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Abstract
The INTERSPEECH 2014 Computational Paralinguistics Chal-
lenge provides for the first time a unified test-bed for the auto-
matic recognition of speakers’ cognitive and physical load in
speech. In this paper, we describe these two Sub-Challenges,
their conditions, baseline results and experimental procedures,
as well as the COMPARE baseline features generated with the
openSMILE toolkit and provided to the participants in the Chal-
lenge.
Index Terms: Computational Paralinguistics, Challenge, Cogni-
tive Load, Physical Load

1. Introduction
So far, there have been five consecutive paralinguistic challenges
at INTERSPEECH since 2009; cf. the challenge series’ reposi-
tory at http://www.compare.openaudio.eu, chapter 6.2 in [1], and
[2]. They covered short-term states (emotion in 2009, interest in
2010), short-term events (laughter and conflict in 2013), medium-
term states (intoxication and sleepiness in 2011), long-term traits
(personality in 2012), atypical traits (autism in 2013), and biolog-
ical trait primitives (age and gender in 2010). The Interspeech
2014 COMputational PARalinguistics ChallengE (COMPARE)
is again an open challenge, dealing with – relatively – short-term
states of speakers as manifested in the acoustic properties of
the speech signal. The Cognitive-Load with Speech and EGG
database (CLSE) and the Munich Bio-voice Corpus (MBC) cov-
ering different languages (Australian English and German) are
provided by the organisers. CLSE features Australian speakers
recorded during different cognitive load. MBC contains speech
under physical exercising; heart rate and skin conductance were
measured by sensors. Two Sub-Challenges are addressed:

In the Cognitive Load Sub-Challenge, three levels of cogni-
tive load have to be classified automatically, based on acoustics
(ternary classification).

In the Physical Load Sub-Challenge, the binary exercising
state (running / resting) and by that the heart rate state (high
pulse / low pulse) have to be classified automatically.

∗ The research leading to these results has received funding from
the European Community’s Seventh Framework Programme under grant
agreements No. 338164 (ERC Starting Grant iHEARu) and No. 289021
(STREP ASC-Inclusion). The authors would further like to thank the
sponsor of the Challenge, the Association for the Advancement of Affec-
tive Computing (AAAC). The responsibility lies with the authors.

The measure of competition will be Unweighted Average
Recall (cf. below). The orthographic transcription of the train
and development sets will be known. Both Sub-Challenges allow
contributors to find their own features with their own machine
learning algorithm. However, a standard feature set will be
provided that may be used. Participants will have to abide by
the definition of training, development, and test sets. They may
report on results obtained on the development set, but have only
five trials to upload their results on the test sets, whose labels are
unknown to them. Each participation will be accompanied by a
paper presenting the results that undergoes peer-review and has
to be accepted for the conference in order to participate in the
Challenge. The organisers preserve the right to re-evaluate the
findings, but will not participate themselves in the Challenge.

In the following we introduce the Challenge corpora (Section
2) and describe the COMPARE baseline features (Section 3) and
the baseline results (Section 4) before concluding (Section 5).

2. Challenge Corpora
2.1. Cognitive Load with Speech and EGG (CLSE)

In the Cognitive Load Sub-Challenge, the “Cognitive Load with
Speech and EGG” (CSLE) database [3] serves to evaluate fea-
tures and algorithms for determining cognitive load and working
memory of speakers; it was recorded in Sydney/Australia us-
ing a close-talk microphone sampled at 16 kHz from 26 native
Australian English speakers (20 male and 6 female).

‘Working memory’ refers to the limited temporary infor-
mation store of the brain [4], and this is often investigated by
‘span’ tasks, which require participants to remember a number
of concepts or objects in the presence of distractors [5]. The
reading span task [6] employed in this database required par-
ticipants to read a series of possibly illogical short sentences
(e. g., “I like to walk in the sky”), indicate whether each was
true or false, and then remember a single letter presented briefly
between sentences [7]. The number of sentences presented in
each set, after which participants were asked to recall all letters
shown, varied from two to five. The working memory load level
labels for this database were low (L1) after the first sentence,
medium (L2) after the second sentence, and high (L3) after the
third, fourth, and fifth sentence. This task contains 75 utterances
per speaker, spread across 3 working memory load levels, each
with an average utterance duration of 4 s.

‘Cognitive load’ refers to the load that a task places on
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Table 1: Partitioning of the Cognitive Load with Speech and
EGG (CLSE) database into train(ing), dev(elopment), and test
sets. Sum of number of utterances over the three tasks partici-
pants had to perform for each load level (L1–L3), excluding the
reading span task letter recordings.

# train dev test Σ
L1 297 189 216 702
L2 297 189 216 702
L3 429 273 312 1 014
Σ 1 023 651 744 2 418

the cognitive system [8], which may comprise both working
memory and central executive components. The cognitive load
tasks employed in this database – variants of the Stroop test
[9] – required participants to name the font colour of words
corresponding to different colour names. In the low level (L1),
the font colours and the colour words were congruent, while in
the medium and high levels (L2 and L3), they were incongruent.
In the Stroop time pressure task (after [10, 11]), the high level
required participants to name the font colour in a short period of
time (0.8s), while in the Stroop test with dual task, participants
were required to perform a tone-counting task in the high level,
as well as naming the font colour. As part of the data collection,
participants were also asked to perform a post-task subjective
rating of the load they experienced, similarly to other studies
of this kind [12]. Analysis showed that the ratings exhibited
statistically significant differences across different load levels,
using a paired t-test with a Bonferroni-adjusted significance level
of 0.025 [3]. The Stroop test with time pressure and the Stroop
test with dual task each contain three utterances for each of
three cognitive load levels per speaker, with average utterance
durations of 17 s and 21 s, respectively.

The CLSE database also includes a story reading task, in
which participants read aloud a passage about smoke detectors.
This produced recordings of neutral speech with an average
duration of 80 s, which were intended for use as background
speech data (after [10, 11]) – named UBM (Universal Back-
ground Model) in the data package. The database also contains
electroglottograph (EGG) data for all tasks (not provided for the
test data), recorded simultaneously with the speech at a sampling
frequency of 48 kHz (downsampled to 16 kHz) and a resolution
of 16 bits using a device from Laryngograph Ltd.

For the purpose of the Challenge, the data were divided into
speaker disjoint subsets for training, development, and testing.
For the reading span task, both the sentences and the letters
read aloud were recorded. However, preliminary baseline results
showed that the cognitive load level cannot be inferred well from
the letters only. Thus, it was decided to remove the reading
span task letter recordings from the evaluations, leaving only the
sentence recordings. The letter recordings are provided in the
Challenge sets, but are excluded in all evaluations. Participants
may use the data at their own convenience. Note that during
the evaluation, the Stroop test with time pressure, the Stroop
test with dual task, and the reading span tasks should be treated
separately! The best baseline results are obtained in the case
of per task modelling (cf. Section 4). Table 1 summarises the
partitioning of the database.

2.2. Munich Bio-voice Corpus (MBC)

Physical load of users is of interest in manifold applications [13],
but only few databases exist that contain speech under physical
stress, e. g., the Dismounted Close Combat Database; see as

Table 2: Partitioning of the Munich Bio-voice Corpus into train,
dev(elopment), and test sets for binary classification (‘low’,

‘high’).

# train dev test Σ
low 199 199 154 552
high 186 185 165 536
Σ 385 384 319 1 088

well [14, 15]. In the Phsyical Load Sub-Challenge, the “Mu-
nich Bio-voice Corpus” (MBC) [16, 17] is used. The corpus
was recorded at TUM in Munich/Germany. It contains speech
from healthy subjects in two distinct physical load conditions.
To produce such data, an experiment in which heart rate (HR)
and skin conductivity (SC) were recorded simultaneously with
vocal expressions was carried out. Several studies have shown
that there exist significant correlations between speech features
and heart rate [18, 19, 20], as well as with the level of sweating
[21, 22, 23]. In the MBC corpus, HR and SC data were recorded
with the Wild Divine Inc.’s “iom” – a lightweight hardware sen-
sor device. Data were collected from three sensors attached to
a subject’s fingers. Audio was recorded with a Zoom Q3Hd
camcorder equipped with an X-Y HD microphone placed on the
table in front of the sitting subject. The audio has a sampling
rate of 96 kHz in PCM-wave 24 bits format. Overall, 19 subjects
(4 female, 15 male, 3 Chinese, 15 German, 1 Italian) gave their
consent and participated in the experiment. All were free of tem-
porary diseases, but the subjects include smokers and such with
cardiac and neurological disorders. All subjects were recorded
breathing, pronouncing the sustained vowel /a/, and reading a
German or English text (“Der Nordwind und die Sonne” – “The
Northwind and the Sun”), according to their mother tongue –
both with low heart rate and with high heart rate under constant,
pre-defined conditions. Subjects participated in the first record-
ing session after a short introduction and a practice session, to
ensure that their heart rate was low and they were in an ‘idle’
physical load state. After the first session, subjects had to per-
form a series of exercises, such as fast stair-climbing and running.
A second session was recorded immediately after the exercise.

For the purpose of the Challenge, we only use the read
text as main data since it conveys more speech variabilities
than the sustained vowels. Consequently, two subjects were
removed from the original database (1 German female, 1 Italian
male), because this task was absent for one of them, and the
high quality speech recording from the Zoom Q3Hd camcorder
was not available for the other. Start and stop time-stamps of
each session, i. e., before and after intense sport exercise, were
manually segmented for each subject. Obtained wave files were
then passed to a voice activity detector configured with a low
energy threshold to allow the detection of breathing events in
speech. In order to avoid having too short speech segments,
we recursively merged those for which the duration was below
1 s. Data were finally divided into speaker disjoint subsets for
training, development and testing, by stratifying (balancing) on
gender, spoken language (English / German), age and body mass
index. Table 2 summarises the partitioning of the database.

3. Challenge Features
For the baseline acoustic feature set used in this Challenge, we
use the same acoustic feature set as in the INTERSPEECH 2013
Computational Paralinguistics ChallengE (COMPARE) [2] – the
most effective set used in this series of Challenges so far. Again,
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Table 3: COMPARE acoustic feature set: 65 provided low-level
descriptors (LLD).

4 energy related LLD Group
Sum of auditory spectrum (loudness) prosodic
Sum of RASTA-filtered auditory spectrum prosodic
RMS Energy, Zero-Crossing Rate prosodic
55 spectral LLD Group
RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz) spectral
MFCC 1–14 cepstral
Spectral energy 250–650 Hz, 1 k–4 kHz spectral
Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9 spectral
Spectral Flux, Centroid, Entropy, Slope spectral
Psychoacoustic Sharpness, Harmonicity spectral
Spectral Variance, Skewness, Kurtosis spectral
6 voicing related LLD Group
F0 (SHS & Viterbi smoothing) prosodic
Prob. of voicing voice qual.
log. HNR, Jitter (local & δ), Shimmer (local) voice qual.

we use TUM’s open-source openSMILE feature extractor [24]
in its recent 2.0 release [25] and provide extracted feature sets
on a per-chunk level. Configuration files for openSMILE with
which the baseline features are reproducible will be provided
soon together with the next openSMILE public release. The
COMPARE feature set contains 6 373 static features – function-
als of low-level descriptor (LLD) contours. For details on the
feature set including an in-depth analysis of features for speech
and music tasks the reader is referred to [26]. The LLD and
functionals included in the set are summarised in Tables 3 and 4,
respectively.

4. Challenge Baselines
As primary evaluation measure, we retain the choice of Un-
weighted Average Recall (UAR) as used since the first Challenge
held in 2009 [27]: the unweighted (by number of instances in
each class) mean of the percentage correctly classified in the
diagonal of the confusion matrix. The motivation to consider
unweighted rather than weighted average recall (‘conventional’
accuracy) is that it is also meaningful for highly unbalanced dis-
tributions of instances among classes, as is given in the Cognitive
Load Sub-Challenge. For transparency and reproducibility, we
use open-source classifier implementations of Support Vector
Machines (SVM) from the WEKA data mining toolkit [28]. To
this end, linear kernel SVM are used, which are known to be ro-
bust against overfitting. As training algorithm, we use Sequential
Minimal Optimisation (SMO).

Reproducible balancing of the training set for the Cognitive
Load Sub-Challenge is implemented by integer upsampling of
the classes L1, L2, and L3, by the factors 2, 2, and 3, respectively.
For evaluation on the test set, we re-train the models using the
training and development set. For CLSE, in this case, the up-
sampling is applied to the training and development set. No
balancing was performed for the MBC set, because the data are
well balanced by the experimental setting, cf. Table 2.

In the Cognitive Load Sub-Challenge, the way that cognitive
load is expressed in speech produced by the participants depends
strongly on the task they had to perform. Thus, for the baseline
we compare modelling each task individually to modelling all
three tasks together. In the former case, the data for each par-
tition (train/dev/test) are split into three sub-partitions by the
task ID (READINGSPAN, TIMEPRESSURE, DUALTASK) and in-

Table 4: COMPARE acoustic feature set: Functionals applied to
LLD contours (Table 3). 1: arithmetic mean of LLD / positive ∆
LLD. 2: not applied to voicing related LLD except F0. 3: only
applied to F0.

Functionals applied to LLD / ∆ LLD Group
quartiles 1–3, 3 inter-quartile ranges percentiles
1 % percentile (≈min), 99 % pctl. (≈max) percentiles
percentile range 1 %–99 % percentiles
position of min / max, range (max – min) temporal
arithmetic mean1, root quadratic mean moments
contour centroid, flatness temporal
standard deviation, skewness, kurtosis moments
rel. dur. LLD is above 25 / 50 / 75 / 90 % range temporal
relative duration LLD is rising temporal
rel. duration LLD has positive curvature temporal
gain of linear prediction (LP), LP Coeff. 1–5 modulation
mean, max, min, std. dev. of segment length2 temporal
Functionals applied to LLD only Group
mean value of peaks peaks
mean value of peaks – arithmetic mean peaks
mean / std.dev. of inter peak distances peaks
amplitude mean of peaks, of minima peaks
amplitude range of peaks peaks
mean / std. dev. of rising / falling slopes peaks
linear regression slope, offset, quadratic error regression
quadratic regression a, b, offset, quadratic err. regression
percentage of non-zero frames3 temporal

Table 5: UAR for each task individually for CLSE and best base-
line configuration (cf. Table 7). SVM complexity C = 0.0001,
per task modelling vs. global model, normalisation: z-train (see
text).

UAR [%] Per task model Global model
Task Devel Test Devel Test
Reading sentence 61.2 61.5 61.3 61.7
Stroop time pressure 74.6 66.7 54.0 44.4
Stroop dual task 63.5 56.9 44.4 37.5

dependet evaluations on each task sub-partition are performed
(resulting in one model for each task); the predictions from the
three evaluations are concatenated and scored for UAR normally.
In global modelling, no sub-partitioning is performed and a sin-
gle model is trained. Table 5 shows detailed results (UAR for
each task individually) for CLSE obtained with the best baseline
setting. Global modelling is compared to per task modelling.
For the Physical Load Sub-Challenge, only global modelling
was used since a single task was performed by all subjects, i. e.,
reading the text before and after exercising.

In the baseline systems, the SVM complexity C was opti-
mised on the development set, by investigating C values from
0.00001 to 0.5 in roughly double increments, i. e., 0.00001,
0.00002, 0.00005, 0.0001, . . . 0.5. Figure 1 shows the results
(UAR) obtained with different complexities as well as different
feature normalisation methods for both Sub-Challenges. The
following six normalisation methods were investigated on both
the CLSE and MBC development set: max/min normalisation
(range -1 to +1) (n-) and mean 0 and variance 1 normalisation
(z-), both individually for each speaker (-spk), individually for
the respective training/test partitions (-part), and for training/test
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Figure 1: UAR vs. SVM complexity (C) on the CLSE (left) and MBC (right) development sets for four feature normalisation methods:
n/z-train/part (see text for details). Per task modelling for CLSE.
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Table 6: Effect of feature normalisation (Normal.) methods
(see text for details). UAR in % (development set) for best SVM
complexity parameter C for each normalisation method; per
task modelling on CLSE.

CLSE MBC
Normal. C UAR [%] C UAR [%]
n-train 0.0005 61.7 0.02 67.2
z-train 0.0001 63.2 0.001 66.6
n-part 0.001 62.5 0.005 66.6
z-part 0.001 63.8 0.001 65.6
n-spk 0.0002 69.4 0.005 64.5
z-spk 0.0001 68.9 0.0005 66.7

partitions with parameters computed only from the training parti-
tion (-train). The per speaker normalisations (n/z-spk) cannot be
applied on the test set because no speaker information is provided
there. Thus, they are excluded from the valid official baseline
configurations. Participants are free to employ an unsupervised
speaker ID method, though.

In previous Challenges, the normalisation parameters have
been computed on the training set and have been applied to
the test set. This method must be used for on-line evaluations,
i. e., where only one test instance is known at a time. As in
this Challenge, however, all test instances are available and can
be used in a single batch during evaluation, we also consider
this case. Thus, normalisation of the test set is additionally
performed as a whole, independent of the training set (n/z-part).
For consistency with previous Challenges, however, we only
consider the methods n/z-train for the official baseline results.
Table 6 compares the results obtained with different feature
normalisation strategies for both corpora. Based on Table 6, the
official baseline results are shown in Table 7 in bold-face. Due to
the different nature of the tasks and evaluation measures, we also
present chance level baselines, which, for UAR, are defined by
assuming a classifier which predicts only a single class label for
all instances. Let us briefly summarise the baseline results here:
With the best configurations (chosen on the development set
for each Sub-Challenge), in the Cognitive Load Sub-Challenge,
63.2 % UAR and 61.6 % UAR are achieved on development
and test sets, for the ternary classification; in the Physical Load
Sub-Challenge, 67.2 % UAR and 71.9 % UAR are obtained,
respectively, for the binary classification. For the challenge, only

Table 7: Challenge Baselines for COMPARE 2014. C: Com-
plexity parameter in SVM training (tuned on development set).
Devel: Result on development set, by training on training set.
Test: Result on test set, by training on the training and devel-
opment sets. Chance: Expected measure by chance (cf. text).
Settings: max/min normalisation (n), mean/variance normali-
sation (z) on all instances with parameters computed only from
the training set (-train); Cognitive Load Sub-Challenge: one
model per task or one global model. Official baseline results are
marked in bold-face.

Setting C UAR [%]
Devel Test Chance

Cognitive Load Sub-Challenge
Per task, z-train 0.0001 63.2 61.6 33.3
Global, z-train 0.0001 59.1 58.2 33.3

Physical Load Sub-Challenge
Global, n-train 0.02 67.2 71.9 50.0

the best result on test out of the up to five uploads per site will
be considered.

5. Conclusion
We introduced the INTERSPEECH 2014 Computational Par-
alinguistics Challenge. This year, we focused on cognitive and
physical load – tasks that have not yet been addressed that of-
ten as, e. g., emotion or personality; yet, they are interesting
in themselves and promising for potential applications such as
monitoring of subjects who perform physically or cognitively
demanding tasks. The baseline results show both the feasibility
and the difficulty to model these states automatically. We have
provided baselines using a standard feature set and classification
approach for the sake of consistency across the Sub-Challenges.
We tried to make the baselines, on the one hand, competitive, by
using a very comprehensive feature vector; on the other hand,
they should be beatable to provide room for improvement. Thus,
we did not optimise the feature vector by feature selection or
reduction, and we used standard classification algorithms with
only basic tuning. Hence, it will be of interest to see the perfor-
mance of methods that are more tailored to peculiarities of the
presented tasks.
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