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Time discretization of nonlinear hyperbolic systems on networks
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In view of gas networks, the simulation of hyperbolic systems on networks has recently caused large interest. We consider
the case with a nonlinear damping term and a small parameter ε such that – in the linear case – the system turns parabolic
for ε = 0. Based on this property and an expansion in ε, we derive a novel time integration scheme.
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1 Introduction

We consider the propagation of pressure waves in a network of pipes which leads to a coupled system of hyperbolic partial
differential equations. Each pipe is modeled by an edge in a graph on which we consider the one-dimensional wave system

ṗ(t, x) + ∂xm(t, x) = 0, (1a)

ε ṁ(t, x) + ∂xp(t, x) + δ
m(t, x)|m(t, x)|

p(t, x)
= 0. (1b)

Here, p and m model the pressure and mass flux on a single edge e. For the parameter ε we assume in this paper that
0 ≤ ε � 1. In the considered case of a gas network this equals the product of the adiabatic coefficient and the square of the
Mach number and is of order 10−3, cf. [1]. Note that in the here considered model we neglect differences in temperature and
kinetic energy, cf. [2].

In the corresponding linear model, the nonlinear damping term in (1b) is often replaced by δm(t, x). In the network case,
we need to add continuity conditions on the pressure and balance laws for the mass flow in each junction. In total, this then
leads to a partial differential-algebraic equation (PDAE), cf. [3,4]. In this paper, we translate the expansion strategy from [4]
to the nonlinear model given in (1). The expansion is motivated by the fact that – in the linear case – the system is hyperbolic
for ε > 0 but parabolic in the limit case ε = 0.

2 Expansion and discretization

Due to the assumption ε� 1, we consider an expansion in ε, meaning that we write

p(t, x) = p0(t, x) + εp1(t, x) + . . . , m(t, x) = m0(t, x) + εm1(t, x) + . . . ,

where p0, m0 serve as a first-order and p̂ := p0 + εp1, m̂ := m0 + εm1 as second-order approximations. Including the
continuity and boundary conditions of the pressure in form of an explicit constraint Bp = gdir and the flow condition for the
mass flux implicitly by Cr, we obtain the PDAE systems

ṗ0 − K∗m0 + B∗λ0 = − Cr,
Kp0 = g(p0,m0),

Bp0 = gdir,

ṗ1 − K∗m1 + B∗λ1 = 0,

Kp1 = ∂pg(p0,m0)[p1] + ∂mg(p0,m0)[m1]− ṁ0,

Bp1 = 0.

Therein, K corresponds to the differential operator ∂x and the nonlinear terms are given by

g(p0,m0) = −δ
m0|m0|
p0

, ∂pg(p0,m0)[p1] + ∂mg(p0,m0)[m1] = δ
m0|m0|
p20

p1 − 2δ
|m0|
p0

m1.

Note that we have used the fact that f(x) = x|x| = sign(x)x2 has a (classic) derivative f ′(x) = 2|x|. Further, we emphasize
that the operator equations correspond to the weak formulation of the systems and that we consider p to be piecewise in H1

on the edges of the graph whereas m is piecewise in L2.
For the numerical approximation of p and m we now consider the interplay of the ε-expansion and a time-discretization of

the respective PDAE systems. In the linear case, one benefits here from the parabolic behavior of the limit equations [4].
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Fig. 1: Convergence history for p and m in terms of ε.

1/h 10 20 40 80 160 320 640 1280 2560
α(h) 0.7841 0.7719 0.7693 0.7682 0.7676 0.7674 0.7672 0.7672 0.7671

Table 1: Analysis of the fitted exponent α as a function of the spatial grid size h.

For the spatial discretization we consider P1 finite elements for the pressure and P0 finite elements for the mass flux, both
with mesh size h. This then leads to the semi-discrete system

Mpṗh −KTmh −BTλh = −CT r,

εMmṁh +Kph +D(ph,mh) = 0,

Bph = gdir,

D(ph,mh)i = h δ |mh,i|mh,i ·
{

log ph,i+1−log ph,i

ph,i+1−ph,i
, ph,i 6= ph,i+1

1
ph,i

, ph,i = ph,i+1

,

where Mp, Mm, K, and B denote the standard mass, stiffness, and boundary matrices. The term CT r includes the demand
of the consumer on the right-hand side, whereas gdir includes again the boundary data.

3 Numerical example

To illustrate the performance of the expansion-based time discretization, we consider the case of a single pipe of length 1
with δ = 0.5 and consistent initial data, i.e., ṁh(0) = 0. As boundary conditions we set p = 1 on the left-hand side of the
pipe and m = e−t on the right. Further, we restrict ourselves to the implicit Euler discretization in time but emphasize that
this may be replaced by Runge-Kutta schemes, cf. [5]. Figure 1 shows the convergence history of the errors of p0, p̂, m0, and
m̂. As in the linear case, we can observe first-order convergence for p0, m0 and second-order convergence for p̂, m̂.

In our second numerical experiment, we consider the convergence order of p−p0, denoted by α, as a function of the spatial
mesh size h. We choose non-consistent initial data, i.e., m(0) 6= m0(0), and Dirichlet boundary conditions for the pressure on
both ends of the pipe. To compute α we fitted the exponent by a least square problem for several values of ε. In Table 1 one
can observe that the exponent is slowly decreasing to around 0.767. In particular, the asymptotic limit is far off one, which
equals the exponent in the case of consistent initial data. This behavior was also observed in the linear case and transfers to
the here considered nonlinear one.
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