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Abstract
With self-adaptive systems a new class of reactive software systems is recently

gaining lots of attention. Able to adapt their actual approach to meet given goals
at runtime based on previously gained insights such systems actually appear to be
kind of artificially intelligent and able to learn. Autonomous vehicles, robots, and
adaptive production plants are just a few of the instances for which practical ap-
plication promises huge efficiency enhancements for industry. Apart from all the
advances being made in this area there still is a blocker for practical application in
critical fields: how to adequately test a system whose runtime approach is actually
unknown?

As this thesis elaborates, traditional test strategies for reactive systems are not
feasible anymore. Building on Harel and Pnueli’s notion of a development process
for reactive systems an extension for self-adaptivity as well as particular challenges
and requirements for testing self-adaptive systems are derived. We will see that
test strategies for self-adaptive systems should be adaptive as well. A number of
experiments is reported in which Machine Learning approaches were used for solu-
tion. Considering a couple of case studies, such as a Smart Vacuum Cleaner, a Smart
Energy Grid, and a Self-Organizing Production Cell, those experiments are meant
to provide different aspects and possible approaches for systematically testing self-
adaptive systems. Requirements and outlooks for future work are given.
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Kurzfassung
Selbst-adaptive Systeme sind in der Lage ihre Strategie zur Laufzeit an gegebe-

ne Ziele und Erfahrungen anzupassen. Das lässt diese Subklasse reaktiver Systeme
(künstlich) intelligent und lernbar erscheinen. Obwohl Anwendungsfälle wie au-
tonome Fahrzeuge, Roboter, oder adaptive Fabrikanlagen den praktischen Nutzen
belegen, steht der großflächige Einsatz dieser Technologie noch immer vor einer we-
sentlichen Hürde: wie lässt sich ein System mit unbekannter Laufzeitstrategie ad-
äquat testen?

Vorliegende Arbeit zeigt anhand unterschiedlicher Fallstudien, dass traditionel-
le Teststrategien für diesen Zweck nicht ausreichen. Mithilfe Harel und Pnuelis Be-
griff eines Entwicklungsprozesses für reaktive Systeme und einer Erweiterung die-
ses Prozesses für den Fall der Selbst-Adaptivität werden Herausforderungen und
Ansätze für das Testen selbst-adaptiver Systeme erarbeitet. Es zeigt sich, dass Test-
strategien für selbst-adaptive Systeme selbst adaptiv sein sollten. Anhand eines zu
testenden intelligenten Saugroboters, eines intelligenten Energienetzes und einer
selbstorganisierenden Produktionszelle werden mögliche Ansätze unter Zuhilfenah-
me von Methoden des maschinellen Lernens eingeführt und evaluiert. Auf dieser
Basis werden mögliche Zweige zukünftiger Arbeiten aufgezeigt.
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Chapter 1

Introduction

System classification has always been of particular importance for research in soft-
ware engineering. The associated hope is that system classes offer generalization in
development and maintenance processes which is preventing us from continuously
reinventing the wheel. For this the classification is usually based on the major chal-
lenges we face within the systems development. If a major challenge exists for the
one of the systems contained in a class, at least a similar challenge should also exist
for the other systems of the same class; so a solution for the first should also imply
a similar solution for the others. The hereby enabled abstraction then shows itself in
unified processes, software libraries or frameworks usable in practice. When consid-
ering particular challenges for particular systems, it is thus important to ask if those
challenges can be generalized which might justify new system classes.

One of the most general system classifications had been formally provided by
Harel and Pnueli [HP85]. Distinguishing systems which are “relatively easy to handle
from those which are more complex” their distinction was between the so-called trans-
formational and reactive systems. While the note that “once the problematic part of this
pair [of system classes] is satisfactorily solved, most of the others will yield less painfully too”
was certainly meant more like a big picture than a time-boxed vision we can, after
decades of research, finally say that most of those problematic parts have been ad-
dressed. Model- and state-based approaches on design and engineering of require-
ments, object-oriented approaches on programming, and systematic, automatized
methods on testing are just a few instances giving us abstraction above technical
complexity in practical software engineering today. Thousands of tools and frame-
works already exist.

With this success the call for digitization of nearly all business and industrial pro-
cesses is getting increasingly louder, bringing along plenty of special cases and mo-
tivating the introduction of new subclasses of reactive systems. Self-adaptive systems,
the systems I want to consider here, are one of those subclasses currently gaining
particular attention. In contrast to other reactive systems, a self-adaptive systems is
supposed learning and choosing the particular approach for imposed goals at run-
time, letting it appear to be artificially intelligent. Since various challenges have been
already identified and solved, the hope (and also the fear) in society grows that
there will soon be a breakthrough in the practical application of such systems. And
indeed, considering leading edge experiments and studies we have to notice that it
has already come. Smart homes [Jen+18], autonomous vehicles [Yaq+19], and intelli-
gent production schedulers [Was+18] are just a few of the most prominent instances.
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If we consider the industrial practice, we have, however, to state that there still
is a major challenge preventing this technique from being comprehensively applied:
quality assurance – and especially testing of systems with the capability to take and
adapt decisions at run-time. On the one hand it is pretty unclear how to show that
a system the actual approach of which was not explicitly designed at design time
but learned at runtime will do what we expect it to do. On the other, this remains a
precondition for practical application in most industrial cases. How should we intro-
duce self-driving cars without being sure that they will not fail and thus threaten hu-
man lives? How should we establish autonomous, self-adaptive production plants
without being sure they will not fail and generate enormous costs? We must not do
that.

In consequence there is a major need for systematic testing approaches for self-
adaptive systems. As Kapitel 2 will show, some of the techniques addressing this
challenge for reactive systems are reusable indeed. The feature of runtime adap-
tation, however, is demanding additional efforts (Kapitel 3). As found by several
experiments and justified in [Ebe+17a] we can say that

“Adaptive systems need adaptive test strategies.”

This thesis is collecting experiments I performed and published in this area. They
are drawing a path through a process for systematically deriving and applying such
strategies. The traditional process for testing reactive systems is extended in a way
that it can cope with situations in which the expected system approach cannot be
derived from design time artefacts. Instead, various machine learning (ML) tech-
niques are used for capturing the actual system behavior from simulations of the
system under test in order to derive and finally apply test policies later in reality.

1.1 Outline

The thesis is structured as follows: Kapitel 2 und 3 are setting the context and giving
some formal framework. Starting with reactive systems and classical testing tech-
niques for those in Kapitel 2, the challenges for testing self-adaptive systems are
step-by-step derived from the particular properties distinguishing self-adaptive sys-
tems from other reactive systems. Kapitel 3 elaborates those properties by refining
a notion of the typical development process for reactive systems in a way that it
complies with common definitions for self-adaptive systems.

Kapitel 4 considers a case in which with a self-organizing production cell a dis-
tributed self-adaptive system should be tested. The previously elaborated chal-
lenges for testing self-adaptive systems are shown on this instance and a way to
solve them by means of ML-based clustering techniques is proposed. For this, a
novel state-based type of test models and a representativity-based coverage goal for
this model are proposed.

Kapitel 5 discusses a way to introduce other prioritization techniques than pure
representativity in test design. Since testing self-adaptive systems mostly involves
simulations of the system under test – which is also assumed in the new testing
process proposed in Kapitel 3 – it is argued that we can actually predict the effect of
failures using the simulation. A mutation-based test goal is proposed that considers
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this anticipated effect in prioritization. Custom variants of evolutionary algorithms
are used for optimizing this goal by constructing adequate test cases for the self-
organizing production cell considered.

As Kapitel 6 explains, one issue with self-adaptive systems is the continuous na-
ture of state spaces in which they are often embedded. Equivalence classes in states,
as required for state-based test models such as those we considered in Kapitel 4,
cannot always be formed since the system behavior is unknown. We do not know
the peculiarities of the system’s environment. Thus, the need for continuous types
of test models is motivated. An experiment capturing adaptive agent behavior in
Artificial Neural Networks is presented on the instance of a Smart Energy Grid; and a
method for deriving test cases using the ML technique of Autoencoding is proposed.

Kapitel 7 considers systems still learning at test 21time. A self-adaptive Smart
Vacuum System continuously updating its map of its environment is taken as in-
stance. It is shown that in this case it does not suffice to capture the system behavior
from a given simulation once but this needs to be continuously repeated. The test
process for self-adaptive systems is modified accordingly. A technique from Rein-
forcement Learning, the so-called Direct Future Prediction, is shown to be particularly
suitable for automatically learning and generalizing test strategies from simulation
in this case.

Kapitel 8 finally discusses the issues we obtain when applying a test policy de-
rived from simulation in reality. Since, due to features in the environments which are
controllable in simulation but not in reality, it is not always possible to directly apply
all the test cases found, an approach is needed for translating the test case from sim-
ulation to the fixed setting in reality. A ML-based method for transferring test inputs
from an uncontrollable context to a controllable one is proposed and evaluated on
the Smart Vacuum System instance.

1.2 Publication List
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2. André Reichstaller, Benedikt Eberhardinger, Hella Seebach, Alexander Knapp,
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3. André Reichstaller, Benedikt Eberhardinger, Hella Seebach, Alexander Knapp,
and Wolfgang Reif. “Test Suite Reduction for Self-organizing Systems: A Mutation-
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7. André Reichstaller and Alexander Knapp. “Transferring Context-Dependent Test
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Systems using Run-Time Predictions”. In: 12th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO). IEEE. 2018, pp. 80–89.

9. Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, Tho-
mas Bauernhansl, Alexander Knapp, and Andreas Kyek. “Optimization of global
production scheduling with deep reinforcement learning”. In: Procedia CIRP 72.1.
2018, pp. 1264–1269.

10. Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, Tho-
mas Bauernhansl, Alexander Knapp, and Andreas Kyek. "Deep reinforcement
learning for semiconductor production scheduling." In: 29th Annual SEMI Ad-
vanced Semiconductor Manufacturing Conference (ASMC). IEEE. 2018.

11. Benedikt Eberhardinger, Hella Seebach, André Reichstaller, Alexander Knapp,
and Wolfgang Reif. "Adaptive tests for adaptive systems: The need for new concepts
in testing for future software systems." In: Softwaretechnik-Trends 37.3. 2017.
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Chapter 2

Testing Reactive Systems

According to Harel and Pnueli reactive systems are systems that maintain an ongoing
relationship with their environment and continuously respond to external inputs.
Transformational systems, as the counterparts of reactive systems, “accept inputs, per-
form transformations on them and produce outputs” [HP85, p. 479]. Since undoubt-
edly each form of adaptation requires continuous interactions with the system’s en-
vironment, self-adaptive systems are rather reactive than transformational. And as
this is the case, we are allowed to assume that for the development of self-adaptive
systems similar approaches can be used as for developing other reactive systems.
This should also hold for software testing.

Even though we will see that there actually are additional challenges when test-
ing self-adaptive systems requiring additional solutions, the fundamental concepts,
in fact, remain unchanged. The motivation for this chapter is thus to present the
basic principles of testing reactive systems in order to set the basis for elaborating
the additional challenges for testing self-adaptive systems later.

The present account does not have the claim of comprehensiveness but it is
meant to give the reader an impression of how reactive systems are systematically
tested today.

2.1 Reactive Systems

According to Harel and Pnueli’s point of view the first characteristic of reactive sys-
tems is the continuous nature of interaction with an environment. This implies the
importance of the dimension of time, i.e., a history of inputs and outputs, in system
behavior.

Second, the interaction with an (possibly not fully predictable) environment im-
plies a much more complex input space to be considered than a number of fixed, ac-
ceptable, inputs which are imperatively and directly transformed to outputs. There
is by no means a binary borderline between complex and not-complex input spaces
indeed. Further, a sequence of inputs over time might be viewed as a kind of coher-
ent meta-input which is, of course, transformed to an output again. In fact one can
say that each CPU, at the end, performs a transformation between in- and outputs,
and that, in consequence, each reactive software system is also a kind of complex
transformational system. But this is exactly the point: while the difference between
reactive and transformational systems is not visible in an underlying computational
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(A) “Black Cactus” [HP85, p. 479]. (B) Time-based generalization.

FIGURE 2.1: Interface between a reactive system and its environment.

model, and thus is not formally depictable, it is reflected in the need for translation
between reactive behavioral specifications and transformational CPUs.

The following subsections consider the resulting complexity for system design
and implementation in order to motivate the significant role of software testing for
developing reactive systems.

2.1.1 Continuous Interaction with the Environment

Harel and Pnueli sketch the interrelation between a reactive system and its environ-
ment by what they call a “black cactus” (see Fig. 2.1a). The system processes and
transforms various inputs to various outputs. Though, according to Fig. 2.1a, the
major difference to transformational systems seems the sheer number of inputs and
outputs, the authors also state that it is the dimension of time which makes dealing
with reactive systems such complex: sensed inputs at time t might not only lead to a
direct output but also influence the system behavior at t+ 1. Technically, this depen-
dency on time can be implemented by encapsulating historical input information as
well as corresponding behavioral information in various internal system states. A
reactive system is supposed to comprise multiple such internal states which it is able
to switch in response to specific environmental states. The interactions between the
reactive system and its environment can be thus assumed ordered in time.

To make this observation more explicit, Fig. 2.1b suggests a generalization of
the cactus depiction presented: an environmental state s is assumed to comprise all
the inputs sensed at logical time step t while action a comprises all the outputs in
response. On this way, the system and its environment are interacting over (logical)
time steps t, t + 1, . . . , t + n.

A Development Process for Reactive Systems The major challenge for developing
reactive systems is finding (transformational) implementations for (time-dependent)
behavioral specifications which do not “(. . . ) lend themselves naturally to descrip-
tion in terms of functions and transformations” [HP85, p. 479]. In contrast to trans-
formational systems, a reactive system’s implementation will not result from se-
quential refinements of a given behavioral specification, but it involves an additional
technical process.
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Harel and Pnueli conclude that “by and large, the development of a reactive sys-
tem is not a one-dimensional process in which specification and design are two tem-
porally related stages, but rather it is a two dimensional magic square in which they
play the role of the dimensions themselves” (see Fig. 2.2) [HP85, p. 488]. They refer

FIGURE 2.2: Harel and Pnueli’s “magic square”.

to a typical development process as a sequence of two-dimensional refinements:

(M(0), S(0)) (M(1), S(1)) . . . (M( f ), S( f )) (DP)

Each of the pairs (M(i), S(i)) comprise a behavioral specification S(i) as well as an
implementational specification M(i) which both are getting more and more concrete
with increasing i. While (M(0), S(0)) is assumed highly underspecified, (M( f ), S( f ))

describes the final system. The index i can be consequently viewed as a counter of
logical time steps which is passed through the progress within the development. An
implementational specification M(i) is further assumed to comply with an interface
E(i) describing the inputs and outputs to be considered within the system’s interac-
tion with its environment.

2.1.2 Running Example: A Smart Vacuum System

Let us, for instance, consider developing a smart vacuum system (SVS) [FDC14;
UMN97]. This little robot is supposed to drive around in order to vacuum-clean
rooms of arbitrary dimensions without any human intervention. To accomplish this
task, it is able to perceive its immediate surroundings by sensors, to plan routes, and
to pilot its wheels in any desired direction. While its overall goal is to explore the
room and to clean the dust, the SVS also has to handle dangers lurking on the way:
there are obstacles located inside the room, such as furniture items or stairwells.
Collisions or falls must be crucially avoided, since damage could become costly. The
snippet of code depicted in Lst. 2.1 gives a first abstract view on a possible imple-
mentation.
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LISTING 2.1: Abstract Simple SVS
public abstract class SVS {

SensorCtr sensorCtr = new SensorCtr();
ActuatorCtr actuatorCtr = new ActuatorCtr();

/** This method controls the SVS behavior */
public void drive(){

// Get inputs for all directions
Map<Direction,Integer> inputs = new HashMap<>();
inputs.put(Direction.North, sensorCtr.sense(Direction.North));
inputs.put(Direction.South, sensorCtr.sense(Direction.South));
inputs.put(Direction.East, sensorCtr.sense(Direction.East));
inputs.put(Direction.West, sensorCtr.sense(Direction.West));

// Plan based on inputs
Action action = this.plan(inputs);

// Execute chosen action
actuatorCtr.act(action);

}

/** Plan which action to execute */
public abstract Action plan(Map<Direction,Integer> inputs);

}

If we merely considered the main task of cleaning dirt on its own one could say
that the SVS rather is a transformational than a reactive system. This is because the
SVS just has to take few sensory inputs, it has to process those inputs in a functional
way, and then it has to determine the outputs. As the exemplary implementation
of the SVS in Lst. 2.2 depicts, there is no dependence of the robot’s behavior on a
history of inputs. In this case the SVS bases the action selection on an evaluation of
sensory inputs for each direction. The Policy is used for interpreting the calculated
score. For the time being, let us assume that it deterministically takes the action with
the highest score.

Let us additionally introduce some special features now. Suppose, for example
that particular tasks of the SuT can be partly controlled through a mobile device, as
it is in fact meanwhile usual for this kind of systems: the user is able to sketch the
room the SVS will be located in within an associated mobile app, and mark positions
which should be particularly taken into account for cleaning. Given such additional
user inputs the SVS is supposed to immediately drive to the marked position in
order to solve the task. Figure 2.3 depicts an exemplary situation.

In this case the system approach depends on the history of inputs since an out-
put, i.e., a robot’s action, at a time t depends on an internal state indicating whether
and where a user-given mark had been set an how the room sketched by the user
looks like. Let us for instance consider the implementation depicted in Lst. 2.3
making use of the Gang of Four’s state pattern [Gam+15] for switching between the
modes Clean and Reaching a Mark.

The principle idea is to avoid switch-case statements over an object’s (in our case
the SVS’s) behavior, but to encapsulate its states within objects itself – and thus to
conform with the Open-Closed-Principle described by Meyer [Mey88] 1. A superor-
dinate context, which in our case also acts as observer for the user’s app, switches

1The Open-Closed-Principle states that “Modules should be both open (for extension) and closed
(for modification)” [Mey88].
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LISTING 2.2: Transformational Implementation
public class ClassicalSVS extends SVS {

Policy policy = new Policy();
static final int DANGEROUS = 4;
static final int OPT = 1;

@Override
public Action plan(Map<Direction,Integer> inputs) {

// Evaluate goodness of sensor values
Map<Direction, Integer> scores = new HashMap<>();
for(Map.Entry<Direction, Integer> e : inputs.entrySet()){

int input = e.getValue();
scores.put(e.getKey(), input == DANGEROUS? Integer.MAX_VALUE:

Math.abs(OPT - input));
}

// Return optimal action w.r.t. policy
return policy.selectAction(scores);

}
}

the states at runtime. In fact, the state pattern as well as the Open-Closed-Principle
address in particular object-oriented system designs – and there would have been
plenty of other options for implementing the system that would also conform with
the specification. The chosen structure for implementation was rather motivated by
technical considerations than being the result of sequential refinements of the given
behavioral specification. This (technical) design dimension within the development
process conforms with Harel and Pnueli’s thoughts concerning the magic square (cf.
Fig. 2.2).

2.1.3 A Process for Testing Reactive Systems

Besides finding an appropriate implementation, the two-dimensional development
process visualized by the magic square (cf. Fig. 2.2) implies yet another major chal-
lenge to be considered: quality assurance. The further away the technical (imple-
mentation) is from the behavioral (specification) structure and decomposition, the
harder it is assuring behavioral correctness afterwards. According to Galin [Gal04,
p. 27] quality assurance includes “a systematic planned set of actions necessary to
provide adequate confidence that the software development process or the main-
tenance process of a software system product conforms to established functional
technical requirements as well as with the managerial requirements of keeping the
schedule and operating within the budgetary confines.” Let us, in the following,
concentrate on assuring the functional requirements, i.e., answering the question:

Is there a match between behavioral requirements and the actual implementation?

In terms of the development process we want to make sure that each refined be-
havioral specification matches with its predecessor, i.e., ∀i ∈ [1.. f ] . S(i−1) |= S(i)

(Consistency) and that the implementational specifications match with the behavioral
specifications, i.e., ∀i ∈ [1.. f ] . M(i) |= S(i) (Conformance). If this is the case we also
know that M( f ) |= S(0). While consistency might be supported a priori by providing
behavioral specifications that are “well-structured, concise, unambiguous, readable,
and easy to understand” and at the same time “solely descriptive, eliminating, or
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LISTING 2.3: Reactive Implementation of SVS
public class SVSContext extends SVS implements Observer{

private SVSState svsState;
private Point mark; private Room room;

public SVSContext() {
setState(new Clean());

}

@Override
public Action plan(Map<Direction,Integer> inputs) {

return svsState.plan(this,inputs);
}

public void setState(SVSState newState) {
svsState = newState;

}

@Override
public void update(Observable o, Object arg) {

UserInput userInput = (UserInput)arg;
// Store the user given inputs
mark = userInput.getMark(); room = userInput.getRoom();

}

interface SVSState{
public Action plan(SVSContext ctx, Map<Direction,Integer> inputs);

}

/** Implementing the SVS’s clean mode **/
class Clean implements SVSState{

@Override
public Action plan(SVSContext ctx, Map<Direction,Integer> inputs) {

// Check for transition
if(ctx.mark != null) {

ctx.setState(new ReachMark());
return ctx.plan(inputs);

}
// Plan according to classical SVS implementation
return new ClassicalSVS().plan(inputs);

}
}

/** Implementing the SVS’s reach mark mode **/
class ReachMark implements SVSState{

@Override
public Action plan(SVSContext ctx, Map<Direction,Integer> inputs) {

// Check for transition
if(position(inputs) == mark) {

ctx.mark = null;
ctx.setState(new Clean());
return ctx.plan(inputs);

}
// calculate direction
return path(inputs, ctx.room, ctx.mark);

}

/* Estimates current position based on sensory inputs*/
private Point position(Map<Direction,Integer> sensoryInputs) {...}

/* Calculates an action driving the SVS towards the target*/
private Action path(Map<Direction,Integer> sensoryInputs, Room

room, Point mark) {...}
}

}
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FIGURE 2.3: SVS (unfilled circle) within a room which contains an
obstacle (light gray rectangle) as well as a mark (black point). The
dashed arrow shows a possible path the SVS could take to the mark.

at least minimizing, dependence on any implementational issue” [HP85], assuring
conformance between implementation and specification will never come around ex-
ecuting the final system – no matter how systematic and suitable the behavioral
specification is. And exactly this is the task considered by software testing2.

A Definition of Software Testing Myers et al. define software testing by “the pro-
cess of executing a program with the intent of finding errors” [MSB11, p. 5]. Let
me, for reasons of clarity – and without intending to dispute its general correctness,
adapt that often cited definition to the more fine-grained and normed differentiation
between errors, faults, and failures suggested in DIN 66271.

According to this norm, an error namely just denotes a human action which is
leading to a fault. The fault itself characterizes a state of a software product which
can affect the specified product function under specific conditions – and thus is a so-
called bug. It is to note that not every fault can be revealed by executing a program
under test. All we can do is to examine whether or not observed (output) values
match with the given, specified ones. A deviation in those outputs would constitute
a so-called failure.

This differentiation suggests rephrasing the definition of Myers et al. as follows:

Definition. Testing is the process of executing a program with the intention of finding faults
through revealing failures.

As we will see, this mentioned process typically involves a whole bunch of deci-
sions whose outcome is finally specified in so-called test cases: a test case specifies a
particular wanted execution of a system under test (SuT) – with a set of test inputs to

2Note that apart from testing the functional correctness of a SuT (functional testing) as we consider
it here by concentrating test effort on finding discrepancies between a SuT implementation and its
behavioral specification, the literature knows lots of other testing kinds, such as stress testing [Ell86],
security testing [PM04] and performance testing [WV00].
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FIGURE 2.4: The traditional test process.

execute and a set of expected outputs the system is supposed to return in response
to the inputs.

Due to constraints and restrictions in the SuT’s execution a test case sometimes
also requires some pre- and post-conditions on the environmental and/or the system
state. Executing a test case then concretely means (1) to establish the preconditions,
(2) to execute the SuT with the specified inputs, (3) to observe and to collect the
output values, and finally (4) to study the test results comparing the output values
observed with the expected ones and deciding if the system behaved correctly. A
mechanism exercising (4) automatically is called a test oracle.

The considered Process for Testing According to Spillner et al. [SLS14] a system-
atical process for testing software includes, as depicted in Fig. 7.3, the following
subtasks:

1. Test Planning and Control: First, we need to find a strategy to be pursued over
the whole testing process. Such a test strategy typically involves prioritization
and exit criteria for testing.

2. Analysis and Design: Building on this strategy and on requirement artifacts,
such as behavioral specifications of the SuT, we will usually start deriving log-
ical test cases, i.e., abstract specifications for test cases.

3. Implementation and Execution: Those logical test cases need to be instanti-
ated then by concrete test cases, i.e., test cases which are executable on the SuT.
Test drivers need to be established for test execution.

4. Evaluation of Exit Criteria and Reporting: During execution we record the
time and again the exit criteria. If they are met, we will usually condense the
results in kind of summary for the stakeholders.

5. Test Closure Activities: Finally, we evaluate the test process itself in order to
make gathered experience available for future projects.

The authors mention that the subtasks may overlap and need to be adjusted to the
individual needs for the particular project. As one of the main contributions of this
work I will do so in Kapitel 3 for testing self-adaptive systems.
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2.2 Test Strategies

Myers et al. state that the key challenge in testing is answering the following ques-
tion: “what subset of all possible test cases has the highest probability of detecting
the most errors?” [MSB11, p. 36]. Adapting this statement again to the DIN 66271
norm’s error notion the predominant question in testing is:

What subset of all possible test cases has the highest probability of detecting the most faults
by revealing failures?

In terms of the process depicted in Fig. 7.3 it is the task of test planning and test de-
sign to find an answer. Unfortunately, we usually do not know about how probable
a test case (or a subset of those) reveals a failure a priori. Planning thus mostly has
to start with selecting a measure which heuristically estimates the fault detection
probability of arbitrary test suites. Such measures are called adequacy criteria. The
so-called (test) coverage indicates the degree an adequacy criterion is met by a test
suite.

Since random testing, i.e., testing with randomly generated test cases will usually
not suffice – it was shown that the probability of revealing particular faults with ran-
dom testing is microscopically small [OH96] – we usually employ more systematic
methods then for finding a test suite which has a possibly high test coverage w.r.t.
the chosen criterion in test design.

With the so-called black-box and white-box test strategies this section explores the
common classes of approaches for both of the mentioned activities – planning as well
as design. Interestingly this classification can be directly motivated from the magic
square depicted in Fig. 2.2. That is, the very goal we pursue – assuring that the actual
implementation M(i) at any iteration i matches the behavioral specification S(i) – can
be approached starting from both of the dimensions: if we are starting from the
behavior side, we examine for each unit (derived from any kind of decomposition)
if it is correctly implemented. This is what black-box testing does.

Starting from the implementation side, we check for each unit (again derived
from any kind of decomposition) if the behavioral specification agrees with the ob-
served, implemented behavior. And this is exactly what white-box testing does.
Both of the methods should not be seen as mutually exclusive. It is quite the oppo-
site: the combination of both has shown to be most effective in revealing real failures
[MSB11]. Still, testing actual software products we will never be able finding all of
the possibly existing faults [Dij72].

2.2.1 White-Box Testing

White-box testing addresses test planning and test design from the dimension of
implementation. The idea behind is constructing and assessing the test suite from
an examination of the program’s logic; and the goal is to cover as much of the entire
logic of the program under test as it is possible. The notion of program logic to cover
can thereby differ, in each case it however refers to a graph-based view on the source
code of a program to test. Let me, in the following, discuss some of the most used
white-box coverage criteria in the light of the code snippets introduced in Sect. 2.1.2.
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FIGURE 2.5: Control flow graph constructed from the code snipped
that is depicted in Lst. 2.2. Note that some statements had been ex-
tended in order to show a more detailed view on the actual program

logic.

Figure 2.5 therefor gives a graph-based representation of the transformational ver-
sion of the SVS. The interested reader is referred to [KK+12] for further white-box
criteria.

Statement Coverage This coverage criterion requires the test suite to cover each
statement of the tested code at least once. In our example depicted in Fig. 2.5 a test
case traversing the path 〈a, b, d, e, f , g, i, d, e, f , h, j, c〉 would do this job – that is e.g.
the input [Direction.North : DANGEROUS, Direction.South : 2]. Even though state-
ment coverage is generally seen as rather poor w.r.t. its fault-detection capability, it
still sets the basis for the following more sophisticated coverage criteria.

Branch Coverage This coverage criterion, which is sometimes also called decision
coverage, states that each branch direction has to be taken at least once. This means
that each decision (decisions are pictured as diamonds in Fig. 2.5) will one time
evaluate to true and one time to false. Apart from some rather artificial exceptions
branch coverage subsumes statement coverage. In our example we actually obtain
full branch coverage by the same path and test inputs as before.

Condition Coverage This coverage criterion particularly considers decisions in-
cluding more than one condition. The idea is that each condition in each decision
should take all possible outcomes at least once. Again there are theoretically cases
in which not all the statements are covered in spite of full condition coverage. Even
though in our example of Fig. 2.5 decision and condition coverage are actually the
same, as each decision comprises one single condition only, in fact, condition cover-
age not generally subsumes decision coverage. This is usually fixed by combining
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the both in the so-called decision/condition coverage criterion that requires fulfilling
both.

White-Box Test Design Given such white-box coverage criteria it is the task of test
design to systematically obtain test cases that optimize those. The most simplest
but, as stated before, rather ineffective answer is random testing (often also called
fuzzing or monkey testing). Methods of this kind propose just randomly generated
inputs for test execution [DN84; CS04; FM00]. It is easy to see that the more complex
the program the more unlikely the full satisfaction of a coverage criterion through
random testing. That is why several improvements evolved.

To give an instance let us consider one of the most prominent of those improve-
ments: the so-called concolic testing methodology. As a portmanteau of “concrete”
and “symbolic” the term concolic testing describes a test generation technique that
builds on a combination of symbolic and concrete execution [SMA05]. Symbolic execu-
tion thereby means to interpret a program execution with symbolic values for inputs
instead of concrete ones in normal execution. On this way, each branch within the
source code can be represented by a number of constraints in terms of those sym-
bolic values. Solving those constraints for a particular path lets us consequently find
a class of concrete inputs which would trigger the system to take it.

By performing a depth-first search through a tree spanned by all the paths de-
tected, this approach may be directly used for generating a test suite [KPV03]. In
fact it is however known to be “computationally intractable” [SMA05]. This is why
concolic methods proceed in a more heuristic way including elements of random
search [GKS05]: first, the program to test is executed with randomly chosen con-
crete inputs while concurrently logging path constraints for this particular execu-
tion. The logged constraints are then used for symbolic execution trying to solve the
constraints leading to a new concrete path for execution. This procedure is repeated
until no additional execution path is found anymore.

Let us for instance consider testing the plan method within the non-adaptive
implementation of the SVS depicted in Lst. 2.2. And let us initially guess the input
[Direction.North : 2]. As a result, plan would execute the then-branch of the if-
statement and return a selected action based on the score 1. Intertwined with the
execution the predicate inputs0[Direction.North] 6= DANGEROUS is formed. Here,
inputs0 is the symbolic variable for the concrete input. By calculating a solution for
inputs0[Direction.North] = DANGEROUS the concolic test program would then force
the SuT through a different execution path, that is the else-branch of the if-statement.

2.2.2 Black-Box Testing

The black-box approach starts the test process from the dimension of behavioral
specification in terms of the magic square (cf. Fig. 2.2). The idea behind is to inves-
tigate for each part of the specification whether or not it is correctly implemented.
Access to source code is not assumed given. All the tester can do thus is execut-
ing the (compiled) system with selected test inputs striving to reveal some kind of
failures.
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Though it would be, in some cases, theoretical possible to execute the program
with all possible test inputs, it is practically not. For the instance of the SVS im-
plementation considered in Sect. 2.1.2 there would be, e.g., infinitely many different
input vectors possible (as parameters are real valued).

Again, the general issue is thus selecting an appropriate subset of test cases
which is supposed to maximize the probability of finding most of the faults. And
again, test adequacy is formulated in terms of different kinds of criteria. This sub-
section summarizes the most popular ones and gives some hints on how they can
be systematically achieved. The interested reader is referred to [KK+12] for further
discussions about black-box testing techniques.

Equivalence Partitioning “Reasonable” testing, as Myers et al. call what is also
often referred to as systematic testing, involves to minimize redundancy between
the test cases to execute. The term redundancy is thereby defined on a notion of
equivalence on test inputs: two test cases with equivalent test inputs are assumed
to be redundant as the set of possibly revealed faults is assumed to be the same as
when just executing one of the test cases.

Myers et al. conclude that equivalence classes over test inputs should be chosen
in a way “(. . . ) that you can reasonably assume (but, of course, not be absolutely
sure) that a test case of a representative value of each class is equivalent to a test of
any other value. That is, if one test case in an equivalence class detects an error all
other test cases in the equivalence class would be expected to find the same error.
Conversely, if a test case did not detect an error, we would expect that no other
test case in the equivalence class would fall within another equivalence class, since
equivalence classes may overlap one another” [MSB11, p. 42]. This rather theoretical
object gives rise to the question:

Which classes of inputs can be viewed as equivalent?

Since for black-box testing we have no access to code, all we can do is estimate. The
process of equivalence partitioning is considered thus rather heuristic and creative
than deterministic. It very much depends on the tester’s intention about the imple-
mented behavior of the system under test.

Choosing the Right Inputs With the category-partition method Ostrand and Bal-
cerc proposed a systematic method for deriving equivalence classes from behavioral
specifications [OB88]. They suggest a systematical decomposition of the behavioral
specification in order to test the resulting units then separately. The authors notice
that “the process is very similar to the high-level decomposition done by software
engineers”, which suggests that it strives to approximate the implementation di-
mension in terms of the magic square – assessing if the actual implementation fits.
The category-partition method builds on the following steps: First, the tester ana-
lyzes the specification and identifies functional units that can be separately tested.
For each of those units the tester then identifies parameters as well as environmental
conditions which are assumed to influence the function’s execution behavior – those
span the categories of inputs.
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After that, the tester again divides each of the categories in partitions which are
seen as kind of representative value classes triggering estimated equivalent behavior
of the system under test. To give an instance let us consider the following exemplary
functional unit of the SVS’s specification:

“The SVS should drive through the room, cleaning the dirt while avoiding to collide with an
obstacle. If the user sets a mark, the SVS is required to immediately drive to this mark.”

In addition to the explicit parameters for this functional unit – the robot’s and the
user-given mark’s position – there are quite a few supplementary relevant environ-
mental conditions that might influence the SVS’s behavior: the ground, the illumi-
nation, and the degree of dirt within the room the SVS is located in. This might
result in the following partitioning of inputs, where the bold terms denote possible
categories, and the not bold ones possible partitions:

• ground: carpet, stone, parquet.

• illumination: light, medium, dark.

• dirt: dirty, normal, clean.

• position: wall, central.

• distance to obstacle: dangerously near, not harmless, harmless.

• mark: opposite side of obstacle, next to the obstacle, other direction.

Given the equivalence classes, i.e., the partitions in our case, there are basically two
decisions to be made: The first is choosing concrete inputs per equivalence class.
Though the definition of equivalence would suggest that this choice is arbitrary, it
has proven that boundary decisions, i.e., values on the border of equivalence classes,
lead to a higher payoff than just taking random values inside a class [MSB11]. For
instance, for partition harmless of category distance to obstacle a boundary decision
would be a position right next to partition harmless.

The second design decision to be made by the tester is to define the combinations
to take. This issue is addressed in the discipline of combinatorial testing. The number
of all possible combinations of equivalence classes is usually far to high to create test
cases for all of them. Already for our rather simple example there are 3× 3× 3×
2× 3× 3 = 486 combinations.

Combinatorial Testing Besides the all-combinations criterion there are multiple oth-
ers which have been empirically proven. Among the most often used is the t-wise
coverage criterion. It requires each possible combinations of t inputs to be included
in some test case of the suite [WP01]. Most popular instances include the 1-wise (also
called each-used) and 2-wise (also called pairwise) [BJE94] coverage. Table 2.1 lists the
combinations for pairwise coverage of the SVS specification described above. There
had been also multiple extensions proposed. Cohen et al. [Coh+03] proposed the
so-called variable strength coverage criterion which requires higher coverage among
a subset of characteristics and lower coverage across the others.
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TABLE 2.1: 486 variants in 9 use cases. Generated on https://
pairwise.teremokgames.com/

ground illumination dirt position obstacle distance mark
carpet light dirty wall dangerous opposite side
carpet medium normal central not harmless next to
carpet dark clean harmless other direction
stone medium clean wall not harmless other direction
stone dark dirty central harmless opposite side
stone light normal dangerous next to

parquet dark normal wall harmless next to
parquet light clean central dangerous other direction
parquet medium dirty not harmless opposite side

In our example we could for instance require that, in addition to pairwise cover-
age over all the categories, the test suite should include 3-wise coverage for the cat-
egories position, obstacle distance, and mark, since they may appear more critical w.r.t.
possible failures than the others. Some further criteria base the variable strength
coverage on semantic information which is added to the classes of inputs, e.g., dif-
fering between valid and erroneous values. Examples are the t-wise valid and the
single error coverage criteria [GOA05]: the t-wise valid coverage requires every pos-
sible combination of valid values of t parameters. The single error coverage requires
each error value of every parameter to be included in some test case in which the
rest of the values are valid.

Black-Box Test Design Grindal et al. [GOA05] summarize methods for deriving
test suites that are adequate w.r.t. combinatorial adequacy criteria. The summarized
methods reach from fully random to completely deterministic combination strate-
gies such as the all-combinations combination strategy algorithm which generates all
combinations of values of the parameters in an iterative manner. In between there
are methods that Grindal et al. call non-deterministic strategies. Those methods are
combining random selections and particular heuristics or even meta-heuristics, such
as genetic and ant colony algorithms. The Automatic Efficient Test Generator by Cohen
et al. [Coh+97] implements an instance of such non-deterministic strategies:

1. Let T be the set of already selected test cases, and let C be the set of all pairs of
values of any two parameters which are still uncovered by T. Collect a number
of k candidate test cases by k-time iteration over the following steps:

(a) select a parameter p and a value for p which appears in most of the un-
covered pairs in C.

(b) Randomly order the remaining parameters.

(c) Iterate over all parameters in the order obtained in step (b) and choose a
value per parameter that is included in most of the still uncovered pairs
in C.

https://pairwise.teremokgames.com/
https://pairwise.teremokgames.com/
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2. Insert the test case t from TC that covers the most pairs from C in T and remove
the pairs covered by t from C. If C 6= ∅ start from (1) again. Otherwise return
T.

Note that the general issue of finding the test suite of minimal size still fulfilling
the t-wise coverage criterion is NP-complete [WP01] – which implies that just some
additional classes or parameters of inputs lead to exponentially higher costs. The
algorithm sketched above reduces complexity at the expense of the potential test
suite size. Cohen et al. showed that, in general, the larger the number of considered
candidate test cases k per iteration, the smaller the size of the test suite [Coh+97].

2.3 Testing with Finite State Machines

As the previous section showed, the so-called white-box as well as the black-box
test strategies build test design and planning on a single dimension of the magic
square respectively and do not consider the other in searching for adequate tests.
If we want to consider both of the dimensions within the testing process, we have
to employ both of the strategies as well. Usually, we will start with black-box test
design and then will subsequently augment the designed test suite with additional
test cases for meeting the white-box coverage criteria as well.

In the light of the special characteristics of reactive systems (as discussed in
Sect. 2.1) such an approach, however, appears rather expensive. First, the complex
input space as well as the behavioral dependence of the reactive SuT on historical
inputs will blow up the space of possible equivalence classes to be considered in
black-box testing. Second, the structural decoupling of the SuT’s implementation
from its behavioral specification implies that white-box testing may not draw bene-
fits from previously performing black-box test design. Moreover, the SuT’s history
dependence charges white-box test design as well as it brings along a whole bunch
of additional conditions and statements in code to be covered.

To improve efficiency it has shown thus advantageous to include some technical
knowledge and assumptions about the actual implementation yet within the black-
box test design. One of the methods to do so is the model-based test design. In its
classical form, model-based testing uses abstract models of the behavioral specifica-
tion of the SuT, often formalized through modeling languages such as UML [OA99;
Bou+07; Dai04], SysML [Hau+10; JRR15] or mathematical notations [Tre92; Tre08;
LY96], for test design and execution. Several overviews over various approaches can
be found in literature [DN+07; Pre05; UPL12; KL16]. Broy et al. [Bro+05] summarize
methods for model-based testing of reactive systems. The presented model types
there include Labeled Transition Systems (LTS) and Finite State Machines (FSM). In
this section I will particularly pursue the FSM alley as it excellently highlights the
nature of reactive systems – which can be seen by the fact that already Harel and
Pnueli considered this formalism in [HP85].

2.3.1 Formalism

By FSM we refer to the model of a Deterministic Mealy Machine. This is defined by a
tuple (I, O, Q, δ, λ, q0) [Mea55], with
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FIGURE 2.6: State diagram of an FSM describing the possible modes
of the SVS.

• I a finite input alphabet;

• O a finite output alphabet;

• Q a finite set of states;

• δ : Q× I → Q the transition function;

• λ : Q× I → O the output function;

• q0 ∈ Q the initial state.

Mealy machines are often depicted as state diagrams sketching transitions as arrows
between states. Each arrow a connecting s0 ∈ Q with s1 ∈ Q is thereby labeled with
Ia/Oa where Ia are the inputs obtained from the transition function and Oa are the
outputs obtained from the output function.

Figure 2.6 depicts the state diagram of an abstract FSM for our SVS example.
It models the wanted behavior of an SVS as follows: As long as no mark is set by
the user and no obstacle is nearby the robot is supposed to explore its environment
thereby cleaning the ground. As soon as a mark is set (input “marked”), the SVS
goes in state “Reach Mark” in which it approaches the given position (output “ap-
proachM”) until it is reached. Then, the robot transits again in the “Cleaning” state
by signaling “success”. Whenever the robot meets with an obstacle (symbolized by
input “obs”), it enters the “Avoid Obstacle” state in order to “bypass” the obstacle.

As this example shows, an FSM can be seen as a formalism for specifying a sys-
tem’s policy denoting which action (output/state transition) the system should take
in particular situations (state/input).

2.3.2 Conformance Testing

Given two FSM’s MS and MI , conformance testing strives to examine whether MI

conforms to MS. Faults can be detected by generating a set of input sequences from
the machine MS. The output sequences can also be obtained from MS. This forms a
test case.

The conformance property is formally defined as an equivalence (i.e., the behav-
ior of MI is equal to that of MS; their initial states produce the same output for every
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input sequence). The input sequence for MS that distinguishes the class of machines
equivalent to MS from all other machines is called the checking sequence.

In the following I will present some methods for deriving/generating such check-
ing sequences. Those methods basically differ in the assumptions they make about
MS which leads to distinct costs (w.r.t. the test suite size and effort for test suite
generation) on the one hand and a distinct fault detection capability on the other.

Assumptions First of all we have to note that for “every conformance test one can
build a faulty machine that would pass such test”[Gar05]. This is because of assump-
tions each test has to make about the SuT. Gargantini, the author of the citation at
hand, distinguishes between necessary and convenient, but not essential assump-
tions. The first are common for all of methods considered.

• Machine MS is minimal, i.e., each pair of states s and t can be distinguished
by an input sequence leading to different output sequences, called separating
sequence.

• The transition and output functions are total.

• We can reach every state in MS from every other state.

• The structure of MI is fixed. It is able to accept all inputs in I.

There is no method which deviates from one or more of the preceding assumptions.
Contrary, the following assumptions are seen as optional. Their presence can be
used to classify the methods.

1. The FSMs MS and MI comprise the same number of states. This assumption
implies that output and transfer faults can be identified through testing, but
faults are not allowed to introduce new states.

2. Both FSMs accept a reset message in any state triggering a transition to the
initial state.

3. MI and MS accept a status message in any state which leads to a response
uniquely identifying the current state.

4. Both FSMs accept one set(s) message in the initial state for each state s ∈ Q
which lets the machines move to state s.

Methods for Test Design If all of the assumptions are given the approach of con-
formance testing is rather straightforward:

1. reset M to the initial state.

2. transfer M to state s through a set(s) message.

3. trigger transition by input message a.

4. check if received output conforms to the specified one and that the final state
conforms to the specified one (by a status message).
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TABLE 2.2: A possible transition tour with in- and outputs.

input unm. obs unm. marked marked obs marked unm.
output expl. startA bypass startT appr. startA bypass succ.

In most cases, however, not all of the assumptions are fulfilled. Especially the set-
message is often not available. In this case, the literature suggests constructing a
so-called transition tour, i.e., a sequence of inputs that visits every transition at least
once [Gar05]. Table 2.2 depicts an exemplary transition tour for the instance of the
SVS. If the FSM is balanced, i.e., every state has the same number of ingoing and
outgoing transition, algorithms for generating an Euler tour, as some of them are
described in [LP97], can be used for deriving the shortest transition tour possible (it
visits each transition exactly once).

For unbalanced FSMs approaches based on the so-called Chinese Postman Prob-
lem can be applied for searching the shortest tour [EJ73]. Further approaches, such
as the W [Cho78] and the W p [Fuj+91] method, replace the status message with spe-
cial sequences of inputs called separating sequences which are able to identify the
source state to which they had been applied. Similar approaches additionally face
the problems in which not even a reset message is given [Aho+91] or the implemen-
tation machine comprises a bounded number of additional states to the specification
state machine [Cho78].
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Chapter 3

Self-Adaptivity Changes the Game

The previous chapter considered developing – and in particular testing – the kind of
systems that Harel and Pnueli referred to as being the complex ones: the so-called
reactive systems. Since the time Harel and Pnueli made their observations, however,
a particular sub-class of those systems evolved which is worth to be separately con-
sidered: the self-adaptive systems. De Lemos et al. characterize this kind of systems as
“(. . . ) systems that are able to modify their behavior and/or structure in response to
their perception of the environment and the system itself, and their goals” [Lem+13],
which implies that also this kind of systems is reactive – still there is a continuous
interaction between the system and its environment.

From the functional view, developing self-adaptive systems seems actually less
complex than developing other reactive systems. The more decisions the system it-
self takes at runtime, the less concrete decisions the developer has to take at design
time concerning the wanted system behavior. However, as the saying goes: “there
ain’t no such thing as a free lunch” [Hei66]. The complexity reduced for functional
specification is at the cost of an increased technical complexity within the implemen-
tation. Purely technical algorithms have to be included in order to enable useful,
effective adaptivity. This chapter is meant to examine the implied challenges for
testing self-adaptive systems.

3.1 Designing Self-Adaptive System Behavior

According to Macias et al. “[s]elf-adaptive software is capable of evaluating and
changing its own behavior, whenever the evaluation shows that the software is not
accomplishing what it was intended to do, or when better functionality or perfor-
mance may be possible” [ME+13]. This evaluation and adaptation capability implies
that self-adaptive systems actually turn the open feedback loop, in which human
operators adapt a software system if necessary, to a closed feedback loop without
any human intervention. Also Brun et al. find that “the feedback behavior of a self-
adaptive system, which is realized with its control loops, is a crucial feature and,
hence, should be elevated to a first-class entity in its modeling, design, implementa-
tion, validation, and operation” [Bru+09].

3.1.1 The MAPE-K Loop

The so-called MAPE-K loop constitutes one of the most prominent formalisms mak-
ing closed feedback loops explicit. It was originally proposed by the IBM autonomic
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FIGURE 3.1: The MAPE-K feedback loop for self-adaptive systems.
A managing system (top) is able to adapt the policy of a domain-
specific managed system (middle) that continuously interacts with

its environment.

computing initiative for designing so-called self-managing systems, i.e., systems that
“(. . . ) accomplish their functions by taking an appropriate action based on one or
more situations that they sense in the environment” [Com+06]. According to the
authors such self-managing systems should comprise a managed as well as a manag-
ing system component (cf. Fig. 3.1). While the managed component is usually seen
as kind of resource, the managing system component is meant to replace human
operators for managing it.

For self-adaptive systems, whose self-managing capabilities let them change their
behavior at runtime, the managed system component can be viewed as a classical
reactive system: The system continuously interacts with its environment by sensing
states sEnv ∈ SEnv and executing actions aS ∈ AS . From the FSM-based perspective
each aS ∈ AS results in an output and in a possible internal state transition. Let us
assume an internal state space SSys and that the managed system in fact pursues a
policy πS : SEnv× SSys → AS that decides about how to respond to particular inputs.

In contrast to other reactive systems, however, the managed system shall be able
to change its behavior at runtime. Suppose thus that actually a whole set of policies
ΠSys is implemented and that the single policy πS ∈ ΠS to be pursued at a given
time can be switched. One could say that the implemented policies are spanning the
capabilities of the overall self-adaptive system.

The managing system or, as it is also sometimes called, the controller is meant to
reason about and to perform the actual policy switches at runtime. To do so it is
assumed to have access to sensory data SSen comprising the perceived parts of SEnv

as well as of SSys. More precisely, the sensed data is accessed and filtered by a monitor
process. A so-called analyzer then compares this filtered data against the knowledge
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base and system requirements in order to diagnose possible needs for further action.
If action is required, a planner devises a plan for adapting the managed system’s
policy in a profitable way. The actual policy switch is performed by effectors that
are embedded within an executor component.

3.1.2 Implications for the Development Process

De Lemos et al. note that the traditional software development process does not meet
the requirements of self-adaptive software [DL+13] anymore. They argue that “[a]
self-adaptive software system operating in a highly dynamic world must adjust its
behavior automatically in response to changing environments or requirements while
shifting the human role from operational to strategic. Humans define adaptation
goals and new application or domain requirements, and the system performs all
necessary adaptations autonomously at runtime” [DL+13].

To introduce the mentioned shift of the human role as well as the system’s au-
tonomy at runtime in terms of a system design suggested by MAPE-K, the classical
development process introduced in (DP) needs to be refined as follows:

(M(0), S(0)) . . . (M( f−2), S( f−2))

(M( f−1)
Ctr , S( f−1)

Ctr )

(M( f−1)
Cap , S( f−1)

Cap )

(M( f )1
Cap , S( f )1

Cap )

...

(M( f )n
Cap , S( f )n

Cap )

Controller

Capabilities

(DP*)

Instead of the sequential refinement of the behavioral as well as the implementa-
tional specifications until a final step f , the process is eventually split up into two
different parts which may be addressed in parallel: developing the controller and
developing the managed system.

While the controller is usually not subject to domain-specific specifications but
is rather generic, the managed system, on the other hand, holds the domain-specific
implementation by a set of concrete policies spanning the system’s capabilities. Which
of the implemented policies will be actually taken at some point in runtime is un-
known at this stage. This lack of predictability of the runtime system approach at
design time leads to the impression that the system is acting autonomous or proac-
tive.

Note that runtime exchange of policies requires all policies {M( f )i
Cap | i ∈ [1..n]} to

implement the same interface E( f ).
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3.1.3 Capabilities

Let us, as a continuation of the running example from Sect. 2.1.2, consider a partial
specification for an adaptive robot vacuum cleaner, as it is promoted at https://
www.philips.com.sg/c-p/FC8820_01. The capabilities of this robot for clean-
ing a room are described by the following policies:

“4 cleaning modes to adapt to different areas in your home. The z-type mode drives the
robot in a parallel zig-zag pattern, when it discovers a relatively larger space. The bounce
mode drives the robot in a straight line, when it bumps into an object the robot will choose
another random direction. With the spiral mode the robot moves in a spiral motion with an
increasing radius. The wall-following mode drives the robot to clean while staying close and
parallel to the wall.”

In terms of the development process depicted in (DP*) this snippet of behavioral
specification constitutes S( f−1)

Cap as it is spanning the space for possible implementa-

tions M f−1
Cap and specifications {S( f )i

Cap | i ∈ [1..n]}.

Implementation Listing 3.1 shows a possible implementation of policies {M( f )i
Cap |

i ∈ [1..n]}for this instance making use of the Gang of Four’s Strategy Design Pattern
[Gam+15]. Similar to the state pattern used for implementing the different modi of
the reactive SVS in Lst. 2.3 the strategy pattern suggests to implement each policy by
a separate class. In order to make sure that all policy implementations indeed follow
the same interface of inputs and outputs as required before, all of the strategy classes
implement the interface CleaningStrategy. Method setStrategy(...) lets
us switch the policy from outside the class.

Constructing an FSM Knowing about the specification as well as about the struc-
ture of implementation, we are able to describe the managed system’s behavior by
means of a finite state machine (FSM, cf. Sect. 2.3).

In fact we are able to employ a very modular two-step modeling approach for
doing so: First, we model the behavior for each possible policy separately. Each of
the policy FSMs should use equal input and output functions while transitions and
states may change. Second, we formalize the adaptation mechanism connecting the
policy FSMs by means of an FSM as well. The overall result is a hierarchical state
machine (cf. [Yan00]) with policies as nodes and transitions in between.

Figure 3.2 depicts an exemplary transition of such an hierarchical FSM in terms
of the considered SVS instance. While both modelled policies comprise equal input
(I = {wallN, wallE, wallS, wallW}) and output alphabets (O = {driveN, driveE, driveS,
driveW, switchE, switchS, switchW, switchN}), as the figure shows, the transition func-
tions differ.

3.1.4 Managing System

Up to now we have ignored the managed system’s control: the implementation (cf.
Lst. 3.1) as well as the FSM (cf. Fig. 3.2) assumed control from outside. While one

https://www.philips.com.sg/c-p/FC8820_01
https://www.philips.com.sg/c-p/FC8820_01
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LISTING 3.1: Adaptive Implementation of SVS
public class AdaptiveSVS extends SVS {

private CleaningStrategy strategy;

public AdaptiveSVS(CleaningStrategy strategy) {
this.setStrategy(strategy);

}

public void setStrategy(CleaningStrategy strategy) {
this.strategy = strategy;

}

@Override
public Action plan(Map<Direction,Integer> inputs) {

return strategy.plan(inputs);
}

interface CleaningStrategy{
Action plan(Map<Direction,Integer> inputs);

}

class BounceMode implements CleaningStrategy{
Direction currentDirection;
Random rand = new Random();
static final int WALL = 3;

public BounceMode(){
this.currentDirection = Direction.values()[rand.nextInt(4)];

}

public Action plan(Map<Direction,Integer> inputs) {
if(inputs.get(currentDirection) != WALL)

return new Action(currentDirection);
else{

List<Direction> others = new ArrayList<>();
for(Direction dir : Direction.values()) {

if(!dir.equals(currentDirection))
others.add(dir);

}
return new Action(others.get(rand.nextInt(3)));

}
}

}

class ZTypeMode implements CleaningStrategy{
...
public Action plan(Map<Direction,Integer> inputs) { ... }

}
...

}
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FIGURE 3.2: Exemplary transition between the Bounce (left) and Wall-
following mode (right) of the SVS within a hierarchical state machine.
Signals switch(W) and switch(B) for mode switches are assumed sent
from outside, e.g., from the user. The outputs accB and accW are

meant to signal the mode transitions.

could certainly imagine to transfer control to a user, just as an open-looped clas-
sical reactive system would, within a self-adaptive system this loop is closed by
a software component: the managing system. Its predominating task is adapting
the managed system at runtime. Let us in the following consider the development
of such a controller. Within the process depicted in (DP*) this is represented by
(M( f−1)

Ctr , S( f−1)
Ctr ).

Implementation A snippet of specification representing S( f−1)
Ctr for the SVS that is

promoted at https://www.philips.com.sg/c-p/FC8820_01 reflects the need
for a kind of automated feedback loop in the following way:

“The new robot vacuum cleaner is equipped with the Smart Detection System, a
combination of smart chips, up to 25 sensors, gyroscope and accelerometer, that makes the
robot efficient to clean on its own. The robot understands the environment and chooses
an optimal cleaning strategy to clean your home as quickly as possible. The robot
does not get jammed and returns to its docking station when necessary.”

While it indeed requires the robot to choose the optimal cleaning policy for given
environments it does not give a mapping between room types and optimal policies.
The actual choice is left to the robot “itself”, which in principle addresses a technical
algorithm, at runtime. The exemplary implementation depicted in Lst. 3.2 delegates
this choice to an abstract controller module Reasoner.

It sequentially updates a knowledge base with current impressions delivered by
the sensors (method updateKnowledgeBase()) and chooses the policy to take
based on this knowledge base (method chooseStrategy()). This might, for in-
stance, hold a map of the room the robot is located in, together with past routes as
well as estimated obstacle and dirt positions, in this way enabling a better and more
efficient planning of future actions to take.

The system approach as a Markov Decision Process (MDP) One can think of
diverse possible implementations for method chooseStrategy() within the ab-
stract controller. A possibly simple rule-based planner might be merely equipped

https://www.philips.com.sg/c-p/FC8820_01
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LISTING 3.2: Self-adaptive Implementation of SVS
public class SelfAdaptiveSVS extends SVS {

private Reasoner reasoner;
private CleaningStrategy strategy;

public SelfAdaptiveSVS(Reasoner reasoner) {
this.reasoner = reasoner;

}

@Override
public Action plan(Map<Direction,Integer> inputs) {

reasoner.updateKnowledgeBase(inputs);
strategy = reasoner.chooseStrategy();
return strategy.plan(inputs);

}

interface Reasoner{
public void updateKnowledgeBase(Map<Direction,Integer> inputs);
public CleaningStrategy chooseStrategy();

}

interface CleaningStrategy{
Action plan(Map<Direction,Integer> inputs);

}

class BounceMode implements CleaningStrategy{
...
public Action plan(Map<Direction,Integer> inputs) { ... }

}

class ZTypeMode implements CleaningStrategy{
...
public Action plan(Map<Direction,Integer> inputs) { ... }

}
...

}

with static conditions (within the knowledge base) switching over environmental
peculiarities extracted from the sensed states sSen ∈ SSen.

In case of the considered SVS some of those are actually mentioned in the above
cited specification, e.g., large space→ ZigZag Pattern. In case of such an implementa-
tion, we can obviously treat the adaptive system just like any reactive system further
on – each policy can be just considered as a mode or state just like implemented in
Lst. 2.3 and designed in Fig. 2.6.

Defining those static conditions, however, requires the developer to have antic-
ipated all the possible environments with all their peculiarities the SVS could be
located in at design time. If this classification turns out to be not appropriate, the
system approach at runtime might fail w.r.t. the system goals. Instead of those fixed
rules, it is thus reasonable to equip the SVS with the capability to classify its currently
perceived environment at runtime itself based on previously gained experience. As
this kind of implementation emphasizes the system’s self-* property against the tra-
ditional reactive nature, I refer to this as a purely self-adaptive implementation.

In fact, the controller’s process of analyzing the inputs and planning possible
policy switches for the managed system poses a sequential decision process, or more
precisely, a Markov Decision Process (MDP) [FS12].

In its classical form, an MDP is represented by a tuple (S, A, T, R), where
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• S is a set of states;

• A is is a set of actions;

• T : S× A → PD(S) is a transition function which defines the effect of actions
on the state of the environment with PD(S) denoting the set of discrete proba-
bility distributions over S;

• R : S× A× S→ R is a reward function assigning rewards to each state transi-
tion.

Since the controller has to decide which implemented policy to choose according
to the currently perceived state sSen ∈ SSen, it might be seen as instantiating the
classical MDP by (S← SSen, A← ΠS , T ← TK, R← RK), where

• SSen is the finite set of states that might be perceived;

• ΠS is the finite set of implemented policies of the managed system that can be
chosen in principal;

• TK : SSen ×ΠS → PD(SSen) with TK(sSen, πS ) indicating a probability distri-
bution over states SSen that might result from chosing πS in sensed state sSen.
Note that the particular transition function is associated to the state k ∈ K of
the knowledge base as it has to be either guided by a user-given model or by
self-made experience in the past;

• RK : SSen ×ΠS × SSen → R denotes rewards for taking particular transitions.
Since transitions depend on the knowledge base state k ∈ K also the reward
function does.

Given one TK and RK the associated task is to find a (meta-)policy π̂ : SSen → ΠS ,
i.e., a rule for selecting an implemented policy in any given state that maximizes the
expected return (in terms of collected reward).

Reinforcement Learning In [SB98], Sutton and Barto summarize the class of so-
called reinforcement learning methods which are designed for solving MDPs. Algo-
rithm 1 shows a general interface for such methods in pseudocode.

The idea behind is learning optimal policies mapping environmental states S to
actions A by exploration. The exploration procedure is guided by a function choose

that involves the current environmental state as well as a training model V in action
selection. Such a training model often constitutes a value function that is mapping
states and actions to expected returns according to future reward payouts. There
might be however other implementations of range V of training models, too.

After each step of exploration the training model is updated with respect to the
gained insights, that are the reached state s′ as well as the obtained reward r. The
learning component is usually not required to have full knowledge about the envi-
ronmental dynamics i.e, the transition function T of the underlying MDP. Instead, it
is merely assumed having access to an executable environment ET : S× A→ S with
ET(s, a) returning a target state s′ in response to executing a in s. The selection of s′

is assumed to comply with the probability distribution T(s, a).
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Algorithm 1 Abstract Interface of Reinforcement Learning Algorithms

Require: (S, A, T, R) ≡ underlying MDP
V ≡ range of training models storing insights gained through training
choose ≡ S× V → A guiding exploration
update ≡ S× A×R× S× V → V updating the training model
ET ≡ S× A→ S with ET(s, a) drawing an s′ according to T(s, a)
nb_steps ≡ number of training steps to be performed

1 s← any source state from S
2 V ← any training model from V
3 step← 0
4 while step < nb_steps do
5 a← choose(s, V)
6 s′ ← ET(s, a)
7 r ← R(s, a, s′)
8 V ← update(s′, a, r, s, V)
9 s′ ← s

10 step← step + 1
11 return V

As soon as a predefined number of training steps is reached, the training proce-
dure is finished. A function like chooseStrategy from Lst. 3.2 might then implement
a (meta-)policy by just selecting the best-rated action per state with respect to V.

Recall that the controller’s MDP instantiates T and R by TK and RK. Thus,
as the knowledge base’s state might change over time by executions of method
updateKnowledgeBase also TK and RK change. Since this invalidates V as well the
planning procedure will have to be started again and again after each knowledge
base change for calculating suitable policies.

Diverse reinforcement learning implementations are accessible with open sources
and can be easily plugged in for given domain-specific problems (consider for in-
stance keras-rl for deep reinforcement learning [Pla16]). The fact that using such im-
plementations lets us simply plug-in generic pieces of software for solving domain-
specific problems at runtime thereby emphasizes the benefits of self-adaptive sys-
tems again: they are saving cost and time for designing domain-specific solutions.

Implications for the FSM If we could assume given a specified controller’s meta-
policy π̂ : SSen → ΠS we would be able to state the wanted, overall system behavior
in response to each input sEnv ∈ SEnv at design time. We just had to insert sEnv into the
chosen policy πS to obtain the system action aS ∈ AS . In particular, we could in this
case specify the actual conditions leading to policy switches within the hierarchical
state machine depicted in Fig. 3.2.

As discussed before the meta-policy of a purely self-adaptive system is, however,
computed at runtime and its computation considers current states of the knowledge
base. Further, the system is assumed to learn over time, i.e., the knowledge base’s
content is not assumed to be static and known a priori. If we want to predict the spec-
ified overall system behavior for a particular input at a particular time we thus not
only have to reverse engineer the runtime planning procedure but also the historical
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FIGURE 3.3: Non-deterministic finite state machine (NFSM) model-
ing the SVS’s behavior. The NFSM still is hierarchical organized: each
mode is assumed to include an FSM itself that indicates the SVS be-

havior under the respective policy.

updates of the knowledge base. Doing so at design time would require predicting
all the possible environmental peculiarities the system might be confronted with at
runtime. This is not possible still. In consequence, we have to assume that neither
any developer nor any tester will be able to characterize the overall system behavior
at design time deterministically, e.g., by indicating conditions for policy switches in
the FSM.

At least, we are able to characterize a kind of superset of possible system ap-
proaches by explicitly introducing non-determinism within the behavioral mod-
els. Non-deterministic Finite State Machines (NFSMs) present one of the possible for-
malisms to do so. By replacing the transition and output functions δ and λ of a
deterministic FSM described by (I, O, Q, δ, λ, q0) with a so-called transition relation
τ : Q × I → 2Q×O, an NFSM that is described by (I, O, Q, τ, q0) is able to model
multiple transitions with diverse outputs per source state and input. Which of the
possible transitions is actually taken given a particular input and state is supposed
unknown a priori. Figure 3.3 depicts such an NFSM for our SVS running example in
which the wanted π̂ is supposed to be unknown.

3.2 Testing Self-adaptive Systems

Having discussed the particular characteristics of self-adaptive systems, let us now
consider testing those systems. Recall that self-adaptive systems are reactive as well.
Assuring their functional quality should consequently involve both: examining con-
formance between the implementation and specification as well as consistency be-
tween the respective refinements.

More specifically, we usually strive to show that ∀i ∈ [1..n] . M( f )i
Cap |= S( f )i

Cap (con-

formance of the capabilities), that M( f−1)
Ctr |= S( f−1)

Ctr (conformance of the controller),

and that ∑i∈[1..n] S( f )i
Cap + S( f−1)

Ctr |= S( f−2) (consistency), i.e., that the intertwining be-
tween the managed and the managing system’s specification matches with the latest
common behavioral specification.
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Consistency is traditionally not shown by testing but rather informally assured
since pure specifications are not executable. However, the split-into-two develop-
ment process for self-adaptive systems changes this situation. Informally examin-
ing consistency would namely involve to understand the interplay of specifications

∑i∈[1..n] S( f )i
Cap + S( f−1)

Ctr at design time. If we would, one of the main purposes for using
self-adaptive systems I discussed in Sect. 3.1.2 – ”shifting the human role from oper-
ational to strategic“ [DL+13] – was questionable. If we however do not, we need to
shift the consistency check to runtime.

This means that showing consistency turns out to be a testing task also. After
conformance testing we additionally strive to show that ∑i∈[1..n] M( f )i

Cap + M( f−1)
Ctr |=

S( f−2), i.e., that the integrated implementation of the managed and the managing
system conforms with the overall behavioral specification, by testing.

3.2.1 Conformance Testing

Testing conformance for self-adaptive systems in general has to involve both: we
have to test whether the managed system implements the capabilities correctly, i.e.,
∀i ∈ [1..n] .M( f )i

Cap |= S( f )i
Cap ; and we have to test whether the managing system correctly

implements the feedback loop, i.e., M( f−1)
Ctr |= S( f−1)

Ctr . As we noticed before that usu-
ally huge parts of the managing systems in fact are standardized and can be included
through code bibliographies, let us assume in the following that its conformance is
already tested (see [Ebe+17b] as an example where a newly developed controller is
tested separately). We can thus concentrate on testing ∀i ∈ [1..n] .M( f )i

Cap |= S( f )i
Cap .

Testing with NFSMs Test design, i.e., selecting and prioritizing logical test cases,
for conformance testing traditionally involves interpretations about the SuT’s in-
tended behavior. Deterministic finite state machines (FSM) are one way to do so
(cf. Sect. 2.3). More precisely, the FSM-based conformance testing approach assumes
that both the specification as well as the implementation can be represented by FSMs
MI and MS respectively. The task is showing equivalence between the two.

We are, however, not able to state deterministic FSMs for specifications of in-
tegrated self-adaptive systems. Also the actual implementation may be of non-
deterministic nature due to its dependence on possibly changing states of the knowl-
edge base. Same inputs might lead to different outputs over time. Either way the
classical FSM-based approach on conformance test design considered in Sect. 2.3
can be not directly applied. Still, the literature knows several solutions including
the following instances:

With the so-called generalized Wp method Luo et al. adapt a traditional FSM-based
testing approach to testing equivalence between two NFSMs [LBP94]. Both, the spec-
ification as well as the implementation are supposed to be non-deterministic. They
are considered equivalent if all possible input sequences result in equal sets of pos-
sible output sequences. To obtain the sets of possible outputs from the implementa-
tion the authors suggest to execute the same input sequences a “sufficient” number
of times. The assumption that all possible outputs to an input will be eventually
observed is called the complete testing assumption.
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In terms of self-adaptive systems that assumption would mean that the SuT will
eventually have tried out each implemented strategy if we just wait long enough,
which in the context of strategy switches appears very time-consuming.

Shabaldina et al. propose to test conformance of two NFSMs with respect to a
so-called separability relation [SEFY07]. As this approach is getting along without the
complete testing assumption it seems more suitable for testing self-adaptive systems
than the one before. The idea behind is trying to show that there actually is an
input sequence for which the sets of output responses of the NFSMs to the sequence
do not intersect. In case such a sequence is found, there is no equivalence relation
between the two NFSMs. An algorithm is given that systematically searches for such
sequences.

Though the authors mention that each derived test case needs to be applied only
once in order to detect every separable implementation they also note that the num-
ber of test cases derived is associated with the number of non-deterministic transi-
tions in the specification and the implementation to be separated. A reported ex-
periment in which an NFSM comprising 5 states, 3 inputs, and 3 outputs resulted
in 15407 test cases to execute indicates high costs for using this method for testing
self-adaptive systems.

In sum we have to state that though both considered methods can cope with non-
deterministic specifications and implementations, they appear unfeasible in practice
due to the high associated costs.

Instrumenting the Knowledge Base for Test Input Generation A starting point
for limiting those high costs with respect to the number of test cases to be applied is
making the implementation deterministic if it is not already. Recall that the non-
determinism in self-adaptive system behavior comes from the managing system
component. Since our primary aim here is testing the managed component how-
ever, we are allowed to just exclude the possible cause for non-determinism – that is
the knowledge base.

Moreover, the knowledge base itself can serve as a kind of test input generator.
Hänsel et al. argue in this context that the state of the knowledge base (which they
call architectural runtime model) usually mirrors the relevant parts of sensed envi-
ronmental and internal states and thus can serve as test input [HVG15]. Planning
is thereby decoupled from sensors. Controlling the knowledge base we can thus
on the one hand suppress further learning and, on the other hand, directly generate
test inputs. Since the meta-policy π̂ in this case remains fixed over time the observed
system behavior becomes deterministic.

Understanding the relation of knowledge base states and π̂ we can actually make
use of the traditional FSM-based conformance testing methods again: we just aug-
ment the NFSM depicted in Fig. 3.3 with conditions associated to the knowledge
base to obtain a deterministic FSM. Consider Fig. 3.4 for an instance.

But even if we do not understand the relation between knowledge base states
and π̂, complexity decreases by a deterministic implementation. Using the gener-
alized Wp method by Luo et al. derived test cases for deterministic implementations
need to be applied only once – the complete testing assumption is obviously fulfilled.
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FIGURE 3.4: FSM indicating the SVS’s behavior with respect to a par-
ticular knowledge base state for which the tester knows which kind

of room would be classified as including, e.g., a large space.

As also Petrenko et al. [PYB96] suggest: the previously considered equivalence rela-
tion between two NFSMs can be relaxed to a reduction relation that requires that the
set of output sequences returned by the implementation FSM can be also produced
by the specification NFSM in response to every input sequence. In terms of test-
ing self-adaptive systems such a reduction relation means that the policies the SuT
follows are actually specified.

3.2.2 Testing Consistency

Having assured conformance and therefore that the capabilities themselves, i.e., the
possible runtime policies the system might follow, are implemented correctly, we
still do not know whether the policy selection at runtime is actually conforming with
the overall system goals usually formalized in S f−2 1. The system is meant to fulfill
those imposed goals at runtime by the interplay of implementations ∑i∈[1..n] M( f )i

Cap +

M( f−1)
Ctr .

For testing consistency we hence cannot avoid integrating the managing and the
managed systems into a single whole. Further, testing self-adaptation against envi-
ronmental dynamics certainly requires to introduce dynamics in test inputs also. We
need to consider sequences of environmental states {Si

Env}i∈N over time steps i as
inputs further on. The issue is to make sure that for each of those possible input se-
quences the system behavior comprising all the steps from updating the knowledge
base to responding with actual outputs conforms with the imposed goals.

1Consider the so-called Corridor of Correct Behavior (CCB) as instance for such goal formalization.
This will be introduced later in the context of self-organizing systems, that is a subclass of self-adaptive
systems.
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Traditional Test Strategies The fact that we have rather to consider sequences of
test inputs instead of single ones suggests that testing self-adaptive systems in fact
is more complex than testing other reactive systems2.

In terms of concolic testing (cf. Sect. 2.2.1) this can be seen at the complexity of the
path constraints to be solved which increases with the number of inputs to be con-
sidered. Also the absolute number of paths to be tested increases due to integration
of the system components. In total we will observe longer test times for achieving
lower test coverage than before.

In terms of combinatorial black-box testing (cf. Sect. 2.2.2) the inclusion of time
steps, i.e., the i in the sequence, in test inputs blows up the space of possible equiva-
lence classes to be considered. Expanding, for instance, the categories and partitions
chosen in Sect. 2.2.2 for testing the reactive SVS for just one additional time step
we obtain 486× 486 = 236 196 combinations to be considered. The more inputs to
combine, the higher, however, the amount of time needed for algorithms used to
combine them – and the longer the time needed for test execution afterwards.

Applying prioritization, such as suggested by the variable strength coverage crite-
rion (cf. Sect. 2.2.2), over time steps i lacks of knowledge about the intended system
approach at runtime: If we do not know which are the principal characteristics that
should guide the system’s behavior, we are also not able to prioritize them manu-
ally. This can be also seen at FSM-based testing. Since we do not know about the
intended system behavior at runtime we can also not state concrete input sequences
that trigger particular paths through the FSM at design time. Eventually reaching
some highly prioritizes transitions hence requires to try out all the possibilities.

Testing in Simulation In spite of the huge effort needed for deriving and executing
test cases, imposed constraints in time and cost still limit the possible invest. As we
saw in the previous sections the possibilities for reducing the number of test cases
are limited by non-determinism. Thus, one usually tries to reduce the overall testing
costs by cheapening the test execution itself. This is shifted from slow and hard-to-
control reality to fast and easy-to-control simulation. If we consider, for instance, the
SVS described above, it is certainly cheaper to confront it with diverse room settings
in simulation than actually placing the robot again and again by hand in reality.

Various approaches have been proposed for testing self-adaptive systems in sim-
ulation. Let us in the following consider some instances: Nguyen et al. use a given
environmental simulation to evolve increasingly demanding environmental setups a
SuT could be confronted with by using genetic algorithms [Ngu+09]. Habermaier et
al. propose to use executable environmental models for simulating test inputs at test-
ing of self-organizing systems [Hab+15]. A model checker systematically explores
the system behavior in response to each modeled environmental scenario.

A similar simulation-based approach is used for testing a self-organizing pro-
duction cell in [Ebe+16]. Eberhardinger et al. consider a method for testing recon-
figuration mechanisms, which may be viewed as particular instances of feedback

2As the previous chapter showed also not self-adaptive reactive systems require sequences of inputs
to be tested. Since self-adaptive systems are assumed able to perform more than one policy, where the
behavior under each of those policies forms a reactive system itself, we need to construct sequences of
sequences of test inputs in this case for exhaustive testing.
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FIGURE 3.5: The traditional test process extended with Simulation-
based Testing.

loops, in isolation [Ebe+17b]. The environment is thereby simulated by so-called en-
vironmental profiles that are supposed to be manually modeled by means of Markov
Chains. The environment is thereby simulated by so-called environmental profiles that
are supposed to be manually modeled by means of Markov Chains.

Fredericks et al. test the implementation of an autonomous smart vacuum system
within a simulated environment using an approach for runtime test suite adaptation
they call Veritas [FDC14]. This approach implements the idea to base testing on a
feedback loop similar to MAPE-K – letting also the test component monitor, analyze
and plan the following test execution [FRC13].

Hänsel et al. propose to provide a simulation for what they call in-the-loop testing
of self-adaptive systems [HVG15]. This simulation is assumed to implement transi-
tions between sensed states and can be thus used for generating meaningful input
sequences.

3.3 A Modified Test Process

Hänsel at al. mention that the simulation itself might diverge from the actual envi-
ronmental conditions and that consequently the SuT should be tested also in real,
not-simulated environments [HVG15]. This statement is further motivated by liter-
ature about testing embedded software systems, where the testing process tradition-
ally comprises three stages: first, the behavioral specification in terms of executable
models is tested in simulation; second, the real software is tested in simulation; and
third, the real software is tested within a real environment [BN03].

3.3.1 The Need for Reduction

The more realistic the test environment the more expensive, however, test execution.
While simulations are mostly easy to access and to automatize, reality is often not.
In consequence we cannot execute all test cases from simulation in reality, too.
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Let us consider an instance: In [Ebe+16] Eberhardinger et al. reported about ex-
ecuting 131 000 test cases for testing a particular setting of a self-organizing produc-
tion cell in simulation. In their setup executing all those test cases within a central
simulation took 570 minutes. Since self-organizing systems are distributed, it is rea-
sonable to assume that also their interoperability will have to be tested within a later
stage. This will have to involve a distributed test environment rather than a central
simulation. If we assume that setting up this environment before test execution just
needs 10 seconds per test case, executing all the test cases then takes about 21 833
minutes which is about 15 days.

We obviously need to harmonize the number of test cases to execute with im-
posed constraints in time and cost. Though, as seen before, underspecification in
the SuT’s runtime behavior sets limits to the traditional approaches for doing so.
Simply put, as long as we do not know about the concrete intended system behavior
we are not able to form and to prioritize equivalence classes over possible test cases.
On the other hand, the employed simulation itself lets us observe the actual runtime
behavior of the SuT– at least for fixed knowledge base states.

Each executed test case will result in an explicit system response that might in-
stantiate the previously non-deterministic model at a particular part since it is giving
us a hint about the actual system behavior which was unknown at design time. If
this is the case, the sum of all system responses obtained through executed test cases
in simulation could instantiate whole parts of the previously non-deterministic be-
havioral model by deterministic transitions. At least for those instantiated parts we
are able to apply traditional techniques for systematic test design afterwards.

3.3.2 Testing Self-adaptive Systems as a Game

For testing consistency of self-adaptive systems both appears reasonable thus: first,
a simulation-based testing stage lets us cheaply explore the actual behavior of the
SuT. For this, existing methods including those described in the previous subsection
might be used. Second, the insights gained from simulation can be used for more tar-
geted testing afterwards. To do so we need to capture the observed SuT behavior in
any kind of abstract model. Figure 3.5 visualizes the implications for the traditional
test process.

Testing in simulation can be thereby viewed as a stochastic game between the
tester and the SuT [RK16]. While the tester is trying to reveal as many and as se-
rious deviations from the system goals as possible, the SuT seeks to prevent exactly
this through policy switches.

An instance of this Game of Testing (GoT) (cf. Fig. 3.6) is described by the tu-
ple (SEnv, AT , AS , T, RT , RS ), where AT is the set of actions the tester is able to take,
transition function T : SEnv × AT × AS → PD(SEnv) defines the effect of actions on
the environmental state with PD(SEnv) denoting the set of discrete probability dis-
tributions over SEnv, and reward functions R∗ : SEnv × AT × AS × SEnv → R are
quantifying the goals of the tester (∗ = T ) and the SuT (∗ = S). While the SuT’s
goal is specified in S( f−2), the tester’s is usually the inverse, since the ultimate goal
in testing is still to reveal failures (cf. Sect. 2.1.3).

Assuming discrete time steps t = 1, . . . , N, the SuT and the tester are sequentially
selecting actions according to their respective (meta-)policy πt

∗ : SEnv → A∗, which
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returns the action a∗ ∈ A∗ to execute in a state st ∈ SEnv. At the end of each time
step the environmental state st+1 is updated by a state drawn from T(st, aT , aS ).

The tester as well as the SuT are rewarded by rt+1
∗ = R∗(st, aT , aS , st+1). Both are

allowed to update their policy based on this obtained reward then. For the SuT this
is the task of the managing system component (cf. Sect. 3.1.4).

TestEnvironment

SuT

Environment

Tester ASSEnv, RS

AT

SEnv, RT

FIGURE 3.6: General setting of the Game of Testing combining two
decision processes, one for the SuT and one for the tester.

But also the tester’s perspective on the GoT formally cuts out a Markov Decision
Process (MDP) for a given SuT policy πt

S . This MDP is of the form (SEnv, AT , TT , R),
where SEnv and AT can be directly taken from the GoT and the transition func-
tion TT : SEnv × AT → PD(SEnv) as well as the reward function R : SEnv × AT ×
SEnv → R are formed by embedding πt

S within the test environment: TT (s, aT ) =

T(s, aT , πt
S (s)) and R(s, aT , s′) = RT (s, aT , πt

S (s), s′) for s, s′ ∈ SEnv and a ∈ AT .
Note that both, the transition as well as the reward function can be extended to the
SuT’s meta-policy π̂ as this defines the policy switches at runtime.

3.3.3 Learning and Adapting Test Policies at Runtime

In the light of the GoT simulation-based test design can be viewed as trying to de-
rive an optimal policy πT w.r.t. imposed test goals from simulation that is then used
for testing in later stages of the test process. When examining solutions for deriv-
ing such policies we have to distinguish whether the self-adaptive SuT itself is still
learning at runtime or not3. In terms of the SuT’s MDP the meta-policy π̂ of a still
learning SuT will namely change over time while this of a not-learning SuT remains
fixed.

If it is fixed, an optimal policy w.r.t. the tester’s MDP cannot become suboptimal
again. We are able to derive an integrated model from simulation once in order to
base policy selection for further testing on this. I call this activity test policy learning.
Still, it can be advantageous to let the test policy evolve over various iterations of the

3Note that also the behavior of a not learning self-adaptive system may be non-deterministic. Con-
sider for example systems with implicit feedback loops such as self-organizing systems involving
emergent behavior: in order to understand their behavior at design time one has to understand the
interplay of components at runtime.
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test process in order to include the insights of previous test results in further testing.
I will reference this approach as test evolution hereinafter.

The meta-policy of a still learning SuT changes over time, i.e., there is a natural
number n for each time step t for which π̂t 6= π̂t+n. Since the system’s policy is part
of the tester’s environment, an optimal test policy w.r.t. particular goals might thus
become suboptimal later on. Searching for one particular policy able to perform well
over time would consequently require to consider all possibly chosen meta-policies
of the SuT. In other words, we would have to consider game theory: we try to learn
a strategy against an opponent which is able to switch its strategy in response to the
own strategy as well.
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Chapter 4

Test Policy Learning

Present chapter reports about a case study of simulation-based test design for a self-
adaptive system that we published in [Rei+18]. We considered the task of devising a
policy for testing a self-organizing system (see Sect. 4.1) which serves with a particular
interesting characteristics: while the system is not learning at runtime – its knowl-
edge base and thus its meta-strategy is fixed – its intended, overall meta-policy is,
still, supposed unknown at design time. To put it in the words of conformance test-
ing we dealt with testing a deterministic implementation against a non-deterministic
behavioral specification.

Indeed we rather considered testing consistency than conformance striving to
show that the integrated system components are meeting the overall system goals.
Therefore we assumed a simulation of the system’s environment given. As the SuT’s
meta-policy does not change over time we performed what I previously called test
policy learning (cf. Sect. 3.3.3): we derived an explicit behavioral model from simu-
lation once in order to base test policy selection for further testing on this.

A certain type of behavioral model allowed us to integrate model-based with
particular white-box considerations1 (see Sect. 4.2 and Sect. 4.3). Given this model
we regarded test policy learning as a reduction task (see Sect. 4.4): we strove for
finding a subset of all the test case sequences we applied in simulation such that
the chosen sequences were still representative for the rest. In terms of a test pol-
icy as it is seen in Sect. 3.3.3 we thus neglected the order in execution of the chosen
test case sequences. For performing the representative subset selection two clus-
tering techniques from machine learning literature, the Affinity Propagation and the
Dissimilarity-based Sparse Subset Selection, proved particularly suitable.

The reader should note that some parts of this chapter are direct citations from
paper [Rei+18] which are set in context of present work.

4.1 Testing Self-Organizing Systems

Self-organizing (SO) systems are distributed systems that are able to adapt their in-
ternal structure at runtime to changing environmental conditions without human
supervision; see Fig. 4.1 for the fundamental setup. For the purpose of our case
study we considered a self-organizing production cell under test. This has been

1Recall that, in general, traditional white-box approaches on test design are considered unfeasible
for testing consistency for self-adaptive systems (cf. Sect. 3.2.2)
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FIGURE 4.1: Fundamental setup of self-organizing systems: Dis-
tributed software agents (often embedded in physical machines) con-
tinuously interact with their environment (denoted by arrow type
¶). The joint system behavior is strongly influenced by inter-agent
communication (denoted by arrow type ·) through message pass-
ing. As soon as an agent detects an environmental fault that hinders
the current system approach it triggers a reorganization mechanism
(denoted by arrow type ¸) which computes and distributes a valid

configuration again.

originally introduced by Güdemann et al. [Güd+08] as an example of using self-or-
ganization for mastering future production scenarios. The motivation behind was
that the authors expected that production systems will have to support decentral-
ized decision making, the optimization of their system structure, and autonomous
reaction to component failures at runtime increasing the system’s robustness – and
the concept of self-organization promised solutions.

4.1.1 Self-Organizing Systems

As specific instances of self-adaptive systems the distributed nature of SO systems is
reflected not only in the managed system – this comprises a number of distributed
components or agents – but also in the controller. At least some parts of the imple-
mented feedback loop (cf. Sect. 3.1.1) are decentralized:

The distributed agents are monitoring and analyzing their environment. If dis-
turbances are detected, the agents report their insights to a so-called reorganization
mechanism that can be either central or distributed again. This mechanism is then
planning possible adaptations of the system structure which are broadcasted in the
execution stage among the agents. Since each of the agents is assumed to perceive its
environment and to act in accordance to an internal state at runtime also the overall
system’s knowledge base is distributed. In particular, each agent ag ∈ Ag follows a
local policy πag at each time that maps environmental states SEnv to local outputs
Aag. An overall system policy πS ∈ ΠS is therefore the combination of local policies
of all comprised agents Ag within the system. The action space AS is formed by the
cross-product of all local action spaces.

Even though SO systems traditionally do not modify their knowledge base at
runtime their explicit intended behavior is still not assumed predictable at design
time. This is mainly because of two reasons: First, explicitly devising an overall
system policy πS by combining specifications of all local policies is usually very
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FIGURE 4.2: A schematic overview of the self-organizing production
cell case study with four robots as well as three carts establishing
the resource flow between them. The task is to apply the drill, in-
sert, tighten, and polish capabilities to all incoming workpieces. Each
robot’s available tools are shown to its right, with D, I, T, and P; the

currently allocated ones are underlined.

complex since message passing and timing need to be considered. Second, the lo-
cal policies of agents can be exchanged by reorganization at runtime. Predicting the
single agents’ local policies at one time requires, thus, having understood the sys-
tem’s meta-policy π̂S that is mapping sensed states to new configurations comprising
a local policy per agent.

As the reorganization mechanism’s specification is rather of technical than of
domain-specific nature – which is in line with the assumptions concerning the man-
aging system of a self-adaptive system (cf. Sect. 3.1.4) – constructing such a domain-
specific mapping is most times practically unfeasible.

Just think about having to manually infer the equivalence classes established by,
say, an ant-colony algorithm over domain-specific states. Just as for self-adaptive
systems usual (cf. Sect. 3.2.2), assuring the consistency of SO systems is most times
reduced thus to a testing task.

4.1.2 The Self-Organizing Production Cell

With a self-organizing production cell we considered in our case study a particular
instance of an SO system under test. The production cell comprises robots (R1, R2, R3,
R4) and carts (C1, C2, C3) which are meant to process and to transport ingoing work-
pieces in accordance to predefined tasks. Each of those entities is equipped with
a software agent controlling its capabilities through roles that implement the local
policies. The robots’ capabilities (Drill, Insert, Tighten, Polish) correspond with the
kind of tools they are equipped and the mobile carts are able to carry the workpieces
in between.

Though the production cell can in principle fulfill any task that corresponds to
capabilities available, particular environmental faults such as broken tools or ob-
structed routes might make particular tasks unfeasible at runtime. In case of such an
environmental fault the reconfiguration mechanism is meant to modify the overall
system configuration in a way that present tasks can still – or again – be accom-
plished.

Nafz suggests to implement the single agent behavior within the self-organizing
production cell with respect to the hierarchical state machine depicted in Fig. 4.3
[Naf12]. Starting in state idle the agent can be triggered by a message produce to
choose and apply a role (such as controlling a driller) on a given resource res. If the
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FIGURE 4.3: Single agent behavior in the adaptive production cell

agent depends on another and thus is not a so-called producer, it waits until res is
available and can be pickedUp. The capabilities of the controlled robot are getting
applied then. If no failure was monitored and if there is no more other robot in the
resource flow, the agent immediately changes to state idle again. If there is another
robot, the agent outputs a message to trigger the next. As soon as the next robot
is ready, the resource res is passed to wait for the final acknowledgment message
overtaken.

On top of this rather straight forward resource flow implementation, each agent
is able to react on reconfiguration signals, that is, reconf and deficient, at any time.
The first is broadcast by the reconfiguration mechanism if an environmental fault
led to a failure and a new configuration has to be computed. As long as this message
is sent, the agent stays in its current state (as indicated by the deep history pseudo-
state). As soon as the deficient signal is broadcasted, however, the agent immediately
changes then to state idle for restart.

The overall behavior of the self-organizing production cell results thus, on the
one hand, from the distributed, parallel execution of the agents with their message
exchanges (this forms a policy πS ∈ ΠS ) and the reconfiguration mechanism using
reconf and deficient on the other (this forms the meta-policy π̂S ).

4.1.3 The Corridor of Correct Behavior

For goal specification of the SuT we considered a formulation by Güdemann et al.
that is based on the so-called Restore Invariant Approach (RIA) [Güd+08]. This sug-
gests to describe the system goals, i.e., S( f−2) in the development process (cf. (DP*)),
by means of a so-called Corridor of Correct Behavior (CCB). The idea behind is stating
the wanted properties of internal and external states with logical predicates – the
conjunction of these predicates forms an overall invariant for the system’s specified
run-time behavior. As soon as this invariant is broken, i.e., one of the predicates
evaluates to false, the reorganization mechanism is assumed to restore the invariant
through reorganization again.
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In case of the self-organizing production cell scenario, Güdemann et al. sug-
gested the following invariant: each robot needs to be equipped with all the capabil-
ities to perform the tasks given by the allocated roles. If needed tools are determined
broken, reorganization searches for a valid role allocation again.

FIGURE 4.4: Corridor of correct behavior

To obtain a feeling about how the CCB at runtime should be interpreted, let us
consider an informal instance depicted in Fig. 4.4. We see that the overall system
state changes at runtime due to environmental dynamics. At some time the invariant
is getting broken – say because some unforeseen disturbance occurred. Now, the
system is meant to trigger reorganization in order to establish a configuration that,
in combination with the environmental state, is located inside the corridor again.

If no such configuration is eventually established even though it would be gen-
erally possible, a failure within the integrated implementations occurred. On the
other hand, the CCB does not specify which particular configuration within the cor-
ridor should be chosen – the concrete intended system behavior is at design time
non-deterministic.

As discussed in Sect. 3.2.2 this non-determinism in intended behavior, how-
ever, limits test design: while white-box techniques, such as symbolic execution and
concolic testing, suffer from the fact that whole sequences of environmental states
need to be considered as inputs for testing the SuT against the CCB (which can be
seen at the corridor depicted in Fig. 4.4), model-based testing techniques for non-
deterministic behavioral models considered in Sect. 3.2.1 do not allow for prioriti-
zation of particular execution paths. Also pure black-box testing in terms of com-
binatorial testing suffers from both, the complex input space as well as insufficient
possibilities for prioritization.

4.1.4 Simulation-based Testing using S#

In order to harmonize the needed test effort with imposed constraints in time and
cost, testing an SO system’s consistency is typically shifted to fast and easy-to-control
simulation (c.f. Sect. 3.2.2).

Habermaier et al. propose the S# framework for this, which was originally in-
tended for the safety analysis of component-oriented systems [Hab+15; HLR15].
With its domain-specific language which was designed on top of C#, this framework
allows for modeling executable environments in which the executables controlling
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the agents and reorganizations can be embedded. So-called environmental faults can
be defined which can be set on and off while simulation.

Eberhardinger et al. build on that and describe techniques for test case generation
using a built-in model checker [Ebe+16; Ebe+17c]. All of those techniques basically
rely on systematically activating and deactivating environmental faults in a way that
possibly many reorganizations are triggered by possibly few executions, and can
thus be seen as kind of combinatorial testing.

Klumpp et al. further propose some heuristic optimizations limiting the number
of test cases to execute [Klu+16]. Still, the reduced number of test cases depends on
the size and complexity of the environmental models defined and would be typically
far too high for testing in more realistic, distributed environments.

In regards to our case study we modeled a setting of the self-organizing produc-
tion cell that is described by Fig. 4.2 in S#. We defined 55 different kinds of envi-
ronmental faults, such as a broken driller for specific robots. Further, we embedded
three different SO mechanism implementations within the models: a handcrafted
central mechanism, a mechanism based on constraint solving, and a decentralized
mechanism. The combinatorial, heuristic testing approach by Klumpp et al. resulted
in 7524 test cases to be executed in simulation.

4.2 The Model to Learn

As Sect. 3.3 argued before a system’s consistency should be not exclusively tested
within a simulation. There are usually types of faults which can only be detected
in more realistic environments. For testing the agents’ communication in the self-
organizing production cell, for instance, we will never get around testing the SO
system within a distributed environment. This real environment, however, is much
harder and costlier to control than an S# simulation.

It seems thus gainful to investigate methods complementing combinatorial black-
box testing with model-based or code-based test design techniques subsequent to
test execution in simulation. It obviously depends on the use case which size is
considered reasonable and a customizable prioritization technique hence would be
preferable.

Within our case study we found that the simulation runs can be interpreted to
build a finite state machine (FSM) representing the behavior of the SuT forming
a, though rather partial, model for model-based testing (Sect. 4.2.1). Further, we
proposed a code-based extension of this model that lets us practically include also
white-box considerations in test design afterwards.

4.2.1 The Considered Model

Recall that the behavior of a self-adaptive system can in principle be modeled by
means of a hierarchical FSM (cf. Sect. 3.1.3): while the nodes of this FSM represent
the possible policies, which again are represented by FSMs themselves, the transition
function mapping source states and inputs to destination states is formed by the
system’s meta-policy.
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In terms of the self-organizing production cell, the local policy of each agent
always adheres to the (hierarchical) finite state machine in Fig. 4.3, which is para-
meterized by the robot agent’s current capabilities and role allocation. An overall
system policy is formed by the parallel composition of the robot agents’ behaviors
together with the carts’ behaviors; it is dependent on all the capabilities, role allo-
cations, and cart routes, i.e., the configuration. Though finite in principle, the full
system behavior at a given point in time would, due to its sheer size, be rather hard
to model in full.

Further, even though we know the input alphabet of the outer adaptation FSM
– it is spanned by the possible environmental faults – the concrete transition func-
tion formed by the system’s meta-policy is assumed unknown at design time (cf.
Sect. 4.1.1).
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FIGURE 4.5: Exemplary transition between two configurations of the
adaptive production cell

By activating an environmental fault in simulation and observing the effect we
can, however, infer a transition just as the one sketched in Fig. 4.5 at runtime. Doing
so several times with various inputs and making use of a learning algorithm for
FSMs (see [BP13] for an overview) we are generally able to infer a single, flat FSM
Minf capturing the made insights. Since the system itself is not supposed to learn
at runtime (cf. Sect. 4.1.1) the resulting, inferred FSM indeed reduces the number of
non-deterministic transitions to be handled in further testing.

4.2.2 Integrating Code-level Logs

For integration of the model-based viewpoint established by the hierarchical FSM
with the concrete implementation in terms of the source code we instrument the SuT
in the following way: we label each interesting point in the source code with a par-
ticular identifier (id) which is output each time it is passed (on top of the originally
specified outputs).

Let us, for now, assume that each branch in the source code is considered inter-
esting and thus augmented with an id (a fault-based perspective will be suggested
in Sect. 4.3). In terms of the inferred state machine Minf this instrumentation means
that its output alphabet is extended with the entire list ID of branch identifiers; and
the output function includes a sequence of branch ids.

As concrete implementation for the output ids we proposed so-called label vec-
tors, i.e., binary vectors v of length |ID| with vi = 1 if the point in code labeled with
IDi is covered and vi = 0 otherwise.

The exemplary transition within the self-organizing production cell might in con-
sequence be modified as depicted in Fig. 4.6. It is important to understand that (1)
equal labels could be output at different transitions, but also (2) there could be labels
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which are only output at specific transitions. Reaching particular labels by travers-
ing the whole model can be thus viewed as a search potentially involving a targeted
use of the adaptation FSM.
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FIGURE 4.6: Exemplary transition between two configurations within
the adaptive production cell

The type of model presented offers the special charm of integrating aspects of
both, the model-based as well as the white-box testing approaches: we can still ap-
ply the classical FSM approaches for systematically fulfilling coverage criteria such
as transition or state coverage; but on the other hand, we can also compute paths
through the graph of the FSM fulfilling particular white-box requirements based on
the output labels.

For this second aspect, the sequence of interesting paths indicated by the output
labels can be viewed as kind of meta-branches in the source code (but, in fact, they
can include more than one branch in the program). Coherently, the combination
of those branches spans some kind of meta-paths within the code (though our rep-
resentation of label vectors indeed sets limits to path-based criteria since the order
in time is not considered). In this way we can define code-based coverage criteria,
which in fact are abstract counterparts to the classical code coverage criteria, using
the model.

4.3 Mutation-based Labeling

Up to here every branch within the source code was considered labeled. Within
our experiments we, however, found that depending on test requirements a further
refinement can be valuable. Indeed, a lower number of labels will lead to a lesser
number of test cases needed for covering them. In consequence a possibly more
precise choice of labels leads to a possibly more efficient set of test cases in future
iterations.

In order to show this relationship and to illustrate how such a refinement can be
done, we considered a mutation-based test requirement for which an adequate set
of labels is to be found.

4.3.1 Mutation-based Test Requirements

Mutation-based test requirements assess the quality of test cases by their ability to
uncover slightly modified versions of a SuT [DLS78]. With the intention to simulate
possible failure scenarios, these modifications, the so called mutants, are generated
by well-defined mutation operators that mimic typical faults. A test case tc ∈ T, which
in terms of the FSM-based model can be considered a particular transition, uncovers
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— or more martially kills — a mutant if it is able to distinguish the mutant’s behavior
from that of the original version of the SuT.

A mutant m can be described by a predicate on test cases:

isKilledm ⊆ T .

If isKilledm(tc) holds, it is usual to say that mutant m is killed by test case tc. Given
mutants M, the killing set of tc is determined by

Ktc = {m ∈ M | isKilledm(tc)} .

The confidence that test cases are able to reveal faults in real operation is quantified
by a mutation score: The greater |Ktc|, the better the score for test case tc; and the
greater |⋃tc∈TS Ktc|, the better the score for a whole test suite TS.

Note that Kapitel 5 will consider a further variant of this traditional mutation
score.

4.3.2 Mutation Operators for SO systems

In terms of SO systems successful reorganization requires correct state perception by
the agents, correct computation of internal state adaptations by the reorganization
mechanism, and correct realization of the delivered adaptation tasks by the agents.
Since all of these critical routines are interconnected through message passing be-
tween the agents and the reorganization mechanism, a common cause for system
failures are errors in communication. For our case study we elaborated the follow-
ing exemplary mutation operators which mimic those typical reorganization errors:

• Lost Reconfiguration Message (LRM): As soon as a robot detects an environmental
fault (e.g., a broken driller) it should normally send a reconfiguration message to
trigger the reconfiguration mechanism. This mutation operator suppresses such
messages. In consequence there might be no reconfiguration in spite of an incor-
rect system configuration.

• Needless Reconfiguration Message (NRM): The inverse of an LRM: A particular robot
signals an environmental fault, although there actually is none. Consequently,
unnecessary reconfiguration steps might be triggered.

• False Reconfiguration (FR): This operator mimics the loss of a role allocation mes-
sage that was sent by the reconfiguration mechanism. In consequence, one robot
will (maybe erroneously) retain its previous role — this could result again in an
incorrect system configuration.

4.3.3 The Need for Higher Order Mutants

Traditionally, mutation-based test requirements only consider mutants generated by
a one-time application of a single mutation operator. Those mutants are called first-
order mutants (FOMs). Higher-order mutants (HOMs) which are generated by multiple
applications of mutation operators are usually neglected.
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This conforms with the so-called coupling effect which states that test cases con-
structed for explicitly killing FOMs do implicitly also kill combinations of them, as
which HOMs can be seen [Off89]. There are, however, known exceptions that sug-
gest to explicitly consider HOMs. Jia and Harman investigate the role of HOMs and
give a classification based on the way they are coupled and subsuming [JH08].

For SO systems in general, and our experimental case in particular, we identified
two phenomena in the interrelation of system faults which might lead to unwanted
effects if they would only be considered as FOMs, not explicitly combined in HOMs:

(1) Failure Masking

Two or more injected system faults might mask the effect of one another. If so, their
combination cannot be killed by any test case. Let us consider the exemplary FOMs
m1 and m2 with separately injected faults f1 and f2; and the HOM with both faults
combined, denoted with {m1, m2}. If f1 and f2 are masking the failure of one another
we see that:

∀tc ∈ T . isKilledm1(tc) ∧ isKilledm2(tc)→ ¬isKilled{m1,m2}(tc) ,

where isKilled{m1,m2}(tc) for a test case tc evaluates to true if the higher order mutant
{m1, m2} is killed by test case tc. We observed 24 of such cases within the experi-
mental case, which proves the existence of this phenomenon.

Effect: A test case that was originally selected for revealing failures from one of these
faults might falsely pass in real operation if the program comprises both.

Instance: One robot erroneously sends a reconfiguration message while another does
erroneously not. Considering these faults separately we would either observe that
no reconfiguration took place although it should or that a reconfiguration was un-
necessarily triggered. In combination, however, a reconfiguration takes place and
offers the chance that a correct configuration is chosen.

(2) Failure in Combination

Particular failures might only be visible if the program comprises two or more sys-
tem faults at the same time. If so, there could be test cases not revealing one of the
separate faults but doing so for the combination. For the exemplary mutants m1, m2

and {m1, m2} this means that

∃tc ∈ T .¬(isKilledm1(tc) ∨ isKilledm2(tc)) ∧ isKilled{m1,m2}(tc) .

We observed 918 of those cases in our experiment.

Effect: If we exclusively consider FOMs, each of those cases reduces the probability
to reveal the HOM in real operation. If this probability goes to zero, i.e., ¬∃tc ∈
T . isKilledm1(tc)∨ isKilledm2(tc) even though ∃tc′ ∈ T . isKilled{m1,m2}(tc

′) the reduced
test suite will not include a test case that covers the failure anymore.

Instance: Two robots identify environmental faults that need to be signaled. If one
of the robots erroneously not sends a reconfiguration message, there might be no
failure as the other robot triggers a reconfiguration though. However, if both robots
do not send a reconfiguration message the failure occurs.
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Algorithm 2 Naïve mutation-based test design

Require: F ≡ system faults which can be injected by mutation operators
TS ≡ the original test suite

1 TS′ ← ∅
2 Killed← ∅
3 for all tc ∈ TS do
4 K ← ∅
5 for all f1 ∈ F do
6 for all f2 ∈ F do
7 som← SOM comprising f1 and f2
8 fom1, fom2 ← FOMs comprising f1 and f2, resp.
9 for all m ∈ {som, fom1, fom2} \ Killed do

10 if isKilledm(tc) then
11 K ← K ∪ {m}
12 Killed← Killed∪ {m}
13 if |K| > 0 then
14 TS′ ← TS′ ∪ {tc}
15 return TS′

If we want to bypass the mentioned unwanted effects we have to explicitly con-
sider HOMs in test requirements. Yet the question is how to systematically approach
such a requirement in test design, as evaluating the mutation score needs test execu-
tion — and the more mutants, the more of those executions are needed.

Algorithm 2 shows an exhaustive approach on mutation-based test design for
second order mutants (SOMs). It successively selects a number of test cases from a
given test suite that cover all possible SOMs. As we can see this approach requires,
apart from the effort needed for mutant creation, at worst |TS| · |FOM|2 test case
executions in order to investigate isKilledm(tc). Considering all possible HOMs, this
can be generalized to |TS| · 2|FOM|.

4.3.4 Application for Labeling

The case study revealed a short-cut that builds on two observations: First, we can
observe that only FOMs the injected faults of which are covered by a test case can
be actually revealed. This also holds for HOMs: here, each of the injected faults has
to be covered. Covering the other lines of code is irrelevant for revealing one of the
generated sets of mutants.

Let F be a list of all the possible faults tagged in code. A binary label vector
refined for mutation-based testing then has length |F| and indicates which of the
faults from F the transition would generally cover. Note that in our notation this
not necessarily holds for combinations of faults. The one fault might cause changes
in control flow so that the other would not be reached anymore. For instance just
consider an if-else statement with one fault in the condition and one in a branch.
As soon as the fault in the condition is active the taken branch for the same input
could change in a way that the second fault is not reached anymore. It follows that
if we wanted to cover all the possible dependent faults, we would need to examine
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all possible paths in the presence of all combinations of faults. In other words, we
would still have to simulate the effect of each of the mutants.

This brings us to the second observation we made: the considered mutation
operators LRM, NRM, and FR generate system faults which are independent from
one another, as they are distributed over different entities that are only connected
through message passing. A fault in the source code of robot R1 does not influence
the path passed through control flow in robot R2. In this particular case we know
that the path in code drawn by a particular label vector will not change because of
active faults. The requirement of covering all HOMs can in consequence be reduced
to covering all existing label combinations which can be viewed as a more abstract
counterpart to branch coverage in code.

4.4 Representative Subset Selection through Clustering

Let us now consider how to learn a test policy by making use of the proposed kind of
model. For the case study we supposed the following setting: Given an SO system
such as the self-organizing production cell that is described in Sect. 4.1.2 we applied
the simulation-based testing technique described in Sect. 4.1.4 for exploration. By
instrumentation, we logged the effect of each of the executed test cases in terms of
normal outputs and label vectors (cf. Sect. 4.3) in a file. As a result we were able to
construct an Minf as described in Sect. 4.2.1.

We assumed to have given a reset operator which lets us establish the SuT’s
source configuration at any time. Consequently a test policy was considered to be
an enumeration of given test case sequences, all of which starting at the source. The
order in which the chosen test case sequences are applied, in this case, does not mat-
ter. Our very goal was hence to find a possibly small subset of all possible sequences
through Minf that covers all the label vector manifestations contained in the model.

As exhaustive solutions are NP-complete, we investigated the suitability of ex-
isting relaxations by linking our task with the so-called representative subset selection
problem [ESS16; FD07] from the machine learning literature. The task definition
there is “finding a subset of a large number of models or data points, which pre-
serves the characteristics of the entire set” [ESS16]. As entire set we considered a test
suite TS comprising a number of paths through Minf that we generated by random
walks. The search we performed for a TS′ ⊂ TS could thus be viewed as kind of test
suite reduction.

4.4.1 Finding Representative Subsets using Clustering Techniques

The problem of finding a representative subset from a huge number of models has
been extensively studied in the machine learning literature. A lot of algorithms,
including those of Elhamifar, Sapiro, and Vidal [ESV12], Frey and Dueck [FD07],
Kaufman and Rousseeuw [KR87], Boutsidis, Mahoney, and Drineas [BMD09], Tropp
[Tro09], and Balzano, Nowak, and Bajwa [BNB10], were proposed to tackle this prob-
lem in different facets. Common use cases include recommender systems, computer
vision, or language processing. To the best of my knowledge, there have been no
investigations yet applying these algorithms to test suite reduction or test design.
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A prominent group of algorithms tackling the representative subset selection
problem operates on measurement vectors for data that lies in low-dimensional sub-
spaces [BMD09; Tro09; BNB10]. Its members are instantiated only by the measure-
ment vectors describing the data. Since we for the case study, however, assumed
that label vectors as we consider them here should not be interpreted as arbitrary
measures in a vector space and that a particular dissimilarity metric is needed, we
concentrated on another group: algorithms selecting the subset based on pairwise
similarities or dissimilarities between the data points of the original set. An ade-
quate measure for test cases will be discussed in the next section. In concrete, our
experiments were based on the Affinity Propagation [FD07] and the Dissimilarity-based
Sparse Subset Selection algorithm [ESV12].

Affinity Propagation (AP). This method approaches the representative subset se-
lection task by a message passing algorithm. Each data point is viewed as a node
in a network that transmits messages along the edges updated by particular rules.
By this process of sending and updating messages an energy function evolves that
guides the choice for particular exemplars, as the authors call the elements within the
representative subset.

The concrete number of output exemplars is determined during the process,
which means that we cannot precisely specify the size of the representative sub-
set in advance. By appropriately choosing the diagonal similarities pref, i.e., the
suitability of points for representing themselves as exemplars, we can, however, ap-
proximately control the scale [FD07]. Values between the minimum (few exemplars)
and the maximum (many exemplars) possible similarity are common. The algorithm
terminates if the cluster boundaries remain unchanged over a number convIter of it-
erations or if a threshold maxIter of iterations is reached.

Dissimilarity-based Sparse Subset Selection (DS3). Elhamifar et al. formulate the
representative subset selection as what they call a Row-Sparsity Regularized Trace Min-
imization Problem [ESV12] on two matrices D and Z. While matrix D arranges the
dissimilarities between the different data points, Z denotes the probabilities, that
one of the data points is represented by another.

Based on those matrices an optimization program is formulated that is combin-
ing two goals: First, all data points should be represented possibly well, meaning
the the dissimilarity between a represented data point and its representative should
be possible small; and second, there should be as few representatives as possible.

They propose the DS3 algorithm for solution. In [ESS16] an implementation is
presented that builds on the Alternating Direction Method of Multipliers (ADMM). This
implementation was used for our experiments.

Like AP, also DS3 is not directly parametrized by the concrete number of repre-
sentatives. Instead, a regularization parameter ρ can be set which controls the scale.
A second parameter maxIter determines the maximum number of iterations. If an
internally computed error does not fall below a threshold ε in k < maxIter steps, the
algorithm terminates.
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4.4.2 A Dissimilarity Measure for Test Sequences

As stated before, we claimed that for a reasonable clustering of transition sequences
by the included label vectors w.r.t. our goal of covering as many of the mutants
as possible a specific dissimilarity measure is needed. Consider for instance two
particular transitions t1 and t2 with label vectors t1.v and t2.v in their outputs (we
access a label vector v of transition t by t.v); and assume we would represent t2 by
t1 which means that we would exclusively test transition t1. As uncovered mutants
cannot be killed, the number of mutants we could possibly miss by not testing t2

may be estimated by |{l ∈ {1, . . . , n} | t2.vl = 1∧ t1.vl = 0}|, where n is the number
of introduced labels, i.e. |F|.

Note that in addition to the missed FOM, we could possibly miss some HOM
that would only be killable in combination with a non-covered FOM (cf. pattern
(1) in Sect. 4.3.3). Contrary, each mutant exclusively covered by t1, but not by t2,
could cause failure masking issues (cf. pattern (2) in Sect. 4.3.3) and thus increase the
chance of missing HOMs again. This can be estimated by |{l ∈ {1, . . . , n} | t1.vl =

1∧ t2.vl = 0}|.
These considerations suggest the following dissimilarity measure for single tran-

sitions based on their label vectors, which can be interpreted as comparing two bit
patterns by the Hamming distance [Ham50]:

Dist(t1, t2) = |{l ∈ {1, . . . , n} | t1.vl 6= t2.vl}| .

For quantifying the dissimilarity between whole transition sequences ts1 and ts2 the
preceded metric is lifted by summing up the minimal distances between the test
cases from the one path to those of the other.:

Dist(ts1, ts2) = ∑
t2∈ts2

min
t1∈ts1

Dist(t1, t2) . (4.1)

This can be transformed to a similarity measure by

Sim(ts1, ts2) = −Dist(ts1, ts2) . (4.2)

Note that (4.1) as well as (4.2) are not symmetric and hence violate the properties
of metrics. They quantify, how well and how worse ts2 is represented by ts1. Both
considered algorithms for representative subset selection can cope with this aspect.

Using the dissimilarity/similarity measure for transition sequences and an enu-
merable test suite TS, we can generally construct a |TS| × |TS| similarity matrix S as
well as a dissimilarity matrix D with the same dimensions by Si,j = Sim(TSi, TSj)

and Di,j = Dist(TSi, TSj) for all 0 ≤ i, j ≤ |TS| − 1. These matrices served as inputs
for the subset selection algorithms.

4.4.3 Application on Case Study

For evaluation we applied the discussed approach to the experimental case de-
scribed in Sect. 4.1. Because of the huge number of possible transition sequences
within the learned model, which in fact is unfeasible for the subset selection algo-
rithms (at least for our computing capacity), we did not take into account all of them
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but based our experiments on a test suite TS to reduce comprising 500 sequences
generated by random walks.

Using the distance function in (4.1) and the mutation operators LRM, NRM and
FR (cf. Sect. 4.3) the matrices S and D were constructed. For assessing the degree
of optimization w.r.t. the given similarity/dissimilarity notion an informal search
found the following empirically derived parametrization being suitable:

• AP:

– pref : equally drawn from [m− 2, m + 2] where m is the median of similarities
in S

– convIter: 15

– maxIter: 3000

• DS3:

– ρ: equally drawn from [0.001, 0.005]

– maxIter: 3000

– ε: 10−7

We additionally applied a uniform sampling of k transition sequences for each k pro-
posed by the AP or DS3 algorithms serving as a baseline. Building on the previous
considerations we evaluated the reduced test suites TS′ ⊂ TS by a representation cost
measure:

∑
ts∈TS

min
ts′∈TS′

Dist(ts, ts′) .

The idea behind was to estimate the number of mutants covered by the one suite
but not by the other by comparing and summing up the distances of the respectively
most similar sequences.

The left plot in Figure 4.7 presents the results for the AP, the DS3 and the uniform
samples on our case study. As we can see, both classifiers are more or less on the
same level; they outperform the uniform samples regarding the representation cost.
The right graphic, which depicts the actual number of killed mutants (FOMs and
SOMs), suggests that optimizing the representation cost also optimizes the number
of actually killed mutants.

We see that test suites reduced by the classifiers kill more mutants than the uni-
form samples for the same k. Even if not all of the killable mutants (6245 in our
experiment) are actually killed, the DS3 algorithm got 91.3 % of them with 62 paths
including 247 test cases which is about 3 % of the test cases of the original suite.

4.5 Related Work

The experiments reported in this chapter reduced test policy learning to a test suite
reduction task. Yoo and Haman characterize this problem, which is traditionally
considered as one of the major challenges for regression testing, as finding a rep-
resentative subset of test cases T that still satisfies all imposed test requirements
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FIGURE 4.7: Results of the Mutation-based Test Suite Reduction using
the classifiers.

[YH12]. According to the authors this can be considered as the minimal hitting set
problem, which is in general NP complete. For the purpose of efficiency, methods
approaching test suite reduction typically involve heuristics. Many of them, such as
the GE and GRE heuristics [CL96], can thereby be viewed as variations of the greedy
approach on the set cover problem proposed by Papadimitriou and Steiglitz [YH12;
PS98].

More general, existing research on test suite reduction can be classified by (1) the
type of coverage criterion and (2) the quality measure they use for reduced test suites
[Shi+14]. While it seems quite common to use fault-based techniques for (2), for
example [Rot+02; BMK04; Zha+11; FW07; Rot+01], for (1) the huge majority of ap-
proaches rather applies code coverage criteria, such as statement, branch or decision
coverage, cf. [BMK04; Zha+11; JH03; Rot+02].

I found two exceptions that also based (1) on mutants, similar as we did: Offutt,
Pan, and Voas propose a procedure for mutation-based test suite reduction called
ping-pong [OPV95]. This applies elaborated heuristics in order to efficiently find a
subset of test cases that kills all the mutants that were killed by the original set, too.
They show, that they can reduce mutation-based test sets by over 30%. In contrast to
us they exclusively consider FOMs. As they show, the introduced heuristics reduce
the number of test cases to execute before reduction. Still, during the search for the
reduced set, each chosen test case has to be executed one time per mutant to kill. If
they could use the label vectors we proposed, they could apply a similar short cut
as we did (see Sect. 4.3.4). However, they actually cannot, as the faults they consider
are not independent from one another.

Shi et al. evaluate classical test suite reduction algorithms on requirements called
Mutant Adequate Reduction (MAR) and Statement-Mutant Adequate Reduction (SMAR)
[Shi+14]. While the first exclusively considers killed mutants the second combines
this with code coverage. They use the mutation tool PIT for evaluation on open-
source projects. Again, exclusively FOMs are considered and again, label vectors
cannot be used for reducing the number of test cases to execute before reduction.

To the best of my knowledge no study considers test suite reduction for the par-
ticular system class of self-organizing systems. [Ebe+17c] addressed the related task
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of test case selection. They present a couple of strategies which leverage particu-
lar characteristics of self-organizing systems and test oracles in order to speed up a
search-based approach on test input generation. In contrast to that, our case study
was concerned with reducing an already existing set of test cases whose elements
are being executed at least once.

4.6 Conclusion

This chapter reported about a case study of simulation-based test design for a self-
adaptive system which is not learning at runtime. It showed that in case the system’s
meta-policy is fixed we can infer a test model for further test design from simulation.

More specifically, the case study utilized a mutation-based approach on priori-
tizing or, as we understood the test policy learning task, reducing a given set of test
case sequences. The approach combined model-based and code-based test design
techniques: we inferred a finite state model from simulation where the transitions
were enriched by label vectors for recording mutations in the code . Thereby we took
first-order as well as higher-order mutants into account that simulated the effect of
communication faults during the reconfiguration process. The use of established
clustering techniques for representative subset selection showed promising results
w.r.t. our experimental case.

Regarding the particular approach proposed, possible directions of future work
include the analysis of the impact of outliers on the overall representation cost by a
reduced test suite and a more detailed investigation of adequate mutation operators
for self-organizing systems.

In the following chapter I want to address, however, a more general issue: can
we, instead of just reducing sets of already executed test case sequences, also use
the gained insights to shape fully new ones that are possibly profitable in terms of
a given goal? If so, we could establish a kind of feedback loop in simulation that
explores and evolves the wanted test policy for particular test goals.





59

Chapter 5

Test Policy Evolution

The latest chapter’s experiments considered devising test policies for testing self-
organizing systems. Given a simulation of a particular self-organizing system’s en-
vironment a behavioral model of this system had been derived from simulation once
which could be used then to base test policy selection for further testing on this. We
regarded test policy learning as a reduction task and tried to find a subset of all
the test case sequences we applied in simulation, such that the chosen sequences
were still representative for the rest. This representativity-based test goal showed
to trigger good results w.r.t. mutation-based testing: The more representative a test
sequence for the rest, the more mutants were killed.

Still, it is to consider that due to limits in cost and time we will usually not be
able to execute test suites that are likely to kill all theoretically killable mutants. We
should thus be aware of the possibility that even after successful execution of the test
suites there might be unrevealed faults existing which were actually anticipated by
means of a mutation operator but still are leading to worst failures in real operation.

This shows a natural disadvantage of mutation-based test goals: since only the
count but not the kind of triggered failures of killed mutants is taken into account
mutants standing for irrelevant damage count exactly as much as those standing
most enormous ones. As we are not always able to measure the effect of faults be-
fore executing the faulty program in real operation, we will have to live with this
weakness in general. In case of self-adaptive systems with given simulated environ-
ments (see Sect. 3.2) we, however, can measure the effects using the simulation.

Present chapter reports about experiments we performed about modifying the
mutation-based test goal in a way that it is taking into account not only the sheer
number, but also the assumed effect of revealed mutants. This guides us to a novel,
weighted mutation score (Sect. 5.1.2). For designing test suites that are meeting this
goal the eligibility of meta-heuristic search approaches, or, more concretely, of cus-
tom variants of classical evolutionary algorithms is studied.

By the reported experiments we presented a novel evolutionary mutation as well
as a recombination operator that are particularly suitable for solving sequential op-
timization problems (Sect. 5.2), but may also be useful for various applications be-
yond test design. An evaluation shows promising results (Sect. 5.2.4). Encouraged
by these results Sect. 5.3 elaborates a possible path for future work before this chap-
ter is concluded by related (Sect. 5.4) and future (Sect. 5.5) work.

The reader should note that some parts of this chapter are direct citations from
papers [RGK18] and [Rei+16] which are set in context of present work.
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Algorithm 3 Mutation-based test suite evaluation

Require: p ≡ reference version of the program under test
O ≡ set of mutation operators
S ≡ mutation score function

1 function killed(ts) . ts: test case input sequence of length |ts|
2 Kts ← ∅ . map of killed mutants, indexed by mutants
3 for all o ∈ O do
4 m← mutated version of p by application of o
5 reset system state
6 for t← 1..|ts| do . iterate through time steps
7 eff ← p.execute(ts(t))
8 effm ← m.execute(ts(t))
9 if eff 6= effm then

10 Kts[m] = (eff , effm) . mutant killed
11 break . continue with next mutation operator
12 return Kts . return killed mutants
13 function ΓM(TS) . TS: test suite of test input sequences
14 K ← ∅ . map of killed mutants, indexed by test input sequences
15 for ts ∈ TS do . iterate through test input sequences
16 K[ts]← killed(ts)
17 return S(K) . return mutation score

5.1 From Mutation to Risk-based Testing

The very goal in mutation-based test design is finding a test suite whose test cases
are supposed to kill as many mutants as possible. Recall that mutants are generated
from so-called mutation operators O. Those are a applied to a reference version p of
the program to test and simulate the effect of introduced errors.

Each of the mutants is executed with each of the test cases from a test suite and
those mutants that show an effect deviating from the effect of p are recorded; such
a mutant is said to be killed by the test case. Finally, for evaluating a test suite,
a mutation score function S is applied to the record of killed mutants. See function
ΓM(TS) in algorithm Alg. 3 as outline of a test goal procedure evaluating a test suite
TS comprising a set of test case sequences on this way.

In the normal case that was also considered in Kapitel 4 the score function merely
counts the number of killed mutants, i.e.:

Sc(K) = |{m | K[m] 6= ∅}| . (5.1)

No prioritization between the single mutants is established which means that the
killing of all mutants is supposed to be of equal value for the test suite. In other
words, if we could choose for a subset of fixed size of all mutants to be revealed by
the suite, we could just pick random ones and obtain the maximum score.

However, the possible effects of faults mocked by the mutants, i.e., the severity of
resulting failures, diverge. While particular failures might cause whole production
stops and thus appear very costly, others might be easy to fix and do not really
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matter.
As premise of experiments presented in the following we assumed that it would

be hence more reasonable to prioritize potentially harmful faults higher than sup-
posed harmless ones in order to fix them early and to avoid the most hazardous
failures. This is also backed by literature about risk-based testing as Sect. 5.1.1 shows
by some exemplary testing approaches bringing a viewpoint of risk into test design.
Section 5.1.2 shows how this risk-based viewpoint can be combined with mutation-
based testing by means of a weighted mutation function.

5.1.1 Risk-based Testing

Building on general high-level considerations from authors such as Bach [Bac99] or
Amland [Aml00], several methods for integrating risk estimations in software testing
evolved though at different levels of automation. Many of them again build on test
models of the SuT which are getting annotated by risk values for formulating risk-
based test objectives and figuring out the test design:

Kloos et al. [KHE11] derive such risk annotations from the results of a fault tree
analysis from which test cases can be generated. Bauer et al. [Bau+08] transfer the
risk of annotated UML diagrams to a test model, from which test cases are derived.
Zimmermann et al. [Zim+09] extend this approach by refining the test models so that
from these only so-called critical test cases are generated. Wendland et al. [WKS12]
propose to formulate requirements for the SuT in so-called integrated behavior trees.
These are annotated with risk values associated with certain risk levels. A risk-
optimized test suite is generated from the annotated models by using test directives.
In all of these approaches the risk assessment is done by experts.

Stallbaum and Metzger [SM07] note that the risk assessment of test cases done by
experts could get a critical cost factor. They propose an approach that automates
the risk assessment based on requirement metrics. Such metrics refer for example to
the revision frequency or the cyclomatic complexity of a use case. The use of similar
metrics was also proposed by Amland [Aml00]. He calculates so called risk indicators
for every function of the SuT from which the occurrence probability of failures can
be estimated. The exposure of possible failures is quantified by expert estimates.

Since all of the mentioned approaches rely on deterministic (or at least proba-
bilistic) models of the SuT’s behavior, they are not directly applicable for testing self-
adaptive systems with their non-deterministic behavior. And in fact, it is certainly
not possible to assess the effect of particular faults if we actually do not know which
approach the system will actually take at runtime. Using experience from previous
test runs to derive the actual behavior from observation as discussed in previous
chapters, we however get a chance. As the experiments will show (see Sect. 5.2.4),
given a simulation of the self-adaptive SuT and its environment it is indeed possible
to evolve a test suite for meeting risk-aware goals.

5.1.2 A Weighted Mutation Score

The aim of reported experiments was to integrate viewpoints from risk-based test-
ing into the mutation-based testing methodology as it was described in the previous
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section. Assuming that occurrence probabilities of faults might be easily added af-
terwards in operational settings (they might be obtained from historical test results)
the term risk, which normally includes the occurrence probability as well as a quan-
tification of an events exposure, was thereby firstly reduced to its exposure factor:
we suggested to weight the traditional mutation score by a measure of failure sever-
ity. Instead of counting all the mutants killed, the weighted mutation score sums up
the severity of those.

Experimental Setting For the experiments we reused the case study described in
Sect. 4.1.2 and considered the issue of testing a self-organizing production cell. Re-
call that according to our concept of a self-organizing system this production cell
comprises multiple agents that are coordinated by a reconfiguration mechanism (see
Sect. 4.1.1). In more detail, the production cell comprises robots and carts whose
configuration is given by roles for the robots defining their concrete behavior and
routes for the carts connecting the robots (see Fig. 4.2).

Just as described in Sect. 4.1.3 the production cell’s wanted behavior is speci-
fied by means of the Restore Invariant Approach (see for example Fig. 5.1): Instead
of specifying the concrete system approach at runtime only a set of predicates on
the environment is given sketching the system’s objectives by what we called the
Corridor of Correct Behavior (CCB).

If one of those predicates, say that each task for the production cell can be pro-
cessed and completed with the available resources, evaluates to false a so-called re-
configuration mechanism is triggered to compute and distribute a valid configura-
tion again. To test this behavior, we are able to confront the system with so-called
environmental faults, such as broken drillers of robots or obstructed routes for carts.
Activating a particular environmental fault thereby serves as test input.

FIGURE 5.1: The overall system state changes at runtime due to en-
vironmental dynamics. In case the invariant is getting broken – say
because some unforeseen disturbance occurred – the system is meant
to trigger reorganization in order to establish a configuration that, in
combination with the environmental state, is located inside the cor-
ridor again. If no such configuration is eventually established even
though it would be generally possible, a failure within the integrated

implementations occurred (see σ4′).
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Severity Levels As a first step towards the weighting of failures and building on
the CCB (cf. Fig. 5.1) we proposed to classify test results (as we call the effect ob-
served after executing a program with a test case) by different severity levels: If test
execution results in reorganization, i.e., the reorganization mechanism transferred a
state outside the corridor to the inside again, we assign the result to the class reorg.
Otherwise, we assign it to ¬reorg. On this way function C : Eff → {reorg,¬reorg}
determines the class of an effect eff ∈ Eff .

Comparing the effects eff and effm as they are gained in line 7 and line 8 in Alg. 3,
we quantify the severity levels of the four possible permutations with a severity
function Sev : Eff × Eff → R:

Sev(eff , effm) =


1 if C(eff ) = C(effm)

2 if C(eff ) = reorg∧ C(effm) = ¬reorg

3 if C(eff ) = ¬reorg∧ C(effm) = reorg

(5.2)

The first case is obviously the most harmless one. If a test case triggers reorganiza-
tion in both program versions (or in both versions not) one can argue that no real
failure was detected. However, as the mutant is killed though (cf. line 10 in Alg. 3)
we assign a slight severity score to this case. The second as well as the third case
indicate that the killed mutant simulated a real failure. In the second case, no valid
state was established even though this would be possible. Such a failure would re-
quire human intervention in real operation.

The third case, in which a valid state was established even though this is gener-
ally not possible, implies even higher costs in real operation, as it mostly results in a
contradiction between software and hardware. Those quantified severity levels are
taken as basis for the weighted mutation score

Sw(K) = ∑{m:K[m] 6=∅} Agg(Sev(K[m])) , (5.3)

where Agg aggregates the various severities observed when a single mutant is killed
by more than one test case from TS.

In experiments we thereby proposed to instantiate the operator Agg with ∑ or
max and suggested to use ∑ if the errors simulated by the mutation operator are
assumed to be transient, which means that the error does not always trigger a failure
if covered. For the others, the persistent errors, we suggested to use max.

5.1.3 Test Case Dependency Graph

Given the novel test goal described the challenge is finding a test suite TS that opti-
mizes this goal in terms of the obtained score. In experiments we further demanded
that |TS| conforms with a predefined maximum number of investable time steps k
such that if each test sequence of TS has a length of (at most) |ts|, k = |TS| · |ts|.

Recall that in case of a self-adaptive, such as a self-organizing, SuT the search for
such a test suite brings the following two issues:

1. The effects of test cases in terms of killed mutants are dependent on the full his-
tory of previously executed test cases in a test sequence due to reconfigurations as
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initial

eff1{m0[2], m2[1]} eff2{m4[2]}

eff3{m2[3], m5[1]}

eff4{m1[1]} eff5{m3[1], m6[1], m8[1]} eff6{m9[3], m7[1]}

eff7{m2[1], m6[2], m7[3]}

tc1 tc2

tc3 tc7

tc4 tc5
tc6

FIGURE 5.2: Exemplary dependency graph with seven test cases
tc1, . . . , tc7 annotated by the set of killed mutants respectively. The
numbers in squared brackets denote the severity of killed mutants.
The best test suite of size |TS| = 2 for max-aggregation comprises
of the two sequences ts4 = 〈tc2, tc3, tc6〉 and ts5 = 〈tc2, tc7〉 scoring
14. For ∑-aggregation, however, the best test suite with |TS| = 2 is

{ts3, ts5} with ts3 = 〈tc2, tc3, tc5〉 with a score of 19.

adaptations to these previous environmental influences; in particular, executing
a test case influences the future scores.

This was previously formalized by hierarchical state machines describing the ac-
tual system behavior (Sect. 4.2). Due to the limit k of investable time steps, here
we rather consider traces with maximum length through those machines and said
that the search space for the optimal test suite is given by a dependency graph with
the initial system state as root, effects and their killed mutants as nodes, and the
test cases as edges; see Fig. 5.2 for a small example.

2. Each evaluation of a test suite TS is at the cost of k · |O| program executions at
worst. The only factor that we can influence for practicability is thus the number
of evaluations that has to be kept to a minimum.

Note that in context of the dependency graph test design can be seen as a general
optimization problem: find a number of paths through a graph in the most efficient
way, such that their collected nodes optimize a given goal. For the aggregation by ∑,
when disregarding that test suites are sets, a single best path could just be repeated,
and optimization would be reduced to the well-established problem of finding a
single path with maximum score [McM04]. The aggregation operator max, however,
directly considers sets of nodes for evaluation and is sensitive to duplicates; greedy
approaches iteratively choosing the single best rated path are doomed to fail.

5.2 Evolutionary Algorithms

The machine learning techniques that were used in Kapitel 4 for test design could not
be applied anymore since they were exclusively designed for finding representatives
– a test suite that is possibly representative for the whole set of all the test cases,
however, does not necessarily have to cover the optimum set of mutants w.r.t. their
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weights. In other words, there is no functional dependency between the label vectors
spanning the representativity and the properties determining the weight.

Thus, with evolutionary algorithms the experiments were based on another tech-
nique for optimization. Present section introduces this kind of algorithms Sect. 5.2.1
and shows how we customized it for the specific needs of deriving test case se-
quences at test design Sects. 5.2.2 und 5.2.3.

5.2.1 Foundations

Evolutionary algorithms are a wide-spread optimization technique that does not re-
quire a gradient on the solution space to be computable [ES03]. Any evolutionary
algorithm works on a set of solution candidates, also called individuals, a set of which
is also called a population P. For our experiments we defined a single individual TS
to be a whole test suite. The set of currently considered test suites thus formed P as
a subset of the domain of all possible test suites.

Given those definitions Alg. 4 shows the typical structure of evolutionary algo-
rithms. It starts with a random initialization and repeats its other operations for a
fixed amount of times n. Each of these repetitions is also called a generation.

Random Initialization. This step generates the initial population by generating
random test suites. Note that generate is not a mathematical function as it returns a
newly generated object each time it is called. Here, the term genetic operator is used
for common evolutionary operations that use random effects.

Recombination. We decided for a variant of recombination that grants the chance
to recombine to each individual (irregardless of its fitness), but chooses its respective
mate with respect to higher fitness. Effectively, this seems a good compromise be-
tween allowing exploration (using all individuals for recombination) and exploita-
tion (favoring the better ones). The former is guaranteed by applying a fixed chance
rrecomb for the choice of any individual for recombination. The randomized func-
tion select_mate performs the latter by iterating over the population, returning the
nth-fittest individual with probability 2−n.

We first create an empty test suite (i.e., containing no test sequences but already
of required size |TS|) in the variable child and iterate over the number of test suites
that is used for all our suites and complete the child by performing one random
choice of three operations with equal probability (as denoted by the or operator):
(a) we reuse the test sequence of the first (randomly chosen) parent, or (b) we use
the test sequence of the second (chosen according to fitness) parent, or (c) we call
a special function combine that builds a new test sequence out of the test sequences
stemming from both parents. Section 5.2.3 will show how to effectively implement
such a function. Leaving out option (c) entirely would result in a more standard
evolutionary algorithm that still manages to produce effective (but not as good) test
suites (see Sect. 5.2.4). The recombination can then be considered as a standard uni-
form crossover at the whole suite level.

Note that even though recombination is a common step that is an integral com-
ponent of almost all evolutionary algorithms, we did not present it as a black-box
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Algorithm 4 Evolutionary Algorithm for Test Suite Generation

Require: n ≡ maximum amount of generations
m ≡ maximum amount of individuals in the population
rrecomb, rmut, rhyper ≡ rates of evolutionary operators
evaluate ≡ fitness/objective function
rnd ≡ random number generator on codomain [0, 1]
generate ≡ genetic operator that randomly generates a test suite
mutate ≡ genetic operator applying small changes to a test suite
combine ≡ function combining two test sequences to produce a new one
select_parent ≡ function returning a mating candidate in a population

1 P← ∅
2 for j = 0, . . . , m− 1 do . Random Initialization
3 P← P ∪ {generate()}
4 for i = 0, . . . , n− 1 do
5 for all TS ∈ P do . Recombination
6 if rnd() < rrecomb then
7 mate← select_parent(P)
8 child← (null)|TS|

9 for k = 0, . . . , |TS| − 1 do
10 child[k]← TS[k] or mate[k] or combine(TS[k], mate[k])
11 P← P ∪ {child}
12 for all TS ∈ P do . Mutation
13 if rnd() < rmut then
14 P← P ∪ {mutate(TS)}
15 for all TS ∈ P do . Hypermutation
16 if rnd() < rhyper then
17 P← P ∪ {generate()}
18 while |P| > m do . Selection
19 P← P \ {arg minTS∈P evaluate(TS)}
20 return arg maxTS∈P evaluate(TS) . Result

genetic operator but put a bit of its implementation into the description in Alg. 4
in order to accurately describe how our implementation of select_mate fits in. The
function combine thus does not accurately represent the whole genetic operation “re-
combination” the way mutate and generate do.

Mutation. Each individual is subject to mutation with a chance of rmut. When cho-
sen, the mutate operator generates a new individual through small random changes
to the original. It is not obvious how a small change can be accurately quantified or
guaranteed in the domain of test suites. It is, however, important that mutation oper-
ates on a small scale as it is our main exploratory operator and large mutations may
(systematically) jump over some solutions. This problem is addressed in Sect. 5.2.3.

An alternative to caring about the “smallness” of the changes is to just pick a
random test sequence of the suite and re-generate it through random walk within the
dependency graph starting at a randomly chosen point in the test sequence, which
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results in a rather big change with each mutation. These approaches are compared
in Sect. 5.2.4. Note that in contrast to some evolutionary algorithms (and biological
evolution), mutated individuals are only added to the population instead of having
them replace their original counterparts.

Hypermutation. During the hypermutation step, we simply generate new indi-
viduals completely at random disregarding the previous course of evolution, and
add them to the population. For this purpose, we use the same generate operator
as in the initialization of the first population. Adding these new individuals in-
creases exploratory behavior of the evolutionary algorithm and thus helps prevent
getting stuck in local optima. Note that in parallel to the other operators (and their
respective application rates), the amount of generated individuals is based on the
number of individuals within the population |P| and the given parameter rhyper.
Also note that the phases extension which will be discussed in Sect. 5.2.2 turns the
evolutionary algorithm into a dynamic optimization problem, for which the use of
hypermutation had been highly suggested [Gre92].

Selection. The selection step is rather straightforward: it simply chooses the m best
individuals to keep for the next generation. The description in Alg. 4 uses a nota-
tion that does not need to introduce list slicing, although the implementation uses
a computationally more efficient functional equivalent to the algorithm presented
here.

Result. Finally, the best individual found in the last population of the last gen-
eration is returned. However, this is also the best individual that has been found
overall – which is ensured by the fact that all of our operations in the steps within
each generation only add new individuals but never overwrite their parents. The
fitness function evaluate applies ΓM to all test cases of the sequences in TS. As long
as we do not change its semantics this means that we always keep the best individu-
als around. This feature is called elitism within the field of evolutionary algorithms.
While the search process is (even without elitism) expected to strive for better indi-
viduals anyway, elitism ensures that it is monotone, as Sect. 5.2.1 will show.

The experienced reader might note that, as is usual when deploying an evolu-
tionary algorithm, a fixed limit |P| = m is set on the population size. Furthermore,
we employ a fixed limit of execution time (measured in evaluations or generations as
we discuss later) instead of a quality threshold as would be possible as well as break
condition. However, especially for our experiments we were most interested in the
comparison of the quality of various approaches within a given time frame, as for
software testing the requirement is more likely formulated to produce the best test
suite within the available time rather than to produce a test suite as fast as possible.

5.2.2 Phases Extension

Having discussed the basic functionality of the evolutionary algorithm we utilized
for test suite generation, let me now introduce the first of two extensions we found
for the test domain.
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As first extension we introduced the so-called phases extension improving the
overall search performance. As Sect. 5.2.4 will show it manages to produce com-
parable results with roughly half the goal evaluations.

Generally speaking, we observed that there is a noticeable relation between the
fitness of a test suite TS and the fitness of a single test sequence ts ∈ TS, i.e., the
fitness of the suite {ts}. As discussed, the best test suite of size k will usually not
consist of the k best rated test sequences, as these will likely overlap in killed mutants
and thus have poor overall coverage. However, it seems intuitive to start with one
of the best rated test sequences and then build a suite around it. We could thus split
the test suite generation problem into various sub-problems of iteratively finding
test sequences given certain constraints (from previously found test sequences). But
evolutionary algorithms provide us with a much more elegant approach, which we
call phase-based evolution:

We adjust the objective of the evolutionary process and the data structure of its
individuals during the progression of evolutionary search. The evolutionary process
is started with individuals that contain test suites TS ∈ P of size |TS| = 1, i.e., all
test suites only containing a single test sequence. This evolutionary search runs for
the best single test sequence for a while: If we eventually want to search for a test
suite TS of size |TS| = k after n generations, we run this reduced search problem
for roughly n

k generations. Then we augment all individuals to represent a test suite
with two test sequences by adding a randomly generated test sequence to each indi-
vidual. We proceed to expand the problem domain of the search every n

k generations
until we are at generation n, having actually employed the original fitness function
for a size k test suite only for the last 1

n generations.
We found that this approach works well in case the time of each of these evolu-

tionary phases does run long enough to find reasonable results but not long enough
to fully converge. The evolutionary search thus hits a point where it has a rough idea
about the best single test sequence but still has multiple open options. At this point,
it proceeds to search for a larger test suite, with limited option for the first spot of a
test suite. Using the phases extension, we could cut the total amount of goal evalu-
ations roughly in half, since the average test suite is only k+1

2 test sequences in size
throughout the course of evolution.

5.2.3 Penguin Extensions

The second extension targeted two points: (1) “merging” two test sequences into
one within the combine function and (2) applying meaningfully small changes in the
search domain of test suites within the mutate operator. The main problem of both is
the handling of test case dependencies: Two test sequences ts1 and ts2 cannot simply
be combined by attaching the tail of ts2 to the head of ts1 (as in the traditional one-
point crossover operation [ES03]), since the configurations in the second half of ts2

might not conform to those of the first half of ts1.
For solution we utilized a method we call penguin recombination instead. Its name

is inspired by an imaginary instance of our evolutionary algorithm being used to
compute the evolution of animals, where dependencies in combination and muta-
tion can be observed as well. If we consider two test sequences as different species
such as a parrot and a fish, we notice that they cannot meaningfully recombine
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through crossover; but, inspired by nature, we can at least evolve the parrot to an-
other bird that is most similar to the fish, resulting in perhaps a penguin. For apply-
ing this metaphor to the test sequences considered, we utilized a notion of similarity
which I introduced in Sect. 4.4.2. Note that in general every reasonable similarity
notion between paths might work.

Penguin Recombination. Using this path similarity notion we suggested to com-
bine two test sequences ts1 and ts2 as follows: We cut a part of the beginning of ts1 at
a random length, resulting in the incomplete test sequence tsA

1 so that tsA
1 ; tsB

1 = ts1

for some tsB
1 . There now exist multiple paths that may follow, of which tsB

1 is one
possibility. Of all the possibilities tsB

1 , tsB
1
′, . . . within the current configuration at tsA

1 ,
we compute their similarity to tsB

2 , which is the second part of ts2 after cutting off
ts2 at the same length as ts1. We choose the most similar completion tsB

1
∗ ∼ tsB

2 to
produce a new test sequence ts3 = tsA

1 ; tsB
1
∗. This test sequence has a similar setup

as ts1 but after a certain point tries to mimic as many features of ts2 as possible, i.e.,
become as much of a fish as a parrot can.

Penguin Mutation. The mutation operator had been implemented analogously,
almost as a recombination of a test sequence ts with itself. We cut off ts at some
random point, resulting in tsA; tsB = ts. Furthermore, we cut off the first test case of
tsB, resulting in tsB

orig; tsC = tsB. We then add one test case at random to tsA, which
we name tsB

rand, and make sure that tsB
rand 6= tsB

orig. From that point on, we complete

tsA; tsB
rand by generating the test sequence tsC∗ ∼ tsC. The mutated test sequence

ts′ = tsA; tsB
rand; tsC∗ is returned with only a single test case changed and afterwards

trying to mimic the original ts as closely as still possible.
We argued that this is the minimal (and still general) mutation one can imple-

ment for the domain of test sequences.

5.2.4 Evaluation

For evaluation we applied our approach to a dependency graph we recorded from
simulating the self-organizing production cell. We tested a standard evolutionary
algorithm evolving a test suite as well as both of our extensions individually and
their combination. We also ran baseline experiments using random search as well as
using an evolutionary algorithm that only evolves a single test sequence. We used
a population of size m = 50 evolving for n = 1000 generations. We produced test
suites of (eventual) size k = 10 from our test data. We chose rrecomb = 0.3 and
rmut = rhyper = 0.1 for the hyperparameters providing a lot of random exploration
to the algorithm favoring generality of our results over sample efficiency. The total
computation time of all evolutionary processes included in the test was 1.6 hours on
a machine with an Intel Core i7 processor at 2.9 GHz and 16 GB of memory.

The results are shown in Sect. 5.2.4. It can be clearly seen that the phases ex-
tension eventually achieved very similar results to both non-phase-based variants,
but with considerable savings in computational resources. Furthermore, it is also
evident that both penguin variants outperformed their non-penguin counterparts.
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FIGURE 5.3: Performance evaluation results

Again, this validates our approach and shows that the additional knowledge given
to the algorithm in form of the similarity function payed off with better end results.

5.3 Towards Assessing the Criticality of Faults

Compared with the representativity-based approach considered before the major
difference of the mutation-based test goal considered in this chapter is that not only
the kind of faults – anticipated and represented by mutation operators – but also the
supposed severity of their effect is considered.



5.3. Towards Assessing the Criticality of Faults 71

On the one hand it could be argued that this enables an even better prioritization
of test sequences, since critical faults in terms of their effect should be eliminated
with higher priority than not that critical ones. On the other hand considering not
only the kind of faults but also their effect complicates test design as the only way to
evaluate the effect to the environment is execution.

The short cut we were able to apply in Sect. 4.3.4 can not be applied anymore and
thus, considering HOM now actually means to exhaustively generate and execute all
possible mutants (which means all combinations between all considered mutation
operators) with all test sequences. Since this is impractical (as shown in Sect. 4.3.3)
this chapter considered merely FOMs up to here.

Reporting about an experiment we did for testing a “traditional”, i.e., a not self-
adaptive system this section considers a promising branch of future work that could
help to overcome this limitation. It is building on the hypothesis that it is possible
to break down the criticality of failures to faults. If it was, i.e., the hypothesis holds,
we can renounce investigating the effect of each mutant with an environmental sim-
ulation but work on a model again.

5.3.1 Risk-based Interoperability Testing

The experiment considered a method for Risk-based Interoperability Testing using Re-
inforcement Learning [Rei+16]. Striving to test whether all the components of a dis-
tributed system are able to communicate with each other and thus render requested
services correctly through interaction [Che13] we thereby struggled with the typi-
cally high number of possible interaction scenarios (e.g., combination of messages)
which turns this kind of testing a complex task. Since it seemed impossible to cover
all scenarios, we found that their relevance for being tested has to be prioritized
somehow. In [Rei+16] we proposed a method to do so in a risk-based manner.

In more particular we combined model-based and risk-based testing methods with
reinforcement learning. Thereby our approach built on given behavior models of the
interacting components of the SuT, common implementation faults, and a set of the
most critical failure situations, each of them described by the combination of com-
ponent states and a score of its deemed effect.

Figure 5.4 shows exemplary models for components M, N, and O as well as their
composition, i.e., a system behavior model (please refer to [Rei+16] for the used test
model specifications).

M1 M2

M3

a!

b?/e! c?

(A) Component M

N1 N2

N3

a?/d!

b! c!

(B) Component N

O1 O2

d?

e?

(C) Component O

M1N1O1 M2N2O2

M3N3O2

a!d!

c!b!e!

(D) System behavior
model of M, N, and O

FIGURE 5.4: Model of the components M, N and O and their broad-
casting composition.

Within those models of intended behavior no unwanted state which we called
failure situation can be reached as the models do not describe faults (a combined
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state is assumed to be reached if all of the combined component states are active at
the same point in time). By explicitly introducing common implementation faults

M′1 M′2

M′3

a!

b?/e!

b?

c?

(A) Mutated component M′ (for M)

M′1N1O1 M′2N2O2 M′3N3O2

M′2N1O1 2.0 M′1N1O2 M′2N1O2

a!d!

c!
b!e! b! a!d!

(B) Composition of M′, N, O

FIGURE 5.5: Component test model based on the fault model of mes-
sage losses and resulting system test model composing M′, N and O.
Depicted in gray in (b), the system test model has been complemented

by a negative situation M′2−O1 with negativity score ν = 2.0.

into the models – in experiments we considered (1) message losses, (2) wrong mes-
sages, and (3) delayed messages – the situation however changes. As it can be seen
in Fig. 5.5b we are indeed able to assess the criticality of faults, i.e., their “ability” to
cause the effect of failures given an erroneous component model like Fig. 5.5a.

Given such models including anticipated faults we proposed a novel, critical-
ity-based test goal aiming to maximize the criticality of covered faults. Since this
relevance of faults is derived from the failure situation’s negativity, i.e., a quantifica-
tion of effects of failures, this test goal can be actually seen quite similar to this one
discussed in the present chapter before: We strive to find a test suite that is supposed
to reveal those of anticipated faults constituting maximum risk.

Note that in case of one introduced fault the extended model represents a FOM
as the represented mutant is generated by a one-time application of a mutation oper-
ator. By this model-based approach we could, however, easily simulate higher order
mutant also by just introducing more than one fault in the models.

5.3.2 The Malicious Developer Metaphor

Given this model-based setup the basic challenge is thus to break down the negativ-
ity of failures to the criticality of faults.

Let us, in search of a solution, imagine a malicious developer of a component
actually trying to induce the whole system to reach the maximum effect of failures
in real operation by implementing the “right” component faults. These faults would
be the ones to be tested for with highest priority. What the malicious developer
could do is to use a learning technique, such as reinforcement learning [SB98], on a
simulated environment: He could implement his component as an intelligent agent
which makes its own local decisions to achieve the global goal of reaching the most
critical failures.

This agent then would map received rewards to the preceding actions (either
specified in the behavior model or faults) so as to assess the expected return for
every possible action. The ultimate reward to be reinforced would be reaching a
critical failure situation. Then the agent’s learned expected return for executing a
fault can be understood as the fault’s criticality.
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For finding those test cases which cover the most critical faults with highest pri-
ority, it seems reasonable to apply the same technique as our imaginary malicious
developer. This procedure can be seen as defending the system against the faults he
could inject.

After the learning phase – learning which faults mean the highest criticality or
reward – each agent contains a function that maps its actions to their expected return,
i.e., their relevance. From a mutation testing perspective, the actions representing
anticipated faults can be seen as mutants of the specified actions in the behavior
models. The functions of the agents weight these mutants by their criticality – they
break down the criticality of failures to faults. Thus, test cases can now be prioritized
by the criticality of the mutants they are assumed to kill.

5.3.3 Formalization as MDP

The malicious developer’s task is forming a Markov Decision Process that is quite
similar to this of the tester (see Sect. 3.3.2):

We describe the malicious developer’s MDP by state space S and an action space
A which can be directly taken from the model composition; a map T : S × A ×
S → [0, 1] giving probabilities over state transitions, such that T(s, a, s′) indicates
the probability that action a in state s leads to state s′; and a reward function R :
S× A× S→ R denoting rewards for taking particular transitions.

Since in experiments we did not assume that transition probabilities of the SuT
are known by the tester, we supposed T for every state s ∈ S and every action a ∈ A
to be uniformly distributed over the target states s′ ∈ S that are forming transitions
(s, a, s′) of the underlying model. In the malicious developer’s MDP R reinforces
transitions (s, a, s′) with the negativity score of s′ if s′ is a negative situation, and
with 0 otherwise.

In contrast to the typical task associated with an MDP, i.e., finding a policy for
selecting appropriate actions in any given state w.r.t. the agent’s expected return (see
Sect. 3.3.2), this of the malicious developer seems rather different. Instead of finding
a path through the system test model (or the MDP) that is supposed to offer the
maximum reward, we first of all aim to assess the criticality of every action in order
to eventually form a risk-optimized test suite. In terms of an MDP, we are searching
for the expected returns of all actions.

Fortunately, some of the reinforcement learning methods originally designed for
deriving optimal policies (cf. Sect. 3.1.4) do also provide us with these expected re-
turns as kind of intermediate results. They are based on estimating action-value
functions, i.e., mappings of states (or state-action tuples) to the expected return when
being in the given state (or selecting the given action in a given state) [SB98]. Thus,
in using one of these algorithms, we are able to estimate the actions’ criticality by
sample experience.

5.3.4 Q-Learning

In Q-Learning we decided to go with one of the most prominent representative of
those action-value-based RL methods in our experiments. As kind of temporal differ-
ence learning it offers the special charm of working on sample experience and thus
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not requiring a model. In this method, we thus do not have to explicitly build the
system test model which may be prohibitively large due to the number of compo-
nents and possible faults.

In order to exploit this advantage, we chose in our experiment a fully decentral-
ized approach: Within a simulation of system runs, we suggested to associate each
single component of the SuT with an agent that learned the expected return of its
actions.

Each agent owns a so-called Q-function mapping environmental states together
with actions to their expected return. We called the pair of an environmental state
and an action a decision. After a reward Rt+1 is received for action at executed at time
step t out of the environmental (global) state st, the expected return for the decision
(st, at) is getting updated as follows:

Qt+1(st, at) = Qt(st, at) + α
(

Rt+1 + γ max
a

Qt(st+1, a)−Qt(st, at)
)

. (Q)

The parameters α ∈ ]0, 1] and γ ∈ [0, 1] denote the learning rate and the discount
factor.

Decisions which are not mapped on an expected return yet get a default as-
signment of 0. As one can see in (Q), the expected returns – that are representing
our measure of criticality – are updated with respect to a policy in which the agent
chooses anytime the action with the highest criticality (represented by the max-term
in (Q)). This optimal policy invokes the worst-case behavior of the component, that,
as we supposed, is the most appropriate one in case of risk-based testing.

5.3.5 Deriving Test Cases From Q-Values

After the learning phase we have a set of agents, each one containing a Q-function
mapping decisions to criticality values. Recall that this, as an intermediate result,
would enable the imaginary malicious developer I mentioned before to implement
the most critical faults in his component; and it enables us to assess observed de-
cisions of any of the SuT’s components in real operation. However, we still want
to use this learned information for generating test cases covering the most critical
faults. For this purpose, two things have to be considered:

(1) Positive test cases, as we exclusively considered in our experiments, do only
include decisions with specified actions (specified decisions) but are able to detect im-
plemented decisions with mutated actions (mutated decisions). More precisely, we
assume the test of a specified decision to detect all of its mutants, i.e., decisions with
the same state but with actions that are mutants of that contained in the specified de-
cision. Hence, we have to distinguish between a decision’s criticality and a specified
decision’s relevance for being tested that, in fact, should even comprise the criticality
values of its mutants.

(2) A Q-function, as we formed it, assesses decisions with local actions (local de-
cisions). A system test case, however, should specify the execution of global decisions
involving one local decision per component.

Thus, we aggregate the learned criticality values by (1) local and (2) global rele-
vance functions whereby the latter depends on the first. System test cases are gener-
ated and assessed using the global relevance functions.
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Local Relevance Function We aggregate for each specified decision d the criticality
scores of mutated decisions M(d). As result the local relevance function r of an
agent maps each specified local decision to its relevance for being tested. In concrete
terms we define the relevance of a decision by the sum of the criticality values of its
mutants. This seems reasonable for testing, since a specified decision is deemed to
reveal all of its mutants if they are implemented.

From a mutation-based testing perspective, the relevance can be seen as the re-
ward for killing a set of mutants. More formally, for a specified decision d = (s, a),
let M(d) be the set of mutated decisions whose actions are mutants of a and whose
composed state is s. Then we proposed to define the local relevance function by

r(d) = Q(d) + ∑d′∈M(d) Q(d′) .

Global Relevance Function By the global relevance function r we map each possi-
ble global decision to its relevance for being tested. A global decision d consists of
one specified (local) decision per agent. In experiments we said that a global deci-
sion is possible iff the contained local decisions can be made at the same time. Thus,
the local decisions contained in a possible global decision share the same composed
state and actions which satisfy the chosen communication paradigm.

Since only the specified local decisions are considered, but not their mutants that
would result in much more possible global decisions, the computation of the set of
global decisions turned out to be feasible, even for rather complex models. Note that
the execution of a global decision by a test case implies the execution of all included
specified (local) decisions. We defined a global decision d to be as relevant as the
sum of its local decisions:

r(d) = ∑d∈d r(d) .

Building on this global relevance function, we are able to derive a risk-optimized
test suite, i.e., a suite of a desired number of logical interoperability test cases that
covers as much relevance as possible then by a simple algorithm (please refer to
[Rei+16] for more details).

5.3.6 Towards Application for Testing Self-Organizing Systems

Having discussed these experiments let us now consider how this method could be
applied to our setting with the self-organizing production cell described before.

Indeed we do not have the behavioral models for components which we had in
reported experiments, but instead we have a simulation letting us estimate the effect
of faults that are introduced by mutation operators. What we can do thus is activat-
ing faults by mutation operators in simulation and logging the effect – similar as we
did before by the so-called label vectors. Failures are backpropagated through the
sequence of faults as previously discussed for actions in the Q-learning procedure.
The Q-table assessing actions, i.e., activating particular mutation operators o ∈ O in
particular system states observed in simulation, that represent the mutation opera-
tor’s fault criticality thereby evolves step by step.
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Instead of evaluating each test case of each test suite with each mutant we would
thus construct the Q-table by a sequence of random tests with random mutants.
The Q-learning’s dynamic programming intention thereby grants us convergence
towards the optimal values. The relevance, i.e., the worthiness – or as we called it
before the relevance – of particular test steps ts(t) with t ∈ [1..|ts|] then results from
the criticality of covered mutation operators1.

Still, due to the Q-learning’s max operator the computed value for a particular
fault has to be rather considered as worst case regarding all the possible HOMs it
could be part of than an average. As discussed before this might be however exactly
the case which we want to exclude with highest priority. Nevertheless also experi-
ments with other aggregations seem promising as the essential question for future
work will be how to efficiently construct adequate test suites of sequences given the
learned Q-table.

Still, we have to note that since the algorithm proposed in [Rei+16] was built
on behavioral models of the SuT’s components it will not be directly applicable for
self-adaptive systems for which we do not have such models given. Again, the use
of meta-heuristical search approaches such as evolutionary algorithms appears a
gainful try.

5.4 Related Work

In reported experiments we considered test strategies for a novel mutation- and risk-
based test goal. While also in related work it seems quite common to use fault-based
techniques for evaluating the quality of test suites [BMK04; Rot+02; Zha+11], the
huge majority of approaches, including the cited ones, applies other test goals for
actual generation. This might be due to the high costs for goal evaluation, which we
were able to reduce by the phases extension.

Here, we made use of search-based testing techniques [McM04] for test design
w.r.t. the introduced goal. In particular, we made use of an evolutionary approach
for finding adequate test suites. Indeed, this kind of algorithms is yet actively used in
the automatic generation of test cases for software [McM04; WL05]. In recent years,
the research community considered the issue of whole test suite generation, in which
the aim of applying an evolutionary algorithm is not to find the most important test
cases but instead to find the ideal combination of test cases that make up a concise
but approximately complete test suite for a given software [FA11].

Especially for this whole test suite domain we proposed the phases as well as the
penguin extension which were shown to improve our test design. Some general ap-
proaches on evolutionary algorithms have also already introduced dynamics into
originally non-dynamic problems in order to improve the quality of the search re-
sult [Urs02; GBLP18]. These also use measurements related to the similarity between
individuals in their evaluation, which may then change over time as the popula-
tion changes. Similarity has been incorporated into the recombination process e.g.
in [IS03], though on a different level than in our approach, viz. at the level of mate

1Whether or not a mutation operator is covered might be assessed by constructing a FOM m from
program p and comparing the effect of p.execute(ts(t)) and m.execute(ts(t)). Note that still we do not
have to construct every HOM in this case.
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selection mirroring biological evolution. The advantages of such approaches for test
design had been, however, not considered yet. Also, the challenges for testing self-
organizing systems were not addressed by evolutionary algorithms before.

5.5 Conclusion

Apart from the novel mutation-based test goal and the evolutionary approach on test
design we sketched a promising path for future work that might enable considering
also higher-order mutants in future. A first experiment considering a non-adaptive
system under test had been presented in Sect. 5.3. Adapting this setting to testing
self-adaptive systems will constitute an important part of future work.

Further, as the initial evaluation of the presented algorithm just considered a
single concrete case, testing a self-organizing production cell, we expect to be able
to generalize our findings in future. Applications to be considered include code-
level test sequence and test suite generation. I envision several cut points with
practice-oriented applications, such as test suite minimization and construction for
distributed systems, waiting for being explored.
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Chapter 6

Continuous Test Models

Up to here we have considered classical test strategies for reactive systems in Kapi-
tel 2 and elaborated the particular challenges when it comes to testing self-adaptive
systems in Kapitel 3. Kapitel 4 und 5 presented some experiments on deriving test
strategies for the particular kind of self-organizing systems.

As we saw that model-based testing, and in particular FSM-based test strategies,
helps improving efficiency in test design in Sect. 3.3 we extended this technique for
application on testing self-adaptive systems: first, we derived a behavioral model
by using a simulation of the SuT in its environment; and secondly, we based the
search for a test strategy on this. The presented strategies of test policy learning and
test policy evolution instantiated this technique considering hierarchical FSMs and
dependency trees as underlying models.

The findings suggest that given one of those models, let it be anticipated or
learned, we will be able to find an adequate test strategy. But what if we cannot
derive such a model? What if the SuT’s state space does not allow us constructing
an FSM? Those are exactly the questions the following sections are meant to address.

Present chapter considers in more particular capturing self-adaptive system be-
havior by continuous test models and forming test strategies for them. By the term
continuous I thereby refer to the state space which here might include continuous
variables not letting us categorically separate states.

While in classical conformance testing this separation is usually driven by form-
ing equivalence classes on inputs and states I here assume that due to the sheer num-
ber of variables this is not always convenient for self-adaptive systems. We have to
assume that we do not really know a priori the peculiarities of the environment de-
termining the system’s response, which implies that we should initially consider all
of them – in Sect. 3.3 I proposed to do so by using an environmental simulation.

Section 6.1 reports about experiments we did for capturing adaptive agent be-
havior by Artificial Neural Networks applying a well-known technique for handling
such continuous state spaces. Based on an adequacy criterion for this kind of test
models (Sect. 6.2) a test strategy is presented that builds on the well-known machine
learning technique of autoencoding (Sect. 6.3).

The reader should note that some parts of this chapter are direct citations from
papers [Rei+17] and [RK17a] which are set in context of present work.
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6.1 Capturing System Behavior By Neural Networks

The experiment the following section is going to report about is meant to show that
it is possible indeed to capture the behavior of adaptive software agents in artifi-
cial neural networks (Sect. 6.1.2). While it was originally motivated by the need
for a function imitating all participants within a distributed, self-organizing system
within a statistical software testing setup – we confronted an overlying reconfigura-
tion mechanism with preferably realistic situations (Sect. 6.1.1)–, we will use the
resulting insight that neural networks might be useful test models as well for fur-
ther experiments later. The considered case study, a smart energy grid comprising
several adaptive power plants, is presented in Sect. 6.1.3.

6.1.1 Statistical Software Testing for SO Systems

Statistical software testing applies stochastically generated sequences of test inputs
to a SuT which represent its anticipated use. In doing so, this approach allows the
tester to reason about the system’s expected field quality [WT94] while limiting the
number of test cases to execute. Further, the obtained models of the environment,
in which the SuT is expected to be employed, can be used to prioritize and thus to
reduce test efforts in general. As previously mentioned this reduction is of partic-
ular interest when dealing with very huge and ramified state spaces of the SuT’s
environment, since, without prioritization, the so called state space explosion is likely
to give rise to test suites of uncontrollable size.

Eberhardinger et al. explained this phenomenon and consequential challenges
with particular regard to a class of self-adaptive systems we yet considered – the self-
organizing systems [Ebe+17b]. Recall that this kind of self-adaptive software systems
is usually composed of an agent layer comprising a number of adaptive agents that
are associated with their environment, and an organization layer including a self-orga-
nization mechanism (SO mechanism) which is responsible to reorganize the agents
if necessary.

In providing an approach for isolated testing of the self-organization mechanism
within the organization layer, Eberhardinger et al. instantiated the idea of statistical
testing by structuring the huge environmental state space using so called environ-
mental profiles. However, by means of a case study that considered a self-organizing
energy grid, they found that the environment itself and the underlying probabilistic
model not directly determines the searched test input sequences for the SO mecha-
nism under test, as this exclusively depends on the agent layer.

The implemented agent behavior maps the environmental profile to an agent-
specific state. Thus, they stated that in order to obtain statistically relevant test in-
puts, one needs to take an indirection: as visualized in Fig. 6.1 the proposed ap-
proach pipes the output of environmental profiles in stochastic test mock-ups imi-
tating the estimated agent behavior – the so called influence functions – the output of
which can then be applied to the SO mechanism as test input.

Though we usually have access to lots of statistical data concerning the SuT’s
environment, e.g., weather data or other physical models, which can be used to
construct environmental profiles, it is rather unclear how to obtain the mentioned
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FIGURE 6.1: Proposed process for statistical testing SO mechanisms.
Mock-ups simulate agent behavior in response to environmental con-
ditions which are provided by environmental profiles. Outputs of the

mock-ups serve as test inputs for the SO mechanism.

influence functions for constructing agent mock-ups from a limited set of observa-
tions. In [Rei+17] we characterized this task as follows: Given a set of logs that report
the agent behavior under specific environmental conditions, we are seeking a gen-
eralization that allows us to predict the agent behavior even for previously unseen
conditions.

Before regarding an implementation of such a generalization which can be seen
as continuous test model as well, let us with a self-organizing smart energy grid
consider the case study from [Rei+17] as a basis for evaluation.

A Self-organizing Smart Grid The wide-spread installation of weather-dependent
power plants (PP) using wind or solar energy as well as the advent of new consumer
types like electric vehicles put a lot of strain on power grids. To address the ris-

Top-Level
AVPP

FIGURE 6.2: Hierarchical system structure of a future autonomous
and decentralized power management system: Power plants are
structured into systems of systems represented by AVPPs that act as
intermediaries to decrease the complexity of control and scheduling.

ing challenges of future power management systems, Steghöfer et al. presented the
concept of Autonomous Virtual Power Plants (AVPPs) in [Ste+13]. AVPPs represent
self-organizing groups of two or more power plants of various types (cf. Fig. 6.2).
The organizational structure represents a partitioning, i.e., every PP is a member of
exactly one AVPP, which is established and maintained by a (partitioning-based)
self-organization mechanism.

Each AVPP has to fulfill a fraction of the overall power demand in the energy
grid. For this purpose, each AVPP autonomously calculates schedules for directly
subordinate dispatchable PPs. The calculation of the schedule depends on different
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influence factors that might effect the members of the AVPP. Foremost, external in-
fluence factors, e.g., the wind condition for a wind turbine, are challenging to handle
since they introduce an uncertainty into the system.

To cope with the accruing uncertainties, AVPPs autonomously adapt their struc-
ture to changing internal or environmental conditions. Thus, they are able to live up
to the responsibility of maintaining an organizational structure enabling the system
to operate reliably which is measured by a numeric value called trust. In particular,
if an AVPP repeatedly cannot satisfy its assigned fraction of the overall demand or
compensate for its local uncertainties, it triggers a reorganization of the partitioning.

Deriving Influence Functions The agent layer of the present self-organizing, adap-
tive system is formed by the various power plants and AVPPs. Affected by their
environment each of these agents produces output. This output not only comprises
plain energy values, but also a trust value between 0 and 1 assessing the reliability
of the power plant’s forecast. And exactly those trust values form test inputs for
the SO mechanism, as reorganization in the proposed system is exclusively based
on the notion of trust. Figure 6.3 visualizes this data flow at the example of weather
dependent power plants.

FIGURE 6.3: The output of a weather-dependent power plant is in-
fluenced by environmental conditions, such as wind speed and solar
radiation. A trust value signals the estimated reliability of forecasts.

The task of generating statistical tests for the present SO mechanism can thus
be formulated as finding trust vectors (one trust value per considered power plant)
which appear to be most likely within the real world. In order to obtain such trust
vectors, we needed to consider both statistics concerning the environment as well as
the assumed agent behavior.

Let us consider this process for a solar power plant. To obtain its most likely out-
puts we would first register weather statistics in the region our PP will be located
in. These statistics could be captured within an environmental profile. Given such
a profile we still need to find a mapping from environmental states to trust values
the agent is supposed to return. This mapping, the influence function, can be seen
as a mock-up of the real system replicating its behavior. As we have no unequivo-
cal specification mapping weather states to prognosticated trust values for our PP,
we could employ some handmade heuristics which operationalize our assumptions.
For instance, we could assume that the trust in the forecast of a solar power plant
descends with increasing variance in solar radiation.

Striving to reduce test effort, which arises when reasoning about heuristics, while
maximizing statistical accuracy, which might suffer from wrong assumptions or sub-
jective assessments of the tester, in [Rei+17] we investigated a more automatable
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approach using machine learning techniques for deriving the influence function. In-
spired by the state of the art in related research fields, such as predictive maintenance
or anomaly detection, we decided to solve this regression task by using and training
artificial neural networks (ANNs).

We argued that this approach offers the following advantages: (1) The popularity
of training such models resulted in lots of literature, frameworks and tutorials. This
kind of accessible support makes the considered techniques applicable also for test
engineers which are no ML professionals. (2) It was shown that ANNs are able to
approximate arbitrary functions (in dependence on the meta-parameters). It is thus
allowed to assume that using this kind of models we are able to estimate almost all
influence functions.

6.1.2 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANN) are computer models meant to store and to learn
from presented information. Inspired by biological neurons ANNs can be used for
regression and classification tasks, such as machine learning, pattern recognition,
or trend analyses. While this section is meant to give a rough overview about the
general building blocks and learning procedures of ANNs, the interested reader is
referred to [Hay09] for a more comprehensive consideration of this kind of models.

Elements of Neural Networks All the diverse manifestations and architectures of
ANNs yet considered in neural informatics or artificial intelligence have in common
a set of basic elements. Each ANN consists of a set of nodes, called artificial neurons,
and a set of connections between the neurons resembling human synapses.

As the schematic representation in Fig. 6.4 depicts, the input signals of a neuron
are processed by first multiplying each input signal with a weight, summing all the
weighted input signals up, and then applying a non-linear function called activation
function on the weighted sum of inputs. The result is reported through the outgo-
ing edges as inputs to other neurons or as overall output of the ANN to the caller.
Learning of an ANN is performed by adjusting the weights between the neurons
and edges over time.
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FIGURE 6.5: A Feedforward Artificial Neural Network

Feedforward Neural Networks Neurons are typically grouped by layers which are
characterized by the kind of transformations of inputs, i.e., the activation function.
The idea behind is that signals are traveling through those layers – from the first, the
input layer, to the last, the output layer possibly running in loops.

Here, I want to concentrate on one of the simplest types of artificial neural net-
works – the Feedforward Neural Networks. In this kind of networks the information
moves only in one direction, from the input nodes, through the hidden nodes (if any)
and to the output nodes. There are no cycles or loops in the network; see Fig. 6.5 for
an instance.

Gradient Descent The so-called back-propagation is the most popular learning tech-
nique for feedforward neural networks. Here, some predefined error function is
used to compare the network’s output values with the correct answers. The output
value is then fed back through the layers of the network and the weights of each
connection are adjusted to reduce the error. This process is getting repeated over a
number of training cycles until the error in calculations of the network is sufficiently
small.

The adjustment of weights is usually done by a non-linear optimization method
called gradient descent. Under the assumption that the activation functions used are
differentiable it calculates the derivative of the error function with respect to the
network weights and changes the weights in a way that the error decreases (thus
going downhill on the surface of the error function).

Training in Batches Besides updating the ANNs weights after each output ob-
served it is also common to consider the aggregated error of whole batches of sam-
ples for single updates. The batch size thereby defines the number of samples to
be presented to the ANN before adjusting the weights. If the batch size equals the
size of the training set, we are talking about the special case of batch gradient descent.
While stochastic gradient descent considers the inverse extreme with a batch size of 1,
the so-called mini-batch gradient descent means a batch size in between.
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6.1.3 Imitating a Smart Grid with an ANN

Though in experiments we had access to a fully integrated simulation environment
of the aforementioned self-organizing system, for evaluation purposes, we pretended
to have only given the following artifacts: Environmental profiles which model the
most likely weather conditions for a considered area within Markov chains, as well
as log sequences for a set of particular solar power plants describing their output at
a given time in response to particular environmental states.

Note that the evaluation of experiments was exclusively concerned with esti-
mating the effort and measuring the accuracy of the learned, predictive mock-ups
emulating the behavior of considered power plants. The desired generation of sta-
tistical tests for the SO mechanism under the use of our models would additionally
demand access to the SuT itself as well as some kind of test oracle. As our methodol-
ogy can be easily plugged-in into the process described in [Ebe+17b], the interested
reader is referred to this work for more details on those mentioned test artifacts.

Heuristical Influence Functions as Baseline In experiments we based the search
for adequate heuristics on the following argumentation: In general, an influence
function is meant to map one environmental state to the expected output of the
considered agent. In the present case, this would mean to map the weather con-
ditions (we exclusively considered the prevalent wind speed and solar radiations)
at a particular time step t to the trust value of a weather dependent power plant ob-
servable at time step t + 1. However, even if it seems natural that the performance
of a weather dependent power plant depends on the weather one time step before,
such a dependence seems not adequate for the trust value, as this only assesses the
quality of a forecast.

This forecast refers to the difference between the expected and the actual output.
It seemed likely to us that in case of the weather dependent PPs, the energy out-
put forecast depends on the quality of accessible weather forecasts. As these were,
however, unknown to us, we introduced another assumption: the quality of weather
forecasts might depend on the weather conditions observed at the last n time steps:
the more variance in weather, the more unreliable the forecast. Another assump-
tion was, that the loss of the weather forecast’s accuracy can be approximated by a
constant, whose value however might differ between the different power plants and
locations.

Overall, we considered the following heuristics:

Heuristic 1 Constant trust value at 0.8. This constant had been chosen based on the
assumption that weather forecasts might be inaccurate in 20% of cases.

Heuristic 2 Trust value at time step t + 1 depends on weather conditions at time
step t. The worse the weather conditions for the energy output of the PP, the worse
the estimated trust.

Heuristic 3 Trust value depends on variance within the weather conditions of the
last 5 time steps. The more variance, the worse the estimated trust value.

Learning an Influence Function Apart from the mentioned heuristics, we trained
an ANN to represent the influence function. By informal search we decided for a
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feedforward neural network comprising three hidden layers with 256, 128, and 64
neurons. The training set, i.e., the sample data provided to the network was gath-
ered as followed: We generated logs by observing the agent behavior in response
to randomly generated environmental profiles within our simulation. Each sample
thereby included the last 5 states of environmental profiles as input as well as the
reported trust value as output. These logs then were used for training. For this, we
utilized a kind of on-the-fly batch training by successively increasing the training set
with alongside generated logs, instead of writing the whole bunch of logs in a file.
Each iteration over the growing training set was thereby counted as one training
epoch.

With the so-called Mean Absolute Error (MAE) a common error function defined
by

MAE =
1
n

n

∑
j=1
|yj − ŷj|

was used for measuring accurancy; n is the number of predicted values, yj is a value
predicted by the ANN, and ŷj is the actual value. The neurons of all hidden layers
were equipped with the rectified linear activation function, i.e., f (x) = max(x, 0).

Figure 6.6 shows the resulting learning curve we observed. One can see that
training progress is rather low in the first phase (450 epochs), but suddenly grows
in the following. After 500 epochs of training we achieved a mean absolute error of
< 0.1 on randomly generated environmental profiles.

FIGURE 6.6: Learning curve describing the trend of mean absolute
error with increasing training time.

To compare these results to the presented heuristics, we evaluated all of them
together with the trained ANN on a separate run of 100 time steps simulating the
environmental profiles Eberhardinger et al. used in their previous work [Ebe+17b]
for evaluation. Table 6.1 shows the results. Note that we did no parameter fitting
on the heuristics as we assumed that the accuracy of a handmade heuristic can be
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KPI / Methodology Learned Model Heuristic 1 Heuristic 2 Heuristic 3

mean absolute error 0.08 0.3 0.3 0.25
standard deviation 0.07 0.08 0.17 0.18

TABLE 6.1: Comparison of ANN results with different heuristics.

arbitrary optimized at the expense of time. Our intention – to show that this job
can be outsourced to an ML algorithm – was confirmed by the high accuracy of the
ANN.

6.2 Compressing Uniform Test Suites

As the latest section suggests it is possible to capture (part of) the behavior of adap-
tive software systems by artificial neural networks. However, the critical task is still
finding test strategies based on those insights. According to the test process depicted
in Fig. 3.5, how can an ANN be used in order to derive test inputs for testing a SuT
in reality? What we certainly need first is an adequacy criterion marking the kind
of test suite we want to have. With the Compression Coverage Goal this section in-
troduces one we found in [RK17a] resembling typical coverage criteria from models
like FSMs for trained neural models.

The basic hypothesis was that the specification of self-adaptive system behavior
is formalized by invariants over the system and environmental state such as the cor-
ridor of correct behavior we already considered in Sect. 4.1.3. For this we supposed
the SVS described in Sect. 2.1.2 a good instance. Its behavior should be characterized
by the goals that the robot should drive directly to a user-given mark, without falling
down the stairs which lets us directly derive the two invariants for testing: (1) The
robot never falls down the stairs and (2) it reaches a user-given mark as quickly as
possible.

As this instance shows, we rather aim to exclude unwanted SuT behavior than
to investigate the conformance of the observed behavior with specified solution ap-
proaches as by classical FSM-based testing. Each test case strives for the same goal,
i.e., breaking the invariant. As resulting test suites then consist of test cases that only
differ in test inputs but not in test goals in our experiments we named them uniform
test suites.

6.2.1 Uniform Test Suites

Since neural (test) models are assumed to be trained with exemplary SuT executions
in simulation, deriving test cases from this kind of test models can be seen as kind of
test suite reduction, were the set of samples with which the model was trained are
the original – and the set of test cases later derived are the reduced test suite.

We found that in contrast to classical test suites comprising test cases with di-
verse execution and success conditions, uniform test suites can be reduced by just
choosing a subset of representative test inputs. And we noticed that uniform test
suites could offer a special chance: Instead of selecting a subset of test cases by test
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suite reduction, uniform test suites can be used to generate inputs which are not nec-
essarily included within the original suite while still retaining the original intention.
In comparison to traditional test suite reduction this kind of test suite compression, as
we named this particular reduction task, thus offers the special chance that it pro-
vides the tester with completely new insights.

Let us consider an observable an executable simulation of the SVS. The simula-
tion exposes a state space S. While the simulation is running, its momentary state
s ∈ S is modified by actions a ∈ A that are executed by the SuT. Furthermore, the
tester is able to establish a particular state through test inputs tc ∈ S just before a run
as source state.1 A uniform test suite TS = (TI, inv) comprises test inputs TI ⊆ S as
well as an invariant inv : S → {tt, ff} which signals hazardous states by mapping
them to ff .

The test inputs are used to gain confidence that inv holds (i.e., inv(s) = tt for
all reachable states s ∈ S). Each test input triggers particular behavior of the SuT
which can be observed in the form of sequences of system actions (action sequences)
in simulation. For the sake of simplicity, we assumed action sequences to be ordered
in discrete time steps t = 0, 1, . . . , n, in each of which the simulated system selects
an action at based on the current state st ∈ S using a deterministic policy π : S→ A.
The resulting simulation state is supposed to be determined by a transition function
T : S× A→ S when action a ∈ A is executed in state s ∈ S.

Based on those assumptions and a discount factor γ ∈ [0, 1[, we define the behav-
ioral distance ∆π of test inputs tc1 and tc2 as follows:

∆π(tc1, tc2) = ∑0≤n(1− γ)γnδ(π(sn
1), π(sn

2)) (6.1)

= (1− γ)δ(π(s0
1), π(s0

2)) + γ∆π(s1
1, s1

2) ,

where s0
i = tci and sk+1

i = T(sk
i , π(sk

i )). This behavioral distance builds on an action
distance function δ : A × A → R≥0 which is meant to quantify the differences of
actions a1, a2 ∈ A× A. Though there might be more sophisticated implementations,
let us resolve this for the time being by δ(a1, a2) = 0 if a1 = a2 and δ(a1, a2) = 1
otherwise.

6.2.2 The Compression Coverage Goal

Compressing a uniform test suite TS = (TI, inv) to TS′ = (TI′, inv) with a maximum
number of n inputs aims at substantially reducing the number of test inputs to apply
(n = |TI′| � |TI|). As we in our experiments intended to maximize confidence
that the invariant inv holds for every conceivable input, we furthermore aimed at
producing as diverse behavior of the SuT as possible. The aims of minimizing the
number of test inputs and maximizing the manifoldness of produced system actions
are, however, conflicting, since the number of actions the SuT is triggered to execute
decreases with the number of applied test inputs.

Solving this conflict as well as possible for a given maximum of n inputs requires
to find a set of test inputs TI′ with |TI′| ≤ n that covers as much of the SuT’s behavior

1The reported experiment assumed that the tester is able to directly modify the state space in simu-
lation. Thus, there was no separate actions space introduced for the tester, but a test input considered
to be a particular state.
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that was triggered by the original inputs TI as possible. Referring to the defined
behavioral distance function ∆π on test inputs, we conceived this kind of compression
coverage goal as the goal of minimizing the following function with an adequate TI′

with |TI′| ≤ n:

∆π
TS(TI, TI′) = max

tc∈TI
min

tc′∈TI′
∆π(tc, tc′) . (6.2)

This function can be interpreted as the distance of two sets of test inputs, determined
by this test input of the original suite whose triggered behavior of the SuT is covered
worst by the new, compressed test inputs. The lower ∆π

TS for a compression, the
broader the maintained behavioral coverage and thus the higher the fulfillment of
the compression coverage goal.

If all test inputs of the original suite vastly differ in terms of the produced SuT
behavior, (6.2) will be hard to minimize. It can be assumed that choosing n random
inputs then leads to similar results like choosing them based on structural inves-
tigations. We however claim that test suites naturally include redundancy, as the
testers who define the inputs follow certain assumptions that result in deeply coded
patterns of test inputs. Considering for instance the SVS testers could assume that
the robot drives straightly to placed dust particles. If this is the case, they would
probably place dust particles next to the stairwell for testing if the robot falls when
driving to the dust. This would cause a pattern of similar test inputs within a test
suite testing for the invariant that the robot does not fall.

6.3 Test Suite Compression with Variational Autoencoders

If test inputs of the original test suite, indeed, include deeply coded patterns, it
would be helpful to recognize those for compression. Distributing the n inputs to
choose over the patterns would promise higher compression coverage than random
choice which could in the worst case lead to n inputs of the same pattern. Since
seeking such deeply coded patterns in high-dimensional data — as our test inputs
comprising contextual features are supposed to be — is a well-known task in other
domains such as image recognition, it appears fruitful to reuse approaches found
there for our task.

In image recognition, it is common to train neural networks as deep models for
the input media. These networks are able to generalize over concrete features of the
inputs and thus to classify them. This classification of inputs can either serve directly
as output, or it is used as intermediate result for generating data that is similar (in
terms of the same latent class) to the presented inputs. Models serving for the latter
case are called generative models [NJ01].

For test suite compression, generative models are of particular interest as we
want both to extract the deeply coded patterns of the original test suites’ inputs
and to generate compressed suites comprising n representative inputs. Variational
autoencoders [KW14], which we used for our experiments in [RK17a], offer a way for
doing so.
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6.3.1 Variational Autoencoders (VAE)

Autoencoders in general are neural networks constructed of two parts: An encoder
network which transfers the high dimensional input data to a compressed representa-
tion; and a decoder network which takes such compressed representations of data and
therefrom reconstructs the original inputs. Figure 6.7 depicts this scheme. The illus-

FIGURE 6.7: Autoencoder scheme.

tration is taken from [Cho16] which also offers a convenient tutorial for coding vari-
ous types of autoencoders (including variational autoencoders) with Keras [Cho15].

Trained to model the identity function for exemplary inputs, autoencoders are
normally used for data denoising [Vin+08; Ben+14] as well as for dimensionality re-
duction [HS06]. Nevertheless, classical autoencoders are rather not generative. As
there is no uniform semantics for the latent parameters, the quality of inputs gen-
erated for previously unseen compressed values is contentious. Variational autoen-
coders fix this by adding semantics to the latent space: they are learning the param-
eters of a probability distribution modeling the training data. Figure 6.8 depicts the
particular structure of variational autoencoders.

FIGURE 6.8: Variational autoencoder scheme.

Each of the training samples is mapped to the latent space comprising the two
variables mean and stddev (the dimensionality of mean and stddev can be arbitrarily
chosen). These variables are the basis for a latent normal distribution from which
similar data is generated by, e.g.,

z = mean + stddev · eps ,
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where eps is a random normal tensor of the same dimensionality as mean and stddev.
The generated data z is then passed to the decoder network that is supposed to map
it back to the original input. VAEs are usually trained by the use of error func-
tions that are composed of a generative reconstruction loss between the original and
the reconstructed input (e.g., mean-squared-error or binary cross-entropy) and the
Kullback-Leibler divergence of the latent variables with the Gaussian distribution.
More detailed explanations including the mathematical basis of VAEs can be found
in [Doe16].

So far, VAEs in different variants have been successfully used for generating im-
ages, such as handwritten digits or faces [KW14; SKW+15], as well as for predicting
trajectories of pixels in a scene [Wal+16]. There had also been experiments with
generating objects in scenes [Kul+15]. Using VAE for capturing and generating test
inputs contained in (uniform) test suites is a so far unnoted area of application.

6.3.2 Training a VAE with Test Inputs

The idea of experiments was to train a VAE with all the test inputs that are included
in a given uniform test suite, in order to obtain a generation process producing in-
puts for arbitrarily sized compressions. This seems reasonable, since test input gen-
eration resembles previous application scenarios of VAEs, such as generating images
that are similar to presented ones.

In [RK17a] we evaluated this idea with the help of the SVS example. Utilizing a
simulation of the SVS within its environment, we considered the following setting:
The SVS was located within a room of 20 m × 20 m which contained an arbitrar-
ily sized rectangular stairwell. A mark could be placed anywhere within the room
except the area covered by the stairwell. In order to vacuum-clean the dust, the sim-
ulated SVS was supposed to directly drive to the position of the previously placed
mark — without falling down the stairs. The input space for testing this invariant
included dimensions for the coordinates of the robot position, the position, width
and height of the obstacle as well as the coordinates of a mark.

As described in Sect. 6.2, we assumed the test inputs included in a uniform test
suite to follow certain deeply coded patterns. We used the following process to
replicate test suites comprising 2000 test cases of this kind for our experiment: We
constructed a set of 5 random, but with respect to the intention of a room setting
reasonable test inputs. These were then used to derive 400 similar but different input
vectors respectively by slightly modifying the values of dust and stairwell positions.

We implemented a VAE as fully-connected feedforward network comprising two
hidden layers of 32 neurons respectively (one for encoding, one for decoding) and
a two-dimensional latent space. This model was trained following the approach
mentioned in the previous section.

Figure 6.9 visualizes the two-dimensional representations of our test inputs en-
coded by the VAE after training. One can see that structurally similar test inputs are
close in latent space.
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FIGURE 6.9: Derived test inputs in the two-dimensional latent space
(spanned by the variables mean and stddev) of the trained VAE. The
different colors indicate the five artificially designed patterns from

which test inputs were derived.

6.3.3 Experiments

A VAE trained with all the test inputs of a uniform test suite can be used to generate
arbitrary numbers of inputs again. In terms of the task of compressing the suite, this,
on the one hand, includes an essential opportunity in contrast with approaches that
just select the required number of inputs from those defined in the original suite:
Using the VAE, we primary generate hitherto unseen test inputs. Though these are
not included within the original test suite, they reflect its deeply coded structure.
Consequently, even more facets of the system behavior can be triggered for testing,
without the need for additional human effort.

On the other hand, the generation of hitherto unseen test inputs poses the risk of
losing facets covered by the original test suite. This could lead to worse compression
coverage (cf. Sect. 6.2) than achievable by approaches selecting existing test inputs.

Nevertheless, in [RK17a] we expected that generating test inputs with the help of
the trained VAE at least leads to better compression coverage results than randomly
choosing test inputs from the original suite. We investigated this expectation by sam-
pling values from the two-dimensional latent space of the trained VAE which was
then used to reconstruct the related test inputs. In order to simplify the sampling
process, we exclusively considered square numbers as compression sizes. Given
such a size n, we first calculated

√
n linear spaced points between 0.01 and 0.99.

As the VAE interprets the prior of the latent space as being normal distributed, we
transformed the resulting points then through the inverse of the cumulative distri-
bution function [Cho16]. The final samples were obtained by constructing the cross
product of the resulting points.

Additionally to the mentioned straightforward training of VAEs on test inputs,
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(A) Distances for random choice. (B) Distances for the variational autoencoder.

(C) Distances for the variational autoencoder
that considered pivot samples.

(D) Comparison of distances.

FIGURE 6.10: Comparison of compression quality which is assessed
by distance ∆π

TS of the original and the compressed test suite. The
smaller this distance the higher compression quality in term of the
compression coverage goal as proposed in Sect. 6.2. Results for the
different compression sizes are averaged over 10 independent runs.

The error bars depict the standard deviations.

we evaluated another variant: We augmented each test input vector with its be-
havioral distances (cf. (6.1)) to 10 pivot elements, i.e., test inputs from the original
test suite that were randomly selected before training. We expected that consider-
ing those exemplary distance measures would help this extended model (we refer
to it as Pivot VAE (PVAE)) to learn an even more meaningful latent space whose
structure correlates with our behavioral distance measure. Apart from the modified
input space we chose the same meta-parameter values as for its above mentioned
standard VAE sibling.

To compare compression quality, we executed the processes of (1) training the
standard VAE and sampling n test inputs as described above, (2) training the PVAE
and sampling n inputs, and (3) randomly choosing n test inputs from the original test
suite for all n ∈ {1, 4, 9, 16, 25, 36, 49, 64, 81}. Figure 6.10 shows the results averaged
over 10 different test suites to compress.

As expected, both autoencoders performed better than the random process for
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the chosen compression sizes, in particular for the lower ones. For instance, consid-
ering compression size n = 4, the VAE reached a 6 percent, the PVAE a 8 percent
smaller distance. Though the compression gain currently is only moderate, recall
that most test inputs generated from the learned latent space of a VAE are new in re-
lation to the original suite. With growing n, the random process catches up and even-
tually overtakes the autoencoders. This is mainly caused by the increasing chance of
sampling appropriate representatives of the defined patterns. The generation pro-
cesses using the autoencoders cannot use this advantage as they do not refer to the
concrete test inputs of the original suite. Moreover, because of reconstruction losses
not all of the test inputs from the original test suite might be identically producible
from the latent space at all. Further meta-parameter fitting might help.

Compared to the VAE, the PVAE performed slightly better. Also this observation
matches with our expectations as we assumed that considering behavioral distance
measures in training would help the PVAE to find a more meaningful latent space.
This observation encourages further work on integrating the goal function of com-
pression coverage into the approach for enabling an even more adaptive process of
uniform test suite compression.

6.4 Related Work

This chapter considered the use of neural networks as behavioral test models for
self-adaptive systems – and a machine learning-based test strategy for deriving test
inputs based on those.

While, to the best of my knowledge, there are no comparable approaches replac-
ing classical models such as FSMs by neural networks in testing self-adaptive sys-
tems, other use cases for neural networks in the software testing process had been
yet investigated.

Khoshgoftaar et al. [KPM92] use neural networks for predicting the number of
faults to be found in particular software programs and show that they can in fact out-
perform more traditional regression modeling techniques. Kanmani et al. [Kan+07]
come to similar conclusions using neural networks for particularly predicting faults
in object-oriented software systems. No self-adaptivity and no strategies to be de-
rived for testing had been considered.

Vanmali et al. presented a concept for using a neural network as kind of auto-
mated test oracle [VLK02]. They trained the neural network on test sets of version
one of a piece of software and evaluated further versions on this. Similar work
was done by Aggarwal et al. in [Agg+04], Mao et al. [Mao+06] and Shahamiri et
al. [Sha+11]. Although the trained models for oracles can be considered similar to
those we considered here – they are essentially mapping system inputs to expected
system outputs – they are not meant as basis for deriving test strategies. The pre-
sented approach for deriving test inputs using autoencoders might be a fruitful ex-
tension thus.

Anderson et al. [AVMM95] presented experimental results in using neural net-
works for test suite reduction. In contrast to us they however considered deriving
subsets from existing test cases.
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6.5 Conclusion

The presented evaluations suggest that neural networks can indeed capture adap-
tive agent behavior; and they can serve as basis for deriving test strategies.

However, there still are several limitations and questions for future work. One
interesting issue might, for instance, be how agents can be imitated that implement
a feedback loop? In this case the system under tests output at time step t would
(partially) depend on the output at previous time steps t − n for some positive n.
To cope with that we could fix a particular agent strategy, i.e., find an influence
function estimating agent reactions that are in between the observations; or we could
(2) decode the feedback mechanism itself by considering historical behavior within
the influence function. Kapitel 7 will revive the first of those options.

Although it turned out that the proposed approach for using VAEs to compress
uniform test suites slightly outperforms random test input selection for high com-
pression rates, which seems promising since the VAEs generated previously unseen
test inputs as opposed to the random process: Even better results might be obtained
when further experimenting with presenting additional data about the SuT’s behav-
ior to the VAE. Moreover, further meta-parameter fitting might help. For the pre-
sented proof of concept, we exclusively used square numbers as compression sizes
in order to simplify sampling. This might be generalized by linking the sampling
task with the mathematical problem of packing circles in squares in order to reuse
approaches that can be found there [LR02].
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Chapter 7

Test Policy Adaptation

Testing can be seen as an optimization problem with two antagonistic goals: con-
fidence increase versus efficiency. The more test cases we execute the higher the
confidence but also the higher the costs; still, exhaustive testing is impossible. A
good test strategy should consequently be designed in a way that it is able to find
faults by revealing failures preferably early.

Let us in this context consider what we called Game of Testing (GoT) between
the tester and the SuT again (cf. Sect. 3.3.2). While the tester tries to reveal as many
and as serious failures as possible, the SuT seeks to prevent exactly this. Recall that
an instance of the GoT, cf. Fig. 7.1, is described by the tuple (SEnv, AT , AS , T, RT , RS ),
where SEnv is a set of states, the sets A∗ are the actions the tester (∗ = T ) and the
SuT (∗ = S) are able to take, the transition function T : SEnv× AT × AS → PD(SEnv)

defines the effect of actions on the state of the environment with PD(SEnv) denoting
the set of discrete probability distributions over SEnv, and the reward functions R∗ :
SEnv × AT × AS × SEnv → R quantify the goal of the tester and the SuT defining
their task.

Assuming discrete time steps t = 1, . . . , N, the SuT as well as the tester are se-
quentially selecting actions according to their respective policy πt

∗ : SEnv → A∗,
which returns the action a∗ ∈ A∗ to execute in a state st ∈ SEnv. At the end of each
time step the environmental state st+1 is updated through T(st, aT , aS ). The tester
as well as the SuT are rewarded by rt+1 = R∗(st, aT , aS , st+1). By improving their
policy, both of them attempt to maximize their particular goal, i.e., to maximize the
expected sum of discounted rewards ∑N

k=0 γk · rt+k+1 with 0 ≤ γ ≤ 1 at runtime.
Considering the tester’s perspective on the GoT, formally we cut out an MDP for

a given SuT policy πS . This MDP is of the form (SEnv, AT , TT , R), where SEnv and
AT can be directly taken from the GoT and the transition function TT : SEnv× AT →
PD(SEnv) as well as the reward function R : SEnv × AT × SEnv → R are formed by
embedding πS representing the SuT’s runtime behavior within the test environment:
TT (s, a) = T(s, a, πS (s)) and R(s, a, s′) = RT (s, a, πS (s), s′) for s, s′ ∈ SEnv and a ∈
AT .

Previous sections assumed the policy π̂ of the SuT fixed – the self-adaptive SuT
is not supposed to learn anymore at the time we are testing. What, however, if it
does? As the policy of a still learning SuT changes over time, things are obviously
getting harder for the tester.

This chapter reports about a case study in which we adapted a tester’s policy for
a learning version of an SVS at test-time [RK18]. As soon as we expected a change in
the system’s policy, we adapted also the test policy by using the given simulation.
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The first section is going to describe the actual GoT instance considered and to
discuss possible solutions. After a little recap about the challenges when testing
learning, self-adaptive systems Sect. 7.2 presents the approach we used for experi-
ments the results of which are presented in Sect. 7.3.

The reader should note that some parts of this chapter are direct citations from
paper [RK18] which are set in context of present work.

TestEnvironment

SuT

Environment

Tester ASSEnv, RS

AT

SEnv, RT

FIGURE 7.1: General setting of the Game of Testing combining two
decision processes, one for the SuT and one for the tester.

7.1 Risk-based Testing an SVS

Within the case study we again considered a simulated self-adaptive SVS. It au-
tonomously drives through rooms with obstacles such as staircases, cleaning the
dust while avoiding damage arising from collisions or falls. The particular tasks of
the SuT could be partly controlled through a mobile device: the user is able to sketch
the room the SVS will be located in within the mobile app, and mark positions which
should be particularly taken into account for cleaning. Given such a user input the
SVS is supposed to immediately drive to the marked position in order to solve the
task. Figure 7.2 recalls an exemplary situation.

7.1.1 Game of Testing Instance

A quantification of the traditional testing intent, i.e., finding errors by revealing fail-
ures [MSB11], was supposed as test goal. Therefore we extended the binary decision
whether a failure f ∈ SEnv is revealed in simulation or not with a weighting function
W : SEnv → R which can be interpreted as kind of risk prioritization (cf. Sect. 5.1.1).
While W(s) is 0 if s is a correct state, for a failure state an estimate of its impact is
returned that might be quantified, e.g., by the monetary costs caused by the failure.
An example for such a failure state might be the crash of the considered SVS with
an obstacle resulting in particular costs. The tester’s reward for choosing a ∈ AT in
s ∈ SEnv, through TT (s, a) resulting in s′ ∈ SEnv, is then determined by

Rrisk(s, a, s′) = W(s′) . (7.1)
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FIGURE 7.2: Smart vacuum system (unfilled circle) within a room
which contains an obstacle (light gray rectangle) as well as a user-
given mark. The dashed arrow shows a possible path the SVS could

take to drive to the marked position.

On the first glance, this risk-based reward lacks the probability of failure occur-
rence, which is traditionally included in risk considerations [Aml00; Bac99; Rei+16].
This probability is however included implicitly: The more likely a failure is revealed,
the more likely its weight will occur in the future rewards of the tester. As the tester
strives to maximize the future rewards, the more likely failures have consequently a
higher influence on the tester’s policy than the more unlikely ones.

For experiments the simulation of the SVS was instrumented with a test interface
allowing a tester to modify the SVS’s environment, i.e., the room with its features, at
runtime. The overall instrumented simulation instantiated the GoT as follows:

• State space SEnv: The features of the room comprising its dimension, the position
of the SVS, the position and dimension of an included staircase, and possibly the
position of a user-given mark.

• Tester’s actions AT : Mimicking possible user interactions the tester can place a
mark at an arbitrary position of the virtualized room using the app.

• System’s actions AS : The SVS can drive in any direction; it is only limited by walls
it cannot pass.

• Transitions T: For experiments we assumed a deterministic transition function in
simulation. The SVS position changes with the direction it drives in. A mark set
by the tester remains until the SVS reaches the marked position. As soon as this
is the case, the mark is assumed to be cleared. If the SVS’s position is within the
staircase, a final state is reached.

• Tester’s rewards RT : Following the risk-based testing idea the tester gets rewarded
by a weight of 10 if the SVS falls down the stairs, as this is the most risky failure
considered here.

• System’s rewards RS : The SVS gets a positive reward for reaching entered marks
(1 per mark) and a negative reward (−1) for falling down the stairs in order to
avoid damage.
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7.1.2 Model-based and Model-Free Solution Methods

Let us now consider potential solutions for the tester’s MDP. With the reinforcement
learning strategies in general Alg. 1, and especially with the Q-learning approach
Sect. 5.3.4, I already considered methods for solution. With respect to the tester’s
MDP the different methods, however, significantly differ in results as the next sec-
tion will show.

A classification of RL approaches previously suggested by Sutton and Barto [SB98]
lets us discuss particular requirements and limitations for the approach to take. Ac-
cording to this the next section will come up with a mixture of both approaches
we used in experiments which utilizes elements of the model-based as well as of the
model-free RL methods.

Model-based Methods As the class name suggests, the model-based methods as-
sume an interpretable model of the environment, i.e., the state space SEnv as well as the
transition function TT including πS . This model is used for planning future action
sequences, e.g., through random search or dynamic programming. For the tester
such a method generally means to make predictions about how many and how se-
rious failures might be revealed by possible action sequences on given interpretable
models; and to choose that sequence for execution which was predicted to optimize
the discounted sum of rewards. For instance, having given a finite state machine ab-
stractly describing the SuT behavior as well as one for its environment, we can use
them to search for the most serious failures. As we showed in [Rei+16] the resulting
traces of transitions can be translated to actual test cases afterward.

Model-free Methods The model-free methods, on the other hand, can be utilized
without an interpretable model for SEnv and TT . Letting a software agent con-
tinuously interact with an executable environment interface that implements the
states and transitions, they successively learn to form preferably profitable action
sequences. The previously considered Q-learning approach is one of the most com-
monly used representative of those model-free methods [Wat89]. Recall that as a
so-called temporal-difference variant, it lets the learning agent sequentially update
an action-value function Q : SEnv × A→ R by exploration at runtime (in our case, the
action set A is AT ). Q(s, a) is meant to assess the expectation of rewards gained in
the future if choosing a ∈ A in s ∈ SEnv.

The concrete action selection at runtime is considered a trade-off between explo-
ration and exploitation. While exploitation of previously gained knowledge which
is bootstrapped by the Q-function for the agent means to choose argmaxaQ(s, a) in
all states s, exploration mostly means choosing random actions to find out their pre-
viously unknown value.

For a tester using a model-free RL method, such as Q-learning, consequently
implies to include random testing for exploration purposes within the policy. This
is obviously at the cost of efficiency. Further, there is a second disadvantage when
using the model-free methods: the learned policy particularly fits for a single reward
function and as this function changes, it is to be learned from the beginning again.
This is because those methods directly learn the expectation values for particular
decisions. If a tester, for instance, uses Q-learning for solving the GoT and modifies
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the weight function for failures after a while, he will have to start learning πT from
scratch.

Consequently, the model-based methods are generally preferred in software test-
ing. This is also due to the fact that usually abstract and thus manageable models are
already available from system design, which can be cheaply leveraged. As I, how-
ever, already showed – and will show in the following again – this is not the case for
self-adaptive systems. We are forced to use the model-free RL variants for solving
the GoT for the tester.

7.2 Testing a Still Learning System

To visualize the particular challenges the case study confronted us with, let me recap
the different implementations of a smart vacuum system under test (SVS) I intro-
duced in Sect. 3.1.2. Based on an interface sketching the SVS behavior in an abstract
way we will discuss the non-adaptive, the adaptive, and finally the self-adaptive
solution I previously suggested. Section 7.2.1 ends up presenting the version we
actually faced in present experiments. Section 7.2.2 and Sect. 7.2.3 discuss how we
wanted to tackle this challenge which is setting the basis for evaluations described
within the following sections.

7.2.1 The Problem with Testing Systems Learning at Test Time

As sketched in Lst. 7.1 an SVS generally interacts with its environment by receiving
inputs from built-in sensors, such as infrared and bumping sensors, and by driving
actuators, such as an engine and wheels. For the sake of simplicity we assumed that
sensorCtr.sense(D) returns one numerical value that merges all the sensory
inputs which are relevant for driving in direction D. Method plan(inputs[]) :
Action realizes the decision process between the sensors and actuators, mapping
the inputs to outputs by actions.

LISTING 7.1: Abstract SVS
public abstract class SVS {

SensorCtr sensorCtr = new SensorCtr();
ActuatorCtr actuatorCtr = new ActuatorCtr();

/** This method controls the SVS behavior */
public void drive(){

// Get inputs for all directions
Map<Direction,Integer> inputs = new HashMap<>();
inputs.put(Direction.North, sensorCtr.sense(Direction.North));
inputs.put(Direction.South, sensorCtr.sense(Direction.South));
inputs.put(Direction.East, sensorCtr.sense(Direction.East));
inputs.put(Direction.West, sensorCtr.sense(Direction.West));

// Plan based on inputs
Action action = this.plan(inputs);

// Execute chosen action
actuatorCtr.act(action);

}

/** Plan which action to execute */
public abstract Action plan(Map<Direction,Integer> inputs);

}
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Non-adaptive Implementation A non-adaptive, transactional implementation in-
troduced by Lst. 2.2, could base the action selection on an evaluation of sensory
inputs for each direction. A Policy interprets the calculated score, say it determin-
istically takes the action with the best score. From the point of view of the GoT, the
approach the system will take at runtime is thus known to the tester at design time.
Further, it is also fixed over time, i.e., πt

S = πS for all time steps t; the code itself
provides the model of the MDP.

Given this kind of a SuT the tester is able to plan a strategy a priori. He could
for example optimize some code coverage criteria, such as statement or branch cov-
erage, by selecting an appropriate set of sensory inputs. Also a risk prioritization of
inputs seems rather obvious. Since the tester is able to interpret the system behavior
before execution he is able to make use of the model-based solution methods.

Self-adaptive Implementation Considering the adaptive implementation depicted
in Lst. 3.1 we saw that the introduced ability of runtime adaptation would in prin-
ciple not break the interpretability for the tester. If there are multiple strategies but
the strategy choice of the SuT was static and/or fully controllable by the tester, we
still would be able to utilize model-based solution methods for the tester’s MDP.

By introducing the reasoner in Lst. 3.2 we let the adaption mechanism, however,
also depend on a knowledge base whose state is unknown to the tester. This is what
we referred to as a self-adaptive implementation of the SVS.

Previous sections considered the case in which a self-adaptive SuT will not con-
tinue its training at test (and execution) time. It still holds that πt

S = πS for all time
steps t while testing. In this case the suggestion was to expand the classical process
of testing by learning the actual SuT behavior and capturing it in some test model
again (see Sect. 3.3). After that learning phase we could thus apply some model-
based techniques again.

Implementation without Predefined Strategies Listing 7.2 sketches the more di-
rect implementation of self-adaptivity than this depicted in Lst. 3.2 we used for ex-
periments I am going to report about here. Instead of choosing one of a given set of
strategies we let the reasoner directly work on the set of possible actions.

Further, the experiments considered the case in which the SuT is going on learn-
ing, even at test-time, which invalidates the previously considered process in which
a model for testing was learned a single time. We were forced to use a model-free
variant for solving the tester’s MDP.

To set it in context with the GoT assume there is a natural number n for each time
step t for which π̂t 6= π̂t+n. Since the system’s policy is part of the tester’s environ-
ment we can see that a previously optimal test policy at t might be invalidated at
t + n as the tester’s MDP changes. To get it optimal again the tester needs to react
and to adjust it at test time as well.

The SVS’s knowledge base was implemented by a neural network which is con-
tinuously updated at runtime using the Deep Q-Learning (DQL) algorithm, a variant
of the classical Q-learning method (cf. Sect. 7.1.2; the interested reader may want to
refer to [Mni+15] for a detailed explanation of this algorithm).
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LISTING 7.2: Self-adaptive Implementation of SVS
package svsControl;
import java.util.Map;

public class SelfAdaptiveSVSv2 extends SVS {
private Reasoner reasoner;

public SelfAdaptiveSVSv2(Reasoner reasoner) {
this.reasoner = reasoner;

}

@Override
public Action plan(Map<Direction,Integer> inputs) {

reasoner.updateKnowledgeBase(inputs);
return reasoner.chooseAction();

}

interface Reasoner{
public void updateKnowledgeBase(Map<Direction,Integer> inputs);
public Action chooseAction();

}
}

7.2.2 Direct Future Prediction

Aiming to profit from the advantages of the model-based RL approaches, but forced
to use a model-free variant, in our experiments we came up with a mixture between
both for continuously solving the tester’s MDP. Instead of using a given model of
the environment, just as the model-based methods do, we argued for learning and
sequentially adapting a test model at runtime; and instead of directly learning the
expected value of particular decisions, just as the model-free methods, we argued
for planning at runtime in consideration of the current test model state.

This approach we proposed for solving the tester’s MDP was strongly inspired
by findings of Dosovitskiy and Koltun [DK17]. Originally classified as an approach
to sensorimotor control in immersive environments, their Direct Future Prediction
(DFP) can be generally used for autonomously solving MDPs. Doing so it constitutes
a mixture between the model-based and the model-free RL methods.

Similar to related approaches [LS02; Sin+03], the general idea of DFP is to train
a predictor P, i.e., a model for the function S× A → STmp, mapping a state s ∈ S (in
case of the tester’s MDP SEnv) and an action a ∈ A (in case of the tester’s MDP AT )
to a number of expected future states at given temporal offsets Tmp. Since predict-
ing high-dimensional states is still infeasible, the DFP approach concentrates on so-
called measurements, i.e., a (possibly processed) subset of state features which is rel-
evant for determining the goal achievement. An observation ot at time step t is thus
supposed to encapsulate the observed state st itself and a measurement vector mt.
A goal is represented by a function u( f ; g) where f is the vector of future measure-
ments (mt+τ1 , . . . , mt+τn) for τ1, . . . , τn ∈ Tmp and g are arbitrary goal parameters. As
the goal parameters g influence planning and thus the overall progress, the predictor
takes them as input. In total this leads to the model signature P : O× A×G → MTmp

where O is the set of observations each comprising a state s ∈ S and a measurement
m ∈ M and G is the set of goal parameters.

If the predictor P is implemented by a function approximator, such as a neural
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network, a prediction pt at time step t, i.e., a number of future measurements, is de-
termined by P(ot, a, g, θ), where θ represents the learned parameters of the function
approximator. This function approximator can be trained by any supervised learn-
ing technique with training examples of the form (o, a, g, f ) with o, a, g as inputs and
f as output. Following Dosovitskiy and Koltun [DK17] we utilized for our experi-
ments a back-propagation approach using a regression loss:

L(θ) =
N

∑
i=1
‖P(oi, ai, gi, θ)− fi‖2 .

Except the goal parameters gi which are internally given to the learning agent, the
set D = {(oi, ai, gi, fi)}N

i=1 of training samples is collected at runtime by sequentially
interacting with the test environment, similar as it is depicted in Fig. 7.1: the mea-
surements, the one included in oi as well as those of fi are extracted by the agent
from the returned states, where collecting all the future measurements usually re-
quires multiple interactions. An implementation of our DFP variant can be found at
GITHUB1.

Instantiation In order to balance exploration and exploitation, we used an ε-greedy
runtime policy πT , which means that for an ε ∈ [0, 1] the best known action a (as-
sessed by the predictor) in state s is chosen with probability 1 − ε and a random
action otherwise. Assuming that less and less exploration is needed over time, the
ε is linearly decreased from a predefined maximum εmax ∈ [0, 1] to a minimum
εmin ∈ [0, εmax] within a fixed number of time steps.

Applying this concept for testing a particular SuT includes the following engi-
neering decisions:

• Temporal offsets: The number and value of temporal offsets determines the horizon
of the learner. The nearer this horizon, i.e., the less steps to be viewed in the future,
the easier the predictions but the more short-sighted the planning. This choice is
considered highly domain-specific.

• Measurements and goal function: Since the (goal) function u uses future measure-
ments for goal assessment, its implementation needs to go hand in hand with
defining the portion of state features to be used as measurements. In order to em-
ulate the risk-based reward function proposed before, such measurements need
to be found that signal the occurrence of failures.

7.2.3 A Modified Test Process

As can be seen in Lst. 3.2 the state of the SVS’s world model can generally change in
every time step. We are, however, neither able to predict its future states nor do we
want to start a separate test process in every time step again, as this would boost the
costs.

Thus, by way of compromise we chose the development and testing process de-
picted in Fig. 7.3 for experiments. It alternates between world-model adaptation and
testing phases at runtime as follows:

1https://github.com/dremonaut/action-provider-rl

https://github.com/dremonaut/action-provider-rl
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FIGURE 7.3: The alternating operation and test process we considered
in experiments.

1. In operation mode, i.e., the phases φw
1 and φw

2 in the figure, the SuT follows
its policy and sequentially updates its world-model state wt by means of self-
adaptation, just as we described before.

2. At specific points in time (let us, for the time being, assume a fixed time inter-
val) the test mode is started: In phases φt

1 and φt
2 a tester, such as the DFP and

the DQL test agent, tests the SuT in its current world-model state, wn and w2n

respectively, continuously refining its test-model state, starting with tm1 and
tmn+1 respectively, at runtime for maximizing the reward.

3. Steps 1 and 2 are sequentially repeated until the confidence in the SuT behav-
ior is considered sufficient. The operation and the test mode might also run
concurrently in separate simulation instances.

While we not investigated them further in experiments, we envisioned the follow-
ing two extensions for the presented testing process, both motivated from classic
regression testing [MSB11]:

First, the failures detected within a testing phase could be directly used for a
kind of re-adaptation of the SuT’s world model. For the learning SVS this would just
mean to get presented the found failure scenarios in order to learn avoiding them.
This resembles fixing a revealed bug by a developer. Second, one could correlate the
length of the testing phases with the number of failures previously revealed. If no
failure is found in a phase, the length of the next testing phase might be reduced.

7.3 Adapting a Test Strategy at Runtime

The intent of our experiment was investigating whether the DFP tester agent estab-
lishes a balance between confidence and efficiency mentioned in the introduction by
comparing it against other variants.

While we assumed the efficiency goal directly measurable in our process by
means of the number of time steps consumed by the testing phases, we assumed
the confidence in the SuT’s behavior depending on the failure detection capability
of the tester applied. The faster the tester (agent) is usually able to reveal possibly
many failures the faster we gain confidence that all existing errors were detected.
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7.3.1 Approaches to Compare

While the knowledge base of the SuT determining its strategy for optimizing RS was
sequentially adapted by training, we compared the following methods for automat-
ically solving the tester’s MDP:

DFP Tester The DFP tester agent was implemented just as described in Sect. 7.2.2.
As measurements we chose the two values of the SVS’s x and y position within the
room. To emulate RT , the used goal function u( f ; g) evaluates whether the predicted
SVS coordinates in f are within an obstacle’s area, which is passed as parameters g.
In this case the same reward as RT is distributed. For future measurements we used
temporal offsets of τ = 1, τ = 3, and τ = 5. Apart from the inputs and outputs, the
neural model for the predictor was implemented by 3 fully connected hidden layers
with 256, 128, and 64 neurons, respectively. This setup of future measurements and
neural model, which comprises 48 710 parameters, resulted from an informal trial
and error search. For runtime action selection we chose an ε-greedy policy with
linearly decreasing ε as described in Sect. 7.2.2 with εmax = 1 going down to εmin =

0.05 in 5000 test steps.

DQL Tester As representative for the model-free variants we implemented a sec-
ond tester agent which, similarly to the SVS itself, used a DQL implementation
for solving the GoT. To ensure comparability with the DFP tester agent, we mod-
ified the classical DQL approach presented in [Mni+15] by shifting the signature of
the Q-function model from the state-centric view S → RA to a state-action view
S× A→ R. For the neural network we applied the same parametrization as for the
model of the DFP tester agent, except for different input and output types. This led
to 44 033 parameters in total. Also the same policy for runtime action selection was
used.

Random Tester Random testing was mimicked by a DFP tester agent using an ε-
greedy policy with ε constantly kept at 1.

7.3.2 Hypotheses

It is usual to estimate the failure detection capability by the number of intentionally
introduced errors that the test method to be assessed reveals [DLS78; Rot+02]. In-
troducing errors in an autonomous system is, however, rather not trivial. We thus
used a slightly different estimate instead: Testing the learning SVS in an early stage
of training, we assumed that there are enough failures reachable for comparing the
detection capabilities of the three different methods to evaluate.

The question was thus if the DFP tester agent finds existing failures earlier than
the others. If this is the case, it is more efficient still reaching the same confidence. Re-
vealing more failures than the compared methods within the same time slot would
additionally suggest that the DFP tester agent actually justifies a higher confidence.

Those ideas led us to hypotheses (H1) bis (H4) which we pursued in the evalua-
tion:
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H1. The DFP tester agent performs at least as well as the DQL tester agent when
striving for a single goal. Both methods obtain good risk scores w.r.t. the pre-
sented reward function, at least they are better than a base line constituted by
random testing. If this is the case it is worth adapting the test model at runtime
by RL.

H2. If we change the goal at runtime, e.g., by introducing new failures to be consid-
ered, the DQL tester agent needs to start learning from scratch while the DFP
tester agent is able to generalize. If this is the case it is worth employing the
DFP tester agent instead of the DQL tester agent.

H3. By using a function approximator as predictor we observe a generalization ef-
fect over the test phases. This implies that the test model learned w.r.t. a par-
ticular world-model state of the SuT can be also used to test the SuT in another
particular state. If this is the case, we can boost confidence as well as efficiency
in testing by employing the same DFP tester agent for all the testing phases.

H4. The failures revealed by the tester agents differ from one another – they are
diverse. If this would not be the case, it would at least be questionable if the
increasing number of revealed failures justifies an increase in confidence.

7.3.3 Experimental Results

For evaluating the mentioned hypotheses we considered 10 instances per testing
method respectively. Further, we considered different room types with different
staircase dimensions as source states while the simulation was reset each time the
SVS fell down the stairs, the position of an input mark was reached, or after a maxi-
mum number of 10 time steps.

(H1) First, we compared the failure detection capability of the different methods
within a single testing phase, say φt

1. The simulation included the SVS world-model
state after a training of 500 000 time steps in φw

1 . Figure 7.4a shows the results for
10 000 time steps of φt

1. It turns out that both of the RL methods, the DFP as well
as the DQN tester agent, outperform random testing. Further, we see that the DFP
tester agent on average finds more failures than the DQN tester agent. This confirms
hypothesis (H1) and uncovers another advantage of the DFP over the DQN: As the
DFP not directly learns particular action values, but rather an abstract model of the
environment, it is not as sensitive to sparse rewards as the DQN. This fact explains
the far better performance of the DFP tester agent.

(H2) After investigating (H1) we modified the test goal: instead of rewarding the
tester for attracting the SVS to fall down the stairs we defined another obstacle
within the room placed at a fixed position, striving to test if the SVS is able to crash
with it. Instead of training the tester agents from scratch we reused the pre-trained
models from the evaluation of (H1). Figure 7.4b shows the results. They suggest that
the DFP tester adapts much faster to the modified goal. This conforms with hypoth-
esis (H2), as it suggests that the model-free RL variant, in contrast to the DFP, needs
to start learning the test strategy from scratch once the test goal is modified.
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(A) Results for (H1) showing the perfor-
mance of the three tester agents within a

single test phase.

(B) Results for (H2) showing the general-
ization capability of the tester agents over

different goals.

(C) Results for (H3) showing the general-
ization capability of the tester agents over

the test phases.

(D) Results for (H3) showing the general-
ization capability of the tester agents over

the test phases and different goals.

FIGURE 7.4: Experimental results for evaluating hypotheses (H1),
(H2), and (H3). The plots show the mean results gained by 10 tester
agent instances respectively. The colored area indicates the spread in

results by means of the standard deviation.

FIGURE 7.5: Situations in which the SVS fell down the stairs. The red
dashed line indicates the last SVS action before the fall.
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(H3) To measure the inter-phase performance of a DFP tester agent, i.e., its failure
detection capability in φt

2 after being trained in φt
1, we continued training the SVS

world model in φw
2 for another 500 000 steps. Again we reused the 10 DFP test mod-

els from evaluating (H1). Figures 7.4c und 7.4d compare the performance of those
pre-trained agents with the performance of 10 new DFP tester agent instances which
had to learn their models from scratch w.r.t. both of the rewards: the one considered
for evaluating (H1) and the one for (H2). The results suggests that the insights our
tester gained about the environment in an earlier testing phase accelerate training
in the following. We can thus assume that there is a kind of generalization that in-
creases the failure detection capability of the DFP tester agent raising its efficiency
over the test phases.

(H4) Assessing the diversity of failures revealed, Fig. 7.5 plots a randomly chosen
subset of situations in which the SVS erroneously fell down the stairs. Even if there is
a visible pattern in those situations they are not equal by far. In fact, identifying such
patterns in revealed failures practically helps us to localize and fix the underlying
bug. In the particular case considered here, in which the SVS is learning its world
model from simulation, simply presenting those failures might already fix them.

On the whole, the experiment confirmed our hypotheses. Doing so, and having
another advantage of the DFP over the DQN found by evaluating (H1), this indi-
cates that the DFP tester agent is able to autonomously and efficiently increase the
confidence in a SuT – more than a comparable method using DQL and more than
random testing. Combined with the high failure detection capability, the high au-
tomation degree makes testing self-adaptive systems at runtime feasible.

7.4 Related Work

We formulated testing self-adaptive systems at runtime as a game, the Game of Test-
ing, and proposed a Reinforcement Learning-based method for solution. There were
similar formulations for testing tasks before [Yan04; Bla+05; Nac+04]. Also RL has
been used for solving test issues, such as optimizing code coverage [Gro11; VRC06]
or prioritizing test cases in Continuous Integration [Spi+17]. All those approaches
did, however, not consider the particular challenges for testing self-adaptive sys-
tems.

The research field of Adversarial Machine Learning considers similar games as the
GoT for training possibly robust classifiers [LM05]. Goodfellow et al. [Goo+14] pro-
posed a framework for estimating a generative model by playing a game against a
discriminative model that estimates if a sample comes from training data or from
the generative model. Though the idea behind is quite similar to ours, their pro-
posed solution is specifically designed for classification tasks and cannot be used
for solving arbitrary GoTs. Pinto et al. [Pin+17] proposed applying an adversarial
agent, next to the actual one, in reinforcement learning tasks which applies distur-
bance forces to the environment in order to gain robustness for the actual agent.
The game between the both is formulated as a zero-sum game. This can, in fact,
be viewed as an instance of the GoT solved by RL. The approach discussed here is,
however, more general: First, we consider self-adaptive systems in a whole instead
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of RL agents in particular. Second, our method is not limited to zero-sum, min-max
objectives; in fact, the goals we considered in experiments are none of both. Third,
they used – in contrast to us – a model-free method for solution, suffering from all
the disadvantages discussed in Sect. 7.1.2 if used for our GoTs.

Following the discussion in Sect. 7.1.2, other approaches proposed for testing
self-adaptive systems can be categorized by the fact whether they use a model for
testing. As an instance of the first, and in conformance with the models@runtime
community [Che+14], Hänsel et al. [HVG15] proposed the use of runtime models
for testing self-adaptive systems. This relies on the assumption that such runtime
models representing the adaptable software and the environment are, in fact, given,
which, however, is not always the case. The model-free approaches, including the
evolutionary approaches proposed by Nguyen et al. [Ngu+12] and Fredericks et al.
[FDC14], on the other hand, still suffer from the problems we described in Sect. 7.1.2.
In general, we see our GoT as an adequate framework for classification and compar-
ison of existing and future approaches on testing self-adaptive systems.

As testing is shifted to runtime, the discussed experiment has similarities to the
area of runtime verification. The basic process there is (1) creating a monitor that is
able to discriminate erroneous from correct system traces, (2) instrumenting the SuT
for obtaining the traces, (3) running the system, and (4) verifying the received event
traces [FHR13]. As opposed to our ideas, this process does not consider selecting
appropriate test inputs at runtime, but rather concentrates on given program traces.
Generalization, as we supply over observed traces and given goals, is thus rather
not needed for planning there.

7.5 Conclusion

This section presented a method for runtime testing self-adaptive systems. Build-
ing on the GoT the suitability of model-based and model-free Reinforcement Learning
variants was discussed for solution, with the help of a concrete example. It turned
out that the model-based approaches fit the bill, but, at least in their pure form,
cannot be utilized for the kind of SuTs we consider. This is because self-adaptive
systems lack interpretable design time models. On the other hand, the model-free
variants such as Q-Learning have turned out to be too specialized on particular re-
ward functions for testing; further, the sparse reward problem restricts their failure
detection capability.

By way of compromise the use of Direct Future Prediction as a mixture between
the both reinforcement learning variants has been proposed. It works similar to the
model-based methods, but learns the (test) model at runtime instead of assuming
it given beforehand. As experiments showed, this technique is able to generalize
across different test goals and adaptation steps of the SuT at runtime and suffers far
less from the sparse reward problem than Q-Learning.

But there is another advantage we did not make use of yet: In contrast to the
model-free methods the DFP is generally able to cope with history-dependent re-
ward functions. This capability opens the door for coverage-based test goals which,
for assessing the value of future actions, need to take into account the previously
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executed ones. Further test goals that should be investigated in the GoT context in-
clude mutation-based as well as non-functional test goals. Through finding some
kind of design patterns for solving the meta-parameters within the measurement se-
lection, architecture and goal function for the predictor, I envision to establish even
more efficiency in maximizing the confidence in self-adaptive systems by testing.
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Chapter 8

Adaptive Test Policy Execution

Recall the modified test process described in Sect. 3.3. Test analysis and design is
done on the basis of an inferred model of the self-adaptive SuT. The result is a con-
crete test strategy comprising test cases for implementation and execution in reality,
i.e., a not simulated but realistic environment.

The technique described in the chapter before for example lets us derive test
strategies for a self-adaptive SVS. By returning tester’s actions for given environ-
mental states it is defining test inputs for the SuT in given situations. In this chapter
I want to consider applying such derived inputs, i.e., environmental states in reality.
Therefore I am going to report about an experiment (see [RK17b]) we did consid-
ering an SVS as SuT again. As we found the application of inputs derived from
simulation in reality implies yet other challenges: the environment of the SVS (i.e.,
the room) will not be fully controllable for the tester as it might be in simulation. Not
all of the environmental states can be established in reality, because of, e.g., orga-
nizational or financial restrictions. For instance, the dimensions of a room that is
provided for testing will be fixed and cannot be changed arbitrarily. This results in
limitations for test design.

In order to illustrate these limitations, let us consider a simplified view on the
game of testing the SVS: (1) We directly search for a set of test inputs in form of inter-
esting room setups by exploring a virtual, simulated world possibly using automat-
able techniques optimizing particular coverage metrics in order to (2) reconstruct
these later within a real environment to compare the actual with the intended sys-
tem behavior. As discussed and shown before, it is quite common to base test design
on environmental and behavioral models (here the simulation) of the SuT. However,
as we are not able to set up arbitrary rooms in (2), we have to restrict the search in
(1) to those we can construct. This seems like wasting the power of simulation, as
several insights that could be gained within the rejected scenarios might have been
useful for further testing.

To face this limitation, we need a way to generalize insights gained in (1) within
arbitrary rooms, in order to instantiate them later to concrete setups in (2). In other
words, methods are needed to transfer test inputs between different, uncontrollable
setups in a way that retains the intention with which the test inputs were originally
designed.

Our experiment was based on the assumption that the intention of applying a test
input is to trigger particular behavior of the SuT— or rather of its digital twin (as we
called the simulated version of the SuT). This assumption seems reasonable, since
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many viewpoints in testing, such as the risk-based view or the coverage-oriented
view, are based on expectations concerning the system behavior.

The proposed method (see Sect. 8.1) builds on a distance function ∆ which com-
pares environmental states s = 〈u, c〉 comprising uncontrollable as well as control-
lable features. In the example of the SVS, the uncontrollable part u of the environ-
ment state could be represented by particular room setups; and the controllable part
c could be shaped by placing a mark at a desired position. The distance function
utilizes a notion of diversity of expected resulting system behavior which measures
the difference of particular actions the system is presumed to take. These are, in the
SVS example, driving north, south, west, or east.

The action difference can be arbitrarily quantified, though in experiments we
evaluated a single useful concrete instance. Transferring a test input which applies
the controllable feature assignment c within the uncontrollable setup u to another
setup u′ then means to find an assignment c′ that minimizes ∆(〈u, c〉, 〈u′, c′〉). An
algorithm is presented which uses neural models for learning our metric by simply
observing the SVS (in simulation or in reality), without having any structural in-
sight (see Sect. 8.2). As we will see first experiments showed promising results (see
Sect. 8.3). By simply observing the SVS in simulation, the learned distance measure
actually resulted in test inputs triggering similar behavior patterns over different
room setups.

The reader should note that some parts of this chapter are direct citations from
paper [RK17b] which are set in context of present work.

8.1 Distance-based Test Input Transfer

The experiments considered the following situation: We, as test engineers, aim to
validate that system Sys behaves correctly. Suppose that the environmental state
space S (including its controllable as well as its uncontrollable portion), the Sys’s ac-
tion space A, and an environmental transition function T is known. For simplicity, let
T initially model the consequence of executing action a ∈ A in state s ∈ S determin-
istically by mapping this pair to a particular successor state, i.e., T : S× A → S. Let
us, for the moment, furthermore assume that we were able to formalize the intended
behavior of Sys within a deterministic policy π : S → A which maps each s ∈ S to
that a ∈ A which Sys would choose.

8.1.1 Non-producible Test Inputs

Suppose that, pursuing the test objective of gaining confidence that Sys, indeed, im-
plements π, we have derived a suite of environmental states TS ⊆ S with which we
would like to confront Sys. In fact, in experiments we understood t ∈ TS as test in-
puts, masking additional properties of proper test cases, like pre- and post-condition
or a test oracle and, in the context of the Game of Testing, already including the ef-
fect of tester’s actions to the environment. Confronted with such an input t ∈ TS,
the expected behavior of Sys is the action sequence π(t), π(T(t, π(t))), . . .. If we want
to observe the actual behavior, we, however, still have to establish t within a real
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environment of Sys — and this might be practically impossible because of the un-
controllable features within the environmental state space. Consequently, the ques-
tion arises on how to convince ourselves of the system’s correct behavior, though we
cannot investigate its behavior for all of the previously defined test inputs.

Let P ⊆ S be the set of all producible states, i.e., the states that can be established
within the real Sys environment. Then, the challenge is to handle the non-producible
test inputs in TS \ P. We claimed that simply ignoring these previously derived
test inputs reduces the overall confidence in the correct behavior of Sys. In order
to keep the test plan stable, we proposed instead to replace each t ∈ TS \ P with
another one t̂ ∈ P to which Sys is supposed to answer in a similar way (w.r.t. π). The
assumption behind this was that the process of deriving T was based on intended
system behavior, e.g., by using behavior-based coverage or risk-based metrics.

Consequently, determining the right substitute for a t ∈ TS \ P demands to com-
pare the intended system behavior there with that in each t̂ ∈ P.

In [RK17b] we provided a recursive definition of this kind of behavior-based
comparison by a distance metric ∆π : S × S → R≥0 on environmental states. De-
pending on the policy π, a t ∈ TS \ P should then be replaced by arg min{∆π(t, t̂) |
t̂ ∈ P}. By abuse of mathematical terminology we called ∆π also a metric.

8.1.2 A Policy-based Distance Metric

The metric is built on a freely designable function δ : S × S → R≥0 that estimates
the one-step distance of two states. As we wanted to focus on the intended system
behavior, we initially resolved this by a distance function δa : A× A → R≥0 on the
outgoing actions π(s) and π(ŝ), that is δ(s, ŝ) = δa(π(s), π(ŝ)). For the time being,
let δ return 0 if and only if s and ŝ are not final states (this can be included in δa by
introducing a void action type) and the actions are equal; and 1 otherwise.

Based on δ, our distance metric is defined by summing up the state differences
along π; we weight the discounted future by the factor γ ∈ [0, 1[ to cope with infinite
paths:

∆π(s1, s2) (8.1)

= ∑0≤n(1− γ)γnδ(sn
1 , sn

2)

= (1− γ)δ(s0
1, s0

2) + γ∆π(s1
1, s1

2) ,

where s0
i = si and sk+1

i = T(sk
i , π(sk

i )).
Determinism of the environmental transitions T is a rather strong assumption

which, in fact, would not be satisfied for the SVS example. Let us thus move to
a probabilistic T. Now, T(s, a) yields the probability distribution of environmental
successor states, and we write T(s′ | s, a) for the probability that T moves from state
s to state s′ by action a. Our definition of ∆π accommodates this extension to the
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probabilistic case as follows:

∆π(s1, s2) (8.2)

= E
{

∑0≤n(1− γ)γnδ(st+n
1 , st+n

2 ) | st
i = si

}
= E

{
(1− γ)δ(st

1, st
2) + γ∆π(st+1

1 , st+1
2 ) | st

i = si

}
= ∑(s′1,s′2)

T(s′1 | s1, a1) · T(s′2 | s2, a2) ·(
(1− γ)δa(a1, a2) + γ∆π(s′1, s′2)

)
.

Generally, ∆π can be computed for all the state pairs of S × S by finding an equi-
librium for (8.2). Given the policy π, this could be formulated by |S × S| linear
equations in |S× S| unknowns. An iterative solution for computing the equilibrium
inspired by the Bellman equations is therefore advantageous and simultaneously
provides us with convergence properties [Bel54]: We calculate a sequence ∆0, ∆1, . . .
with ∆k : S× S→ R≥0 where ∆0 is arbitrarily chosen and each successor is obtained
by the following update rule:

∆k+1(s1, s2) (8.3)

= E
{
(1− γ)δt+1 + γ∆k(st+1

1 , st+1
2 ) | st

i = si

}
= ∑(s′1,s′2)

T(s′1 | s1, a1) · T(s′2 | s2, a2) ·(
(1− γ)δa(a1, a2) + γ∆k(s′1, s′2)

)
.

Then ∆π is a fixed point of this update rule. The sequence {∆k}0≤k converges to ∆π

with k→ ∞ (similar to the Bellman equation for optimal policies). Using this update
rule, the implementation of an algorithm searching for ∆π is rather straightforward.
It could be inspired by standard techniques of dynamic programming for solving
Bellman equations [SB98].

However, challenges arise if the transition function with the corresponding tran-
sition probabilities is not known. The only thing that we can do then is extending
the mentioned update rule for estimating T by random experiments. I will show
how this can be done, estimating ∆π from observations within a simulation of Sys
and its environment were T as well as π are unknown.

8.2 A More Realistic Scenario

Let us in the following focus on the case where no π is given, but instead we have
access to an executable simulation of the SuT within its environment. As discussed
before such a simulation is often accessible for autonomous/self-adaptive systems
Sect. 4.1.4. For instance, it could have been used by the system itself for reason-
ing and learning about appropriate behavior – so that the behavior within the real
environment should be fixed.
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8.2.1 Considering a Simulation

The main difference of considering a simulation instead of a known policy π is the
changing view on the environment as well as on the system’s actions. While π en-
abled us to observe the environment from the system’s eyes (as the state and action
space the system is intended to base its behavior on were given), the simulation
now forces us into a third person view. Exclusively able to observe the concrete
state space depicted by the simulation we are deprived of knowledge about the (in-
tended) system’s state abstractions. Moreover, we are forced to reason about an
artificial space of observable actions the system is able to choose.

Although one will intuitively understand a system action as a kind of function
that is invoked within the SuT, we will not be able to monitor all the function exe-
cutions from the third person view (as traditionally considered in black-box testing).
By simply observing state changes within a simulation we will notice rather higher
level state transitions which were initiated by the system than the lower level build-
ing blocks of those. To give an instance, think about the SVS driving one meter
northward. There will be a bunch of internal processes for evoking this observable
behavior. As work on action abstraction can be, for instance, found in the area of
reinforcement learning [SB98], we assume for the sake of this work an appropriate
action space to be given.

8.2.2 Learning the Distance Metric using Neural Nets

However, though given such an action space, the distance function still suffers from
the possibly very huge state space spanned by all the measurable features of the sim-
ulated environment. Typically, these features will even pose continuous parameters,
leading to an infinite space of possible environmental states. In consequence, apply-
ing the update rule depicted in (8.3) will never reach the equilibrium described in
(8.2). In order to, at least, approximate our distance function in a possibly efficient
way, in [RK17b] we proposed the use of generalization techniques.

For this purpose, we applied inspiration from reinforcement learning domains,
again. Suffering from similar challenges as ours, generalization was successfully in-
tegrated there within the last years. Riedmiller used neural networks, the so called
Q-networks, to estimate value functions for reinforcement learning tasks [Rie05]. He
tackled the divergence issues, which harmed the use of non-linear function approxi-
mators for this task before, by repeatedly performing batch updates with entire train-
ing data instead of single training examples, as done before, on the Q-network’s pa-
rameters. Mnih et al. proposed to scale this idea to large data sets by using stochastic
gradient updates on mini-batches instead of repeatedly considering the entire, con-
stantly increasing batch [mnih2015human-short]. They additionally found that us-
ing a separate network for generating target values needed for Q-learning updates
improves stability in learning furthermore.

Since the training tasks are similar, both techniques — performing stochastic gra-
dient descent on mini-batches as well as using separate networks for determining
the targets when applying the update rule — seem useful for learning the distance
function. Thus, Alg. 5 proposes their application to estimate ∆ (regarding its general
definition in (8.2)) within the deep behavioral distance learning algorithm (DBDL).
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Algorithm 5 Deep Behavioral Distance Learning (DBDL): An algorithm for learning
∆π from simulation.
Require: ∆

(
(s1, s2) | θ∆) ≡ neural net with randomly initialized weights θ∆

∆̂ ≡ target network with θ∆̂ ← θ∆

1 for all episode = 1, N do
2 for all step = 1, M do
3 observe (st, at, st+1)
4 store (st, at, st+1) in observation buffer O
5 Sample random mini-batch of T observation pairs:
6 [(si, ai, si+1), (sj, aj, sj+1)] ∈ O×O
7 Set yij ← (1− γ)δa(ai, aj) + γ∆̂(si+1, sj+1 | θ∆̂)
8 Update ∆ by minimizing the loss:
9 L = 1/T ∑(i,j) (yij − ∆(si, sj | θ∆))2

10 Every C episodes update target network: θ∆̂ ← θ∆

8.2.3 Deep Behavioral Distance Learning Algorithm

Its aim is to fit parameters θ∆ of a given neural net (we call it ∆-net) on observations
that are sampled from a given simulation in a way that the trained ∆-net serves as a
model for the distance function ∆. The target network can be seen as a twin of the ∆-
net. It is holding snapshots of its sibling’s parameter values which get synchronized
every now and then (see Sect. 8.2.2). The intention is to stabilize the target values
used in the recursive step within the update rule (as seen in Sect. 8.2.2; cf. the use of
∆k for updating ∆k+1 in (8.3)) over a number of training episodes. It was shown that
this approach helps to avoid divergence when iteratively updating the parameters
of neural net weights [mnih2015human-short].

Training data is generated by observing the given simulation, and stored within
the so called observation buffer (see Sect. 8.2.2). Note that an observed state st in fact
comprises values for all the observable features within the simulation at a particular
point in time t. As the observation buffer enables us to shuffle previously generated
training data (in order to obtain random mini-batches as seen in Sect. 8.2.2), it helps
us to break up unwanted temporal correlations that could have been introduced by
the sequential manner of observation. On that basis, the ∆-net is trained to minimize
the loss between its current and the wanted distance estimate (in terms of the update
rule), averaged over mini-batches (Sect. 8.2.2). After learning, the ∆-net is supposed
to return adequate distance estimates for arbitrary pairs of states that are included
in the state space of the considered simulation.

8.3 Experimental Results

In order to evaluate the aforementioned ideas we considered a simulation of the
described smart vacuum system (SVS) within a simplified environment consisting
of a single rectangular room. Following the setting from previous experiments (cf.
for instance Fig. 2.3) the simulated room was discretized to tiles of 1× 1 meters and
comprised the SVS itself, a rectangular stairwell as well as a mark the user is able
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to place at any tile with the intention that the SVS is driving towards. Though the
room’s and the stairwell’s dimensions (width and height) as well as the position of
stairwell ((x, y)-coordinates of the lower left tile) could be instantiated arbitrarily
within the simulation, we assumed that all of these parameters would be fixed in
reality. These thus formed the uncontrollable portion of our environmental state
space. Consequently, test inputs consisted of the (x, y)-coordinates on which the
mark was placed.

8.3.1 Setting

The mentioned environmental setting served as a framework for a first proof of con-
cepts, but, of course, masks many details that would have to be considered when
testing a real SVS. We thus did not reproduce any of the simulated states in reality.
Instead, we used the simulation for both (1) defining test inputs and (2) applying
these later on. As we motivated our distance metric by the claim that test inputs
will usually have to be applied in real environments and that not all of the environ-
mental features are controllable there, we restricted our simulation on fixed values
of uncontrollable features in (2).

Within the simulation, we utilized, just like in the last chapter, reinforcement
learning methods for learning the intended behavior of the SVS. We assumed the
simplified action space of driving one tile north, south, west, or east. As we in-
tended the system to drive directly towards the user-given mark not falling down
the stairs, we rewarded the SVS by 1 for successfully reaching the user-given mark,
but punished it for falling by −1.

The resulting formalization of the SuT’s intended behavior within the simulated
environment was then used for executing some experiments. These were supposed
to demonstrate that the presented distance function, indeed, helps to transfer test
inputs between different environmental states in a reasonable way as well as that
the DBDL algorithm is able to train a neural model for the distance function.

8.3.2 Reference Test Case

For the purpose of the experiments considered here, we just designed a reference
test case by hand: We determined a room setup and placed the SVS as well as a
mark on particular positions. The chosen setup is depicted in Fig. 8.1a. To emulate
the challenge of dealing with uncontrollable features, as one would be confronted
with when testing in reality, we afterward derived a set of similar but different envi-
ronmental setups from the original test case.

Figure 8.1b shows three of these slightly adjusted setups, all of which are lacking
the position of a mark. Based on the described experimental setup we confronted
ourselves with the task of using the proposed distance function for determining
mark positions within the modified environmental setups which, in combination
with the given uncontrollable portion of the state, should result in preferably similar
system behavior.

We used the following approach: First, we combined each of the modified, mark-
less environmental setups with all potential mark positions. The distance function
was then used to determine the distance between each of the resulting producible
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(A) Original
room setup
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mark

(B) Adjusted
room setups
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distance heat
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(E) Distance
heat maps
estimated by
the ∆-net

(F) Distance colors from 0 (red) to 1 (blue)

FIGURE 8.1: Explicitly calculated heat maps for different room setups
assuming a deterministic policy.

states and the original one. The state with the minimum distance was then sup-
posed to include the requested mark position. To bypass estimation losses, we ini-
tially forewent the proposed learning algorithm, but calculated the distance of all
the state-pairs exhaustively (following equation (8.2) with γ = 0.8). We thereby con-
sidered two different policies learned by separate reinforcement learning processes
p1 and p2. Though both were trained on the same aforementioned reward function
they show slightly different system behavior.

8.3.3 Results

Figures 8.1c und 8.1d show the obtained results. The distance heat maps that therein
overlay the depicted room setups are meant for visualizing the calculated distance
values: using the color range depicted in Fig. 8.1f, a tile’s coloring represents the
computed distance between the original (seen in Fig. 8.1a) and the modified state
(seen in Fig. 8.1b) in which a mark was placed within the tile. The mark position
which extended a modified setup (Fig. 8.1b) in the most similar way (w.r.t. the dis-
tance function) to the original one (Fig. 8.1a) is marked by the white arrow; the path
that was taken by the SVS out of this state is sketched by the dotted white arrow.
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As one can see, the modified state in the first line of Fig. 8.1b comprises the same
setup as the original one. Thus, it seems reasonable that the same mark position for
both policies would implement the most similar state (Figs. 8.1c und 8.1d). The heat
map depicted in the second line of Fig. 8.1c is more surprising, since the position
of the mark within the original state is considered as leading to dissimilar behavior
within the modified version.

As the depiction, however, shows: the behavior, in fact, is dissimilar, as the robot
now passes under the stairwell and could not follow the zigzag path it drove within
the original setting afterward. By contrast, the policy obtained by p2 proposes rather
similar behavior for nearly all the possible mark positions as within the first setup
modification — which leads to similar heat maps (cf. Fig. 8.1d). The heat maps
shown in the bottom line of Figs. 8.1c und 8.1d resemble those in the top line again.

8.3.4 Evaluating the DBDL-algorithm

Based on these gained insights, we subsequently aimed at evaluating the proposed
DBDL-algorithm. The idea was to compare the estimates of a neural network, which
was trained by using the algorithm, to the exhaustively calculated distances men-
tioned above. To do so, a fully connected, feed forward neural net with two hidden
layers (comprising 64 and 32 neurons) was trained as described in Alg. 5 (for com-
parability we used γ = 0.8 again). During the training process of 200 000 epochs,
the observed simulation which just considered the system policy learned by rein-
forcement learning process p1 was executed in randomly initialized environmental
setups.

Figure 8.1e shows the distance heat maps which were estimated by the neu-
ral model after training. It appears that the neural model mostly generalized over
the different modifications of the original state, as the heat maps are approximately
equal. It seems that by learning to interpret the behavior of the SuT within arbitrary
scenarios, with different dimensions and positions of the stairwell and different po-
sitions of the SVS itself, it learned to focus on the position of the mark.

This manifests itself particularly when comparing the results depicted in line 2
of Fig. 8.1c and Fig. 8.1e. As the zigzag course of the SuT seems only to occur in this
particular setting, it does not affect the estimates of the neural net. Recalling that
we explicitly gave a reward to the SVS for driving directly to the mark position, this
can be seen as a kind of filtering outliers. This presumption is further supported by
the impression that, although the net was exclusively trained on the policy obtained
by p1, the distance heat maps depicted in Fig. 8.1e resemble parts of both, those
depicted in Fig. 8.1c as well as those depicted in Fig. 8.1d.

All in all, the experiments showed that the proposed distance metric can deliver
on its promises: In cases where not all of the environmental features are controllable
it seems promising to choose the test inputs that together with the uncontrollable
portion of environmental features result in states that are preferably near to the in-
tended one w.r.t. the defined function. As can be seen in Figs. 8.1c bis 8.1e, this will
result in similar observable behavior of the SuT — at least considering the intended
behavior. I believe that these evaluations are a solid basis for further investigations
on how to fruitfully complement existing test suite derivation, coverage and, priori-
tization approaches by behavioral distance considerations.
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8.4 Related Work

The SVS example described in the introduction points out the general challenge of
transferring test inputs between simulated environments and reality. This challenge
occurs when testing systems whose behavior at least partially depends on the envi-
ronmental conditions. As we argued in [RK17b] that not all environmental features
are controllable by the tester, we must assume that full equality on states between
simulation and reality cannot be achieved. Common techniques of test design, in-
cluding coverage metrics and test prioritization, are, however, mostly based on ex-
ecutable simulations or other kinds of models. Thus the question arises on how to
retain the intention of the designed test inputs in reality.

Proposing a distance function on environmental states with different uncontrol-
lable feature assignments, our answer to the aforementioned question was to pro-
duce the closest possible relatives of the designed test inputs in the partially control-
lable reality. Though the use of a distance function in principle is inspired by other
domains, such as string comparisons (variants of the edit distance are common rep-
resentatives there [RY98]), we provided a tester’s view on the notion of distance
which is rather domain-specific: the distance is determined by the intended behav-
ior of the SuT.

From a machine learning point of view, the transfer task can be formulated as
follows: To abstract the features of the state space in a way that the extracted, ab-
stract features are describing the intention behind a produced state. Given such an
abstraction, transferring state s = 〈u, c〉 from uncontrollable setup u to u′ means to
find an assignment of controllable features c′ which together with u′ is equal to c and
u in terms of the abstract feature space.

In other words, we would like to learn a generative model for representing the
joint probability P(〈u′, c′〉, φ) of states and equivalence classes in terms of equal ab-
stract feature values φ [NJ01]. We need to do this in an unsupervised way, since train-
ing data is unlabeled (we assume not to have given examples of different state pairs
representing an equal intention of the tester) [HTF09].

Generative Models In fact, there are common solutions for unsupervised learning
of generative models, including deep belief networks [HOT06], autoencoders [HS06] and
generative adversarial networks [Goo+14]. These, however, do not solve our particular
issue, because of the following two characteristics:

1. We assume that not all of the environmental features are controllable. This
non-controllability also implies limitations for the aforementioned machine
learning process: suppose that we would like to transfer state 〈u, c〉 to another
uncontrollable setup u′, and that 〈u, c〉 is classified with the latent feature val-
ues φ. Because of the uncontrollable u′ it could then be impossible to find a c′

such that 〈u′, c′〉 is also classified as φ.

All of the mentioned generative solutions, however, assert that equality on the
abstract features is always producible and thus cannot answer the question of
what to do if not. A continuous distance metric, as we propose one, answers
this question by returning the 〈u′, c′〉 which minimizes the distance to 〈u, c〉.
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2. We will usually not have enough training data to automatically extract reason-
able abstract features (as it is done by all of the mentioned methods). Quite to
the contrary, the limited number of test inputs we would like to transfer could
permit various interpretations of their intention, probably most of which un-
reasonable. We overcame this problem by defining the intention of a test input
heuristically but generically within the distance metric.

Inverse Reinforcement Learning Considering testing in general as a decision pro-
cess over the action space of possible controllable feature assignments [RK16], the
intention of choosing a particular assignment resembles the reward a tester is striv-
ing for. Using reinforcement learning techniques [SB98], an optimal policy could be
learned by mapping states to the most promising assignment w.r.t. the reward. Within
this reinforcement learning view, our task could be considered as a kind of inverse
reinforcement learning [AN04], imitation learning [Sch99] or transfer learning [TS09] in
general, as all these techniques are concerned with transferring knowledge between
different decision processes.

However, the basis is different. While the mentioned approaches aim at simply
copying actions of others (imitation learning), retracing reward functions of others
(inverse reinforcement learning), or reusing internal knowledge on novel problems
(transfer learning), we wanted to leverage knowledge about the behavior of others
(the SuT) for translating particular, own actions (controllable features assignments)
between environmental states without reconstructing the overall reward function.

Nevertheless, even if there is — to the best of my knowledge — no active work
on this, I believe that there are several use cases in reinforcement learning domains
for our issue, too: Whenever the own performance w.r.t. future reward depends on
the behavior of others, as this is the case in games [Lit94] and multi-agent reinforce-
ment learning tasks in general [BBDS08], the process of transferring own actions or
policies (between different environments, tasks, etc.) should consider predictions of
the others’ reactions.

8.5 Conclusion

This chapter reported about experiments in which we tackled the challenge of trans-
ferring testing insights gained in simulated environments to the just partially con-
trollable reality. For this purpose we suggested a behavioral distance metric. This
compares pairs of test inputs based on the intended behavior of the SuT: The more
different the SuT is supposed to respond to considered test inputs, the larger the dis-
tance of those. If behavioral considerations influenced test input derivation within a
simulation (or another kind of test models), our measure can thus be used for finding
the test inputs that are closest to the derived ones in reality — which is particularly
useful when equality cannot be established there.

If the SuT’s policy as well as the environmental transition probabilities are known
the proposed distances can be obtained by iteratively refining (8.2) using the update
rule depicted in (8.3). We however also covered the more realistic case where both
are rather embedded within a simulation than known. In this case, the DBDL algo-
rithm (Alg. 5) can learn to estimate the distance metric from observation.
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First experiments which considered a simplified version of a SVS to be tested
validated our claim: The distance function indeed triggered similar behavior of the
SVS through different room setups. However, there are multiple opportunities and
questions we cannot answer at this early point. In particular, the integration of the
suggested distance function into existing testing approaches has to be investigated
in the future, in order to evaluate its practical usefulness.

I envision two core areas of testing for this purpose: (1) test coverage and (2) test
suite prioritization. For (1), I think about a kind of behavior-based coverage sug-
gesting suites of test inputs that are as diverse as possible in terms of the behavioral
distance (the notion of diversity for this scenario still has to be elaborated). If doing
so, a test suite would trigger preferably different behavior variations of the SuT.

Using behavioral diversity as optimization measure in regression testing, such
an approach could basically be used for test suite prioritization, too. Note that our
technique transfers test inputs instead of rejecting them, as this is usual in current re-
gression testing if environmental conditions have changed. In (2), I, however, rather
think about complementing risk-based testing considerations by the distance func-
tion. This combination seems fruitful, as risk assessment highly depends on behav-
ioral considerations which could be applied in reality by using our distance again.

I believe the aforementioned future tasks will also lead to some practical refine-
ments for estimating the distance. While, so far, only a single instance of the one-
step distance function δ was presented, one might think about several other variants
which might include continuous action comparisons or risk considerations. More-
over, we did not consider optimizing the process of, given the distance function,
determining the test input that is closest to another one until now. We still iterate
over the set of all the candidates. This could be mitigated by using machine learning
techniques again.
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Chapter 9

Conclusion

With the collection of experiments considered in the last chapters this thesis should
be seen as a first trace in a depth-first search for solutions in systematically testing
self-adaptive systems. Following the premise that adaptive systems need adaptive
test strategies a bunch of machine learning-based solutions were presented for dif-
ferent types of systems under test: we tested a Self-Organizing Production Cell using
Clustering as well as Evolutionary algorithms; we utilized Artificial Neural Networks
as continuous test models for a Smart Energy Grid and a Smart Vacuum System under
test; Reinforcement Learning Strategies, and in particular the Direct Future Prediction
approach was used for testing a smart vacuum system still learning at test time; and
finally, we proposed the Deep Behavior Distance Learning Algorithm for adaptive test
policy execution.

The considered systems under test should not be seen as a comprehensive enu-
meration of all types of self-adaptive systems and indeed it should be one part of
future work to evaluate the presented approaches more deeply. Though, it is to state
that there are still benchmarks for unified evaluations of testing approaches on self-
adaptive systems missing. If there were similar evaluation frameworks for testing as
there already are for training self-adaptive systems the GoT could get completed. If
we consider the OpenAI Gym for instance, this inclusion of testing evaluation could
be performed by providing an interface for manipulating and training the environ-
ment at run-time – just like it is already provided for training the respective learning
systems.

Further branches of future work include particular improvements of methods
presented before as well as more general discussions and maybe totally different
solutions for the elaborated challenges. For the first, action items like a more de-
tailed investigation of mutation operators for self-organizing, adaptive systems (see
Sect. 4.6), the application of the learning approach from Sect. 5.3 on self-adaptive
systems, imitating systems that are learning at run-time (see Sect. 6.5), addressing
coverage-based test goals by DFP (see Sect. 7.5), and complementing risk assess-
ments with metrics regarding the behavioral distance Sect. 8.5 had already been pre-
sented. Especially the application of DFP to diverse test goals will be investigated
more deeply.

Further general directions of research for testing self-adaptive systems may in-
clude coverage metrics for systems learning at run-time (1), organizational aspects
of quality assurance for self-adaptive systems (2) and the investigation of potential
white-box approaches considering the knowledge base of self-adaptive systems (3).
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nication tasks in distributed control systems with SysML and Timed
Colored Petri Nets model”. In: Computers in Industry 71 (2015), pp. 77–
87.

[Kan+07] S Kanmani et al. “Object-oriented software fault prediction using neu-
ral networks”. In: Information and software technology 49.5 (2007), pp. 483–
492.



Bibliography 133

[KHE11] Johannes Kloos, Tanvir Hussain, and Robert Eschbach. “Risk-based
Testing of Safety-Critical Embedded Systems Driven by Fault Tree Anal-
ysis”. In: IEEE 4th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE. 2011, pp. 26–33.

[KK+12] Mohd Ehmer Khan, Farmeena Khan, et al. “A comparative study of
white box, black box and grey box testing techniques”. In: International
Journal of Advanced Computer Science and Applications 3.6 (2012).

[KL16] Anne Kramer and Bruno Legeard. Model-Based Testing Essentials-Guide
to the ISTQB Certified Model-Based Tester: Foundation Level. John Wiley &
Sons, 2016.

[Klu+16] Dominik Klumpp et al. “Optimising Runtime Safety Analysis Efficien-
cy for Self-Organising Systems”. In: IEEE International Workshops on
Foundations and Applications of Self* Systems. IEEE. 2016, pp. 120–125.

[KPM92] Taghi M Khoshgoftaar, Abhijit S Pandya, and Hemant B More. “A neu-
ral network approach for predicting software development faults”. In:
Proceedings of the 3rd International Symposium on Software Reliability En-
gineering. IEEE. 1992, pp. 83–89.

[KPV03] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. “General-
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