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Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse
Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course
of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in
1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial
assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify
single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions
using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each
other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant
rs150547358 had the lowest P value = 7.2 x 10 '° with effect estimate beta = 1.16 (95% c.i: 1.11, 1.22). Implementing data of the
FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the
difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect
estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to
unmask novel associations, adding time as a dimension to the effects of genomics.
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INTRODUCTION and actions in daily life [1, 2]. As humans age, EFs pass different
The term “executive functions” (EFs) describes a group of higher- developmental stages, in which great variability is observed both
level cognitive abilities [1], including the regulation of thoughts within and between individuals [3, 4]. EFs naturally decline with
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advanced age [4-6] in a gender-specific manner [7] and
diminished EFs are also observed in the longitudinal course of
severe mental disorders, such as schizophrenia [8]. In particular,
EFs appear to be generally impaired in psychiatric patients
suffering from schizophrenia, depression [4], or bipolar disorder
[9]. Deficits are also associated, for example with decreased
abilities to perform routine tasks [4]. Neurobiologically, EFs are
linked intimately to the prefrontal cortex, as exemplified by the
famous case of Phineas Gage [10].

There are many definitions of an EF [3], as it represents an
umbrella term for multiple cognitive processes [2]. An influential
theory of EFs is the “unity and diversity” concept [3, 11] that
describes EFs as a “collection of related but separable abilities” [3].
EFs are differentiated into three latent core skills [3, 4, 11]: (i) set-
shifting, allowing an individual to approach tasks flexibly and
adjust to new conditions [3, 4], (ii) updating (or working memory),
with respect to the monitoring, manipulating, and updating of
information [4, 11], and (iii) inhibition, enabling an individual to
control behavior, emotions, and responses [4, 11]. In general, EFs
rank among the “most heritable psychological traits” [3]. On the
behavioral genetic level, a highly heritable latent (common) factor
affecting all EF aspects accounted for 99% of the variance
common to all three skills [3]. Regarding specific EF components,
the heritability estimates of set-shifting assessed by the Trail
Making Test (TMT) range from 0.34 to 0.65 [12] and the estimates
of updating measured by digit span tests range from 0.27 to 0.62
[12] (these results were obtained in twin studies). Recently, several
genome-wide association studies (GWASs) on EFs have been
undertaken [13-18]; however, genome-wide significance was not
attained [2, 12]. Moreover, the genetic basis of variation over time
is yet to be elucidated [19].

Here, we performed two longitudinal GWASs for the set-shifting
and updating EF abilities assessed by the Trail Making Test, part B
(TMT-B) and the Verbal Digit Span backwards (VDS-B), respectively,
to identify genetic variation associated with the course of EFs
across time. We used a linear mixed model (LMM) to model the
dependence structure of the longitudinal PsyCourse Study [20]
with four measurements across time. To validate our findings, we
also performed a replication study using data from the FOR2107
consortium [21], which assessed two measurements over time.

MATERIALS AND METHODS
Discovery sample: PsyCourse Study
The PsyCourse Study is a multicenter longitudinal study that combines
multilevel omics and longitudinal data [20]. We included 1338 genotyped
individuals (dataset version 3.0) recruited in different centers in Germany
and Austria, comprising patients from the affective-to-psychotic spectrum
(377 bipolar | disorder, 100 bipolar Il disorder, 420 schizophrenia,
95 schizoaffective disorder, 6 brief psychotic disorder, 9 schizophreniform
disorder, and 73 with recurrent depression) and 258 psychiatrically healthy
controls. The study protocol was approved by the respective ethics
committee for each study center and was carried out following the rules of
the Declaration of Helsinki of 1975, revised in 2008 (see ref. [20]). All study
participants provided written consent [20]. The patients were diagnosed
using parts of the Structured Clinical Interview for DSM (SCID-I) and were
classified according to the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) criteria. The patients were broadly
differentiated in patients with predominantly affective symptoms (550
“affective”, with recurrent depression, bipolar | and Il disorders) and
patients with predominantly psychotic symptoms (530, “psychotic”, with
schizophrenia, schizoaffective, brief psychotic and schizophreniform
disorder) [20]. Deep phenotyping was performed during four visits, each
~6 months apart (see ref. [20]), thus corresponding to time t of the
longitudinal course.

Set-shifting and updating were assessed with the Trail Making Test, part
B (TMT-B) [22] and the Verbal Digit Span backwards (VDS-B) [23],
respectively. The TMT-B requires an individual to connect numbers
(numbers: 1-26) and letters of the alphabet in ascending alternating
order. The test score was the time (in seconds (s)) needed to finish this
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exercise. As recommended by [24] participants with a time >300 s were set
to 300 s. VDS-B measures the updating ability. Here, a trained interviewer
verbally presented up to seven pairs of number sequences with increasing
length, and the study participant was requested to repeat each sequence
in backwards order, receiving a point score for each correctly repeated
sequence. The maximum possible score for each sequence pair was 2. The
process was terminated when an individual failed to repeat correctly both
of the sequences in a pair of given length. The test score was the sum of all
correctly repeated sequence pairs (range: 0-14).

Replication sample: FOR2107 consortium

To perform the replication study, we used data from the research
consortium FOR2107 [21], a longitudinal cohort with two centers, Marburg
and Minster (Germany), in which deep phenotyping was performed twice
~2 years apart [21]. In our analyses, we used a sample comprising 1795
individuals with genotype data available divided into five different
diagnostic groups (851 affective: 107 bipolar disorder and 744 depression,
112 psychotic: 68 schizophrenia and 44 schizoaffective disorder, and 832
healthy controls). The participants were classified into the same three
broad diagnostic groups (affective, psychotic, and controls) as in the
discovery sample. Set-shifting was assessed by the TMT-B. In this cohort,
participants with a time >180s were excluded. For updating, we used the
Letter-Number-Sequencing Test (LNST) as a substitute for the VDS-B. Here,
a trained interviewer verbally presented an increasing sequence of letters
and numbers, which the participant was requested to repeat, starting with
the numbers in ascending order and ending with the letters in alphabetical
order. The test was terminated when the individual repeated the same
sequence incorrectly four times. The sum of the correctly repeated
sequences was the test score, with a maximum of 24.

Genotyping and imputation

Discovery sample. The lllumina Infinium PsychArray (lllumina, USA) was
used for genotyping purposes [20]. Genotypes were imputed with
SHAPEIT2/IMPUTE2 using the 1000 Genomes Project Phase 3 data as a
reference panel. Quality control (QC) was performed according to standard
procedures, as described previously [25] (details Supplementary List 1) and
poorly imputed genetic variants (INFO <0.8) were excluded [20]. We
included ~8.2 million SNPs with minor allele frequency (MAF) > 0.01 in our
analysis. Ancestry principal components (PCs) were computed with PLINK
v1.9 [26] (http://pngu.mgh.harvard.edu/).

Replication sample. To replicate genome-wide significant SNPs of the
discovery sample, we analyzed the genotypes of these nine significant
SNPs (SNPR). We additionally analyzed 187 suggestive SNPs (SNPyg) with a
P value <1x 107" in the discovery sample (99 for TMT-B, 88 for VDS-B/
LNST) in an exploratory analysis. For the QC in the replication sample,
please refer to Supplementary List 2.

Statistical analysis

We performed regression analysis, log-transforming the TMT-B values
(IgTMT-B) to fulfill the linear mixed model requirement of normally
distributed errors. We present effect estimates with 95% confidence
intervals (c.i.s) transformed back to the original scale. Furthermore, we
investigated missing data patterns across visits and diagnoses for violation
of a missing-at-random (MAR) mechanism [27]. We computed the mean
and standard deviation (s.d.) of EFs per visit and diagnostic group, testing
for differences in means between diagnostic groups at each visit. For the
discovery sample, we fitted LMMs to the longitudinal time course of
IgTMT-B and VDS-B, investigating each phenotype first without the SNP
terms, and subsequently including them. For each SNP, the fitted model
for individual J at visit/time t; with j=1, 2, 3, 4 was as follows:

5
Yij = By + By tj + B,age; + Bzgender; + Bydiagnosisi + >~ By, PCik+
k=1
boi + byt + cicenter; + B1oSNP; + B4, SNP; = tj + &

The LMM adjusted for age; gender; diagnosis;, PCy, i.e., age at visit 1,
gender, diagnostic group (affective, psychotic, or control), and the top five
PCs, for each individual j, the latter to correct for population stratification.
We allowed for random intercepts and slopes by, b;; of the trajectories and
a random center effect.

For the respective SNP under consideration, we integrated the main
effect (SNP) and the SNP-by-time interaction (SNP*t;), where the latter is
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Diagnostic groups mean (s.d.) or percentage (%)

Group difference

Table 1. Characteristics at visit 1 in discovery sample and replication sample by diagnostic group.
Study sample Phenotypes
Affective
Discovery sample Age 446 (13.4)
Females 49.8 %
TMT-B 83.9 (42.6)
VDS-B 6.2 (2.1)
Replication sample Age 37.6 (13.4)
Females 63.9 %
TMT-B 57.7 (23.9)
LNST 15.7 (3.3)

Psychotic Controls P value
41.1 (12.1) 37.1 (15.6) -

39.6 % 58.1 % =

92.3 (41.3) 59.4 (25.1) <2x107'®
5.5 (2.0) 7.3 (2.9) <2x10°'®
384 (11.3) 34.1 (12.6) -

446 % 63.0 % -

73.6 (30.9) 48.8 (18.6) <2x10°'®
13.4 (3.5) 16.8 (3.2) <2x10°'®

The proportion of females (%), means of age (years), TMT-B, and VDS-B/LNST with standard deviation (s.d.).
We tested for differences in means between the diagnostic groups for IgTMT-B and VDS-B. Results are only displayed for visit 1 as results for the other visits

proved to be similar.

tested (two-sided) for the influence of the SNP on the longitudinal course
(see ref. [28]). The interaction term consisting of SNP X diagnosis X time has
not been investigated due to the limited sample size. We assumed an
additive genetic model with each considered SNP in dosage format. We set
the genome-wide significance level to 5x 108, yielding replication SNPs
(SNPg), and set the level for suggestive significance to 1 x 10> for SNPs to
be further explored (SNPyg, not to be replicated). For the replication
sample, we separately determined linkage disequilibrium (LD) blocks with
r* > 0.8 for both SNP sets, correcting for multiple testing by dividing 5% by
the number of LD blocks for the SNP set [29]. In the end, the SNPg were
contained in a single LD block, so the significance level for replication
could be set to 5%. The significance levels for the exploratory analysis of
the SNPyr were set to 0.05/24 = 0.0021 for IgTMT-B and 0.05/12 = 0.0042
for VDS-B/LNST, respectively.

For the SNP analysis in the replication sample, we analyzed the
difference (diff) of IgTMT-B (LNST) between the visits as outcome and SNP,
age, gender, diagnosis, and PC's as covariates. We applied the difference
model, as the LMM above contained too many parameters for the
replication sample with only two measurements (in total: 613 individuals)
and incomplete data resulting in low statistical power (data not shown;
two-sided test). Here, the SNP effect may be interpreted as the difference
between the average change between the genotypes, especially since
SNP, displayed only two genotypes.

We computed LD and haplotypes for Europeans with LDlink [30] and
created a regional plot with gene identification using Locus-Zoom [31].
Finally, the average longitudinal course over time per genotype along with
95% c.i. is displayed for the top SNP.

All statistical analyses were performed with R, version 3.5.1 (https://www.
r-project.org/). The LMM was fitted with the R package Ime4 [32] and P
values were computed using the Satterthwaite approximation of the
ImerTest package [33, 34].

RESULTS

Behavioral characteristics of the EFs

Discovery sample. In comparison with controls, the disease
groups were slightly older on average (Table 1). A total of 1272
(1297) individuals had at least one TMT-B (VDS-B) measurement,
demonstrating a similar decrease of available data in each
diagnostic group (Table 2). Missing value patterns did not hint
at any violation of a missing-at-random (MAR) assumption (data
not shown). Figure 1 illustrates the mean longitudinal course of
TMT-B (left) and VDS-B (right) for each diagnostic group with 95%
c.i.s; controls differed significantly from patients (see Fig. 1, c.i.s).
Generally, executive performance increased over time, with
differences between affective and psychotic patients decreasing
over time. An improvement in the respective EF performance is
reflected by a decreased TMT-B score for set-shifting and an
increased VDS-B score for updating. The individual trajectories
were highly variable (Supplementary Fig. 1). The mean difference
between diagnostic groups was significant at each visit when
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adjusting for age and gender (see Table 1). Table 3 displays the
time effect estimates in the LMM for each phenotype without SNP
stratified by diagnostic group. For IgTMT-B, the time effect within
each diagnostic group is highly significant and similar across
groups. For VDS-B, the time effects for the two patient groups are
similar, very small, and only nominally significant in the psychotic
group, but larger and highly significant for controls.

Replication sample. We analyzed 1795 genotyped individuals
with at least one TMT-B and LNST measurement (we deleted data
for one individual who had a value larger than the maximum score
of 24). Phenotypes were measured at both visits for 34.2%. The
means of the diagnostic groups at each visit were significantly
different (Table 1) during which the controls had again the best EF
abilities, followed by affective and then psychotic individuals
(Supplementary Fig. 2).

GWAS of the discovery sample

The QQ-plot (Supplementary Fig. 3) demonstrates that the
genomic inflation factor was A=1.0034 for IgTMT-B and A=
0.9999 for VDS-B, hence not indicating any inflation. As illustrated
on the Manhattan plots (IgTMT-B Fig. 2A, VDS-B Fig. 2B) for the
SNP-by-time interaction in the LMM, we identified nine genome-
wide sir%niﬁcant SNPs on chromosome 5 (all imputed) in one LD
block (r" > 0.85) for IgTMT-B, and none for VDS-B. For IgTMT-B, 99
SNPs were suggestive, for VDS-B 88.

For the nine genome-wide significant SNPs of the GWAS,
Supplementary Table 1 displays estimates for the effect of the
SNP-by-time interaction on IgTMT with 95% c.i. and P values. The
top SNP rs150547358 (P value = 7.2 x 10~ '°) had an effect of 1.16
(95% c.i. 1.11-1.22) seconds per measurement (spm) in the
discovery sample on the original TMT-B scale. We present the
mean plot for the top SNP in Fig. 2C, where the TMT-B score
increases over time for heterozygotes with risk allele “C". Figure 2D
displays the regional Manhattan plot with three genes in or near
the nine significant SNPs. Four of them, including rs150547358,
are located in an intron region of ring finger protein 180 (RNF180)
(Supplementary Table 1). Other genes located nearby are
regulator of G protein signaling 7 binding protein (RGS7BP) and
5-hydroxytryptamine receptor 1A (HTR1A), but neither contained
any of the nine SNPs. For the SNP main effect, also included in the
model, we did not observe any genome-wide significant SNPs
(Supplementary Fig. 4; P <5x 1075).

Difference analysis of the replication sample

The analysis of the differences also identified the top SNP,
rs150547358, as significant (P=0.015), and thus replicated this
GWAS-significant LD block. The effect estimate for the top SNP
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57 (22%)
60 (23%)

178 (69%)
178 (69%)

225 (82%)
225 (87%)

Controls
258 (100%)
257 (99.6%)

227 (48%)
236 (45%)

252 (46%)
265 (50%)

295 (56%)
320 (60%)

Psychotic
456 (86%)
479 (90%)

182 (33%)
185 (34%)

234 (43%)
234 (43%)

315 (57%)
324 (59%)

Diagnostic groups

506 (92%)

503 (92%)
Absolute numbers and percent of group total within the diagnostic group with 550 affective individuals, 530 psychotic individuals, and 258 controls.

Available data of TMT-B and VDS-B per visit for the discovery sample.
Affective

EF core skill
Visit (t)

Table 2.
TMT-B

SPRINGER NATURE

VDS-B

was 0.85 (95% c.i. 0.74-0.97) on the original scale and the highest
effect size in the scale of the analysis (greatest negative effect).
The estimates for the other SNPs were slightly larger when
transformed back to the original scale and also positive (see
Supplementary Table 1 for the summary).

Exploratory analysis of the GWAS-suggestive SNP\g in the
replication sample yielded no significant results after multiple
testing corrections for either phenotype (Supplementary Fig. 5).

DISCUSSION

We performed a GWAS on the longitudinal course of EFs and
detected nine SNPs within the same LD block associated with
change over a relatively short period of time (~1.5 years) in the EF
core skill set-shifting. Importantly, we were able to replicate a
significant result for this LD block in an independent sample,
which was observed in a heterogeneous population including
controls and different psychiatric disorders of the affective-to-
psychotic spectrum across age groups. Analysis of TMT-B
performance of C-allele carriers, in contrast to the AA genotype,
revealed a pronounced slowing over time.

Recently, the analysis of longitudinal data has come to the fore
in genetic research. Multiple methods have been developed to
perform GWAS with longitudinal data [35-40] for binary as well as
continuous phenotypes. These analysis methods are mostly
applied to analyze long-term developments of the investigated
phenotypes [41, 42], as most data comprise multiple measure-
ments over a relatively long period of time. These longitudinal
studies often detect group effects [8] based on age or baseline
cognitive functions, for example. To date, short-term variability, for
example with respect to the longitudinal course of schizophrenia
has been found as reviewed [8], but without considering a
potential genetic effect. In our longitudinal GWAS, we enter
uncharted territory as we study short-term courses of cognitive
phenotypes in relation to the genetic background. The discovery
sample, the PsyCourse Study, is unique in this sense, as it assesses
the phenotypes multiple times in a very heterogeneous sample
over a relatively short period of time (18 months). Here, the main
interest is the observation of short-term changes specific to a
phenotype, such as EF skills, and the use of newly identified
characteristics to detect genotype-phenotype associations. The
genetic variants found in this study may, if further replicated, be
used to improve clinical evaluation of the longitudinal course of EF
skills. Knowledge of the genetic status of a patient may, in the
future, enhance the interpretation of the course of EF abilities e.g.,
during psychiatric treatment. Moreover, special training programs
could support patients with a known genetic disposition to lack
improvement over time. To our knowledge, no other study has
performed such analyses to date.

Behavioral results

Prior to our GWAS, we studied the short-term courses of changes
in cognitive abilities, focusing on the differences between the
diagnostic groups considered. In the discovery sample, we
observed an identical pattern for both phenotypes: psychotic
individuals demonstrated the lowest EF abilities, followed by those
with affective disorders and then the control individuals. This
greater EF impairment in psychotic individuals compared to
controls is well-documented, as exemplified by [43]. However,
regarding the impairment difference between bipolar (affective)
and schizophrenic (psychotic) patients, there are various studies
[43-48] analyzing these differences. The hypothesis exists that
bipolar patients demonstrate less severe impairment in compar-
ison to schizophrenic patients [49]. Some studies [44, 46, 48] lend
their support to this hypothesis, though not always statistically
significant, whereas others detected similar levels of impairment
in symptomatic patients [45, 47]. In our analysis, we observed a
statistically significant difference between affective and psychotic
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Fig. 1 Longitudinal course of TMT-B score (time in seconds, left) and VDS-B score (working memory capacity, right) for each diagnostic
group in the discovery sample. Displayed are means with 95% confidence interval for each visit 1, 2, 3, 4, ~6 months apart.

Table 3. Results of the LMM of the discovery sample to test the time effect on IgTMT-B and VDS-B within each diagnostic group.

EF core skill TMT-B

Diagnostic groups Time effect (t) B 95% c.i.
Affective 0.957 0.94, 0.97
Psychotic 0.950 0.94, 0.96
Controls 0.947 0.93, 0.96

The effect estimates p of IgTMT-B are transformed back to their original scale.

individuals at visit 1 but detected a decline in these discrepancies
over time. The abilities of these two diagnostic groups converged
with patients from the psychotic group displaying an improve-
ment in their skills and patients from the affective group
presenting a more constant course. Documentation of the EF
convergence is only possible thanks to the longitudinal design of
the discovery sample and represents a great advantage of this
study design.

Owing to the slightly different age structure of the two study
samples, with the discovery sample being minimally older on
average at visit 1, we further observed the impact of age reflected
by the minimally lower average test score. That is, the discovery
sample had lower VDS and greater TMT-B scores than the
replication sample. The TMT-B mean scores may also be
influenced further by the different cutoff thresholds of 300s in
the discovery sample and 180 s for the replication sample.

Genome-wide association studies

To our knowledge, the LD block comprising the nine SNPs we
detected for the set-shifting ability has been not identified in any

Translational Psychiatry (2021)11:386

VDS-B

P value B 95% c.i. P value
9.8x 10~ 0.076 0, 0.15 0.053
<2x10°'6 0.086 0.02, 0.15 0.011
6.1%x10 " 0.288 0.17, 0.41 27x10°%

GWAS before. These SNPs are part of two common haplotypes,
that is, 97.7% carry the haplotype consisting of the major alleles
and 1.7% have the rare haplotype with only minor alleles in
European populations [30]. However, we did not observe different
allelic distributions between the three diagnostic groups (Supple-
mentary Table 2). We displayed the longitudinal course for the two
genotypes “AC” and “AA” of the top SNP rs150547358, observing a
steady increase in the TMT-B score for “AC” and an almost
unchanging course for “AA”. Consequently, the minor allele C was
associated with a decline in the set-shifting ability of ~5s over a
period of 18 months for AC with a large c.i. at the last visit owing
to the small number of available heterozygous individuals. This
result reflects a relatively high decrease in the ability over this
short period. Furthermore, it portrays a highly interesting
observation, which is further underpinned when we consider
the genetic region of the nine SNPs. Variant rs150547358, the
significantly replicated SNP, is one of four associated SNPs directly
located in the ring finger protein 180 (RNF180) gene on
chromosome 5q12.3. It is an E3 ubiquitin-protein ligase [50],
whose product is involved in protein modification. RNF180 is
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Fig.2 Results of the genome-wide association studies of the discovery sample. A Manhattan plot of the GWAS of IgTMT-B in the discovery
sample. The lines in (A) and (B) indicate the thresholds for the genome-wide significance of 5x 108 (red) and for suggestive SNPs (blue, P<
1x 107°). B Manhattan plot of the GWAS of VDS-B in the discovery sample. C Mean profile of TMT-B by the top SNP rs150547358 genotypes
for the discovery sample (1039 AA, 28 AC, 0 CC) with the 95% confidence intervals. D GWAS regional Manhattan plot of chromosome 5 for
IgTMT-B of the discovery sample. Colors indicate the LD values (r*) of SNPs with rs150547358 (in purple).

associated with the regulation of monoamine levels in different
brain regions, for example, the prefrontal cortex (PFC) in RNF180
knockout mice [51]. The PFC is a critical part of the frontal lobe in
the development of EFs [4, 52]. Another gene located in the
nearby region, HTRT1A (5-hydroxytryptamine receptor 1A), is an
important receptor of serotonin (5-HT) also essential to the
prefrontal lobe. More importantly, HTR1A is an autoreceptor,
located on the cell bodies of serotonin-synthesizing neurons of
the brainstem dorsal raphe nucleus, helping to maintain home-
ostasis in serotonergic function [53]. Furthermore, a genetic
polymorphism in the 5-HT system has previously been implicated
in EF performance [12].

SPRINGER NATURE

In an additional exploratory gene-set analysis performed with
MAGMA v1.06 as a part of the FUMA pipeline (https://fuma.ctglab.nl/)
[54], we did not receive significant (Bonferroni-corrected P values
<0.05) pathways for either phenotype.

Our results are a first step in the direction of understanding the
molecular genetic influences on the longitudinal course of EFs. We
were unable to consider the third core ability, inhibition, which
also plays an important role for EF, because we could not fulfill a
specific assessment requirement resulting from the multicenter
and interview-based structure of the discovery sample [20]. Many
unknown factors remain, such as the genetic aspects due to the
correlation of the different EF abilities, as we only concentrated on
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individual EF core skills in two separate analyses. According to the
“unity but diversity” concept [11] that also concerns the genetic
underpinnings of the EFs, a genetic study of a latent common
factor needs to follow. Further, we need to acknowledge the
problem of missing data which is a great challenge in longitudinal
studies as presented in our samples. Here, selecting the correct
analysis method, e.g. linear mixed models are imported but
generally, more longitudinal studies with multiple time points and
greater sample sizes will be required to unmask further time and
genomics interactions [19].

CODE AND DATA AVAILABILITY

R code and data will be available upon reasonable request by the authors. The
summary statistics of our analysis will be published in the GWAS Catalog (https://
www.ebi.ac.uk/gwas/).
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