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Abstract. Systems for keyword and non-linguistic vocalization detec-
tion in conversational agent applications need to be robust with respect
to background noise and different speaking styles. Focussing on the Sensi-
tive Artificial Listener (SAL) scenario which involves spontaneous, emo-
tionally colored speech, this paper proposes a multi-stream model that
applies the principle of Long Short-Term Memory to generate context-
sensitive phoneme predictions which can be used for keyword detection.
Further, we investigate the incorporation of noisy training material in or-
der to create noise robust acoustic models. We show that both strategies
can improve recognition performance when evaluated on spontaneous
human-machine conversations as contained in the SEMAINE database.

1 Introduction

Systems for advanced Human-Machine Interaction which offer natural and intu-
itive input and output modalities require robust and efficient machine learning
techniques in order to enable spontaneous conversations with a human user.
Since speech is the most natural human-to-human communication channel, the
advancement of speech technology is an essential precondition for improving
Human-Machine Interaction. Conversational agents which shall recognize, inter-
pret, and react to human speech rely on speech processing technologies that can
cope with various challenging conditions, such as background noise, disfluencies,
and emotional coloring of speech. Reliably extracting meaningful keywords tends
to be the most important functionality of speech processing modules providing
linguistic information to the dialogue management [1].

As conversational agents are often used in noisy conditions, automatic speech
recognition (ASR) and keyword spotting systems have to be based on features
and models that lead to an acceptable recognition performance even if the speech
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signal is superposed by background noise. Thus, most systems apply speech fea-
ture normalization or enhancement techniques such as cepstral mean normaliza-
tion, histogram equalization, or Switching Linear Dynamic Models [2]. A simple
and efficient method to improve the noise robustness of the speech recognition
back-end is to use matched or multi-condition training strategies [3] by incorpo-
rating noisy training material which reflects the noise conditions expected while
running the system.

Another approach to enhance recognition performance in challenging conditions
is to apply neural networks for generating state posteriors or phoneme predictions
which are then decoded by a Hidden Markov Model (HMM). These so-called
Tandem or hybrid systems are a popular alternative to the conventional HMM
technique since they efficiently combine the advantages of both, neural networks
and HMMs [4]. However, conventional Multilayer Perceptrons (MLP) or recurrent
neural networks (RNN) as they are used in today’s Tandem ASR systems have
some inherent drawbacks such as the vanishing gradient problem [5] which limits
the amount of contextual information that can be modeled by an RNN. Yet, due
to co-articulation effects in human speech, context modeling is essential for accu-
rate phoneme prediction. As an alternative to learning a fixed amount of context by
processing a predefined number of consecutive feature frames via MLPs, the usage
of Long Short-Term Memory (LSTM) networks [6] has recently been proposed for
keyword spotting [7] and continuous ASR systems [8]. LSTM networks are able to
model a self-learned amount of context information which leads to higher phoneme
recognition accuracies when compared to standard RNNs [8].

In this contribution we investigate both, multi-condition training strategies for
enhanced keyword spotting performance in noisy conditions, and the effect of in-
corporating LSTM phoneme prediction in a multi-stream ASR framework. Both
techniques are evaluated with respect to their suitability for conversational agents.
Thereby we focus on the Sensitive Artificial Listener (SAL) scenario which aims at
maintaining a natural conversation with different virtual characters [9].

Section 2 describes the four virtual SAL characters that allow for emotional
human-machine conversations via the SEMAINE system'. For our keyword spot-
ting experiments we use spontancous speech as contained in the SEMAINE
database which is introduced in Section 3 and provides training material for
the SEMAINE system. The multi-stream LSTM-HMM technique used for en-
hanced keyword and non-linguistic vocalization detection within the SEMAINE
system is outlined in Section 4. Finally, Section 5 contains the results of our
multi-condition training and multi-stream decoding experiments.

2 Sensitive Artificial Listeners

In contrast to most task-oriented dialogue systems, the Sensitive Artificial Lis-
teners representing the SEMAINE system [9] focus on aspects of communication
that are emotion-related and non-verbal. The system is designed for a one-to-
one dialogue situation in which one user is conversing with one of four available

! http://semaine-project.eu/



498

virtual agent characters. Besides speech, the (multimodal) interaction involves
head movements and facial expressions. The SAL characters have to recognize a
limited set of emotionally relevant keywords, non-linguistic vocalizations such as
laughing or sighing, and the prosody with which the words are spoken. Based on
the interpreted input from audio and video, the system has to show appropriate
listener behavior, e.g., multimodal backchannels, decide when to take the turn,
and select a suitable phrase in order to maintain the conversation.

The four SAL characters roughly represent areas in the arousal-valence space:
‘Spike’ is angry (high arousal, low valence), ‘Poppy’ is happy (high arousal, high
valence), ‘Obadiah’ is sad (low arousal, low valence), and ‘Prudence’ is matter-of-
fact (moderate arousal, moderate valence). During the conversations, the virtual
characters aim to induce an emotional state in the user that corresponds to their
typical emotional state.

3 The SEMAINE Database

The SEMAINE database was recorded in order to provide training material for
the speech and vision-based input components of the SEMAINE system. For this
purpose, the functionality of the virtual agent system was imitated by a human
operator using a Wizard-of-Oz scenario. Thus, users were encouraged to show
emotions while naturally speaking about arbitrary topics.

The transcribed part of the database consists of 19 recordings with different
English specaking users and has a total length of 6.2h. Models used for the
experiments in Section 5 are trained on recordings 1 to 10 (speech material from
both, user and operator) and tested on recordings 11 to 19 (only speech from
the user). The vocabulary size of the SEMAINE corpus is 3.4 k.

In addition to the SEMAINE database, two other spontaneous speech cor-
pora were used for acoustic and language model training: the SAL corpus and
the COSINE corpus. The SAL database was recorded under similar conditions
as the SEMAINE corpus, which makes it well-suited for our application scenario.
It has already been used in a large number of studies on emotional speech (for
more details on the SAL database, see [10], for example). The COSINE cor-
pus [11] contains multi-party conversations recorded in real world environments
and is partly overlaid with indoor and outdoor noise sources. It consists of ten
transcribed sessions with 11.4h of speech from 37 different speakers and has a
vocabulary size of 4.8 k.

4 Multi-stream LSTM-HMM

This section briefly outlines the multi-stream LSTM-HMM ASR system we use
for enhanced keyword detection in emotionally colored speech (see Section 5.2).
The main idea of this technique is to enable improved recognition accuracies
by incorporating context-sensitive phoneme predictions generated by a Long
Short-Term Memory network into the speech decoding process.
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Fig. 1. Architecture of the multi-stream LSTM-HMM decoder: s;: HMM state, x¢:
acoustic feature vector, b;: LSTM phoneme prediction feature, i¢, o¢, hs: input, output,
and hidden nodes of the LSTM network

LSTM networks [6] were introduced after the analysis of the error flow in
conventional recurrent neural nets revealed that long range context is inaccessible
to standard RNNSs, since the backpropagated error either blows up or decays over
time (vanishing gradient problem [5]). The LSTM principle is able to overcome
the vanishing gradient problem and allows the network to learn the optimal
amount of contextual information relevant for the classification task.

An LSTM layer is composed of recurrently connected memory blocks, each of
which contains one or more memory cells, along with three multiplicative ‘gate’
units: the input, output, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell input is multiplied
by the activation of the input gate, the cell output by that of the output gate,
and the previous cell values by the forget gate. The overall effect is to allow the
network to store and retrieve information over long periods of time.

The structure of our multi-stream decoder can be seen in Figure 1: s; and ¢ rep-
resent the HMM state and the acoustic (MFCC) feature vector, respectively, while
b; corresponds to the discrete phoneme prediction of the LSTM network (shaded
nodes). Squares denote observed nodes and white circles represent hidden nodes.
In every time frame ¢t the HMM uses two independent observations: the MFCC fea-
tures z; and the LSTM phoneme prediction feature b;. The vector x; also serves as
input for the LSTM, whereas the size of the LSTM input layer i; corresponds to the
dimensionality of the acoustic feature vector. The vector o; contains one probability
score for each of the P different phonemes at each time step. b; is the index of the
most likely phoneme:
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In every time step the LSTM generates a phoneme prediction according to Equa-
tion 1 and the HMM models z1.7 and bi.7 as two independent data streams.
With y; = [z4;b;] being the joint feature vector consisting of continuous MFCC
and discrete LSTM observations and the variable a denoting the stream weight
of the first stream (i.e., the MFCC stream), the multi-stream HMM emission
probability while being in a certain state s; can be written as

a

M
p(yt|3t) = Z CStmN(xt; Psyms Zsym)| X p(bt|3t)2_a- (2)
m=1

Thus, the continuous MFCC observations are modeled via a mixture of M Gaus-
sians per state while the LSTM prediction is modeled using a discrete probability
distribution p(b¢|s:). The index m denotes the mixture component, cg,,, is the
weight of the m’th Gaussian associated with state s;, and N (+; u, X) represents
a multivariate Gaussian distribution with mean vector p and covariance matrix
Y. The distribution p(b|s;) is trained to model typical phoneme confusions that
occur in the LSTM network. In our experiments, we restrict ourselves to the 15
most likely phoneme confusions per state and use a floor value of 0.01 for the
remaining confusion likelihoods.

The applied real-time LSTM phoneme predictor is publicly available as part
of our on-line speech feature extraction engine openSMILE [12].

5 Experiments and Results

In the following we will show the effects of using multi-condition training for a
keyword detector based on a conventional single-stream continuous ASR system
(Section 5.1), and the performance gain that can be obtained when applying the
multi-stream LSTM-HMM principle (Section 5.2).

5.1 Multi-condition Training

To improve keyword detection accuracy in noisy conditions, we investigated true
positive and false positive rates when including noisy speech material in the
training process. For all experiments, a part of the training material consisted of
unprocessed versions of the SEMAINE database (recordings 1 to 10), the SAL
corpus, and the COSINE database. This speech material will be referred to as
clean in the ongoing (even though the COSINE corpus was partly recorded under
noisy conditions). In addition to the ‘clean’ models, we evaluated different ex-
tensions of the training material by adding distorted versions of the SEMAINE
and the SAL corpus. For this purpose, we superposed the clean speech with
additive noise at different SNR levels: 15dB, 10dB, and 5dB. We considered
both, white Gaussian noise and babble noise from the NOISEX database. For
evaluation, we used clean and distorted versions of the SEMAINE database
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(recordings 11 to 19). Since conversational agents such as the SEMAINE system
are often used while other people talk in the background, the babble noise eval-
uation scenario is most relevant for our application. We considered a set of 173
keywords and three different non-linguistic vocalizations (breathing, laughing,
and sighing). The training/test distribution for breathing, laughing, and sighing
was 124/54, 268/227, and 45/8, respectively. Keyword detection was based on
simply searching for the respective words in the most likely ASR hypothesis. The
applied trigram language model was trained on the SEMAINE corpus (record-
ings 1 to 10), the SAL database, and the COSINE database (total vocabulary
size 6.1k). Via openSMILE [12], 13 cepstral mean normalized MFCC features
along with first and second order temporal derivatives were extracted from the
speech signals every 10ms. All cross-word triphone HMMs consisted of 3 emit-
ting states with 16 Gaussian mixtures per state. For non-linguistic vocalizations,
we trained HMMs consisting of 9 states.

Figures 2(a) to 2(d) show the Receiver Operating Characteristic (ROC) oper-
ating points for clean test material as well as for speech superposed with babble
noise at 15dB, 10dB, and 5dB SNR, respectively, when using different acoustic
models. As can be seen in Figure 2(a), models exclusively trained on clean speech
lead to the best performance for clean test data. We obtain a true positive rate
of 56.58 % at a false positive rate of 1.89 % which is in the range of typical recog-
nition rates for highly disfluent, spontaneous, and emotionally colored speech
[7]. Including noisy training material slightly increases the false positive rate to
up to 2.20 % at a small decrease of true positive rates. Yet, when evaluating the
models on speech superposed by babble noise, multi-condition training signifi-
cantly increases the true positive rates. A good compromise between high true
positive rates and low false positive rates in noisy conditions can be obtained by
applying the acoustic models denoted as ‘clean, 15dB, 10dB’ in Figures 2(a) to
2(d), i. e., models trained on the clean versions of the SEMAINE, SAL, and CO-
SINE corpus, on the SEMAINE and SAL database superposed by babble noise
at 15dB SNR, and on the 10dB versions of the SEMAINE and SAL database.
For test data superposed by babble noise, this training set combination leads
to the highest average true positive rate (41.66 %, sec Table 1) at a tolerable
average false positive rate. A similar result can be observed for the evaluation
on test data corrupted by white noise (see Table 2). Models that are partly
trained on speech superposed by white noise enable higher true positive rates in
noisy conditions than ‘clean’ models. As for the babble noise scenario, a com-
bination of clean, 15dB SNR, and 10dB SNR training data results in the best
true positive/false positive compromise.

5.2 Multi-stream Decoding

To improve keyword detection in clean conditions, we implemented and evaluated
the multi-stream LSTM-HMM decoder introduced in Section 4. Since the LSTM
network was trained on framewise phoneme targets, we used an HMM system
to obtain phoneme borders via forced alignment. The multi-stream system was
trained on the clean versions of the SEMAINE, SAL, and COSINE databases
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Fig. 2. ROC operating points obtained for different acoustic models when tested on
clean speech and speech superposed by babble noise at 15, 10, and 5dB SNR; acoustic
models were trained on unprocessed versions of the SEMAINE, SAL, and COSINE

corpus (‘clean’) and on noisy versions of the SEMAINE and SAL corpus using different
SNR level combinations (babble noise)

and applied an LSTM network with a hidden layer consisting of 128 memory
blocks. Each memory block contained one memory cell.

For LSTM network training we used a learning rate of 107° and a momen-
tum of 0.9. Prior to training, all weights were randomly initialized in the range
from -0.1 to 0.1. Input and output gates used tanh activation functions, while
the forget gates had logistic activation functions. We trained the networks on
the standard (CMU) set of 41 different English phonemes, including targets for

silence, breathing, laughing, and sighing. The stream weight variable a was set
to one.
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Table 1. Babble noise: Average true positive rates (tpr) and false positive rates (fpr)
obtained with acoustic models trained on clean data and speech superposed by babble
noise at different SNR conditions; clean and noisy test condition

training data test condition

SNR. used for superposition| babble noise clean
with babble noise tpr [%] fpr [%]|tpr [%] fpr [%]
clean 29.89 1.56 56.58 1.89
clean, 15dB 36.37 1.81 54.91 1.96
clean, 10dB 38.40 1.91 55.92 1.92
clean, 5dB 36.73 2.10 55.90 1.99
clean, 15dB, 10dB 41.66 2.16 53.87 2.16
clean, 15dB, 5dB 41.29 2.08 53.08 2.05
clean, 10dB, 5dB 41.38 2.20 54.28 2.09
clean, 15dB, 10dB, 5dB 38.67 2.16 54.79 2.20

Table 2. White noise: Average true positive rates (tpr) and false positive rates (fpr)
obtained with acoustic models trained on clean data and speech superposed by white
noise at different SNR conditions; clean and noisy test condition

training data test condition

SNR. used for superposition| white noise clean
with white noise tpr [%] fpr [%]|tpr [%] fpr [%]
clean 19.81 1.26 56.58 1.89
clean, 15dB 39.40 2.28 57.31 2.06
clean, 10dB 39.33 2.44 56.50 2.03
clean, 5dB 23.65 1.20 56.02 2.01
clean, 15dB, 10dB 42.47 254 54.55 2.21
clean, 15dB, 5dB 42.11 2.57 54.28 2.16
clean, 10dB, 5dB 41.27 2.60 54.09 2.04
clean, 15dB, 10dB, 5dB 42.48  2.69 50.42 2.27

The ROC operating points representing the keyword detection performance
of the standard HMM (SEMAINE 3.0 single-stream) and the LSTM-HMM (SE-
MAINE 3.0 multi-stream) can be seen in Figure 3(a). All systems were evaluated
on recordings 11 to 19 from the SEMAINE database. At a slight increase of the
true positive rate, the incorporation of LSTM phoneme predictions can signifi-
cantly reduce the false positive rate from 1.89 % to 1.57 %. For comparison, we
also included the results for a preliminary version of the SEMAINE keyword
detector (referred to as the SEMAINE 2.0 system [9]) which does not apply
an in-domain language model and thus cannot compete with the current ver-
sion (SEMAINE 3.0). Figure 3(a) also shows the performance obtained with a
commercial recognizer as used in [13]. The comparably low performance of the
commercial system indicates that using acoustic models tailored for the recog-
nition of emotionally colored speech is essential for virtual agent applications
such as the SEMAINE system. Since the final SEMAINE 3.0 keyword detector
is trained on the whole SEMAINE database (including recordings 11 to 19),
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Fig. 3. ROC operating points obtained for different variants of the SEMAINE keyword
and non-linguistic vocalization detector

Figure 3(a) also shows the ROC performance obtained with models trained on
all SEMAINE data. Note, however, that this configuration does not allow for
a realistic performance assessment since training and test sets are not disjoint
in this case. The reliability of non-linguistic vocalization detection (i.e., recog-
nizing the events breathing, laughing, and sighing) can be seen in Figure 3(b):
Again the multi-stream approach leads to a higher true positive rate, however,
— in contrast to the keyword detection experiment — at the expense of a higher
false positive rate.

6 Conclusion

This paper investigated how a keyword detector incorporated in a conversa-
tional agent system can be improved via multi-stream LSTM-HMM decoding
and multi-condition training. We proposed a multi-stream system that models
context-sensitive phoneme predictions generated by a Long Short-Term Memory
network. In conformance with our previous observations concerning LSTM-based
keyword spotting [7], we found that the LSTM principle is well-suited for robust
phoneme prediction in challenging ASR scenarios. Performance gains in noisy
conditions could be obtained applying multi-condition training. Since virtual
agents are often used while people talk in the background, we mainly considered
test conditions during which the speech signal is superposed by babble noise. In-
corporating training material that is overlaid by background voices at different
SNR conditions could enhance the noise robustness of keyword detection.

To further improve multi-stream LSTM-HMM keyword detection for conver-
sational agents, future experiments should evaluate alternative network topolo-
gies such as bottleneck LSTM architectures as well as bidirectional context mod-
eling for refinement of sentence hypotheses at the end of an utterance.
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