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Introduction

Automatic speech recognition (ASR) has found many
applications in recent years, including dictation software,
navigation systems, mobile phones, and broadcast news
transcription. Generally, high ASR accuracies can be
obtained whenever the application scenario allows for
processing well-articulated, neutral, or read speech that is
captured by suited acoustic and language models (Anan-
thakrishnan and Narayanan 2007). More challenging is the
recognition of spontaneous, emotionally colored, and noisy
speech, which leads to higher error rates due to pronunci-
ation and intonation variance or speech signal disturbances.
Yet, since modern speech-based computer interfaces need
to handle challenges like different speaking styles, emo-
tional coloring of speech, and background noise in order to
enable reliable and natural human-machine communication,
novel ASR techniques that reach acceptable recognition
performance in spite of demanding conditions are in the
focus of current research (Lathoud et al. 2005; Mesot and
Barber 2007; Windmann and Haeb-Umbach 2008; Wollmer
et al. 2009). An important discipline within the field of ASR
is keyword spotting (Ketabdar et al. 2006) or spoken term
detection (Mamou et al. 2007). Particularly in human-
machine interaction scenarios that do not aim at unrestricted
natural language understanding but rather focus on inferring
the user’s intention from a limited set of keywords, the
requirement of extracting the full transcription of the spo-
ken content can often be dropped. That is why in chal-
lenging spontaneous speech processing applications the
accurate detection of certain keywords is often more
important than large vocabulary continuous speech recog-
nition (LVCSR) (McTear 2002; Wollmer et al. 2010).
Past research on noise-robustness in ASR has attempted
to optimize many components of a speech recognition
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system with respect to the applicability in noisy conditions.
Prior to acoustic feature extraction, techniques for speech
enhancement (Hussain and Campbell 1998) aim at deno-
ising the speech signal via methods such as Wiener filtering
or spectral subtraction (Lathoud et al. 2005). A well-known
problem which has to be considered during speech
enhancement is that improved intelligibility of speech does
not necessarily imply lower ASR error rates. Enhancement
algorithms that are applied after feature extraction are
referred to as feature enhancement techniques and attempt
to reconstruct the ‘clean’ speech features from the observed
noisy features, e.g., using normalization techniques like
cepstral mean subtraction (CMS), cepstral mean and vari-
ance normalization (CMVN), and histogram equalization
(HEQ) (Hilger and Ney 2006), Bayesian estimation
approaches for feature warping (Squartini et al. 2011), or
model-based feature enhancement algorithms applying
Gaussian mixture models, Hidden Markov Models
(HMM), or Switching Linear Dynamic Models (SLDM)
(Droppo and Acero 2004; Deng et al. 2007; Schuller et al.
2008). By contrast, model adaptation approaches try to
adapt the acoustic models to noisy conditions, either via
transforms of models trained on clean data or by including
noisy training material in the learning process (matched- or
multi-condition training) (Schuller et al. 2009). Thereby
most studies on noise robust ASR focus on small-vocabu-
lary tasks, such as connected digit recognition as defined in
the AURORA task (Hirsch and Pearce 2000). In this arti-
cle, we focus on keyword spotting as needed for sponta-
neous human-machine interaction and investigate the
recognition performance when adapting both, features and
acoustic models to noisy conditions. More specifically, we
combine Histogram Equalization with multi-condition
training and examine the effect on keyword detection in
conversational, emotionally colored speech. HEQ is a very
effective feature enhancement technique since—in contrast
to CMS and CMVN—it normalizes all moments of the
probability distribution of the feature vector components
and thus compensates non-linear distortions caused by
noise.

A further aspect examined in this article is the incor-
poration of long short-term memory (LSTM) modeling into
the speech decoding process. LSTM networks were origi-
nally introduced in (Hochreiter and Schmidhuber 1997)
and allow for context-sensitive sequence labeling. Unlike
conventional recurrent neural networks (RNN) or multi-
layer perceptrons (MLP), LSTM networks are able to
model a self-learned amount of contextual information and
were recently proven to boost performance in Tandem
ASR systems (Wollmer et al. 2009, 2010, 2011). LSTM is
well-suited for modeling coarticulation effects in human
speech and can be applied instead of Fernandez et al.
(2007) and Wollmer et al. (2010) or in combination with

Wollmer et al. (2011) triphone modeling. In this article, we
investigate the keyword spotting performance of a multi-
stream model that decodes both, conventional Mel-fre-
quency cepstral coefficient (MFCC) features and phoneme
estimates generated by an LSTM network and at the same
time—unlike in our previous research (Wollmer et al.
2010)—applies an in-domain language model for high-
level context modeling. Our contribution builds on a pre-
liminary study on the effect of multi-condition training in a
challenging keyword spotting scenario (Wollmer et al.
2011) and shows how further performance gains can be
reached when HEQ is included in the front-end of the
recognition system. Moreover, we evaluate our proposed
multi-stream LSTM-HMM not only on clean data (as in
Wollmer et al. 2011), but also consider noisy test data in
order to get an impression of the model’s robustness in
comparison to standard HMM-based decoding.

For our keyword detection evaluations, we consider the
SEMAINE scenario involving highly spontaneous and
emotional speech recorded during natural human-agent
conversations. Thus, we employ the SEMAINE database’
which was recorded to provide in-domain training material
for the SEMAINE system (Schroder et al. 2008)—a con-
versational agent with emotional competences.

The article is structured as follows: “The SEMAINE
scenario® section briefly explains the SEMAINE system
tailored for emotional human-agent conversations. In
“Histogram equalization” section we review the principle
of HEQ which will be used in combination with multi-
condition training for noise-robust keyword detection. In
“Multi-stream LSTM-HMM decoding” section we outline
the idea of LSTM and introduce our multi-stream LSTM-
HMM decoder. Finally, in “Experiments” section we show
experimental results before we draw conclusions in
“Conclusion” section.

The SEMAINE scenario

The techniques for noise robust keyword detection which
are described in this article will be evaluated with respect
to a specific application scenario involving spontaneous
and highly emotional speech. We will focus on optimizing
our keyword spotter for the SEMAINE system which was
developed within the SEMAINE project.” Unlike most
task-oriented dialogue systems, the Sensitive Artificial
Listeners representing the SEMAINE system (Schroder
et al. 2008) focus on aspects of communication that are
emotion-related and non-verbal (as in Memon and Treur
2010, for example). The system is designed for a one-to-

' http://www.semaine-db.eu.

% http://www.semaine-project.eu.



one dialogue situation in which one user is conversing with
one of four available virtual agent characters. Besides
speech, the (multimodal) interaction involves head move-
ments and facial expressions. The SAL characters have to
recognize a limited set of emotionally relevant keywords,
non-linguistic vocalizations such as laughing or sighing,
and the prosody with which the words are spoken. Based
on the interpreted input from audio and video, the system
has to show appropriate listener behavior, e.g., multimodal
backchannels, decide when to take the turn, and select a
suitable phrase in order to maintain the conversation.

The four SAL characters roughly represent areas in the
arousal-valence space: ‘Spike’ is angry (high arousal, low
valence), ‘Poppy’ is happy (high arousal, high valence),
‘Obadiah’ is sad (low arousal, low valence), and ‘Pru-
dence’ is matter-of-fact (moderate arousal, moderate
valence). During the conversations, the virtual characters
aim to induce an emotional state in the user that corre-
sponds to their typical emotional state.

Histogram equalization

To maintain an acceptable keyword recognition perfor-
mance when the SEMAINE system is used in noisy con-
ditions, efficient feature enhancement and model adaptation
techniques are needed. Since HEQ was shown to be one
of the most effective and versatilely applicable feature
enhancement techniques (see Schuller et al. 2009, for
example), this article will investigate the effect of com-
bining multi-condition training with HEQ for improving the
noise robustness of the SEMAINE keyword spotter. HEQ is
also a popular technique for digital image processing where
it aims to increase the contrast of pictures. In speech pro-
cessing, HEQ can be used to extend the principle of cepstral
mean subtraction and mean and variance normalization to
all moments of the probability distribution of the feature
vector components (Hilger and Ney 2006; de la Torre et al.
2005). It enhances noise robustness by compensating non-
linear distortions in speech representation caused by noise
and therefore reduces the mismatch between test and
training data.

The main idea is to map the histogram of each com-
ponent of the feature vector onto a reference histogram.
The method is based on the assumption that the effect of
noise can be described as a monotonic transformation of
the features which can be reversed to a certain degree. As
the effectiveness of HEQ is strongly dependent on the
accuracy of the speech feature histograms, a sufficiently
large number of speech frames has to be involved to esti-
mate the histograms. An important difference between
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HEQ and other noise reduction techniques like Unsuper-
vised Spectral Subtraction (Lathoud et al. 2005) is that no
analytic assumptions have to be made about the noise
process. This makes HEQ effective for a wide range of
different noise processes independent of how the speech
signal is parameterized.

When applying HEQ, a transformation

= F) (1)

has to be found in order to convert the probability density
function p(x) of a certain speech feature into a reference
probability density function p(X) =p.p(X). If x is a
unidimensional variable with probability density function
p(x), a transformation ¥ = F(x) leads to a modification of
the probability distribution, so that the new distribution of
the obtained variable X can be expressed as

p(@) = pl6() 220 2)

with G(X) being the inverse transformation of F(x). To
obtain the cumulative probabilities out of the probability
density functions, we have to consider the following
relationship:

C(x) =

= C(F(x)).

Consequently, the transformation converting the distri-
bution p(x) into the desired distribution p(X) = p,.(X) can
be expressed as

F=F(x) = C'[C(x)] = C[C()], (4)

whereas C;,}() is the inverse cumulative probability
function of the reference distribution and C(...) is the
cumulative probability function of the feature. To obtain
the transformation for each feature vector component in
our experiments, uniform intervals between y; — 4o0;
and y; + 40; were considered to derive the histograms,
with i; and o; representing the mean and the standard
deviation of the ith feature vector component. For each
component a Gaussian probability distribution with zero
mean and unity variance was used as reference probability
distribution.
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Multi-stream LSTM-HMM decoding

A second strategy for enhancing keyword detection per-
formance in challenging conditions as investigated in this
article is the application of LSTM (Hochreiter and Sch-
midhuber 1997) for context-sensitive phoneme estimation.
“Long short-term memory” section explains the basic
principle of LSTM and provides insights into how a
recurrent neural network can be extended to model long-
range temporal context via LSTM. In “Multi-stream
model” section, we show how an LSTM-based phoneme
predictor can be incorporated into a continuous speech
recognition system based on HMM:s.

Long short-term memory

A simple and widely used technique for context-sensitive
sequence labeling based on neural networks is the appli-
cation of recurrent neural networks. RNNs are able to
model a certain amount of context by using cyclic con-
nections and can in principle map from the entire history of
previous inputs to each output. Yet, the analysis of the error
flow in conventional recurrent neural nets resulted in the
finding that long-range context is inaccessible to standard
RNNGs since the backpropagated error either blows up or
decays over time (vanishing gradient problem Hochreiter
et al. 2001). This led to various attempts to address the
problem of vanishing gradients for RNN, including non-
gradient-based training (Bengio et al. 1994), time-delay
networks (Schaefer et al. 2008; Lin et al. 1996; Lang et al.
1990), hierarchical sequence compression (Schmidhuber
1992), and echo state networks (Jaeger 2001). One of the
most effective techniques is the Long Short-Term Memory
architecture (Hochreiter and Schmidhuber 1997), which is
able to store information in linear memory cells over a
longer period of time. They are able to overcome the
vanishing gradient problem and can learn the optimal
amount of contextual information relevant for the classifi-
cation task.

An LSTM hidden layer is composed of multiple recur-
rently connected subnets which will be referred to as
memory blocks in the following. Every memory block
consists of self-connected memory cells and three multi-
plicative gate units (input, output, and forget gates). Since
these gates allow for write, read, and reset operations
within a memory block, an LSTM block can be interpreted
as (differentiable) memory chip in a digital computer.
Figure 1 shows the architecture of a memory block con-
taining one memory cell.

If o« denotes the activation of the input gate at time ¢
before the activation function f, has been applied and ﬁ;“
represents the activation after application of the activation

net input
4

net output

Fig. 1 LSTM memory block consisting of one memory cell: the
input, output, and forget gates collect activations from inside and
outside the block which control the cell through multiplicative units
(depicted as small circles); input, output, and forget gate scale input,
output, and internal state respectively; f;, f,, and f, denote activation
functions; the recurrent connection of fixed weight 1.0 maintains the
internal state

function, the input gate activations (forward pass) can be
written as

1 H C
ain — Z ni,inx;‘ + Z nh,inﬁftf1 + Z nc,instil (5)
i=1 c=1

h=1

and
"= fe(o™), (6)

respectively. The variable 5 corresponds to the weight of
the connection from unit i to unit j while ‘in’,‘for’, and
‘out’ refer to input gate, forget gate, and output gate,
respectively. Indices i, 4, and ¢ count the inputs x!, the cell
outputs from other blocks in the hidden layer, and the
memory cells, while I, H, and C are the number of inputs,
the number of cells in the hidden layer, and the number of
memory cells in one block. Finally, s¢ corresponds to the
state of a cell ¢ at time ¢, meaning the activation of the
linear cell unit.

Similarly, the activation of the forget gates before and
after applying f, can be calculated as follows:

1 H C

for __ ifor i h,for ph c,for ¢

o™ = 0 Y B Y s (7)
i=1 h=1 c=1

= fe(o4). (3)

The memory cell value of is a weighted sum of inputs at
time ¢ and hidden unit activations at time ¢ — 1:

1 H
i = 0+ > 0B 9)
i=1 h=1

To determine the current state of a cell ¢, we scale the
previous state by the activation of the forget gate and the
input f;(of) by the activation of the input gate:
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The computation of the output gate activations follows the
same principle as the calculation of the input and forget
gate activations, however, this time we consider the current
state s¢, rather than the state from the previous time step:

H C
:x;)ut _ Z ni,out‘x;‘ + Z nh,outﬁft_l + Z nc,outstc (1 1)
i h=1 c=1

i=1

c _
s, =

o= fo(og™). (12)
Finally, the memory cell output is determined as
By = Bi"fo(sy)- (13)

Note that the initial version of the LSTM architecture
contained only input and output gates. Forget gates were
added later (Gers et al. 2000) in order to allow the memory
cells to reset themselves whenever the network needs to
forget past inputs. In our experiments we exclusively
consider the enhanced LSTM version including forget
gates.

The overall effect of the gate units is that the LSTM
memory cells can store and access information over long
periods of time and thus avoid the vanishing gradient
problem. For instance, as long as the input gate remains
closed (corresponding to an input gate activation close to
zero), the activation of the cell will not be overwritten by
new inputs and can therefore be made available to the net
much later in the sequence by opening the output gate.

In recent years, the LSTM technique has been success-
fully applied for a variety of pattern recognition tasks,
including phoneme classification (Graves and Schmidhuber
2005), speech-based emotion recognition (Wdollmer et al.
2010), handwriting recognition (Graves et al. 2008), and
driver distraction detection (Wollmer et al. 2011).

Multi-stream model

To exploit LSTM-based phoneme recognition for keyword
or continuous speech recognition tasks, the LSTM network
can be combined with an HMM architecture that performs
time warping in order to map from framewise phoneme
estimates to words. The LSTM-HMM decoder applied in
this article builds on preliminary experiments presented in
Wollmer et al. (2011) by employing a multi-stream archi-
tecture that simultaneously models low-level MFCC fea-
tures and LSTM phoneme predictions. Since the
SEMAINE system requires fully incremental real-time
speech processing, this article focuses on unidirectional
LSTM networks that exclusively consider past, and not
future context (unlike the system presented in Wollmer
et al. (2011) which applies bidirectional LSTM and thus is
not causal).
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The general procedure for building our multi-stream
LSTM-HMM system is as follows: First, we train an LSTM
network on framewise phoneme targets so that it outputs a
vector of phoneme likelihoods at every time step. Using this
vector of posterior probabilities, we create a discrete feature
that encodes the identity of the most likely phoneme (see
Eq. 14). Finally, we train a continuous-discrete HMM
system that uses both, MFCC features and the discrete
BLSTM feature as observations. During testing, the role of
the multi-stream HMM is to robustly map from (error-
prone) LSTM phoneme estimates to sequences of words.

The structure of our multi-stream decoder can be seen in
Fig. 2: 5, and x, represent the HMM state and the acoustic
(MFCC) feature vector, respectively, while b, corresponds
to the discrete phoneme prediction of the LSTM network
(shaded nodes). Squares denote observed nodes and white
circles represent hidden nodes. In every time frame ¢ the
HMM uses two independent observations: the MFCC fea-
tures x, and the LSTM phoneme prediction feature b,. The
vector x, also serves as input for the LSTM, whereas the
size of the LSTM input layer i, corresponds to the
dimensionality of the acoustic feature vector. The vector o,
contains one probability score for each of the P different
phonemes at each time step. b, is the index of the most
likely phoneme:

b, = arg max(om, 5 O1js e, 01p) (14)

J

In every time step the LSTM generates a phoneme
prediction according to Eq. 14 and the HMM models x;.7

LSTM network

Fig. 2 Architecture of the multi-stream LSTM-HMM decoder: s;:
HMM state, x,: acoustic feature vector, b,: LSTM phoneme prediction
feature, i, o,, h;: input, output, and hidden nodes of the LSTM
network; squares correspond to observed nodes, white circles
correspond to hidden nodes, shaded circles represent the LSTM
network
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and b,.7 as two independent data streams. With y, = [x;; b,]

being the joint feature vector consisting of continuous

MFCC and discrete LSTM observations and the variable a

denoting the stream weight of the first stream (i.e., the

MFCC stream), the multi-stream HMM emission

probability while being in a certain state s, can be written as
a

M
ZCJ,MN(XI;.“S,mv Zs,m) XP(bt|5r)2_a- (15)

m=1

pils)) =

Thus, the continuous MFCC observations are modeled via
a mixture of M Gaussians per state while the LSTM pre-
diction is modeled using a discrete probability distribution
p(by|s;). Index m denotes the mixture component, cgm is
the weight of the m’th Gaussian associated with state
s;, and N (+; 4, Z) represents a multivariate Gaussian dis-
tribution with mean vector u and covariance matrix X. The
distribution p(b,|s;) is trained to model typical phoneme
confusions that occur in the LSTM network.

The applied real-time LSTM phoneme predictor is
publicly available as part of our on-line speech feature
extraction engine openSMILE (Eyben et al. 2010).

Experiments

Both, LSTM-HMM decoding and HEQ combined with
multi-condition training will be evaluated on the SE-
MAINE database which is detailed in “Databases” section,
along with other corpora used for system training. In
“Multi-condition training” section we will analyze the
keyword spotting performance of a conventional single-
stream HMM system applying models built via multi-
condition training, while in “Histogram equalization”
section we investigate the benefit of combining HEQ with
multi-condition training to further reduce the mismatch
between training and (noisy) test conditions. Finally, in
“Multi-stream decoding” section, we focus on the effect of
extending the single-stream HMM system to a multi-
stream LSTM-HMM decoder as presented in “Multi-
stream model” section.

Databases

The SEMAINE database was recorded in order to provide
training material for the speech and vision-based input
components of the SEMAINE system. For this purpose, the
functionality of the virtual agent system was imitated by a
human operator using a Wizard-of-Oz scenario. Thus, users
were encouraged to show emotions while naturally
speaking about arbitrary topics.

The transcribed part of the database consists of 19
recordings with different English speaking users and has a

total length of 6.2 h. Models used for the experiments in
“Experiments” section are trained on recordings 1-10
(speech material from both, user and operator) and tested
on recordings 11-19 (only speech from the user). The
vocabulary size of the SEMAINE corpus is 3.4 k.

In addition to the SEMAINE database, two other
spontaneous speech corpora were used for acoustic and
language model training: the SAL corpus and the COSINE
corpus. The SAL database was recorded under similar
conditions as the SEMAINE corpus, which makes it well-
suited for our application scenario. It has already been used
in a large number of studies on emotional speech (for more
details on the SAL database, see Wollmer et al. (2010), for
example). The COSINE corpus (Stupakov et al. 2009)
contains multi-party conversations recorded in real world
environments and is partly overlaid with indoor and out-
door noise sources. It consists of ten transcribed sessions
with 11.4 h of speech from 37 different speakers and has a
vocabulary size of 4.8 k.

Multi-condition training

To improve keyword detection accuracy in noisy condi-
tions, we investigated true positive and false positive rates
when including noisy speech material in the training pro-
cess. For all experiments, a part of the training material
consisted of unprocessed versions of the SEMAINE data-
base (recordings 1-10), the SAL corpus, and the COSINE
database. This speech material will be referred to as clean
in the ongoing (even though the COSINE corpus was partly
recorded under noisy conditions). In addition to the ‘clean’
models, we evaluated different extensions of the training
material by adding distorted versions of the SEMAINE and
the SAL corpora. For this purpose, we superposed the clean
speech with additive noise at different SNR levels: 15 dB,
10 dB, and 5 dB. We considered both, white Gaussian
noise and babble noise from the NOISEX database. For
evaluation, we used clean and distorted versions of the
SEMAINE database (recordings 11-19). Since conversa-
tional agents such as the SEMAINE system are often used
while other people talk in the background, the babble noise
evaluation scenario is most relevant for our application.
We considered a set of 173 keywords which are relevant
for the dialogue management of the SEMAINE system.
Further, we modeled three different non-linguistic vocal-
izations (breathing, laughing, and sighing). The training/
test set distribution for breathing, laughing, and sighing
was 124/54, 268/227, and 45/8, respectively. Keyword
detection was based on simply searching for the respective
words in the most likely ASR hypothesis. The applied
trigram language model was trained on the SEMAINE
corpus (recordings 1-10), the SAL database, and the
COSINE database (total vocabulary size 6.1 k). The choice



of applying an LVCSR system including a language model
that is built from SEMAINE data as basis for keyword
spotting was motivated by preliminary experiments repor-
ted in Wollmer et al. (2011) which showed that a full ASR
system with in-domain language model prevails over
vocabulary independent techniques. Via openSMILE (Ey-
ben et al. 2010), 13 cepstral mean normalized MFCC
features along with first and second order temporal deriv-
atives were extracted from the speech signals every 10 ms
using a window size of 25 ms. MFCC features were chosen
since previous studies showed that the application of Per-
ceptual Linear Prediction (PLP) features does not result in
enhanced noise robustness (Schuller et al. 2009). All cross-
word triphone HMMs consisted of 3 emitting states with 16
Gaussian mixtures per state while for non-linguistic
vocalizations, we trained HMM:s consisting of 9 states. For
HMM decoding, we applied the Julius toolkit (Lee and
Kawahara 2009).

Figure 3a—d show the Receiver Operating Characteristic
(ROC) operating points for clean test material as well as for
speech superposed with babble noise at 15 dB, 10 dB, and
5 dB SNR, respectively, when using different acoustic
models. Note that since our keyword spotting approach is
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based on an LVCSR system generating a single word
hypothesis (rather than on a technique that outputs confi-
dences for each possible keyword), we obtain single ROC
operating points and not ROC curves. In other words, our
recognition framework does not include a confidence
threshold that can be varied in order to adjust the ROC
operating point. However, in the light of our target appli-
cation being conversational agents, the resulting moderate
false positive rates are desired since a high number of false
alarms tends to be more critical than missing keywords.
As can be seen in Fig. 3a, models exclusively trained on
clean speech lead to the best performance for clean test
data. We obtain a true positive rate of 56.58% at a false
positive rate of 1.89% which is in the range of typical
recognition rates for highly disfluent, spontaneous, and
emotionally colored speech (Wollmer etal. 2010).
Including noisy training material slightly increases the
false positive rate to up to 2.20% at a small decrease of true
positive rates. Yet, when evaluating the models on speech
superposed by babble noise, multi-condition training sig-
nificantly increases the true positive rates. A good com-
promise between high true positive rates and low false
positive rates in noisy conditions can be obtained by

Fig. 3 ROC operating points 60 60
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applying the acoustic models denoted as ‘clean, 15, 10 dB’
in Fig. 3a—d, i.e., models trained on the clean versions of
the SEMAINE, SAL, and COSINE corpora, on the SE-
MAINE and SAL corpora superposed by babble noise at 15
dB SNR, and on the 10 dB versions of the SEMAINE and
SAL databases. For test data superposed by babble noise,
this training set combination leads to the highest average
true positive rate (41.66%, see Table 1, upper part) at a
tolerable average false positive rate. A similar result can be
observed for the evaluation on test data corrupted by white
noise (see Table 1, lower part). Models that are partly
trained on speech superposed by white noise enable higher
true positive rates in noisy conditions than ‘clean’ models.
As for the babble noise scenario, a combination of clean,
15 dB SNR, and 10 dB SNR training data results in the best
true positive / false positive compromise.

Histogram equalization

Applying the same multi-condition training set combina-
tions as in “Multi-condition training” section, we repeated
the keyword spotting experiments using MFCC features
normalized via HEQ instead of the cepstral mean normal-
ized features. HEQ was performed as described in

“Histogram equalization” section and applied to all 39
feature vector components during training and testing.
Histograms were estimated from sequences of feature
vectors representing one utterance. The corresponding
results for clean test data and for test data superposed by
babble noise at 15, 10, and 5 dB SNR can be seen in
Fig. 4a—d. When comparing Fig. 3a—d with 4a—d, we can
see that HEQ further improves true positive rates in noisy
conditions while false positive rates are slightly increased.
The average keyword spotting performance when evalu-
ating the different training set combinations together with
HEQ on test data corrupted by babble noise and white
noise, respectively, can be seen in the right half of Table 1.
Again, the best training set combination when testing on
speech distorted by babble noise is to use clean speech
combined with 15 and 10 dB SNR versions of the data.
With HEQ, an average true positive rate of 45.70% can be
obtained for this case, which corresponds to a 4% absolute
performance improvement compared to non-HEQ models
(41.66%). Also for the other training set combinations an
absolute true positive rate improvement of between 3.7 and
6.9% can be observed for noisy test data. When evaluating
the white noise scenario we also consistently obtain higher
true positive rates by HEQ (up to 44.48%, see Table 1).

Table 1 Average true positive rates (tpr) and average false positive rates (fpr) obtained with acoustic models trained on clean data and speech
superposed by babble/white noise at different SNR conditions; clean and noisy test condition; with and without histogram equalization

Training data Test condition

Without HEQ With HEQ
Noisy Clean Noisy Clean
SNR (dB) tpr (%) fpr (%) tpr (%) fpr (%) tpr (%) fpr (%) tpr (%) fpr (%)
Babble noise
Clean 29.89 1.56 56.58 1.89 29.89 1.56 56.58 1.89
Clean, 15 36.37 1.81 5491 1.96 42.60 2.38 55.59 1.96
Clean, 10 38.40 191 55.92 1.92 43.90 2.24 53.79 1.91
Clean, 5 36.73 2.10 55.90 1.99 43.67 221 54.56 1.92
Clean, 15, 10 41.66 2.16 53.87 2.16 45.70 2.53 56.04 2.10
Clean, 15, 5 41.29 2.08 53.08 2.05 45.37 243 54.94 2.10
Clean, 10, 5 41.38 2.20 54.28 2.09 45.21 2.34 53.69 2.04
Clean, 15, 10, 5 38.67 2.16 54.79 2.20 42.33 2.39 53.89 2.17
White noise
Clean 19.81 1.26 56.58 1.89 19.81 1.26 56.58 1.89
Clean, 15 39.40 2.28 57.31 2.06 43.45 2.63 55.35 1.99
Clean, 10 39.33 2.44 56.50 2.03 42.94 2.53 54.40 2.00
Clean, 5 23.65 1.20 56.02 2.01 40.72 2.46 52.90 1.98
Clean, 15, 10 42.47 2.54 54.55 2.21 44.09 2.73 53.24 2.20
Clean, 15, 5 42.11 2.57 54.28 2.16 43.53 2.61 53.70 2.09
Clean, 10, 5 41.27 2.60 54.09 2.04 43.62 2.60 53.90 2.15
Clean, 15, 10, 5 42.48 2.69 50.42 2.27 44.48 2.79 53.48 2.29
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Fig. 5 ROC operating points obtained for different variants of the
SEMAINE keyword detector

Multi-stream decoding

Next, we implemented and evaluated the multi-stream
LSTM-HMM decoder introduced in “Multi-stream model”
section to improve keyword detection. Since the LSTM

—0.1 to 0.1. Input and output gates used tanh activation
functions, while the forget gates had logistic activation
functions. Similarly to the HMM recognizer, the the net-
works were trained on the standard (CMU) set of 39 dif-
ferent English phonemes with additional targets for silence,
breathing, laughing, and sighing. The stream weight vari-
able a was set to one.

The ROC operating points representing the keyword
detection performance of the standard HMM (SEMAINE 3.0
single-stream) and the LSTM-HMM (SEMAINE 3.0 multi-
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Table 2 True positive rates (tpr) and false positive rates (fpr) obtained with HMMs and with the LSTM-HMM architecture trained on clean data
and evaluated on speech superposed by babble/white noise at different SNR conditions

Test condition

Babble noise

White noise

HMM LSTM-HMM HMM LSTM-HMM
SNR tpr (%) fpr (%) tpr (%) fpr (%) tpr (%) fpr (%) tpr (%) fpr (%)
Clean 56.58 1.89 57.26 1.57 56.58 1.89 57.26 1.57
15 dB 43.30 1.86 42.51 1.54 29.95 1.69 31.39 1.77
10 dB 31.23 1.72 28.62 1.20 19.79 1.32 22.77 1.42
5dB 15.15 1.09 11.77 0.71 9.71 0.77 13.14 0.82

stream) can be seen in Fig. 5. All systems were evaluated on
clean recordings 11-19 from the SEMAINE database. At a
slight increase of the true positive rate (57.26% vs. 56.58%),
the incorporation of LSTM phoneme predictions can reduce
the false positive rate from 1.89 to 1.57%. For comparison,
we also included the results for a preliminary version of the
SEMAINE keyword detector (referred to as the SEMAINE
2.0 system Schroder et al. 2008) which does not apply an in-
domain language model and thus cannot compete with the
current version (SEMAINE 3.0). Figure 5 also shows the
performance obtained with a commercial recognizer as used
in (Principi et al. 2009). The comparably low performance
of the commercial system indicates that using acoustic
models tailored for the recognition of emotionally colored
speech is essential for virtual agent applications such as the
SEMAINE system. Since the final SEMAINE 3.0 keyword
detector is trained on the whole SEMAINE database
(including recordings 11-19), Fig. 5 also shows the ROC
performance obtained with models trained on all SEMAINE
data. Note, however, that this configuration does not allow
for a realistic performance assessment since training and test
sets are not disjoint in this case.

Table 2 shows how the keyword spotting performance
of the HMM system and the multi-stream LSTM-HMM
technique is affected if test data is superposed by babble
and white noise at different SNR levels. Similar to the
clean case, the integration of LSTM leads to a remarkable
reduction of the false positive rate if speech is corrupted by
babble noise. However, also the true positive rate is slightly
lower for the multi-stream system in the babble noise
scenario. By contrast, for speech distorted by white noise,
the LSTM-HMM consistently reaches higher true positive
rates (increase of 1.4, 3.0, and 3.4% for 15, 10, and 5 dB,
respectively) at a small increase of the false positive rate
(around 0.1% for all SNR levels).

Conclusion

We investigated different techniques to improve keyword
spotting performance in challenging conditions. Motivated

by the SEMAINE scenario, i.e., an emotionally sensitive
conversational agent application, we considered the task of
reliably detecting keywords in the SEMAINE database
which consists of spontaneous, disfluent, and partly noisy
speech and reflects the conditions a real-time keyword
spotter incorporated into a cognitive agent system has to
face. Since the SEMAINE system is frequently used when
people talk in the background, our evaluations were
focused on conversational keyword detection in speech
superposed by babble noise. To reduce the mismatch
between training and (noisy) test conditions, we investi-
gated both, feature enhancement and model adaptation.
Feature enhancement was realized via HEQ, a technique
that is well-suited for compensating non-linear distortions
in the feature speace caused by noise, while models were
adapted by multi-condition training. We showed that our
proposed combination of HEQ feature enhancement and
multi-condition training results in improved keyword
detection performance for different noise types and SNR
levels.

Furthermore, we implemented and evaluated a novel
multi-stream LSTM-HMM architecture with respect to its
keyword detection accuracy. The model is composed of a
LSTM neural network for context-sensitive phoneme esti-
mation and a multi-stream HMM for dynamic decoding.
We found that compared to a single-stream HMM system,
the LSTM-HMM technique leads to more accurate key-
word detection for most noise scenarios, which is in line
with preliminary experiments on continuous speech rec-
ognition applying LSTM (Wollmer et al. 2011).

Future studies should consider alternative feature
enhancement approaches such as model-based enhance-
ment with Switching Linear Dynamic Models (Droppo and
Acero 2004) in combination with multi-conditon training
as well as the combination of HEQ and multi-stream
decoding. Furthermore, it might be interesting to examine
the potential of LSTM networks for RNN-based feature
enhancement, e.g., by training networks that map from
noisy to clean speech features as in Parveen and Green
(2004). As far as the SEMAINE scenario is concerned,
further keyword detection improvements could be possible



if audio and video feature are merged, e.g., via hybrid
fusion (Wollmer et al. 2009), or if multiple audio channels
are used, exploiting multichannel feature enhancement
(Principi et al. 2010; Rotili et al. 2011).
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