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ABSTRACT
Automatic detection of sentiment and affect in personal nar-
ratives through word usage has the potential to assist in the
automated detection of change in psychotherapy. Such a tool
could, for instance, provide an efficient, objective measure
of the time a person has been in a positive or negative state-
of-mind. Towards this goal, we propose and develop a hier-
archical attention model for the tasks of sentiment (positive
and negative) and self-assessed affect detection in transcripts
of personal narratives. We also perform a qualitative anal-
ysis of the word attentions learnt by our sentiment analysis
model. In a key result, our attention model achieved an un-
weighted average recall (UAR) of 91.0 % in a binary senti-
ment detection task on the test partition of the Ulm State-of-
Mind in Speech (USoMS) corpus. We also achieved UARs of
73.7 % and 68.6 % in the 3-class tasks of arousal and valence
detection respectively. Finally, our qualitative analysis asso-
ciates colloquial reinforcements with positive sentiments, and
uncertain phrasing with negative sentiments.

Index Terms— state-of-mind, mood congruency, atten-
tion mechanisms, hierarchical models, gated recurrent units

1. INTRODUCTION

An individual’s current emotional state, as expressed by self-
reported valence and arousal, affects their perception, cog-
nition, attention and memory retrieval [1]. The interaction
between current emotional state and mental functioning is
herein referred to as state-of-mind (SoM). The interaction of
state-of-mind and mental functioning is mood congruent, thus
a positive state-of-mind is shifts attention towards positive
cues and vice versa [2]. The same holds for negative emotions
and cues. In psychotherapy, this effect can be used to enhance
emotion regulation skills, for example by encouraging pa-
tients to construct positive narratives about themselves [3, 4].

The potential of personal storytelling in therapeutic set-
tings is strongly supported by recently published results in-
dicating that the telling of personal narratives directly influ-
ences SoM [4]. Results presented in the same work also indi-
cate that the sentiment (positive or negative) of such narratives

can be determined from word use alone. These results, how-
ever, were not obtained using state-of-the-art machine learn-
ing methodologies which could enable more efficient and ob-
jective analyses. Therefore, to fully realise the potential of
these findings, there is a need to assess the efficacy of con-
temporary learning methods for analysing text for such tasks.

In this regard, we herein propose and develop hierarchi-
cal attention networks for the two main tasks of (i) senti-
ment analysis of personal narratives, and (ii) the prediction
of self-assessed emotion related to personal narratives. Neu-
ral network based approaches, particularly Recurrent Neural
Networks (RNN), have been shown to be suitable in related
tasks [5, 6, 7, 8]. However, each narrative requiring analysis
is approximately 5 minutes long and has only one label [4, 9],
and conventional recurrent approaches struggle in such learn-
ing conditions [10, 11]. One solution to this problem is to in-
corporate attention mechanisms [12, 13], specifically hierar-
chical attention mechanisms [10], into our developed model.
Our network can then explicitly model the contribution of
each word in a particular sentence towards the target class,
as well as modelling the task-specific context at semantically
higher levels, such as at the sentence or document level [10].
Attention mechanisms have been used in related tasks such as
document-level sentiment analysis [14], and emotion detec-
tion from closed captions [15].

The main tasks of this study are sentiment analysis and
affect detection in which a plethora of linguistics based ap-
proaches have been proposed and developed, e. g. , [16, 17,
18, 19]. It uses the Ulm State-of-Mind in Speech (USoMS)
corpus [4, 9] and is related to works in the Self-Assessed Af-
fect Sub-Challenge of the Interspeech 2018 Computational
Paralinguistics Challenge (COMPARE) [9]. Participants in the
challenge were instructed to predict self-assessed valence us-
ing acoustic feature representations only. Unweighted Aver-
age Recall (UAR) scores on the challenge test set ranged from
48.9 % through to 68.4 % for a 3-class detection task [20, 21].
The work present herein differs from these approaches by au-
tomatically analysing the linguistic content of the USoMS
files. To the authors’ knowledge, this is the first time such
a study has been conducted on the corpus.
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2. EXPERIMENTAL CORPUS

All experimental results were obtained using the USoMS cor-
pus [4, 9]. The corpus contains audio recordings and tran-
scriptions of 100 German-speaking participants, recalling two
negative and two positive experiences in an interview setting.
The purpose of the original study was to capture the transition
from one emotional state to another [4]. The participants self-
assessed their emotional state before the interview (ground
truth) and after each question on a 10-point Likert scale of
valence and arousal scores. For classification purposes, these
scores are mapped into 3 classes: low, 0-4; medium, 5-7; and
high: 8-10.

The study protocol was as follows: k0 – Self-assessed
affect-0, herein referred to as Ground Truth (GT); k1 – Neg-
ative Narrative-1 (NN-1) and Self-assessed affect-1; k2 –
Negative Narrative-2 (NN-2) and Self-assessed affect-2; k3
– Positive Narrative-1 (PN-1) and Self-assessed affect-3; and
k4 – Positive Narrative-2 (PN-2) and Self-assessed affect-
4. Each question was answered freely in spoken language
with a personal narrative approximately 5-minutes long. The
recorded sessions were then manually transcribed.

We use our proposed Hierarchical Attention approach
(cf. Section 3) to answer three specific research questions on
the USoMS data. First, is it possible to classify the binary sen-
timent (positive or negative) of the narratives? Second, can
the transition of the SoM through the study protocol be mod-
elled? This particular task is non-trivial, as the affect labels
are self-assessed and we cannot assume a common score scale
between the participants. This differs from most conventional
affect detection tasks in which ground-truth scores are derived
from multiple external annotators, e. g. , [22]. Thirdly and fi-
nally, can context-dependent, semantically meaningful (con-
cerning the sentiment of the narrative) words in transcriptions
of psychotherapy sessions be automatically identified?

3. HIERARCHICAL ATTENTION NETWORK FOR
SENTIMENT AND SELF-ASSESSED EMOTION

Our proposed network is based on the hierarchical attention
architecture for document classification proposed in [10]; it
takes all words of one sentence as the input and passes it
through the hierarchical structure (cf. Figure 1). An embed-
ding layer transforms the words w into a d-dimensional word
vector x. Then, in hierarchical manner, the word encoder
gw (with parameters Hw) and an attention mechanism αw

(with parameters Aw) transforms the input sequence x, with
the maximum length of L words, into a higher-level sentence
representation S. This sentence representation is then fur-
ther compressed into a document representation by a sentence
encoder gs (with parameters Hs) and an additional attention
mechanism αs (with parametersAs). In our case, a document
indicates an answer to the interviewer’s question q. This pro-
cess is repeated for all sentences with the maximum number
of T sentences for a question, such that the entire data set can
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Fig. 1. Basic hierarchical attention neural network architec-
ture. Data is compressed stepwise from bottom to top, starting
with words of each sentence, where the word encoder and at-
tention layer learn the most important words in context and
merge into sentence representations. The same procedure is
then followed for the transformation from sentence to ques-
tion representation.

be represented as D = {(xi, yi), i = 1, ..., N)}, where N
is the total number of questions and xi the embedded words
{w11, w12, ...wLT } with labels yi.

3.1. Encoder Layers
The purpose of the encoder layers g with the encoder parame-
ters Hw and Hs is to summarise sequential information i into
a meaningful hidden representation h. Alongside the usual
encoder compression through a fully connected feed-forward
(FC) layer, a Gated Recurrent Unit (GRU) layer is included to
learn the temporal dependencies in the input sequences [23].
Both learn the hidden representation for each level:

h(it)w = gw(x
(it)
l ), l ∈ {1, ..., L} (1)

for the word encoder, and:

h(i)s = gs(s
(i)
t ), t ∈ {1, ..., T} (2)

for the sentence encoder.

3.2. Attention Layers
To obtain a more meaningful high-level context vector, we
use soft attention mechanisms to emphasise important hid-
den state vectors of an input sequence. In this regard, word
attention emphasises words in a specific context that are sig-
nificant to the sentence meaning. Sentence attention stresses
sentence representations that contribute more to the question
representation and thus the prediction quality. To ensure we
have attention for every word and sentence, we apply it to all
hidden states, not just the final state:
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u(it) = tanh(Wwh
(it)
w + bw) (3)

α(it)
w = softmax(u(it)Tuw) (4)

si =

T∑
t=1

α(it)
w h(it)w , (5)

where u(it) denotes the hidden presentation of h(it)w by feed-
ing it into a FC with a tanh activation function, the word-level
context vector uw and the importance weight normalized by
a softmax function α(it)

w . The mechanism works in the same
way for sentence attention, where h(it)w is analogous to h(i)s ,
us is the sentence-level context vector and q represents the
question vector summarising all information.

3.3. Question Sequence-to-Sequence Layer
To examine the transition of the SoM in the USoMS corpus
(cf. Section 2), the architecture is simply extended by another
one-directional sequence-to-sequence layer (QSL) gt (with
the parameterHt) on top of the existing architecture to predict
the participant-dependent, self-assessed labels in sequence:

q′k =
−−−→
GRU(qk), k ∈ {1, ..., 4}, (6)

where k is the question number from one participant P
and q′k is the final question representation, combining the
original question representation qk (in recorded order) and
the hidden representation of previous questions h(i)k−1. In
this case, all components of the base architecture are ex-
tended by k, so that, for example, the input becomes xi =
w111, w112, ..., wKTL. In our initial exploratory analysis of
the data set, we observed that the self-assessed labels are very
inconsistent between the participants due to self-assessment.
Therefore, we integrated the GT (y0) for system calibration
by concatenating the hot-encoded y0 with the first question
representation q1 (cf. Figure 2) to learn, the shifts in the SoM
between the questions, and not just the label itself. To obtain
the fixed input sequence required for GRU processing, a zero
vector of the same length is concatenated to qk ∈ {2, 3, 4}.

Until the QSL receives the input q, all four hierarchi-
cal models (one per question representation K) run in par-
allel, whereby parameters of all hierarchical components
(Hw, Hs, Aw, As) on the same level can be shared to learn
a joint representation and accelerate the training process.

3.4. Classification Layers
The high-level representation of the questions q or q′ are then
used as the input for the final classification layers:

ŷk = ϕ(Wkcq
′
k + bkc), (7)

where Wkc is the weight matrix and bkc is the bias. q′k
can also be qk if no gt is added to the network and ϕ is either
a sigmoid function if it is a binary with c = 2 or a softmax
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Fig. 2. An illustrative overview of the question sequence-to-
sequence layer, which is calibrated with the y0 ground truth
label

function if is a multi-class c > 2 classification. As an ob-
jective function, we use the differentiable cross-entropy func-
tion between the correct yi and predicted ŷi label so that any
Stochastic Gradient Decent optimizer can minimise the loss.

4. EXPERIMENTS AND RESULTS

4.1. Data Partitioning

We are using the predefined training, validation (devel) and
test partitions of the challenge dataset and refer to [9] for full
details. Training and hyperparameter tuning utilise the train-
ing and devel set, whereby the test set is exclusively for eval-
uation.

4.2. Key Settings

We first separate each file into individual sentences. Besides
the natural end of sentences, we also used conjunction words
such as ”und” (engl. and) to separate sentences [24]. This
parsing had the effect of reducing the input sequences into
manageable lengths, resulting in overall 400 questions and
14,333 sentences. As GRUs require a fixed input length,
we fixed L to 65 words per sentence and T to 35 sentences
per question. We zero padded sequences that do not reach
these maximums. All words were vectorised into a 40-
dimensional representation using pre-trained German word
embeddings [25].

Our models are implemented using Keras customisable
layers and Tensorflow. For training, we used the Adam op-
timiser with a learning rate of 0.001, a clip value of 0.5 and
set our mini-batch size to 20. Besides GRUs, we also used
bidrectional GRU (BiGRU), we also explore the performance
of three different encoder types (FC, GRU, BiGRU) in com-
bination with Attention (Att). The encoders can either share
encoder weights (SE), attention weights (SA) or both (SEA).
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Table 1. Results of 2-class positive and negative sentiment
detection on the devel(opment) and test set of the USoMS
corpus. Results report in unweighted average recall [%].

Encoder Non-Attention Attention
devel / test devel / test

FC 77.6 / 81.4 83.6 / 85.2
GRU 82.8 / 86.5 84.5 / 88.5
BiGRU 83.6 / 87.8 86.2 / 91.0

4.3. Results

4.3.1. Quantitative Results

For the task of predicting the sentiment of the narratives, we
observed that regardless of the encoder, we achieved better
results when using attention. In this regard, we achieved the
most apparent result increasing with the simpler FC encoder.
In contrast to GRU encoder, which automatically learns the
information from previous sequences through their recurrent
construction, the FC benefits from the attention context in-
formation. However, the results of GRU based encoders are
considerably superior, with the strongest test UAR, 91.0 %
achieved by the attention enhanced AttBiGRU (cf. Table 1).

For the more complex task of prediction the self-assessed
labels, using our QSL architecture and infusing y0 for cali-
brations, we achieved initial UARs of 64.7 % for Valence and
68.6 % for Arousal. We increased these results to 68.6 % (V)
and 73.7 % (A) by combining shared encoder and attention
weights (cf. Table 2). Furthermore, we observed similar re-
sults by using 0.4 dropout in the initial QSL setup. We spec-
ulate this is due to both dropout and the partial sharing of
weights having a slight regularisation effect.

Besides, we evaluate our models without QSL to provide
approximate comparability with the COMPARE-2018 papers
in which the ground truth could not be used. An exact one-
to-one comparison is not possible as within the challenge, the
audio data was segmented into 8-second chunks [9]. Our re-
sults indicate that, surprisingly, AttFC achieved the best re-
sults with AttFC-SA of 69.2 % for Arousal and with AttFC-
SE of 68.0 % for Valence. The result for valence is only
slightly below the best challenge result.

4.3.2. Qualitative Analysis

A qualitative analysis of the context-based word and sentence
attentions from predicted participant responses (on the test
set), reveals a wide variety in the expression of emotions in
the narratives. Besides the identification of already known
emotional signal words related to fear, pride or joy, the net-
work learnt less obvious word combinations, which would
have been undetectable using conventional methods.

We observed that colloquial reinforcement was highly rel-
evant. For instance, the German “richtig” (engl. correct but
colloquially can also translate to really or very) in combina-

Table 2. Results on the devel(opment) and test set of the
USoMS corpus when predicting the transition of self-assessed
labels with our sequence-to-sequence question layer. Results
report in unweighted average recall [%].

Configuration Arousal Valence
devel / test devel / test

AttFC-SEA 67.2 / 73.7 63.8 / 65.5
AttGRU-SEA 63.8 / 70.5 64.7 / 68.6
AttBiGRU-SE 68.1 / 70.5 63.8 / 67.3

tion with words such as “spontan” (engl. spontaneous), “fer-
tig” (engl. finished, however colloquial uses include “richtig
fertig” – engl. really exhausted; or “richtig wichtig” – engl.
very important), have a strong positive influence. We ob-
served high levels of phrasing associated with uncertainty in
the negative case, as initiated by words such as “irgendwie”,
“irgendwann” or “irgendein” (engl. somehow, sometime and
any). These were often used in conjunction with a verb or
noun, for instance, somehow listless or somehow the feeling.
The variety of recognised indicators indicate that the method
presented is potentially qualitative superior to the context-free
word counts of word categories currently used for psycholog-
ical data sets and should be further explored in future work.

5. CONCLUSION

As a potential tool for psychotherapy, the presented work fo-
cused on the tasks of sentiment detection and the classifica-
tion of self-assessed emotion labels in personal narratives. It
includes the first attempt at modelling shifts in state-of-mind
(SoM) from linguistic data as reflected in changes in self-
assessed arousal and valence scores. We proposed and devel-
oped hierarchical attention models which operate on a com-
plex dataset with long spoken narratives and weak labels. Our
approach not only achieved near state-of-the-art results when
compared to acoustic analysis, but also extracted interesting
word uses related to the sentiment of each narrative.

One limitation of our approach is that 10-class classifica-
tion using the entire range of the self-assessed affect scores
was not overly successful. We speculate that this was due to
inconsistencies inherent in self-assessed labels and the rela-
tively small dataset. We aim to address this in future work by
exploring transfer learning approaches which can learn a joint
representation through shared weights. Other work will in-
clude repeating our analysis on similar corpora for tasks such
as depression and narcissism detection.
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