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Abstract

Immunotherapies have changed the way how we treat cancer at all stages. The under-

standing of the immune system in individual tumor specimens guides the selection of

immune-modulating agents such as immune checkpoint inhibitors alone or in combina-

tion with other therapeutic agents that target, modulate or unleash the patient’s

immune system. Despite the similar histopathological diagnosis, each tumor is unique at

its primary site and site of metastasis, also depending on previous treatment regimens

or genetic alterations, such as chromosomal instability or acquired mutations. The clini-

cally well-established use of PD-1/PD-L1 inhibitors already requires the assessment of

its target molecules in different cells (viable tumor cells alone or in combination with

immune cells or immune cells alone) with different thresholds in various indications.

Anyhow, checkpoint inhibitors show the best overall response rate when immune effec-

tor cells like tumor-infiltrating lymphocytes are in close spatial proximity without being

suppressed by other humoral or cellular regulatory mechanisms. Therefore, immune

cell-rich tumors (“hot tumors”) are usually quite reactive to immune-modulating agents,

whereas other immune-depleted or immune-excluded tumor areas are less responsive

and require alternative treatment regimens such as modified immune effectors cells or

immune-stimulating agents, for example, oncolytic viruses. Here, we summarize the

relevance to understand the entire tumor heterogeneity and its environment, the

contextual relationship and spatial quantification of all immune and tumor cells along

with the genetic background of the individual cancer through the application of

multiplex in-situ technologies and the application of machine learning tools.
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1 | BACKGROUND

Immunology discoveries and advancements come in waves. More

than 100 years ago, different immune cells and their separate role in

infectious and neoplastic diseases became obvious and some

improvement in light microscopy contributed to the development of

cancer immunology as a separate subject. With the advancement

of analytical methods like immunohistochemistry (IHC), molecular

tools, and computational solutions, immunotherapies make a greater

impact in our clinical practice.1 Today, we have advanced diagnostic

tools at hand such as digital imaging for the objective and reproduc-

ible assessment of multiple markers at a time or on a single tissue slide

precisely quantifying the absolute numbers of functionally distinct

immune cells as well as their spatial distribution and contextual
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relationships in various tissue compartments.2 Different studies have

already shown an association between immune cell infiltrates in

selected tumor areas and improved outcome.3,4

With the integration of modern tools such as multiplexing

immune phenotyping,5,6 software solutions and machine learning into

the routine work of pathologists come a deeper understanding of the

communication network in tissues and reveal the existing intratumor

heterogeneity that has consequences for various treatment options.7,8

Along with the advancement of diagnostic tools, also immune-

therapeutic modalities emerged. Cytokine-stimulated tumor-

infiltrating lymphocytes (TILs) were also used to enhance an

anti-tumor effect as were vaccination strategies with tumor-specific

antigens or immune-stimulating viruses.9 A quantum leap was the

implementation of monoclonal and eventually engineered antibodies,

designed to target selected epitopes, followed by molecular

engineered T cells as chimeric antigen receptor (CAR) T cells.10,11

Such a complex and comprehensive arsenal of advanced thera-

peutic modalities requires a biomarker-based diagnostic strategy.

According to the understanding of the tumor heterogeneity, patholo-

gists may guide the oncologist to select the optimal treatment for

each individual cancer patient that will yield the best tumor response.

2 | IMMUNE TUMOR
MICROENVIRONMENT

It has always been a core task of histopathologists to describe the

resected tumor first as a gross specimen, followed by microscopic

inspection of different sites of the tumor, its surrounding

microenvironment, and its adjacent normal tissue. This yields a diag-

nosis according to the existing guidelines including a statement on the

prognosis and possible predictions for the most effective treatment.

At the end of the last century, Ki67 and Her2/neu were accepted

as the first predictive biomarker that required the pathologist to

strictly quantify those invasive cancer cells that (over)expressed those

markers in any part of the tumor area. In the meantime, a large number

of other biomarkers including overexpressed immune-related proteins

and molecular aberrations have been identified that guide therapeutic

strategies and decisions in many tumor entities.12 With respect to

immunological properties of tumors, it was Galon’s landmark paper in

201213 that demonstrated the combination and simultaneous pres-

ence of two markers (CD3 and CD8) with a defined spatial distribution

in different compartments of the cancer tissue (tumor center versus

invasive margin), which showed a better prognostic value than each

single marker alone.14 However, this requires a computer-based analy-

sis, and it is only possible with (1) a good understanding of cancer

immunology, (2) expert knowledge of the histopathologist reading the

case, and (3) the implementation of an automated image analysis tech-

nology. Galon’s group diligently worked out and proposed a classifica-

tion of different immune stages of tumors based on the quantity and

quality of immune infiltrates, ranging from “hot” to “immune-

suppressed/excluded” or even “deserted” (cold).15

Figure 1 gives a simplified overview of those different categories

and lists some potential biomarkers and morphological characteristics.

Other groups followed this example and included more immune cells

and immune-related biomarkers to further compartmentalize the tumor

microenvironment (TME), for example, in non-small cell lung cancer.16

F I GU R E 1 A simplified overview on the different categories of the tumor immune microenvironment and it lists some potential biomarkers
(PD-1/PD-L1, TIM3, CTLA-4, LAG3, arginase, indolamin-2,3-dioxygenase = IDO) and morphological characteristics that characterizes
immunological and morphological heterogeneity
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3 | TUMOR HETEROGENEITY

Tumor heterogeneity is an essential part of tumor development and

progression. It causes three significant problems: therapy resistance,

poor reproducibility of studies, and uncertainty of histomorphological

diagnoses. Tumor heterogeneity can be subdivided into intratumoral,

intertumoral heterogeneity, and interpatient.17 A different classifica-

tion discriminates clonal- from non-clonal heterogeneity. Whereas the

first form includes genetic aberrations (point mutations, deletions,

insertions, fusions, inversions, copy number variations) and epigenetic

aberrations, the second form consists of the microenvironment and

stochastic plasticity.18 Non-clonal heterogeneity can often be deter-

mined by histomorphological methods and is also correlated in part

with genetics. Type, number, and homogeneity of genetic alterations,

in turn, vary from tumor entity to entity and can undergo changes

under therapy. Melanoma and lung cancers, for example, are caused

by exogenic damage and harbor high numbers of homogeneous muta-

tions. On the other hand, glioma starts with few genetic alterations

and acquires a high number of aberrations during treatment with

Temozolomide, which results in substantial heterogeneity.19 Notewor-

thy, heterogeneity is not restricted to silent mutations. Driver muta-

tions can also occur subclonal.20 Both the detection and the failure of

its identification imply therapy relevant misinterpretations. Genetic

heterogeneity can be remarkable. Ling et al. identified 35 polymorphic

single nucleoid variations representing 20 tumor clones in a single

hepatocellular carcinoma that has been extensively sampled.21 Tumor

progression is an evolutionary process. The main topics of the

evolution theory also take place in tumor biology. Such principles are

selection, neutral evolution, contingency, convergence, gradualism,

and punctuated evolution.19 The detailed explanation of these princi-

ples is far beyond this review. However, all these mechanisms that

partly work in the opposite direction can lead to a considerable high

complexity that causes, in particular, vital challenges concerning the

correct diagnosis and therapy of such malignancies. Some genetic

aberrations can be identified on the protein levels by IHC, for example,

EGFR, ROS and ALK TP53. Depending on the context, these markers

are of diagnostic, prognostic, or predictive relevance. Besides this

clonal heterogeneity of genetic or epigenetic origin, non-clonal

heterogeneity represents a field, which is increasingly recognized.

Stochastic plasticity belongs to this category and reflects the inherent

variation of biochemical reactions resulting, for example, in different

protein expression levels.17 Although influenced in certain circum-

stances by genetic alterations like defect of the mismatch repair

(MMR) system, the TME also belongs to the non-clonal category.

4 | TARGET ANTIGEN HETEROGENEITY

The interaction of the tumor and its microenvironment can influence the

heterogeneity of the tumor by eliminating clones, which are more

vulnerable by the immunosystem because of its neoantigen formation.

Rooney et al. showed a gap between estimated and detected

neo-epitopes in several tumor entities, indicating the elimination of

neo-epitope-rich clones by the immunosystem.22 Tumor antigen presen-

tation is determined by number of tumor environmental and genetic

factors like the overall tumor mutational burden (TMB),23 the loss of

heterozygosity (LOH),24 or the somatic HLA class I loss.25 Also cancer-

associated fibroblasts (CAFs) play an essential role in tumor progression

by providing growth factors, cytokines, metabolic support, and tissue

remodeling.26 Moreover, CAFs can be the source of therapy resistance,

as shown by Hirata et al. for BRAF-inhibitor therapy in melanoma.27

These are broad but also cancer-type specific mechanisms to evade

immune surveillance but can also be used to identify the best possible

and individual treatment opportunity. The understanding of the tumor-

wide heterogeneity of target antigen expression is also an important

information for treatment selection especially in the field of immune

therapies.

5 | HETEROGENEITY OF PD-L1
EXPRESSION

The immunohistochemical evaluation of PD-L1 is currently the diag-

nostic backbone for the prediction for the response of a checkpoint

inhibitor therapy. PD-L1 testing is way more complicated than Ki-67

or Her2/neu scoring, because of different antibodies, different testing

algorithms, and constantly changing cut-offs. The reading and

reporting of PD-L1 scores requires skilled and trained pathologists,

also considering the substantial intratumorous heterogeneity of PD-1

and PD-L1 with prevalent expression in the invasive front. PD-L1

expression is not genetically determined but rather inducible through

soluble factors provided by immune cells like TILs. Differences in

intratumoral of PD-L1 expression is readily recognized in daily prac-

tice and documented in the literature.28–30 This results in differing

testing and also results between biopsies and relating surgical speci-

mens.31 Moreover, several authors report a considerable heterogene-

ity of PD-L1 expression between the primary versus lymph node

metastases32 and distant metastases.33 Biomarkers reflecting the indi-

vidual tumor immune microenvironment and tumor intrinsic factors

like TMB or MMR deficiency associate with the treatment efficacy of

anti-PD-1/anti-PD-L1 therapy. Microsatellite instability (MSI) seems

to play a tumor agnostic role, when pembrolizumab is given in MSI-

positive tumors regardless of the entity.14 Marabelle et al. have dem-

onstrated the association of TMB with outcomes in patients with

advanced solid tumors.34 Similar results have been obtained in hyper-

mutated tumors35 and TMB as an indicator for cytolytic activity and

prognosis in malignant melanoma and other tumors.36,37

6 | TISSUE IMMUNE PROFILING

Routine histopathology to diagnose cancer still heavily relies on

conventional hematoxylin and eosin (H&E) stains and an IHC usually

of single marker molecules. The existing guidelines provide guidance

on the composition of biomarkers that allow the diagnosis of certain

subtypes along with prognosis and the possibility to predict response

to different ways of treatment.
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Although molecular markers are already well established in many

indications and respective assays are readily available (e.g., mutational

analysis of EGFR, BRAF, K-RAS, ROS, and ALK or the assessment of

the overall TMB or chromosomal instability), the first immune-related

biomarker has recently entered the market. PD-L1 testing is an

accepted biomarker as a companion or complementary diagnostic for

various immune checkpoint inhibitors (ICIs). However, recent studies

have shown the relevance of other components of the immune sys-

tem that have a significant prognostic value and can be included in

therapeutic considerations.38 This does not only refer to TILs but also

refer to other cells of the monocyte–macrophage systems (Tregs,

MDSC, type 1/type 2 macrophages, natural killer (NK), or dendritic

cells [DCs]) and their spatial relationship to each other.39,40 Although

it could be shown that the spatial relationship, for example, proximity

of TILs with FoxP3 + Tregs in malignant melanoma, is a predictive bio-

marker for the therapeutic use of Ipilimumab, similar algorithms play

no role in low to intermediate prostate cancer.41 Instead, other con-

textual dimensions including macrophages have a higher informative

value related to prognosis and therapy selection.42

7 | IN SITU MULTIPLEXING

With the increasing understanding of the immunological heterogene-

ity of different cancer types and their TME as well as the availability

of more therapeutic modalities, more information needs to be

retrieved from the tissue specimens. While the number of tests

requested on each sample is increasing, the size of biopsies tends to

decrease (e.g., core needle biospsies), often limiting the availability of

tissue sections for the pathology lab. As a result, multiplexed IHC

techniques offer a solution to sample scarcity, by labeling an entire

panel of biomarkers on a single section where conventional methods

would require many serial sections. In situ multiplexing also enables

the identification of cell populations of increasingly complexes pheno-

types through colocalization of multiple markers on the same cells,

which would not be possible through the use of serial sections in con-

ventional methods. Modern multiplexing technologies allow the visu-

alization of up to hundreds of biomarker candidates on a single

slide.43–45 As these panels enter trials for clinical validation or valida-

tion, the combination of high complexity due to the number of

markers and their spatial relationship along with the large number of

relevant sample require would render a standardized and robust anal-

ysis of single and multiple (molecular or protein) marker molecules

implausible without the assistance of machines, such as the digitiza-

tion of images, computer-based image analysis, and further data

breakdown through machine learning tools. This applies in particular

to the assessment of spatial relationships to evaluate the contextual

information from high-dimensional functional interactions. The under-

standing of complex relationships through standardized tools and the

use of validated algorithms allow the prediction of immune responses

and the educated selection of the most appropriate treatment modal-

ity.46 This also opens up the opportunity to identify biomarker candi-

dates for advanced therapeutic medicinal products (ATMPs) such as

engineered T cells (e.g., CAR-Ts), cancer vaccines, or oncolytic

viruses.47,48

8 | IMAGE AND DATA ANALYSIS

The primary objective of image analysis in the context of immune pro-

filing of tissue specimens is the ability to accurately quantify and cal-

culate relevant spatial relationships of all immune cells and other

immune-related biomarkers.49 A second goal is the discovery of novel

features and contextual information that were previously unknown or

could not have been discovered otherwise. Along with a sophisticated

analysis of multiplexed images, the integration of other available

F I G U R E 2 A schematic presentation of
various histomorphological and molecular
biomarker candidates expressed in the tumor area
and the tumor microenvironment (TME) and their
spatial relationship. “R” describes the spatial
relationship between immune effector cells and
regulatory cells (FoxP3) or NK-cells, which belong
to the group of anti-tumor and antigen-presenting

cells (MƟ, macrophages; DC, dendritic cells; TAM,
tumor-associated macrophages; CAF, cancer-
associated fibroblasts). The tumor itself is
characterized by the proliferation index (Ki67), the
immune checkpoint expression (PD-L1), the
possible microsatellite instability (MSS/MSI), and
the tumor mutational burden (TMB). In the future,
it will be warranted to include all markers and
available information (also from other “omics”)
into a single comprehensive analysis and report
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molecular data from the cancer (epi)genome or transcriptome analysis

provides an even more granular assessment of a certain cancer type.

However, this may reflect the personal situation of an individual can-

cer patient, the stage of the disease, and/or any pretreatment condi-

tions in times where neo-adjuvant treatment regimens are on the rise.

To verify or even clinically validate any hypothesis, clinical trials are

warranted. But there is one particular commonality with genomics

and other OMICS technologies: even when applying machine learning

tools that provide a hierarchical probability of relevant events, the

number of potential features is usually higher than the number of

patients and the statistical power of a given validation study. There-

fore, the increased number of candidate biomarkers and their spatial

relationships is both, a blessing and a curse. Figure 2 is a schematic

presentation of various histomorphological and molecular biomarker

candidates expressed in the tumor area and the TME. Depending on

the spatial relationships and any other contextual information con-

tained on the image and retrieved by computational measures, prog-

nostic and predictive statements are possible in different indications.

The first examples were the ImmunoScore in stage 2 colorectal

cancer14 and metastatic disease.50 Complex tissue-based signatures

already need image analysis solutions. However, a widely accepted

example is the expression of PD-L1 above-defined thresholds to pre-

dict treatment responses to ICI. Until now, this requires detailed and

diligent training of pathologists to apply the scoring algorithm

accurately.

The use of machine learning algorithms along with image anal-

ysis tools allows the discovery of immune signatures that are either

too subtle or even too counterintuitive to be discovered by human

experts only. But the development of a novel hypothesis,

supported by the human mind or solely generated by artificial

intelligence such as a neural network, generates new insights into

the biology of cancer and the interaction with the immune system.

By such measured, we found a possible new for lymphoid aggre-

gates in renal and gastric cancer,44,45 which was supported by a

publication on the use of deep learning.46 The publications even

suggest a relationship between a molecular genotype and a

histomorphological finding.

Figure 3 shows the intratumor heterogeneity of a colorectal can-

cer tissue using an 8-color immunostain kit (I/O Ultimapper, Ultivue,

Boston, MA) and an adopted Visiopharm image anaylsis software

solution (Visiopharm, Hoersholm, Denmark). It identifies tumor

regions that might require different treatment regimens and further

F I GU R E 3 UltiMapper reagents were used to perform 8-plex immune profiling of a colorectal cancer (CRC) FFPE sample (a). Slides were
stained with a cocktail of primary antibodies using a Leica biosystems BOND RX autostainer and imaged on an Olympus Slideview VS200 in the
DAPI, FITC, TRITC, Cy5, and Cy7 channels. After a first round of imaging, the slides were decoverslipped, the signal was removed, and new
targets were probed with a reagent incubation step on the BOND RX, termed exchange. The slides were then re-imaged on the VS200 using the
same dye channels as in the first round. Finally, image pairs were automatically aligned and overlayed using a custom tool. The resulting images
were exported for downstream analysis with the Visiopharm author and AI architect image analysis software. We categorized all cells into the
relevant phenotypes using a deep learning-based APP and created density heatmaps of the immune landscape (B) to investigate the
heterogeneity. Here, we could select “hot” regions on the border of the tumor (C and F) and inside the tumor (D and G), and “colder” regions
(E and H)
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research is warranted to establish a precision treatment schedule to

optimize the expected outcome.

9 | DECISIONS FOR ADVANCED
THERAPIES

The current dogma of immunotherapy is (1) “unleashing the immune

system” or (2) “turning a cold tumor into a hot tumor.”51 The first

works primarily, when enough functional (non-exhausted) T lympho-

cytes are present or available and the selected treatment—for exam-

ple, ICI—can lift any immune suppression or allow the T cells to

infiltrate the tumor.48 However, there are a substantial number of

tumors or histological tumor types that are primarily immune deserted

with a relevant fibrotic component or lack the presentation of tumor

antigens. Those tumors can be candidates for treatment with

advanced therapeutics, such as oncolytic viruses to immunize the

tumor environment alone or in combination with primed immune

cells.52–54 Therefore, different cell types are considered for advanced

and cellular therapies, alone or in combination, depending on the TME

and its heterogeneity.

Figure 4 shows possible treatment opportunities considering the

individual tumor heterogeneity and the potential to include advanced

therapeutics like cell and gene therapies including cancer vaccines and

oncolytic viruses into such combination strategies.

Several studies have already shown the value of advanced treat-

ment regimens in individual cancers which otherwise do not ade-

quately respond to current strategies.55–57 Those tumors are usually

hard to treat exemplified in high-grade astrocytoma, hepatocellular

carcinoma, pancreatic cancer, or prostate cancer.58–60 Currently, there

are hardly any or even no biomarker signatures for complex or combi-

nation therapies available, but a combination of tissue immune (and

molecular) multiplexing along with advanced image analysis will offer

also clinically relevant predictive tests.61 The diagnostic challenge is to

understand, visualize, and quantitatively measure the spatial relation-

ship between an effector cell (e.g., TIL or NK cell) and the detectable

target structure in the tissue or region of interest. The determination

of relevant spatial relationships with multiple denominators in the

therapeutic equation requires advanced tools like multiplex immuno-

staining on a single slide, high-resolution image acquisition, and analy-

sis and the application of clinically validated machine learning-based

algorithms to stratify patients to the best individual advanced treat-

ment option.

10 | SUMMARY

The availability of increasingly more and advanced cancer drugs and

their combinations beyond conventional radiochemotherapy,

targeting antibodies or pathway-specific small molecules, adds

another level of complexity to the diagnosis of malignant diseases and

the understanding of the individual tumor biology. It is a challenge for

“precision oncology” and expert members of the tumor boards need

to integrate more (big) data from different sources (histopathology,

(epi)genomics, transcriptomics, metabolomics, radiomics, liquid biop-

sies, etc.) into their decision-making process. The current number of

available and approved biomarker assays is limited and somewhat mis-

leading since they usually measure only a single parameter and do not

F I GU R E 4 In analogy to Figures 1 and 2, we describe the possible role of advanced therapeutics especially in cold (deserted) and excluded
tumors alone or in combination with other immune-modulating agents
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consider the existing heterogeneity of an individual cancer. Biomarker

for advanced therapies like CAR-T cells, primed DCs, NK cells, or

oncolytic viruses is equally complex or still needs to be discovered

and validated when the clinical applications extents to more advanced

and immunologically heterogeneous tumors.

The availability of digital tools such as image analysis and machine

learning allows interpreting multiplexed images with a high-

dimensional complexity of information and integrating also big data

from other “omics” sources to understand relevant spatial relation-

ships even in a very heterogenetic environment and select the best

and most effective treatment for an individual patient.
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