
 

 

 

ACCEPTED MANUSCRIPT 

 

PEAKS – A SYSTEM FOR THE

AUTOMATIC EVALUATION OF VOICE

AND SPEECH DISORDERS

A. Maier a,b T. Haderlein a,b U. Eysholdt a F. Rosanowski a

A. Batliner b M. Schuster a E. Nöth b
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Abstract

We present a novel system for the automatic evaluation of speech and voice dis-
orders. The system can be accessed via the internet platform-independently. The
patient reads a text or names pictures. His or her speech is then analyzed by auto-
matic speech recognition and prosodic analysis. For patients who had their larynx
removed due to cancer and for children with cleft lip and palate we show that we can
achieve significant correlations between the automatic analysis and the judgment of
human experts in a leave-one-out experiment (p<0.001). A correlation of .90 for the
evaluation of the laryngectomees and .87 for the evaluation of the children’s data
was obtained. This is comparable to human inter-rater correlations.

Key words: Speech intelligibility, speech and voice disorders, automatic evaluation
of speech and voice pathologies

1 Introduction

Communication is important for our daily life. About 87.5% of the inhabitants
of urban areas require communication for their daily work. Communication
disorders have a major impact on the economy. The cost of care as well as the
degradation of the employment opportunities for people with communication
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disorders cause a loss of $154 billion to $186 billion per year to the economy
of the United States of America. This equals to 2.5% to 3.0% of the Gross
National Product of the US. These facts indicate that communication disorders
are a major challenge in the 21st century (cf. Ruben (2000)). The use of
automatic speech processing techniques will contribute to reduce the cost of
the care of communication disorders as well provide better rehabilitation of
such disorders and hence increase the employment opportunities for people
with such disorders.

The first step to achieve this goal is to objectify the assessment of communi-
cation disorders in order to reduce manual efforts. For the evaluation of the
quality of communication disorders objective methods are necessary at least
for the following aspects:

(1) patient assessment:
How severe is the disorder?

(2) therapy control:
Quantification of changes in the disorder

(3) scientific evaluation: Which disease or therapy method shows better over-
all results when tested on groups of patients?

(4) specification of the disorder and its impact on the communication skills:
Automatic quantification of a disorder allows the computation of the
relation between a certain disorder and the reduction of the quality of
the global speech outcome.

The assessment of communication disorders or intelligibility is usually per-
formed subjectively. Although speech pathologists receive intensive training
to ensure the reliability of their ratings, inter-rater correlations often fall be-
low 0.9 on difficult tasks. This is caused by individually differing experience
and variable test conditions (Paal et al. (2005); Keuning et al. (1999)). For
scientific purposes, evaluation is usually performed by a panel of listeners.
Semi-standardized instruments for the analysis of speech disorders in children
and adults are well known (Panchal et al. (1996); Paulowski et al. (1998);
Mády et al. (2003); Enderby (2004)). These subjective methods are still the
most commonly used to assess speech intelligibility (Robbins et al. (1987);
Bodin et al. (1994); Brown et al. (1997); Knuuttila et al. (1999); Haughey
et al. (2002); Seikaly et al. (2003); Markkanen-Leppanen et al. (2006)), speech
disorders and temporal structure of speech (Mahanna et al. (1998); Pauloski
et al. (1998); Furia et al. (2001); Su et al. (2003); Bressmann et al. (2004);
Terai and Shimahara (2004)). Until now, automatic diagnostic tools for the
assessment of speech after treatment have only been performed for single as-
pects such as the quantification of nasalance as in Kuttner et al. (2003) and
spectral characteristics and intensity of the voice signal as in Zečević (2002).
However, these methods have limitations and do not allow assessing speech
intelligibility in a comprehensive and reliable way.
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In this article, we introduce PEAKS (Program for Evaluation and Analysis
of all Kinds of Speech disorders), a recording and analysis environment for
the automatic or manual evaluation of voice and speech disorders. The system
can be accessed via the internet or a public telephone, i.e. the system does not
require any special hardware except for a standard PC with internet access
and a sound card. The patient performs a standardized test which is then
automatically rated. Therefore, the system can be employed in specialized
centers for voice and speech disorders, e.g. in cleft centers, where a patient’s
speech is not always judged by the same person. In addition, the system can
also provide a speech therapist who works on her own with a second opinion
obtained by our automatic evaluation technique at virtually no additional cost.
Hence, the system is able to support the therapist with a calibrated opinion
which she can take into consideration during her diagnosis. The analysis might
help her to identify additional problems she did not notice right from the start.
Furthermore, the system can provide reliable information when the patient has
to change therapists.

Although the pathologies which are presented here are very different and com-
plex, speech intelligibility is a superordinate parameter of all voice and speech
disorders. For the analysis we use an automatic speech recognition (ASR) sys-
tem and an automatic prosody module. The output of the ASR system is a
recognition rate. The outputs of the prosody module are acoustic prosodic
features, such as the slope of the fundamental frequency over time and the
energy. The result of the analysis is presented to the user and can be com-
pared to previous recordings of the same patient or to recordings from other
patients.

The program is evaluated on voice and speech disorders with a wide range of
intelligibility on patients who underwent total laryngectomy, due to laryngeal
cancer, and on children with cleft lip and palate. Results were compared to
the state-of-the-art evaluation — perceptual rating by a panel of experts.

2 Patients and Methods

2.1 Voice Disorder: Tracheoesophageal Substitute Voice

The tracheoesophageal (TE) substitute voice is currently state-of-the-art treat-
ment to restore the ability to speak after laryngectomy, i.e. the total removal of
the larynx (after cancer of the larynx, cf. Brown et al. (2003)): A silicone one-
way valve is placed into a shunt between the trachea and the esophagus, which
on the one hand prevents aspiration and on the other hand deviates the air
stream into the upper esophagus while the patient exhales. Tissue vibrations
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of the pharyngo-esophageal segment modulate the streaming air comparable
to laryngeal voice production and generate the primary substitute voice sig-
nal which is then further modulated in the same way as normal voice. In
comparison to normal voices, the quality of substitute voices is “low”. Inter-
cycle frequency perturbations result in a hoarse voice (cf. Schutte and Nieboer
(2002)). Furthermore, dynamic parameters such as pitch and volume are re-
stricted which leads to monotone speech. Acoustic studies of TE voices can
be found for instance in Robbins et al. (1984) and Bellandese et al. (2001).

2.2 Speech Disorders of Children with Cleft Lip and Palate

Cleft lip and palate (CLP) is the most common malformation of the head with
incomplete closure of the cranial vocal tract (cf. Wantia and Rettinger (2002);
Millard and Richman (2001); Rosanowski and Eysholdt (2002); Schönweiler
and Schönweiler (1994); Schönweiler et al. (1999)). Speech disorders can still be
present after reconstructive surgical treatment. The characteristics of speech
disorders are mainly a combination of different articulatory features, e.g. en-
hanced nasal air emissions that lead to altered nasality, a shift in localization
of articulation, e.g. using a /d/ built with the tip of the tongue instead of a
/g/ built with the back of the tongue or vice versa, and a modified articula-
tory tension, e.g. weakening of the plosives (cf. Harding and Grunwell (1998)).
They affect not only the intelligibility but therewith the social competence and
emotional development of a child.

2.3 Speech Material

41 laryngectomees (µ = 62.0 ± 7.7 years old, 2 female and 39 male) with TE
substitute voice read the German version of the text “The North Wind and
the Sun”, a fable from Aesop. It is a phonetically rich text with 108 words, of
which 71 are unique. The speech samples were recorded with a close-talking
microphone at 16 kHz sampling frequency and 16 bit resolution.

PEAKS was also applied during the regular out-patient examination of 31
children with CLP (mean 10.1 ± 3.8 years). All children were native German
speakers, some of them using a local dialect. Their therapies were performed
according to their cleft type and their individual needs. The speech data were
recorded using a German standard speech test, the “Psycho-Linguistische
Analyse Kindlicher Sprech-Störungen” (Psycho-Linguistic Analysis of Chil-
dren’s Speech Disorders – PLAKSS Fox (2002)). The test consists of 33 slides
which show pictograms of the words to be named. In total the test contains 99
words which include all German phonemes in different positions. Additional
words, however, were uttered in between the target words since some children
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tended to explain the pictograms with multiple words. For the transliteration
the children’s speech was segmented into turns semi-automatically. The data
were, therefore, automatically segmented at pauses which were longer than
one second. Turns containing the speech of the speech therapist only were
removed manually. The therapist’s speech was also manually removed from
turns containing children’s and the therapist’s speech. Each of them contains
2.3 words on average. In total 2209 of these utterances were obtained.

2.4 Perceptive Evaluation

A group of five voice professionals subjectively evaluated both databases while
listening to a recording of the speech data. A five-point Likert scale (1 = very
high, 2 = rather high, 3 = medium, 4 = rather low, 5 = very low) was applied to
rate the intelligibility of each recording. The experts rated the intelligibility in
each turn on the same Likert scale as before. In the case of the laryngectomees,
the speech was read more or less fluently and therefore their data were listened
to in a single turn. In the case of the CLP children, the test data consisted
of pictograms which were to be named. In between many of the pictograms
long pauses occurred because the children had to think of the correct name
for the pictogram. Therefore, the long pauses were automatically detected and
removed to speed up the evaluation procedure. This procedure results in an
average of 70 turns per child. First, the score for all turns of a patient was
averaged for each expert to represent the intelligibility. In a second step the
score of each patient was then computed as the average of all five expert scores.
In this manner an averaged mark – expressed as a floating point value – for
each patient could be calculated.

To judge the agreement between the different raters, we calculated Pearson’s
and Spearman’s correlation coefficients. For each rater we calculated the cor-
relation between her/his intelligibility rating and the average of the 4 other
raters.

2.5 The PEAKS Recording environment

For routine use of an evaluation system, it must be easily available from any ex-
amination room and inexpensive. We created PEAKS, a client/server record-
ing environment. The system can be accessed from any PC with internet
access, a webbrowser, a sound card, and an up-to-date Java Runtime Envi-
ronment (JRE). A registered physician can group his/her patients according
to disorder, create new patient entries, create new recordings, analyze patients
and groups of patients (cf. Fig. 1). The physician has only access to the data
of “his” patients.
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Fig. 1. Screenshot of the main menu: On the left side, a list the of patients of the
currently logged in physician is shown. If a patient is selected, a list of all of his/her
recordings is displayed in the center of the screen. On the right side and the lower
middle, buttons for different actions are available.

The texts to be read and pictograms to be named by the patient are displayed
in the browser. In Fig. 2 the screen during the recording of the PLAKSS
test as described in Fox (2002) 1 . is shown. The patient’s utterances are
recorded by the client. The recording starts when the pictogram or text
passage is displayed, and ends when a button is pressed for the next pic-
togram or text passage. The speech recording is transferred to the server and
then the system analyzes the data. The evaluation results can then be re-
viewed with the client software. The recordings are stored in an SQL database.
A secure connection is used for all data transfer. Instead of the patients’
names pseudonyms are used in the system to keep personal data as safe
as possible. PEAKS is already being used by different departments of our
university clinic for scientific purposes. More information can be found at
http://peaks.informatik.uni-erlangen.de/.

1 The PLAKSS test is used with permission from Hartcourt Test Services for sci-
entific purposes only.
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Fig. 2. Screenshot of the recording environment: The picture shows the first slide of
the PLAKSS test as described in Fox (2002).

2.5.1 The Automatic Speech Analysis System

For the objective measurement of the intelligibility of pathologic speech, we
use an automatic speech recognition system based on Hidden Markov Models
(HMM). It is a word recognition system developed at the Chair of Pattern
Recognition (Lehrstuhl für Mustererkennung) of the University of Erlangen-
Nuremberg. In this study, the latest version as described in detail in Gallwitz
(2002) and Stemmer (2005) was used. A commercial version of this recognizer
is used in high-end telephone-based conversational dialogue systems by Sym-

palog (www.sympalog.com).

As features we use 11 Mel-Frequency Cepstrum Coefficients (MFCCs) and the
energy of the signal plus their first-order derivatives. The short-time analysis
applies a Hamming window with a length of 16ms, the frame rate is 10ms.
The filter bank for the Mel-spectrum consists of 25 triangular filters. The 12
delta coefficients are computed over a context of 2 time frames to the left and
the right side (56 ms in total).

The recognition is performed with semi-continuous Hidden Markov Models.
The codebook contains 500 full covariance Gaussian densities which are shared
by all HMM states. The elementary recognition units are polyphones (Schukat-
Talamazzini et al. (1993)), a generalization of triphones. Polyphones use phones
in a context as large as possible which can still statistically be modeled well,
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i.e., the context appears more often than 50 times in the training data. The
HMMs for the polyphones have three to four states.

We used a unigram language model to weigh the outcome of each word model.
It was trained with the transliteration of the spoken tests, i.e., the vocabulary
size was 71 words for the TE data and 99 words for the CLP data. Further-
more, additional 266 additional filler-words and common word alternatives
were added to the vocabulary of the CLP data. Thus, the frequency of occur-
rence for each word in the used text was known to the recognizer. This helps to
enhance recognition results by including linguistic information. However, for
our purpose it was necessary to put more weight on the recognition of acoustic
features. In Riedhammer et al. (2007) a comparison between unigram and ze-
rogram language models was conducted. It was shown that intelligibility can
be predicted using word recognition accuracies computed using either zero-
or unigram language models. The unigram, however, is computationally more
efficient because it can be used to reduce the search space. The use of higher
n-gram models was not beneficial.

The result of the recognition is a recognized word chain. In order to get an
estimate of the quality of the recognition, two criteria are commonly used. The
word recognition rate (WR) and the word accuracy (WA) are both computed
from the number of correctly recognized words C and the number of words in
the reference R. While the WR is just the percentage of correctly recognized
words, i.e.,

WR =
C

R
· 100 %

the WA is additionally weighted with the number or wrongly inserted words
I:

WA =
C − I

R
· 100 %

Hence, the WR is defined between 0% and 100% while the WA ranges theo-
retically between minus infinity and 100%.

2.5.2 Recognizer Training Data

The basic training set for our recognizer for TE speech are dialogues from
the Verbmobil project (Wahlster (2000)). The topic of the recordings is
appointment scheduling of normal speakers. The data were recorded with a
close-talk microphone with 16 kHz sampling frequency and 16 bit resolution.
The speakers were from all over Germany and thus covered most dialect re-
gions. However, they were asked to speak standard German. About 80% of the
578 training speakers (304 male, 274 female) were between 20 and 29 years
old, less than 10% were over 40. This is important in view of the test data,
because the fact that the average age of our test speakers is more than 60 years
may influence the recognition results. A subset of the German Verbmobil
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data (11,714 utterances, 257,810 words, 27 hours of speech) was used for the
training set and 48 utterances (1042 words) for the validation set (the train-
ing and validation corpora were the same as in Gallwitz (2002) and Stemmer
(2005)).

The speech recognition system for children’s speech had been trained with
acoustic information from 23 male and 30 female children from a local school
who were between 10 and 14 years old (6.9 hours of speech). To make the rec-
ognizer more robust, we added data from 85 male and 47 female adult speakers
from all over Germany (2.3 hours of spontaneous speech from the Verbmo-

bil project, see above). The adults’ data were adapted by vocal tract length
normalization as proposed in Stemmer et al. (2003). During training an eval-
uation set was used that only contained children’s speech. MLLR adaptation
(cf. Gales et al. (1996); Maier et al. (2006)) with the patients’ test data led
to further improvement of the speech recognition system for the children’s
speech.

2.5.3 Calculation of Acoustic-Prosodic Features

The prosody module takes the output of our word recognition module in ad-
dition to the speech signal as input. In this case the time-alignment with the
Viterbi algorithm of the recognizer and the information about the underlying
phoneme classes (such as long vowel) can be used by the prosody module (cf.
Batliner et al. (2000)).

First, the prosody module extracts so called basic features from the speech
signal. These are the energy, the fundamental frequency (F0) after Bagshaw
et al. (1993), and the location of voiced and unvoiced segments in the sig-
nal. In a second step, the actual prosodic features are computed to model the
prosodic properties of the speech signal. For this purpose a fixed reference
point has to be chosen for the computation of the prosodic features. We de-
cided in favor of the end of a word because the word is a well–defined unit in
word recognition. The end of a word can be provided by any standard word
recognizer, and therefore this point can more easily be defined than, for ex-
ample, the middle of the syllable nucleus in word accent position. For each
reference point, we extract 21 prosodic features (cf. Table 1). These features
model F0, energy and duration, e.g. the maximal F0 in the current word. Fig. 3
shows examples of the F0 features. In addition, 16 global prosodic features for
the whole utterance are calculated (cf. Table 2). They cover each of mean and
standard deviation for jitter and shimmer, information on voiced and unvoiced
sections. The last global feature is the standard deviation of the fundamental
frequency F0. In order to evaluate pathologic speech on test level, we calculate
the average, the maximum, the minimum, and the variance of the 37 turn-
and word-based features for the whole text to be read (such as “minimum

9



 

 

 

ACCEPTED MANUSCRIPT 

 

���������
���������
���������
���������

���������
���������
���������
���������

��
��
��
��

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

���
���
���
���

2.

1.

3.

4.

5.

6.

7.

8.

10.

9.

10.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

��������������

offset position

offset

maximum

minimum

position of maximum 

position of minimum 

onset

onset position

5.

9.

3.7.

6.

8.

2.

4.

1.

voiceless sections

regression line
error of the

reference point

regression line

Fig. 3. Computation of prosodic features within one word (after Kießling (1997))

EnergyRegCoeffWord” denoting the minimun energy contour regression slope
per word or “maximum F0MeanWord” for the maximum of the mean F0 per
word). Thus we get 148 features for the whole text.

Fig. 3 shows the computation of the word-based F0 features. The mean values
such as F0MeanGlobalWord are computed for a window of 15 words (or less if
the utterance is shorter, cf. Batliner et al. (1999, 2001)) so they are regarded
as turn-level features here.

In constrast to features of many other research groups, our features do not
make a hard decision: instead of ‘stylizing’ the F0 contour (‘hat contour’, ‘rise’,
‘rise fall’, ‘high tone’, ...), we extract features such as Min, MinPos, Max, and
MaxPos which implicitly describe the F0 and also the energy contour and leave
the decision to the classifier.

The features proved to be effective for linguistic and emotion analysis (cf.
Batliner et al. (2003a); Huber (2002)), the detection of boundaries between
phrases (cf. Batliner et al. (1995)), the user state (cf. Adelhardt et al. (2003);
Batliner et al. (2003b)), and the focus of attention (cf. Hacker et al. (2006)).

2.5.4 Feature Selection

In this work we chose the Multiple-Regression/Correlation analysis to deter-
mine the best subset with n features. Therefore, we select the feature with the
highest correlation to the target criterion as the first feature. Subsequently,
we investigate all possible feature sets that can be created by addition of one
of the remaining features. Unlike the Correlation-based Feature Subset (CFS)
selection (cf. Hall (1998)) which computes the unweighted correlation of the
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features, each subset S is evaluated using the best weighted combination. Ba-
sically the procedure is very similar to the MAX R algorithm (Clark, 2004,
p.34).

As one might suspect, the use of optimally weighted components in a least
square error sense is able to preserve more information during the feature
selection process than the unweighted process as suggested in Hall (1998).

According to Cohen and Cohen (1983a) the Multiple Regression Analysis can
be used for the prediction of yi using a multidimensional vector x i with n

dimensions:

yi = cnxn,i + cn−1xn−1,i + . . . + c1x1,i + c0 + ǫi (1)

This can be rearranged to matrix annotation with vectors y containing all
target values and c with all prediction parameters

y = c⊤X (2)

where X is the data matrix containing the vectors x i as column vectors plus
an additional row containing only ones for the intercept of the regression. The
prediction parameter vector c can now be computed as

c⊤ = yX ∗ (3)

where X ∗ is the Moore-Penrose pseudo-inverse of X (Moore (1920); Penrose
(1955)) which computes the best approximation of the inverse according to the
least square error using singular value decomposition. Thus, the predictions
of yi can now be computed as

ŷi = c⊤







x i

1





 . (4)

Since this computation involves a lot of matrix inversions it is quite slow, as
can be reviewed in (Clark, 2004, p.34). The matrix inversion has a theoretical
complexity of O(N3

S
) (cf. Press et al. (1992); Courrieu (2005)). Implementa-

tions of the matrix inverse based on the QR decomposition like the one in Weka
(cf. Witten and Frank (2005)) usually have a complexity of OR-iter = O(N2

SN)
where N is the number of training vectors and NS the number of selected
features.

We propose faster approximation of R which can be computed by gradient
descent: Let X S be the data matrix which contains all features of subset S.
If S is of cardinality n − 1 this X S can be computed by the multiplication
of ΦFS,ν — an identity matrix where row ν is removed — with X to remove
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feature number ν. So the parameters cS can be computed according to Eqs. 3
and 2:

c⊤

S
= yX ∗

S
= yX ∗Φ⊤

FS,ν = c⊤Φ⊤

FS,ν (5)

Note that Φ⊤

FS,ν is the pseudo-inverse of ΦFS,ν since it is almost a diagonal
matrix. This implies that the computationally very expensive matrix inversion
has to be performed only once for all feature subsets S. In order to refine the
approximation further a gradient descent can now be performed. The objective
function of the descent is chosen as the sum of the square error of the prediction
ǫR:

ǫR(cS) =
N

∑

i=1

(

c⊤x i − yi

)2
(6)

Differentiation after each component cj yields the following gradient function:

δǫR

δcj

=
N

∑

i=1

(

c⊤x i − yi

)

∗ 2xi,j (7)

Using Eq. 5 as initialization for the gradient descent yields a quite good conver-
gence behavior. In terms of complexity, this procedure surpasses the previous
method: Since the sums of Eqs. 6 and 7 require just a single pass in each
iteration, the complexity OR-grad of this methods is

OR-grad = O(N ∗ NS ∗ 2 ∗ C) (8)

where C denotes a constant which corresponds to the number of iterations
of the gradient descent. Hence, the feature selection is performed with the
gradient descent method in order to speed up the feature selection procedure.

2.5.5 Prediction of Expert Scores

With the previously described features we can now assign scores to the record-
ings of the patients. To reach this goal we pursue prediction of the expert scores
since the class value is a floating point value in our experiments. Therefore,
we apply Support Vector Regression (cf. Smola and Schölkopf (1998)) since it
models outliers very well and robustly. In this manner we predict the numeric
human scores of the patients’ recordings from the feature vector. For the sake
of simplicity we will only describe support vector regression with linear kernel.

The goal of SVR is to compute an estimate value ŷi for each of the N feature
vectors x i which deviate at most ǫ from the original target value yi. This leads
to the following equation:

ŷi = w⊤x i + b (9)

The variables w and b are found by solving the problems

yi − (wx i + b) ≤ ǫ and (wx i + b) − yi ≤ ǫ. (10)
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Fig. 4. Support Vector regression finds a function that has at most deviation ǫ

from the targets yi. In order to allow deviations larger than ǫ, a slack variable ξi is
introduced. Note that the support vectors are outside the ǫ tube.

To allow deviations greater than ǫ, slack variables ξi and ξ∗i are introduced.
So Equation 10 can be rewritten to

yi − (wx i + b) ≤ ǫ + ξi and (wx i + b) − yi ≤ ǫ + ξ∗i . (11)

In order to constrain the type of the vector w , we postulate flatness. One
way to achieve this is to minimize its norm ||w ||. So we end in the following
minimization problem:

minimize
1

2
||w||2 + C

∑

i

(ξi + ξ∗i )

subject to















yi − (wx i + b) ≤ ǫ + ξi

(wx i + b) − yi ≤ ǫ + ξ∗i

ξi, ξ
∗

i ≥ 0

(12)

Similar as for Support Vector machines as described in Schölkopf (1997), a
primal Lagrangian can be formulated introducing Lagrange multipliers αi, α∗

i ,
ηi, and η∗

i in order to solve this problem.

LP =
1

2
||w||2 + C

∑

i

(ξi + ξ∗i ) −
∑

i

αi(ǫ + ξi − yi + w⊤x i + b)

−
∑

i

α∗

i (ǫ + ξ∗i + yi −w⊤x i − b) −
∑

i

(ηiξi + η∗

i ξ
∗

i )
(13)
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C denotes a penalty parameter to be chosen by the user. The saddle point
condition of a minimum requires the derivative of LP to vanish for the pri-
mal variables w , b, ξi, and ξ∗i . Therefore, partial derivation of LP yields the
following equations:

0=
∑

i

(α∗

i − αi) (14)

w =
∑

i

(αi − α∗

i )x i (15)

0= C − αi − α∗

i − ηi − η∗

i (16)

By substitution of the equations Eq. 14 to Eq. 16, in Eq. 13 the following
optimization problem is obtained:

maximize



















−
1

2

∑

i,j

(αi − αj)(α
∗

i − α∗

j )x
⊤

i x j

−ǫ
∑

i

(αi − α∗

i ) +
∑

i

yi(αi − α∗

i )

subject to











∑

i

(αi − α∗

i ) = 0

αi, α
∗

i ∈ [0, C]

(17)

Note that the Lagrange multipliers ηi and η∗

i are eliminated in the derivation
of Eq. 17. According to Smola and Schölkopf (1998) the constraint αiα

∗

i = 0
has to be met. Thus, there can never be a set of variables αi and α∗

i which are
both nonzero at the same time. Furthermore, αi and α∗

i are zero if |ŷi−yi| < ǫ.
Therefore, support vectors can only be found outside the ǫ-tube (cf. Fig. 4).
With Eq. 15 the prediction of ŷi from Eq. 9 can now be written without the
actual weight vector w :

ŷi =





∑

j

(αj − α∗

j )x j





⊤

x i + b (18)

Hence, the predictions can be computed from the support vectors x j without
explicit computation of the weight vector w .

3 Results

3.1 Perceptual Evaluation

The perceptual evaluation by five experts showed good consistency. Table 3
shows the Pearson (r) and Spearman (ρ) correlation coefficients between each
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rater and the average correlation coefficients for the TE database. The cor-
relations are all between .77 and .87 and hence in the same range. The 95%
confidence intervals are reported in brackets.

The experts’ evaluation showed good consistency on the children’s database
as well. Table 4 gives an overview on the correlations of the experts to each
other. Note that the rating procedure on this database seems to yield higher
consistency between the raters in CLP vs. TE speech. We ascribe this effect
to the much higher number of ratings (about 70 per child) compared to the
low number of ratings (one per laryngectomee) in the other database.

3.2 Automatic Evaluation

Since both corpora contain few speakers, all experiments were performed in a
leave-one-out (LOO) manner:

• First, the features are extracted using the speech recognizer and the prosody
module.

• Then, the most important features are selected as the subset of n features
with the the highest correlation to the target values, i.e. the best linear pre-
diction according to the Multi-Correlation/Regression analysis as described
in Cohen and Cohen (1983b) (cf. Section 2.5.4).

• The best feature subset is then used to train a Support Vector Regression
which is used to predict the left out value.

These steps are iterated for each speaker. In the end the correlation between
the predicted values and the target values is computed in order to determine
the prediction accuracy. The number of selected features was increased until
the prediction accuracy did not further improve. In this manner prediction-
systems are built for the mean of all experts and each single expert.

Because of the fact that the features are selected in every LOO iteration, the
new feature sets differ in each iteration. In order to demonstrate which features
are of most importance, we report the selected features with the highest mean
rank. Note that the feature selection process was performed in a best-first
manner. Hence, the mean rank will only change very little if additional features
are selected. The occurrence in the list at a high mean rank position does not
necessarily guarantee that the feature was selected in every iteration but in
many of them.
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Fig. 5. Predicted expert scores in comparision to the actual expert scores for the
laryngectomees case: The LOO predicted value with three features is plotted against
the mean expert score.

3.2.1 Automatic Intelligibility Assessment of TE Speech

Table 5 shows correlation coefficients of the LOO prediction on the laryngec-
tomees’ database. In all cases the first selected feature to model the intelligi-
bility is either the WA or the WR. Next, prosodic features are added in the
feature selection process. We stopped reporting additional features when the
correlation did not increase further. Combination of either the WA or the WR
with prosodic features yields improvement in most cases. The prediction of
the reference—the mean opinion of all experts—is improved by 3.4% in the
case of Pearson’s r and 4.8% for Spearman’s ρ relatively. Fig. 5 shows the
prediction using three features.

In general the scores of each individual rater are modeled by these features
with a correlation of r > .75 and ρ > .73. The raters 2 and 3 can not be
modeled better by further prosodic information. Either the word recognition
rate or the word accuracy is already sufficient.

Speech recognition seems to be influenced by the same factors as human per-
ception: The performance of a speech recognition system models the average
human perception very well. For two of the raters the recognizer’s performance
alone was able to model the rater.
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Fig. 6. Predicted expert scores in comparision to the actual expert scores for the
CLP children: The LOO predicted value with three features is plotted against the
mean expert score.

3.2.2 Automatic Intelligibility Assessment of CLP Speech

The combination of the prosodic features and the result of the speech rec-
ognizer is also beneficial for the prediction of experts’ scores (cf. Table 6).
The best feature for the prediction of the intelligibility is in all raters either
the word accuracy or the word recognition rate. The prediction of the mean
of all raters is slightly refined in the sense of Pearson’s correlation with the
word accuracy, the minimum energy contour regression slope per word, and
the mean of the mean shimmer in each turn. Fig. 6 shows the predicted val-
ues and the reference in comparision. In terms of Spearman’s correlation, the
prediction is increased slightly by adding the minimum mean F0 per word. As
shown in Table 6, the selection of the first feature does not yield improvement.
The combination with more features, however, helps in the prediction of the
experts’ scores.

For the prediction of individual experts, only the prediction of one expert
could be improved (rater K) by adding one prosodic feature. In general the
prediction of the individual raters is performed with a Pearson correlation
r > .80 and a Spearman correlation ρ > .75 in this LOO experiment. Again
this is in the same range as the experts.
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4 Discussion

PEAKS is a system for the evaluation of speech intelligibility. We test the
new method on two types of communication disorders: voice and articulation
disorders. In both examples the disorder ranges from almost normal intelli-
gibility to severely disordered speech. Both datasets are suitable to show the
discriminatory power of our method, because they have a broad range in in-
telligibility. They are from a completely different origin. However, both inhibit
communication, because their effect is a degraded intelligibility.

For comparable results we chose standard evaluation procedures such as a
standard text to read or pictograms as usually given for voice and speech
evaluation. Another advantage of the procedure is that the vocabulary of the
task is limited, which yields a more robust speech recognition.

For the evaluation of the method a valid reference is required. Hence, the
data were audited by a panel of speech experts. The procedure yielded a good
inter-rater consistency. To reduce the subjectivity in the data, the mean of all
experts was computed in order to create a consensus score which we treated
to as an appropriate reference (cf. Henningsson et al. (2008)).

In both disorders the PEAKS system agreed with the perceptual evaluation
by the speech experts. The correlations were highly significant (p < 0.001)
and in the same range as the human experts, i.e., within the 95% confidence
interval. In contrast to perceptual evaluation, the evaluation of the system is
performed automatically and in less than real time.

Further use of prosodic features was beneficial in the case of the alaryngeal
speech. In this manner the quality of the automatic evaluation could be im-
proved. In the case of the children’s speech, improvements could only be ob-
tained for individual raters. We relate this to the fact that the children spoke
isolated words in most cases. Hence, the impact of the prosody on the intelli-
gibility was only low, i.e., the uttered segments were too short to incorporate
a lot of prosody.

In the beginning of this article we postulated four important properties for
a system for the automatic assessment of voice and speech disorders. With
the previously discussed topics, we now conclude by specifying which of the
postulates are covered by our system.

(1) patient assessment: The intelligibility ratings of our evaluation system
are in the same range as those of the experts, i.e. our system is suitable
for the analysis of voice and speech disorders. Thus, quantification of the
disorder can be provided with respect to intelligibility.

(2) therapy control: For a fixed speech input the system produces exactly the
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same result when the procedure is repeated once or multiple times, i.e.,
the intra-rater variability is 0. So the system provides a reliable method
for therapy control.

(3) scientific evaluation: With a reliable means of quantification of speech
and voice disorders, the system will also be able to evaluate different
modes of therapy on the speech outcome in terms of intelligibility.

The fourth point “specification of the disorder and its impact on communica-
tion skills”, is yet to be shown by medical studies in the future.

In general, the recording environment is highly suitable for clinical purposes.
One major reason is that there are no installation costs, since many exam-
ination rooms already provide a PC with internet access. Furthermore, the
system is easy to apply. The system is also suitable for screening tests, if
age-dependent normative data were acquired.

In the future, we will add more features to the system. First of all we want
to add a visualization module to display and compare different patient data
sets. The result is a map which displays different disorders in certain regions.
Such a visualization could help to classify disorders when the recording of a
new patient is projected into a map with well documented patients. Patients
who are close to the new patient should be also similar in their disorder.

Furthermore, we want to enable the assessment of distinct speech disorders
and voice quality. The assessment result would then be more detailed, i.e., the
reduction in intelligibility could then be related to the kind of the disorder.
First results are presented in Maier et al. (2008).

5 Conclusion

Our evaluation system provides an easy to apply, cost-effective, instrumental,
and objective evaluation of the intelligibility for voice and speech disorders. It
is as reliable as human experts.
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Prosody Module. In: Wahlster, W. (Ed.), Verbmobil: Foundations of Speech-
to-Speech Translation. Springer, New York, Berlin, pp. 106–121.

Batliner, A., Buckow, J., Huber, R., Warnke, V., Nöth, E., Niemann, H., 1999.
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Table 1
Overview on the prosodic features computed on word level

Word Level Features

Feature Description

PauseSilenceBeforeWord Length of the pause before the current word

PauseSilenceAfterWord Length of the pause after the current word

EnergyRegCoeffWord Slope of the regression line of the energy contour

EnergyMseRegWord Mean square error of the regression line of the energy
contour

EnergyEneAbsWord Absolute energy of the current word

EnergyMaxPosWord Position of the maximal energy in the current word

EnergyMaxWord Value of the maximal energy in the current word

EnergyMeanWord Mean value of the energy in the current word

DurLenAbsWord Duration of the current word

DurLenAbsSyllableWord Mean duration of the syllables in the current word

F0RegCoeffWord Slope of the regression line of the F0 contour in the
current word

F0MseRegWord Mean square error of the regression of the F0 contour
in the current word

F0MaxWord Maximal F0 value in the current word

F0MinWord Minimal F0 value in the current word

F0MeanWord Average F0 value of the current word

F0OnsetWord First value of the F0 contour in the current word

F0OffsetWord Last value of the F0 contour in the current word

F0OnsetPosWord Position of the F0 onset in the current word

F0OffsetPosWord Position of the F0 offset in the current word

F0MinPosWord Position of the minimal F0 value in the current word

F0MaxPosWord Position of the maximal F0 value in the current word
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Table 2
Overview on the prosodic features computed on turn level

Turn Level Features

Feature Description

F0MeanGlobalWord Mean of the F0 value in the current utterance

F0VarianceGlobalWord Variance of the F0 value in the current utterance

Mean jitter Mean value of the jitter in the current turn

Variance jitter Variance of the jitter in the current turn

Mean shimmer Average of the shimmer in the current turn

Variance shimmer Variance of the shimmer in the current utterance

Num V Segments Number of voiced segments in the current utter-
ance

Num UV Segments Number of unvoiced segments in the current ut-
terance

Len V Segments Length of the voiced segments in the current
turn

Len UV Segments Length of the unvoiced segments in the current
turn

MaxLen V Segments Maximal length of a voiced segment in the cur-
rent utterance

MaxLen UV Segments Maximal length of an unvoiced segment in the
current utterance

RatioNum VUV Segments Ratio of the number of voiced and unvoiced seg-
ments in the current turn

RatioLen VUV Segments Ratio of the length of voiced and unvoiced seg-
ments in the current turn

RatioLen VSignal Segments Ratio of the length of the voiced segments and
the current utterance

RatioLen UVSignal Segments Ratio of the length of the unvoiced segments and
the current utterance
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Table 3
Correlation coefficients between single raters and the average of the 4 other raters
for the criterion “intelligibility”. The 95 % confidence intervals are reported in brack-
ets.

laryngectomees

rater mean of other raters

r ρ

rater 1 .84 [.69-.92] .82 [.66-.91]

rater 2 .87 [.75-.93] .84 [.69-.92]

rater 3 .80 [.62-.90] .77 [.57-.88]

rater 4 .81 [.64-.90] .83 [.68-.91]

rater 5 .80 [.62-.90] .77 [.57-.88]

Table 4
Correlation coefficients between single raters and the average of the 4 other raters
for the criterion “intelligibility”. The 95 % confidence intervals are reported in brack-
ets.

children

rater mean of other raters

r ρ

rater 1 .94 [.87-.97] .93 [.84-.97]

rater 2 .94 [.87-.97] .92 [.82-.96]

rater 4 .94 [.87-.97] .93 [.84-.97]

rater 6 .95 [.89-.97] .92 [.82-.96]

rater 7 .96 [.91-.98] .92 [.82-.96]
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Table 5
Correlation between reference ratings and the ratings estimated using SVR using
different feature sets on the laryngectomees’ database: An increase in the number of
features yields an increase in performance in most cases. Due to the LOO procedure
only the features with the highest mean ranks are reported. Combination of features
is indicated as “+”.

feature prediction SVR reference raters

r ρ

word accuracy .87 .85 all raters

+ mean F0MeanWord .90 .87 all raters

+ variance F0OffsetPosWord .90 .88 all raters

word recognition rate .66 .67 rater 1

+ max F0OffsetPosWord .73 .75 rater 1

+ max PauseSilenceBeforeWord .74 .76 rater 1

word recognition rate .79 .78 rater 2

word accuracy .79 .81 rater 3

word accuracy .74 .77 rater 4

+ variance F0OffsetPosWord .69 .73 rater 4

+ mean F0MeanWord .71 .75 rater 4

+ mean PauseSilenceBeforeWord .69 .73 rater 4

+ mean F0MaxPosWord .74 .79 rater 4

word accuracy .76 .73 rater 5

+ min F0MinWord .80 .76 rater 5
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Table 6
Correlation between reference rating and the ratings estimated using SVR using dif-
ferent feature sets on the children’s database: An increase in the number of features
yields an increase in performance only with respect to all raters. Due to the LOO
procedure only the features with the highest mean ranks are reported. Combination
of features is indicated as “+”.

feature prediction SVR reference raters

r ρ

word accuracy .86 .84 all raters

+ minimum EnergyRegCoeffWord .86 .82 all raters

+ mean Mean shimmer .87 .82 all raters

+ minimum F0MeanWord .85 .87 all raters

word accuracy .83 .78 rater 1

word recognition rate .82 .79 rater 2

word accuracy .82 .80 rater 4

+ minimum F0MaxWord .84 .86 rater 4

word accuracy .85 .83 rater 6

word accuracy .84 .81 rater 7
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