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Abstract: This study evaluates a temporally dense VV-polarized Sentinel-1 C-band backscatter
time series (revisit time of 1.5 days) for wheat fields near Munich (Germany). A dense time series
consisting of images from different orbits (varying acquisition) is analyzed, and Radiative Transfer
(RT)-based model combinations are adapted and evaluated with the use of radar backscatter. The
model shortcomings are related to scattering mechanism changes throughout the growth period with
the use of polarimetric decomposition. Furthermore, changes in the RT modeled backscatter results
with spatial aggregation from the pixel to field scales are quantified and related to the sensitivity of
the RT models, and their soil moisture output are quantified and related to changes in backscatter.
Therefore, various (sub)sets of the dense Sentinel-1 time series are analyzed to relate and quantify the
impact of the abovementioned points on the modeling results. The results indicate that the incidence
angle is the main driver for backscatter differences between consecutive acquisitions with various
recording scenarios. The influence of changing azimuth angles was found to be negligible. Further
analyses of polarimetric entropy and scattering alpha angle using a dual polarimetric eigen-based
decomposition show that scattering mechanisms change over time. The patterns analyzed in the
entropy-alpha space indicate that scattering mechanism changes are mainly driven by the incidence
angle and not by the azimuth angle. Besides the analysis of differences within the Sentinel-1 data,
we analyze the capability of RT model approaches to capture the observed Sentinel-1 backscatter
changes due to various acquisition geometries. For this, the surface models “Oh92” or “IEM_B”
(Baghdadi’s version of the Integral Equation Method) are coupled with the canopy model “SSRT”
(Single Scattering Radiative Transfer). To resolve the shortcomings of the RT model setup in handling
varying incidence angles and therefore the backscatter changes observed between consecutive time
steps of a dense winter wheat time series, an empirical calibration parameter (coe f ) influencing
the transmissivity (T) is introduced. The results show that shortcomings of simplified RT model
architectures caused by handling time series consisting of images with varied incidence angles can
be at least partially compensated by including a calibration coefficient to parameterize the modeled
transmissivity for the varying incidence angle scenarios individually.

Keywords: soil moisture; radiative transfer models; winter wheat; Sentinel-1; time series

1. Introduction

The Sentinel-1 mission was designed for systematically mapping land surfaces with
enhanced revisit frequency, coverage, timeliness, and reliability for applications and op-
erational services requiring a long time series [1]. Two of these applications, using freely
available Sentinel-1 data, are agricultural monitoring and modeling on regional or global
scales [2,3]. The mission currently comprises a constellation of twin satellites, each with a
revisit time of 12 days [4,5]. Thus, observations with the same acquisition geometry (exact

Remote Sens. 2021, 13, 2320. https://doi.org/10.3390/rs13122320 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5278-8379
https://orcid.org/0000-0001-5322-4540
https://orcid.org/0000-0002-1760-2425
https://orcid.org/0000-0002-2636-3438
https://orcid.org/0000-0001-6294-120X
https://doi.org/10.3390/rs13122320
https://doi.org/10.3390/rs13122320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122320
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122320?type=check_update&version=2


Remote Sens. 2021, 13, 2320 2 of 25

same orbit) are provided every six days. If multiple orbits (ascending and descending)
and, therefore, various satellite acquisition geometries are considered, a revisit time of less
than two days can be accomplished for most parts of Europe [6]. Furthermore, with the
provision of space-borne radar data at such an unprecedented spatial and temporal reso-
lution, research on crucial societal and economic challenges such as climate change [7,8]
or food security [9–11] can be assessed. For future food security, the monitoring of win-
ter wheat, as one of the most important cereals in Europe [12] and the crop type with
the second-largest coverage worldwide, is considered fundamental [13]. One important
environmental parameter for winter wheat growth is soil moisture, which shows high
spatiotemporal variability [14,15]. Monitoring of the diurnal cycles of soil moisture and
other natural fast changing processes with a dense time series [16] reveals possibilities for
real-time management, such as of droughts or precision agriculture [17,18].

Lately, more and more studies using microwave time series data to estimate the soil
moisture of agricultural areas—especially for the crop type winter wheat—have been
conducted [19–21]. Often, only a single satellite orbit constellation and, therefore, data from
one satellite with the same acquisition geometry are used [19,22–24]. Occasionally, the time
series used consists of data from the same satellite but related to different orbits and, thus,
various azimuth or/and incidence angles [20,23,25–27]. Only a few of these studies also
use data from different sensors to retrieve soil moisture values [23,27,28]. Summarizing the
above studies, one established approach is to simulate radar backscatter or to estimate soil
moisture of vegetated areas by using radar backscattering models based on the Radiative
Transfer (RT) equation [29,30]. These model simulations of radar backscatter from agricul-
tural fields are based on sensor and platform configurations (e.g., incidence angle, azimuth
angle, frequency, and polarization), soil properties (e.g., soil moisture, texture, and surface
roughness), and vegetation parameters (e.g., Leaf Area Index (LAI), Normalized Differ-
ence Vegetation Index (NDVI), Vegetation Water Content (VWC), and biomass) [19,29]. In
recent decades, several complex models such as the Michigan Canopy Scattering Model
(MIMICS) [31], the Tor Vergata model [32], a first-order radiative transfer model from
Quast [33,34], and a Wheat Canopy Scattering Model (WCSM) [27] have been developed
for modeling the electromagnetic scattering of different vegetation types by using the first
or second order of the RT equation. For precisely modeling the backscatter characteristics
that occur during different phenology stages of winter wheat, complex models with de-
tailed information, such as their canopy element size and distribution (length; diameter;
thickness; and water content fraction of the stem, leaf, and ears) are needed to account for
a multi-layer volume canopy [27]. Thus, different electromagnetic scattering interactions,
for example, direct canopy scattering and single or multiple interactions between canopy
parts (the ear, leaf, and stem) and the surface, can be modeled. A problem with using these
complex models is the provision of additional input data for characterization of the canopy.
Therefore, canopy models with fewer input parameters such as the empirical WCM [35],
in which only the direct volume backscatter part is considered; a modified version of
WCM (MWCM) [36]; or a Single Scattering Radiative Transfer (SSRT) model described
by Ulaby [30] or De Roo [37], in which various scattering mechanisms are modeled in a
simpler way, are regularly used [26,30,37–40]. Additionally, information about the surface
scattering contribution under winter wheat fields for the estimation of soil moisture is
crucial. Commonly used surface backscattering models are the surface scattering part of
the empirical Water Cloud Model (WCM) [35]; the semi-empirical models of Oh (Oh92,
Oh04) [41,42] and Dubois [43]; and physical models, such as the Integral Equation Method
(IEM) [44] in its original form or as adapted by Baghdadi (IEM_B) [45].

In the scope of using dense microwave time series for monitoring winter wheat fields
around the world, complex model approaches might not be applicable most of the time
due to the lack of detailed in situ measurements on soil and winter wheat characteristics.
Model approaches with a low number of required input parameters that can be provided
by satellite remote sensing (e.g., LAI) are preferred when applied on the global scale.
Therefore, in this study, we investigate how a simplified RT model for the canopy part
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(SSRT) in combination with two surface backscattering models (Oh92 and IEM_B) are able
to simulate backscattering for a dense time series with various acquisition geometries and
how far the RT model can be adapted by means of an empirical parameter to compensate
for the lack of detailed in situ wheat canopy information. The simple RT models used in
their original form are not completely optimized for wheat scattering, and a separation
of contributions from vegetation growth and geometric configuration is a challenging
task. Thus, the main focus is set on how changes in acquisition geometries (changes in
azimuth and incidence angles) affect the simplified backscattering models throughout the
entire wheat growing period and if an empirical parameter is able to compensate for these
effects up to a certain extent. The contributions from vegetation growth and the geometric
configuration difference in the multi-temporal signature are separated.

By investigating a dense Sentinel-1 time series of winter wheat fields in southern
Germany, the following questions are answered within this paper:

(A) Do backscatter variations between individual Sentinel-1 scenes with various acquisi-
tion geometries depend on changes in incidence and/or azimuth angle?

(B) How do backscatter calculations of simple RT model approaches react to changes
in terms of acquisition geometry, and what are the probable scattering mechanism
variations for winter wheat fields?

(C) What influence (in dB) do different spatial backscatter aggregation scenarios have on
RT model results?

(D) How do uncertainties in backscatter (variation by 0.2 dB, 0.5 dB, and 1.0 dB) influence
soil moisture estimations in the RT models analyzed during the vegetation growing
period of winter wheat?

(E) How should one best assess scattering from wheat fields in terms of acquisition
scenario, preprocessing, and soil moisture estimation using time series information?

2. Data Sets
2.1. Study Area

In situ measurements obtained from the Munich North Isar (MNI) test site in 2017
were used for this study. The study area (48◦13′N–48◦20′N, 11◦39′E–11◦45′E, Figure 1) is
located to the north of Munich, Bavaria, southern Germany. The test site was established in
2014, and since then, almost every year during the vegetation period, in situ campaigns
are carried out to survey the agriculturally relevant key variables [26,46–49]. The main
crop types within the MNI test site were wheat, maize, and grassland. The meteorological
measurements were provided by three meteorological stations: in Freising, in Eichenried,
and at the Munich airport. All three stations are situated within a 10 km radius around the
MNI test site. The permanently installed facilities in Freising (470 m a.s.l.) and Eichenried
(475 m a.s.l.) are operated by the Bavarian State Research Center for Agriculture (LFL).
The meteorological station at the Munich airport (446 m a.s.l.) is operated by the German
Meteorological Service (DWD). The meteorological station records reported an annual mean
temperature of 9 ◦C (Freising) to 9.3 ◦C (Eichenried) and an average annual precipitation of
753 mm (Munich-airport) to 853 mm (Eichenried) for the year 2017. The region around the
test site exhibits only marginal changes in height (above sea level) and has no significant
topographic variation.
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Figure 1. Overview of the study area Munich-North-Isar (MNI) with test fields 508 (green), 542 (or-
ange), and 301 (blue), each with three sampling points.

2.2. Field Data

Between March and July 2017, in situ measurements of soil and vegetation parameters
of wheat fields for the validation of retrieval schemes based on different satellite sensors,
such as Sentinel-1, Sentinel-2, or Environmental Mapping and Analysis Program (EnMAP),
were conducted (Table 1). For each field under investigation, three sample points were
chosen (Figure 1). At each location, weekly vegetation height and LAI measurements
as well as assessments of plant phenology (based on BBCH-scale) were taken. For total
LAI measurements, the average of 14 samples from the same area measured with a LI-
COR Biosciences LAI-2200C device (LI-COR Biosciences Inc., Lincoln, NE, USA) was
used. The LAI measurements reach a calculated accuracy of 0.45 m²/m² to 0.52 m²/m²
in terms of the mean standard deviation of repeated measurements within fields. Soil
moisture was monitored using permanently installed Decagon TM5 sensors (Decagon
Devices Inc., Pullman, WA, USA). The soil moisture devices were installed within the first
five centimeters of the soil surface with a monitoring time interval of 10 min. Laboratory
analysis of the soil texture of previous field campaigns reports no evidence of significant
micro-locational soil variations within the test site [48]. The soil properties presented in
Table 2 show values for soil bulk density, 1.45 ± 0.13 g/cm3; for clay content, 7.38 ± 1.8%;
for silt content, 68.55 ± 11.64%; and for sand content, 24.08 ± 10.46%.

Table 1. Acquisition time, time interval, and range of dynamic in situ measurements.

Variable Acquisition Time Time Interval Range

Canopy height [cm] 24 March–17 July 2017 weekly 7–105
LAI 24 March–17 July 2017 weekly 0.35–6.25

Soil moisture [m3/m3] 24 March–17 July 2017 every 10 min 0.09–0.38
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Table 2. Laboratory results for sand, clay, and bulk content of the soil surface samples.

Variable Time Interval Mean Std

Soil sand content [%] once (several locations) 24.08 10.46
Soil silt content [%] once (several locations) 68.55 11.64
Soil clay content [%] once (several locations) 7.38 1.80
Bulk density [g/cm3] once (several locations) 1.45 0.13

2.3. Satellite Data

A dense time series of Sentinel-1 A/B (C-band, Level-1 SLC) satellite data was used
for this study. Preprocessing of the SAR data was accomplished by using ESA’s SNAP
Toolbox Version 7.0.3. SRTM data with 1 arc-second spatial resolution were used as a
digital elevation model for geometric correction of the SAR data [50,51]. For radiometric
correction, the method of Kellndorfer et al. [52] was applied. To reduce the impact of
speckle by simultaneously maintaining the spatial resolution, a multi-temporal Lee-sigma
filter was chosen. For each Sentinel-1 acquisition, information from six other acquisitions
(three before and three after the target) was used for temporal filtering. A spatial window
of 5 × 5 pixels, sigma of 0.9, and a target window size of 3 × 3 served as the Lee filter
parameters. For the images used during temporal filtering, no separation with respect
to different orbits was performed. A comparison of the temporal filtered data—using
images from different orbits versus using images from the same orbit—shows almost no
difference between the filtered output data. After all of the preprocessing steps, the data
were resampled to a spatial resolution of 10 × 10 m [26]. In 2017, the MNI test site area
was covered by four different Sentinel-1 tracks with individual acquisition geometries
regarding incidence angle, azimuth angle, and orbit direction. Considering all available
Sentinel-1 images for 2017 at the MNI test site, a revisit time of 1.5 days was reached. A
total of 78 Sentinel-1 scenes during the time of the field campaign are available. For our
study, the focus was set to VV polarization, motivated by previous findings where, to
retrieve soil moisture, the usage of VH polarization alone or in addition to VV polarization
was not suitable for well-developed agricultural vegetation [23,53]. Table 3 summarizes
the Sentinel-1 data set used and its respective image properties.

Table 3. Available Sentinel-1A/B satellite data for the MNI field campaign period in 2017 (23 Match–17 July 2017).

Orbit Mean Incidence Angle Azimuth Angle Acquisition Amount Revisit Time
Mode Rel. Nr. of Test Site Area [◦] Relative to North [◦] Time [Days]

Asc 44 36 −15 4:58 p.m. 19 6
117 45 −15 5:06 p.m. 19 6

Des 95 43 −165 5:17 a.m. 20 6
168 35 −165 5:25 a.m. 20 6

3. Method

Our study focused on investigating a dense Sentinel-1 C-band backscatter time series
under varying acquisition geometries and on RT-based backscatter modeling of the time
series. Two different RT model combinations calculating VV-polarized backscatter were
analyzed. The soil surface scattering models used were Oh92 [41] and Baghdadi’s version
of the IEM [45], hereafter referred to as IEM_B. The surface models were coupled with
the Single Scattering Radiative Transfer Model (SSRT) of [30,37]. The SSRT was chosen
because it calculates the direct vegetation volume backscatter and backscatter contributions
due to the surface–canopy interactions. The calibration approach of Weiß et al. [26] with a
non-static empirical parameter (coe f ) influencing the one-way transmissivity of the canopy
(T) was used. Therefore, only one empirical parameter was calibrated for the different
model combinations. The approximations applied by Weiß et al. [26] for parameters with
missing in situ data such as rms height (1.2 cm) or scattering albedo (0.03) were used. The
other input parameters for the surface models were in situ data for soil properties such



Remote Sens. 2021, 13, 2320 6 of 25

as clay and sand content, bulk density, and soil moisture measurements. For the canopy
model part, in situ data of canopy height and LAI were used as vegetation descriptors.
The various scattering components (ground component σ0

gpq , canopy component σ0
cpq , total

canopy ground contribution σ0
cgtpq

, and ground canopy ground contribution σ0
gcgpq ) of the

SSRT used by De Roo et al. [37] and Ulaby [30] are defined as

σ0
pq = σ0

gpq + σ0
cpq + σ0

cgtpq + σ0
gcgpq , (1)

with
σ0

gpq = TpTq σ0
spq , (2)

σ0
cpq =

σback
Vpq

cosθ

kp
e + kq

e
(1− TpTq), (3)

σ0
cgtpq = σbist

Vpq
H [Rp + Rq] TpTq and (4)

σ0
gcgpq =

σback
Vpq

cosθ

kp
e + kq

e
(RpRq − TpTq). (5)

where σ0
spq represents the surface scattering, Tp and Tq symbolize the transmissivity of the

canopy, σback
Vpq

is the volume backscattering coefficient of the vegetation medium, σbist
Vpq

is the
bi-static scattering cross section, θ is the incidence angle, ke is the extinction coefficient for
the different polarizations, H is the canopy height, and R describes the Fresnel reflectivity
by polarization pq. T is defined as

Tp = e−kp
e H secθ . (6)

To calibrate the transmissivity of the canopy (T) for different time steps and various
acquisition scenarios, the extinction coefficient ke for polarization p and q is defined as

kp
e = coe f ∗

√
LAI, (7)

with LAI as the vegetation descriptor and coe f as the calibration coefficient. A more
detailed overview of the different RT models is provided in Weiß et al. [26]. A summary
of validity ranges, model types, and input parameters required for the applied models is
listed in Table 4.

Table 4. Overview of the different surface models Oh92 and IEM_B as well as the canopy model SSRT in terms of type,
validity range, required input parameters, and polarization. Separation of the input parameter applied for the RT models in
calibrated parameters and in parameters from field measurements or literature values.

Type Validity Range
Required Parameters

PolarizationCalibrated Field Measurements
or Literature Values

Oh92 semi-empi.
10◦ < θ < 70◦ s, k, θ, ε

(clay, sand, bulk, mv)
HH, VV

VH0.1 < ks < 6
9 < mv < 31 Vol.%

IEM_B semi-empi. 10◦ < θ < 70◦ s, k, l, θ, ε
(clay, sand, bulk, mv)

HH, VV
VHks ≤ 3

SSRT semi-empi. ke (coe f ) H, LAI, θ, ω HH, VV
VH

3.1. Calibration and Analyzed Data Sets

Figure 2 schematically explains the calibration approach from Weiß et al. [26] that was
applied. Depending on the analysis approach, the images of the dense Sentinel-1 time
series were separated into different subsets (blue box in Figure 2). An overview of the
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data subsets used is provided in Table 5. Additionally, variations due to diverse spatial
aggregation scenarios of the Sentinel-1 backscatter were investigated. An overview of the
analyzed aggregation scenarios is given in Table 6. For each (sub)set and each aggregation
scenario, the empirical parameter coe f is calibrated separately. Therefore, the sum of the
squared difference between the modeled and measured VV-polarized backscatters were
used as a minimization function to calibrate the parameter coe f and thus the transmissivity
T (see Equations (6) and (7)). In the end, a final time series for coe f and thus a final RT
modeled VV polarized radar backscatter time series was obtained.

Figure 2. Schematic illustration of the calibration approach. Green box show used RT model combinations. The blue box
illustrates the various (sub)sets analyzed for the dense time series. The orange arrows symbolize that several data (sub)sets
and spatial aggregation scenarios were used.

Table 5. Investigated time series (sub)sets.

Abbreviation Data Sets Amount of Scenes Rel. Orbit

All All available Sentinel-1 scenes 78 44 + 95 + 117 + 168

Inci Sentinel-1 scenes with similar incidence 2 sets of 39 44 + 168; 95 + 117angle but different azimuth angle

Azi Sentinel-1 scenes with same orbit mode 2 sets of 39 44 + 117; 95 + 168and zimuth angle

Sep Sentinel-1 scenes separated by 4 sets of 19–20 44; 95; 117; 168incidence and azimuth angle

Norm All available Sentinel-1 scenes normalized 78 44 + 95 + 117 + 168to an incidence angle of 35°
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Table 6. The backscatter aggregations investigated.

Abbreviation Backscatter
Aggregation Area Size Amount of Pixel

SP Single pixel 10 × 10 m 1
30 m 15 m buffer 30 × 30 m 9
50 m 25 m buffer 50 × 50 m 25
100 m 50 m buffer 100 × 100 m 100

FS Field scale 724–963

3.2. Leave-One-Out-Cross-Validation of Calibrated Model Combinations

A leave-one-out cross-validation approach was chosen to validate the calibrated
model results of the different measurement points. Thus, the mean of eight out of nine
measurement points of calibrated parameter coe f was validated with the remaining one.
Since the model input parameters used show multi-dimensional and unstructured inter-
and intra-field correlations, independence between the different measurement points was
assumed [26]. To evaluate the RT model fit of the time series sets analyzed (Table 5), the
unbiased Root Mean Square Error (ubRMSE) [54] as a statistical metric was used. The
ubRMSE is calculated as follows

ubRMSE =

√√√√ 1
N

N

∑
i=1

[(xi − x)− (yi − y)]2 (8)

where x represents the backscatter modeled, x represents the backscatter modeled and
averaged, y represents the Sentinel-1 backscatter observation, y represents the averaged
Sentinel-1 backscatter observation, i represents a specific sample, and N represents the total
number of samples.

3.3. Sensitivity Analysis of Soil Moisture and Polarimetric Eigen-Based Decomposition for the
RT Model

A sensitivity analysis of the RT models was conducted for a comprehensive interpre-
tation of improvements in terms of backscatter values by using different Sentinel-1 time
series sets (Table 5) and/or various spatial aggregations (Table 6). To test the RT models’
sensitivity to changes in soil moisture, artificial deviations in soil moisture were assumed,
leading to changes in backscatter values of 0.2 db, 0.5 db, or 1.0 dB. The artificial deviations
in backscatter were calculated for each time step of the time series individually. In this
way, the sensitivity of the backscatter to soil moisture during the phenological cycle and
different meteorological conditions could be assessed.

In addition, a dual-polarized (VV and VH) eigen-based (entropy (H)-scattering al-
pha (alpha)) decomposition of the entire Sentinel-1 time series, having variations in the
acquisition scenario, was performed to investigate and understand the occurring scatter-
ing mechanisms and changes in scattering mechanisms during the growing season. The
H-alpha dual polarized decomposition [55] was performed by using an internal processing
step of ESA’s SNAP toolbox. Special focus was set on the comparison of images of consec-
utive time steps with various acquisition geometries. The dual-polarimetric eigen-based
decomposition comes with a caveat, as the separation of different scattering mechanisms in
the H-alpha plane is only possible with fully, quad-, or co- (VV and HH) polarized data [56].
Therefore, the exact identification and detailed distinction of the scattering mechanism
that occurs for each time step is beyond the scope of information from the recorded data
set. Nevertheless, the H-alpha results can be used as a first-order indicator of scattering
mechanism change over time and, owing to acquisition scenario, even if the exact types of
scattering mechanisms and their change cannot be identified directly. However, the scatter-
ing mechanism changes that were revealed might further improve our understanding of
the deficits of simplified model approaches and how they might be compensated.
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4. Results
4.1. All Sentinel-1 Tracks Analyzed as One Time Series

The calibration results analyzing the usage of different dense time series (sub)sets
are presented for field point 508-1 as an example. The other fields analyzed and the
respective intra-field points show similar patterns and are only included for validation of
the backscattering model results (Section 4.3). Accordingly, a time series of VV-polarized
backscatter of all available Sentinel-1 images for field point 508-1 (black line) is illustrated in
Figure 3a. The model results (green and blue line) are based on a calibration of the empirical
parameter coe f (Equation (7)) as part of the transmissivity (Equation (6)) considering all
available Sentinel-1 images as one data set (Tables 5 and 6, “All-50 m”). The background
colors red, blue, green, and yellow symbolize the Sentinel-1 data, and the respective
acquisition geometries represent four consecutive days of Sentinel-1 data acquisition. A
closer look at the four consecutive time steps (yellow to green background colors), while
disregarding backscatter changes due to soil moisture and vegetation dynamics, shows
that, during early vegetation stages (tillering and stem elongation), higher Sentinel-1
backscatter values are observed for more steep incidence angles (around 35◦) than for
more shallow ones (around 44◦). Starting from the beginning of June (phenology stage
booting), the backscatter behavior pattern in terms of the incidence angle variation of the
four consecutive time steps varied. Accordingly, higher backscatter values were observed
for incidence angles of 44◦ than for 35◦. A pattern regarding variations in azimuth angles
was not observed here. Comparing the modeled results of IEM_B with SSRT (green line)
and of Oh92 with SSRT (blue line), higher sensitivities to incidence angle deviations are
observed for the Oh92 model. Backscatter modeling for the phenology stages tillering and
stem elongation of model Oh92 with SSRT reveals a high correlation with the Sentinel-1
backscatter observed in terms of absolute values and the changes in backscatter observed
due to the various acquisition geometries. Starting from phenology stage booting to
senescence, Sentinel-1 backscatter reveals a different behavior from the modeled results.
For these phenology stages, the Sentinel-1 backscatter values of consecutive time steps with
varying incidence angles (background colors yellow to red) increased whereas the RT model
results exhibited a decrease in backscatter. For the other consecutive time steps with varying
incidence angles (background colors blue to green), the Sentinel-1 backscatter values
decreased whereas the RT model results showed an increase in backscatter. The different
results of the Sentinel-1 and RT models are hereinafter referred to as a trend mismatch
of consecutive time steps. Summarizing the findings, the simple RT model approaches
experience difficulties in accurately modeling time series comprising observations from
different orbits (different observation geometries) for a winter wheat field with a fully
developed canopy. A trend mismatch is observed. In the end, the model combination of
Oh92 with SSRT has a higher sensitivity to observation geometry changes than the model
combination of IEM_B with SSRT.
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Figure 3. Sentinel-1 backscatter data for field point 508-1. Modeled backscatter results of IEM_B and Oh92 with SSRT (a).
Different background colors (red, blue, green, and yellow) represent Sentinel-1 images with various acquisition geometries
(a,b). Calibrated transmissivity T for each time step (b). In situ data of vegetation height and LAI (c). Soil moisture and
precipitation measurements (d). Observed vegetation phenology according to the BBCH scale [57] (e).

4.2. Subsets of Dense Sentinel-1 Time Series
4.2.1. Analyzing Incidence Angle Variety

The data set was separated into two subsets to analyze the effect of varying incidence
angles within the dense Sentinel-1 time series on the RT model results. Therefore, one
subset consists only of images acquired in the same orbit direction and with the same
azimuth angle (“Azi-50 m”). The azimuth angle itself is not an input parameter within
the RT models, and therefore, deviations in backscatter caused by the various azimuth
angles were not considered in our simple model approach. The variation in incidence angle
on the other hand should cause variations in the backscatter modeled as the incidence
angle is implemented as an input parameter within the RT models. The empirical model
parameter coe f as part of the transmissivity T was calibrated for each time step using the
Sentinel-1 data of each subset separately. Figure 4 illustrates the results for an azimuth
angle of −15◦ (relative to north), and Figure 5 illustrates the results for an azimuth angle of
−165◦ (relative to north). Sentinel-1 backscatter (black line), total backscatter, and the two
main contributors to the total backscatter (surface and canopy part) of the models analyzed
(blue and green lines) are shown in Figures 4a and 5a. For both subsets, deviations in
Sentinel-1 backscatter in the range from 2 db to 3 dB between two consecutive time steps
with varied incidence angles (background colors blue to green or yellow to red) are still
apparent. Similar to the results shown in Figure 3, the Sentinel-1 backscatter differences
of consecutive time steps observed were modeled well until the end of May. However,
starting with the phenology stage of booting at the beginning of June, a trend mismatch
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is observed between two consecutive time steps of Sentinel-1 and modeled data, similar
to the one in Figure 3. The differences within the time series of T of Figures 4b and 5b
between two consecutive time steps are similar to the modeled transmissivity illustrated in
Figure 3. Since the simple RT models’ sensitivity towards accurately calculating backscatter
with varying incidence angles seems to be imperfect, an incidence angle normalization
approach might be able to resolve or at least mitigate this issue. One of the challenges of
applying incidence angle normalization approaches to the entire time series is experienced
when using the analyzed Sentinel-1 data itself. The Sentinel-1 backscatter (black line within
Figures 4 and 5) of consecutive time steps with different incidence angles shows higher
backscatter values for steep incidence angles until the end of May and lower backscatter
values for shallow incidence angles from the beginning of June. Due to this behavior,
an incidence angle normalization results in either lower backscatter differences due to
varying incidence angles during early phenology stages (tillering and stem elongation) and
higher differences for later phenology stages (booting to senescence), or vice versa. The
desired effect of the normalization in providing a smooth time series of backscatter data
from wheat fields cannot be accomplished by applying one normalization approach to the
entire data set. The findings indicate that a simple model approach has some deficits in
simulating backscatter under various incidence angles within one time series, although the
incidence angle is used as an input parameter to the models.

Figure 4. Sentinel-1 time series and RT model results considering images with an ascending orbit direction and an azimuth
angle of −15◦ (relative to north) (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b).
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Figure 5. Sentinel-1 time series and RT model results considering images with a descending orbit direction and an azimuth
angle of −165◦ (relative to north) (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b).

4.2.2. Analyzing Azimuth Angle Variety

The data set was split into two subsets to analyze the effect of varying azimuth angles
within the dense Sentinel-1 time series and on the RT model results. Therefore, each new
subset consists of acquisitions with similar incidence angles (“Inci-50 m”). Equivalent to
the approach of Section 4.2.1, parameter coe f of the RT model combinations was calibrated
using the Sentinel-1 data of each subset separately. Figure 6 shows the results for incidence
angles of 35◦ to 36◦, while Figure 7 illustrates the results for 43◦ to 45◦. For incidence
angles of 35◦ and 36◦, higher deviations in terms of Sentinel-1 backscatter values between
consecutive time steps are only visible with a significant change in soil moisture content
(Figure 6c). Otherwise, distinct backscatter differences between consecutive time steps for
the Sentinel-1 and RT model results are not identifiable. Additionally, the trend mismatch
between the Sentinel-1 and RT model results for the phenology stages booting to senescence
is not present for incidence angles 35◦ to 36◦. The backscatter variation with incidence
angles of 43◦ and 45◦ present a slightly different picture. Small discrepancies between
consecutive time steps of the Sentinel-1 data are visible. However, no real trend mismatches
between the backscatter values of the Sentinel-1 and RT model results are evident. For both
subsets, it can be stated that, overall, the RT model predictions are in sufficient agreement
with the Sentinel-1 data. Summarizing the findings, it can be stated that, although the
azimuth angle is not considered as a parameter within the models, no obvious deviations
between the backscatter modeled and the Sentinel-1 backscatter is observed and, thus,
deviations in azimuth angles within a dense time series seems to be negligible for the
model approach presented.



Remote Sens. 2021, 13, 2320 13 of 25

Figure 6. Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering
images with similar incidence angles (35◦, 36◦) (a). Different background colors (red, blue, green, and yellow) represent
Sentinel-1 images with various acquisition geometries (a,b). Calibrated transmissivity T (b). Soil moisture and precipitation
measurements (c).

Figure 7. Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering
images with similar incidence angles (43◦, 45◦) (a). Different background colors (red, blue, green, and yellow) represent
Sentinel-1 images with various acquisition geometries (a,b). Calibrated transmissivity T (b). Soil moisture and precipitation
measurements (c).
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4.2.3. Separation of Dense Sentinel-1 Time Series into Mono-Incidence Data Sets

After analyzing the effects of different azimuth and incidence angles on the backscat-
ter, the dense time series was separated into four subsets with the same orbit and, thus,
the same acquisition geometry (“Sep-50 m”). The transmissivity T was calibrated by the
empirical parameter coe f for each subset individually, and the results were reassembled
into one time series afterwards. The trend mismatch between the data modeled and the
Sentinel-1 data of consecutive time steps with various acquisition geometries after the
beginning of June, which was detected in Figure 3, was resolved. Figure 8 shows these
calibrated model results of a reassembled dense time series. Furthermore, compared to
Figure 3, a sensitivity increase in the IEM_B model results in backscatter changes due to
varied incidence angles being observed. The resolved trend issue and the higher incidence
angle sensitivity effect result in dynamic transmissivity values by separately calibrating
the empirical parameter coe f for varying time series subsets. Contrarily, in Figure 3, no
differences of T between consecutive time steps are visible, but various values for T can
be observed in Figure 8. The model combination Oh92 with SSRT shows variations in T
(between Figures 3b and 8b) only after mid-July (flowering to senescence), whereas IEM_B
exhibits variations during the early (tillering) and late (flowering to senescence) phenology
stages. The calibrated parameter coe f seems to compensate for the lack of RT models
in handling various acquisition scenarios in our model setup. This compensation might
be forced by the model architecture and/or calibration and needs further investigation.
During the phenology stages flowering to senescence, higher T values (Figure 8b) as well
as higher surface model contributions (Figure 8a, triangle symbol) are observed for IEM_B
and Oh92 for shallow than for steep incidence angles. Theoretically, by considering a
canopy layer of 90–100 cm, the electromagnetic wave travels a farther distance through the
canopy for shallow incidence angles than for steep incidence angles. Under the assump-
tion that farther distances (shallow incidence angle) through the canopy leads to lower
canopy transmissivity of the electromagnetic wave, the modeled T and the model surface
component of Oh92 and IEM_B should be lower for shallow incidence angles and not
the other way around. Although the model theory described cannot be seen in Figure 8,
Figure 4 shows this theoretical behavior of the surface model component (Figure 4a, trian-
gle symbol) and transmissivity (Figure 4b). However, comparing Sentinel-1 and the total
modeled backscatter within Figure 4, a trend mismatch between consecutive time steps for
phenology stages flowering to senescence and, therefore, differences between the Sentinel-1
and RT model total backscatter are observed.

For the results illustrated in Figure 8, no trend mismatch and thus a better fit of the
data modeled and the Sentinel-1 data are observed. The reason for the discrepancy between
the model theory assumed and the behavior observed might be caused by insufficient—or
missing—consideration of the scattering mechanisms in the applied simplified model
architecture. For a change detection analysis on scattering mechanisms and/or backscatter
effects, a VV–VH dual polarimetric eigen-based (entropy (H)-scattering angle (alpha))
decomposition is performed [56]. The H-alpha results of the eigen-based decomposition
are reported in Figure 9. The rows illustrate the results of consecutive time steps with
various acquisition geometries (x-axis) for different vegetation stages of tillering, stem
elongation, heading, and ripening (y-axis). The columns indicate the results for different
incidence angles and orbit directions. During the wheat crop’s tillering stage, no obvi-
ous deviations between the H-alpha results of the different acquisition geometries are
recognizable. Changes in scattering effects moving from the tillering to stem elongation
stages are indicated by a shift to higher H- and alpha-values. Stronger variations in the H-
and alpha-values are observed for incidence angles around 35◦ than for 44◦. The H-alpha
values of the wheat fields of consecutive time steps confirm insensitivity to variations in
azimuth angles of individual scenes, similar to that for backscatter. However, differences
in the H- and alpha-values are observed between acquisitions with various incidence
angles. Lower incidence angles of 35◦ reveal higher shifts in the H- and alpha-values
between the tillering and stem elongation phases as well as higher H- and alpha-values
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compared to incidence angles around 44◦. When comparing the phenology stages stem
elongation and heading, a slight decrease in H- and alpha-values is apparent. Therefore,
a clear separation by incidence angle due to deviations in H- and alpha-values is possible,
whereas a separation due to azimuth angles is difficult. During the ripening stage, a further
decrease in H- and alpha-values is observed. Separation due to various incidence angles
is possible, although not as clear as during the stem elongation or heading stages. The
H- and alpha-values are similar to the values during the early vegetation stages, such
as tillering. Further analysis of the different scattering mechanisms is difficult as Ji and
Wu [56] found that, for VV-VH dual polarimetric eigen-based decomposition, the clas-
sification of scattering mechanisms is not as precise as for fully polarimetric ones. The
various scattering mechanism classes in the H-alpha plane can have high overlap for the
VV–VH dual decomposition results. Nevertheless, the change detection results show that
variations in the scattering mechanism of consecutive time steps are mainly driven by the
incidence angle during acquisition and not by the azimuth angle. Furthermore, similar
scattering mechanisms are observed for the early (tillering) and late (ripening) vegetation
stages. During the vegetation period from stem elongation to flowering stage, higher
changes in scattering effects (dynamics in H- and alpha-values) are observed for steep
incidence angles (35◦) than for shallow incidence angles (44◦). Summarizing the findings,
it can be stated that, although the simplified RT models have some deficits when handling
different incidence angles within one dense time series, the empirical parameter coe f can
partly compensate for model deficiencies if each orbit is modeled separately. H-alpha
decomposition is an analysis tool to explore variations in scattering mechanisms. These
variations might be a possible reason for the simple model approaches having deficits in
accurate backscatter modeling. H-alpha analysis indicates that, indeed, different scattering
mechanism changes occur over time for different incidence angles. Moreover, variations in
azimuth angles are not responsible for changes in backscatter or scattering mechanisms.

Figure 8. Joint Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering four
mono-incidence angle data sets (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b). Observed vegetation phenology according to
BBCH scale [57] (c).
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4.3. Validation and Quantification of RT Model Results

Validation of the RT model calibration approach for the various dense time series
(sub)sets was performed by a leave-one-out-cross-validation method. The mean ubRMSE of
the Sentinel-1 and modeled data for all measurement field points is illustrated in Figure 10.
The results are categorized by different spatial backscatter aggregations (x-axis), RT model
combinations (x-axis), and (sub)sets of the dense Sentinel-1 time series used (color sep-
aration). It is expected that intra-field variances are reduced by averaging, and in this
way, agreements between the model and observations might be facilitated. However, this
analysis wants to quantify the model performance of the different aggregation scenarios in
dB to understand the loss of precision where intra-field variance is vital. Comparing the
results of Oh92 with SSRT and of IEM_B with SSRT for various Sentinel-1 data (sub)sets,
greater variabilty in ubRMSE is shown for the Oh92 model combination. For both models
as well as for the various data (sub)sets, spatial aggregations lead to improved ubRMSE
values. The IEM_B and Oh92 results reveal improvements on the pixel to field scales by up
to 0.5 dB. The best model fit in terms of ubRMSE is provided when using a time series that
only considers Sentinel-1 images with incidence angles of around 35◦ (light green). More-
over, the ubRMSE results in a similar range to that of the best model fit are shown by using
a data set with incidence angles of 43◦ to 45◦ (dark green) or if all acquisition geometry
scenarios are analyzed separately (black). Overall, the IEM_B model combination reveals
slightly better results than the Oh92 model combination for the different categorizations.
Both model combinations analyzed by using only images with incidence angles of 35–36◦

(light green) compared to the entire Sentinel-1 data set (gray) improved by up to 0.3 dB.
The ubRMSE of the best model fit (light green) is 1.43 dB for IEM_B and 1.64 dB for Oh92.
Summarizing the results, it can be stated that the best model agreement is obtained by
aggregation to the field level and by using steep incidence angles. The differences between
single pixel and 30 × 30 m resolution are up to 0.2 dB, and the differences between single
pixel and field scale aggregations are up to 0.5 dB.

4.4. Sensitivity to Soil Moisture Estimations over Time for the RT Model

For a comprehensive interpretation of the quantitative results illustrated in Figure 10,
sensitivity analyses of the model combinations IEM_B and Oh92 with SSRT are provided
in Figures 11 and 12, respectively. The figures show the deviation in estimated soil mois-
ture with artificial variations of backscatter of 0.2 dB, 0.5 dB, and 1.0 dB. This helps in
understanding how the backscatter differences modeled for different aggregation scenarios
(Figure 10) result in uncertainty regarding soil moisture. It is interesting to understand that
the uncertainty in soil moisture estimation differs for different phenology stages during the
vegetation growing period. Uncertainty starts to increase during the stem elongation stage.
This is in seen alongside an increase in vegetation height from 20 cm to 90 cm as well as
an increase in LAI from 3 to 6. Due to a larger canopy layer, the transmissivity decreases,
and therefore, less information about the soil and its moisture content is present within the
SAR signal. During the heading stage of plants, the uncertainty begins to decrease again
and it reaches its minimum during the ripening stage. Although the maximum height of
the canopy is reached, the transmissivity increases and, therefore, the uncertainty of soil
moisture estimations decreases. The higher transmissivity might be explained by the loss
of water within the vegetation, whereby the SAR signal is less attenuated by the canopy,
and therefore, the SAR signal provides more information about the soil [58–60]. Changes in
incidence angles do not result in varying soil moisture uncertainties for the IEM_B model
combination, whereas within the phenology stages stem elongation to fruit development,
the Oh92 model combination exhibits differences in soil moisture uncertainties for varying
incidence angles. For Oh92 with SSRT, a deviation in backscatter of 0.2 dB for an incidence
angle change from 35◦ to 44◦ does result in an uncertainty disparity of up to 0.08 cm3/cm3.
The results show that the uncertainties in soil moisture estimation of IEM_B and Oh92 have
similar values; are highly correlated to different vegetation stages; and in the case of Oh92,
are also dependent on the incidence angle.
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Figure 9. Polarimetric entropy to scattering alpha angle plane of dual (VV/VH) polarimetric eigen-
decomposition for different incidence angles (x-axis) and various phenology stages (y-axis) of wheat
field 508. Colors from blue to red symbolize the distribution density. The H-alpha plane segmentation
for dual (VV/VH) polarimetric eigen-decomposition is from Ji and Wu [56].
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Figure 10. Validation results in terms of ubRMSE for RT models Oh92 and IEM_B with SSRT. The results are segmented in
the x axis by different spatial aggregations (single pixel to field scale). Different colors symbolize the data (sub)sets used
due to separation of incidence and azimuth angles.

Figure 11. Sensitivity analysis of the RT model IEM_B with SSRT. Deviations in the backscatter of
0.2 dB, 0.5 dB, and 1.0 dB are correlated with soil moisture uncertainty (a). Different acquisition
geometries (indicated by the colors red, blue, green, and yellow) of the data set used and the
calibrated transmissivity for each time step (b). In situ data of vegetation descriptors height and LAI
(c). Vegetation phenology observed according to the BBCH scale [57] (d).
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Figure 12. Sensitivity analysis of RT model Oh92 with SSRT. Deviations in the backscatter of 0.2 dB,
0.5 dB, and 1.0 dB are correlated with soil moisture uncertainty (a). Different acquisition geometries
(indicated by the colors red, blue, green, and yellow) of the data set used and the calibrated transmis-
sivity for each time step (b). In situ data of vegetations descriptors height and LAI (c). Vegetation
phenology observed according to the BBCH scale [57] (d).

5. Discussion

To monitor high temporal dynamics of soil moisture, a time series with up to daily
acquisitions is very useful. Currently, the Sentinel-1 satellites can provide time series with
almost daily (1.5 days) acquisitions at mid-latitudes. However, due to different acquisition
orbits, the images can vary in acquisition geometry and timing, which has an effect on the
SAR signal. Our results show that various azimuth angles for daily consecutive acquisitions
of wheat fields have only a minor impact on observed Sentinel-1 backscatter differences.
However, a comparison of images with various incidence angles reveals backscatter varia-
tions in the range of up to 3 dB. Using images with similar incidence and diverse azimuth
angles, backscatter variations between images of consecutive acquisition days are min-
imal to negligible. Lower differences in backscatter are observed for incidence angles
around 35◦ than for 44◦. A different spread of incidence angle variation in the observations
(35–36◦ vs. 43–46◦) might cause these differences in the backscatter. The lower backscatter
differences between incidence angles 35–36◦ compared to 43–46◦ might be caused by the
slightly higher incidence angle variation between the observations used for the different
orbits. A comparison of the RT model results and Sentinel-1 backscatter observations for
“All-50 m” (Figure 3) and “Azi-50 m” (Figures 4 and 5) reveal trend mismatches between the
RT modeled and observed Sentinel-1 backscatter for consecutive time steps with incidence
angle variations from the beginning of June until harvesting (corresponds to phenology
stages from booting to senescence). When using (sub)sets with similar incidence angle and
varying azimuth angles (“Inci-50 m” Figures 6 and 7), a trend mismatch between the RT
model and Sentinel-1 backscatter is not found. Since the incidence angle is implemented as
an input variable within the RT models applied [23,30,37,41], we expect that the RT models
should be able to sufficiently consider Sentinel-1 backscatter differences due to incidence
angle variations for the entire growing season. However, the trend mismatch observed
in later phenological stages (booting to senescence) of the wheat fields implies that the
simple model approach falls short in handling variations within a dense time series if the
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canopy layer is fully developed. By calibrating the empirical parameter coe f for each orbit
constellation separately (Figure 8), the drawbacks in precise modeling of all scattering
mechanisms by simplified models (vegetation and soil) can be compensated. While more
complex models might account for incidence angle variations in a more accurate way, they
may be more inappropriately applied due to missing but necessary a priori/input mea-
surements. As several studies have already found that backscatter characteristics change
during or after the phenology stage of heading [60–62], we explored simple RT models by
handling variations in incidence angles by performing a dual polarimetric (VV and VH)
eigen-based decomposition (Figure 9). These results indicate that a change in the scattering
mechanisms starts at the end of the phenology stage of stem elongation. Furthermore,
they convey that varied backscatter characteristics for wheat fields might significantly
depend on the incidence angle, whereas the azimuth angle seems to play a minor role.
The shortcoming of simplified RT model approaches when handling various incidence
angle scenarios is most likely related to inaccurate modeling of the different scattering
mechanisms. As simplified models are often preferred over complex scattering models,
further investigations with a larger sample of wheat fields and preferably with fully polari-
metric SAR data should be carried out to verify the obtained results and to find a simple
empirical or physical model solution that might be able to enhance the models by keeping
their simplicity. In this context, an often-used strategy of incidence angle variations by
normalizing the incidence angle [40,63–65] was ruled out. An examination of the Sentinel-1
time series of winter wheat fields observed revealed that incidence angle normalization
of the entire time series are not useful due to contradicting trends between consecutive
Sentinel-1 observations, variations in acquisition scenarios, and different phenology stages
in the wheat growing season.

In light of exploring the possible use of Sentinel-1 data and simplified backscattering
models for precision farming purposes, where sub-field variability needs to be preserved,
a quantification of model-to-observation mismatch was carried out in absolute numbers
(dB) for different aggregation scenarios (Figure 10). With a larger spatial aggregation, an
accuracy increase in backscatter estimation (in comparison to the Sentinel-1 observations)
was found that is similar to that in Pierdicca et al. [66] or Carranza et al. [64]. This was
expected. However, the quantification in dB shows differences between single-pixel (SP)
and 30 × 30 m (30 m) resolutions as well as single-pixel and field-scale (FS) aggregations of
up to 0.2 dB and 0.5 dB, receptively. The backscatter differences found are relate to small
deviations in the soil moisture estimation by 0.01 cm3/cm3 (SP to 30 m) and 0.02 cm3/cm3

(SP to FS) for the early and late vegetation stages and up to large variations of 0.13 cm3/cm3

(SP to 30 m) and 0.19 cm3/cm3 (SP to FS) for the phenology stages stem elongation to fruit
development. The variations in soil moisture during the early and late vegetation stages
indicate some opportunities for providing information for precision farming. However,
during the phenology stages of significant vegetation growth (late stage of stem elongation
to heading) the deviations in possible soil moisture estimation increase, greatly hampering
precision farming applications. Since accurate soil moisture estimation highly depends on
reliable information about the canopy, the fusion of optical (Sentinel-2) and microwave
(Sentinel-1) time series [67–69] might provide useful phenology stage-based information
in terms of LAI, NDVI, VWC, or biomass. The increase in soil moisture sensitivity of the
radar signal for later vegetation stages is further related to the loss of plant water after the
heading stage, which leads to a more transparent canopy layer and higher sensitivity of
the radar waves to the soil surfaces [26,58,60,70]. These findings of high surface scattering
during the end of the vegetation period are also supported by similar polarimetric entropy
and scattering alpha values for the tillering and ripening stages (Figure 9).

6. Conclusions

Simulations of the RT model combinations (IEM_B with SSRT and Oh92 with SSRT)
were compared to a dense Sentinel-1 VV backscatter time series. By considering Sentinel-1
images recorded with the available acquisition geometry, a dense time series with a mean
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revisit time of 1.5 days was achieved for the winter wheat test site near Munich, Germany.
Thus, different (sub)sets (separation by acquisition geometry) of the dense time series were
evaluated in time and space.

Backscatter variations between individual Sentinel-1 scenes with various acquisition
geometries (different orbits) were found to be mainly driven by changes in incidence
angles, whereas the azimuth angle was found to be negligible. The RT models used
appear incomplete regarding accurately modeling backscatter variations due to incidence
angle changes for a fully developed winter wheat canopy. It was demonstrated that,
when using Sentinel-1 images with the same incidence angle (mono-incidence case), the
ubRMSE between the backscatter modeled and the Sentinel-1 backscatter decreases by
up to 0.3 dB compared to the multi-incidence case with ubRMSEs of 1.93 dB (Oh92 with
SSRT, “Sep-FS”) and 1.68 db (IEM_B with SSRT, “Sep-FS”). The best fit results between
the backscatter modeled and the Sentinel-1 backscatter were achieved by selecting scenes
with incidence angles around 35◦. Further investigations of the scattering mechanism
changes by a dual polarimetric eigen-based decomposition of the VV and VH Sentinel-1
backscatter data for wheat fields showed more significant divergence during the vegetation
period for steep incidence angles of 35◦. During phenological stages from stem elongation
to fruit development, a clear separation in terms of polarimetric entropy and scattering
alpha angle values could be made between steep (35–36◦) and shallow (43–45◦) incidence
angles. Differences between the early vegetation stages (tillering) and late vegetation
stages (ripening) were marginal. It was found that the types of scattering mechanisms
that appeared during the vegetation period are also dependent on the incidence angle
used during acquisition. Hence, observing with a dense time series of Sentinel-1 and
therefore diversity in incidence angle could mean mixing various scattering mechanisms,
as observed in our study. Therefore, when modeling a dense Sentinel-1 time series using RT
models, the models applied might need a certain flexibility in terms of model design to take
into account potentially occurring scattering mechanisms and their weighting depending
on acquisition scenarios and phenology stages.

An analysis of different spatial backscatter aggregation scenarios (single pixel to field
scale) revealed improvements in the ubRMSE by up to 0.5 dB. Changes in backscatter
between single-pixel and 30 × 30 m aggregation as well as single-pixel and field-scale
aggregation were related to possible soil moisture uncertainties. Only small soil moisture
uncertainty differences between different aggregation scenarios were shown for the early
vegetation stages with a small canopy layer (tillering) and the late vegetation stages
(ripening and senescence), where the winter wheat canopy should be almost transparent
for C-band microwaves. Higher soil moisture uncertainties occurred for the vegetation
stages stem elongation to heading. The sensitivity change is related to a canopy layer
with 95 cm height by using C-band (5 cm wavelength) data. Hence, to estimate soil
moisture under a changing vegetation cover (growing season of wheat), a variety of
biomass, structure, and vegetation water scenarios have to be accounted for. Unfortunately,
these changes in conditions are not easy to simulate electromagnetically with one scattering
model or one model-combination. Hence, further research on approaches using shorter
time series or RT models with limited variable parameters for calibration of the model
might be promising prospects.

Simplified RT model approaches, such as that applied in this study, are well established
for soil moisture estimation from active microwave (SAR) data. However, little attention
is paid to differences caused by incidence angle variations between consecutive images.
The implementation of the incidence angle within the RT models used can mislead one
to assume that backscatter diversity due to variation in incidence angles is sufficiently
accounted for. These differences lead to imprecise soil moisture estimations. Our study on
the winter wheat fields of one growing season shows that the shortcomings of simplified RT
model architectures used to handle time series consisting of images with varied incidence
angles can be at least partly compensated for by including a calibration coefficient to
individually parameterize the modeled transmissivity for the varying incidence angle
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scenarios. Our simple approach of just calibrating one empirical parameter sheds light
on the possibilities for adjusting model simulations for a dense time series of Sentinel-1
observations on winter wheat. Nevertheless, further investigations have to be carried out
on the simple adaption of the RT models developed in terms of the applied calibration
parameter. The usefulness of integrating possible the scattering mechanism changes
between different phenology stages or the adaption of the approach presented to other
crop types might be an interesting follow-up research topic.
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