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Abstract

Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio
and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow’s intelligent
systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit
certain emotions in the audience, etc. Yet, the lion’s share of research in affective computing is exclusively focusing on
signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is
believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing
research, by moving its methodology ‘‘out of the lab’’ to real-world, diverse data. In this contribution, we address the
problem of finding ‘‘disturbing’’ scenes in movies, a scenario that is highly relevant for computer-aided parental guidance.
We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of
detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the
system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign’s
Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An
in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and
reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis.
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Introduction

Affective computing refers to emotional intelligence of technical

systems in general, yet so far, research in this domain has mostly

been focusing on aspects of human-machine interaction, such as

affect sensitive dialogue systems [1]. In this light, audio and video

analysis have been centered on the emotion conveyed by humans

by means of speech, facial expressions and other signals such as

non-linguistic vocalizations, posture etc. [2]. However, less

attention has been paid to the affective information contained in

general audio-visual recordings, although it is common sense that

such information is ever-present—for example, if one thinks of a

video of a pleasant landscape with singing birds, or a dark scene

with the creeky sound of a door opening. Automatic prediction of

affective dimensions of sound, for example, has been addressed in

[3,4] for general acoustic events, and more specifically in a large

body of literature on ‘music mood’, as summarized by [5].

In general, endowing systems with the intelligence to describe

general multi-modal signals in affective dimensions is believed to

lend to many applications including computer aided sound and

video design, summarization and search in large multimedia

archives; for example, to let a movie director choose particularly

‘creepy’ sounds from a large library, or to let users browse for

music or movies with a certain mood. Another use case is to aid

parental guidance by retrieving the most ‘disturbing’ scenes from a

movie, such as those associated with highly negative valence. As a

special case, yet one of high practical relevance, automatic

classification of violent and non-violent movie scenes has been

studied.

This problem is commonly approached using multi-modal

classification strategies based on visual and audio information. A

good introduction to affective video content modeling is found in

[6].

A fairly early study on violent scene characterisation is found in

[7]. Three groups of visual descriptors are used: the spatio-

temporal dynamic activity as an indicator for the amount and

speed of motion, an audio-visual flame detector based on colour

values, and a blood detector based on colour values. The acoustic

classification consists of Gaussian modelling of the soundtrack, i.e.,

the overall auditory scene, as well as the energy entropy as a

measure for sudden loud bursts [8]. in contrast focusses on human

to human violence only and uses human limb trajectory

information to estimate the presence of violence. Giannakopoulos

et al. [9] present an approach for identifying violent videos on

video sharing sites. They use a feature level fusion approach where

they fuse 7 audio features with 1 visual feature: the percentage of
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shots shorter than 0.2 seconds. The 7 audio features are mid-term

features: they are probabilities of a Bayesian network classifier for

7 audio classes such as music, speech, gunshots, etc. A 2 second

window with 50% overlap is used thereby. Additionally a text-

based feature is used which reflects the relatedness of the words in

the comments for the video to words of violence.

Gong et al. [10] use a two-stage detection approach wherein a

pre-selection of candidate shots is generated by low-level classifiers.

These candidate shots are then examined further for pre-defined

high-level audio events in order to arrive at a violence score. Lin et

al. [11] use a combination of low-level audio and video features

together with specialized detectors for high-level events such as

flames, explosions and blood. The collected information is then

combined in a co-training framework. This approach of combined

low-level features with additional high-level detectors is also used

by Giannakopoulos et al. [12]. In their work, low-level audio and

video features are paired with a continous person tracking

algorithm which generates an actor-specific motion score for each

shot. Audio features are first used by an ‘One-vs-All’ classification

to assign the shot a basic audio class which is then fused with the

results of the video motion analysis in a k-nearest neighbor (kNN)

binary classifier. The same basic idea of considering motion

patterns within a shot is adapted by de Souza et al. [13] for a visual

Bag-of-Words classification. In contrast to Giannakopoulos’

approach, the spatio-temporal features are not limited to tracks

of faces and persons but track any stable visual interest point.

However, audio is not taken into account for classification

purposes, thus deviating from the previous multi-modal approach-

es. The Bag-of-Words framework is also employed by Nievas et al.

[14] who use a very similar technique based on MoSIFT features

to classify ice hockey clips in a purely visual analysis. Chen et al.

[15] build upon this previous work and try to constrain the

definition of violence as a series of action followed by the

appearance of blood. Accordingly, a combination of visual motion

analysis and color-based, localized blood detection is used to drive

a Support Vector Machine (SVM) based classifier. Wang et al.

[16] have introduced a novel approach for visual violence

detection on a data-set built by themselves. Their method is

based on Discriminative Slow Feature Analysis (D-SFA) where

slow feature functions are learnt from dense trajectories inferred

from the motion in the videos. Support Vector Machines are used

in the end to classify videos as violent or non-violent. All this work

demonstrates particularly well a current major problem of violence

detection in movies: Without an independent baseline dataset and

a common definition of violence, comparisons between different

approaches become practically meaningless.

Thus, to provide objective metrics of feature relevance and

system performance in full realism, we evaluate our own system on

the official corpus of the MediaEval 2012 campaign (Affect Sub-

Task) consisting of 18 Hollywood movies extending over 35 hours

of audio-visual material in total. This data set employs a broad

definition of violence as ‘physical action that results in human

injury or pain’. Consequently, we approach the violent scenes

detection problem in a generic way. Instead of relying on hand-

crafted detection of events related to a particular definition of

violence, we leverage computational intelligence: We apply a

machine learning centered processing chain, including pre-

processing and automatic segmentation, large-scale ‘brute-force’

audio-visual feature extraction, classifier training and optimiza-

tion, and score fusion. Our methodology is motivated from our

previous research on affect recognition both from audio-visual

recordings of human-computer interaction, and from general

sound.

Our preliminary results with this approach have been promising

[17]; yet, many of the practical issues that have been discussed in

‘traditional’ affective computing for human emotion, such as

finding relevant features, appropriate segmentations, and mean-

ingful evaluation measures, have to be addressed in more detail in

the light of the new paradigm of general affective multimedia

analysis—these considerations will be the focus of this article. In

particular, an in-depth analysis of the worth of individual features,

especially their relatedness to different types of system errors, will

be carried out—such broad analysis has, to the best of our

knowledge, never been attempted before for violence detection.

Starting from this broad picture, the remainder of this article

will now provide a more precise description of the evaluation data

set, the system components, and its performance. In the end, we

provide performance bounds of our segmental feature extraction

approach assuming manual pre-segmentation.

Evaluation Database

Our approach is evaluated on the official data sets of the

MediaEval 2012 Affect Task evaluation campaign [18], derived

from 18 well-known Hollywood movies. The data is available

upon request from Technicolor (https://research.technicolor.

com/rennes/vsd/), and more details on the data set are given in

[19]. The evaluation campaign was initiated by Technicolor

France and has been based on the use case of parental guidance,

where parents could have a system retrieve the most violent scenes

in a movie, review them and then decide if the movie is suitable for

their children, instead of blindly relying on the age rating or

having to watch the entire movie in advance. The task of violent

scenes detection is thereby evaluated on ‘shot level’: that is, a score

has to be provided for every shot in order to create a ranked list of

potentially violent ones. The shot boundaries have been

automatically annotated by the challenge organizers based on a

keyframe detection algorithm. Note that the violent scenes

annotation is not aligned to any shot boundaries.

The annotation of the data set was performed at Technicolor

France. To establish a ‘ground truth’ annotation, violence was

defined as ‘physical violence or accident resulting in human injury

or pain’. Seven human assessors were employed to create the

annotation [18].

The list of movies is shown in Table 1. As can be seen, the data

set covers movies from vastly different genres and mainly the past

two decades, with the exception of The Wizard of Oz (1939,

colour – artificially painted), and Midnight Express (1978). As a

result, the data set provides a challenging ‘cross-database’ setup

where classifiers and features have to generalize to various genres,

recording quality, camera work from rather static perspectives in

earlier movies to highly dynamic shooting in today’s action

movies, and the type of violence portrayed (e. g., gunfights, martial

arts, or ‘magic’). The data is sub-divided into a development (15

movies) and test set (three movies). As one can see from Table 1,

the average length of the automatically detected shots varies

considerably; this is partly due to genre. Furthermore, the relative

duration of scenes annotated as violent ranges from below one

percent (Dead Poets Society) to over ten percent (Kill Bill 1). In fact,

these two measures exhibit significant negative correlation

(%~{:50,pv:05 according to a two-sided t-test), indicating that

‘fast-paced’ movies also have more violent scenes, which is

intuitive. This motivates the inclusion of a ‘segment duration’

feature for violent scenes detection whenever the segmentation by

keyframes is used.

Violence Detection in Hollywood Movies
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Methodology

2.1 Audio-Visual Feature Extraction
Our feature extraction method is motivated from the domains

of affect recognition from human speech and sound events [3],

and general paralinguistic audio information retrieval [20,21]. A

large-scale feature set is ‘brute-foced’ by summarizing low-level

descriptors (LLDs) extracted from short audio frames over

segments of multiple frames. Within these frames, statistics such

as mean, standard deviation, higher moments, quartiles, regression

coefficients, etc. are applied to the LLDs. This way, LLD series of

variable length can be mapped onto a single feature vector. The

same approach is used for both audio and video features.

By that, it is evident that the choice of segments is a crucial

issue. Naturally, we could summarise the LLD over each shot. The

shots are provided by the automatic shot segmentation available in

the MediaEval database. This segmentation method is referred to

as shot. Since the shot lengths generally show very large standard

deviations, alternative segmentations into fixed (maximum) length

sub-windows of shots will be considered to provide more consistent

functionals. In turn, when choosing the fixed segment length, one

has to take into account that longer segments will contain more

information, but possibly violence mixed with non-violence or

simply different violent or non-violent content. Therefore, we

divided each shot into sub-windows of a fixed maximum length. In

pre-evaluation runs [17], we found that 2 seconds long sub-

segments gave good results. In this study we now systematically

investigate different segmentation methods and shot sub-windows.

Here, we apply a range of sub-window lengths from 6, 4, 2, and

1 seconds. Furthermore, we investigated both overlapping sub-

segments sampled at a rate of 1.0 seconds, and non-overlapping

sub-segments. The motivation behind overlapping sub-segments is

the increased amount and diversity of training data. Different

alignments of the segments with the actual data are available for

training the classifier, thus presumably making the results more

stable.

Extraction of the acoustic features is done with our open-source

feature extraction toolkit openSMILE [21]. We stick to rather

simple spectral and energy based LLDs for the experiments in this

article. We deliberately do not use any voice quality or pitch

related descriptors, as these are obviously motivated by the

presence of speech in paralinguistic audio analysis. While the

movies do also contain speech, violent segments need not

necessarily contain speech. These voice specific features are

therefore not a reliable source of information for violence. While

they might not be completely useless, we decided for straightfor-

ward features that can be extracted from any type of acoustic

signal equally well. Clearly, energy or variants such as loudness

could be indicative of scenes with high arousal. The RASTA-style

filtered auditory spectrum sum (cf. Table 2) is a kind of loudness

measure of events modulated with 4–8 Hz, i. e., a band-pass filter

with a passband between 4 and 8 Hz is applied to the temporal

envelopes of the auditory spectral bands. This bandwidth is

motivated by the average modulation frequency of speech signals.

We consider these features in addition since violence could co-

occur with high-energy speech (screaming).

Furthermore, the distribution of energy to different frequency

bands as well as related spectrum descriptors such as slope,

centroid, variance, skewness, sharpness and harmonicity are

expected to be of interest, to detect, e.g., broadband impact

Table 1. MediaEval 2012 Affect Task Data Set: 18 Hollywood movies by title, year of recording, duration (Dur), number (#) of shots
determined by automatic keyframe detection, average shot duration, and proportional length of violent scenes relative to movie
duration in percent.

Title Year Dur [h:m:s] # Shots Avg. shot dur. [s] Violence [%] Fold

Development Set

Armageddon 1998 2:24:40 3 562 2.466.5 5.8 1

Billy Elliot 2000 1:45:49 1 236 5.1610.0 1.7 1

Eragon 2006 1:39:45 1 663 3.669.3 6.0 3

Harry Potter V 2007 2:12:33 1 891 4.269.6 3.9 3

I Am Legend 2007 1:36:19 1 547 3.769.6 7.6 3

Kill Bill 1 2003 1:46:10 1 597 3.9612.4 10.1 1

Leon 1994 1:45:44 1 547 4.167.5 2.7 2

Midnight Express 1978 1:56:01 1 677 4.167.4 4.5 3

Pirates of the Caribbean 2003 2:17:19 2 534 3.267.5 5.7 2

Reservoir Dogs 1992 1:35:12 856 6.6612.4 4.9 1

Saving Private Ryan 1998 2:42:30 2 494 3.967.4 8.5 2

The Bourne Identity 2002 1:53:36 1 995 3.469.3 3.3 2

The Sixth Sense 1999 1:42:58 963 6.4613.4 1.0 1

The Wicker Man 2006 1:37:50 1 638 3.567.8 2.9 2

The Wizard of Oz 1939 1:37:39 908 6.4610.3 1.8 3

Test Set

Dead Poets Society 1989 2:03:33 1 583 4.667.2 0.7 -

Fight Club 1999 2:13:25 2 335 3.465.3 7.6 -

Independence Day 1996 2:27:14 2 652 3.367.3 6.4 -

S 35:18:24 32 678

doi:10.1371/journal.pone.0078506.t001
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noises with high low-frequency content which could be indicative

of gunshots or explosions. Spectral flux describes the amount of

spectral change of two consecutive audio frames. Thereby both

changes in frequency and signal energy are considered. Thus, both

an amplitude modulated tone and a frequency modulated tone

(with constant energy) would have a non-zero, positive spectral

flux. The 37 acoustic LLDs, given in Table 2 are extracted from

overlapping audio frames of 25 ms length, sampled at a rate of

10 ms.

First order delta coefficients are computed from the LLDs in

order to better capture the dynamics of the input. 45 functionals

(cf. Table 3) are applied to the acoustic LLDs and their first order

delta coefficients. These functionals are standard in paralinguistic

information retrieval and consist mainly of extrema, means and

moments, percentiles, as well as temporal information; from the

latter, we suspect especially peak- and slope-based analysis to be

fruitful to capture important ‘highlights’ in the feature contours for

violence detection. Gunshots, for example, would be characterized

by rapidly rising and falling slopes in the energy contour. The total

dimensionality of the acoustic feature set is 37:2:45~3330.

The low level video features are computed for each frame and

consist of Hue-Saturation-Value (HSV) histograms, an optical flow

analysis and a Laplacian edge detection. Three, dimensionally

independent, normalised HSV histograms (20, 20 and 10 bins) are

computed. A dense Farneback optical flow analysis compares

consecutive frames for pixel-wise displacements. The magnitudes

of the resulting 2D displacement vectors are computed, thre-

sholded to a maximum displacement of 15% of the normalised

frame size and sorted into 20 bins. The resulting histogram is then

normalised. Next, the mean optical flow and its standard deviation

are determined. These frame-to-frame motions are expected to

yield information concerning the overall pacing of the current

scene. Furthermore, high standard deviations on optical flow

would signify non-uniform scene flow while high mean flows could

indicate a fast-paced scene. Finally, Laplacian edge detection is

used for a simple detection of motion blur. An edge image is

computed per frame, the 2% strongest edges are discarded as noise

and the remaining strongest edge is used as a feature. Additionally,

a normalised magnitude histogram of the edge image is calculated,

ignoring values close to zero (histogram range: 16–255, 8-bit edge

image). All 95 visual descriptors are given in table 2. First order

delta coefficients are computed for all the visual LLD to capture

temporal dynamics of the LLD. The same 45 functionals (cf.

Table 3) as for the audio features are applied to the frame-wise

visual LLDs and their first order delta coefficients with open-

SMILE in order to summarise the low-level descriptor features

over windows of fixed (maximum) size. In this way, a total of

95:2:45~9690 video features are obtained.

2.2 Feature Analysis
To verify the soundness of the above feature extraction

procedure independently of a classifier, we calculate the t-statistic

with respect to the ‘violent’ and ‘non-violent’ windows for each

individual feature. Windows are annotated as ‘violent’ whenever

they coincide with a violent segment in the manual annotation.

The t-statistics analysis was conducted on shot sub-segments of

maximum length 2 seconds without overlap for both audio and

video. To provide the ‘big picture’, in Figures 1 and 2 the absolute

values of these t-statistics are visualized for different types of LLDs

as box-and-whisker plots. Boxes range from the first to the third

quartile and all values that exceed this range by more than 1.5

times the width of the box are considered as outliers; these are

depicted by circles. For each LLD the t-statistics are average over

the functionals. However, as we always find ‘inappropriate’ LLD/

functional combinations that are of little relevance (t-statistic close

to zero), only the ‘top half’ (wrt. t-statistics) of the functionals for

each LLD are considered.

For audio features (Figure 1), the hypothesized importance of

energy-related descriptors is confirmed. Among them, loudness

seems to be particularly relevant while log-energy is somewhat

inferior. Energy with the speech modulation frequency (sum of

RASTA-style filtered spectrum) is not as indicative of violence; this

is arguably due to the concept of ‘violence’ followed in the

Table 2. Acoustic and visual low-level descriptors.

4 acoustic energy LLDs

Sum of auditory spectrum (loudness)

Sum of RASTA-style filtered auditory spectrum

Logarithmic energy, and zero-crossing rate

33 acoustic spectral LLDs

MFCC 1–16

Spectral energy 40–150, 250–650 Hz, 1 k–4 kHz, 5 k–15 kHz

Spectral roll-off point 0.25, 0.50, 0.75, 0.90

Spectral flux, entropy, variance, skewness, kurtosis,

slope, psychoacoustic sharpness, harmonicity, centroid

95 visual LLDs

Normalised HSV histograms (20, 20, 10 bins)

Normalised dense Optical Flow histograms (20 bins)

Normalised Laplacian edge histograms (20 bins)

Mean Optical Flow

Optical Flow standard deviation

Strongest edge in lower 98% of Laplacian edges

doi:10.1371/journal.pone.0078506.t002

Table 3. 45 functionals applied to acoustic and visual low-
level descriptors and delta coefficients.

quartiles 1–3 and all 3 inter-quartile ranges

1% percentile (<min), 99% percentile (<max)

percentile range 1%–99%

position of min/max, range: max-min

arithmetic mean, root quadratic mean

contour centroid, flatness

standard deviation, skewness, kurtosis

rel. duration LLD is above 90%/below 25% of range

rel. duration LLD is rising/falling

range of peaks (absolute and rel. to arith. mean)

mean value of peaks (absolute and rel. to arith. mean)

mean value of peaks – arithmetic mean

mean value of minima rel. to arith. mean

max, min, mean, std. dev. of rising/falling slopes

mean/std.dev. of inter maxima distances

linear regression slope, offset, and quadratic error

quadratic regression coefficient 1, and quadratic error

duration of the underlying segment

doi:10.1371/journal.pone.0078506.t003

Violence Detection in Hollywood Movies
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annotation, relating to physical violence only. Subdividing energy

into frequency bands, we find middle to high frequencies (1–

4 kHz) as well as low frequencies (40–150 Hz) to be most

indicative while middle frequencies (250–650 Hz) are least

discriminative; this observation can probably be attributed to the

presence of loud broadband impact noises in violent scenes. The

most important descriptors of the spectral distribution seem to be

spectral flux, entropy, harmonicity, and skewness (in that order, by

median absolute t-value). Related to these spectral distribution

features, we now examine MFCC features, and find a mixed

picture: Especially the first MFCC, which is somewhat similar to

spectral skewness, is apparently relevant; however, some func-

tionals of higher order MFCCs should be considered as well, such

as peak distances of the 3rd to 6th MFCC—these distances are

apparently much lower for non-violent scenes, indicating slower

change of the general acoustic scene.

Interestingly, our findings on the visual channel corroborate

these observations. Foremost, we observe features related to the

optical flow ‘on top’ of the visual LLDs, corroborating the

correlation between fast-paced scenes and violence hypothesized

in the previous section. Among the single most important optical

flow features are the minimum (1-percentile) and arithmetic mean

of the 0%–2.5% histogram bin (t = 64 and t = 52, respectively, for

non-violent vs. violent); furthermore, the rise times of the higher

optical flow bins (i. e., corresponding to higher percentage of

image dimension) are much lower in non-violent than in violent

scenes, relating to stronger acceleration. Interestingly, the mean

optical flow in y-direction seems to be much more relevant than

the x-direction. Next to optical flow, the color-related features

seem important to characterize violent scenes. However, it is

important to note that mostly the change in color seems to be

relevant, as among the most important descriptors we find, e. g.,

relative peak ranges of the 0–12 saturation bin (t = 29).

Next, let us take a closer look at the importance of different

functionals: In Figures 3 and 4, the t-statistics are summarized for

the different functionals across the ‘better half’ of the LLDs.

Among the functionals which seem most conducive to violence

prediction from audio features (Figure 3) are the first and third

quartile, which are more important than the overall median or

mean. Furthermore, functionals related to peaks (local maxima),

such as the statistics of the falling and rising slopes, seem highly

relevant. Among the types of means applied, the root quadratic

mean is particularly important, apparently because it considers

rising and falling contours equally. For video features, we observe

mostly ‘classical’ functionals such as means, moments and quartiles

as relevant. Peak functionals do not seem as noteworthy as for the

Figure 1. Audio LLD relevance: Absolute values of t-statistics
(non-violent vs. violent) for groups of LLDs, across functionals
applied to two second non-overlapping segments. 26/45
functionals selected by highest t-statistic per LLD group.
doi:10.1371/journal.pone.0078506.g001

Figure 2. Video LLD relevance: Absolute values of t-statistics
(non-violent vs. violent) for groups of LLDs, across functionals
applied to two second non-overlapping segments. 26/45
functionals selected by highest t-statistic per LLD group.
doi:10.1371/journal.pone.0078506.g002

Violence Detection in Hollywood Movies
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audio features; in fact, events related to peaks in the audio such as

impact noises might not necessarily imply such peaks in the visual

channel.

Overall, our results concerning audio LLDs are in accordance

with previous findings in sound emotion recognition [3]; in

particular, it is interesting that in the feature space, violence seems

to be correlated with the arousal dimension often considered in

sound and human emotion recognition (fast paced, ‘action-prone’

scenes). In this light, we also point out that the hypothesis put forth

at the end of Section 1 is corroborated by the fact that the mean

length of non-violent shots is significantly lower (t~{144,

p%:001).

2.3 Classification and Fusion
Our method for detection of violent scenes uses SVM classifiers

which are trained on features extracted from the development

data. Due to the large feature space, a linear kernel is chosen.

Further, we did not evaluate other classifiers on this data for two

reasons: 1) our past experience has shown that linear kernel SVM

are on average by far the best classifier for such high dimensional

feature vectors, both with respect to training time and accuracy; 2)

we decided to keep the number of reported results low in order to

not overwhelm the reader with lots of figures which are similar.

Instead we wanted to focus on the feature analysis, as well as a

discussion of the input segmentation. Independent classifiers are

trained on acoustic and visual features.

During SVM training, logistic regression models are built on the

hyperplane distances of the positive and negative training

instances, in order to obtain a mapping to confidence scores in

the interval from 0 to 1. The Sequential Minimal Optimization

(SMO) algorithm implemented in the Weka toolkit [22] is used.

Various complexity parameters C (influencing the number of

randomly selected instances from the training data used to build

the model) are investigated: 0.0005, 0.001, 0.005, and 0.01. To

obtain a single decision and confidence score for each shot, the

predictions made by the acoustic and visual SVMs are fused by

simple score averaging (see the previous sub-section).

An optimal parameter C with respect to the evaluation measure

Mean Average Precision (MAP) (see Section 3.1) on the

development set was determined for the audio and video

Figure 3. Functional Relevance for audio: Absolute values of t-
statistics (non-violent vs. violent) for groups of functionals
applied to two second non-overlapping segments, across
audio/video LLDs. 18/37 (audio) and 48/97 (video) LLDs selected
by highest t-statistic per functional group.
doi:10.1371/journal.pone.0078506.g003

Figure 4. Functional Relevance for video: Absolute values of t-
statistics (non-violent vs. violent) for groups of functionals
applied to two second non-overlapping segments, across
audio/video LLDs. 18/37 (audio) and 48/97 (video) LLDs selected
by highest t-statistic per functional group.
doi:10.1371/journal.pone.0078506.g004

Violence Detection in Hollywood Movies
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modalities. Furthermore, the choice of overlapping vs. non-

overlapping sub-windows was evaluated. Results are shown in

Figure 5. Generally, overlapping shot sub-windows actually

decrease the performance in terms of MAP@20 while this

difference is visible, but not as pronounced for MAP@100. As a

consequence, C~:005 and non-overlapping sub-windows were

chosen for the video modality whereas sub-windows with 50%

overlap (one second shift) and C~:01 were used for audio. For

audio-visual fusion, non-overlapping shot sub-windows were

utilized in order to have the same number of predictions per shot.

Regarding the sub-window size, we found that two seconds were

actually optimal due to the fact that (i) in most movies, shots are

not longer than four seconds on average, limiting the benefit of

longer windows, and (ii) shorter windows could not sufficiently

increase performance to outweigh the increase in computation

time. However, we found that the shot sub-segmentation delivered

higher MAP@100 (.451) than simply computing functionals of

shots (.437) on the development set.

Experiments and Results

3.1 Evaluation
The primary evaluation measure, as chosen by the MediaEval

2012 Affect Task organizers oriented on the above-named use case

[18], is the shot level Mean Average Precision (MAP) at 100. For a

single movie, average precision (AP) at 100 is the area under the

‘curve’ that results from considering precision and recall for

retrieving the top scored K segments, with K~1, . . . ,100. Then,

the mean of the APs across all the movies is calculated. Thus,

MAP represents the trade-off between recall and precision in a

single measure. In addition to MAP@100 we also consider

MAP@20 which reflects a use case where the user browses

through less shots in the list.

The ground truth label for each of the shot or shot sub-segments

is inferred from the violent segment ground truth annotation as

follows, in accordance with the MediaEval 2012 campaign. If a

shot or shot sub-segment overlaps with a violent segment in some

way, the whole shot or whole shot sub-segment is labelled as

violent; it is labelled as non-violent otherwise. We would like to

note here that a single shot can contain violent and non-violent

sub-segments because the boundaries of the violent segments are

not aligned to the shot boundaries. Furthermore, a shot can be

labeled as violent even if only a small proportion actually contains

violence, and vice versa.

In accordance with this ground truth creation procedure, to

obtain shot level predictions from shot sub-segment predictions,

the scores of the sub-segments that overlap with the shot are

averaged. Fusion of audio and video scores is also done by one to

one linear averaging of the corresponding shot or shot sub-

segment scores from the audio and the video predictions.

Evaluations on the development set are carried out in a 3-fold

cross validation. There is no movie overlap between folds and the

folds are approximately balanced with respect to violent and non-

violent movies, and by year of the movie, in order to ensure that a

somewhat representative set is chosen for training in each fold. For

the precise fold split of the development set please see Table 1.

3.2 System Performance
Firstly different kinds of segmentation, as well as the SMO

complexity constant, were validated on the development set by

means of a three-fold cross-validation as described above.

Table 4 shows the results obtained with the optimal configu-

ration, on the development and test sets, for audio features, video

features, and late audio-visual fusion. Average precisions at 20 and

100 are shown for each movie and MAP is calculated for the

development and test set, the latter corresponding to the official

score in the MediaEval Affect Task. Foremost, we observe that the

average precision strongly varies from movie to movie. In fact,

AP@100 is significantly correlated with the violence proportion of

the movies (Spearman’s r~:56 for audio-visual fusion; p~:01).

Overall best performance is obtained on The Bourne Identity where

audio-visual analysis delivers a remarkable AP@20 of .947 (AP@

100 = .800), and here modalities seem to be particularly comple-

mentary (audio: AP@100 = .639, video: .402). This behaviour can

also be found for the ‘next best’ movie Reservoir Dogs (audio-visual

analysis: MAP@100 = .766). The gain by audio-visual fusion is

highest on Harry Potter V where neither of the audio nor video

modalities can deliver satisfactory performance on their own yet

their fusion achieves a MAP@100 of .416. Interestingly, the visual

analysis completely fails to retrieve the violent shots from The Sixth

Sense (MAP@20 = 0, i. e., all of the 20 top-ranked shots are non-

violent) while it captures 20 violent shots in the top 20 of The

Wizard of Oz (MAP@20 = 1), which is especially remarkable since

this movie has been artificially coloured, yet no such movie was

present in the training set. In total, we have shown the potential of

the approach, however, when compared to more complex

approaches like [23], which are specifically tailored towards

violence detection, the presented approach is outperformed. A

direct comparison cannot be performed, because both systems

Figure 5. Segmentation and classfier training: Influence of SVM complexity and overlapping (ovl, 50%) vs. non-overlapping (noovl)
shot sub-windows on (shot level) mean average precision (MAP), measured on the development set of the MediaEval 2012 Affect
Task Data Set. Sub-window size 2 seconds. A: audio, B: video.
doi:10.1371/journal.pone.0078506.g005
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have been modified since the evaluations for the MediaEval

workshop, and [23] only reports F1-measure instead of MAP.

To summarize, we can see evidence for the complementarity of the

audio and visual modalities in several movies, especially those where

both modalities deliver satisfactory performance on their own. On

average, audio-visual fusion outperforms either modality on the test

set, but on the development set it cannot outperform audio alone.

Discussion

4.1 Error Analysis
A closer investigation of the results obtained in the MediaEval

campaign [17] revealed that the system is quite prone to false

positives. Thus, we carried out an additional analysis of the

features with respect to the system’s predictions (on two second

segments). Firstly, to verify that our paradigm for feature relevance

analysis captures the features actually taken into account by the

classifier, we calculated Spearman’s rank correlation coefficient of

(i) the feature-wise (absolute) t-statistics as displayed in Figure 1 (i.

e., with respect to actual violence), and (ii) the t-statistics with

respect to predicted violence. We obtained a coefficient of r~:87
(%%:001), corroborating the validity of our relevance analysis.

Secondly, we investigated the rank correlation of features’ t-

statistics with respect to false positives vs. true positives, and t-

statistics with respect to actual violence; this correlation is

considerably lower (%~:63), yet significant (r%:001), indicating

that some features which are descriptive of violence are also prone

to leading to false positives. Among these are many of the

loudness-related descriptors—e. g., loudness range is among the

‘top 40’ in all three of the lists of relevant features with respect to

the label, the prediction, and the false positives. However, other

features are not indicative of false positives while being related to

the violence label, and being taken into account by the classifier—

for instance, the peak distance standard deviation of the spectral

centroid contour is ranked # 337 in the list of features relevant for

the prediction and has a t-statistic of 14.2 with respect to the

violence label, but is at # 3 733 (42-nd last) in the list of features

related to false positives. Conversely, some features do not seem to

contribute as much to the classifier decision as others, yet are

highly indicative of false positives (e. g., the arithmetic mean of first

MFCC has a rank of 861 by absolute t-statistic for the violent vs.

non-violent label, yet rank 39 for false vs. true positive prediction).

Overall, the rank correlation of t-statistics with respect to false

positives vs. true positives, and t-statistics with respect to negative

vs. positive prediction is ‘only’ %~:55.

We repeated this experiment for the video features; the t-statistics

of the features with respect to the ground truth and prediction are

(rank-)correlated with %~:97, whereas the t-statistics with respect to

false positives exhibit a correlation coefficient of %~:77 with the t-

statistics computed with respect to the ground truth. We conclude

that on the one hand, we can build a predictor for false positives that

is complementary to the violence predictor itself, and on the other

hand, that this opens up promising avenues for wrapper-based

feature selection aiming at the reduction of false positives.

4.2 Influence of Segmentation
As discussed above, the evaluation according to the official

‘ground truth’ of the MediaEval campaign is oriented on fully

automatic segmentation, which does not match the human

annotation procedure where annotators segmented the movies

into violence and non-violence without using the automatic shot

segmentation. Hence, both classifier training and evaluation are

‘noisy’ in the sense that segments containing both violence and

non-violence are labeled with only one ‘ground truth’. To provide

an upper bound on the performance of our segmental feature

extraction, we performed a second sequence of experiments where

we do not use the automatic segmentation into shots, but use sub-

windows of the segments classified by the human annotators as

violent or non-violent. This means that for each training and

testing instance a ‘solid ground truth’ exists. For this experiment

we also compare the unweighted average recall (UAR) [20] as a

measure of overall accuracy in the case of imbalanced class

distribution. Results are shown in Table 5. We observe that the

segmentation has great influence on the system performance,

especially in terms of MAP. There is also a remarkable gain in

UAR, but the relative difference is not as strong as for MAP. This

indicates that the performance increase is mostly due to the

classifier being able to deliver more meaningful scores.

Conclusions and Outlook

We have shown an effective, fully automatic approach to violent

scenes detection. Evaluating on the official MediaEval campaign

data set of original Hollywood movies in full realism, a performance

of .398 mean average precision at 100 shots was reached by large-

scale brute-forcing of acoustic and visual features, and late fusion.

By that, the system achieved competitive results in the official

evaluation. In particular, our system does not include any hand-

crafting of mid-level classifiers or features, and does not require

Table 4. Results on MediaEval 2012 Affect Task Data Set:
Average precision (AP) and mean average precision (MAP) for
violence detection at 20 or 100 top-ranked shots.

Audio Video Audio+Video

Movie AP@20 AP@100 AP@20 AP@100 AP@20 AP@100

Development Set

Armageddon .434 .351 .272 .184 .268 .302

Billy Elliot .571 .223 .050 .067 .300 .158

Eragon .553 .532 .502 .372 .642 .412

Harry Potter V .115 .302 .232 .252 .491 .416

I am Legend .615 .625 .313 .367 .570 .583

Kill Bill 1 .591 .570 .389 .399 .540 .539

Leon .480 .434 .145 .174 .543 .439

Midnight Express .601 .503 .555 .460 .424 .515

Pirates of the
Caribbean

.519 .456 .605 .385 .470 .422

Reservoir Dogs .698 .665 .579 .404 .870 .766

Saving Private Ryan .550 .530 .507 .416 .600 .553

The Bourne Identity .753 .639 .636 .402 .947 .800

The Sixth Sense .361 .187 .000 .028 .083 .096

The Wicker Man .429 .486 .373 .271 .638 .472

The Wizard of Oz .369 .274 1.000 .230 .363 .270

Mean .509 .452 .411 .294 .517 .449

Test Set

Dead Poets Society .124 .150 .067 .141 .359 .301

Fight Club .514 .322 .097 .232 .242 .247

Independence Day .615 .609 .604 .423 .609 .646

Mean .418 .360 .256 .265 .403 .398

Classification by audio or video features, and late fusion of both. Mean of AP
scores across movies in development/test set.
doi:10.1371/journal.pone.0078506.t004
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manual pre-segmentation; yet, including manual pre-segmentation

led to a remarkable MAP@100 of up to .598 on the test set.

An in-depth feature analysis has revealed the importance of

spectral distribution descriptors as frame-level features, and peak-

based functional extraction for the audio channel. From the video

channel, very simple descriptors related to color and optical flow

have been found relevant. Motivated by the high false positive

rate, an error analysis has been carried out and features indicative

of false positives have been found which do not overlap with the

features which are most important for the classifier’s decision; thus,

a second predictor could be employed in future work as in [24].

Furthermore, since we found results in terms of mean average

precision to vary strongly depending on the parameterization of

the feature extraction, we will have to investigate better suited

confidence measures from classification than simple hyperplane

distances or feature space likelihoods. In particular, cross-database

semi-supervised confidence measures as considered by [24] for

human affect recognition will be a promising avenue for further

leveraging computational intelligence for violent scenes detection.

Furthermore, a combination of ‘static’ segmental features with

‘dynamic’ frame-wise classification by (recurrent) neural networks

could be used to alleviate the issue of segmentation. Alternatively,

unsupervised segmentation techniques could be employed instead

of simple fixed length windows.

The benefit of fusion in the presented results is obvious, but very

minimal. In future work we need to identify whether more

complex fusion techniques or more advanced video descriptors

will improve the results, or if simply the visual and acoustic

modalities overlap too much, i.e., are too correlated in the given

MediaEval 2012 data-set.

From a less technical point of view, in our feature analysis we

have found evidence that features correlated to the arousal and

valence dimensions are beneficial to violence labeling. Hence, we

are confident that in the long run, our findings will deliver another

piece of the puzzle that is a generic and holistic statistical model for

the affective dimensions of audio-visual recordings. Further unifying

the models of human affect recognition, affective sound and video

analysis and music mood labeling by joint feature and error analysis

in cross-domain setups will be the next step in that direction.
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