
Mutual Influences in

Self-adaptive and Autonomously

Learning Systems

Dissertation zur Erlangung des Doktorgrades

der Fakultät für Angewandte Informatik

der Universität Augsburg

Stefan Rudolph

Gutachter: Prof. Dr. Jörg Hähner

Prof. Dr. Bernhard Bauer

Prof. Dr. Bernhard Sick

Tag der mündlichen Prüfung: 20. August 2019

i

Abstract

Since the 1990s, we see an incremental miniaturization of computers, and, conse-
quently, a computerization of everyday objects. This trend has strongly increased
over the last decades and there is no sign of a reversal. The Internet of things
(IoT) and cyber-physical systems (CPS) are current domains, which are a direct
continuation of this development.

Most of the time it is not possible to model such a high number of devices at
design-time. Therefore, Organic Computing aims to overcome the issues that ap-
pear with the control of systems with high complexity by implementing the concepts
of self-adaption and self-organization in technical systems, i.e., enable the systems
to adapt and manage themselves during runtime.

However, due to the complexity and size of modern systems, it is often not clear
to whom the systems should adapt to or organize with. Such complexity appears
because of high numbers of autonomous systems, which can bear a high degree of
complexity in itself, but even more as a result of the non-trivial interactions among
these systems. This leads to mutual influences which can be either direct, i.e.,
easily observable, or indirect, i.e., hard to observe or hidden. Not easily observable
influences arise especially because of indirect couplings or influential paths that are
not perceptible by the individual systems, e.g., because the environment reacts to
several autonomous systems operating on it at the same time. To address these
mutual influences, it is necessary to uncover them during runtime and enable the
systems to self-adapt to them.

Therefore, the basic theme of this thesis is a computational approach to acquire
knowledge about mutual influences among systems or system parts that allow them
to be controlled more efficient by enabling interaction and averting to interfere with
each other. Such a methodology should allow for backwards compatibility as well as
applicability in heterogeneous systems and utilization for autonomous application
during the runtime of a system.

In this thesis, the algorithmic approach to influence detection and several as-
pects of its application are covered. The proposed method is based on stochastic
dependency measures that are applied to quantify how important the other sys-

ii

tems are for the outcome of the system itself based on past experience, i.e., the
systems measure the correlation between their reward signal and the configuration
of other systems. Especially, the following dependency measures are evaluated for
this purpose: the Pearson correlation, the Kendall rank correlation, the Spearman
rank correlation, the distance covariance, the mutual information, and the maximal
information coefficient.

The basic methodology is expanded in four ways: (i) the incorporation of mutual
reactions between several components in the system by conditioning the mea-
surement of the influence by these other components, (ii) the detection of delayed
influences, i.e., influences that do not manifest immediately but after a time period,
by measuring the reward signal against past configurations of other systems, (iii) the
application at runtime by relying on partially randomized configurations, and (iv) the
adaption of the systems to the influences on each other by employing reinforcement
learning algorithms.

The approaches are evaluated on elementary use cases and two real-world
applications. The latter are smart camera networks from the IoT domain and smart
factories as a representative of CPS. The results show that the method can detect all
influences on each of the applications. Eventually, practical advice on the application
of influence detection in different system classes are given.

Keywords:
Mutual Influences, Self-Organization, Self-Integration, Self-Adaption, Machine Learn-
ing, Organic Computing, Interwoven Systems

iii

Zusammenfassung

Seit den 1990er-Jahren beobachten wir eine zunehmende Miniaturisierung von
Computern und daraus folgend eine zunehmende Computerisierung von Alltags-
gegenständen. Dieser Trend hat sich über das letzte Jahrzehnt erheblich verstärkt
und bisher gibt es kein Zeichen der Umkehrung. Das Internet of Things (IoT, zu dt.
Internet der Dinge) und Cyber-Physical Systems (CPS, zu dt. Cyber-physikalische
Systeme) sind aktuelle Bereiche, die direkte Folgen dieser Entwicklung sind.

In vielen Fällen ist es nicht möglich eine solche Anzahl an Geräten zur En-
twurfszeit zu modellieren. Deswegen ist es das Ziel des Organic Computing die
Probleme, die bei der Regelung von Systemen mit hoher Komplexität auftreten, zu
lösen, indem Konzepte wie Selbstorganisation und Selbst-Adaption in technischen
Systemen realisiert wird, also Systeme in der Lage sind sich selbst zur Laufzeit zu
managen und anzupassen.

Bedingt durch diese Komplexität und Größe von modernen Systemen ist es oft
nicht klar, womit ein System sich organisieren und abstimmen und an wen sich ein
System anpassen sollte. Dies liegt an der großen Anzahl an autonomen Syste-
men, welche in nicht-trivialer Weise interagieren und so nur schwer vorhersehbare
Gesamtergebnisse erzeugen. Diese Einflüsse kategorisieren wir als direkt, wenn
sie leicht zu beobachten sind, oder indirekt, wenn sie schwer zu beobachten oder
versteckt sind. Diese schwer beobachtbaren Einflüsse entstehen insbesondere bei
indirekter Kopplung und Einflusspfaden, die nicht durch die Systeme wahrnehmbar
sind, beispielsweise, wenn die Umgebung auf mehrere autonome Systeme, die
gleichzeitig auf sie einwirken, reagiert. Um diese Einflüsse adäquat zu behandeln,
ist es notwendig sie zur Laufzeit sichtbar zu machen und passende Adaptionsalgo-
rithmen einzusetzen.

Daher ist das Thema dieser Arbeit ein algorithmischer Ansatz, der Wissen über
Einflüsse und Abhängigkeiten zwischen Systemen erlangt, welches eine effizientere
Nutzung durch gezielte Interaktion und das Abwenden von gegenseitigen Behin-
derungen ermöglicht. Die vorgestellte Methode ist abwärtskompatibel und kann
in heterogenen Systemen angewendet werden. Zudem erlaubt sie die autonome
Verwendung von Systemen während der Laufzeit des Systems.

iv

Die angesprochene Methode zur Erkennung von Einflüssen basiert auf statis-
tischen Abhängigkeitsmaßen, die verwendet werden, um auf Basis von vorherge-
henden Erlebnissen zu quantifizieren wie wichtig Systeme für einander sind. Dies
wird realisiert, indem die Systeme die Korrelation zwischen ihrem Belohnungssignal
und der Konfiguration der anderen Systeme ermitteln. Insbesondere werden hier-
für die folgenden Abhängigkeitsmaße herangezogen: Den Korrelationskoeffizient
nach Pearson, die Rangkorrelationskoeffizienten nach Kendall und Spearman, die
Distanzkovarianz, die Transinformation und der Maximal Information Coefficient.

Des weiteren wird dieses Grundprinzip um vier Aspekte erweitert: (i) Die Berück-
sichtigung von Wechselwirkungen zwischen mehreren Komponenten in einem
System, indem die Einflussmessung unter den anderen Komponenten bedingt
wird, (ii) die Erkennung von verzögerten Einflüssen, also Einflüssen die sich erst
nach einer gewissen Zeitspanne manifestieren, indem die Messung zwischen dem
Belohnungssignal und vergangenen Konfigurationen vorgenommen wird, (iii) die
Messung der Einflüsse zur Laufzeit durch das Hinzufügen von zufallsbehafteten
Konfigurationen und (iv) die Selbst-Adaption der Systeme an die Einflüsse, die auf
sie wirken, mit Hilfe von Reinforcement Learning (zu dt. Bestärkendes Lernen)
Techniken.

Die verschiedenen Aspekte werden in elementare Anwendungsfälle und zwei
Echtweltanwendungen evaluiert. Letztere sind zum einen Smart Camera Networks
(zu dt. intelligente Kameranetzwerke) als Stellvertreter der IoT-Anwendungsfälle und
Smart Factories (zu dt. intelligente Fabriken) als Repräsentant der CPS. Die Ergeb-
nisse zeigen, dass die vorgestellte Methode alle Einflüsse in diesen Anwendungen
erkennen kann. Darüber hinaus werden Ratschläge zur praktischen Anwendung in
verschiedenen Klassen von Systemen gegeben.

Schlüsselwörter:
Gegenseitige Einflüsse, Selbstorganization, Selbst-Integration, Selbst-Adaption,
Maschinelles Lernen, Organic Computing, Interwoven Systems

Contents

Abstract i

Zusammenfassung iii

List of Abbreviations viii

List of Figures ix

List of Own Publications xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 5
1.3 Contribution . 7
1.4 Overview of the Thesis . 7

2 System Model 11
2.1 Target Systems . 11

2.1.1 Relations to Reinforcement Learning 12
2.2 Architectural Framework . 15
2.3 Example Applications . 18

2.3.1 Elementary Use Cases . 19
2.3.2 Smart Camera Network . 19
2.3.3 Smart Factory . 21

2.4 Taxonomy . 23
2.4.1 System Size and Characterization of the Subsystems 23
2.4.2 Influences . 24
2.4.3 Classification of Example Applications 25

v

vi Contents

2.5 Summary . 27

3 Related Work 29

4 Mutual Influences 35
4.1 Methodology for Detection . 35

4.1.1 Discussion of Dependency Measures 38
4.1.2 Examples . 41
4.1.3 Evaluation . 43

4.2 Summary . 49

5 Multi-component Influences 51
5.1 Methodology for Detection . 51
5.2 Example . 52
5.3 Evaluation . 56

5.3.1 Two-man Saw . 56
5.3.2 Smart Camera Network . 57

5.4 Summary . 62

6 Delayed Influences 63
6.1 Methodology for Detection . 63
6.2 Evaluation . 64
6.3 Summary . 69

7 Influence Detection at Runtime 77
7.1 Methodology for Detection . 77
7.2 Evaluation . 78
7.3 Summary . 80

8 Self-adapting to Influences 87
8.1 Methodology for Self-adaption . 87
8.2 Evaluation . 89
8.3 Summary . 91

9 Practical Considerations 101
9.1 Choosing appropriate Dependency Measures 101
9.2 Sequential Analysis of Systems . 102
9.3 Reduction of Network Load . 102

Contents vii

9.4 Employ more Accurate Conditioning 103
9.5 Handling Temporal Influences . 103
9.6 Handling Influences from Multiple Systems 104

10 Conclusion 105
10.1 Summary and Discussion . 105
10.2 Outlook . 107

Bibliography 109

Appendices 117

A Delayed Influences 118

viii Contents

List of Abbreviations

AC Autonomic Computing
CAS Collective Adaptive System
CPS Cyber-Physical Systems
CS Configuration Space
ICT Information and Communication Technology
IT Information Technology
IwS Interwoven Systems
KAOS Knowledge Acquisition in Automated Specification
LCS Learning Classifier System
ld Logarithmus Dualis
MAPE Monitor-Analyse-Plan-Execute
MARL Multi-Agent Reinforcement Learning
MAS Multi-Agent Systems
MI Mutual Information
MIC Maximal Information Coefficient
ML Machine Learning
MLOC Multi-Level Observer/Controller Framework
MRMR Minimum-Redundancy-Maximum-Relevance
O/C Observer/Controller
OC Organic Computing
OSS Organic Security System
PTZ Pan-Tilt-Zoom
RL Reinforcement Learning
SC Smart Camera
SCN Smart Camera Network
SoS System of Systems
SuOC System under Observation and Control
UC Ubiquitous Computing
XCS Extended Classifier System

ix

List of Figures

2.1 The basic reinforcement learning model. 13

2.2 The basic observer/controller architecture. 16

2.3 The three-layer architecuture of the subsystems. 17

2.4 An exemplary smart camera. 20

4.1 The general workflow of influence detection. 36

4.2 The results for the collaborative box manipulation. 44

4.3 The smart camera scenario SCN 1 47

4.4 The results for scenario SCN 1 using the general method. 48

5.1 The results for the two-man saw use case. 58

5.2 The smart camera scenario SCN 2 59

5.3 The results for the scenario SC2 using no conditioning. 60

5.4 The results for the scenario SC2 using two parts for conditioning. . . 61

6.1 The concept for the detection of delayed influences. 66

6.2 A top-down view on the smart factory scenario. 67

6.3 The results for the smart factory application using the maximal infor-
mation coefficient with one estimator. 70

6.4 The results for the smart factory application using the Pearson corre-
lation coefficient with one estimator. 71

6.5 The results for the smart factory application using the continuous
mutual information with one estimator. 72

6.6 The results for the smart factory application using the maximal infor-
mation coeffcient with two estimators. 73

6.7 The results for the smart factory application using the Pearson corre-
lation coefficient with two estimators. 74

6.8 The results for the smart factory application using the continuous
mutual information with two estimators. 75

7.1 First part of the results for the detection of influences at runtime in
scenario SCN 2 using a discrete state-action space with random
actions applied. 81

x

7.2 Second part of the results for the detection of influences at runtime
in scenario SCN 2 using a discrete state-action space with random
actions applied. 82

7.3 First part of the results for the detection of influences at runtime in
scenario SCN 2 using a discrete state-action space with ε-greedy
strategy. 83

7.4 Second part of the results for the detection of influences at runtime
in scenario SCN 2 using a discrete state-action space with ε-greedy
strategy. 84

8.1 The proposed method to adapt to other influencing agents in terms
of the reinforcement learning model. 88

8.2 First part of the results for the detection of influences in SCN 2 at
runtime with adaption to influences at design time. 92

8.3 Second part of the results for the detection of influences in SCN 2 at
runtime with adaption to influences at design time. 93

8.4 First part of comparison of the learning behavior on SCN 2. 94

8.5 Second part of comparison of the learning behavior on SCN 2. . . . 95

8.6 The smart camera scenario SCN 3. 96

8.7 First part of comparison of the learning behavior on SCN 3. 97

8.8 Second part of comparison of the learning behavior on SCN 3. . . . 98

8.9 A snapshot of the structure of the learning network in an exemplary
run on SCN 3 after 200000 steps . 99

A.1 The results for the smart factory application using the distance corre-
lation with one estimator. 119

A.2 The results for the smart factory application using the Kendall rank
correlation with one estimator. 120

A.3 The results for the smart factory application using the discrete mutual
information with one estimator. 121

A.4 The results for the smart factory application using the Spearman rank
correlation with one estimator. 122

A.5 The results for the smart factory application using the distance corre-
lation with two estimators. 123

A.6 The results for the smart factory application using the Kendall rank
correlation with two estimators. 124

xi

A.7 The results for the smart factory application using the discrete mutual
information with two estimators. 125

A.8 The results for the smart factory application using the Spearman rank
correlation with two estimators. 126

xii

List of Own Publications

[1] S. Rudolph, S. Tomforde, and J. Hähner, “Mutual influence-aware runtime
learning of self-adaptation behavior,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 14, no. 1, Sep. 2019.

[2] S. Rudolph, “Influence detection,” in Organic Computing – Technical Sys-
tems for Survival in the Real World. Springer International Publishing, 2018,
pp. 385–405.

[3] K. Bucher, T. Blome, S. Rudolph, and S. von Mammen, “Vreanimate ii:
Training first aid and reanimation in virtual reality,” Journal of Computers in
Education, pp. 1–26, 2018.

[4] S. Rudolph, R. Hihn, S. Tomforde, and J. Hähner, “Towards discovering
delayed mutual influences in organic computing systems,” in ARCS 2017;
30th GI/ITG International Conference on Architecture of Computing Systems,
VDE, 2017, pp. 39–46.

[5] S. Rudolph, “Mutual influences in organic computing systems,” in Organic
Computing Doctoral Dissertation Colloquium 2016, kassel university press
GmbH, Kassel, 2017, pp. 69–80.

[6] T. Blome, A. Diefenbach, S. Rudolph, K. Bucher, and S. von Mammen,
“VReanimate - non-verbal guidance and learning in virtual reality,” in 2017
9th International Conference on Games and Virtual Worlds for Serious
Applications (VS-GAMES), Sep. 2017, pp. 23–30.

[7] M. Bieshaar, A. Calma, C. Gruhl, S. Rudolph, and A. Stein, “Machine learning
in organic computing: A brief clarification of terms and concepts,” in Organic
Computing Doctoral Dissertation Colloquium 2016, kassel university press
GmbH, Kassel, 2017, pp. 113–130.

[8] O. Meisch, G. Peet, S. Rudolph, J. Haehner, and S. von Mammen, “Pick
again: Self-adaptive warehouse commissioning,” in ARCS 2017; 30th GI/ITG
International Conference on Architecture of Computing Systems, VDE, 2017,
pp. 1–7.

xiii

xiv

[9] A. Stein, S. Rudolph, S. Tomforde, and J. Hähner, “Self-learning smart
cameras – harnessing the generalization capability of XCS,” in Proceedings
of International Joint Conference on Computational Intelligence IJCCI 2017,
Funchal, Madeira - Portugal, Nov. 2017, pp. 129–140.

[10] S. Rudolph, S. Tomforde, and J. Hähner, “A mutual influence-based learning
algorithm,” in Proceedings of the 8th International Conference on Agents
and Artificial Intelligence (ICAART 2016), Volume 1, Rome, Italy, February
24-26, 2016., 2016, pp. 181–189.

[11] S. Rudolph, S. von Mammen, J. Jungbluth, and J. Hähner, “Design and
evaluation of an extended learning classifier-based starcraft micro AI,” in Ap-
plications of Evolutionary Computation - 19th European Conference, EvoAp-
plications 2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings, Part
I, 2016, pp. 669–681.

[12] S. Rudolph, R. Hihn, S. Tomforde, and J. Hähner, “Comparison of depen-
dency measures for the detection of mutual influences in organic computing
systems,” in Architecture of Computing Systems - ARCS 2016 - 29th Inter-
national Conference, Nuremberg, Germany, April 4-7, 2016, Proceedings,
2016, pp. 334–347.

[13] S. Rudolph, J. Kantert, U. Jänen, S. Tomforde, J. Hähner, and C. Müller-
Schloer, “Measuring self-organisation processes in smart camera networks,”
in ARCS 2016; 29th International Conference on Architecture of Computing
Systems, Apr. 2016, pp. 1–6.

[14] H. Heck, S. Rudolph, C. Gruhl, A. Wacker, J. Hähner, B. Sick, and S. Tom-
forde, “Towards autonomous self-tests at runtime,” in 2016 IEEE 1st In-
ternational Workshops on Foundations and Applications of Self* Systems
(FAS*W), Sep. 2016, pp. 98–99.

[15] S. Rudolph and S. Tomforde, “A taxonomy for organic computing systems
regarding mutual influences,” Informatik, Tech. Rep. 2016-03, 2016.

[16] S. Tomforde, S. Rudolph, K. L. Bellman, and R. P. Würtz, “An organic com-
puting perspective on self-improving system interweaving at runtime,” in
2016 IEEE International Conference on Autonomic Computing, ICAC 2016,
Wuerzburg, Germany, July 17-22, 2016, 2016, pp. 276–284.

[17] S. Rudolph, S. Tomforde, B. Sick, and J. Hähner, “A mutual influence detec-
tion algorithm for systems with local performance measurement,” in 2015
IEEE 9th International Conference on Self-Adaptive and Self-Organizing
Systems, Cambridge, MA, USA, September 21-25, 2015, 2015, pp. 144–
149.

[18] S. Rudolph, S. Tomforde, B. Sick, H. Heck, A. Wacker, and J. Hähner, “An
online influence detection algorithm for organic computing systems,” in ARCS
2015 - The 28th International Conference on Architecture of Computing
Systems. Proceedings, Mar. 2015, pp. 1–8.

xv

[19] A. Al-Anbuky, S. Rudolph, J. Hähner, and S. Tomforde, “Public space ambient
intelligence systems: Benefits, approaches and challenges,” in Architecture
of Computing Systems. Proceedings, ARCS 2015-The 28th International
Conference on, VDE, 2015, pp. 1–6.

[20] S. Rudolph, S. Edenhofer, S. Tomforde, and J. Hähner, “Reinforcement
learning for coverage optimization through PTZ camera alignment in highly
dynamic environments,” in Proceedings of the International Conference on
Distributed Smart Cameras, ICDSC ’14, Venezia Mestre, Italy, November
4-7, 2014, 2014, 19:1–19:6.

[21] S. Rudolph, “A distributed controller for organic computing applications,” in
Proceedings of the First Organic Computing Doctoral Dissertation Collo-
quium (OC-DDC’13), Universität Augsburg, 2013, pp. 8–11.

[22] J. Hähner, S. Rudolph, S. Tomforde, D. Fisch, B. Sick, N. Kopal, and A.
Wacker, “A concept for securing cyber-physical systems with organic com-
puting techniques,” in ARCS 2013 - 26th International Conference on Ar-
chitecture of Computing Systems 2013, Workshop Proceedings, Feburary
19-22, 2013, Prague, Czech Republic., 2013.

[23] F. Bagnoli, D. Borkmann, A. Guazzini, E. Massaro, and S. Rudolph, “Modeling
epidemic risk perception in networks with community structure,” in Bio-
Inspired Models of Network, Information, and Computing Systems - 7th
International ICST Conference, BIONETICS 2012, Lugano, Switzerland,
December 10-11, 2012, Revised Selected Papers, 2012, pp. 283–295.

[24] F. Bagnoli, D. Borkmann, A. Guazzini, E. Massaro, and S. Rudolph, “Modeling
risk perception in networks with community structure,” CoRR, vol. abs/1212.0657,
2012.

[25] D. Borkmann, A. Guazzini, E. Massaro, and S. Rudolph, “A cognitive-inspired
model for self-organizing networks,” in Sixth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2012,
Lyon, France, September 10-14, 2012, 2012, pp. 229–234.

[26] B. Hurling, S. Tomforde, S. Rudolph, J. Hähner, and C. Müller-Schloer, “Evolv-
ing network protocols,” in Proceedings of the 8th International Conference on
Autonomic Computing, ICAC 2011, Karlsruhe, Germany, June 14-18, 2011,
2011, pp. 173–174.

xvi

1 | Introduction

Since the 1990s, we see an incremental miniaturization of computers, and,
consequently, a computerization of everyday objects which is often called ubiquitous
computing (UC) [27]. Even though this trend is still underway, it is unquestionable
that more and more computers surround us when we look back at the last 25 years.
Considering the personal and office area, we see several examples such as smart
phones and tablets [28], smart watches and fitness trackers [29], personal assistants,
or smart lights [30]. Extrapolating the developments, we will see them pervade more
and more of our day-to-day lives.

In other areas, we can see a similar development, e.g., in the production sector
with smart factories [31] or the transport sector with self-driving cars [32]. These
areas show potential applications for cyber-physical systems [33], i.e., systems that
interact with the physical world but are controlled by an embedded computation
unit and are connected via a communication network. A further area of interest for
the recent developments in the computer domain is the provision of computational
resources where we witness the rise of cloud computing [34]. Here, we see massive
amounts of individual servers distributed over the entire planet that have to work
seamlessly to provide computational resources via the Internet. These systems
have to be managed and scaled in order to adapt to failures and current use which
leads to complex structures within the system.

All these developments increase the demand for algorithms that are capable to
manage and coordinate the large number of devices. Therefore, Organic Comput-
ing [35, 36] aims to establish the concepts of self-adaption and self-organization in
technical systems for the control of systems with high complexity. Several other re-
search initiatives have similar goals or techniques, e.g., Autonomic Computing [37],
Proactive Computing [38], Multi-Agent Systems [39], or Collective Adaptive Sys-
tems [40]. However, due to the complexity and size of modern systems, it is often

1

2 Chapter 1. Introduction

not clear to whom the system should adapt to or organize with. Such complexity ap-
pears as a result of large number of autonomous subsystems which can bear a high
degree of complexity in itself but even more because of the non-trivial interactions
among these subsystems. This results in mutual influences, i.e., influences that
have their origin in the actions and configuration of other autonomous subsystems
and change the quality of the outcome of another subsystem. Please note that the
mutual is added to clarify that these influences stem from other autonomous subsys-
tems and not the environment or possibly other sources. However, throughout this
thesis, we omit the mutual as long as the meaning is self-explanatory. Such mutual
influences can be either direct or indirect. Direct influences are often based on
interactions or negotiations with other subsystems. Due to their explicit nature they
are rather easy to observe. Indirect influences arise especially because of indirect
couplings or influential paths that are not perceptible by the individual systems,
e.g., because the environment reacts to several autonomous entities operating on
it at the same time. Since the causal path from the origin of the influence and the
influenced subsystems is often not observable and cannot be easily understood
without hand-crafting a model these influences are difficult to trace. To address
these influences, it is necessary to uncover them during runtime and enable the
systems to adapt to these influences. Therefore, we formulate the topic of this thesis
as follows:

The basic theme of this thesis is a computational approach to acquire
knowledge about mutual influences among systems and system parts
that allows them to be controlled more efficiently by enabling interaction

and averting to interfere with each other.

1.1 Motivation

In the following, we introduce two concrete examples that outline the idea of influ-
ences between technical systems. We will see that it is necessary to address these
issues by developing techniques that allow to identify such dependencies during
design or runtime.

Cloud computing (CC) is a common term for the recent development in the
provision of computer related resources, such as computing time, storage space,
or bandwidth [41]. An important concept for CC is to hide the complexity of the
system from the user, i.e., she accesses an application programming interface (API)

1.1. Motivation 3

and does not have to manage the internals. For instance, the system scales
automatically and allocates the data to optimal data centers regarding the latency.
An important part of CC is the scalability which requires a constant provisioning and
releasing of instances within the cloud. Every relevant player from the information
and communications technology (ICT) industry provides such a service today. We
use a recent incident regarding the Amazon Simple Storage Service1 (S3) as a
representative in this field. To ensure an availability of the services close to 100% of
the time it is necessary to introduce automated mechanisms that react to failures.
This introduces dependencies and influences between the server systems resulting
in highly complex structures. A recent example for such complex dependencies
and possible devastating consequences, is the break-down of the S3 on February
28th 20172. The incident started with an operator entering a command to shut
down a certain number of servers, but, unfortunately, a typing error in the command
caused the shutdown of a significantly higher number of instances than intended.
Even though the system was designed to adjust the removal of a large number
of instances the index system failed and had to be restarted. As a consequence,
the placement subsystem failed which led to a major drop out for many users of
the system. The recovery of these two systems took about 1.5 hours. Parts of the
remaining systems took longer to recover due to the resulting backlog. The key
insight of this example is not that wrong commands may be entered or that the
program removed too many instances in a too short amount of time, but that there
was a chain reaction that has not been foreseen by the designers of the system due
to influences and interdependencies resulting in a high complexity.

Vehicular traffic control is constantly under discourse in personal anecdotes
and politics. Common goals of traffic engineers are to reduce travel time and carbon
emission [42]. Besides the efforts towards the development of self-driving cars [32],
we witness the rise of technologies changing the possibilities to optimize traffic.
The omnipresence of sensors, e.g., embedded in the street surface or smartphone,
allows to monitor traffic in real-time. Closing the loop, the flow can be controlled
by adapting traffic light phase cycle or by sending warnings to route guidance sys-
tems [43]. A common technique to allow faster travel and less carbon production
are progressive signal systems. This means that traffic lights on a highly frequented
road will be synchronized in a way that it is not necessary for the cars to stop at the

1See https://aws.amazon.com/de/s3/ for details on the service (accessed on 2017-05-12)
2See http://aws.amazon.com/en/message/41926/ for Amazon’s official report (accessed

on 2017-05-02).

https://aws.amazon.com/de/s3/
http://aws.amazon.com/en/message/41926/

4 Chapter 1. Introduction

next traffic light since it shows green when the cars arrive. This is done by adjust-
ing the traffic light phase cycle with respect to the neighboring intersections [44].
However, today, this process is time intensive and often neglected or only applied
to few major roads in a city. If it has been done, it is mostly left untouched for
several years. Therefore, we want to point out the usefulness of an automated
dependency detection to identify important neighbors to adjust to. This could be
done at design-time supporting the traffic engineer or during runtime allowing the
reaction to changing dependencies for example in the case of failure.

Following these concrete examples, we introduce two exemplary trends in the
research and business area that will lead to a disruptive increase in the number of
devices and autonomous systems and therefore in the number of possibly influencing
systems. Without computational support it will be infeasible to analyze systems
manually in terms of their interdependencies.

Industry 4.0 origins from a German government initiative3, but it is more widely
used, today [45]. Similar initiatives have been introduced by other countries, e.g.,
the USA4. The term aims at indicating that we are on the edge of a 4th industrial
revolution, but there is no strict definition that is commonly agreed on. Therefore,
manifold attempts for interconnection and the further automation of industrial facilities
are targeted under this term. They reach from industrial devices that can be analyzed
and operated via a tablet computer5 up to fully autonomous machines. Picking up on
the idea of complete interconnectedness of autonomous, reconfigurable production
machines that is on the rise, novel techniques are needed to allow for an optimal
behavior of these devices. More specific, we need methods that identify necessary
partners and enable a co-adaption of the machines. This is especially challenging
due to the large amount of devices and the flexible usage, i.e., the high number of
situations and goals that often do not allow a complete analysis at design time [46].
To address these issues a method for the automated detection of influences and
interdependencies in such systems is necessary.

Internet of things has been established as term in the early 2000s to capture
the research and business trends towards a fully connected environment with a
large amount of devices [47]. It mainly aims at the development of interconnected

3See http://www.plattform-i40.de/ (accessed on 2017-09-20) and https://www.bmbf.
de/de/zukunftsprojekt-industrie-4-0-848.html (accessed on 2016-05-18)

4See http://www.iiconsortium.org (accessed on 2017-05-02)
5See for example https://goo.gl/UG0TK7 (German, accessed on 2017-05-03)

http://www.plattform-i40.de/
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
http://www.iiconsortium.org
https://goo.gl/UG0TK7

1.2. Problem Statement 5

embedded devices in terms of every-day objects that are equipped with compu-
tational devices that enable complementary functionality and therefore is similar
to the vision of UC. The outlined application areas are manifold, including envi-
ronmental monitoring [48], smart infrastructure [49], energy management [50], or
healthcare [51]. The probably most advanced example is home automation: today,
smart light bulbs, robotic vacuums and ventilation systems are already available. Due
to sheer amount of devices that are present in such highly technical environments,
interdependencies and influences between the systems appear that have not been
foreseen by the designer. Therefore, a mechanism that can detect these influences
is necessary to support the designer or automate the optimized utilization at runtime.

Concluding the previous examples, we have seen that an increasingly complex
structure between technical systems leads to interweavement where designers
cannot see through on all occasions [52]. This results in hidden and indirect
influences which can lead to suboptimal or even fatal behavior. Thus, it is necessary
to put the accountability for the detection of such influences from the systems
designer to an algorithmic approach that can guide the designer or can be integrated
in the system itself.

1.2 Problem Statement

Today, we face a large number of technical systems which can contain up to thou-
sands of devices. Often, such systems employ legacy standards and algorithms
that are not designed to manage the high complexity that appears through the
direct and indirect interactions. Such systems can be characterized as Interwoven
Systems [16].

If coordination is introduced between the systems, we face hand-crafted solutions
that are highly specialized, e.g., the coordination of traffic lights [53] or smart
cameras [54]. Such solutions can often only be created through a time-intensive
trial-and-error procedure, especially if not all influencing factors are known. The
influences are typically difficult to identify since they can be hidden in complex
dependency structures or arise through indirect coupling. We characterize such
influences as hidden, implicit, or indirect.

Therefore, the focus shifts towards the paradigm of self-integration [55] which
aims at creating systems that can fully automatically integrate in a landscape of
systems. A key challenge to reach this goal is to find algorithms that analyze the

6 Chapter 1. Introduction

influence structure between systems. This leads to the possibility to let systems
self-organize well by selecting partners for cooperation.

Such a methodology should fulfill several requirements that are outlined in the
following:

• Runtime capability: Due to the complexity that is present in modern systems,
it is a more and more challenging task to foresee all situations a system
will face during its lifetime. It becomes virtually impossible because of the
appearance and vanishing of other systems that affect the outcome of certain
processes. Therefore, an influence detection algorithm has to be executable
during the runtime of a system to allow an adaption to not foreseen interaction
partner, such as new devices from other stakeholders, manufacturers, or
owners.

• Heterogeneity: To reach self-integration, a system faces the challenge to
interact with several other systems that can be very heterogeneous in several
aspects such as scale, virtual/physical components, connectedness, etc. A
special focus in this thesis is on the heterogeneity induced by the ownership
of system which limits the access and control of the other systems.

• Compatibility: Today, we see several long-term systems that are in use for
over a decade. Replacing such systems would be costly and time intensive.
Therefore, to integrate with such systems, it is necessary to keep the influence
detection compatible to a wide-range of systems. This especially includes
systems that do not have a cooperation mechanism, are non-adaptive, or use
different adaption techniques.

• Autonomy: In recent times, we see an increase in the number of systems that
leads to an exponential increase in complexity. These structures of systems
bear new challenges since it is much more difficult to predict their behavior.
To avoid time- and cost-intensive maintenance of these systems, we look for
an influence detection that can be implemented in autonomous systems, i.e.,
that can be integrated in a system and afterwards decide on its own which
influences have to be addressed.

Concluding these requirements, we can find that the generality of a proposed
algorithm is the key factor to make it attractive for a potential use. Today, we have
several specialized standards and solutions, but these are tied to special applications

1.3. Contribution 7

and, therefore, lack the possibility of being applied without adaption by the designer.
Following this requirements, it is necessary to find a methodology that can be applied
in manifold cases.

1.3 Contribution

In the following, the main contributions of this thesis are briefly summarized:

• An architectural perspective of considering mutual influence detection based
on a reinforcement learning based system model.

• A taxonomy for systems regarding their characteristics relevant to mutual
influences.

• A methodology and a general workflow for the detection of mutual influences
among self-adaptive and autonomous systems.

• An extension to the method that allows to detect multi-component influences,
which allows to identify if configuration components influence a system in
common.

• An enhancement of the methodology that covers delayed mutual influences,
i.e., influences that do not become apparent immediately but after a period of
time.

• A variant of the influence detection that is runtime capable and consequently
distinguishes correlations in utility and performance with other’s configuration
from noisy or coincidental effects.

• An incorporation of this information within a reinforcement learning algorithm
that is applied to the problem of self-adapting the system.

• The application of the methodology to various scenarios from the smart camera
network and smart factory domain.

1.4 Overview of the Thesis

In this thesis, we see how an influence detection algorithm can be realized. The
motivation and contribution are set out in Chapter 1. We see how it is embedded
in the system landscape and architectural approaches in Chapter 2 and how the

8 Chapter 1. Introduction

approach relates to other works in Chapter 3. It follows the core of the thesis,
which is the actual methodology for detection of dependencies in technical systems
in Chapter 4 and extension to the approach in Chapter 5, 6, 7, and 8. Practical
advice are given in Chapter 9. Finally, the thesis is concluded in Chapter 10. In the
following, a more detailed overview of the chapters is given. Please note that literal
and paraphrased quotations of own previous published works have not been marked
in this thesis to allow for a better readability. Instead, the previous publications that
are relevant for each chapter are given in the following summaries.

The contents of the individual chapters are:

1. Chapter 1 introduces in the general topic and motivates the work. Several
current developments such as Industry 4.0, cloud computing, vehicular traffic
control and the Internet of things illustrate the potential application fields of
this thesis. Furthermore, a problem statement is formulated that sketches the
requirements of a widely applicable algorithm and an overview of the thesis is
given. Parts of this chapter are based on previously published works [1, 2, 16].

2. Chapter 2 defines the target systems which mainly relies on a configuration
space and a local reward and how the approach is embodied in a multi-layer
observer/controller architectural framework. Additionally, the relation to the
domain of Multi-Agent Reinforcement Learning is pointed out and the example
applications examined in this thesis are introduced. Finally, a taxonomy for
systems regarding the characteristics important for the influence detection is
introduced. Parts of this chapter are based on previously published works [1,
2, 10, 15, 16, 20–22]

3. Chapter 3 presents related approaches. Parts of this chapter are based on
previously published works [1, 2, 4, 5, 10, 12, 17, 18, 21, 22].

4. Chapter 4 depicts the general methodology to detect influences, i.e., which
information is gathered and how they are processed and how the dependency
measures are utilized. Furthermore, candidates for the measurement are
briefly discussed. The chapter includes examples and evaluations on an
exemplary use case and the smart camera network application. Parts of this
chapter are based on previously published works [1, 2, 5, 10, 12, 15–18, 20,
21].

1.4. Overview of the Thesis 9

5. Chapter 5 extends the previous introduced methodology to capture influences
that are only visible if the other configuration components are respected.
It introduces the methods with examples followed by an evaluation on an
exemplary use case and the smart camera network application. Parts of this
chapter are based on previously published works [1, 2, 5, 10, 12, 15–18, 20,
21].

6. Chapter 6 shows how delayed influences that affect subsystems after a period
of time can be included in the analysis. It is evaluated on a smart factory
scenario. Parts of this chapter are based on previously published works [1, 2,
4, 5, 10, 12, 15–18, 20, 21].

7. Chapter 7 depicts how the measurement can be realized at runtime and what
the implications of a runtime detection are. It is evaluated on a smart camera
scenario. Parts of this chapter are based on previously published works [1, 2,
4, 5, 10, 12, 15–18, 20, 21].

8. Chapter 8 introduces an exemplary method to integrate the influence informa-
tion within a reinforcement learning algorithm. The approach is evaluated on
scenarios from the smart camera domain. Parts of this chapter are based on
previously published works [1, 2, 4, 5, 10, 12, 16–18, 20, 21].

9. Chapter 9 gives practical advice on how to apply the influence detection
under various circumstances. Parts of this chapter are based on a previously
published work [1].

10. Chapter 10 concludes the thesis and gives an outlook on possible future
research directions. Parts of this chapter are based on a previously published
work [1].

10 Chapter 1. Introduction

2 | System Model

In this chapter, the system model is introduced. Here, we outline the require-
ments a system has to fulfill to allow the application of the influence detection
(Section 2.1). Afterwards, we embed these requirements in an optional architectural
framework for self-organizing systems (Section 2.2). Furthermore, we introduce
three example applications (Section 2.3) for the methodology. These are (i) elemen-
tary use cases (Section 2.3.1) that help to introduce the notion of mutual influences
and the methods for influence detection, (ii) smart camera networks (Section 2.3.2),
a common real-world application in the OC context, and (iii) smart factories (Sec-
tion 2.3.3), an emerging technology that still bears several challenges in the context
of self-organization. Finally, a taxonomy for systems regarding the characteristics
for the influence detection is introduced and the example applications are classified
(Section 2.4).

2.1 Target Systems

After introducing the notion of mutual influences and the types of systems that will
benefit the most from the methods presented in this work (cf. Chapter 1), the utilized
system model is discussed which is a formalization of the requirements we are
facing in order to apply the quantification of influences. We require an overall system
that is a composition of subsystems A1, . . . , An in a virtual or physical environment.
Here, we use the term (sub)system following the OC terminology, and, for a better
readability, omit the sub if it is clear from the context that not the overall system is
meant. However, one might prefer entity or agent1 which could be used as well.
Each subsystem in the overall system can assume different configurations. Such
a configuration typically consists of different components. We define the whole

1According to the definition of the term agent in the Multi-Agent System domain [39]

11

12 Chapter 2. System Model

configuration space of a subsystem Ai as Cartesian product Ci = ci1 × · · · × cim,
where cij are the components of the configuration. Such a configuration space is a
typical assumption in the Organic Computing context [56] and is (implicitly) present
in most applications that are relevant to the field of adaptive systems.

Consider, e.g., a router A1 in a computer network as an illustrating example. It
can take varying configurations into account, such as the processed network protocol
or parameter settings. E.g., an interval c11 = [0, 100] for the timeout parameter in
seconds and the set c12 = {1, 2, . . . , 16} for the buffer size in kilobyte. The entire
configuration space of system A1 would then be C1 = [0, 100]× {1, 2, . . . , 16}.

A further assumption is that the particular configurations of individual systems
are non-overlapping, meaning each subsystem has its own set of configurations and
cannot control the configurations of other subsystems. This does not mean that the
configuration components have to be completely disjoint in structure and values of
the contained variables. For instance, two subsystems might have the capabilities,
which would lead to the same set of possible configurations in these attributes but
for different subsystems. Such a relation is explicitly allowed within the model.

Besides the configuration space, we need to consider a further element: the local
reward. In order to apply the proposed method, each subsystem has to estimate the
success of its decisions at runtime – as a response to actions taken before. This
is realized based on a feedback mechanism – with feedback possibly stemming
from the environment of the subsystem (i.e. direct feedback) or from manual reward
assignments (i.e. indirect feedback). This resembles the classic reinforcement
model [57], where the existence of such a reward is one of the basic assumptions,
as well as, the idea of a utility function present in the OC domain [35]. If there is
no obvious way to create such a signal it can be useful to apply more structured
approaches from the field of goal-oriented requirements engineering [58], such as
the knowledge acquisition in automated specification (KAOS) goal model [59] that
has been applied to similar tasks [60]. Looking at the router example, a useful local
reward can have different forms depending on the application scenario. For instance,
a useful measure of success could be the throughput.

2.1.1 Relations to Reinforcement Learning

As mentioned before, the model of the target systems is inspired by a reinforcement
learning [57] (RL) perspective. Therefore, we introduce the basic RL model and the
extension to multi-agent reinforcement learning [61] (MARL) and show how it relates

2.1. Target Systems 13

Agent

Environment

Action atReward rt+1State st

Figure 2.1: The basic reinforcement learning model.

to the model used here.

In Figure 2.1, we see the basic model for RL. It consists of an agent that interacts
with its environment. It has the ability to sense the current state of the environment
and manipulate it by applying an action to it. Furthermore, a reward is provided
to the agent which reflects the usefulness of the applied action, which is possibly
related to the current or resulting state and can have stochastic components. The
goal of the agent is to maximize the expectation of this reward over the runtime
of the system by choosing the best actions available in each state. To find such
a strategy several approaches have been presented [62]. The model is usually
formalized as a Markov Decision Process (MDP), which is a tuple (S, A, T, r) with:

• a set of states S,

• a set of actions A,

• a transition function T : S × A × S → [0, 1], T(s′, a, s) 7→ p(s′|s, a), i.e., a
function that gives the probability that action a in the state s results in the
state s′.

• a reward function r : S× A× S → R, which gives a reward for each state
transition.

Its basic form assumes discrete time steps t ∈ N. In each time step t, the agent
senses the environment’s state st ∈ S. It then selects and applies an action at ∈ A.
In the next step, t + 1, the agent receives a reward rt+1 which reflects the quality of
its action in the given state. It then senses the new state st+1 and starts over again.
Looking at the transition function T, we see that the probability of the appearance

14 Chapter 2. System Model

of a specific state can depend on the previous state and the selected action. The
agent’s goal is to find a policy π(st) that maximizes the expected discounted reward

∞

∑
t=0

γtr(st, at, st+1), (2.1)

where 0 < γ < 1 is a discount factor for the future rewards.

A common reinforcement learning algorithm is Q-learning. It is well known and
studied intensively and has originally been proposed by Watkins et al. [63]. Like
all RL techniques, Q-learning tries to solve the general RL Problem, i.e., to find an
optimal policy for a given problem with respect to the long-term reward. The main
idea is to find a Quality-function Q : S× A → R that approximates the reward for
each state-action pair and takes into account the future rewards. To reach this goal,
the value for each state-action-pair is initialized according to some of the various
proposed methods, e.g., they are all set to a fixed value or they are set to a random
value, and afterwards updated according to the rule

Qt+1(st, at) = Qt(st, at) + α
(

rt+1 + γ max
a

Qt(st+1, a)−Qt(st, at)
)

, (2.2)

where Qt(s, a) denotes the old Q-Value and Qt+1(s, a) the new one, each for a given
state-action pair (s, a). Furthermore, rt+1 denotes the reward received in time step
t + 1 and therefore is the immediate reward for the action at taken in time step t. The
discount factor γ ∈ [0, 1) determines the fraction of estimated future rewards that
is taken into account in the present step. The learning rate α ∈ (0, 1] determines
how much the current experience, i.e. the current reward, is taken into account for
approximating the Q-value.

An extension to the single-agent RL is MARL [61], where several agents interact
with a single environment. Often each of the agents can only observe and manipu-
late specific parts of the environment. In general, the agents will therefore influence
the reward of each other. The formal approach is a generalization of the MDP and
is called a stochastic game (SG). It is defined by a tuple (S, A1, . . . , An, T, r1, . . . , rn)

where n is the number of agents and the components are defined analogous to
the single-agent case. Such SGs are classified depending on the reward struc-
ture. They are called fully cooperative if r1 ≡ . . . ≡ rn and fully competitive if
r1(s′, a1, . . . , an, s) + . . . + rn(s′, a1, . . . , an, s) = 0, where ai is the action of the i-th
agent. Games between these border cases are called mixed games.

2.2. Architectural Framework 15

Regarding the previously introduced model of the target systems, we see several
similarities to the RL and MARL domain if we observe the previously described
subsystems and the agents. The beforehand discussed configuration is similar to
the action set since both are encoding the choice of the agent/subsystem, and, in
fact, it is possible that both are equal. However, while actions are often encoded
relative, the configuration space has to be encoded absolute. E.g., a robot could
have an action turn left which would result in a different orientation depending on
its previous orientation. For the configuration, an absolute encoding is necessary,
e.g., the orientation as cardinal direction. This can result in an implicit integration
of the state in the the configuration, e.g., when the current orientation is part of the
state. Furthermore, the local reward is a concept adopted from the reward in the
RL domain. But the difference is the focus on the locality. E.g., in a case where the
local reward of each agent is equal (as in a fully cooperative game), the influence
detection can still be applied but might be of limited use since it is only possible to
measure which agent has influence on the overall result. These results can still be
interesting but, in this thesis, the focus is on studying systems where the notion of a
local reward is matched.

2.2 Architectural Framework

In the Organic Computing domain, the observer/controller architecture [64] is widely
used since it gives a framework for the realization of self-X characteristics such
as self-adaption, self-optimization, or self-learning. The basic scheme is given in
Figure 2.2. There, we see three components: the system under observation and
control (SuOC), the observer, and the controller. The SuOC is an OC-ready sys-
tem [56], i.e., the system provides interfaces for the observation and configuration
by an observer/controller pair. The observation is realized through sensors that
can (at least partial) track the situation the system faces. Common tasks of an
observer range from simple to complex, e.g., from preprocessing or averaging data
to novelty detection [65]. The controller is the deciding entity when it comes to
the configuration of the SuOC. It picks up on the information from the observer to
optimize the system behavior and selects an appropriate observation model for the
observer. Often, it employs a rule-based learning system [43]. Furthermore, a user
can induce goals in the system or possibly change them during runtime. This basic
observer/controller structure is the simplest form, but if necessary it is not limited to

16 Chapter 2. System Model

System under Observation and Control

Observer Controller

Goals
Observation Model

Figure 2.2: The basic observer/controller architecture.

one observer/controller pair. There are several possibilities to combine them, e.g.,
by using individual controller for different subsystems, stacking observer/controller
pairs over each other, or use more complex hierarchical structures [66].

In the context of this thesis, we rely on a 3-layered structure2 as depicted in
Figure 2.3. Such an observer/controller stack together with the SuOC forms a
subsystem in the sense of Section 2.1. In the figure, at the bottom, we see a SuOC
that can be accessed via sensors and actuators. These actuators form an action
space which is quite similar to the previously introduced configuration space (cf.
Section 2.1) and, in fact, can be equal to the configuration space. However, there
is a slight difference since for the configuration, we always assume an absolute
encoding that is not relative to the current situation. E.g., for the router example, an
action could be increase buffer size which is relative to the current buffer size, but
for the configuration this should be the value that results from this increase which is
an absolute value.
The sensors/actuators are connected to three stacked observer/controller pairs.
Each of the layers can work autonomously without the interference of the higher
layers, e.g., the reaction layer can still control the SuOC, if their is a failure of the

2This specific architecture includes an interface for users to change the goals of the system and
security mechanisms [22] that are left out here since they are not in the focus of this thesis.

2.2. Architectural Framework 17

Observer Controller

System under Observation and
Control

Observer Controller

Observer Controller

Reaction
Layer

Cognition
Layer

Social
Layer Observer Controller

System under Observation and
Control

Observer Controller

Observer Controller

Reaction
Layer

Cognition
Layer

Social
Layer

Observer Controller

System under Observation and Control

Observer Controller

Observer Controller

Reaction

Layer

S
e
n

so
rs

A
c
tu

a
to

rs

Cognition

Layer

Social

Layer

Observer Controller

System under Observation and
Control

Observer Controller

Observer Controller

Reaction
Layer

Cognition
Layer

Social
Layer

Figure 2.3: The architectural framework for this thesis. Such a multi-layered ob-
server/controller structure is assumed for each participant in the system.

cognition layer. In the following, we introduce the purpose of each of the layers.

⇒ Reaction layer: This layer works on a reactive basis and ensures a fast answer
to the systems needs. The observer monitors the SuOC through sensors and
the controller configures it. The observer processes the raw sensor data from
the SuOC, e.g., by extracting features. The controller is usually equipped with
rules that allow to choose an appropriate action for the situation described by
the observer.

⇒ Cognition layer: The layer is responsible for the awareness capabilities of the
system. Especially, it can recognize situations that have not been foreseen
at the design time and consider appropriate reactions. These reactions can
then be included in the reaction layer. The observer mainly detects anomalies,
e.g., novelty (new circumstances appear in the environment). Since these

18 Chapter 2. System Model

anomalies are not covered by the rule set in the reaction layer, the main
purpose of the controller is to generate new rules that cover these situations.
These rules are injected into the controller on the reaction layer.

⇒ Social layer: Again, this layer enables awareness capabilities of the system.
However, in contrast to the cognition layer, it does not focus on the SuOC and
the environment but on other systems. Furthermore, it is the part of the system
that is responsible for the communication (e.g., a general information exchange
or teaching mechanisms) and collaboration (e.g., negotiated behavior) with
other systems.

The influence detection methods introduced in Chapter 4 are therefore part of the
controller of the social layer. The adaption to influencing systems as introduced in
Chapter 8 can be triggered by this controller and carried out in the cognition layer.

Even though this thesis is grounded on the observer/controller architecture, the
basic method is not limited to this type of system. For example, there are several
architectural approaches for autonomous systems that can (at least in principle)
benefit from an influence detection, e.g., the MAPE cycle [67] in Autonomic Com-
puting [37]. For a list of approaches and a brief introduction to them see Tomforde
[68].

2.3 Example Applications

In the following, we introduce several example applications. On the one hand,
they serve as a basis for further clarifications of the mutual influence notion and
the system model. On the other hand, they are used for the evaluation in the
remainder of the thesis. First, we start with two elementary use cases (Section 2.3.1)
that allow for a simple description and introduction in the appearing challenges.
Afterwards, we look at the before mentioned emerging technology domains CPS
and IoT (cf. Chapter 1). We selected two real-world applications from these fields.
First, smart camera networks (Section 2.3.2) which can be located in the IoT sector
as well as supporting devices in the CPS domain. The second are smart factories
(Section 2.3.3) which are a core application for CPS.

2.3. Example Applications 19

2.3.1 Elementary Use Cases

In the following, we introduce two elementary use cases in which mutual influences
appear: the collaborative box manipulation and the two-man saw application. The
collaborative box manipulation is probably one of the simplest problems for an
influence detection algorithm. In the two-man saw example, we encounter the issue
that the own configuration of a system has to be taken into account to find an
appropriate detection algorithm.

Collaborative Box Manipulation

The collaborative box manipulation is rather simple. It includes two robots and
a heavy box. The robots can be configured to push or pull the box, but none of
them is able to move the box alone since it is too heavy. Therefore, the robots
have to cooperate, i.e., both push or pull the box, i.e., the configuration space
is {PUSH, PULL}. The robots receive a local reward that is 1 if the box moves
forward or 0 otherwise. For a human, it is easy to derive from this setting that the
configuration of one robot has an influence on the other.

Two-Man Saw

The two-man saw example is similar to the box application. Again, it includes two
robots, but, in comparison to the box example, a two-man saw is operated instead
of pushing a box. The robots can be configured to push or pull the two-man saw
(which results in the same configuration space as before), but they cannot handle
the saw alone. Therefore, the robots have to cooperate, i.e., one has to push and
the other one has to pull the saw (and vice versa). The robots receive a local reward
that is 1 if the saw moves or 0 otherwise. Again, a human can easily recognize that
the robots influence each other. The main difference between the two-man saw and
the collaborative box manipulation from the viewpoint of the influence detection is
that it is necessary to consider the configurations of both robots to find the influence.
A detailed explanation of this effect can be found in Chapter 5.

2.3.2 Smart Camera Network

Smart cameras possess a build-in computation unit that can be utilized for several
tasks such as image processing, object localization and object tracking. Also, most
smart cameras have pan, tilt and zoom capabilities and the computation unit is used
to determine beneficial alignments for the camera. Beyond, the smart cameras are

20 Chapter 2. System Model

Figure 2.4: An exemplary smart camera.

equipped with wired or wireless communication devices that allow for communication
with neighboring cameras, and, therefore, form a smart camera network [69].
Such smart cameras can be utilized to achieve different goals. Exemplary, this can
be the tracking of objects, the identification of new objects or the 3D reconstruction
of objects. In order to apply the before presented methodology of detection of mutual
influences to smart cameras a local reward is obligatory. Obviously, this reward
function heavily depends on the chosen goal. This is why different goals have been
considered (see below). Regarding the configuration, as depicted in the system
model (cf. Section 2.1), we consider the three adaptable parameters of the camera’s
alignment (pan, tilt, zoom).
In order to cover different classes of possible mutual influences in OC systems
several goals can be considered:

• the maximization of observed space,

• the coverage of fast changing environments [20],

• the detection of before unknown objects [18] and

• the 3D-reconstruction of objects [17].

2.3. Example Applications 21

To further the diversification of dependencies in the systems, we consider different
scenarios that include different positions and numbers of cameras as well as ob-
stacles, e.g., walls, and objects, e.g., different movement patterns. Based on the
many different application scenarios created in the smart camera network domain,
we tested the general method for the detection of influences in technical systems.
Furthermore, we show that a learning algorithm that considers the dependencies in
the system can lead to a global reward close to the optimum.

Concluding the former discussion and mapping this application on the model
of the target system (cf. Section 2.1), it is a realistic assumption that the cameras’
configuration space is composed of their pan, tilt and zoom configuration. Allowing a
pan angle between 0 and 360 degree, a tilt angle between 120 and 180 degree and
a zoom3 between 12 and 18 this would be [0, 360)× [120, 180]× [12, 18] for each
camera. As stated before, the configuration spaces of the cameras are identical in
structure, but each camera can assume an individual configuration. For the local
reward we can choose one of the before presented.

2.3.3 Smart Factory

In this case study, a scenario that is based on a real-world application in the domain
of cyber-physical systems is considered. A currently trending subdomain of cyber-
physical systems is industry 4.0. The term has been initially introduced in 2011 at
Hanover Fair4 and has then been picked up by the Bundesministerium für Bildung
und Forschung, which created a research initiative5. There is no clear definition of
the term, but it is a conglomerate of techniques and concepts that allow for a further
automation of industrial tasks, such as individualization of production, end-to-end
digital integration, and horizontal integration in collaborative networks [45]. An
important part of the industry 4.0 domain are smart factories, i.e., production places
that rely on a highly automatized manufacturing process.
The specific application for the case study has been chosen since it gives us new
interesting characteristics that are common for cyber-physical systems. First, this
are heterogeneous nodes in the system that allow us to analyze our developed tech-
niques in a more complex scenario, e.g., with different types of machines. Second,

3Please notice that the actual parameter adapted here is the focal length of the camera and is
typically measured in millimeter. However, to give a more intuitive understanding what a change in the
configuration causes, we stick to zoom with origin in the term PTZ camera.

4http://www.hannovermesse.de/home (accessed on 2017-08-15)
5https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html (accessed

on 2016-05-18)

http://www.hannovermesse.de/home
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html

22 Chapter 2. System Model

there is the opportunity to examine scenarios where we face heterogeneous com-
munication capabilities, e.g., communication within one factory and communication
over the internet. Third, we see delayed influences in this application that can be
examined.

The smart factory can arguably be seen as an extension of the (previously
depicted) smart camera network application. This is since it is expected that future
smart factories will include a number of cameras that are used as additional sensors
to ensure security and well-function of the machines. However, the most important
conceptual difference in the context of the influence measurement is the appearance
of delayed influences. In the smart camera application, we face mostly an influence
that appears immediately, i.e., only the current configuration has an impact on the
outcome. Here, we face that the configuration has a delayed impact, i.e., the choice
of the drill can be turn out to be of importance some time after the actual application
of it.

The basic application is inspired by Beckhoff’s6 smart factory demonstrator.
Even though this basic demonstrator only consists of two autonomous parts, i.e.,
a transport system and a workstation, it is already intended to use several of such
autonomous systems [70]. Therefore, we accommodate this expected development
and create scenarios with multiple entities that are based on Beckhoff’s demonstrator
but exceed the possibilities of it in some facets in order to reflect the expected
developments in the area of smart factories. The focus of research is on two
main components, that are the flexible transport system and the workstations. The
workstations are able to use different tools, such as drills, saws, or die cutters.
They have the possibility to change their configuration, i.e., which of the different
tools are used during runtime and form the points in the smart factory where the
work pieces are actually processed. The flexible transport system can be used in
different positions, i.e., vertical or horizontal, and can be equipped with different
moving components on the edge. In this thesis, we focus on transport systems that
have several movers, i.e., trolleys, that hold work pieces and can move at individual
speeds on a designated track. The track connects two workstations and the pick
and place robot, i.e., a robotic arm that is able to pick up work pieces and can put
them in other places, e.g., another workstation.

6Beckhoff Automation GmbH & Co. KG is a company with focus on the Industry 4.0 domain.

2.4. Taxonomy 23

Starting from this basic setting, the complexity of the scenarios can be varied in
several dimensions. These are the number of nodes, the node’s capabilities in
terms of different tools and the heterogeneity by adding more machine types, the
communication structure due to the location in the same or different facilities and
different capabilities of the network. This allows to analyze the usefulness of the
new developed techniques under manifold circumstances.
Concluding the former and mapping this application on the model of the target
system (cf. Section 2.1), a realistic, exemplary configuration space is composed
of the type of drill used and the pressure that is applied to the drill. Allowing 100
types of drills a pressure between 0 and 1 this would be {0, . . . , 99} × [0, 1] for tool
at the workbench. These capabilities could of cause differ between the tools, e.g.,
by having a different set of drills available. As local reward most likely a measure of
success is used, e.g., the outcome of the operation applied is considered.

2.4 Taxonomy

Beforehand, the target systems and example applications have been introduced.
They define which systems are in the scope of this work and on which systems the
influence detection was evaluated. In the following, we summarize the characteristics
of OC systems, which are of particular interest in the context of the influence
detection. This taxonomy is meant to guide through the application of the influence
detection by identifying key characteristics of the systems that help to decide in
which form the influence detection should be applied to gather optimal results. The
system size and characterization of subsystems are discussed in Section 2.4.1 and
different types of influences are addressed in Section 2.4.2. Furthermore, the two
real-world applications are exemplary classified in Section 2.4.3.

2.4.1 System Size and Characterization of the Subsystems

Obviously, the system size in terms of the number of subsystems is an interesting
characteristic for the influence detection. We can roughly identify three categories
of OC systems:

• Small systems, i.e., systems with few subsystems.

• Middle-size systems, i.e., systems with less than a few hundred subsystems.

• Large-scale systems, i.e., systems with more than a few hundred subsystems.

24 Chapter 2. System Model

Another characteristic related to the subsystems is their configuration space. As
highlighted before, the system model allows for multiple configuration components
(cf. Section 2.1) that can have different types. Please notice that the evaluation in
this thesis focuses on small to mid-sized systems, but, advice on how to handle
larger systems is given in Chapter 9. Another interesting criterion is simply the
number of configuration components. Furthermore, we identified the following types
of configuration components:

• nominal : The different values can be categorized, but there is no order for the
categories. An instance are the categories left and right.

• ordinal : The categories can be ordered. An instance are the categories low,
medium and high, or 1, 2, 3.

• infinite real-valued : An infinite number of values can be assumed. For instance,
this could be the interval [0,1].

The types nominal and ordinal can be further characterized by the number of
categories. For the infinite real-valued class, we always assume the set of values to
be infinite.

Consider the smart camera example again: Current test systems comprise
from 2 up to 100 cameras, i.e., we face a small to middle-sized system. Thus,
the computational complexity is not a major factor in the choice for an optimal
dependency measure. Furthermore, the configuration components of the cameras
are infinite real-valued. This excludes the discrete mutual information as a viable
choice.

2.4.2 Influences

The last category are the characteristics of the influence itself. The aspects intro-
duced in the following mainly describe the “nature” of the influence and have to be
considered for an optimal detection.

Origin: A first characteristic is especially interesting in the context of high com-
munication costs: the origin of the influence. An influence can originate from an
agent in the neighborhood or from a more remote one that can only be reached over
multiple hops. Even though this does not change how the influence can be detected,
it can have an impact on the communication cost attached to it. For instance, in an
ad hoc network the communication cost increases linearly with the number of hops.

2.4. Taxonomy 25

Joint influence: Another characteristic of an influence is the possibility that
multiple subsystems have to act jointly in order to exert their influence. For example,
two robotic arms have to hold a workpiece in place while another drills a hole in it.
Analyzing a single holding arm alone is not sufficient to detect the influence on the
drilling robot.

Strength: The strength of an influence can be characterized by two aspects. The
first is the power of the dependency measures. Some of them are limited to linear
or monotone dependencies, but the more powerful ones can measure stochastic
dependencies (which corresponds to the most general class of dependencies). The
second aspect is the sample set size: For some applications, a small sample set
can already lead to an appropriate detection rate, but in other cases a much bigger
sample set might be required.

Time behavior : An influence can have an immediate effect meaning that the
results are experienced by the target subsystem right after the configuration is
assumed. However, there are also cases where the subsystem is affected after a
delay.

Regarding the smart cameras, we do not observe any joint influences or delays.
Moreover, the origin of an influence can be assumed to be rather close since it
requires a shared observation area.

2.4.3 Classification of Example Applications

Following the taxonomy description, we assess the two real world applications,
smart camera networks and smart factories (cf. Section 2.3.2 and 2.3.3).

Smart Camera Networks

In the following, we classify the depicted smart camera networks regarding the
taxonomy and start with the subsystem characteristics. If we look at the first char-
acteristic, that is the number of subsystems, we do not have a clear classification
since SCN can have different sizes from few cameras to few hundred cameras.
Large-scale systems are also possible, but, looking at the current development,
this is not expected for the near future. The number of configuration components
in this domain is three, i.e., the pan, tilt, and the zoom. Each of the configuration
components is infinite real-valued.

Regarding the communication, we can face different instances of SCN. As men-

26 Chapter 2. System Model

tioned before, smart cameras can be connected wired or wireless. In the case of a
wireless ad-hoc network, we face high communication costs at least for multi-hop
communication. If we face wired connections, the situation is not as demanding as
in wireless communication but still limited.

Considering the influences in such a system, we find that the possible influences
are limited to the spatial neighborhood. Due to the nature of the reward function
the cameras can only be influenced by other cameras that share the potential
field of view. But we cannot suspect that the influences can be detected by linear
or monotonic measures, therefore we categorize them as stochastic. Moreover,
we cannot find instances in which the influence only becomes apparent if several
neighbors act in common. Furthermore, we do not see a temporal influence in the
system since previous configurations of the camera do not play a role for the other
cameras. This is because the cameras only get higher rewarded if they observe the
same area of interest at the same time.

Smart Factory

Regarding the subsystem characteristics, we can assume that such a smart factory
consists of a rather small system with few subsystems. This reflects the current
state-of-the-art in this area. However, in principle, a smart factory could also be
a middle-sized system if several facilities are considered. In the conducted exper-
iments, the configuration space of the workstation is composed of only a single
configuration component that is nominal with a small number of categories, but
depending on the actual hardware it could as well have infinite real-valued configu-
ration components, e.g., the pressure used for drilling.

Considering the communication, one can assume that it is rather cheap since the
workstations are stationary. Moreover, a designated area can easily be connected
by wire and could also be controlled by virtual systems that are emulated on a
central computer. The situation changes if the system consists of several closed up
areas that might not be connectable that easy.

Since in systems with a smaller number of nodes we can assume that all
subsystems are neighbored, for instance, as virtual systems in a central device, we
do not have to consider multi-hop influences here. In contrast, the situation is more

2.5. Summary 27

complex regarding the influences that only become apparent if several subsystems
act in common, e.g., two robotic arms have to hold a workpiece in place while
another drills a hole in it. Since the configuration space of the different subsystems
in a smart factory is rather small, it might be possible to use linear or monotonic
dependency measures for this purpose. What can be clearly stated here is that the
influences in the system will be temporal since the workpieces move through the
system and will cause a delay in the occurrence of influences.

2.5 Summary

Summarizing the system model used in this thesis, we started by introducing
a model for the systems that are targeted by the presented methods. The key
aspects of this model are the configuration space and local reward of the systems.
Additionally, the methods are embedded in an architectural framework namely a
multi-layer observer/controller architecture with a reaction, cognition, and social
layer. Afterwards, four example applications have been introduced. Two of them are
elementary use cases and the other two are realistic applications from the IoT and
CPS domain. Besides a general introduction in the domain, each of the examples
has been set in a context of the model for the target system. Finally, a taxonomy
for systems regarding the influence detection has been introduced and the two
real-world applications have been exemplary classified regarding this taxonomy.

In the following, we will see how the influence detection works and how it can be
applied under various circumstances.

28 Chapter 2. System Model

3 | Related Work

In the following, the related work in the area of influence formalization and quan-
tification is presented. Further related work can be found in Section 4.1.1 where
several dependency measures are introduced. Additionally, we have seen how this
thesis relates to the field of OC in Section 2.2 and RL in Section 2.1.1.

In literature, several approaches can be found that try to formalize the mutual
influences. Most of these approaches focus on the influence through direct or
indirect interactions. For instance, a model for interactions is proposed by Keil et
al. [72], but a method to detect the implicit interactions is not provided. Another
common approach is to use stit logic for modeling the interactions in Multi-Agent
Systems [73–75]. The focus of this works is on the system specification and verifica-
tion and therefore differs much from the focus of our work where a goal is adaption
at runtime.

Multi-agent reinforcement learning (MARL) is an active field of research [61,
76] which is related to this thesis. An insightful overview and a useful taxonomy
has been introduced by Busoniu et al. [61], for instance. Following their taxonomy,
the approach presented here can be useful in fully competitive and mixed games
(each static or dynamic). It can be used in fully cooperative games as well, es-
pecially if the global payoff is a function of the local payoffs of the agents (cf. the
smart camera application). As stated by the authors the complexity resulting from
coordination is a major issue in MARL systems. The influence detection can keep
this complexity to a minimum since it allows to only coordinate with relevant partners.

There are some interesting approaches in the area of coordination in MARL.
For example, in [77], an algorithm for the learning of organizational roles has been

29

30 Chapter 3. Related Work

introduced. This means the agents are heterogeneous and the approach allows to
find the best fit of agent capabilities and tasks.

Kok et al. [78] presented a work that is based on so-called coordination graphs
and an approach to solve the global coordination problem on a local basis if it is
possible to decompose the global payoff function into a sum of local payoff functions.
A restriction of this method is that it relies on inference rules that are hand-crafted.
Furthermore, they focus on discrete state variables which is not the case in the
approach presented in this thesis. But since they assume a given graph the influence
detection could be used to infer such a graph based on the roles of the agents.

An extension to this approach has been presented in [79]. There, similar to the
influence based approach, the coordination graph is inferred at runtime creating a
transition from independent learners to coordinated action selection. It is based on
a t-test between the maximally possible expected reward when the agents act in
common and the expected reward from independent decisions. The approach is for
general sum games and is limited to discrete state and action spaces and cannot
be simply adopted to a continuous case. Furthermore, the work only shows the
applicability for a Q-learning-based approach and there is no trivial way to make
it applicable to a wide range of algorithms. Methodologically, a major difference
here is that the method is focused on finding the states in which agents should
collaborate. This requires that all agents are always willing and able to cooperate.

De Hauwere et al. [80] demonstrated a specialized solution for mazes with two
robots. They used a generalized learning automata that uses the distance to the
other robot to learn how to avoid a collision by identifying states in which they have
to coordinate. While this approach might be adapted for other tasks it would be
necessary to hand-craft the inputs of the learning algorithm each time.

Later, they presented a work with the main focus on a method to generalize the
learned behavior for a single state over several states. The presented approach
needs to identify the states were coordination is necessary [81]. Their method
is similar to Kok’s. However, they assume that the agents have already learned
an optimal policy if acting alone since this is necessary to find states that need
coordination which renders it unusable for learning at runtime. Furthermore, the
work is focused on sparse interaction, i.e., it identifies the states for cooperation
and not the systems. This means the approach is not appropriate to find useful
collaborators from a set of agents. Furthermore, the approach is limited to discrete

31

state and action sets. Another difference to the approach presented here is that it
relies on the Kolmogorov–Smirnov test used as a goodness-of-fit test, i.e., it tests if
the distribution of points fits a model. However, this approach depends on a model,
which is not always present, e.g., if not Q-learning is used but a policy-based RL
approach, which is contrary to the requirement of independence from the control
mechanism of the system.

The above approach has been extended to solve delayed coordination prob-
lems [82]. However, the limitation regarding the discrete state and action sets
persists.

Vrancx et al. [83] presented a further extension to Coordinating Q-Learning,
where they employ transfer learning similar to the approach taken in this thesis but
on a state basis, i.e., only states where coordination is necessary are extended. This
approach is not applicable here since they use an agent centric view to generalize
over different situations because it cannot be applied to problems where it is neces-
sary to distinguish between the other systems. Furthermore, they focus on discrete
situations and actions and the methods cannot by applied to continuous state and
action spaces because the tests and extensions are applied state wise. Moreover,
they use the situation of the other agent which can be insufficient because it does
not take into account which actions are applied by the other systems. In contrast,
in this thesis, we rely on the configuration of the other systems which includes the
chosen action.

Lanctot et al. [84] proposed a measure called joint policy correlation. This has
been prototypically applied to a two-agent laser-tag scenario. It is based on the
repetition of the same scenario with several seeds that lead to different strategies
of the agents. Afterwards, a matrix is formed that compares the average rewards
of the agents against the agents from the other repetitions. The values against the
initial opponent and the other opponents are then aggregated to create a measure
that allows to see how much an agent has overfitted to its initial opponent. The
goal of the work is very different from the one presented here, since it wants to
create a measure on how much an agent overfits to the behavior of other agents. A
measure of influence cannot be directly derived from this approach. Furthermore,
in this thesis, we focus on a runtime learning approach that is not possible if the
experiment has to be rerun several times.

The approach presented in this thesis has similarities with feature selection

32 Chapter 3. Related Work

methods. These are categorized as filter, wrapper or embedded methods. Wrapper
methods are not applicable here since they require multiple repetitions of the learning
tasks which is contrary to the goal of learning at runtime. In the field of filter
methods, the minimum-redundancy-maximum-relevance [85] (MRMR) is frequently
used. However, it relies on the elimination of redundancies between the features
which is not desired here since it reduces the information one gets from the influence
detection. Furthermore, it comes at an extensive computational cost compared to
the methods proposed in this thesis. If it appears that too much configurations are
identified as influencing, the control algorithm can employ a technique for dimension
reduction such as auto-encoders, which have been successfully used with RL [86].

Regarding the embedded methods, the most prominent instance is the regular-
ized least-squares policy [87–89]. These methods are tied to a specific learning
algorithm and therefore breach the restriction of an applicability independent from
the control algorithm. There are several other works that employ feature selection for
reinforcement learning tasks [90–93], but they focus on a single learner and not the
interaction of autonomous entities. Additionally, the works do not focus on feature
selection at runtime. Even though Bishop et al. [91] call their approach online, they
do not share our understanding of the term, since they apply their algorithm to the
same problem multiple times for the purpose of learning.

Regarding the statistical methods, a selection of frequently used dependency
measures is outlined in Section 4.1.1. Additionally, the cross-correlation [94] could
be considered, which has been for example used in the control theory for system
identification tasks. However, the cross-correlation can only guarantee the detection
of linear associations and additionally does not allow an online calculation. More
advanced approaches in the field of non-linear system identification use techniques
that rely on the estimation of a function and are therefore not applicable here [95].

Furthermore, another calculation method for the continuous mutual information
could have been considered [96], but each measure has been limited to the most
common approach. Moreover, parametric methods [97] could be considered, but
since assumptions of the distributions of the reward function of the system are often
not possible, we omit these techniques. Additionally, statistical tests [98] could
be used instead of dependency measures, but preliminary results have not been
promising and therefore we stick to dependency measures in this thesis.

There are related works on collaborative learning in distributed environments,

33

e.g., by knowledge exchange. Transferred to the problem description presented
here this approach would correspond to an exchange of rules in the sense of the
observer/controller architecture (cf. Section 2.2) [99, 100] which can be used addi-
tional to the methods presented in this thesis.

Furthermore, there are attempts to combine self-organizing systems with learn-
ing algorithms, e.g., Boes et al. [101] introduced a MAS for the control of technical
systems that has self-X characteristics. The method is called Escher and aims to
deconstruct complex control problems by using an acyclic network of interacting
agents that are able to learn from experiences. The algorithm has been applied to
toy problems and an engine calibration. The approach differs from the one presented
here, since they created a MAS to control a single technical system, while here we
focus on several systems that are autonomous and have to adapt to the behavior
of other systems. But, the application of the influence detection to the individual
controller agents of Escher can be helpful if the different inputs of the controlled
system have to be coordinated to reach optimal results.

Concluding the related work, it follows a list that summarizes the limitations
that have not been addressed in previous works but are possible with the method
presented in this thesis:

• Automated detection of influences: Some works have mentioned or embraced
or focused on mutual influences, but they do not provide a method to find them
in an automated way [72–75].

• Independence from control algorithm: The approaches rely on a specific
reinforcement learning algorithm and are not easily portable to other algorithms
because their influence detection relies on this model, e.g., Q-Learning [78,
79, 81, 82] or least-squares policy [88, 89] .

• Continuous state and action spaces: The algorithms are based on the idea
of sparse interaction and therefore use statistical methods to identify states
in which collaboration is necessary [78, 79, 81–83]. These methods are not
portable to settings with continuous state and action spaces.

• Runtime capability: Some algorithms, especially the feature selection ap-
proaches, assume a fixed set of candidates that can have an influence on
the learning algorithm [85, 88, 89], but they cannot be used in a stage wise
fashion that allows the application at runtime.

34 Chapter 3. Related Work

4 | Mutual Influences

In this chapter, the method for the detection of influences among systems is
presented. The general workflow is depicted in Section 4.1 and the basic measuring
method in Section 4.1. This includes examples (Section 4.1.2) and an evaluation
(Section 4.1.3).

In the following chapters, this basic method will be extended, and we have a look
at more complex tasks: the consideration of own configurations, delayed influences,
and possibilities to adapt to detected influences.

4.1 Methodology for Detection

Based on the described target systems (cf. Section 2.1), we can now define the
methodology for mutual influence measurement. The goal is to identify those com-
ponents of the configuration of the other systems (i.e., value range and considered
variables) that have influence on the system itself. After the identification of influ-
encing configuration components, they can be addressed by a designer, e.g., by
considering them in their control algorithms, or by a self-adapting system itself, e.g.,
using a learning algorithm.

In general, we are typically interested in the question whether a system as a
whole is influencing other systems. However, to be more precise in the description
of the influence, we want to detect those parameters where the optimal configuration
values are somehow influenced by the current settings of the other systems. The ba-
sic idea of the following approach is to make use of stochastic dependency measures
that estimate associations and relations between the configuration components of a
system and the reward of a second system. The basic method assumes that the
mutual influence between the systems is instantaneous, meaning that the reward of
the system reacts to the configurations of the other systems in the same time step.

35

36 Chapter 4. Mutual Influences

Observation

Distribution

Estimation

Evaluation

Adaptation

Figure 4.1: The general workflow of influence detection.

However, the approach can be extended in order to detect delayed influences as
well by measuring the dependency between the configuration components and a
later reward which is depicted in detail in Chapter 6. In this section, we introduce
the general workflow on the variant without delayed influences.

In general, dependency measures are designed to find correlations between
two random variables. In the following, we model the configurations of distributed
systems as such random variables, which reflects the system model where we
face autonomous systems whose actions can be uncertain due to non-deterministic
behavior or incomplete information, for instance.

Before we introduce some candidates for the dependency measures (cf. Sec-
tion 4.1.1), we outline the general workflow for an influence detection for each
subsystem in the overall system that is depicted in Figure 4.1.

1. Observation: Continuously observe the configuration and estimate the goal
achievement of a productive system, e.g. the pan, tilt, and zoom of a camera
and the corresponding reward in terms of the given goals. These observations
will typically be done by the system itself in the observer side of the multi-
layered observer/controller architecture. But they could as well come from an
external entity.

4.1. Methodology for Detection 37

2. Distribution: Gather configurations from other systems and provide your own
one to them, i.e., the observations have to be send to the physical location
where the calculation of influences takes place. Regarding the system model,
this is the device which is responsible for the social layer of the systems.

3. Estimation: Estimate the dependency value by relating the own reward to the
configurations of the other systems. The basic idea of the algorithm is to make
use of stochastic dependency measures that estimate associations between
the reward of a system A and the configuration components of a second
system B. These dependency measures are designed to identify correlations
between two random variables X and Y. The reward of A is identified with a
random variable X and the configuration of entity B with a random variable Y.
This mapping implies that if the association between X and Y is high, we also
have a high influence of B on A since it reflects that the configurations of B
matter for the reward of A. Vice versa, if the association is low, we do not see
an influence. There are several dependency measures available which might
be suitable depending on the application. An overview for the most interesting
measures is given in Section 4.1.1.

4. Evaluation: Compare the values calculated for the different (other) systems
and their configuration components. Regarding this step, we have several
possibilities. The first would be to compare the influence values to a fixed
threshold, which is a valid option but can be difficult since an appropriate
threshold might not be available for each application. Second, the influence
values can be compared on a relative basis between the systems. This leads
to a ranking of systems according to their influence. A third possibility is
to simulate an independent system with the same configuration space and
compare the “artificial” value to the real values of the other systems. This
allows to decide on a basis that only includes one other system. Additionally,
it can be useful to calculate the p-value, i.e. a value that allows to estimate
how likely the given outcome under the assumption of independence is.

5. Adaptation: Address the influences in the control strategy. This can take
various forms; especially when applied at design-time, the designer can decide
on a case-by-case basis. For a self-adaptive solution, we propose to use a
learning algorithm that includes the configuration of the influencing systems in
the situation description during runtime (cf. Chapter 8).

38 Chapter 4. Mutual Influences

This process can be used either during design-time with a prototype or contin-
uously during runtime. For the design-time variant, the system runs for a certain
time while the configurations and reward are logged. Afterwards, the calculation and
decision process starts. During runtime, the steps have to be considered as a loop
that runs continuously but one can still decide on how long samples are gathered
since a distribution and recalculation may not be justified for each newly gathered
sample.

4.1.1 Discussion of Dependency Measures

As previously laid out, dependency measures are utilized for the influence detection.
Therefore, it follows a short overview of the most prominent measures and their
advantages and drawbacks:

• Pearson correlation: The probably most prominent instance is the Pearson
correlation coefficient – sometimes just called “correlation coefficient” [102].
The main advantages are its simple implementation and its fast calculation.
In the context of influence detection as discussed in this section, the major
drawback is that only linear correlations can be detected, i.e., it can fail in
case of more complex dependencies. Moreover, it is necessary to calculate
the distance between realisations of the random variable which might make
it not well suited for some problems. It assumes values between -1 and 1
where -1 indicates a perfect negative linear correlation and 1 a perfect positive
correlation. 0 means that there is no linear correlation. Because of this, if
comparing the influence of different systems, it should be considered to use
the absolute values. The Pearson correlation coefficient r is defined as:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
, (4.1)

where the xi and yi are the gathered samples, i.e. the configuration compo-
nents and the reward. n is the number of samples and x, y denote the mean
values of the random variables.

• Kendall rank correlation: Another measure that is based on calculating the
ranks of the gathered samples has been introduced by Kendall in 1938 [103].
The measure can be computed rather fast. It can detect monotone depen-
dencies, which is better than just linear dependencies but still can be not

4.1. Methodology for Detection 39

sufficient for many applications. It assumes values between -1 and 1; where -1
indicates a perfect monotone declining relationship and 1 a perfect monotone
increasing relationship. For independent variables, a value around 0 should
be considered. The Kendall rank correlation τ is calculated using:

τ =
(# concordantPairs)− (# discordantPairs)

n(n− 1)/2
. (4.2)

A concordant pair are two samples (xi, yi), (xj, yj) where the ranks of the
elements agree, i.e. if xi > xj then yi > yj or if xi < xj then yi < yj. The
opposite of a concordant pair is called discordant. Cases with xi = xj or
yi = yj are neither discordant or concordant and are not handled in the basic
variant.

• Spearman rank correlation: The rank correlation after Spearman is similar to
Kendall’s since it is based on ranks, too. Here, the ranks of the samples are
calculated and instead of a comparison between the samples the Pearsons
correlation coefficient is calculated on the ranks. Therefore, the values range
from -1 to 1 with 0 meaning that no dependency has been detected. The
Spearman correlation is calculated using:

ρ =
∑n

i=1(rg(xi)− rgx)(rg(yi)− rgy)√
∑n

i=1(rg(xi)− rgx)2
√

∑n
i=1(rg(yi)− rgy)2

, (4.3)

where xi and yi denote the samples and n the number of samples. rg(x) is
short for the rank of x, i.e. the position of x if all samples are ordered by their
value. rgx is the average rank of the samples xi and rgy for yi, respectively.

• Distance covariance: This measure is an extension to the Pearson correla-
tion that takes the distance between the samples into account. Since these
distances have to be calculated for the whole sample set, it is not suitable
for an online calculation; the advantage of this method is that it is not limited
to linear dependencies but can find all types of dependencies [104]. The
distance covariance is calculated as follows: We first derive the Euclidean
distances aj,k = ‖xj − xk‖ and bj,k = ‖yj − yk‖. Afterwards, we calculate
Aj,k := aj,k − aj. − a.k + a.. and Bj,k := bj,k − bj. − b.k + b.. where aj. is the mean
of the j-th row, a.k is the mean of the k-th column and a.. is the mean of the
whole matrix:

40 Chapter 4. Mutual Influences

1
n2

n

∑
j=1

n

∑
k=1

Aj,kBj,k (4.4)

• Mutual information: A quite different approach has been taken by Shannon as
part of his work in the context of information theory [105]. The basic variant
can be used for discrete random variables and calculated online. Furthermore,
all types of dependencies can be found. A small disadvantage in this context
is that the maximal possible value depends on the structure of the random
variables, i.e., the values can be normalized between 0 and 1, but the compa-
rability to other variables with different structures might be limited. The mutual
information is defined as:

I(X; Y) := ∑
x∈X

∑
y∈Y

p(x, y) ld
(

p(x, y)
p(x)p(y)

)
(4.5)

where p(x, y) is the joint probability of the events x and y and p(x) and
p(y) are the marginal probabilities of x and y. The probabilities can be easily
approximated using a frequency counting (i.e., a maximum likelihood approach
based on discrete finite random variables). There exists also a continuous
variant of the mutual information measure. Here, the calculation is much
more complicated since the estimation from samples needs more advanced
techniques. The most common approach is based on a k-nearest neighbor
method [106]. Another approach is the manual binning of the values in order to
use the discrete version, which can bear problems because the results might
depend highly on the chosen binning parameters. An automatic binning can
be done with the maximal information coefficient (see below).

• Maximal information coefficient: This measure is an extension to the mutual
information for real-valued data. It automatically calculates the binning that
results in the maximal mutual information for a given dataset. A drawback is
that there is no method for the online calculation. The basic formula is:

MIC(X, Y) := max
nxny<B

I(X; Y)
log(min(nx, ny))

(4.6)

where nx and ny denote the number of bins for X and Y. This means that
the number of bins is limited by a threshold B that is by default determined

4.1. Methodology for Detection 41

Reward of system A (fA) Configuration of system A (CA)
PUSH PULL

Configuration of PUSH 1 0
system B (CB) PULL 0 0

Table 4.1: The reward of system A resulting from different configurations of system
A and B in the box example.

depending on the sample size. The denominator serves for the normalization
of the value. However, it is computational expensive to determine the values
for all possible binnings. Therefore, a heuristic is introduced. For details please
see [107].

It should be mentioned that the choice of a dependency measure does not have
to be exclusive. It can be useful to calculate several measures in parallel or to
perform an iterative process where first computationally light-weighted measures
are used, and only if necessary, the more powerful and computationally expensive
methods are used.

4.1.2 Examples

In the following, we see an example calculation of the influences in the collaborative
box manipulation which has been introduced in Section 2.3.1. The example aims to
clarify step 3 of the workflow, the estimation of influences (cf. Figure 4.1).

To recap briefly, the setting in the collaborative box manipulation consists of two
robots that aim to move a box which is too heavy to move alone. Therefore, it only
moves if both of the robots use the configuration PUSH. In this case each of them
receives a reward of 1 while otherwise they receive a reward of 0.

We chose this elementary use cases for the demonstration of the methodology
since it is a very simple scenario. For demonstration purposes, we assume that a
table with the reward resulting from a combination of configurations of the robots
is known (cf. 4.1) which is explicitly not the case in real world applications. The
estimation of the influences from samples is shown later in Section 4.1.3.

For a human, it is easy to derive from this setting that the configuration of
one robot has an influence on the other. Therefore, we expect the algorithm to
measure an influence greater than zero. Since it is relatively easy to calculate (if

42 Chapter 4. Mutual Influences

the probabilities of the different events are known), we chose the mutual information
dependency measure for this example calculation. However, other dependency
measures will work as well for this simple example (cf. 4.1.3).

In Table 4.1, we see the resulting reward for system A given the different combi-
nations of configurations of the two systems. In order to find the influence of system
B on system A, we have to calculate the mutual information between the configura-
tion of system B (CB) and the reward of system A (fA). The mutual information is
defined as:

I(X; Y) := ∑
x∈X

∑
y∈Y

p(x, y) ld
(

p(x, y)
p(x)p(y)

)
(4.7)

This means, we have to derive the marginal probability distributions of fA and CB

as well as their joint probability distributions. For the calculation, we assume that
each system chooses the PUSH or PULL configuration with a probability of 0.5
independent of each other. This means p(CA = PUSH) = p(CA = PULL) =

p(CB = PUSH) = p(CB = PULL) = 0.5. Since we have four combinations of
PUSH and PULL, where each one appears with a probability of 0.25, we can derive
from the table that p(fA = 1) = 0.25 and p(fA = 0) = 0.75. Next, we have to
calculate the joint probabilities p(fA = 1, CB = PUSH), p(fA = 1, CB = PULL),
p(fA = 0, CB = PUSH) and p(fA = 0, CB = PULL). In the table, we find that fA will
never be 1, if CB = PULL, hence p(fA = 1, CB = PULL) = 0 and p(fA = 0, CB =

PULL) = 0.5. If CB = PUSH, which happens with a probability 0.5, we have two
cases. In the first case, we see CA = PUSH and fA = 1, in the second, CA = PULL
and fA = 0. This means p(fA = 1, CB = PUSH) = p(fA = 0, CB = PUSH) = 0.25.
Now, we can substitute the values in Equation 4.7 and get

I(fA; CB) = p(fA = 1, CB = PULL) ld
(

p(fA = 1, CB = PULL)
p(fA = 1)p(CB = PULL)

)

+ p(fA = 1, CB = PUSH) ld
(

p(fA = 1, CB = PUSH)

p(fA = 1)p(CB = PUSH)

)

+ p(fA = 0, CB = PULL) ld
(

p(fA = 0, CB = PULL)
p(fA = 0)p(CB = PULL)

)
(4.8)

+ p(fA = 0, CB = PUSH) ld
(

p(fA = 0, CB = PUSH)

p(fA = 0)p(CB = PUSH)

)

= 0 ld
(

0
0.25 0.5

)
+ 0.25 ld

(
0.25

0.25 0.5

)

4.1. Methodology for Detection 43

+ 0.5 ld
(

0.5
0.75 0.5

)
+ 0.25 ld

(
0.25

0.75 0.5

)
≈ 0.31

The result is 0.31. This value shows us that there is a correlation between the
configuration of system A and the reward of system B. Since the configuration is in-
dependent and uniformly distributed this implies that system B influences system A.

4.1.3 Evaluation

In the last sections, an introduction to the general method of influence detection
has been given and we have seen an example calculation. Such a calculation is
possible if the distributions of the configurations and rewards are known. In reality
these distributions are unknown in most applications. Therefore, we look at the
influence detection in two applications where the influence has to be estimated from
samples. The first one, the collaborative box manipulation, has previously been
discussed on a theoretical level. The second one, the smart camera network, shows
the applicability in a real-world setting. We focus on these two examples since they
can be solved with the general method introduced so far. The other examples will
be evaluated in the following chapters where more appropriate methods for these
examples are introduced.

Collaborative Box Manipulation

For the evaluation, we first consider one of the the previously introduced elementary
use cases (cf. Section 2.3.1), the collaborative box manipulation. Let us recall,
briefly: In this application, there are two robots with the task of pushing a box. Each
of them can either PUSH or PULL the box and due to the nature of the problem
the box only moves if both of them PUSH. This leads to a reward of 1 while all
other combinations lead to a reward of 0. Since some of the dependency measures
do not allow for categorical inputs, such as the here used PUSH and PULL, the
configuration has been mapped to the numbers 0 and 1.

For the evaluation of this application, we conducted 100 experiments and mea-
sured the influence using each of the previously introduced dependency measures
(cf. Section 4.1.1). For each run and each measure, two values have been calcu-
lated. The first one is the influence of robot B on robot A. The second one is the

44 Chapter 4. Mutual Influences

 0

 20

 40

 60

 80

 100

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

Fr
ac

tio
n

of
 h

ig
he

r
re

al
 e

st
im

at
e

Steps

Percentage of Correct Ranking

Pearson Correlation

Kendall Correlation

Spearman Correlation

Distance Correlation

Mutual Information (discrete)

Mutual Information (continuous)

Maximal Information Coefficient

(a) An overview of the full 100 steps evaluated.

 0

 20

 40

 60

 80

 100

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

Fr
ac

tio
n

of
 h

ig
he

r
re

al
 e

st
im

at
e

Steps

Percentage of Correct Ranking

Pearson Correlation

Kendall Correlation

Spearman Correlation

Distance Correlation

Mutual Information (discrete)

Mutual Information (continuous)

Maximal Information Coefficient

(b) A more detailed view on the first 30 steps.

Figure 4.2: The results for the collaborative box manipulation. The graphs show
the fraction of 100 runs in which the influence of robot B is detected higher as the
influence of the notional robot.

4.1. Methodology for Detection 45

influence of a notional robot. This notional robot has the same capabilities as the
real robot B, but his actions do not influence robot A at all. The value is calculated
to find out how reliable the detection of influencing robots is. This can be done by
comparing in which percent of the runs robot B has been found more influential than
the notional robot.

The results are depicted in Figure 4.2. There, we see that most of the measures
perform similar in this scenario. Except for the continuous MI approximated with
the Kraskov method 40 steps are sufficient to distinguish the influencing robot from
a non-influencing in each of the 100 runs. The vast majority is already correct
detected after 15 steps. The continuous MI eventually finds the influence in each run.
However, the detection speed is rather slow. This is due to continuous MI having
problems with the discrete values that are assumed in the problem. Furthermore,
the continuous MI has not been calculated for less than ten steps since a minimum
number of samples is required. Therefore, the first three data points should be
disregarded.

Concluding the results, the influence in this elementary use case can be detected
quite easily with the previously introduced method. Even though the continuous
mutual information shows a little slower detection the selected measure for the task
is not too important since the detection is over all quite fast.

Smart Camera Network

As a second application for the evaluation, we consider a small example from the
smart camera network domain (cf. Section 2.3.2). To recap briefly, smart cameras
are surveillance cameras that are equipped with computational capabilities that can
be used for several tasks including image processing. Furthermore, these cameras
are interconnected via a network that allows them to exchange data and coordinate.
For this thesis, we stick to so-called PTZ cameras that allow for an automatic adjust-
ment of the pan angle, tilt angle, and zoom of the camera. As previously described,
there are several reasonable goals for a smart camera network. For this evaluation,
we stick to the goal of a 3D-reconstruction of the observed targets. This means it is
necessary to observe the targets from different perspectives at the same time. To
achieve this, the cameras get a reward of 1 for each object that is observed by at
least two cameras in a time step.

46 Chapter 4. Mutual Influences

A top-down view on scenario SCN 1 is depicted in Figure 4.3. There, we see
three black dots which represent one camera each. Around the dots, there are
colored circles. Each of them represents the area that is potentially observable by
one of the cameras if it chooses an according PTZ configuration. Furthermore, we
see exemplary areas that are currently observed marked by red lines. Camera 1
and Camera 2 share a common area which can be observed by both at the same
time. In contrast, Camera 3 is isolated and does not share a common area with one
of the others. The yellow arrow marks the entry point and direction for objects that
move through the scene in the area between Camera 1 and Camera 2.

Ten independent runs of this scenario have been conducted in a Mason1 simula-
tion, where each of the cameras assumes a uniformly sampled PTZ configuration
in each time step. The pan angels are between 0 and 360 degree, the tilt angle
between 120 and 180 degree, and the zoom between 12 and 18. In each one, we
compared the influence of Camera 2 on Camera 1 and the influence on Camera 3
on Camera 1. For each of the measures, there are three comparisons: one for the
pan, one for the tilt, and one for the zoom of the cameras. It is expected that there is
a clear trend towards a higher influence of Camera 2 over Camera 3 in general and
especially for the pan and tilt since these configuration determine if it is possible to
gather a reward for Camera 1 or not.

The results are depicted in Figure 4.4. There, we see that after a few 100 steps
most measures allow a correct detection in 100% of the cases. The continuous
mutual information and maximal information coefficient on the other hand take a
little longer to reach this level of certainty. For the pan, we see that the distance
correlation shows the best result ahead of the other measures. However, the other
measures work as well with a higher sample size. Even though the MIC finds an
influence quite reliable the other measure do not show a definite result which can
be explained with the minor influence of this configuration components, i.e., in most
cases, the zoom does not determine if there is a positive reward at all but only the
height of this positive reward.

Concluding the results, we have seen that it is possible to detect the influences in
simple examples based on real-world applications, such as smart camera networks.

1Mason is a multi-agent simulation framework for Java [108].

4.1. Methodology for Detection 47

Camera 3Camera 2Camera 1

Figure 4.3: SCN 1. A top-down view on a smart camera network. The black dots
depict cameras surrounded by a circle that marks their potential observable area.
The red shapes show the field of view for an exemplary PTZ configuration. The
yellow arrow indicates from where and in which direction the objects of interest
move.

48 Chapter 4. Mutual Influences

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the tilt.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(c) The results for the zoom.

Figure 4.4: The results for scenario SCN 1 using the general method. Each graph
shows the fraction of runs in which the influence of the configuration component
(pan, tilt, or zoom) of Camera 1 on Camera 0 is detected to be higher than the
influence of Camera 2.

4.2. Summary 49

Over the next section, we will see how to use it in scenarios with more complex
requirements.

4.2 Summary

This chapter covers the main method of influence detection. In Section 4.1, the
workflow that describes the sequence of events that take place if the influence
detection is applied is introduced. Afterwards, the estimation step is specified
and the candidates for the dependency measure are presented in Section 4.1.1.
The calculation of the influence is further clarified by applying it exemplary to the
collaborative box manipulation in Section 4.1.2. Finally, in Section 4.1.3, the method
has been applied to show its usefulness. Concluding the chapter, how the general
method of influence works and that it can detect the influences between systems.

In the following chapters, we will extend the general method by three means.
The first is the consideration of other configuration components that will allow to
find influences that only come to light for specific combinations of configuration
components in Chapter 5. Second, dalyed influences, i.e., influences that reveal
itself after a period of time, are given attention to in Section 6. Furthermore, in
Section 7 it will be explored how the method can be applied during the runtime of the
system. Furthermore, in Section 8, it is described how the evaluation and adaption
step from the workflow are realized during runtime using reinforcement learning
algorithms.

50 Chapter 4. Mutual Influences

5 | Multi-component Influences

In Section 4.1, we introduced the general workflow for the influence detection,
saw examples, and evaluations for simple scenarios. In this section, we cover an
extension of it that can be useful for more complex cases. That is a possibility for
the consideration of other configuration components, e.g., if the influence pattern is
only visible if a system examines the past experiences with respect to the other con-
figuration components. To achieve this, we introduce a more advanced estimation of
the influence, i.e., adapt the technique used in the evaluation step of the workflow.

5.1 Methodology for Detection

If using the so far proposed general method (cf. Section 4.1) alone it can lead to
unsatisfying results for some scenarios. This is since the other configuration com-
ponents are not taken into account. For example, in some smart camera network
scenarios it might not be possible to identify the influence by only looking at the pan
angle isolated, but it is necessary to consider certain combinations of the pan angle
and the tilt angle of a camera. In the following, we do not distinguish if this other
configuration is part of the influencing system or the influenced system since the
approach is equivalent in both cases, but we stick to the case where each of the
configuration components belong to different systems. In this case, if we want to
measure the influence of a system A1 on a system A2, we condition the calculation
with the configuration of A2. This means we calculate the dependency of the reward
and the configuration for each configuration of A2 separately. This works for discrete
random variables, but it becomes infeasible for systems with infinite number of con-
figurations for the component since it is not possible to calculate an infinitely number
of values. Therefore, we split the configuration components in two (or possibly

51

52 Chapter 5. Multi-component Influences

more) parts and calculate the dependency separately. This ensures a rough approx-
imation of the dependency under each configuration and ensures a high sample size.

Let us consider the detection of influences of a Camera 2 on a Camera 1, where
we face n samples (f1, p2)t. Here, f1 is local reward of Camera 1 at time t, and
p2 is the pan of Camera 2. Following the before introduced method, we estimate
the dependency between this random variables from the samples. However, this
might not lead to a satisfying result in some cases where the outcome depends on
multiple configuration components (see next section for an example). To resolve
this issue, the samples are sorted in two (or more) categories depending on the
other configuration component at time t. E.g., we sort the samples (f1, p2)t by the
value of p1 ∈ [0, 360) at time t which is the pan of Camera 1, i.e., all samples where
p1 ∈ [0, 180) are collected in one bucket and all samples where p1 ∈ [180, 360) are
collected in a second bucket. This results in two sets of samples that have roughly
the size n/2 (assuming the pan of Camera 1 is uniformly distributed). Afterwards,
the dependency is estimated for both sets independently and the both values are
aggregated for example by using the average. Technically spoken this calculation
results in a rough approximation of the dependency between the reward and the
configuration component conditioned by the other configuration component. If
necessary the approximation can be made more accurate by using more parts.
However, in this work, we stick to two parts since it resolves the issue and at the
same time the sample size for each estimation remains the highest.

5.2 Example

In contrast to the example for the general workflow (cf. Section 4.1.2), we do not
rely on the collaborative box manipulation but on the two-man saw application (cf.
Section 2.3.1). A brief reminder: this use case has two robots that operate a two-
man saw by PUSHing or PULLing it. The saw can be in two positions: the left or
the right position. If it is in the left position, the left robot has to PUSH and the right
has to PULL to move the saw and generate a reward of 1. Otherwise the reward is
0. If the saw is in the right position they have to apply the contrary configurations
to move the saw. The reward for each outcome is depicted in Table 5.1 and 5.2.
Again, a human can easily recognize that the robots influence each other. In the
following, we will see that the algorithm can fail to detect this influence if applied
inappropriately and how a correct application can be realized, which returns a value

5.2. Example 53

Reward of left system (fL) Configuration of left system (CL)
if the saw is in left position PUSH PULL
Configuration of PUSH 0 0
right system
(CR)

PULL 1 0

Table 5.1: The reward of left system L resulting from different configurations of
system L and R in the two-man saw example if the saw is in the left position.

Reward of left system (fL) Configuration of left system (CL)
if the saw is in right position PUSH PULL
Configuration of PUSH 0 1
right system
(CR)

PULL 0 0

Table 5.2: The reward of left system L resulting from different configurations of
system L and R in the two-man saw example if the saw is in the right position.

greater than zero.

In this example, we see that the basic method fails to detect the influence in some
scenarios. This can be resolved when the own configurations of the systems are
taken into account. For the calculations we need to derive the probability distribution
of the reward of the left robot fL, the joint distribution of fL and the configuration of
the right robot CR from Table 5.1 and 5.2. The deduction works similar to the one in
the box example and is therefore left to the reader. We only face a slightly different
situation since the correct direction depends on the current position of the saw. To
find the distributions, we have to adapt the distributions for the left and right position,
i.e., after deriving the (conditional) probabilities for each position we can calculate
p(X) = 0.5p(X|saw is in left position) + 0.5p(X|saw is in right position). We use
the weighting of 0.5 since we can safely assume that the saw is in the left position
in half the cases, because of the distributions of PUSH and PULL1. Expressed in a
more technical way, we face a prior probability to be in a certain position. When we

1This can be can be extended to cases with more states where the weighting will be 1/n as long
as the probability to switch from one state to another is uniformly distributed.

54 Chapter 5. Multi-component Influences

calculate the probabilities in this manner, we get:

p(CR = PUSH) = p(CR = PULL) = 0.5

p(fL = 1|CL = PUSH) = 0.25

p(fL = 0|CL = PUSH) = 0.75

p(fL = 1, CR = PULL|CL = PUSH) = 0.25

p(fL = 0, CR = PULL|CL = PUSH) = 0.25

p(fL = 1, CR = PUSH|CL = PUSH) = 0

p(fL = 0, CR = PUSH|CL = PUSH) = 0.5

(5.1)

Using these probabilities, we can calculate the mutual information as in the box
example:

I(fL; CR) = p(fL = 1, CR = PULL) ld
(

p(fL = 1, CR = PULL)
p(fL = 1)p(CR = PULL)

)

+ p(fL = 1, CR = PUSH) ld
(

p(fL = 1, CR = PUSH)

p(fL = 1)p(CR = PUSH)

)

+ p(fL = 0, CR = PULL) ld
(

p(fL = 0, CR = PULL)
p(fL = 0)p(CR = PULL)

)

+ p(fL = 0, CR = PUSH) ld
(

p(fL = 0, CR = PUSH)

p(fL = 0)p(CR = PUSH)

)

= 0.125 ld
(

0.125
0.25 0.5

)
+ 0.125 ld

(
0.125

0.25 0.5

)

+ 0.375 ld
(

0.375
0.75 0.5

)
+ 0.375 ld

(
0.375

0.75 0.5

)
= 0

(5.2)

Our expected result here would be that the calculation gives a value higher than
zero since we clearly have influences in the described scenario. The reason
for the apparent problem is that it is necessary to consider the configurations
of the left robot for the detection of the influence. This can be done by condi-
tioning the probabilities with the configurations of the left robot, i.e., we calculate

5.2. Example 55

the conditional mutual information I(fL; CR|CL) = p(CL = PUSH)I(fL; CR|CL =

PUSH) + p(CL = PULL)I(fL; CR|CL = PULL) = 0.5I(fL; CR|CL = PUSH) +

0.5I(fL; CR|CL = PULL).

I(fL; CR|CL = PUSH) can be calculated as follows:

I(fL; CR|CL = PUSH) = p(fL = 1, CR = PULL|CL = PUSH)

ld
(

p(fL = 1, CR = PULL|CL = PUSH)

p(fL = 1|CL = PUSH)p(CR = PULL|CL = PUSH)

)
+ p(fL = 1, CR = PUSH|CL = PUSH)

ld
(

p(fL = 1, CR = PUSH|CL = PUSH)

p(fL = 1|CL = PUSH)p(CR = PUSH|CL = PUSH)

)
+ p(fL = 0, CR = PULL|CL = PUSH)

ld
(

p(fL = 0, CR = PULL|CL = PUSH)

p(fL = 0|CL = PUSH)p(CR = PULL|CL = PUSH)

)
+ p(fL = 1, CR = PUSH|CL = PUSH)

ld
(

p(fL = 0, CR = PUSH|CL = PUSH)

p(fL = 0|CL = PUSH)p(CR = PUSH|CL = PUSH)

)

= 0.25 ld
(

0.25
0.25 0.5

)
+ 0 ld

(
0

0.25 0.5

)

+ 0.25 ld
(

0.25
0.75 0.5

)
+ 0.5 ld

(
0.5

0.75 0.5

)
≈ 0.31

(5.3)

The value of I(fL; CR|CL = PULL) can be deducted in a similar manner as before,
and the calculations are therefore omitted. For the influence value, we use the sum
of each of the parts I(fL; CR|CL = PULL) + I(fL; CR|CL = PUSH). In this case, we
receive a value of approximately 0.62 from the calculations. This value shows us
that there is a correlation between the configuration of the right robot and the reward
of the left robot. Since the configuration is independent and uniformly distributed
this implies that the right robot influences the left robot. Consequently, the influence

56 Chapter 5. Multi-component Influences

detection works as expected also in more complicated scenarios.

5.3 Evaluation

In the previous section, we have seen an example calculation that shows us the
importance of the consideration of other configurations for the influence detection.
In the following, we discuss the topic from a more practical point of view and show
the effect of such cases on the influence detection. We exemplary evaluate an
elementary use case, the two-man saw, and a smart camera network scenario and
see the effect of the other configurations on the detection. For both of the evaluations,
we compare the standard method and the method of conditioned measurement.

5.3.1 Two-man Saw

First, we evaluate the conditioned measurement in an elementary use case, the
two-man saw. It has been introduced in Section 2.3.1 and theoretically analyzed
in the previous Section 5.2. The example is inspired by two robots that operate a
saw that only moves if both of them move it in the right direction, i.e., one PUSHes
and the other PULLs or vice versa depending on the current position of the saw. If
the saw moves each robot gets a reward of 1 otherwise 0. Again, the categorical
configurations PUSH and PULL have been mapped on numerical values to make
all dependency measures applicable.

The results are depicted in Figure 5.1. As for the collaborative box manipulation,
the actual influence has been calculated using the seven dependency measures and
compared with a measurement of a notional robot that assumes uniformly distributed
random configurations but has no influence on the actual outcome of the experiment.
The figure shows in how many of the 100 independent runs the influencing robot
has been found to be more influential than the notional (not-influencing) robot. The
first graph shows the result for the method used in the previous evaluations, i.e.,
without a consideration of other configurations. The detection is between 30% and
50% which is below the expected value of 50%. This due to the fact that the run will
only be counted as correct detected if the value is higher but not if both values are
equal which is quite often the case in this scenario. The second graph shows the
results with the consideration of the other configuration, i.e., the calculation of the
dependencies is conditioned under the configuration of the first robot. We see that
influence is nearly perfect detected after 30 steps which is close to the result in the

5.3. Evaluation 57

collaborative box manipulation. Also similar is the small weakness of the continuous
MI which needs about 90 steps to catch up.

Concluding the evaluation of the two-man saw application, we have seen that
even in relatively simple applications the problem with other configurations can
lead to influences that can not be detected with the basic variant of the influence
detection. However, the improvement that includes the other configurations by
conditioning the measurement shows very good results for such cases as well.

5.3.2 Smart Camera Network

After the elementary use case, we focus on a more complicated use case from
the smart camera network domain. A top-down view on Scenario 2 is depicted
in Figure 5.2. It is similar to scenario SCN 1, which we used for the evaluation in
Section 4.1.3. In the figure, we see three black dots that mark the position of the
cameras. Camera 1 and Camera 2 are quite close and potentially share a common
field of view which is marked by the colors areas around the cameras. Camera 3
on the other hand is separated and cannot observe the same areas as the other
two cameras. The only difference to the previously evaluated scenario is where the
objects of interest appear and move. In the last scenario they were limited to the
area between Camera 2 and 3 appearing from the south. Here, we see that they
appear from the north and the south on the whole area around Camera 1 and 2,
i.e., the two cameras are surrounded by objects. The influence from Camera 2 and
Camera 3 on Camera 1 has been measured for the pan, the tilt, and the zoom. We
expect that the pan and the tilt of Camera 2 have the most influence. Since a reward
greater than 0 is much more likely in this scenario than in the previous, we also
expect the zoom to play a more important role.

The results are depicted in Figure 5.3 and 5.4. As before, 10 independent
runs have been conducted and we see the ratio of runs in which the configuration
components of Camera 2 have been identified as more influencing that of Camera 3.
In Figure 5.3, we see the results for the previous method. Even though the camera
placement is identical to the previous scenario, we see that the pan is not detected
within the first 2000 steps. Furthermore, the tilt cannot be detected by the Pearson
correlation. This is because it is necessary to consider the other configuration
components in this scenario. Therefore, we adopted the conditioned calculation,
i.e., we split each of the other configurations in two parts and sort the points in
different buckets depending on which configuration has been assumed. Here, we

58 Chapter 5. Multi-component Influences

 0

 20

 40

 60

 80

 100

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

Fr
ac

tio
n

of
 h

ig
he

r
re

al
 e

st
im

at
e

Steps

Percentage of Correct Ranking

Pearson Correlation

Kendall Correlation

Spearman Correlation

Distance Correlation

Mutual Information (discrete)

Mutual Information (continuous)

Maximal Information Coefficient

(a) The detection if a single estimator is used and the own configuration is not considered.

 0

 20

 40

 60

 80

 100

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

Fr
ac

tio
n

of
 h

ig
he

r
re

al
 e

st
im

at
e

Steps

Percentage of Correct Ranking

Pearson Correlation

Kendall Correlation

Spearman Correlation

Distance Correlation

Mutual Information (discrete)

Mutual Information (continuous)

Maximal Information Coefficient

(b) The detection if the own configuration is considered, i.e., there is one estimator for each
of the configurations (Push and Pull).

Figure 5.1: The results for the two-man saw use case.

5.3. Evaluation 59

face 5 other configurations since we analyze the pan and the other configuration
components are the tilt and zoom of the influencing camera and the pan, tilt, and
zoom of the influenced camera. Each of the configuration components will be split
in two parts and the samples are sorted into buckets that are determined by each of
the configuration components values. This leads to 25 = 32 buckets. The values
calculated for the buckets are then added up to get an aggregated result. The
results achieved by this method are depicted in Figure 5.4. We see that using this
method the issues experienced in the first experiment do not appear and a flawless
detection is ensured.

Concluding the results, we have seen that small changes in the setting can
make it necessary to consider the other configuration components in the influence
detection. A fast and reliable detection can be achieved by applying the method
proposed in this chapter.

Camera 3Camera 2Camera 1

Figure 5.2: SCN 2. A top-down view on a smart camera network. This scenario
is only slightly changed from SCN 1 by adjusting the flow of targets represented
by the yellow arrows. The black dots depict cameras surrounded by a circle that
marks their potential observable area. The red shapes show the field of view for an
exemplary PTZ configuration.

60 Chapter 5. Multi-component Influences

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the tilt.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(c) The results for the zoom.

Figure 5.3: The results for the scenario SC2 using no conditioning. Each graph
shows the fraction of runs in which the influence of the configuration component
(pan, tilt, or zoom) of Camera 1 on Camera 0 is detected to be higher than the
influence of Camera 2.

5.3. Evaluation 61

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the tilt.

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

P
e
rc

e
n
ta

g
e
 o

f
R

u
n
s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(c) The results for the zoom.

Figure 5.4: The results for the scenario SC2 using two parts for conditioning.
Each graph shows the fraction of runs in which the influence of the configuration
component (pan, tilt, or zoom) of Camera 1 on Camera 0 is detected to be higher
than the influence of Camera 2.

62 Chapter 5. Multi-component Influences

5.4 Summary

In Chapter 4, the general methodology for the influence detection has been intro-
duced. In this chapter, this methodology has been extended to find the influences
that are dependent on multiple configuration components by refining the estimation
step of the general workflow (cf. 5.1). We have seen how influences from multiple
configuration components can skew the measurement possibly to a degree that the
influence cannot be detected and how this issue can be addressed in the two-man
saw application in Section 5.2. Furthermore, in Section 5.3, the method has been
evaluated in the smart camera application, where it shows good results in a practical
setting.

In the following chapters, the estimation step in the general workflow of the
influence detection will be further extended and examined regarding the detection
of delayed influences in Chapter 6 and the applicability at runtime in Chapter 7.
Furthermore, the evaluation and adaption step will be in the focus in Chapter 8.

6 | Delayed Influences

In this section, we extend the basic methodology (cf. Section 4.1) by additionally
regarding the configuration that has not appeared in the same time step but in
previous time steps. For instance, if we are interested in the influence that will
appear after 5 time steps, we analyze the association between the current reward of
a system A and the configuration that has been assumed by a system B 5 steps
before. Using this extension, we can discover the influences that appear after a
period of time.

Additionally, we compare this basic calculation method with a more complex one
that allows to take the configuration of system A into account, which in the basic
process only contributes the reward to the calculation. This is done by condition-
ing the calculation under these configurations what has been described in Chapter 5.

6.1 Methodology for Detection

Before we show how such delayed influences can be handled, we clarify when
they appear by examining a thought experiment. Considering a big river that is
used by industrial facilities, we can imagine that at one point there is a factory that
produces cars. If the sun is shining the factory runs by solar power but if it is cloudy
or night-time it uses an electrical generator that is run by petroleum. The generator
will discharge petrochemicals which lead to water pollution. A few kilometers down
the river a new fish farm opens and notices that the chemicals harm their fish. The
fish farmer install an electric filter system that can be turned on or off. Since the fish
farm has to pay the expenses for the electric energy it is desirable to minimize the
time the filter system is active. Here, we see a simple system in which a delayed
influence with a delay of time x that the chemicals need to travel from the factory to

63

64 Chapter 6. Delayed Influences

the fish farm is apparent. The optimal behavior of the filter system would be to turn
on at ts + x where ts is the start time of the generator and turn of at te + x where te

is the time the generator stops. In the following, we see how the influence and the x
can be determined by extending the before introduced techniques. To achieve this,
we introduce a more advanced estimation of the influence, i.e., adapt the technique
used in the evaluation step of the workflow.

The main idea is to introduce several influence detectors; one for each delay
to analyze. For example, if influences with a delay of up to 10 time steps should
be detected, 10 additional influence detectors are used and each of them will
measure the correlation between reward and configuration but with a different
offset. The previously introduced influence detector has a delay of 0, i.e., it catches
instantaneous influences. At each time step t a sample (rt, ct) is created from the
reward rt and the configuration ct at time step t and used for the detection. Now, we
introduce a separate detector for every possible delay. As depicted in Figure 6.1,
the detector for a delay of 1 uses the sample (rt, ct−1) and the detector for a delay
of 2 uses the sample (rt, ct−2) and so on. In Table 6.1, we see which samples are
created in which time step for which detector regarding the detection of influences
from system A on system B. A delay of k can naturally only be detected if at least
k + x steps have been done by the system where x is the number samples needed
to detect the influence.

6.2 Evaluation

In the following, we present the results obtained in an Industry 4.0 domain. This
application has been introduced initially in Chapter 2.3.3. Let us recall briefly, the
smart factory application builds up current developments in the Industry 4.0 domain.
The scenarios are composed from pick and place robots and configurable work
benches that are placed next to a transport system. Two such workbenches that are
interconnected with a transport system form what we call a workstation. The work
pieces that travel via the transport system can be picked up from one workstation
and placed on another by the robots.

The actual scenario used for the evaluation is depicted in Figure 6.2. There,
we see two workstations, on the left SL and on the right SR and a pick and place
robot R. Each of the stations consists of two workbenches that are connected via
movers. The workbenches are named BiU and BiL, for upper and lower, where

6.2. Evaluation 65

Ti
m

e
R

ew
ar

d
S

ys
te

m
B

C
on

fig
.

S
ys

te
m

A

S
am

pl
e

no
de

la
y

S
am

pl
e

de
la

y
1

S
am

pl
e

de
la

y
2

S
am

pl
e

de
la

y
3

..
.

S
am

pl
e

de
la

y
k

1
r 1

c 1
(r

1,
c 1
)

-
-

-
..

.
-

2
r 2

c 2
(r

2,
c 2
)

(r
2,

c 1
)

-
-

..
.

-
3

r 3
c 3

(r
3,

c 3
)

(r
3,

c 2
)

(r
3,

c 1
)

-
..

.
-

4
r 4

c 4
(r

4,
c 4
)

(r
4,

c 3
)

(r
4,

c 2
)

(r
4,

c 1
)

..
.

-
5

r 5
c 5

(r
5,

c 5
)

(r
5,

c 4
)

(r
5,

c 3
)

(r
5,

c 2
)

..
.

-
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. .
.

. . .
k

r k
c k

(r
k,

c k
)

(r
k,

c k
−

1)
(r

k,
c k
−

2)
(r

k,
c k
−

3)
..

.
-

k
+

1
r k
+

1
c k

+
1

(r
k+

1,
c k

+
1)

(r
k+

1,
c k
)

(r
k+

1,
c k
−

1)
(r

k+
1,

c k
−

2)
..

.
(r

k+
1,

c 1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. .

.
. . .

n
−

k
r n
−

k
c n
−

k
(r

n−
k,

c n
−

k)
(r

n−
k,

c n
−

k−
1)

(r
n−

k,
c n
−

k−
2)

(r
n−

k,
c n
−

k−
3)

..
.

(r
n−

k,
c n
−

2k
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. .

.
. . .

n
−

2
r n
−

2
c n
−

2
(r

n−
2,

c n
−

2)
(r

n−
2,

c n
−

3)
(r

n−
2,

c n
−

4)
(r

n−
2,

c n
−

5)
..

.
(r

n−
2,

c n
−

k−
2)

n
−

1
r n
−

1
c n
−

1
(r

n−
1,

c n
−

1)
(r

n−
1,

c n
−

2)
(r

n−
1,

c n
−

3)
(r

n−
1,

c n
−

4)
..

.
(r

n−
1,

c n
−

k−
1)

n
r n

c n
(r

n
,c

n
)

(r
n
,c

n−
1)

(r
n
,c

n−
2)

(r
n
,c

n−
3)

..
.

(r
n
,c

n−
k)

Table 6.1: Composition of samples for the estimators with different delays. n denotes
the number of time steps the system has run and k < n is the maximum delay that
will be analyzed. On the left side, the data points gathered at a specific time if
interested in the influence from system A on system B are depicted. On the right
side the samples for the influence detection with delays that can be composed in
each time step are shown. The sample for t− i are the samples that will be used to
detect influences with a delay of i steps.

66 Chapter 6. Delayed Influences

rt Influence Detector for Delay 2

Influence Detector for Delay 1

Influence Detector for Delay 0

...

Influence Detector for Delay k

ct−2

ct−1

ct−0

...

ct−k

Figure 6.1: The concept for the detection of delayed influences.

6.2. Evaluation 67

Upper
Workbench

Lower
Workbench

Upper
Workbench

Lower
Workbench

Pick and Place Robot

Mover with Workpiece

Figure 6.2: A top-down view on the smart factory scenario. The green ovals mark
workbenches. Two each are interconnected by movers, depicted as red squares,
which can transport workpieces clockwise on the track, shown as black line. In the
middle, in gray, there is a robot that can pick the work pieces from one mover up
and place them on empty movers at dedicated spaces.

i ∈ {L, R} stands for left or right. Each of the benches has different possibilities to
configure themselves: BLU can chose from {0, 1, 2}, BLL from {0, 1, 3}, BRU from
{0, 5, 6}, and BRL from {0, 3, 7} where the configuration 0 means that the bench is
not working. The other configurations may be different drills or saws, for instance.
For the purpose of measuring the influence in the system, we assume that the work
benches and the pick and place robot take a random configuration in each step,
where the configurations are uniformly distributed. Each time step, a work piece is
introduced in the simulation at the entry point. All of these work pieces have to be
handled with configuration 2 and afterwards with configuration 5 to be useful for the
further process. For the reward, we add a function to the work benches that gives
a value of 1 if the correct configuration for the work piece has been chosen and 0
otherwise. For this scenario, we expect to find an influence of work bench BLU on
BRU with a delay of 5 time steps. This is because the travel time from bench BLU to
BRU via the pick and place robot is 5.

68 Chapter 6. Delayed Influences

For the results, we present the values of association measured between the
reward of BRU and the past configurations of BLU. Additionally, the values of associ-
ation have been compared with a value that has been created independently and
with no association at all. The evaluation comprises the standard measurement and
the measurement with the consideration of other configuration components from
Chapter 5. The first is not considering the own configuration of BRU and the second
does consider these configurations. The results are based on 100 independent runs
that are simulating the first 700 steps each. The results for a delay of 0-9 time steps
have been measured with seven different dependency measures. The simulation
has been conducted in a Mason simulation and each of the workstations chooses a
configuration from a uniform distribution in each step.

In Figure 6.3-6.8, we see the results for the measured values of three different
dependency measures. These three measures have been selected exemplary: the
maximal information coefficient as a representative of the modern, very powerful
measures, the Pearson correlation as a representative of the classical, simpler
approaches that need less computational power, and the continuous mutual infor-
mation as an inappropriate choice for this system type. The results for the other
measures can be found in Appendix A. Each of the figures shows two graphs;
the first is a comparison between the influence estimation from BLU on BRU and
the estimation of the influence from a notional, independent workbench. In Figure
6.3-6.5, we see the results if the configuration of BRU is not considered, i.e., the
general method from Section 4.1 is applied. In the remaining Figure 6.6-6.8, this
configuration has been considered, i.e., the method described in Section 5.

Considering the second graph in each figure, as expected, we can see that the
values for the delay of 0-4 time steps and 6-9 time steps are rather low and on
an equal level for each dependency measure. For a delay of 5 steps, we see that
the values for the maximal information coefficient and the Pearson correlation are
significantly higher than for the rest of the steps. An exception is the value of the
continuous mutual information that is approximated with the Kraskov method where
the values remain on an equal level that can be seen in Figure 6.5 and 6.8.

In the upper graphs, we see the percentage of runs in which the measured
value is higher than the comparison value that is calculated using an independent
random variable. We see that the values of a delay of 0-4 and 6-9 steps are at
about 50%. This means that for this delay we do not see that an influence has
been detected here. In contrast, we see that for a delay of 5 steps the maximal

6.3. Summary 69

information coefficient and the Pearson correlation find an influence, i.e., the values
are higher in 100% of the runs. Again, we see an exception for the Kraskov method
which does not recognize the influence.

Concluding the results, we have seen that the method for the detection of delayed
influences works as good as on the immediate influences. Nearly each measure
can very reliable find the influence within the 700 steps and the differences between
them are quite marginal. One exception is the continuous mutual information that
again shows that it is not useful for discrete configuration spaces. Furthermore, we
see that the configuration of BRU does not have to be considered here but if taken
into account does change the quality of detection only marginally.

6.3 Summary

Beforehand, the general method of influence detection has been introduced in
Chapter 4.1 and extended in Chapter 5. In this chapter, we have build up on this
method and enhanced it with a mechanism to detect influences that affect other
systems after a period of time. Therefore, we first introduced how the estimation step
of the workflow has been adapted to cover such cases in Section 6.1. Afterwards,
we showed how the extended method performs on smart factories settings in
Section 6.2. We saw that the delayed influences can be properly detected.

In the following, we will explore how influences can be detected at runtime
in Chapter 7, and how influences can be addressed by means of reinforcement
learning algorithms in Chapter 8.

70 Chapter 6. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.3: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Maximal Information
Coefficient. For this measurement only a single estimator has been used, i.e.,
the configurations of workbench BRU have not been considered.

6.3. Summary 71

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.4: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Pearson correlation
coefficient. For this measurement only a single estimator has been used, i.e., the
configurations of workbench BRU have not been considered.

72 Chapter 6. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.5: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Continuous Mutual
Information. For this measurement only a single estimator has been used, i.e.,
the configurations of workbench BRU have not been considered.

6.3. Summary 73

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.6: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Maximal Information
Coefficient. For this measurement two estimators have been used, i.e., the
configurations of workbench BRU have been taken into account.

74 Chapter 6. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.7: The results for the smart factory application. The graphs show the results
for the influence of the upper workbench at the left station BLU on the upper work-
bench on the right station BRU measured with the Pearson correlation coefficient.
For this measurement two estimators have been used, i.e., the configurations of
workbench BRU have been taken into account.

6.3. Summary 75

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure 6.8: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Continuous Mutual
Information. For this measurement two estimators have been used, i.e., the
configurations of workbench BRU have been taken into account.

76 Chapter 6. Delayed Influences

7 | Influence Detection
at Runtime

Modern ICT systems often cannot be tested entirely since not all circumstances
the system faces can be foreseen due to a lack of awareness or time constraints.
This applies especially to the type of systems that this thesis focuses on. E.g.,
if another system is under control of another stakeholder or the systems should
be able to adapt to new goals or environmental changes it is especially difficult to
foresee all situations a system will face. Therefore, in this section, we look into the
detection of influences at runtime. A special examination of this is satisfied because
of the problem of static behavior of the systems that introduces disturbances in the
measurement by causing correlations that are not based on causality but coinci-
dence.

7.1 Methodology for Detection

Regarding the detection at runtime, we have to consider that the proposed influence
detection algorithm relies on dependency measures that estimate the correlation
between two random variables. If the method is applied at runtime, this can lead
to wrongly detected influences because such correlations can appear without an
underlying causality. In the previous experiments, it was possible to infer a causality
from the correlation since we enforced the configurations to be randomly selected
from independent uniform distributions. However, for the detection at runtime it has
to be factored in that we can face autocorrelations and other disturbances within the
configurations of the systems.

The approach to avoid this is to rely mostly on randomized configurations that

77

78 Chapter 7. Influence Detection at Runtime

appear naturally in applications which use reinforcement learning during runtime.
This is due to the need of exploration in this tasks to find optimal strategies and
avoiding to "get stuck" in a local optimum. This can happen quite often with greedy
approaches because the algorithm will only try one behavior and if it is "good" it
will stick to it and miss out on other strategies that will lead to better results. There
are different strategies to avoid this behavior. An easy and reliable approach is to
use a ε-greedy action selection [57], i.e., the algorithm will stick to the action that
it has evaluated as the best one so far most of the time but with a probability of ε

it will use a random action regardless of the so far evaluated usefulness of it. This
means a natural approach to the issue of correlation without causality is to only use
the samples that are formed from such exploration steps. But this would lead to a
significant lower amount of samples. To avoid this we will also examine in detail how
much "randomness" is necessary to allow the measurement to function properly by
conduction experiments with different levels of ε. Finding the lowest level of ε will
ensure the fastest detection of influences without running the risk of to falsify the
measurement.

One might be suspicious that a very high level is crucial for a successful detection.
However, the correlation mainly appears due to the repetition of specific pattern
in both systems in the same frequency. If such patterns are brought out of sync,
a correct detection is possible despite the repetition, i.e., a high autocorrelation
does not necessarily mean that the measurement is flawed. For instance, two
systems A and B each switch back and forth between their two configurations 1 and
2. The system A gets a reward of 0.5 if it applies 1 and 0.8 if it applies 2. If both
systems switch between two configurations in each time step the measurement will
be falsified because system B’s configuration will correlate with the reward of system
A. If one of the systems randomly do not switch their configuration the behavior
becomes "asynchronous" and the measurement works well.

7.2 Evaluation

In the following, the evaluation of the runtime detection on scenarios from the smart
camera domain.

We start on SCN 2 that has been introduced in Chapter 5 and Figure 5.2. Briefly
recapped, we have three cameras, where Camera 1 and Camera 2 influence each
other because of a overlap in their potential observable space. Camera 3 does not
overlap with one of the other cameras, and, therefore, it does not influence the other

7.2. Evaluation 79

Step Start 10k 20k 30k 40k 50k 70k 80k
ε 1.0 0.9 0.81 0.73 0.66 0.59 0.53 0.48

Step 90k 100k 110k 120k 130k 140k 150k 160k
ε 0.43 0.39 0.35 0.31 0.28 0.25 0.23 0.20

Step 170k 180k 190k 200k 210k 220k 230k 240k
ε 0.19 0.17 0.15 0.14 0.12 0.11 0.1 0.09

Step 250k 260k 270k 280k 290k 300k 310k 320k
ε 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.05

Table 7.1: The values for ε in the ε-greedy action selection. It starts at 1.0 and
decreases by 10% every 10k steps until it reaches 5%.

two. Previously, we saw how the detection works when the configuration is chosen
randomly from the full configuration space.

In the following, the experiments are based on control mechanisms that use
Q-learning (cf. Section 2.1.1) and use discretized states and relative actions. Q-
learning has been chosen since it is widely used and well understood. For the con-
crete implementation, we limit the alignment of the camera to 12 pan angles, i.e., it is
from sp = {0, 30, 60, . . . , 300, 330}, to 3 tilt angles, i.e., it is from st = {120, 150, 180},
and to 2 zoom levels, i.e., it is from cz = {12, 18}. This results in 12 · 3 · 2 = 72
states each camera has. The camera can increase, decrease or leave the pan, tilt
and zoom in each time steps resulting in 3 · 3 · 3 = 27 actions that can be applied.
This means that the configuration space is C = sp × st × sz for each camera and is
identical to the state space.

The first evaluation step is to find out how the limitation of the configuration
space and the order of states that are visited affect the influence detection. The
results can be found in Figure 7.1 and 7.2. There, the system has run for 10000
steps by applying random actions and show the percentage of runs in which Camera
1 detects the Camera 2 as more influencing then Camera 3. The results for the pan
and zoom are depicted in Figure 7.1. There, we see that each measure can find the
influences very reliable within the 10000 steps with the distance correlation being
much more unreliable using less samples. In Figure 7.2, the results for the tilt are
depicted. We can see that only few steps needed to find the influence, i.e., in only
600 steps each of the measures can detect very reliable the influence.

80 Chapter 7. Influence Detection at Runtime

As the next step we look at how the detection rate changes if we switch from a
purely random action selection to ε-greedy. The ε will be varied between 1 and 0.05
according to Table 7.1. It reflects that the ε is set to 1 at start and is then decreased
by 10% each 10000 steps. The results can be found in Figure 7.3 and 7.4. There, we
see the detection rate if single-agent Q-learning with an ε-greedy action selection
is used and the last 10000 samples are used for the detection. The Q-learning
algorithm uses a low α = 0.1 to handle fluctuations in the reward signal and a high
γ = 0.9 to allow the learning of a sequence of actions. In Figure 7.3a, we see
that for the pan the detection works well for the first 50000 steps, i.e., for ε > 0.66.
Afterwards, the detection works worse for some of the measures with an average
of about 80%. The continuous mutual information sticks out here with a perfect
detection even with low values of ε. For the tilt, in Figure 7.3b, we see a similar
effect, but it is way less distinct and shows only for lower ε. In Figure 7.4, the graph
for the zoom is shown. It shows way more sensitive regarding ε and makes the
measurement unreliable.

Concluding the results, we have seen how the application of a control algorithm
affects the influence detection in contrast to a random selection of configurations.
Due to the disturbances and autocorrelations, it is possible that influences are not
detected correctly. However, if it is ensured that an adequate amount of "random-
ness" is used to select the actions it results in proper results. For the example
examined here, we have seen that the usage of 66% randomly selected actions
allows a precise identification of influencing systems. If the usage of less randomly
selected actions is necessary, an amount of greedy actions should be removed from
the set for the calculation of influences until the required amount of "randomness"
can be ensured.

7.3 Summary

In the previous chapters, we have seen how the influence detection can be extended
to cover multi-component influences (cf. Chapter 5) and delayed influences (cf.
Chapter 6). In this chapter, we have focused on the detection of influences during the
runtime of a system. The main idea is to use the exploration steps in reinforcement
learning algorithms to avoid measuring correlations that appear due to the control
algorithms rather then influences between the subsystems which has been described
in detail in Section 7.1. The approach is then evaluated in the smart camera domain

7.3. Summary 81

 0

 20

 40

 60

 80

 100
 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the zoom.

Figure 7.1: The results for the detection of influences in SCN 2. The influence
detection rate for the pan and zoom of Camera 1 versus the Camera 2 based
on 10 independent runs. The measurement is similar to the graphs before but
with the discretization of the state space and a Q-learning that applies the actions
randomly. The graphs show the number of runs, in which the influence of Camera 1
is measured higher than the influence of Camera 2, for different numbers of samples.

82 Chapter 7. Influence Detection at Runtime

 0

 20

 40

 60

 80

 100
 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for 300-9900 samples.

 0

 20

 40

 60

 80

 100

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) A detailed few for 50-500 samples.

Figure 7.2: The results for the detection of influences in SCN 2. The influence
detection rate for the tilt of Camera 1 versus the Camera 2 based on 10 independent
runs. The measurement is similar to the graphs before but with the discretization
of the state space and a Q-learning that applies the actions randomly. The graphs
show the number of runs, in which the influence of Camera 1 is measured higher
than the influence of Camera 2, for different numbers of samples.

7.3. Summary 83

 0

 20

 40

 60

 80

 100
 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the tilt.

Figure 7.3: The results for the detection of influences in SCN 2. The influence
detection rate for the pan and tilt of Camera 1 versus the Camera 2 based on 10
independent runs. The measurement is similar to the graphs before but here the
camera is controlled by a Q-learning algorithm with ε-greedy strategy, where the ε is
falling from 1 to 0.05 in 10%-declines each 10k steps. The graphs show the number
of runs, in which the influence of Camera 1 is measured higher than the influence of
Camera 2, using the last 10k steps as samples.

84 Chapter 7. Influence Detection at Runtime

 0

 20

 40

 60

 80

 100

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

Figure 7.4: The results for the detection of influences in SCN 2. The influence
detection rate for the zoom of Camera 1 versus the Camera 2 based on 10 indepen-
dent runs. The measurement is similar to the graphs before but here the camera is
controlled by a Q-learning algorithm with ε-greedy strategy, where the ε is falling
from 1 to 0.05 in 10%-declines each 10k steps. The graphs show the number of
runs, in which the influence of Camera 1 is measured higher than the influence of
Camera 2, using the last 10k steps as samples.

7.3. Summary 85

in Section 7.2. There, we see for which exploration rates we can expect useful
results from the measurement.

In the following, in Chapter 8, we will see how the evaluation and adaption step
can be realized by means of reinforcement learning algorithms.

86 Chapter 7. Influence Detection at Runtime

8 | Self-adapting to Influences

In the previous chapters, we focused on the detection on the influences, which
is a crucial to step to the goal of optimal behavior. In this chapter, we introduce an
approach to self-adaption to the influences, i.e., the exploitation of the influences if
they have been discovered. To achieve this, we focus on the evaluation step and
the adaption step of the workflow. The focus is not on the presentation of a single
algorithm, but giving a general methodology based on the basic RL model and
realize it with the prominent Q-learning.

8.1 Methodology for Self-adaption

In general there is a variety of options to address the influences since the detection
is designed to work independently from the control algorithm of the system. Possible
reaction to influences go from a hand-crafted solution during design time over a
system that adapts during runtime in static patterns to a full self-learning behavior.
Potential candidates for such a learning algorithm can be found in in the area of
MARL. Depending on the problem, for example, distributed W-learning [109] can
be useful. However, in this section, we rely on a basic principle that unifies three
properties:

1. it is possible to start out with single learners and later on learn the cooperation,

2. it can be applied to every reinforcement learning algorithm,

3. it can be used with systems that have heterogeneous configuration spaces
and control algorithms, e.g., some of the systems have a static behavior.

The basic adaption principle is depicted in Figure 8.1. There, we adopt the basic
reinforcement learning model introduced in Section 2.1.1. We assume that previous

87

88 Chapter 8. Self-adapting to Influences

System B

Environment

Action atReward rt+1

State st

State s′t

System A

Conf. ct

Figure 8.1: The proposed method to adapt to other influencing agents in terms of
the reinforcement learning model.

measurement has resulted in a detection of an influence from system A on system
B meaning B should react properly regarding the configuration of A. Therefore,
we integrate the value of the configuration ct at time t into the state st resulting
in a state s′t. For example, if B’s states are given through a position represented
as (x, y)-coordinate between 0 and 1 each, its state space is S = [0, 1] × [0, 1].
Assuming the influence detection has found A’s configuration component cB, which
represents the speed of B and is between −1 and 1, as influencing, the state space
S will be extended to a new state space S′ = S× [−1, 1] = [0, 1]× [0, 1]× [−1, 1].

There are two points to discuss in this approach. The first one is how the
influenced system B will know the current configuration of A. This is not an issue
with delayed influences but only with immediate. It can be resolved by letting the
influenced system wait until it can observe the decision either by a message of
the influencing system or through sensors. If several influences in the system
are detected this can lead to chains of systems that wait on each other and it is
necessary to check for each of the integrations in the state space that the graph
they form is acyclic.

As mentioned before this method is in principle independent from the learning
algorithm as long it fits the RL model. But the extension of the state space can be
seen as a special instance of transfer learning in the RL domain [110]. This makes
algorithms that have a strong transfer capability more suitable for this task. In this
thesis, we rely on Q-learning since it gives an easy and natural way to realize the
transfer during runtime that will be explained in the following: Assuming that cB can
take k different values from each state s, there will be k new states s′i, i ∈ {1, . . . , k}.

8.2. Evaluation 89

Before the expansion of the state space, the system holds a current Q-value for
Q(s, aj), where aj ∈ A are the possible actions. To transfer the already learned
knowledge, the new Q-values are set to Q(s′i, aj) := Q(s, aj), for each i ∈ {1, . . . , k}
and aj ∈ A. The advantage here is that in states that are nor affected by the
other system the Q-value will remain at the correct value and in states where the
system is influenced the values will be update to their true value using the upcoming
experiences.

If the state space is continuous the standard Q-learning can not be used. An
alternative would be for example the extended classifier system (XCS-R) with
continuous-valued states [111, 112] that has good online learning capabilities and is
transferable [113].

A further issue is that in the previous experiments about runtime detection, we
have seen that a small amount of runs might detect the independent systems as
more influencing then they actual are. This behavior is temporary and can be
corrected by using a bigger sample size. However, during the runtime of the system
it is not possible to determine if it is a malicious detection. Therefore, we introduce a
factor by that the real measurement has to be higher than the calculated notional
independent counterpart which is used as baseline. Furthermore, the different
configuration parts are ranked and after each influence calculation only highest
ranked configuration is integrated in the state space of each camera. Even though it
is very unlikely this cannot prevent erroneous integrations entirely but, if a wrong
integration is detected later, it can be reverted easily.

8.2 Evaluation

In the next part, we examine how the influence measurement does react to the
adaption that has been introduced previously. To do so, we integrated the three
configuration components of Camera 2 in the state of Camera 1 at the start of the
simulations. In Figure 8.2 and 8.3, we see similar results as for the independent
learning with especially bad results for the maximal information coefficient and the
distance correlation.

As a last comparison on this scenario, we have a look at the rewards received
with the different method: the independent learners in Figure 8.4a, the integration
of the configuration of Camera 2 in the state of Camera 1 in Figure 8.4b, and the

90 Chapter 8. Self-adapting to Influences

dynamic integration of the configurations at runtime in Figure 8.5. We can see that
the independent learners are not able to reach an expectable result since they lack
a coordination mechanism. The integration at start can reach an optimal result of
about 25 after 250k steps. The dynamic expand can reach a similar result but learns
slower. This is because the transfer mechanism cannot play out its advantages here
since the Q-values differ for all states in this example.

In Figure 8.6, we see scenario SCN 3, another scenario from the smart camera
domain. The figure shows a top-down view on a smart camera network with six
cameras depicted as black dots. Each of the cameras has a corresponding partial
circle around it that visualizes the space potential observable by the cameras. The
circle is only partial since the vision is blocked by pillars that are shown as gray
squares. They are several streams of targets entering and crossing the scene from
all sites marked by yellow arrows. We see that not each pair of cameras share
a common area both can observe. Therefore, only the pairs (1, 2), (2, 4), (3, 4),
(3, 5), (5, 6) influence each other and have to consider the configuration of the other
camera.

Again, we apply the Q-learning algorithm to this scenario but with a small
adaption. This time, we do not use relative action, e.g., increase or decrease, but
absolute ones, i.e., each of the defined states can be accessed from every other
state leading to 72 actions. Since this does not require to learn sequences of action
to reach one alignment from the previous the discount factor is set to γ = 0.

The results are shown in Figure 8.7 and 8.8. The single-agent learning case
in Figure 8.7 is clearly worse than the other variants only reaching a reward of 2
on average since the cameras do not coordinate well. We see that the algorithms
gets stuck in local optima when ε drops low at around 250k steps since single
configurations are valued the highest due to the lack of knowledge of the influencing
systems. The other to variants show the dynamic integration in the state space. In
Figure 8.8a, we see how the system performs when 3000 samples are used for the
detection; in Figure 8.8b, 10000 samples are used. The graphs are nearly identical
and both reach an optimal behavior that gives an average reward of above 3.

Finally, in Figure 8.9, we see the cooperation network that evolved after 200000
steps in an exemplary run. Each arrow means that the configuration parts of the
camera that is pointed at are integrated in the state space of the first camera. We see
that the structure that formed reflects the structure of influence described before.

Concluding the results, we have seen how single learner compete with a priori

8.3. Summary 91

adapted systems and a stagewise integration of influencing configurations in the
state space of a RL algorithm. We have seen that the single learner can not
compete on the same level as influence respecting variants. The influence detecting
approaches have shown similar results, which makes them useful options for the
design of systems.

8.3 Summary

In the previous chapters, we introduced the general influence detection (cf. Chap-
ter 4.1), and extensions of it to make make it applicable to a wider range of cases
by refining on the estimation step of the general workflow. We explored multi-
component influences (cf. Chapter 5), delayed influences (cf. Chapter 6), and the
influence detection at runtime (cf. Chapter 7).

In this chapter, the main focus is on the evaluation and the adaption step of
the general workflow. Especially, a method for the self-adaption of subsystems
to influences from other subsystems has been introduced. The main idea is to
adapt the the classical single learner reinforcement learning model by adding
the configurations of influencing agents to the state space during the runtime
of the system (cf. Section 8.1). The adaption capability of the systems has been
demonstrated in the smart camera domain (cf. Section 8.2).

In the following, practical advice regarding the influence detection are given in
Chapter 9 and the thesis is concluded in Chapter 10.

92 Chapter 8. Self-adapting to Influences

 0

 20

 40

 60

 80

 100
 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(a) The results for the pan.

 0

 20

 40

 60

 80

 100

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

(b) The results for the tilt.

Figure 8.2: The results for the detection of influences in SCN 2. The influence
detection rate for the pan and tilt of Camera 1 versus the Camera 2 based on 10
independent runs. The cameras are controlled with the same algorithms as before
but the pan, tilt, and zoom configuration of Camera 2 are integrated in the state
space of Camera 1 at the start of the runs. The graphs show the number of runs, in
which the influence of Camera 1 is measured higher than the influence of Camera 2,
using the last 10k steps as samples.

8.3. Summary 93

 0

 20

 40

 60

 80

 100

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

Distance Correlation

Kendall Correlation

Maximal Information Coefficient

Mutual Information (continuous)

Pearson Correlation

Spearman Correlation

Figure 8.3: The results for the detection of influences in SCN 2. The influence
detection rate for the zoom of Camera 1 versus the Camera 2 based on 10 indepen-
dent runs. The cameras are controlled with the same algorithms as before but the
pan, tilt, and zoom configuration of Camera 2 are integrated in the state space of
Camera 1 at the start of the runs. The graphs show the number of runs, in which
the influence of Camera 1 is measured higher than the influence of Camera 2, using
the last 10k steps as samples.

94 Chapter 8. Self-adapting to Influences

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

(a) The results with single learners.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

(b) The results if a the pan, tilt, and zoom configurations of Camera 2 are integrated in the
state space of Camera 1.

Figure 8.4: The figure shows the rewards received by the system if the Q-learning
algorithm is applied to SCN 2 with single learners and with an integration at the
start.

8.3. Summary 95

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

Figure 8.5: The figure shows the rewards received by the system if the Q-learning
algorithm is applied to SCN 2 and the configurations are integrated dynamically
during runtime.

96 Chapter 8. Self-adapting to Influences

Camera 2Camera 1

Camera 3

Camera 5

Camera 4

Camera 6

Figure 8.6: SCN 3. A top-down view on a larger smart camera network with 6
cameras. The position of the cameras are depicted by the black dots. Each of them
has a colored circle around it marking the area that can be potentially observed by it
and a red shape that shows an exemplary observed area. The gray squares show
the position of pillars limiting the potentially observable areas. The yellow arrows
mark entry points of observation targets and there movement direction.

8.3. Summary 97

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

Figure 8.7: The figure shows the average reward over 10 runs in the scenario SCN
3. The cameras are each controlled by a Q-learning algorithm with a ε-greedy action
selection, where the ε decreases. It is restricted to single agent learning.

98 Chapter 8. Self-adapting to Influences

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

(a) The results if 3k samples are used to determine the candidates for an integration.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350 400 450 500

R
ew

ar
d

Steps in 1000

Average Reward

(b) The results if 10k samples are used to determine the candidates for an integration.

Figure 8.8: The figure shows the average reward over 10 runs in the scenario SCN
3. The cameras are each controlled by a Q-learning algorithm with a ε-greedy action
selection, where the ε decreases. It uses the integration of states at runtime.

8.3. Summary 99

1 2

3

4

5 6

PAN,TILT,ZOOM

PAN,TILT,ZOOM

PAN,TILT

PAN

PAN,TILT

Figure 8.9: A snapshot of the structure of the learning network in an exemplary run
on SCN 3 after 200000 steps

100 Chapter 8. Self-adapting to Influences

9 | Practical Considerations

In the previous chapters, we have seen several techniques to find influences
among subsystems: the general approach, the consideration of other configuration
components, the handling of delayed influences, the detection at runtime, as well as
an approach to self-adapt to influences.

In this chapter, we outline a practical aspects that will allow for a more efficient
and effective usage of the influence detection in real-world systems. This includes
borderline cases where the detection can potentially be expensive regarding the
communication or computational requirements where advice are given on how to
avoid such situations as good as possible.

9.1 Choosing appropriate Dependency Measures

In this thesis, we introduced several dependency measures for random variables
and compared their usefulness in different scenarios. For the final experiments with
the runtime adaption, we used the MIC but, as stated before, the results would have
been equally with other measures. In general, however, the choice of the measure
can be crucial to a successful detection. There are two main criteria. The first is the
type of the configuration component: nominal, ordinal, or infinite real-valued. For
nominal it can be useful to avoid measures that rely on the distance between the
categories. The only measure guaranteeing this is the discrete mutual information,
but this does not mean that the other measures are useless. For the ordinal values,
we have seen a wide range of useful measures. The big exception here was the
continuous mutual information that cannot handle the discrete values while other
measures for continuous values, such as the maximal information coefficient, did
not show weaknesses in this area. Finally, for the infinite real-valued configurations,
we can use any measure except the discrete mutual information.

101

102 Chapter 9. Practical Considerations

The second criteria is what we previously called the strength. The set of mea-
sures that can find stochastic dependencies, i.e., all dependencies that can appear,
are the discrete and continuous mutual information, the maximal information coeffi-
cient, and the distance correlation. Two measures are able to find only monotone
dependencies: the Kendal rank correlation and the Spearman rank correlation. And
finally, the Pearson correlation can measure only linear correlations reliably.

If used in a productive system it can be useful to consider the usage of multiple
measures. This can basically be achieved by two means: either the measures can be
run in parallel and afterwards combined by a applying a threshold which can reduce
malicious detections, or they can be applied in stages, i.e., first a computational
light-weight algorithm is used and in case it cannot find any associations a more
powerful measure can be applied. An advantage of the second approach is the
potentially reduced resource requirement.

9.2 Sequential Analysis of Systems

In the conducted experiments, each system measures the influence of each other
system on itself. This can lead to a high system load and possibly to a backlog in
the detection of influences, especially in large-scale systems.

To avoid such situations, it is possible to analyze each other system in a se-
quential order instead of simultaneously (possibly with multiple measures), i.e., a
system creates an order and starts analyzing the influence from the first system
in the sequence. As soon as it is done analyzing the first system it can switch to
the next and so on. This order can be randomly or based on the physical or virtual
distance, for instance. This leads to less computational load.

9.3 Reduction of Network Load

In the previous experiments, we assumed that the influence origins from an arbitrary
node in the overall system, i.e., each of the systems distributes its configuration via
network to the other systems. Depending on the communication capabilities and
the origin of influences in the systems this can lead to a high network load affecting
the transmissions necessary to operate the systems, e.g., the results in a wireless
sensor network cannot be forwarded to the sink.

Similar to the reduction of computational resources this can be avoided by

9.4. Employ more Accurate Conditioning 103

analyzing the systems sequential. Another effective way that can be used for some
system types is to send the reward to the other systems instead of the configuration.
This switches the places where the influences are calculated, i.e., instead of system
A receiving the configurations of system B and calculating the influence of system
B on itself, it sends the rewards of itself to system B that in turn calculates the
influence. Since the configuration will most often create more traffic then just the
reward this can reduce the computational overhead but this approach is limited to
systems which are trusted and are willing to share their resources.

9.4 Employ more Accurate Conditioning

In Chapter 5, we have seen how the other configurations can be incorporated in the
influence detection. The method relies on conditioning the dependency measure
by them, but a very accurate computation will make the sample size for each of the
parts small. Therefore, in the experiments, only two parts have been used to keep
the maximal sample size. However, it is possible that two parts do not reflect the
actual influences or it takes very long to find them. In this case it can be reasonable
to use more parts. If conditioned by a discrete configuration, it would be possible
to use several parts up to the number of configurations in this component. For
continuous configuration components the number is theoretically unlimited but the
sample size should not be too small. In case no influence has been detected for two
parts the number of parts can be increased gradually but each part should hold an
adequate number of samples. For the smart camera networks, we saw that each
part can hold as few as around 100 samples to ensure useful results. This number
is deducted from the last experiment where 3000 samples have been used with 32
parts meaning on average every part holds 3000/32 = 93.75 samples. However, the
actual number is depended on the application.

9.5 Handling Temporal Influences

In this thesis, the experiments are conducted under the assumption of static influ-
ences, i.e., the influences are there from the start of the system and do not change
or vanish. In real-world systems other time behaviors are possible. Regarding the
smart cameras, this could be a partial failure on one camera, which consequently
cannot use the whole pan angle potential and does not longer share an overlap with
another camera. In terms of machine learning one could talk about concept drift or

104 Chapter 9. Practical Considerations

concept shift. To catch such changes, it is necessary to continuously reanalyze the
influences using a sliding window of samples. For the experiments in Chapter 8, we
already used such a technique and compared the results for a sliding window of
size 3000 and 10000 and have seen that the results do not differ much. Starting with
a small size for the window and increasing it gradually in case no results are found
can ensure to find an optimal window size.

9.6 Handling Influences from Multiple Systems

In the conducted experiments, we focused on influences that have their origin at one
system and influences another. This has been extended to include the configuration
of the influenced system itself in Section 5. In real-world applications, it can be
necessary to find influences that only appear if two (or more) systems configure in
a specific way, i.e., joint influences, and cannot be detected by the basic method.
This happens due to the same reasons we considered the remaining configuration
components of the influencing system and the configuration components of the
influenced system. Hence, this can be addressed by conditioning the measurement
by the configuration components of the second system.

10 | Conclusion

In this last chapter, the thesis is summarized and discussed. Additionally, an
outlook on future research directions is given.

10.1 Summary and Discussion

In this thesis, we started out by reviewing several current and looming trends in the
domain of OC and related fields with a focus on the mutual influences that appear
within such systems. Based on this examples we derived the problem statement
and gave an outline for the thesis.

This was followed by a clarification of terms and a definition of the target systems
for this thesis. Furthermore, the system model was put into the context of the
observer/controller architecture and reinforcement learning. Additionally, a brief
introduction to the applications used in this thesis was given.

Afterwards, related work regarding the detection of mutual influences is explored.
The approaches are mainly from the MARL domain and alternative statistical meth-
ods. It was followed by the introduction of the approach proposed in this thesis, i.e.,
the general workflow and the technical application of mutual influence detection was
elaborated. This included the dependency measures used in this thesis as well as
examples and experiments on elementary use cases and the SCN domain.

The methodology has then then been extended to consider multiple configuration
components by using an approximation of the conditioned dependency values.
Again, an example was given and the approach was evaluated on elementary use
cases and the SCN application.

Afterwards, a further extension was introduced to enable the detection of delayed
influences, i.e., influences that will only show their effect after a period of time. This
was achieved by including the past configuration in the detection. Since such

105

106 Chapter 10. Conclusion

delayed influences do not appear in the examined SCN application, the approach
has been evaluated on the smart factory application.

Next, the behavior of the approach has been examined under runtime conditions.
This led to disturbances of the measurement in the form of correlations that occur
by chance, and a course of action to circumvent this was shown. The evaluation
has been conducted on the SCN application.

Finally, a methodology for the adaption to influences was given by adapting
the basic RL model to handle them by means of an integration of the influencing
configuration components into in the state space of the influenced system. The
usefulness of the approach has been demonstrated in SCN scenarios.

After the introduction of the method and its extensions, the approach as a whole
was discussed by giving practical advice on how to detect influences in an efficient
way.

In the following, we revisit the potential areas of application introduced in Sec-
tion 1.1 and discuss exemplary how the influence detection can contribute to these
areas.

• Cloud computing often relies on several servers that have to be coordinated
and possibly fulfill different tasks. In such an environment it is very likely that
the servers influence each other on a level that is not not obvious to the user.
For instance a server can rely on the well-function of another (cf. Amazon S3
in Section 1.1). Such influences can be detected by methods proposed in this
thesis in order to allow the servers to adapt to each others behavior.

• Vehicular traffic control can be improved by employing so called progressive
signal systems, which time the green phases of traffic lights of neighboring
intersections to reduce the waiting time. Today, the identification of potential
paths of such a coordination is typically done manually by a traffic engineer
and therefore time consuming and mostly static over the life time of the system.
Following the methodology introduced in this thesis, such influences can be
detected automatically during runtime and the systems can self-adapt to the
influences. Furthermore, it can be detected if the influences change during
runtime, e.g., in case of road works between intersections, and the system
can adapt to this circumstances, accordingly.

• Industry 4.0 contains the emerging field of smart factories. The potential

10.2. Outlook 107

benefits of the influence detection in this area have been shown throughout
this thesis. For instance, this is the detection of influences between work
stations regarding their configuration of tools which can lead to a improved
behavior of the factory if considered accordingly.

• Internet of things relies on smart camera networks for several applications,
e.g., the identification of objects, persons, or their behavior. The potential
benefits of the influence detection for an optimal configuration of the smart
cameras have been shown throughout this thesis. For instance, this is the
distinction between influencing and non-influencing cameras for the purpose
of observation from multiple angles. This distinction can then be used to learn
a cooperative behavior.

10.2 Outlook

In the following two directions for future work are outlined. They aim mainly to further
automate the detection process by an automatic combination of the dependency
measures and to extend the applicability to systems that are not covered by the
current system model.

Automated Weighting of Dependency Measures In Section 9.2, we introduced
the idea to use multiple dependency measures for the detection. This is due to the
different detection rates for the different classes of systems. The recommendation
relies on simple techniques such as majority voting, but a useful approach could
be to consider ensemble learning techniques [114]. Especially methods, where the
combination of the individual learners is done by determining the weights of the
individual learners on a case by case basis regarding the structure of the system,
could further automate the process of influence detection. The main challenge
here lies in the engineering of a feedback signal or a training set that allows the
combinator to find optimal weights for each situation.

Detecting Influences in Systems without a Local Reward Signal In this thesis,
the system model relies on a local reward that is a feedback signal to the subsystems
regarding their decisions. If their is no obvious choice for such a reward signal, it can
be useful to have an influence detection mechanism that is able to work without such.
Therefore, an interesting approach for future work is to change the system model to a
type where only the configuration and a current state of the subsystems is necessary.

108 Chapter 10. Conclusion

The dependency can then be measured between one system’s configuration and
another system’s situation. However, this introduces the problem that the situation
is very likely not a one dimensional variable but has several dimensions, e.g., the
position is composed of a x- and y-coordinate. Therefore, it will be necessary to
use dimension reduction techniques on the situation of a system or to measure
the dependency between two groups of random variables, e.g., with a canonical
correlation analysis [115].

Besides these two concrete directions it is promising to apply the influence
detection to real-world systems, especially with different learning algorithms and
influence structures.

Bibliography

The entries [1]-[26] are own publications and can be found on page xiii.

[27] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265,
no. 3, pp. 66–75, Jan. 1991.

[28] Bitkom e.V., Zukunft der consumer technology – 2017: Marktentwicklung,
Trends, Mediennutzung, Technologien, Geschäftsmodelle, 2017.

[29] Kantar Worldpanel, An incredible decade for the smartphone: What’s next?
The future of mobile is in combining devices, content, and services, Feb. 24,
2017.

[30] M. T. Koroglu and K. M. Passino, “Illumination balancing algorithm for smart
lights,” IEEE Transactions on Control Systems Technology, vol. 22, no. 2,
pp. 557–567, Mar. 2014.

[31] A. Radziwon, A. Bilberg, M. Bogers, and E. S. Madsen, “The smart factory:
Exploring adaptive and flexible manufacturing solutions,” Procedia Engi-
neering, vol. 69, no. Supplement C, pp. 1184–1190, 2014, 24th DAAAM
International Symposium on Intelligent Manufacturing and Automation, 2013.

[32] J. Lutin, A. Kornhauser, and E. Lerner-Lam, “The revolutionary development
of self-driving vehicles and implications for the transportation engineering
profession,” ITE Journal, pp. 21–26, Jul. 2013.

[33] M. Broy (Ed.), Cyber-Physical Systems: Innovation durch softwareintensive
eingebettete Systeme, ser. acatech Diskutiert. Berlin: Springer, 2010.

[34] C. Low, Y. Chen, and M. Wu, “Understanding the determinants of cloud
computing adoption,” Industrial Management & Data Systems, vol. 111,
no. 7, pp. 1006–1023, 2011.

[35] C. Müller-Schloer and S. Tomforde, Organic Computing – Technical Systems
for Survival in the Real World. Springer International Publishing, 2018.

[36] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Organic Computing - A
Paradigm Shift for Complex Systems, 1st. Berlin, Heidelberg: Springer-
Verlag, 2011.

109

110 Bibliography

[37] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[38] D. Tennenhouse, “Proactive computing,” Commun. ACM, vol. 43, no. 5,
pp. 43–50, May 2000.

[39] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons,
2009.

[40] S. Kernbach, T. Schmickl, and J. Timmis, “Collective adaptive systems:
Challenges beyond evolvability,” CoRR, vol. abs/1108.5643, 2011.

[41] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering Cloud Computing: Founda-
tions and Applications Programming, 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2013.

[42] C. O’Flaherty, Transport planning and traffic engineering. Elsevier, 1997.

[43] H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-Schloer, and
H. Schmeck, “Organic traffic control,” in Organic Computing — A Paradigm
Shift for Complex Systems, C. Müller-Schloer, H. Schmeck, and T. Ungerer,
Eds. Basel: Springer Basel, 2011, pp. 431–446.

[44] S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hähner, C. Müller-
Schloer, and H. Schmeck, “Decentralised progressive signal systems for
organic traffic control,” in 2008 Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, Oct. 2008, pp. 413–422.

[45] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How virtual-
ization, decentralization and network building change the manufacturing
landscape: An industry 4.0 perspective,” J. Mechanical, Aerospace, Indus-
trial, Mechatronic and Manufacturing Engineering, vol. 8, no. 1, pp. 37–44,
2014.

[46] K. Bellman, A. Herkersdorf, and M. G. Hinchey, “Organic computing - design
of self-organizing systems (dagstuhl seminar 11181),” in Dagstuhl Reports,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, vol. 1, 2011.

[47] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Com-
puter networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[48] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013, Including Special
sections: Cyber-enabled Distributed Computing for Ubiquitous Cloud and
Network Services & Cloud Computing and Scientific Applications — Big
Data, Scalable Analytics, and Beyond.

[49] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted
to know about smart cities: The internet of things is the backbone,” IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, Jul. 2016.

Bibliography 111

[50] M. Yun and B. Yuxin, “Research on the architecture and key technology of in-
ternet of things (iot) applied on smart grid,” in 2010 International Conference
on Advances in Energy Engineering, Jun. 2010, pp. 69–72.

[51] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, “The
internet of things for health care: A comprehensive survey,” IEEE Access,
vol. 3, pp. 678–708, 2015.

[52] S. Tomforde, J. Hähner, H. Seebach, W. Reif, B. Sick, A. Wacker, and I.
Scholtes, “Engineering and Mastering Interwoven Systems,” in ARCS 2014 -
27th International Conference on Architecture of Computing Systems, Work-
shop Proceedings, February 25-28, 2014, Luebeck, Germany, University of
Luebeck, Institute of Computer Engineering, 2014, pp. 1–8.

[53] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, C. Müller-Schloer, and
H. Schmeck, “Possibilities and limitations of decentralised traffic control
systems,” in The 2010 International Joint Conference on Neural Networks
(IJCNN), Jul. 2010, pp. 1–9.

[54] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl, “Au-
tonomous multicamera tracking on embedded smart cameras,” EURASIP
Journal on Embedded Systems, vol. 2007, no. 1, p. 092 827, Jan. 2007.

[55] K. L. Bellman, S. Tomforde, and R. P. Würtz, “Interwoven systems: Self-
improving systems integration,” in Eighth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014,
London, United Kingdom, September 8-12, 2014, 2014, pp. 123–127.

[56] S. Tomforde and C. Müller-Schloer, “Incremental design of adaptive systems,”
JAISE, vol. 6, no. 2, pp. 179–198, 2014.

[57] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st.
Cambridge, MA, USA: MIT Press, 1998.

[58] A. van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings Fifth IEEE International Symposium on Requirements
Engineering, 2001, pp. 249–262.

[59] A. van Lamsweerde, Requirements Engineering: From System Goals to UML
Models to Software Specifications, 1st. Wiley Publishing, 2009.

[60] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards run-time adap-
tation of test cases for self-adaptive systems in the face of uncertainty,” in
Proceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, ser. SEAMS 2014, Hyderabad,
India: ACM, 2014, pp. 17–26.

[61] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of
multiagent reinforcement learning,” Trans. Sys. Man Cyber Part C, vol. 38,
no. 2, pp. 156–172, Mar. 2008.

112 Bibliography

[62] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-Art.
Springer Publishing Company, Incorporated, 2014.

[63] C. J. C. H. Watkins and P. Dayan, “Technical note q-learning.,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[64] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-Schloer,
U. Richter, and H. Schmeck, “Observation and Control of Organic Systems,”
in Organic Computing - A Paradigm Shift for Complex Systems, ser. Au-
tonomic Systems, C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds.,
Birkhäuser Verlag, 2011, pp. 325–338.

[65] C. Gruhl, B. Sick, A. Wacker, S. Tomforde, and J. Hähner, “A building block
for awareness in technical systems: Online novelty detection and reaction
with an application in intrusion detection,” in 2015 IEEE 7th International
Conference on Awareness Science and Technology (iCAST), Sep. 2015,
pp. 194–200.

[66] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter, “Adap-
tivity and Self-organization in Organic Computing Systems,” ACM Trans. on
Autonomous and Adaptive Systems, vol. 5, no. 3, pp. 1–32, 2010.

[67] IBM, “An architectural blueprint for autonomic computing,” IBM, Tech. Rep.,
Jun. 2005.

[68] S. Tomforde, An Architectural Framework for Self-configuration and Self-
improvement at Runtime. 2011.

[69] S. Soro and W. Heinzelman, “A survey of visual sensor networks,” Advances
in multimedia, vol. 2009, 2009.

[70] Beckhoff Automation GmbH. (2014). “Industrie 4.0 Forum: pc-based control
concepts as core technology for the smart factory,” [Online]. Available: http:
//ftp.beckhoff.com/download/document/catalog/Flyer_
Industry_40_forum_2014.pdf (visited on 03/29/2016).

[71] R. Sanchez, M. Smith, B. Person, and P. B. Hole, “C-137 universal develop-
ments,” Meseeks Journal, vol. 29, no. 2, pp. 42–69, 2013.

[72] D. Keil and D. Q. Goldin, “Modeling indirect interaction in open computational
systems,” in 12th IEEE International Workshops on Enabling Technologies
(WETICE 2003), Infrastructure for Collaborative Enterprises, 9-11 June 2003,
Linz, Austria, 2003, pp. 371–376.

[73] R. Logie, J. G. Hall, and K. G. Waugh, “Towards mining for influence in a multi
agent environment.,” in IADIS European Conf. Data Mining, A. Abraham,
Ed., IADIS, 2008, pp. 97–101.

[74] R. Logie, J. G. Hall, and K. G. Waugh, “Investigating agent influence and
nested other-agent behaviour,” International Journal on Advances in Intelli-
gent Systems Volume 2, Number 4, 2009, 2010.

http://ftp.beckhoff.com/download/document/catalog/Flyer_Industry_40_forum_2014.pdf
http://ftp.beckhoff.com/download/document/catalog/Flyer_Industry_40_forum_2014.pdf
http://ftp.beckhoff.com/download/document/catalog/Flyer_Industry_40_forum_2014.pdf

Bibliography 113

[75] J. M. Broersen, “CTL.STIT: enhancing ATL to express important multi-
agent system verification properties,” in 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada,
May 10-14, 2010, Volume 1-3, 2010, pp. 683–690.

[76] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” English, Autonomous Robots, vol. 8, no. 3, pp. 345–
383, 2000.

[77] N. Prasad, V. R. Lesser, and S. E. Lander, “Learning organizational roles
in a heterogeneous multi-agent system,” in Proceedings of the Second
International Conference on Multi-Agent Systems, California: AAAI Press,
Jan. 1996, pp. 291–298.

[78] J. R. Kok, M. T. J. Spaan, and N. Vlassis, “Multi-robot decision making using
coordination graphs,” in Proceedings of the International Conference on
Advanced Robotics (ICAR), A. T. de Almeida and U. Nunes, Eds., Coimbra,
Portugal, Jun. 2003, pp. 1124–1129.

[79] J. R. Kok, P. J. ’. Hoen, B. Bakker, and N. Vlassis, “Utile coordination: Learn-
ing interdependencies among cooperative agents,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games (CIG), Colch-
ester, United Kingdom, Apr. 2005, pp. 29–36.

[80] Y.-M. De Hauwere, P. Vrancx, and A. Nowé, “Learning what to observe
in multi-agent systems,” in Proceedings of the 20th Belgian-Netherlands
Conference on Artificial Intelligence, 2009, pp. 83–90.

[81] Y.-M. De Hauwere, P. Vrancx, and A. Nowé, “Learning multi-agent state
space representations,” in Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, 2010, pp. 715–
722.

[82] Y.-M. De Hauwere, P. Vrancx, and A. Nowé, “Solving delayed coordination
problems in mas,” in The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, ser. AAMAS ’11, Taipei, Taiwan:
International Foundation for Autonomous Agents and Multiagent Systems,
2011, pp. 1115–1116.

[83] P. Vrancx, Y.-M. De Hauwere, and A. Nowé, “Transfer learning for multi-agent
coordination,” in Proceedings of the 3th International Conference on Agents
and Artificial Intelligence, Rome, Italy, 2011, pp. 263–272.

[84] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D.
Silver, and T. Graepel, “A unified game-theoretic approach to multiagent rein-
forcement learning,” in Advances in Neural Information Processing Systems,
2017, pp. 4190–4203.

114 Bibliography

[85] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual infor-
mation: Criteria of max-dependency, max-relevance, and min-redundancy,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238, Aug.
2005.

[86] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in rein-
forcement learning,” in The 2010 International Joint Conference on Neural
Networks (IJCNN), Jul. 2010, pp. 1–8.

[87] A. M. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor, “Reg-
ularized policy iteration,” in Advances in Neural Information Processing
Systems 21, Proceedings of the Twenty-Second Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008, 2008, pp. 441–448.

[88] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-
squares temporal difference learning,” in Proceedings of the 26th Annual
International Conference on Machine Learning, ser. ICML ’09, Montreal,
Quebec, Canada: ACM, 2009, pp. 521–528.

[89] D.-R. Liu, H.-L. Li, and D. Wang, “Feature selection and feature learning
for high-dimensional batch reinforcement learning: A survey,” International
Journal of Automation and Computing, vol. 12, no. 3, pp. 229–242, 2015.

[90] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman, “An analysis
of linear models, linear value-function approximation, and feature selection for
reinforcement learning,” in Proceedings of the 25th International Conference
on Machine Learning, ser. ICML ’08, Helsinki, Finland: ACM, 2008, pp. 752–
759.

[91] J. Bishop and R. Miikkulainen, “Evolutionary feature evaluation for online
reinforcement learning,” in Computational Intelligence in Games (CIG), 2013
IEEE Conference on, Aug. 2013, pp. 1–8.

[92] H. Hachiya and M. Sugiyama, “Feature selection for reinforcement learning:
Evaluating implicit state-reward dependency via conditional mutual informa-
tion.,” in ECML/PKDD (1), ser. Lecture Notes in Computer Science, vol. 6321,
Springer, 2010, pp. 474–489.

[93] T. Nguyen, Z. Li, T. Silander, and T. Y. Leong, “Online feature selection
for model-based reinforcement learning,” in Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13), S. Dasgupta and D.
Mcallester, Eds., vol. 28, JMLR Workshop and Conference Proceedings,
2013, pp. 498–506.

[94] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting and
Control, ser. Wiley Series in Probability and Statistics. Wiley, 2008.

[95] L. Ljung, “Approaches to identification of nonlinear systems,” in Control
Conference (CCC), 2010 29th Chinese, IEEE, 2010, pp. 1–5.

Bibliography 115

[96] T. Suzuki, M. Sugiyama, J. Sese, and T. Kanamori, “A least-squares approach
to mutual information estimation with application in variable selection,” in
Proceedings of the 3rd workshop on new challenges for feature selection
in data mining and knowledge discovery (FSDM 2008), Antwerp, Belgium,
2008.

[97] S. Geisser and W. O. Johnson, Modes of parametric statistical inference.
John Wiley & Sons, 2006, vol. 529.

[98] G. V. Dallal, The little handbook of statistical practice. Gerard V. Dallal, 1999.

[99] D. Fisch, M. Jänicke, E. Kalkowski, and B. Sick, “Learning from others:
Exchange of classification rules in intelligent distributed systems,” Artificial
Intelligence, vol. 187, pp. 90–114, 2012.

[100] D. Fisch, M. Jänicke, E. Kalkowski, and B. Sick, “Techniques for knowledge
acquisition in dynamically changing environments,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 7, no. 1, 16:1–16:25, May 2012.

[101] J. Boes and F. Migeon, “Self-organizing multi-agent systems for the control
of complex systems,” Journal of Systems and Software, vol. 134, pp. 12–28,
2017.

[102] K. Pearson, “Note on regression and inheritance in the case of two parents,”
Proceedings of the Royal Society of London, vol. 58, no. 347-352, pp. 240–
242, 1895.

[103] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[104] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing depen-
dence by correlation of distances,” The Annals of Statistics, vol. 35, no. 6,
pp. 2769–2794, Dec. 2007.

[105] C. Shannon and W. Weaver, The Mathematical Theory of Communication.
University of Illinois Press, 1949.

[106] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual informa-
tion,” Phys. Rev. E, vol. 69, p. 066 138, 6 Jun. 2004.

[107] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean,
P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting
novel associations in large data sets,” Science, vol. 334, no. 6062, pp. 1518–
1524, 2011.

[108] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “Mason: A
multiagent simulation environment,” Simulation: Transactions of the society
for Modeling and Simulation International, vol. 82, no. 7, pp. 517–527, 2005.

[109] I. Dusparic and V. Cahill, “Distributed w-learning: Multi-policy optimization
in self-organizing systems.,” in 2009 3rd IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO 2009), IEEE, Dec. 21,
2009, pp. 20–29.

116 Bibliography

[110] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” Journal of Machine Learning Research, vol. 10, no. Jul,
pp. 1633–1685, 2009.

[111] S. W. Wilson, “Classifier Fitness Based on Accuracy,” Evolutionary Compu-
tation, vol. 3, no. 2, pp. 149–175, 1995.

[112] S. W. Wilson, “Get real! xcs with continuous-valued inputs,” in Learning
Classifier Systems, P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 209–219.

[113] X. Li and G. Yang, “Transferable xcs,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference 2016, ser. GECCO ’16, Denver, Colorado,
USA: ACM, 2016, pp. 453–460.

[114] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensem-
ble learning for data stream analysis: A survey,” Information Fusion, vol. 37,
pp. 132–156, 2017.

[115] W. Härdle and L. Simar, Applied multivariate statistical analysis. Springer,
2007, vol. 22007.

Appendices

117

118

119

A | Delayed Influences

 0

 20

 40

 60

 80

 100

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been
detected as higher than a notional independent workbench for
each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.1: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the upper
workbench on the right station BRU measured with the distance correlation. For
this measurement only a single estimator has been used, i.e., the configurations
of workbench BRU have not been considered.

120 Appendix A. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.2: The results for the smart factory application. The graphs show the results
for the influence of the upper workbench at the left station BLU on the upper work-
bench on the right station BRU measured with the Kendall rank correlation. For
this measurement only a single estimator has been used, i.e., the configurations
of workbench BRU have not been considered.

121

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.3: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Discrete Mutual
Information. For this measurement only a single estimator has been used, i.e.,
the configurations of workbench BRU have not been considered.

122 Appendix A. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.4: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the Spearman rank
correlation. For this measurement only a single estimator has been used, i.e.,
the configurations of workbench BRU have not been considered.

123

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.5: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the
upper workbench on the right station BRU measured with the distance correlation.
For this measurement two estimators have been used, i.e., the configurations of
workbench BRU have been taken into account.

124 Appendix A. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.6: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the upper
workbench on the right station BRU measured with the Kendall rank correlation.
For this measurement two estimators have been used, i.e., the configurations of
workbench BRU have been taken into account.

125

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.7: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the upper
workbench on the right station BRU measured with the Discrete Mutual Information.
For this measurement two estimators have been used, i.e., the configurations of
workbench BRU have been taken into account.

126 Appendix A. Delayed Influences

 0

 20

 40

 60

 80

 100
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Pe
rc

en
ta

ge
 o

f
R
un

s

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(a) The fraction of 100 runs in which the influence has been detected as higher than a
notional independent workbench for each delay in time steps.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

In
flu

en
ce

Steps

T-0

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

(b) The averaged influence values.

Figure A.8: The results for the smart factory application. The graphs show the
results for the influence of the upper workbench at the left station BLU on the upper
workbench on the right station BRU measured with the Spearman rank correlation.
For this measurement two estimators have been used, i.e., the configurations of
workbench BRU have been taken into account.

	Abstract
	Zusammenfassung
	Contents
	List of Abbreviations
	List of Figures
	List of Own Publications
	Introduction
	Motivation
	Problem Statement
	Contribution
	Overview of the Thesis

	System Model
	Target Systems
	Relations to Reinforcement Learning

	Architectural Framework
	Example Applications
	Elementary Use Cases
	Smart Camera Network
	Smart Factory

	Taxonomy
	System Size and Characterization of the Subsystems
	Influences
	Classification of Example Applications

	Summary

	Related Work
	Mutual Influences
	Methodology for Detection
	Discussion of Dependency Measures
	Examples
	Evaluation

	Summary

	Multi-component Influences
	Methodology for Detection
	Example
	Evaluation
	Two-man Saw
	Smart Camera Network

	Summary

	Delayed Influences
	Methodology for Detection
	Evaluation
	Summary

	Influence Detection at Runtime
	Methodology for Detection
	Evaluation
	Summary

	Self-adapting to Influences
	Methodology for Self-adaption
	Evaluation
	Summary

	Practical Considerations
	Choosing appropriate Dependency Measures
	Sequential Analysis of Systems
	Reduction of Network Load
	Employ more Accurate Conditioning
	Handling Temporal Influences
	Handling Influences from Multiple Systems

	Conclusion
	Summary and Discussion
	Outlook

	Bibliography
	Appendices
	Delayed Influences

