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Abstract—Early interventions in mental health conditions such
as Major Depressive Disorder (MDD) are critical to improved
health outcomes, as they can help reduce the burden of the disease.
As the efficient diagnosis of depression severity is therefore
highly desirable, the use of behavioural cues such as speech
characteristics in diagnosis is attracting increasing interest
in the field of quantitative mental health research. However,
despite the widespread use of machine learning methods in the
depression analysis community, the lack of adequate labelled
data has become a bottleneck preventing the broader application
of techniques such as deep learning. Accordingly, we herein
describe a deep learning approach that combines unsupervised
learning, knowledge transfer and hierarchical attention for the
task of speech-based depression severity measurement. Our novel
approach, a Hierarchical Attention Transfer Network (HATN),
uses hierarchical attention autoencoders to learn attention from a
source task, followed by speech recognition, and then transfers this
knowledge into a depression analysis system. Experiments based on
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the depression sub-challenge dataset of the Audio/Visual Emotion
Challenge (AVEC) 2017 demonstrate the effectiveness of our
proposed model. On the test set, our technique outperformed other
speech-based systems presented in the literature, achieving a Root
Mean Square Error (RMSE) of 5.51 and a Mean Absolute Error
(MAE) of 4.20 on a Patient Health Questionnaire (PHQ)-8 scale [0,
24]. To the best of our knowledge, these scores represent the best-
known speech results on the AVEC 2017 depression corpus to date.

Index Terms—Depression, attention transfer, hierarchical
attention, monotonic attention.

I. INTRODUCTION

A S PART of an effort to assist clinicians in diagnosing
depression more efficiently, automatic detection and mon-

itoring of depression from speech signals attracted considerable
research attention in recent years [1]. The clinical potential of
depression analysis has motivated the creation of the Depression
Recognition Sub-Challenge (DSC) of the Audio/Visual Emotion
Challenge and Workshop (AVEC 2013 [2], AVEC 2014 [3],
AVEC 2016 [4], AVEC 2017 [5]) and the Bipolar Disorder Sub-
challenge (BDS) of AVEC 2018 [6]. These challenges provide
a common platform within which to explore the efficacy of the
application domains of depression recognition.

Various machine learning approaches have been proposed
as a part of these challenges. Most recently, deep neural net-
works, and Convolutional Neural Networks (CNNs) in particu-
lar, have been shown to produce state-of-the-art performances in
speech-based depression analysis [7]–[10]. For example, in [8],
Yang et al. proposed a multi-modal fusion framework composed
of CNNs and DNN. Based on a combination of audio, text and
visual information, this system achieved an RMSE of 5.97 and an
MAE of 5.16 on the test set of the AVEC 2017 depression corpus.
In another work, also by Yang et al. [9], the final Patient Health
Questionnaire (PHQ)-8 prediction score (an RMSE of 5.40 and
an MAE of 4.36 on the AVEC 2017 test set) was achieved by
fusing the outputs of the four systems, across all modalities,
via multivariate linear regression. However, despite the promis-
ing results acheived to date with CNNs, other contemporary
approaches, most notably Recurrent Neural Networks (RNNs),
remain understudied in this context. In principle, RNNs should
be particularly effective, as they are capable of modelling the se-
quential structure of speech; these networks have demonstrated
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state-of-the-art results in many related speech-based tasks [11],
[12].

One potential reason why RNN-based approaches remain
underexplored in depression analysis could be the structure of
the associated databases. In depression analysis tasks, a typi-
cal operating scenario involves longer audiovisual files – it is
normal for these to exceed 15 minutes in length – with only
one target label. It is well-established that conventional RNN-
based approaches struggle under such learning conditions. The
use of attention mechanisms, specifically hierarchical attention
mechanisms [13], [14], can aid RNN-based approaches in such
circumstances. Hierarchical attention approaches have achieved
state-of-the-art performance in various Natural Language Pro-
cessing (NLP) document-based classification tasks [13]–[15].
However, the inclusion of attention mechanisms increases the
number of learnable parameters in the associated models; this
increase does not fit with smaller (in terms of the number of
unique samples) depression corpora [1]. The attention mecha-
nism can, however, be used in combination with transfer learning
paradigms [16]–[19].

While the sparseness of training data constitutes a well-known
bottleneck for speech-based depression analysis [20], a range of
efficient machine learning-based labelling techniques exist that
can be used to leverage both labelled and unlabeled data in order
to improve model performance [21]. One such technique is Semi-
Supervised Learning (SSL), which has also been demonstrated
to have good regularisation and optimisation properties [22]. A
standard method for realising SSL is to perform the training in
two phases: unsupervised pre-training, followed by supervised
fine-tuning [21].

To enable deep learning via such an approach, the unsuper-
vised pretraining often involves training a variant of an autoen-
coder, such as a denoising autoencoder. By reconstructing inputs
with respect to a given loss function, autoencoders act as a feature
learning method. Accordingly, their use makes it easier to train a
deep classifier, as the target data distribution is explicitly learnt
in the unsupervised learning model [23]. Autoencoders therefore
play a fundamental role in building deep architectures for trans-
fer learning and other tasks [24]. Previous works have shown that
autoencoder models are capable of learning meaningful, abstract
representations and can thus achieve better classification results,
as in [25], [26]. Moreover, recent works have demonstrated the
benefits of including attention – both flat and hierarchical – in
autoencoder networks [27], [28].

Motivated by the above observations, we herein propose a
novel depression estimation framework that combines a care-
fully designed hierarchical attention transfer mechanism and
hierarchical attention autoencoders into a unified framework,
which is in turn used to aid the training of an attention-enhanced
RNN framework for depression severity analysis. Encouraged
by the recent success of attention transfer mechanisms and
unsupervised learning, we propose a Hierarchical Attention
Transfer Network (HATN) for speech-based depression sever-
ity assessment. We further explore the contribution of both
the hierarchical attention mechanism and the teacher-student
framework to attention transfer for this task; more specifi-
cally, we use hierarchical attention autoencoders to transfer

knowledge from the speech recognition task to our depression
detection task.

There are several advantages to our proposed model. Firstly, it
provides a hierarchical attention transfer mechanism; this frame-
work automatically transfers attention from speech recognition
at the frame level while simultaneously providing improved
interpretability as to what knowledge should be transferred. Our
goal is to improve the learning of a student network, given a
teacher network trained on a similar task. The proposed hierar-
chical structure of our model is based on the observation that
the clinical interviews in the AVEC 2017 depression dataset [5]
(i.e., our training and evaluation corpora) have a clear hierar-
chical structure: namely, each clinical interview is composed of
multiple sentences, while each of these sentences is composed
of multiple feature frames. This hierarchical structure allows the
network to explicitly model the contribution of each frame in a
particular sentence towards the target clinical depression score,
as well as modelling the task-specific context at semantically
higher levels (such as at the sentence or interview level) [13].

Secondly, this work also specifically targets improvements
in depression analysis utilising a semi-supervised labelling
paradigm. It uses autoencoders to discover the intrinsic knowl-
edge in unlabelled training samples, as well as a small number
of labelled training samples to allow the autoencoders to learn
the required latent feature representation. Moreover, a speech-
based depression analysis system integrated with the proposed
structure not only reduces the need for a large number of labelled
training examples, but also endows the system with the ability
to distil essential knowledge from the unlabelled data into the
supervised learning. To the best of our knowledge, this is the
first time that such a study has been conducted for depression
severity measurement.

II. RELATED WORK

To date, speech-based automated depression analysis has
primarily been performed using conventional – rather than deep
learning – machine learning methods, in combination with hand-
crafted feature engineering [1], [20]. Many novel approaches
have been proposed that have demonstrated increasingly good
performance over the past few years [1], [29]–[32]. Models
commonly used in such studies include Gaussian Mixture Mod-
els (GMM), Support Vector Machines (SVM) and Relevance
Vector Machines (RVM) [1]. Studies comparing the suitability
of different models have generally concluded that no one model
is superior [33], [34]. One particularly interesting approach is
the Gaussian staircase approach [35], [36], in which each GMM
comprises an ensemble of Gaussian classifiers designed to model
the ordinal nature of clinical depression scales [37].

With respect to hand-crafted audio features, researchers
have found that depressed subjects are more likely to ex-
hibit a low dynamic range of the fundamental frequency, a
slow speaking rate, a slightly shorter speaking duration, and
a relatively monotone delivery [1]. Several works have lever-
aged knowledge-based features that are specifically designed
to capture these characteristics or related effects [36], [38]–
[40]. Large supra-segmental feature spaces, in combination
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with an SVM regressor, were used to set the baseline scores
in the AVEC 2013 and 2014 challenges [2], [3]. The audio
feature set consisted of 2268 features: namely, 32 energy- and
spectral-related low-level descriptors (LLD) × 42 functionals,
six voicing-related LLD × 32 functionals, 32 delta coefficients
of energy/spectral LLD×19 functionals, six delta coefficients of
voicing-related LLD × 19 functionals, and 10 voiced/unvoiced
durational features. The feature set was extracted using the
OPENSMILE toolkit [41]. Similarly, for the audio baseline fea-
tures of both AVEC 2016 [4] and AVEC 2017 [5], prosodic, voice
quality, and spectral features were extracted by the COVAREP
toolkit [42].

As already discussed in the introduction, a small number of
studies have begun to explore the application of deep neural
networks, CNNs in particular, for the task of depression analy-
sis [7]–[10], [43], [44]. Furthermore, while the benefits of RNNs
have yet to be fully established for depression analysis from
speech, the advantage of RNNs can be seen in the related field
of Speech Emotion Recognition (SER) [11], [12], [45]–[47].

Recently, attention mechanisms have become widely adopted
among the deep learning community. In the context of deep
learning, attention mechanisms are a family of algorithms that
enable a network to dynamically select subsets of input attributes
given a particular context (input-output pair) setting. The overall
goal of applying attention is, of course, to improve decision accu-
racy. Attention has been successfully applied in tasks including
speech recognition [48], NLP [49], [50], and speech emotion
recognition [12], [47], [51]. Additionally, hierarchical attention
networks have been shown to be superior to non-hierarchical
networks in a range of tasks, such as NLP [13], [15]; this is
due to their ability to leverage more than one level of attention
in a network with the aim of capturing hierarchical structures
contained in the data being modelled [13]. To the best of our
knowledge, attention mechanisms have never before been em-
ployed for the detection of depression from speech.

When compared to conventional machine learning methods,
however, deep learning is very strongly dependent on massive
amounts of training data [52]. Moreover, an absence of suf-
ficient training data has become an inescapable problem for
depression analysis [1], [20]. Accordingly, autoencoders, which
can be used as an unsupervised learning model [53], represent
a type of deep learning paradigm that could be well-suited for
use under such circumstances. Previous research efforts have
used autoencoders in related speech tasks, such as emotion
recognition systems [23], [54]–[57]. Again, to the best of our
knowledge, no previous work has employed autoencoders to
analyse depression severity from speech.

Another technique used to improve network performance
when only a limited amount of labelled training data is available
- namely, knowledge transfer - has been widely employed in
various settings [58], [59]. Very recently, attention maps have
been studied as a knowledge transfer mechanism [16]. It has
been demonstrated that training smaller ‘student’ networks to
mimic the attention maps of larger, higher-performing ‘teacher’
network architectures can lead to considerable performance
gains in these smaller networks. In [17], the authors explored
the use of attention for cross-domain knowledge transfer from
online images to videos. Similarly, Zhuo et al. [18] developed an

attention transfer process for convolutional domain adaptation.
However, the work in both of these papers was based on CNNs;
to the best of our knowledge, to date, no attention transfer process
for RNNs has yet been designed.

From the literature, we can see that recent works present
strong evidence for the value added by attention transfer and
autoencoders. Accordingly, our approach utilises a combination
of these two existing ideas for speech-based depression severity
measurement. To the best of our knowledge, no existing work
has yet combined these two methods for such a task.

III. PROPOSED METHODOLOGY

In this section, we first present an overview of the proposed
model for ‘cross-task’ depression severity measurement. We
then introduce the technical details of the model.

A. An Overview of the Proposed Model

The present work incorporates two key tasks: (i) speech
recognition, and (ii) depression recognition from speech (Fig. 1).
Our goal is to improve the performance on the target task (i.e.,
depression recognition) by leveraging the spatial attention maps
from the classifier in the source task (i.e., speech recognition).
Given the scarcity of our target data, we learn this mapping on
resource-rich tasks where high-quality attention can be obtained
during training.

In this regard, our proposed model comprises four key com-
ponents. The first, the teacher network, is an attention-based
encoder-decoder network, trained for the speech recognition
task, which learns the initial attention maps. The second com-
ponent, the fundamental component of the model, is the at-
tention transfer mechanism. This component is used to train
a (shallower) student network for the task of depression recog-
nition, such that it mimics the attention maps of the teacher
network [16]. In the third component, hierarchical attention au-
toencoders are used in an unsupervised manner to generate a rich
set of feature representations upon which the related supervised
tasks can be built. In the final component of our hybrid model, the
depression recognition module, we use a hierarchical attention
neural network, which consists of frame-level and sentence-level
attention mechanisms.

In the proposed model, the standard bidirectional long short-
term memory recurrent neural networks (BLSTM) are used to
sequentially process each frame in the input. Further we explore
the benefits of two different attention mechanisms, Standard
Soft and Monotonic, which are introduced in the next two
sub-sections.

B. Standard Soft Attention

Standard soft attention mechanisms are used to select relevant
encoded hidden vectors via attention weights (an informative
sequence of weights) during the decoding phase [50]. At each
timestep i, the attention weights αi,j are produced by normal-
ising the scalar values ei,j across the memory using a softmax
function:

αi,j =
exp(ei,j)

∑T
k=1 exp(ei,k)

. (1)
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Fig. 1. An overview of our proposed model. First, we trained a hierarchical attention autoencoder network that works in a bottom-up manner: an encoder applies
the attention mechanism at the frame level, which is then conveyed to a sentence-level encoder to form the hidden vectors of the context. These vectors are further
processed by the sentence-level attention, which produces a latent representation of the clinical interview. The learnt representation of the clinical interview is then
fed into a decoder to enable reconstruction of the input sequence, after which the representations of both the sentence and the clinical interview are utilised as input
and fed into the BLSTM to predict the overall clinical depression score. Once the weights of the hidden layer of the autoencoders are trained, its parameters are
frozen; the model then learns its attentions through a speech recognition task, and these are then transformed into the hierarchical depression detection system.

ei,j is an alignment scoring mechanism used to determine how
well the inputs around position j and the output at position i
match. It is computed via:

ei,j = a(si−1, hj), (2)

in which si denotes the decoder’s state, hj indicates the j-th
entry of the hidden state sequence h = {h1, . . . , hT }, and a(·)
is a learnable deterministic ‘energy function’. Typically, a single-
layer neural network using a tanh nonlinearity is utilised as a(·);
however, other functions (such as a simple dot product between
si−1 and hj) have been used as well [50]. Note that, we use tanh
as the non-linear activation function in the presented work.

The output of the attention layer, denoted as ci, is the weighted
average of the encoder hidden state sequence h, which is defined

as follows:

ci =

T∑

j=1

αi,jhj . (3)

Finally, the decoder state is updated to si based on si−1, ci,
and the decoder outputs yi:

si = f(si−1, yi−1, ci), (4)

yi = g (si, ci) , (5)

where f(·) is BLSTM in our work, while g(·) is a learnable
nonlinear function that maps the decoder state to the output
space.
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In this work, unless otherwise stated, soft attention refers to
the global attention approach. In global attention all the hidden
states of the encoder are considered in order to derive the context
vector ci. We also test the advantage of applying local attention
mechanisms [60]. This approach selectively focuses on a small
window of context and is differentiable. Local attention, there-
fore, has the advantage of avoiding the expensive computation
incurred in the global soft attention.

C. Monotonic Attention

Monotonic attention mechanisms address two of the main lim-
itations associated with soft attention: namely, quadratic-time
complexity and the lack of options for online decoding [61],
[62]. By adaptively splitting into smaller chunks on which
attention can be be computed, monotonic attention mecha-
nisms enable linear and online decoding [61], [62]. Moreover,
works in the Automatic Speech Recognition (ASR) literature
demonstrate that encoder-decoder-based ASR with monotonic
attention can achieve additional and considerable performance
improvements, as well as reducing the associated computational
complexity, relative to a comparable system utilising a standard
global attention architecture [63].

The monotonic attention process can be described as follows:
at timestep i, the attention mechanism begins to inspect memory
entries (the hidden state sequences), starting from the memory
index where it left off at the previous output timestep, herein
referred to as ti−1, where ti is the index of the memory entry
chosen at output timestep i (for convenience, we let t0 = 1).
It then computes an unnormalised energy scalar ei,j for j ∈
{ti−1, ti−1 + 1, ti−1 + 2. . .} via Equation (2).

Monotonic attention can, therefore, be interpreted as the
probability of choosing memory element j at output timestep
i. The selection probabilities pi,j are produced by passing these
energy values through a logistic sigmoid function:

pi,j = σ(ei,j) ∈ (0, 1) (6)

A boolean attend/don’t attend decision zi,j ∈ {0, 1} is then
sampled from a Bernoulli random variable parameterised by
pi,j :

zi,j ∼ Bernoulli(pi,j), (7)

namely,

P (zi,j = 1) = pi,j , P (zi,j = 0) = 1− pi,j . (8)

As soon as zi,j = 1, the process stops, and the attention context
vector ci is set as hti . Each zi,j can be seen as representing a
discrete choice as to whether to attend a new item from the mem-
ory (zi,j = 0) or produce an output (zi,j = 1). This process is
repeated for the subsequent output time steps, always beginning
at ti−1 – i.e., the memory index identified in the previous step.
Note that if zi,j = 0 for all j ∈ {ti−1, ti−1 + 1, . . . , T}, then ci
is set to be a vector of zeros.

The energy function used for hard monotonic alignments is
as follows:

a(si−1, hj) =
gvT tanh(Wssi−1 +Whhj + b)

‖v‖ + r, (9)

where g, r are the learnable scalars, while Wh ∈ Rd×dim(hj),
Ws ∈ Rd×dim(si−1), b ∈ Rd and v ∈ Rd are the learnable pa-
rameters and d denotes the hidden dimensionality of the energy
function.

As the monotonic attention process involves sampling and
hard assignment, models utilising this technique cannot be
trained via backpropagation. As in [62], we compute the context
vector ci as the probability distribution over the memory induced
by the attention process:

αi,j = pi,j

(

(1− pi,j−1)
αi,j−1
pi,j−1

+ αi−1,j

)

. (10)

The output of the attention layer ci can also be computed
as in Eq. (3). Further details regarding monotonic attention are
provided in [61].

D. Hierarchical Attention Autoencoders

Our hierarchical attention autoencoders rely on the attention
mechanism to aid the reconstruct the input sequences. We test
three separate hierarchical BLSTM model incorporating either
(i) standard global soft attention; (ii) local soft attention; or
(iii), monotonic attention. The hierarchical attention autoen-
coder itself works in a bottom-up manner applying two levels of
attention. First, an encoder and attention are applied at the frame
level. The resulting output is then passed to a sentence-level
encoder to form context-based hidden vectors, which are then
processed by the sentence-level attention mechanism, producing
a latent hierarchical representation of the clinical interview.
Subsequently, this representation is fed into a decoder in order to
reconstruct the input sequence. In the remainder of this section,
we describe the key details of our proposed hierarchical attention
autoencoders.

1) Attention Encoder: Noting that a clinical interview con-
sists of a set of sentences, each of which consists of a set of
speech frames, the encoder has a hierarchical structure which
matches this structure. Specifically, attention mechanisms are
incorporated at two different levels of the encoder. First, we use a
BLSTM with attention to aid the selection of informative frames
at frame-level. Next, we apply another BLSTM with attention
over the frame-level representations to learn the associations
between representations and aid the selection of informative
representations at sentence-level.

Given the input spectrogram x, we produce hidden represen-
tations using the following equations:

es
′ = Attentionframe(Encoderframe(x)Ws + bs), (11)

es = LayerNorm(es
′), (12)

ec = Attentionsentence(Encodersentence(es)Wc + bc),
(13)

where Ws, bs, Wc and bc are learnable parameters, while
LayerNorm denotes the layer normalisation and ReLU is used
as the activation function. In Equation (11), we first obtain
the representation vectors es

′ at the sentence level using one
layer of BLSTMs with attention. Another layer of BLSTM with
attention is then placed on top of all sentences to enable learning
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of the representations of the entire clinical interview ec using
equation (13).

2) Decoder: Given the encoder representations ec, the de-
coder is responsible for regenerating the input sequence. We first
use a hierarchical LSTM decoder to generate the sentence-level
representations ds:

ds = Decodersentence(ec). (14)

Subsequently, based on the representation of each sentence,
a frame-level LSTM decoder is utilised to generate the input
sequence:

x̄ = Decoderframe(ds). (15)

E. Hierarchical Attention Transfer Network

Many recent works on attention transfer have generally fo-
cused on computer-vision-related tasks, with the developed
spatial attention maps being designed for CNNs [16], [18].
Within these approaches, the activation maps, for both the
source and target domains in a specific convolutional layer, are
first calculated via an Lp-norm pooling on all convolutional
response channels. Domain discrepancy minimisation is then
performed on the second-order correlation statistics of the at-
tention maps [18]. Inspired by this approach, we develop an
attention transfer process designed for BLSTM.

1) Activation-Based Attention Model: In this section, we
explain the method used to define the spatial attention map,
along with the way in which we transfer attention information
from a teacher to a student network.

We first consider a BLSTM layer and its corresponding
activation tensor A ∈ RC×H×W , which consists of C (C = 1
for BLSTM) channels with spatial dimensions H ×W , as well
as a mapping function F that takes the above BLSTM layer
activationsA (3D tensor) as input and outputs. UsingF , a spatial
attention map can be defined as follows:

F : RC×H×W → RH×W . (16)

Because the absolute value of a hidden neuron activation
indicates that neuron’s importance w. r. t. the specific input,
we observe that can construct a spatial attention map by com-
puting the statistics of these absolute values across the channel
dimension. More specifically, we consider the following spatial
attention mappings:

(F (A))i,j =

C∑

k=1

|Ak,i,j |p , (17)

where i ∈ {1, 2, . . . , H} and j ∈ {1, 2, . . . ,W} are spatial
indexes.

In attention transfer, given the spatial attention maps of a
teacher network, the goal is to train a student network that will
not only make correct predictions, but will also have attention
maps that are similar to those of the teacher network.

Without loss of generality, we therefore assume that transfer
losses are placed between the student and teacher attention maps
of the same spatial resolution; if required, however, attention
maps can be interpolated to match their shapes. We can then

define the following total loss:

LT = LD +WAT × LAT , (18)

where LD denotes the loss of the depression recognition task,
WAT denotes the weight of the attention transfer, and LAT

denotes the loss of the attention transfer, which can be computed
as follows:

LAT =
∑

j∈I

∥
∥
∥Q

j
D −Qj

S

∥
∥
∥
1
, (19)

here, I denotes the indices of the attention map, while Qj
D and

Qj
S represent the j-th pair of the attention map of the depression

recognition and speech recognition tasks respectively. As can
be seen, during attention transfer we make use of l1-normalized
attention maps.

2) Hierarchical Attention Model: Our attention model has a
hierarchical structure in which two levels of attention mecha-
nisms are applied (at the frame and sentence level respectively),
enabling our model to attend differentially to more and less
important content when constructing the depression analysis.
Mathematically, we represent a clinical interview with m sen-
tences {S1, S2, . . . , Sm}, the i-th sentence is Si, which in turn
consists of li frames as Si = f i

1f
i
2. . .f

i
li

; f i
t is the t-th frame

in Si, t ∈ [0, li]. In the following, we present how to build
the depression representation progressively from frame vectors
hierarchically.

a) Frame level: Each frame, as previously discussed, has a
different influence on the representation of the whole sentence.
It is therefore necessary to qualify the contributions of each
frame and learn its unique representation. Fortunately, attention
mechanisms can be used to highlight the relative importance of
different parts of the input sequence by assigning weights to the
encoding vectors. Therefore, we introduce frame-level attention
to weight frames of each sentence and output a weighted sum
of all the frames’ information.

First, we obtain the hidden state for the t-th frame in sentence
Si by concatenating the forward LSTM and the backward LSTM
outputs reads from f i

1 to f i
li

:

hi
t =
−→
hi
t ||
←−
hi
t , (20)

where || denotes concatenation; moreover,
−→
hi
t and

←−
hi
t are the

hidden states for the forward and backward LSTM, respectively,
of the t-th frame of the i-th sentence.

We then use an attention layer in order to identify the most
informative frames in each sentence and enforce their contri-
bution to the final sentence representation. The sentence vector
vi, which is the vector representation of the i-th sentence, is
computed as the weighted sum of all frame hidden states hi

t:

αi
t = Attentionframe(h

i
t), (21)

vi =
∑

t

αi
th

i
t. (22)

b) Sentence level: Under the assumption that contextual
sentences will not contribute equally to the semantic meaning
of a clinical interview, we introduce sentence-level attention to
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weight each sentence of each clinical interview and output a
weighted sum of all sentences’ embedding vectors to make up
the representation of the clinical interview of each patient.

The final representation of each clinical interview is obtained
analogously: given the sentence representation v1 to vm, the
concatenation of the bidirectional LSTM is obtained as follows:

hi =
−→
hi ||←−hi , (23)

with the general form of sentence-level attention weights

αi = Attentionsentence(hi). (24)

We aggregate them by computing the weighted sum of all
the sentences’ representations, thereby obtaining the final rep-
resentation e of the clinical interview, which is formulated as
follows:

e =
∑

i

αihi. (25)

IV. EXPERIMENTS AND RESULTS

A. Datasets

The AVEC2017 series depression detection task utilised the
Distress Analysis Interview Corpus – Wizard of Oz (DAIC-
WOZ) [64] database, containing 189 segments of clinical in-
terviews designed to support the diagnosis of conditions such
as depression. The recorded clinical interviews were split into a
training set (comprising 107 segments), a development set (35
segments), and a test set (47 segments). For each segment, the
database includes audio and video features along with the tran-
script of an interview, ranging between 7–33 minutes in length,
conducted by an animated virtual interviewer called Ellie, which
was controlled by a human interviewer in another room. For each
interview in the training and development sets, the exact Patient
Health Questionnaire (PHQ)-8 depression index score [65] is
given for each participant in the DAIC-WOZ corpus. The PHQ-8
is an ordinal scale, in the range [0, 24], which reflects depression
severity. The score is obtained from answers given to eight
questions that reflect the core criteria used to diagnose clinical
depression, as laid out in the Diagnostic and Statistical Manual
of Mental Disorders - Fourth Edition (DSM-IV) [66]. Answers
to individual PHQ-8 items are given within the ordinal range
[0, 4]. The final score is then obtained by summing the eight
individual scores. For the training and development partitions,
the average depression severity wasM = 6.67 (SD = 5.75) out
of a maximum score of 24.

During our analysis, the audio file was processed so as to
isolate the participant’s voice only. We split the individual DAIC-
WOZ recordings into individual participant turns based on the
transcriptions provided. A total of. 32 401 turns extracted from
aligned textual transcriptions are provided with the dataset. The
division of the participants is presented in Table I.

B. Features

In this paper, we used the spectrogram extraction pro-
cess described in [67]. The spectrogram was constructed us-
ing the output of a 40-dimensional mel-scale log filter bank.

TABLE I
GENDER AND DEPRESSION STATUS INFORMATION OF THE PARTICIPANTS IN THE

TRAINING, DEVELOPMENT AND TEST SETS OF THE DAIC-WOZ DATABASE.
NOTE THAT THE TOTAL LENGTH (HH:MM) OF EACH PARTITION IS ALSO GIVEN

*All participants were assigned into one of two classes, depressed (Dep.) or non-depressed
(N-Dep.), based on the PHQ-8 scores.

These features were computed over frames 25 ms in length with
a 10 ms stride and normalised to be in the range [0, 1].

C. Experimental Setup and Evaluation Metrics

1) Model Parameters: In our work, all models were im-
plemented using the TensorFlow1 framework. The favourable
training epoch was set to 100 due to the restrictions imposed
by computational costs and time expenses. We first trained a
hierarchical attention autoencoder network. For the encoder, a
two-layer BLSTM containing 128 single-memory-cell LSTM
memory blocks in the forward and backward hidden layers
was utilised both at the frame level and sentence level. For the
decoder, the representation of the clinical interview was decoded
by the two-layer LSTM, which contained 256 single-memory-
cell LSTM memory blocks. The RMSProp optimiser was used
to train our autoencoders, employing a fixed learning rate of
10−4. Once the weights of the hidden layer of the autoencoders
were trained, the parameters of the autoencoders were frozen.

In order to implement attention transfer, we pre-trained on a
source task (speech recognition) and acquired the attention maps
gained after solving the speech recognition task in advance. For
the training of the speech recognition model, we explored the
use of a monotonic attention-based encoder-decoder model and
utilised the AVEC 2017 depression dataset as the database. In our
work, we reduced the number of states of the origin transcription
by leveraging the CMU pronouncing dictionary [68] in the
speech recognition task. For the pre-training of the speech recog-
nition task, moreover, the forward and backward hidden layers of
the BLSTM network had 128 blocks each. The learning rate was
also set to 10−4, and the parameters were frozen during training.

Once the above two training steps were complete, we began
to train the depression recognition model. For training, we also
used a two-layer BLSTM consisting of 128 single-memory-cell
LSTM memory blocks in the forward and backward hidden
layers; the learning rate was again set to 10−4. Finally, the
outputs of the fully connected layers could be regarded as the
final predicted PHQ-8 score in the range [0, 24].

2) Evaluation Metrics: As depression severity prediction is
a regression task, the accuracy metric for the challenge was the

1[Online]. Available: https://www.tensorflow.org
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TABLE II
A COMPARISON OF ROOT MEAN SQUARE ERROR (RMSE) AND MEAN AVERAGE ERROR (MAE) SCORES FROM BOTH KEY RESULTS IN THE

LITERATURE AND FROM EXPERIMENTS ON THE PROPOSED HIERARCHICAL MODEL. THE SCORES ARE ACHIEVED ON BOTH THE

DEV(ELOPMENT) AND TEST SETS OF THE DAIC-WOZ CORPUS

*Note that these two studies are multi-modal works in which audio, video and text streams were
utilised.

Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) given by:

RMSE =

√
√
√
√ 1

N

N∑

n=1

(ŷn − yn)2 (26)

MAE =
1

N

N∑

n=1

|ŷn − yn| , (27)

where ŷn denotes the predicted value, yn, the actual score, and
N the total number of test instances.

D. Results and Discussion

1) Experiments on the Hierarchical Attention Transfer Net-
work: Here, we conducted experiments aimed at verifying the
efficiency of our proposed hierarchical attention transfer net-
work. In order to provide supervision for attention generation,
an attention-based encoder-decoder model was implemented for
the speech recognition task; subsequently, a WER of 12.9% was
obtained on the test set of the DAIC-WOZ corpus, while a WER
of 8.9% was obtained on the development set.

We observed that the best MAE (4.28) and RMSE (5.66) on
the test set, as well as the best MAE (2.99) and RMSE (3.85) on
the development set of the DAIC-WOZ corpus were achieved
by our hierarchical monotonic attention model in combination
with the attention transfer mechanism (cf. Table II). In Table II,
the state-of-the-art models utilised for comparison purposes

include AVEC 2017 baseline methods, two previous multi-
modal methods that previously achieved good performance on
the AVEC 2017 dataset and in which audio, video, and text
streams were utilised [8], [9]; several hierarchical attention
models that do not employ an attention transfer mechanism
are also compared with our proposed hierarchical attention
transfer network.

For both the development and test sets of the DAIC-WOZ
corpus, our hierarchical attention models outperformed the
AVEC 2017 Audio-Video baseline, regardless of whether or
not an attention transfer mechanism was adopted. Still more
importantly, the best MAE and RMSE achieved by our hierar-
chical monotonic attention model with attention transfer were
higher than those achieved by the multi-modal work [8] on both
the development set and the test set; however, the best results
for MAE and RMSE are a little lower than those of another
multi-modal work presented in [9] on the development and test
sets, since the results we obtained on this experimental corpus
are speech-based only.

As for the attention transfer mechanism introduced in this
work, the performance of the hierarchical attention model with-
out attention transfer is observed to be lower than that of the
model using the attention transfer mechanism. Therefore, we can
conclude that incorporating an attention transfer mechanism into
a hierarchical attention model such as ours can be considered an
effective solution that is better suited for depression analysis;
this in turn validates our hypothesis that learning to mimic the
attention maps of the teacher model can be helpful.
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Furthermore, we can observe that although the performance
of the hierarchical global soft attention model, or classic lo-
cal soft attention model, is inferior to that of the hierarchical
monotonic attention model with or without attention transfer, it
still surpasses that of the AVEC 2017 baseline model and also
outperforms the multi-modal work proposed in [8] in terms of
MAE on both the development set and the test set. However, the
performance of the hierarchical global soft attention model or
classic local soft attention model is lower than that of model [9]
with or without attention transfer. The main reason for this is that
the model utilised in [9] is more complicated than that presented
in [8]; moreover, the final PHQ-8 score in [9] is obtained using
a multivariate regression model from the initial predictions of
depressed and non-depressed DCNN-DNN models, as well as
the depression classification results. This observation demon-
strates the effectiveness of the hierarchical attention strategy
when applied to the task of depression classification.

2) Experiments on Hierarchical Attention Autoencoders: In
this paper, we propose and develop hierarchical attention autoen-
coders and apply them to analysing depression using speech.
To evaluate the effectiveness of the clinical interview repre-
sentations, we conducted extensive experiments. We also com-
pared the performance of our hierarchical attention autoencoders
with the traditional hierarchical BLSTM autoencoders without
attention, hereafter referred to as ‘vanilla hierarchical autoen-
coders,’ to investigate the benefits of using attention in our hierar-
chical autoencoders for depression analysis. For comparison, the
vanilla hierarchical autoencoders, along with three hierarchical
attention autoencoders, are also included, in addition to the
AVEC 2017 baseline methods, hierarchical attention models,
and two previous methods [8], [9].

We observed that the best MAE (4.47) and RMSE (5.72)
on the test set and the best MAE (3.36) and RMSE (4.67) on
the development set of the DAIC-WOZ corpus were achieved
when monotonic attention was used in our hierarchical attention
autoencoders (cf. Table II).

For both the development and test sets of the DAIC-WOZ
corpus, our proposed hierarchical attention autoencoders out-
performed the AVEC 2017 Audio-Video baseline, regardless
of which kind of attention strategy was used by our attention
autoencoders.

Furthermore, the MAE results achieved by our hierarchical
attention autoencoders are even better than those obtained by
the multi-modal work [8] on the test set; however, our results
are a little lower than those achieved by the multi-modal work
presented in [9] for both MAE and RMSE.

Moreover, as shown in Table II, the vanilla hierarchical au-
toencoders did not perform as well as our hierarchical attention
autoencoders, although they still surpassed the AVEC 2017
Audio-Video baseline.

In order to investigate the impact of different attention strate-
gies on the performance of the hierarchical attention autoen-
coders, we further conducted a comparative study in which
three separate attention mechanisms – namely, standard global
soft attention, local soft attention, and monotonic attention -
were experimentally evaluated in the experiment. From the
corresponding results shown in Table II, it can be observed that

the model with monotonic attention yields the best results; this is
consistent with the results of the experiments on the Hierarchical
Attention Transfer Network.

In order to verify the efficiency and effectiveness of our
autoencoders, we further conducted experiments to compare
the performance of our hierarchical attention autoencoders with
that of the hierarchical attention model that does not use au-
toencoders and attention transfer. As can be seen from Table II,
regardless of which kind of attention strategy was adopted in
our hierarchical attention autoencoders, our proposed method
outperformed the purely hierarchical attention models on both
the test and development sets. Therefore, hierarchical attention
autoencoder such as our can be considered an effective solution
that is better suited for depression analysis.

3) Experiment on the Combination of the Hierarchical At-
tention Transfer Network With Hierarchical Attention Autoen-
coders: The effectiveness of our hybrid framework can be high-
lighted through comparison with other key results obtained on
the DAIC-WOZ corpus in the literature (Table II). It can be
observed that the best MAE (4.20) and RMSE (5.56) on the test
set, as well as the best MAE (3.87) and RMSE (2.85) on the
development set of the DAIC-WOZ corpus were achieved by
leveraging monotonic attention in our proposed hybrid network.
Our best results, including MAE and RMSE, are consistently
superior to those obtained by the AVEC 2017 Audio-Video
baseline and the multi-modal work [8] on both the test set
and development set; however, they are slightly lower than
those achieved by the multi-modal work presented in [9] on
the development set. It can therefore be concluded that using
monotonic attention yields the best results, a result that remains
consistent across the three experiments.

Furthermore, we observed that the performance of the com-
bined HATN and hierarchical attention autoencoders is superior
to that of either of these two methods used alone. This validates
our hypothesis that combining attention transfer and hierarchical
attention autoencoders results in additional improvement, and is
thus a better-suited solution for the task of depression analysis.

V. CONCLUSION

In this paper, we proposed a novel hierarchical attention-
based model that combines unsupervised learning and attention
transfer to assess depression severity using speech. Our three
core contributions can be summarised as follows. Firstly, we
develop and propose an attention transfer process that transfers
attentions in order to measure the depression severity in both
frame and sentence levels across tasks. Secondly, we propose
a novel hierarchical attention autoencoder paradigm that ap-
plies attention mechanisms to train hierarchical autoencoders
capable of generating representations of depressed speech in an
unsupervised manner; Thirdly, through extensive experiments,
we demonstrate that the proposed hybrid model achieves the
best-known speech results on the AVEC 2017 depression corpus
to date.

In our future work, we plan to further explore the use of hierar-
chical attention variational autoencoders for learning represen-
tations. Transferring attention from other speech tasks related to
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depression assessment, such as emotion or mood detection, will
also be explored.
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