P ]

β Learning rate Determines the step-width of
Widrow-Hoff classifier parameter
adjustments.

γ Discount rate Determines the influence of future
rewards in relation to immediate
rewards during classifier prediction
updates

δ Fraction of mean
fitness

Defines the fraction of the popula-
tions mean fitness a classifier has to
exceed to prevent a deletion vote in-
crease

α, ν Accuracy param-
eters

Control the steepness of the expo-
nential drop in the absolute accu-
racy function κ.

ε0 Prediction er-
ror tolerance /
Target error

Can be interpreted as an offset in
the accuracy function. When a clas-
sifier’s prediction error is less than
ε0, it is considered to be fully accu-
rate.

θGA GA threshold The minimum number of the action
set’s average time steps passed since
the last GA invocation before the
GA can be performed again
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Appendix B. XCS Hyperparameter Overview

θdel Deletion consider-
ation threshold

The minimum classifier experience
required before it is deletion vote is
further increased.

θmna Minimum number
of actions thresh-
old

The minimum number of actions
(mna) required to be present in [M ].
This controls the number of covering
operations in one step.

θsub Subsumption con-
sideration thresh-
old

The minimum number of classifier
experience required before a classi-
fier is allowed to subsume another
one.

P# Wildcard prob-
ability / Initial
generality

The probability that a single symbol
in a classifier’s condition is replaced
by a wildcard symbol #.

µ Mutation proba-
bility

The probability for each offspring’s
symbol/gene of being mutated dur-
ing the GA

χ Crossover proba-
bility

The probability that crossover is ap-
plied to offspring classifiers

pini Initial prediction
value

Initialization value for the reward
prediction parameter cl.p of a newly
covered classifier

εini Initial prediction
error value

Initialization value for the absolute
reward prediction error parameter
cl.ε of a newly covered classifier

Fini Initial fitness
value

Initialization value for the fitness
parameter cl.F of a newly covered
classifier

Freduction Fitness reduction
factor

A reduction factor applied to the av-
eraged fitness values of the offspring
classifiers

εreduction Prediction error
reduction factor

A factor applied to the averaged er-
ror values of the offspring classifiers

r0
(XCSR)

Default spread /
Initial generality

The maximum deviation of the
lower and upper bounds in each di-
mension from the current situation
vector σt of a newly covered classi-
fier
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m0
(XCSR)

Mutation step
size

Same meaning as r0 but for the case
of mutation within the GA.

λ
(XCSF)

RLS forgetting
rate

Sort of discount that controls the
impact of previous updates on the
next matrix of the RLS update.

δRLS
(XCSF)

RLS matrix ini-
tialization

The entries set during the initializa-
tion of the gain matrix of the RLS
update.
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Appendix C.

Supplemental Results

C.1. Additional Results for XCS-CIC on the
Checkerboard Problem

The following tables provide additional results obtained by applying the interpola-
tion strategies ASI, CII, OII as introduced in this thesis. The tables summarize each
of the individual strategies (ASI, CII, OII) not described in the respective sections
yet, as well as their combinations on the CBP instances CBP(3,3) and CBP(3,6).
As in the corresponding sections in this thesis, three different interpolation tech-
niques have been investigated, namely Nearest Neighbor (NeNe), Inverse Distance
Weighting (IDW) andModified Shepard’s Method (MSM). The results have also been
published and are discussed in more detail in [Ste+17a]. The experimental setup is
the same as described in Chapter 5. The tables show the averaged values over the
entire learning task (100k and 400k exploit trials for CBP(3,3) and CBP(3,6), re-
spectively) with the corresponding standard deviations from the conducted 30 i.i.d.
repetitions. * (**) indicates statistically (highly) significant improvements regarding
the reported figure of merits compared with standard XCSR. This means that for
the p-values of paired one-sided t-tests the assertion p < α = 0.05 (0.01) is true.
Bold values highlight statistically confirmed improvements and the arrows indicate
whether the values have increased (↑) or decreased (↓) in comparison to standard
XCS.
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Appendix C. Supplemental Results

Table C.1.: Summary of additional results on CBP(3,3) and CBP(3,6) using Nearest Neigh-
bor (NeNe) interpolation.

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-CIC w/ CII 949.33↑ ± 3.67 105.37↓ ± 5.30 678.65↑∗∗ ± 12.98
XCS-CIC w/ OII 948.46↑ ± 3.07 107.45↑ ± 4.31 612.93↓∗∗ ± 11.30

XCS-CIC w/ CII+OII 949.01↑ ± 3.49 107.76↑ ± 5.35 623.62↓∗∗ ± 14.25
XCS-CIC w/ ASI+OII 944.30↓∗∗ ± 3.24 65.73↓∗∗ ± 3.55 612.93↓∗∗ ± 11.30
XCS-CIC w/ ASI+CII 946.07↓∗ ± 2.30 64.71↓∗∗ ± 3.31 683.09↑∗∗ ± 10.10

XCS-CIC w/ ASI+OII+CII 943.89↓∗∗ ± 4.02 66.44↓∗∗ ± 4.62 621.14↓∗∗ ± 13.39
Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-CIC w/ CII 878.41↑ ± 4.55 218.66↓ ± 6.69 8824.11↑∗∗ ± 75.11
XCS-CIC w/ OII 872.84↓∗∗ ± 5.39 227.14↑∗∗ ± 6.64 7900.81↓∗∗ ± 75.71

XCS-CIC w/ CII+OII 875.15↓ ± 5.52 225.68↑∗∗ ± 6.89 7960.78↓∗∗ ± 84.69
XCS-CIC w/ ASI+OII 858.31↓∗∗ ± 6.27 163.59↓∗∗ ± 6.83 7900.81↓∗∗ ± 75.71
XCS-CIC w/ ASI+CII 868.28↓∗∗ ± 6.48 154.14↓∗∗ ± 7.54 8824.73↑∗∗ ± 70.77

XCS-CIC w/ ASI+OII+CII 861.44↓∗∗ ± 5.92 160.97↓∗∗ ± 6.54 7933.82↓∗∗ ± 71.97
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05

Nearest Neighbor

Table C.2.: Summary of additional results on CBP(3,3) and CBP(3,6) using Inverse Dis-
tance Weighting (IDW) interpolation.

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-CIC w/ CII 950.18↑∗∗ ± 3.12 106.60↑ ± 5.48 698.28↑∗∗ ± 11.75
XCS-CIC w/ OII 949.31↑ ± 3.92 105.38↓ ± 5.53 623.18↓∗∗ ± 13.77

XCS-CIC w/ CII+OII 951.27↑∗∗ ± 3.58 107.37↑ ± 5.63 653.07↓∗∗ ± 14.22
XCS-CIC w/ ASI+OII 948.60↑ ± 3.92 60.88↓∗∗ ± 4.28 623.18↓∗∗ ± 13.77
XCS-CIC w/ ASI+CII 949.70↑ ± 4.31 60.38↓∗∗ ± 5.22 699.93↑∗∗ ± 14.07

XCS-CIC w/ ASI+OII+CII 949.49↑ ± 3.83 60.79↓∗∗ ± 4.55 655.68↓∗∗ ± 10.45
Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-CIC w/ CII 879.36↑∗∗ ± 4.98 218.84↓ ± 6.10 8901.60↑∗∗ ± 73.29
XCS-CIC w/ OII 882.63↑∗∗ ± 3.70 214.98↓∗∗ ± 4.79 8128.04↓∗∗ ± 92.10

XCS-CIC w/ CII+OII 887.08↑∗∗ ± 2.92 211.00↓∗∗ ± 3.71 8263.77↓∗∗ ± 73.31
XCS-CIC w/ ASI+OII 879.10↑∗ ± 4.35 141.72↓∗∗ ± 4.35 8128.04↓∗∗ ± 92.10
XCS-CIC w/ ASI+CII 879.55↑∗ ± 4.45 142.17↓∗∗ ± 5.32 8869.92↑∗∗ ± 90.17

XCS-CIC w/ ASI+OII+CII 884.00↑∗∗ ± 3.83 136.92↓∗∗ ± 4.49 8268.54↓∗∗ ± 76.86
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05

Inverse Distance Weighting
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C.2. Additional Results for ALXCS on the Mario and the WBC problem

Table C.3.: Summary of additional results on CBP(3,3) and CBP(3,6) using Modified Shep-
ard’s Method (MSM) interpolation.

CBP(3,3) Fraction Correct System Error Macro-Classifiers
mean ±1SD mean ±1SD mean ±1SD

XCS-CIC w/ CII 949.57↑∗ ± 4.16 106.57↑ ± 5.54 695.69↑∗∗ ± 13.02
XCS-CIC w/ OII 948.68↑ ± 3.49 106.22↑ ± 5.63 623.49↓∗∗ ± 14.21

XCS-CIC w/ CII+OII 951.18↑∗∗ ± 3.61 106.42↑ ± 5.00 649.26↓∗∗ ± 13.70
XCS-CIC w/ ASI+OII 947.94↓ ± 3.79 61.42↓∗∗ ± 4.41 623.49↓∗∗ ± 14.21
XCS-CIC w/ ASI+CII 948.99↑ ± 3.64 61.46↓∗∗ ± 4.09 693.92↑∗∗ ± 14.82

XCS-CIC w/ ASI+OII+CII 949.76↑ ± 3.87 60.35↓∗∗ ± 4.44 654.21↓∗∗ ± 16.09
Standard XCS 947.97± 3.89 105.56± 5.30 669.51± 11.99

CBP(3,6) Fraction Correct System Error Macro-Classifiers

XCS-CIC w/ CII 879.57↑∗ ± 5.15 217.80↓∗ ± 5.67 8882.25↑∗∗ ± 76.77
XCS-CIC w/ OII 883.10↑∗∗ ± 4.06 213.68↓∗∗ ± 4.91 8093.53↓∗∗ ± 96.44

XCS-CIC w/ CII+OII 887.68↑∗∗ ± 3.08 210.45↓∗∗ ± 3.97 8241.39↓∗∗ ± 62.41
XCS-CIC w/ ASI+OII 879.33↑∗∗ ± 4.44 140.97↓∗∗ ± 4.82 8093.53↓∗∗ ± 96.44
XCS-CIC w/ ASI+CII 879.22↑∗ ± 4.28 141.51↓∗∗ ± 4.71 8867.25↑∗∗ ± 76.65

XCS-CIC w/ ASI+OII+CII 883.86↑∗∗ ± 3.55 136.59↓∗∗ ± 3.85 8220.57↓∗∗ ± 77.49
Standard XCS 876.62± 4.67 220.97± 8.30 8761.07± 76.05

Modified Shepard’s Method

C.2. Additional Results for ALXCS on the Mario and
the WBC problem

The following tables complement the discussions of Section 10.1. A more detailed
discussion on the results can be found in [SMH17].

Table C.4 contains a summary of the obtained results for ALXCS on the WBC
dataset. Average values and standard deviations over two phases of the entire learn-
ing task (until 20k trials on the left and 100k exploit trials on the right) from 30
i.i.d. runs are presented. * (**) indicates statistically (highly) significant deviations
of the reported metrics compared to standard XCS. This means that for the p-values
of paired one-sided t-tests the assertion p < α = 0.05 (0.01) is true. ↑ and ↓ indicate
whether the values have increased or decreased in comparison to standard XCS.

Table C.5 contains a summary of the obtained results of ALXCS on the novel Mario
classification environment. The presented values and standard deviations are to be
interpreted analogously as for the previous Table C.4. The same applies for the
symbols * (**), ↑ and ↓.
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