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Abstract

Conventionally, speech emotion recognition is achieved using
passive learning approaches. Differing from such approaches,
we herein propose and develop a dynamic method of au-
tonomous emotion learning based on zero-shot learning. The
proposed methodology employs emotional dimensions as the
attributes in the zero-shot learning paradigm, resulting in two
phases of learning, namely attribute learning and label learn-
ing. Attribute learning connects the paralinguistic features and
attributes utilising speech with known emotional labels, while
label learning aims at defining unseen emotions through the at-
tributes. The experimental results achieved on the CINEMO
corpus indicate that zero-shot learning is a useful technique for
autonomous speech-based emotion learning, achieving accura-
cies considerably better than chance level and an attribute-based
gold-standard setup. Furthermore, different emotion recog-
nition tasks, emotional attributes, and employed approaches
strongly influence system performance.

Index Terms: Autonomous emotion learning, speech emotion
recognition, zero-shot learning, emotional attributes

1. Introduction

Speech Emotion Recognition (SER) has been investigated com-
prehensively during the past decade [1,2]. Prominent directions
concerning SER have focused on diverse topics such as data
collection [3], data enrichment [4], deep learning [5], feature
enhancement [6], and transfer learning [7]. Nevertheless, most
current research on SER is, arguably, focused on the passive
learning of emotional states, which need fully, or at least par-
tially labelled training samples to learn reasonable models [8].
Furthermore, passive approaches are unsuitable for labelling
samples which do not have an adequate amount of matched
training data. In the worst-case scenario, if no training samples
are provided, the corresponding target emotional states cannot
be recognised. Hence it is natural to allow for autonomous emo-
tion learning in speech, to model unknown emotional states.
Zero-Shot Learning (ZSL) provides a solution for such op-
erating conditions, enabling systems to perform classification
when there is a lack of adequately labelled training data [9-12].
Results in the literature indicate the suitability of ZSL for tasks
such as object detection [10, 11], gesture detection [13], and
even for video based emotion detection [14]. Still, very few
of the existing ZSL methods provide a reasonable framework
for zero-shot emotion learning in speech. This is due, in part,
to the latent emotional descriptors in paralinguistics [6, 15] and
complicated forms of expression of emotion [16,17].
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Thus, in this paper, we propose a zero-shot SER paradigm
to recognise emotional speech samples which come from ‘un-
seen’ emotional states. We use attribute learning to associate
each emotional descriptor, noted as ‘attribute’ (i. e., emotional
dimensions), with paralinguistic features extracted from speech
with known emotions. We then use label learning to leverage
these attributes to model unseen emotional states using empiri-
cal annotation. The CINEMO corpus, which consists of spoken
utterances and corresponding emotional labels represented in
six dimensions [18-20], is used to demonstrate the effectiveness
of the proposed approach. To the best of the authors’ knowl-
edge, this proposed approach is novel in the SER literature.
Emotional dimensions have been used as auxiliary informa-
tion to improve performance in multi-task SER [21,22]. Sim-
ilarly, recent works have focused on the relationship between
vocal features and affective descriptors in a cross-language set-
ting [23]. None of these works, however, employed a zero-shot
paradigm. Moreover, popular ZSL approaches [11] focused on
fixed label definition using attributes, while our method consid-
ers automatic emotional-state definition.

2. Methodology
2.1. Zero-Shot Learning

Conventional existing ZSL approaches focus on transferring
knowledge between modalities to provide additional informa-
tion to recognise unseen samples, usually confronted with vi-
sual learning topics [9-12]. However, it is difficult to utilise
these approaches directly in SER due to two reasons. First,
emotion lies in a latent layer in speech, resulting in difficul-
ties in inferring emotional descriptors. Second, different affec-
tive expressions may also lead to diverse descriptors. Thus, we
propose a zero-shot SER methodology employing emotional at-
tributes to connect paralinguistic features and emotional states.
The methodology is divided into two phases, attribute learning
and label learning (Fig. 1). The attribute learning makes use
of paralinguistic features to learn emotional attributes, e. g., the
emotional description for utterances such as level of relaxation
or naturalness. The label learning, on the other hand, utilises
the attributes to model unseen emotional states empirically.

2.2. Attribute Learning

The attribute-learning phase aims at fitting attribute values
(known emotion labels) to speech samples using correspond-
ing paralinguistic features. This phase models the relationship
between nr features and n 4 emotional attributes (Fig. 1).
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Figure 1: A diagrammatic overview of the zero-shot SER
methodology, including attribute learning and label learning.

The N utterance samples belonging to seen (known)
emotional states used in attribute learning are denoted as
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Thus, the task of attribute learning is to learn the relation-
ship between X and each attribute. Through defining the
mapping of attribute ¢ (the ith column of A®)) from X as
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in which f;(-) represents the feature mapping of the ith at-
tribute, where ¢ = 1,2,...,n4. The Sim(-,-) represents a
similarity measurement between two vectors. (%) (fi) is areg-
ularisation term subjected to a condition set Q.

Assuming that the seen and unseen domains share simi-
lar mappings from features to attributes, we obtain the n4-
dimensional predicted attributes of one unseen sample ) as
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2.3. Label Learning

For the label-learning phase, we assume that labellers are able
to estimate multiple sets of n4 emotional attributes empirically
for each of ¢ unseen emotional states. We take this assumption
as the first-hand learning for emotions that usually comes from
observing physiological or behavioural data [24], indicating that
it is natural for different human beings to vocally express one
emotional state in various ways [16, 17].

This assumption allows us to model the unseen emotional
states using the attributes from the samples. We define the em-
pirical values of the attributes of the c unseen classes as being
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with the corresponding emotional labels for the jth row as
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Table 1: Key information of the employed CINEMO corpus.

Characteristics | Description
Language French
Speech Data | # Utterances 3992 (3591 here)
# Speakers 51 (21 female, 30 male)
Annotates # Dimepsions 6 (Al to A6.) }
# Emotions 256 (16 major, 16 minor)

Therefore from the side of probability, the optimal label-
learning model of AP can be represented as g equal to

arg m;mxp <@(E)|A(E),g) s.t. ¢<E) (9) € Q<E), (8)
where g indicates the label-learning model for the N (&) empir-
ical emotional attributes, aiming at maximising the probability
to obtain the 2. (&) (g) is a regularisation term subjected
to a condition set Q). Using the predicted feature mappings
fi(-)s in Eq. (5), we assume that the A®) and ‘Y share the
same estimated label-learning model g, drawing the prediction
of the unseen-emotional label of (%) as

A = arg max p (d<U)|a<U>7§> , 9)
dU) ey

employing the feature mappings J?,()s to transfer attribute-

learning models from seen to unseen emotional states, while

using the predicted model g to learn the unseen states from em-

pirical definition of speech emotions.

3. Corpus

The experimental results presented in this paper were obtained
using the CINEMO corpus [18-20], consisting of 3 992 French
utterances recorded from 51 speakers with a total length of
2:13:59, with the sampling rate of 16kHz. The data collection
paradigm involved the speakers, none of whom had professional
acting experience, repeating lines from 12 well known French
movies [19]. Table 1 presents key information of the corpus.

Emotional states were labelled by two annotators (1 female,
1 male) using two different labelling strategies. The first strat-
egy involved marking each utterance as having a major and a
minor emotion label, taken from one of sixteen states: ‘amuse-
ment (AMU)’, ‘anger (COL)’, ‘disappointment (DEC)’, ‘irri-
tation (ENE)’, ‘anxiety (INQ)’, ‘irony (IRO)’, ‘joy (JOI)’, ‘neg-
ativity (NEG)’, ‘neutrality (NEU)’, ‘fear (PEU)’, ‘positivity
(POS)’, “satisfaction (SAT)’, ‘seduction (SED)’, ‘stress (STR)’,
‘surprise (SUR)’, and ‘sadness (TRI)’. This process resulted
in 256 combinations for each annotator. In the second strat-
egy, each sample was labelled for strength in six emotional di-
mensions, namely ‘intensity’, ‘activation’, ‘valence’, ‘control’,
‘suddenness’, and ‘naturalness’, herein denoted as ‘A1’ to ‘A6’.

In our experiments, due to data quality issues, we consid-
ered only a subset of 3591 utterances (1380 female; 2210
male). Further, to ensure a higher quality of labels, we con-
sidered only those samples that had matching major emotion
labels from both annotators as the ZSL candidates. This filter-
ing procedure left a total of 2 628 samples with a total length of
1:32:38 for the use of ZSL in our experiments.

4. Experimental Setup
4.1. Data Setup

We partitioned the data from the CINEMO corpus into two sets,
namely a ZSL set for label-learning and a second partition for



Table 2: Three attribute combinations (marked as ‘AC1’°, ‘AC2’,
and ‘AC3’ respectively) of the emotional descriptors.

ACs | # Attributes | Attributes

AC1 3 intensity, activation, valence

AC2 3 control, suddenness, naturalness

AC3 6 intensity, activation, valence,
control, suddenness, naturalness

the attribute-learning set. The ZSL set included part of the full-
agreement samples (the ZSL candidates) with their annotations
in order to process label learning and recognition test. For this
partition, we employed a three-fold speaker-independent Cross-
Validation (CV) setup (Speaker ID 1-20, 22-36, and 37-51), in
accordance with [19]. We used two folds for label learning to
simulate the procedure of empirical attribute estimation, with
this data only providing the corresponding attributes and emo-
tional label of each sample, while we used the other fold as a
test set for unseen-emotional-state recognition only using par-
alinguistic features extracted from the utterances.

The rest of the samples in the corpus, the attribute-learning
set, were used in a regression analysis paradigm which attempts
to bridge the emotional attributes and paralinguistic features.
This process assumes that any sample not belonging to the emo-
tional states in the ZSL set could be included, since the sample
belongs to a different emotional state to be precise. We only
consider each sample’s attributes and series (or paralinguistic
features). Then, for any given sample, we aim to minimise the
gap between each attribute and the mapping of features; to this
end we adapt several regression strategies (Sec. 4.3).

4.2. Features and Attributes

In our experiments, we use the INTERSPEECH Computational
Paralinguistics Challenge (ComParE) [1] feature set, including
6 373 static features of functionals of 65 Low-Level Descriptors
(LLDs) [25]), which, due to its high dimensionality, contains
comprehensive paralingustic information. The features were
extracted using the OPENSMILE toolkit [26].

As attributes, we use the average values of the six emo-
tional dimensions (Sec. 3). Note that due to the gap between the
two annotators in labelling the corpus, the average emotional-
dimension rating scores between the annotators were calculated
as the attributes and unified to vary from O to 1. Three Attribute
Combinations (ACs) were also designed according to Cohen’s
Kappa () [19], denoted as ‘AC1°, ‘AC2’°, and ‘AC3’ respec-
tively (Table 2). The ‘AC1’ utilised the attributes with relatively
higher xs, while the ‘AC2’ included the other three attributes.

4.3. Learning Approaches

In the attribute-learning phase, we consider three approaches
for fi()s, namely, shallow-structure Multi-Layer Perceptron
(MLP) networks [27], Support Vector Regression (SVR) [28],
and Ridge Regression (RR) [15]. The MLP consists of a
two-hidden-layer structure, with 12 selections of the hidden-
layer neurons as: (32, 8), (32,16), (64, 16), ..., (1024, 512).
For both of the SVR and RR, we test both linear and ker-
nelised (Gaussian kernels) representation, with the regularisa-
tion parameter C'. For the SVRs, the C'is varied from 0.0001
to 10000, while the Gaussian-kernel SVRs os is varied in
{0.01nF,0.1nF,nF,10nr}. For the RRs, we test C's from
0.0001 to 0.1, while the range of Gaussian-kernel parameter os
of the kernelised RRs is {0.1nr,np}.
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For the label-learning model g, we consider three classi-
fiers: k-Nearest Neighbour (kNN), Naive Bayesian (NB) using
Gaussian distribution, and Support Vector Machines (SVMs)
with linear and Gaussian kernels, as these approaches are
widely used in SER applications [1, 6,29]. The selections of k
in kNN are {1, 5,10, 20,30}. The SVMs include the C's as in
the SVRs. The Gaussian-kernel parameter os for the kernelised
forms are set as {0.01n4,0.1n4,n4,10n4}.

5. Experimental Results
5.1. Positive-Negative Experiments

First, from the view of valence, we investigated zero-shot SER
on recognising samples belonging to unseen positive and neg-
ative (PN) emotional classes, as a common task in analysing
human emotion [30]. Jointly considering data balance and the
sample size of each full-agreement label, we chose the positive
emotions classes as ‘amusement’ and ‘satisfaction’, while the
negative emotions classes were ‘anger’, ‘stress’, and ‘sadness’.

The Unweighted Accuracies (UAs) and Weighted Accura-
cies (WAs) [6] for these experiments are given in Table 3. Note
that the gold-standard results refer to the case in which we use
the emotional attributes of each test sample for recognition,
which leads to emotion recognition being achieved only through
the subjectively-rated attributes. The results in Table 3 indicate
that the zero-shot SER approaches perform significantly bet-
ter compared with the chance level; at a significance level of
0.05 using one-tailed z-test [4, 6]. Further, the regression ap-
proaches of MLP and Kernel SVR often outperform the other
regressors across the different classifiers. However, there is a
large gap between the gold-standard results and the accuracies
of the zero-shot approaches. We speculate that this may have
resulted from misalignments between different emotions, or the
limited sample size in the attribute learning.

We also ran tests in which Principal Component Analysis
(PCA) was included to investigate the influence of dimension-
ality reduction (Fig. 2a), only using the attribute learning data in
training. Our results indicate that AC2 and AC3 perform much
better than the AC1, inferring that larger « values do not al-
ways indicate better performance in zero-shot PN applications.
Moreover, the accuracy tendency of AC2 and AC3 is to reduce
with decreasing PCA dimensionality. Furthermore, we added
the combination of AC4 (A3 to A6), in order to assess the influ-
ence of the energy-related attributes (Table 4). It can be inferred
from Table 4 that the energy-based attributes do not heavily af-
fect the performance of a zero-shot SER for the PN case. Inter-
estingly, we observed that the attributes of control, suddenness,
and naturalness are also able to define the extent of valence.

5.2. Anger-Disappointment Experiments

We also investigated the experimental performance of zero-shot
recognition for within-negative (WN) emotions, within which
we attempt to separate ‘anger’ and ‘disappointment’, as these
invoke very different reactions in individuals across a soci-
ety [31]. The UAs and WAs of these experiments are presented
in Table 3. Within this experiments, we observed that the zero-
shot SER significantly outperforms the gold-standard system at
significance levels of 0.05 using one-tailed z-test. These results
indicate that subjective emotional descriptors may include less
effective information for emotion recognition when compared
with objective paralinguistic features.

The UA and WA results for the WN PCA experiments are
given in Fig. 2b. Differing greatly from the PN setting, we



Table 3: UAs and WAs (%, represented by ‘UA / WA’) using multiple regressors and classifiers for the Positive-Negative (PN) and
Within-Negative (WN) cases respectively, when employing the ComParE feature set. The significant results (compared with the corre-
sponding gold-standard results) for the WN case are marked using double underlines.

Regressor\ Classifier kNN NB Linear SVM Kernel SVM
PN WN PN WN PN WN PN WN
Gold-Standard (Attr.) 97.6/97.3 55.7/53.8 96.9/97.3 60.4/62.3 97.5/97.5 56.4/57.8 97.8/97.6 59.8/61.6
MLP Regressors 70.3/77.4 59.8/58.5 62.6/73.6 60.9/63.0 67.0/76.1 63.9/63.5 71.5/78.8 62.4/63.9
SVR Linear SVR 66.5/75.5 58.2/56.9 63.0/72.2 61.7/64.1 65.2/72.9 62.8/63.0 67.2/76.1 63.0/63.4
Kernel SVR 71.7/77.3 60.5/59.0 63.7/73.3 66.2/68.3 66.0/75.4 65.6/67.2 71.4/77.3 63.7/64.8
RR Linear RR 61.9/68.1 57.6/56.5 60.5/68.9 56.6/55.8 62.1/68.7 57.6/58.3 62.9/69.1 55.9/57.4
Kernel RR 70.2/76.8 58.4/57.1 61.8/72.4 61.4/64.0 65.6/74.7 65.3/64.8 70.8/77.4 64.1/65.9
o8 ACH o AC1 07
50 AC2 3 0 AC2 3
S 075 ©-4C5 S o075 ©-acs € oo
3 3 3
5 0.70’9\9—% i 0.70’6—%-“_/) £ e
£ 065 £ 065 £
=} = S 0.64
2 o4 2 o4 2
S 055 S 055 Sos2
026373 5000 3000 1000 500 100 50 10 025373 5000 3000 1000 500 100 50 10 o8

Dimensionality

(a)

Dimensionality

(b)

Figure 2: The best PN-case (a) and WN-case (b) UAs for differ-
ent dimensions through PCA, when using ACI to AC3.

Table 4: The best UAs and WAs (%; represented by ‘UA / WA’)
of the gold-standard setup, PN, and WN cases respectively for
the ACs of AC1 to AC4, when using the ComParE feature set.

ACs PN WN
Gold-Standard ~ Zero-Shot Gold-Standard ~ Zero-Shot
AC1 52.4/65.1 53.5/66.2 60.4/62.3 66.2/68.3
AC2 97.7/97.5 69.1/76.7 50.8/53.6 55.7/55.1
AC3 97.8/97.6 T71.8/78.8| 59.8/61.6 65.3/65.3
AC4 97.9/97.6 70.5/77.8 55.4/58.0 63.7/65.0

achieved the highest WN accuracies (75.2%) with a PCA di-
mensionality of 10. Considering the WN results in Table 3 and
Table 4, we conclude that energy-based information may play a
critical role in classifying anger and disappointment.

5.3. Analysis of Attribute Learning

Having proved the applicability of the proposed zero-shot
SER, we now investigate the influence from the attribute-
learning phase. Thus, we introduced the deep methods of
Deep Neural Networks (DNN) and Deep Kernel Learning
(DKL) [32, 33], which include the hidden-layer structures of
(800, 400, 50, 2) and (800, 800,400, 50, 2) noted as (DNN1,
DKL1) and (DNN2, DKL2) respectively, considering the scale
of samples. We also considered using either a tanh and Rec-
tified Linear Unit (ReLU) activation function in the two meth-
ods within 30 epochs in training, employing the ACs of AC1 to
AC3. Fig. 3 presents the best UAs for the regressors of MLP,
SVR, RR, DNN, and DKL for the PN and WN cases. One can
observe that the two methods are capable of achieving better
performance in zero-shot SER, through using deep structures.
Further, we present the measures of Root-Mean-Square Er-
ror (RMSE) and Pearson Correlation Coefficient (PCC) (aver-
aging from A1 to A6) on the ZSL set, for each regressor corre-
sponding to its best UA for the PN and WN cases (Table 5). It
can be seen in these results that the best RMSE and PCC do not
always reflect the best accuracies. This may be due to the inter-
ference from redundant attributes, and the possible gap between

952

(a) (b)

Figure 3: The best PN-case (a) and WN-case (b) UAs of all the
regressors, when using the ACs of AC1 to AC3.

Table 5: The ZSL-set RMSE, PCC, and accuracies (%) corre-
sponding to the best UAs of the PN and WN cases (represented
by ‘PN/WN’) using different attribute-learning approaches.

Reg. | RMSE PCC UA WA

MLP .239/.192 .395/.255 71.5/63.9 78.8/63.9
SVR .240/.193 .386/.278 71.7/66.2 77.3/68.3
RR .241/.180 .386/.266 70.8/65.3 77.4/65.9
DNN .241/.188 376/ .242 71.7/70.5 77.9/70.2
DKL .237/.186 .391/.246 69.3/68.5 77.8/68.1

attribute learning and label learning.

6. Conclusions

Within this paper, we proposed and developed a novel au-
tonomous zero-shot Speech Emotion Recognition (SER). This
approach utilised the emotional dimensions as the attributes
connecting paralinguistic features and emotional states. The ex-
perimental results gained on CINEMO corpus indicate that this
zero-shot approach is effective at recognising unseen emotional
states in speech for the positive-negative and within-negative
recognition tasks. Furthermore, the results also indicate that the
utilised regression and classification approaches, the attribute
selection process, and the paralinguistic feature representation
all affect the performance of our zero-shot system. Our future
work will focus on two aspects: designing better zero-shot SER
systems, and exploring other emotional descriptors.
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