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Abstract

Diabetic pregnancies are cleary associated with maternal type 2 diabetes and metabolic syn-
drome as well as atherosclerotic diseases in the offspring. The global prevalence of hypergly-
cemia in pregnancy was estimated as 15.8% of live births to women in 2019, with an upward
trend. Numerous parental risk factors as well as trans-generational mechanisms targeting the
utero-placental system, leading to diabetes, dysmetabolic and atherosclerotic conditions in the
next generation, seem to be involved within this pathophysiological context. To focus on the
predictable impact of trans-generational diabetic programming, we studied age- and
gender-matched offspring of diabetic and nondiabetic mothers. The offspring generation
consists of three groups: C57BL/6-J-Ins2Akita (positive control group), wild-type C57BL/6-J-
Ins2Akita (experimental group), and C57BL/6-J mice (negative control group). We undertook
intraperitoneal glucose tolerance tests at 3 and 11 weeks of age. Moreover, this in vivo model
was complemented by a corresponding in silico model. Although at 3 weeks of age, no signifi-
cant effects could be observed, we could demonstrate at 11 weeks of age characteristic and
significant differences in relation to maternal diabetic imprinting based on the in silico
model-based predictors. These predictors allow the generation of a concise classification tree
assigning maternal diabetic imprinting correctly in 91% of study cases. Our data show that
hyperglycemic in uteromilieu contributes to trans-generational diabetic programming leading
to impaired glucose tolerance in the offspring of diabetic mothers early on. These observations
can be clearly and early distinguished from genetically determined diabetes, for example, type 1
diabetes, in which basal glucose values are significantly raised.

Introduction

Diabetic pregnancies are associated with maternal type 2 diabetes (T2D) after delivery as well as
T2D, metabolic syndrome, and atherosclerotic diseases in their offspring early in life.1–3 The
global prevalence of hyperglycemia in pregnancy (HIP) was 15.8% of live births to women
in 2019 referring to the International Diabetes Federation (IDF)2 – with an upward trend
and an increased estimated number of unreported cases. HIP comprises pregestational diabetes
in pregnancy, which may play a role in approximately 7.9% of HIP cases, other types of diabetes
first detected in pregnancy in approximately 8.5% of HIP cases as well as gestational diabetes
mellitus (GDM), which affect approximately 83.6% of HIP cases.2 The HIP prevalence varies in
different IDF world regions between 7.5% and 27.0%,2 depending on risk factors like maternal
age, body mass index, diabetic history as well as ethnic, social, and income groups.1,3 Many
authors postulate that maternal diabetes accompanied by obesity seems to be the main driving
metabolic programming issue in terms of dysmetabolic conditions in their offspring. In contrast,
our data will clearly indicate that maternal diabetes per se (without accompanied obesity) seems
to be a strong risk or imprinting factor in terms of diabetic programming leading to diabetes as
well as metabolic and cardiovascular diseases in the offspring early in life.

Since it is not explicitly known how maternal diabetic in utero environment imprints the
fetus for diabetes and metabolic syndrome as well as atherosclerotic disease later in life, we
analyzed the Ins2Akita mouse model, in which the offspring of diabetic mothers (DMs) develop
diabetes, accompanied by altered insulin sensitivities as well as abnormal glucose-stimulated
insulin release.

Focusing on epigenetic or other aspects, multiple mechanisms of in utero and perinatal
programming may play a key role. “Perinatal programming” defines the perturbation at one
or more critical periods during development causing persistent alterations with sometimes
irreversible consequences.3 To characterize and assess mechanisms of diabetic programming,
appropriate predictors as well as therapeutic approaches have to be found.
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We have recently proposed a newly established dynamic
in silico model and have shown that parameter identification
provides individual predictors characterizing different types
of metabolic diseases already at an early stage.4,5 We showed
that model parameters such as short-term and long-term glucose
sensitivities, kG1 and kG2, respectively, are suitable for significantly
predicting metabolic developments at early stages for subjects
within one generation.

In this contribution, we will extend this approach by targeting
trans-generational diabetic in utero programming. We have to
identify specific individual predictors, such as kG1 and kG2, for
diabetic development in offspring and analyze their relationship
to maternal diabetic imprinting.

We will show that in silicomodel-based predictors are an effec-
tive approach to obtain significant results even in the case of small-
group sizes, including high sensitivity as well as high specificity.

Method

In vivo model

The Ins2Akita mouse model presents an established diabetic model
with appealing characteristics, such as altered insulin sensitivity
as well as abnormal glucose-stimulated insulin release.

Due to a misfolded insulin-2 protein, which causes endo-
plasmic reticulum stress and β-cell death, insulin processing is
disrupted, which results in the early development of hyperglycemia.
Additionally, by using Ins2Akita mice, the mechanisms of type 2
diabetes could be investigated without the associated interference
of obesity.

Within the experimental setup shown in Fig. 1, a group of
DMs is established based on the C57BL/6-J-Ins2Akita mouse
model. They are compared to matched C57BL/6-J mice, which
are denoted as nondiabetic mothers (NDMs). Both groups have
equivalent conditions prior to and during pregnancy. Body weight
and plasma glucose levels are controlled on a daily basis during
pregnancy. There are no relevant differences in body weight,
neither pre-conceptional nor during the first 13 days of pregnancy.
However, in the final stage of pregnancy, the gestational weight
gain of NDM is higher than that of DM (NDM 39.0 ± 3.0 g vs.
DM 31.6 ± 2.4 g at day 19 of pregnancy, denoting mean ± standard
deviation). As expected, the fasting plasma glucose levels in DMare
raised compared to NDM during the whole period of pregnancy
(NDM 151.6 ± 17.5 mg/dl vs. DM 179.7 ± 23.9 mg/dl, denoting
mean ± standard deviation).

This study focuses on specific trans-generational diabetic
programming aspects, which are defined as not directly genetically
determined impacts from mothers to their offspring. Hence,
the offspring of DMs who were not genetically determined to
diabetes (wild type; wt C57BL/6-J-Ins2Akita) are classified as the
experimental group. They are compared to the offspring of
NDMs who are neither genetically determined nor affected by
diabetic programming (C57BL/6-J as a negative control group).
To allow a comparison to genetically moderated mechanisms,
a positive control group of genetically determined offspring
(C57BL/6-J-Ins2Akita) of DM is also considered. Fig. 1 gives a sur-
vey of the three resulting offspring groups.

All offspring were raised under equivalent experimental condi-
tions. Their body weights and fasting glucose concentrations were
measured regularly. At 3 and 11 weeks of age, an intraperitoneal
glucose tolerance test (IPGTT) was performed for all offspring.
The experimental setup and the definition of the groups (A) to
(M) for female and male offspring at 3 and 11 weeks of age, includ-
ing their sizes n, are summarized in Fig. 1.

In silico model

In silico models can be used to simulate and characterize
dynamical processes, for example, glucose insulin dynamics during
an IPGTT. A survey of appropriate models in diabetes is given
by Cobelli et al.6 To provide an appropriate in silicomodel, we rede-
fined Bergman’s “minimal model”7,8 as developed in Eberle et al.4

The block diagram of the resulting nonlinear model is displayed
in Fig. 2 within the green panel using transfer functions (shown
as white blocks). It comprises the functional compartments of
the plasma, interstitial tissue, pancreatic controller, and external
inputs. All components can be assigned to either the glucose sub-
system (upper part) or the insulin subsystem (lower part). Two
external inputs, an intraperitoneal glucose bolus uGP and an intra-
peritoneal insulin bolus uIP, are provided. To simulate an IPGTT,
an impulse function at t = 0 min is applied to uGP, whereas uIP
remains zero. The simulated plasma glucose concentration G^

serves as model output (Fig. 2).

Identification of in silico model-based predictors

In the approach presented here, the measured IPGTT data
retrieved from the in vivo model are used for the identification
of individual in silico models. For each subject, the measured
plasma glucose values G are compared with the simulated glucose

Fig. 1. Setup of the in vivo experiment. Offspring were
assigned by polymerase chain reaction to negative
control (black), experimental (red), and positive con-
trol (blue) groups; in addition, offspring were classified
and matched by age as well as sex into groups (A) to
(M), and the number of subjects in each group is
denoted with n.
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values G
^
(see Fig. 2). A cost function J is defined to assess their

deviations:

Jð pÞ :¼
XN

k¼1

G
^ ðk; pÞ � GðkÞ

h i
2 þ 10 p� p0½ �2:

In the first term, the squared differences between G and G
^
are

summed over the N = 7 measurements during an IPGTT at time
steps t = 0, 15, 30, 45, 60, 90, and 120 min. The second term con-
siders the squared difference of the current parameter vector p to
its initial definition p0. In p, the four most relevant in silico model
parameters

p ¼ Gbasal; kG1; kG2; kGP½ �T

are selected. They are printed in red in the in silico model block
diagram of Fig. 2.We proved the identifiability of this set of param-
eters p according to.9,10 For diagnostic purposes, we will use the
first three parameters:
• the basal plasma glucose Gbasal;
• the first-phase (short term) glucose response gain kG1; and
• the second-phase (long term) glucose response gain kG2.

The fourth parameter, the gain of the intraperitoneal glucose
dosage kGP, only serves as an auxiliary parameter for model adjust-
ment, which will improve identification accordance.

For each subject, a simplex optimization algorithm11 imple-
mented in MATLAB© is applied to solve the optimization problem
by minimizing the cost function J and to fit the in silico model to
the subject’s measurement in the best possible way.

Finally, an optimized p is available for each subject, providing
in silico model-based predictors (Fig. 2) for the two subsequent
analysis procedures.

Pooled predictors and their effects

How specific are the in silico model-based predictors retrieved
only from offspring when they are applied to forecast maternal
imprinting? Statistical measures can be applied. To assess the
impact of a feature difference between groups, we suggest its effect
e, which is defined as the mean y2 of a subset of subjects holding
this feature compared with the mean y1 of a subset comprising
subjects without the feature:

e ¼ y2 � y1:

This measure is commonly used in the design of experiments
field.12 For example, to calculate the effect of the offspring sex at
11 weeks of age, y2 is calculated from the mean of all female groups
(K), (L), (M) with n = 22, and y1 is calculated from all male groups
(G), (H), and (I) with n = 23. In this way, larger group sizes n are
achieved, and a double-sided t-test can be applied to determine the
level of significance Pe of the corresponding effect e.

Fig. 2. Block diagram of the in silicomodel comprising functional compartments of the plasma, interstitial tissue, pancreatic control, intraperitoneal tissue, and external inputs
(in green). Simulated glucose valuesG

^
are compared tomeasured values G from the in vivomodel (in blue). For identification, a cost function J is minimized (gray box) with respect

to the in silico model parameters p (in red). Finally, they serve as predictors.
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Classification of individual predictors

A classification of individual predictors may serve as an alternative
method that does not require staticmethods and, therefore, is inde-
pendent of certain group sizes that are necessary for significance.
We use, for example, the n = 45 data sets at 11 weeks of age (all
subjects included in groups (G) to (M)) to train a classification
tree.13 Each data set comprises the predictors {Gbasal, kG1, kG2}
and the known maternal class. The training was performed with
the Statistics and Machine Learning Toolbox of MATLAB©.

Thereafter, classification success can be presented as confusion
matrix C, which counts all N data sets referring to the known
classes assigned as rows and to the predicted classes assigned
as columns. Correct classifications are counted as main diagonal
elements, and their share of all data sets is

Pc ¼ traceðCÞ=n:

Results

In vivo model

The plasma glucose development G(t) during IPGTT shows a pos-
itive deflection as a response to the intraperitoneal glucose admin-
istration at t = 0 min in all cases. At 3 weeks of age (Fig. 3), a high
maximum amplitude of approximately 400mg/dl at t= 15min and
a complete remission to basal values at t= 120min are observed for
all offspring groups. The levels of the female groups are almost
equal, whereas the male groups (A), (B), and (C) tend to differ
at t = 30 min.

At 11 weeks of age (Fig. 4), the observation is different: both neg-
ative control groups (G) and (K) of NDMs show an improved and
physiological glucose tolerance with a peak value below 300 mg/dl
and a complete remission after 120 min. The positive control groups
(I) and (M), however, show a diabetic profile, with increased basal
glucose levels and an incomplete remission. The experimental groups
(H) and (L), in turn, present a characteristic that is different from that
of both control groups: within the short-term reaction (15–45 min),
glucose levels are increased similarly to the positive control groups,
while on the long-term time scale (60–120 min), it decreases to the
physiological values of the negative control groups.

In silico model-based predictors

The application of the in silicomodel allows condensing these quali-
tative observations into quantitative predictors. In Table 1, selected
combined groups are considered, and the mean and standard
deviation for the model-based predictors {Gbasal, kG1, kG2} are shown.

The best values are obtained in the negative control group at
11 weeks of age (line 1). The mean basal glucose value Gbasal is
low, and the glucose sensitivities kG1 and kG2 are high. This case
may serve as a reference and is most similar to the human reference
values (line 5). The experimental group (line 2) shows an elevated
Gbasal and a slightly reduced kG2, which is still sufficient for remis-
sion in the IPGTT. However, it is characterized by a small kG1 that
causes a distinct peak in IPGTT. The positive control group (line 3)
shows a high value of Gbasal combined with minimum values
of kG1 and kG2, which describes a diabetic profile.

During weaning at 3 weeks of age, Gbasal is slightly elevated
and kG1 is reduced (line 4 compared to line 1). However, the

(a)

(b)

Fig. 3. Mean and standard deviation (as error bars) of
plasma glucose G(t) during IPGTT for all groups
(A) – (F ) at 3 weeks of age (male and female offspring).
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long-term glucose sensitivity kG2 performs better, which leads to
a stable remission in IPGTT.

Pooled predictors and their effects

To assess these observations, the effects and significances of pooled
predictors are summarized in Table 2 for different impacts. During
weaning at 3 weeks of age, the effects between the experimental and
both control groups are small and (with one exception) not

significant (lines 1–3). In contrast, all effects are significant at
11 weeks of age (lines 4–6). In the experimental group, Gbasal is
elevated compared to the negative control group (line 4) but is much
better than that in the positive control group (line 5). Gains kG1 and
kG2 are severely degraded in the experimental group compared to the
negative control group (line 4) but are still better than that in the pos-
itive control group (line 5). Line 6 just proves significant differences
between both control groups; its effects are equal to line 4 minus line
5. Finally, the impact of offspring sex is analyzed in lines 7 and 8.

(a)

(b)

Fig. 4. Mean and standard deviation (as
error bars) of plasma glucose G(t) during
IPGTT for all groups (G) – (M) at 11 weeks
of age (male and female offspring).

Table 1. Different IPGTT patterns are observed during weaning (offspring 3 weeks of age) as well as later (offspring 11 weeks of age) for negative control, positive
control, and experimental groups. Means μ and standard deviations σ of combined groups are shown. The negative control group at 11 weeks of age may serve as a
reference (gray background)

# Combined groups

Gbasal (mg/dl) kG1 (μU/ml · dl/mg)
kG2 (μU/ml · dl/mg/

min)

μ σ μ σ μ σ

1. Negative control (11 weeks)
(G) þ (K), n = 20

115.757 ±21.066 13.377 ±9.725 0.119 ±0.056

2. Experimental control (11 weeks)
(H) þ (L), n = 12

136.051 ±27.109 1.949 ±1.024 0.081 ±0.029

3. Positive control (11 weeks)
(I) þ (M), n = 13

318.246 ±84.341 0.901 ±1.043 0.044 ±0.031

4. Weaning (3 weeks)
(A) – (F), n = 45

139.879 ±31.247 5.051 ±6.931 0.142 ±0.087

5. Human reference values10 90.000 20.000 0.110
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None of the effects are significant; nevertheless, kG2 has the highest
level of significance and will be considered for sex-specific classifica-
tion in the second approach of the next section.

Classification of individual predictors

An alternative to pooled predictor results can be obtained from
the individual predictors, which are plotted in Fig. 5a for the sub-
jects at 11 weeks of age in the three-dimensional predictor space for
{Gbasal, kG1, kG2}. At first glance, one can see a possible separation of
clusters.

Based on these data, we automatically generated classification
trees. As a first approach, a classification into three groups
(negative control, experimental, and positive control) regarding
maternal imprinting was performed. The obtained tree is shown
in Fig. 5b. As a first criterion, subjects with Gbasal > 170 will be
assigned to the positive control group (= genetically determined);
otherwise, they will be assigned to the negative control group
(= healthy) in the case of kG1 > 4.4 yields; otherwise, they will
be assigned to the experimental group. Apparently, kG2 does
not have an impact. As the confusion matrix in Fig. 5c shows,
Pc = 41/45 = 91.1% of the subjects are classified correctly with
these two simple rules (specificity regarding experimental group is
11/12 = 91.7%, sensitivity regarding negative control group is
17/20 = 85.0%).

As a second approach, we additionally distinguish male and
female subjects, which leads to a total of six groups. The automatic
generation results in a more complex classification tree, as shown
in Fig. 5d. The most important predictors are still Gbasal and kG1,
although they have changed their order. Additionally, kG2 comes
into play, and it decides between sexes at the final stage. The
confusion matrix in Fig. 5e proves that Pc = 37/45 = 82.2% of
the subjects can still be classified correctly.

Discussion

Proof of trans-generational diabetic programming

At 11 weeks of age, the experimental groups showed a specific
metabolic behavior that differed significantly from both control
groups. Mice of the negative control groups (G, K) and the exper-
imental groups (H, L) are both not genetically programmed by
Mendelian inheritance. Therefore, the reason for the different
characteristics in the IPGTT and in the in silico model-based
predictors must be located in the diabetic in utero milieu of the
offspring. The difference between NDMs and DMs causes the
observed trans-generational diabetic programming.

What are the underlying mechanisms? Experimental groups
(H, L) did not show long-term glucose intolerances. The basal glu-
cose levels as well as the levels after t = 60 min are in the physio-
logical range specified by the control groups (G, K), see Fig. 4. This
is confirmed by the predictors Gbasal as well as kG2, respectively
(see Table 2, line 4). Hence, glucose clearance or disposal follows
different mechanisms compared to diabetic subjects in the positive
control groups (I, M).

However, the short-term or first-phase response is disturbed
(early peak in IPGTT in Fig. 4, decreased kG1 in Table 2, line 4,
and classification rule based on kG1 in Fig. 5b). It is insulin medi-
ated and may be caused by an altered reaction of the β-cells of the
pancreas. Taking these observations together, we can conclude that
the diabetic metabolism of mothers leads to altered insulin sensi-
tivity as well as abnormal glucose-stimulated insulin release in
offspring.

In the course of analyzing features of trans-generational dia-
betic programming in preliminary experiments, it could also be
presented that early altered insulin sensitivity as well as abnormal
glucose-stimulated insulin release is the part of diabetic mal-
programming. Moreover, pancreases of wild-type offspring of

Table 2. Effects e of the predictors {Gbasal, kG1, kG2} and their levels of significance Pe are shown. Significant predictors with a level of Pe ≤ 0.05 are printed in bold.

# Group relations

Gbasal (mg/dl) kG1 (μU/ml · dl/mg)
kG2 (μU/ml · dl/mg/

min)

e Pe e Pe e Pe

Maternal impact on offspring at 3 weeks of age

1. Experimental to negative control groups (3 weeks)
(B, E) to (A, D), n = 18 to 11

–18.814 0.081 –0.499 0.725 0.023 0.455

2. Experimental to positive control groups (3 weeks)
(B, E) to (C, F), n = 18 to 16

–26.883 0.021 –0.548 0.844 0.024 0.486

3. Positive to negative control groups (3 weeks)
(C, F) to (A, D), n = 16 to 11

8.069 0.469 0.049 0.988 –0.001 0.978

Maternal impact on offspring at 11 weeks of age

4. Experimental to negative control groups (11 weeks)
(H, L) to (G, K), n = 12 to 20

20.294 0.024 –11.428 0.000 –0.038 0.036

5. Experimental to positive control groups (11 weeks)
(H, L) to (I, M), n = 12 to 13

–182.194 0.000 1.048 0.019 0.037 0.005

6. Positive to negative control groups (11 weeks)
(I, M) to (G, K), n = 13 to 20

202.488 0.000 –12.476 0.000 –0.075 0.000

Sex impact on offspring

7. Female to male groups (3 weeks)
(D, E, F) to (A, B, C), n = 25 to 20

3.672 0.700 1.392 0.510 0.029 0.270

8. Female to male groups (11 weeks)
(K, L, M) to (G, H, I), n = 22 to 23

–18.369 0.551 –1.831 0.493 0.011 0.488
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DMs showed a significantly lower pancreas mass and more unco-
ordinated islet organizations as well as morphological β-cell and
islet alterations compared to the offspring of NDMs, which is in
line with Reusens et al.14

The difference in programming in the experimental groups
in relation to nondiabetic controls would remain undiscovered if
only fasting glucose measurements (Fig. 4) were considered. To
detect the altered insulin sensitivity as well as abnormal glucose-
stimulated insulin release, the IPGTT glucose must be evaluated

at t = 15, 30 min (Fig. 4), or even better the predictor kG1 has
to be assessed. This is clearly confirmed by the effect of predictor
kG1 in Table 2, line 4: by diabetic programming, a drop of –11.428
for kG1 is predicted with high significance.

This observation is different from genetically programming by
Mendelian inheritance, which can be easily detected by looking at
fasting glucose levels in Fig. 4. The corresponding predictor Gbasal

showed an effect ofþ202.488 mg/dl for groups (I,M) compared to
(G, K) with high significance.

(a)

(b) (c)

(d)

(e)

Fig. 5. (a) Predictors {Gbasal, kG1, kG2} of n= 45 individual subjects of groups (G) – (M) asmarks in the predictor space, (b) classification tree for three groups with (c) corresponding
confusion matrix, and (d) classification tree for six groups with (e) corresponding confusion matrix.
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Impact of weaning

During the suckling period at 3 weeks of age, almost no significant
differences between groups (A) – (F) were detected. Therefore, as
already reported, suckling may have a protective effect targeting
glucose homeostasis in offspring and mothers.15 In Table 1, the
mean values of the combined offspring groups during weaning
can be compared with the later groups. Note that in the negative
control groups, glucose tolerance is improved even after weaning.
If we take this together with the previous section, diabetic
programming receives verifiable effects during fetal stages but
becomes apparent in offspring metabolism after weaning.16

Sex-specific differences

Compared to the impacts of diabetic programming andweaning that
were discussed before, sex-specific differences seem to be less dom-
inant. No significant effects can be observed when combined female
groups are compared to combinedmale groups, seeTable 2, lines 7, 8.
At 11 weeks of age, female plasma glucose levels G in t = 30 and
45 min were lower than male levels (see Fig. 4). This observation is
confirmed by the classification tree in Fig. 5d that uses kG2 to distin-
guish the female andmale groups. In general, the second-phase glucose
tolerance seems to be advantageous in females compared to males.

Conclusions

We show significant trans-generational impacts by analyzing
diabetic programming patterns, which are clearly not genetically
programmed by Mendelian inheritance (experimental group).
These novel insights show that trans-generational diabetic pro-
gramming leads to an evident change of patterns within the glucose
insulin homeostasis in the next generations. The corresponding
predictor kG1 is highly significant.

The picture is clearly different from trans-generational genetically
determined diabetes patterns (positive control group), which lead to
significantly raised basal glucose values, as the predictorGbasal shows.

Depending on both predictors kG1 and Gbasal obtained from
the individual in silico model of offspring, 91% of the subjects
can be classified correctly with respect to maternal imprinting.
We conclude, therefore, that maternal diabetes per se is a strong
risk factor leading to alterations within glucose homeostasis and
diabetes in their offspring early on.

The newly established dynamic in vivo and in silico models
are suitable and highly sensitive for an individual early diagnosis
of specific pathophysiological changes, trans-generational as well
as for both generations. The model-based predictors proved to be
appropriate to determine significant effects even for smaller group
sizes and to successfully set up a diagnostic classification tree.

Moreover, our approach is well suited to diagnose pathophysio-
logical changes early on to predict personalized developments and
to start preventive therapies for both generations early17 to assess
specific maternal interventions, for example, a particular immuni-
zation as a possible therapeutic approach.18
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