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Abstract— This article is dedicated to developing an
online collision detection and identification (CDI) scheme for
human-collaborative robots. The scheme is composed of a signal
classifier and an online diagnosor, which monitors the sensory
signals of the robot system, detects the occurrence of a physical
human–robot interaction, and identifies its type within a short
period. In the beginning, we conduct an experiment to construct
a data set that contains the segmented physical interaction signals
with ground truth. Then, we develop the signal classifier on the
data set with the paradigm of supervised learning. To adapt
the classifier to the online application with requirements on
response time, an auxiliary online diagnosor is designed using
the Bayesian decision theory. The diagnosor provides not only a
collision identification result but also a confidence index which
represents the reliability of the result. Compared to the previous
works, the proposed scheme ensures rapid and accurate CDI
even in the early stage of a physical interaction. As a result,
safety mechanisms can be triggered before further injuries are
caused, which is quite valuable and important toward a safe
human–robot collaboration. In the end, the proposed scheme is
validated on a robot manipulator and applied to a demonstration
task with collision reaction strategies. The experimental results
reveal that the collisions are detected and classified within 20 ms
with an overall accuracy of 99.6%, which confirms the applica-
bility of the scheme to collaborative robots in practice.
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Note to Practitioners—This article is intended to provide
a novel online collision event handling scheme for robots in
industrial environments. This scheme is designed to quickly and
accurately detect an accidental collision and distinguish it from
the intentional human–robot interaction. The method takes the
raw signals from external torque sensors and provides a collision
diagnosis result with a reliability index. The simple structure
makes it easy to be implemented as a regular fault monitoring
routine for collaborative robots. Different from the conventional
methods, the proposed collision identification scheme in this arti-
cle especially focuses on overcoming the following two challenges
in practice: first, to timely and accurately report a collision within
its early stage, and second, to ensure a high identification accu-
racy in a complicated environment, where ubiquitous disturbance
and noise are unneglectable. The experimental validation at the
end of this article confirms its promising application value in
human–robot collaboration.

Index Terms— Anomaly monitoring, collision detection and
identification (CDI), collision event pipeline, fault detection
and isolation, human–robot interaction, robot safety, supervised
learning.

I. INTRODUCTION

SAFETY is always a critical issue for human–robot collab-
orative tasks, especially when physical human–robot inter-

action (pHRI) is demanded [1], [2]. Different types of pHRI
exert various impacts on humans. The intentional contacts
desired by the cooperative tasks, such as the human teaching
processes, are usually quite safe. On the contrary, the acci-
dental collisions, which may lead to unexpected injuries or
damages, are often dangerous to humans. As pointed out by
many surveys on the safety of human–robot collaboration
[1], [3], the accidental collisions are inevitable in pHRI and
should be carefully handled. Especially, the reaction strategy
for the accidental collisions should be distinguished from
the intentional contacts since they tend to cause opposite
consequences, which motivates the research on collision event
handling. In the literature, a typical collision event handling
pipeline usually contains two procedures, namely, the precol-
lision and the postcollision ones [4], [5]. The development
of such a pipeline involves various topics, including colli-
sion avoidance [6], [7], collision force estimation [8], [9],
collision detection and identification (CDI) [10], [11], and
collision reaction strategy design [12], [13]. These topics
correspond to different components in the pipeline.
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This article is specifically concerned with the CDI problem
of robot systems. As part of the postcollision procedure, it is
intended to monitor the sensory signals, detect the occurrence
of pHRI, and identify whether it is an accidental collision or
an intentional contact. The results of CDI will be given to the
collision reaction procedures, where the corresponding safe
strategy is enabled to avoid further harms [5]. As claimed
in [5], accidental collisions and intentional contacts possess
distinguishable properties, which are reflected in the features
of the sensory signals. By considering this, one can formu-
late robot CDI as a multiclass classification problem, with
collision, contact, and free, respectively, denoting the acciden-
tal collisions, intentional contacts, and nominal cases where
no pHRI occurs. Then, the main target of CDI becomes to
develop a pHRI signal classifier using a data set that contains
the pHRI waveform. In general, this proposes a classification
problem for time series.

For such a problem, expertise can be found in related work,
which will be discussed in detail in Section II. In general,
an important technique in the classification problem for time
series is the segmentation of raw signals since classifiers
cannot process the series with infinite length. In a conven-
tional paradigm of classifier development, the raw signals
are segmented before predictions are conducted, even for the
online applications. In the context of CDI, the conventional
solutions typically design some detection logics, such as a
signal threshold, to approximately mark the starting instant of
a pHRI and segment the online signals after observing the
entire pHRI waveform, before producing a prediction result
using a trained classier. As a result, an accurate prediction
result can only be produced when the pHRI almost vanishes.
By almost, we mean that the pHRI waveform is contained in
the signal segments as much as a correct identification result
can be produced. Such a method, however, usually leads to a
useless result in the context of safe human–robot collaboration
since a collision or a contact has already occurred and nega-
tive consequences may have already been caused. Intuitively
speaking, a prediction result of the classifier does not really
predict the occurrence of a collision. The reason for this issue
is that the signal values in the future are not available for the
segment at the current time, due to the causality of online time
series.

Nevertheless, this is a significant issue for safe human–robot
collaboration since a CDI scheme that can be practically
applied is expected to accurately report the pHRI in its early
stage, definitely before it vanishes, such that potential injuries
can be prevented in advance. Unfortunately, such a valuable
topic has attracted very little attention, probably due to the
following two challenges. First, accurate prediction results
should be produced even when the segmented pHRI waveform
is incomplete. From a general perspective, this introduces
inconsistency between the distribution of the training data and
that of the predicted samples, if the classifier is developed
on the signal segments with complete pHRI waveform. This
indicates that the identification result in the early stage of a
pHRI is very likely to be incorrect. Second, an accidental col-
lision is usually referred to as an instantaneous anomaly [14],
which occurs unexpectedly and only lasts for a short period

of time. Thus, it is more difficult to be identified than the
other anomalies that are featured with low bandwidth and
steady changes [15], [16]. The main target of this article is
to fill these gaps by proposing a novel online CDI scheme
that ensures both high accuracy and fast response.

The remaining content of this article is organized as follows.
Section II summarizes the related work and clarifies the main
contributions of this article. Section III introduces the overall
structure of the scheme and the collection process of the pHRI
data set. The development of two important components of
the scheme, the signal classifier and the online diagnosor, is,
respectively, presented in Sections IV and V. In Section VI,
the proposed CDI scheme is validated on a seven-degree-of-
freedom (DoF) KUKA robot. The decent performance of the
CDI scheme revealed by the experimental validation confirms
its applicability in practice. Finally, Section VII concludes this
article.

II. RELATED WORK

Conventionally, CDI for robot systems has been recog-
nized as an engineering-oriented problem and is mainly
solved by simple threshold logic or hypothesis testing-based
methods [11], [17], where the filter-based techniques are
widely applied [18]. More recent work tends to formu-
late CDI as a classification problem for segmented time
series. Similar work can be found in relevant fields, such
as speech recognition [19], snoring identification [20], bird
sound recognition [21], and fault identification of mechatronic
systems [22]–[24]. The common ground of these applications
is that the segmented time series, either acoustic signals or
sensory streams, is expected to be classified as a certain type.
In [25], the classification of time series is generally investi-
gated by applying various data sets. In [26], a deep neural net-
work is constructed to detect the system faulty status. In [27],
various classifiers are developed and tested using the recorded
signal samples. Similar work also includes [28] and [29],
where neural network is constructed to monitor the grasping
slippages and colliding torques, and [30] and [31], where SVM
classifiers are developed to detect external collisions. Based on
the abovementioned work, a mature development framework
for time series has been well-formed. However, such a frame-
work is confronted with challenges when applied to CDI for
robot systems with pHRI tasks since the prediction results are
only available after the collision vanishes or the entire pHRI
waveform is segmented, which has been explained in Section I.
Therefore, these methods are not suitable for human–robot
collaboration with high requirements for human safety.

As alternatives, probabilistic series models, such as the
hidden Markov model (HMM) [32] and the Gaussian mixture
model (GMM) [33], are also applied to CDI by exploiting
the dependence properties of time series. In [34], an HMM is
developed to detect exceptional events in an object-alignment
robot task, where the measured torques and their derivatives
are used. The work in [35] also develops an HMM model to
realize a fault detection scheme for a feeding-assistant robot
using multisensor signals. In [36], probabilistic support vector
machine is used to detect online anomalies. Nevertheless, these
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series models require artificially assigned prior knowledge
on the distributional dependence of the raw signals. In most
practical scenarios, such knowledge is challenging to acquire,
especially in a complicated environment where the distribution
of the disturbance and noise is not treated as Gaussian.

The main contribution of this article is to develop an online
CDI scheme for safe human–robot collaboration. The major
advantage of this novel scheme over the conventional methods
is to produce fast and accurate CDI in the early stage of
pHRI. Apart from the identification result, it also provides
a confidence index to indicate how much the result can be
trusted, which benefits the design of a flexible collision han-
dling pipeline in future work. Moreover, the scheme does not
require extra detection logic and any prior knowledge on the
dependence of pHRI signals. Therefore, no heuristic thresholds
or distribution assumptions are needed. Another contribution
of this article is to provide a pHRI data set with manual labels
specifically for the CDI usage, which is still lacking in the
literature. Different from most of the previous work where the
torque sensors are installed on the end-effectors, the signal data
we used in this article are from the torque sensors on the robot
joints, which can even detect pHRIs on robot links. On the
other hand, the data set contains more interfering signals due to
coupled mechanical vibrations and strong current noise on the
sensors, which leads to a larger challenge to the development
of the CDI scheme. From another perspective, however, this
article reflects the complicated conditions in practice, which
provides an outcome truly with application values.

III. SCHEME OVERVIEW AND DATA COLLECTION

In this section, we introduce the overall structure of the
proposed CDI scheme. To develop this scheme, we conducted
a data collection experiment with manual collisions and con-
tacts to construct a pHRI data set. The data come from the
segmentation of the external torques that are measured by
shaft-mounted torque sensors installed on the robot joints.

A. Overview of the CDI Scheme

The general structure of the proposed online CDI scheme
and the development flowchart of each component are illus-
trated in Fig. 1. During an online execution, the CDI routine
takes the torque signal τ and segment it recurrently. Then,
the features extracted from the signal segment T are given
to the classifier, which produces a prediction result r among
collision, contact, and free. Based on a series of prediction
results, the online diagnosor offers a CDI diagnosis result C∗
and a confidence index I. In this framework, no heuristic
threshold values are needed to mark the occurrence time of
the pHRI.

B. Data Collection

To construct the pHRI data set for the development of
signal classifier, we conduct a collection experiment using a
seven-DoF KUKA LWR4+ robot manipulator [37], which is
firmly mounted onto a fixed platform. During the experiment,
different types of physical interaction in various strengths

Fig. 1. Structural overview of the proposed online CDI scheme and the
corresponding development flowcharts, where τ is the measured torque signal,
T is the signal segment, r is the prediction result of the signal classifier, and
C∗ and I are, respectively, the ultimate diagnosis result and its confidence
index.

and directions are manually exerted on the robot end-effector
by seven subjects hired for this experiment, thus aiming to
include individual uncertainties in the collected data, to ensure
the generalization ability of the data set. In the experiment,
accidental collisions are created using a soft hammer with
fast hand speed and tough strength, while intentional contacts
are made by gloved hands with compliant forces. A spherical
plastic end-effector is specially designed to bear the contact
forces from arbitrary directions.

Note that the pHRI is exerted during the movement of
the robot, such that the measured signals contain drifts and
noise caused by the joint motions. It is worth mentioning
that the drifts and noise are also affected by the direction
of the joint motion. By considering this, we apply several
different robot trajectories that are assigned with the same
starting position but different ending positions, such that both
positive and negative motion directions are covered for each
joint. The trajectories are designed in the joint space and
interpolated by sinusoidal functions to ensure smooth motion.
All these experimental configurations are intended to ensure a
representative data distribution, which is important to ensure
a high generalization ability to the classifier.

The motion of the robot is controlled by a trajectory tracking
program that implements a continuous reciprocating motion of
the manipulator between the starting position and each ending
position. The program also reads the measured torque signals
and records them as 7-D time series with a sampling period
of 1 ms. During the motion of the robot, one experimenter
exerts an accidental collision or an intentional contact on the
end-effector. At the same time, the other experimenter notes
down the occurrence instant and the type of pHRI. To obtain
a balanced data set between collisions and contacts, we try to
produce an equal amount of samples for these two classes.

C. Signal Segmentation and Sample Labeling

After collecting the raw pHRI signals, we conduct segmen-
tation to split the signals into segments with a fixed length.
Let us denote the width of the segments as l and the bias as b,
with a unit of ms. By bias, we mean the time period between
the occurrence instant of a pHRI and the ending instant of the
segment, where we have 0 � b � l. In general, l determines
how much signal information is included in the segments,
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Fig. 2. Waveform of signals (external toques on seven joints), respectively, with classes of (a) collision, (b) contact, and (c) free. The segmented partitions
are marked with colored areas, where b = l = 300 (ms).

while b adjusts the proportion of the pHRI waveform in the
segment. If the ending instant of the segment represents the
current time, b denotes the period after the occurrence of
the corresponding pHRI. Therefore, the segmentation scheme
is well-determined by the two parameters l and b. For the
data set, the segment bias is typically set as b = l since the
torque values before pHRIs are irrelevant to the classification.
The determination of segment width l is mainly based on the
engineering experience. Usually, it should be large enough to
contain sufficient information of the pHRI waveform. On the
other hand, an overlarge width may involve irrelevant signals
and lead to poor generalization ability.

To determine the value of l, we inspect the waveform of the
pHRI signals presented in Fig. 2. We notice that the average
width of a contact is approximately 400 ms while that of
a collision is less than 200 ms. This also applies to most
of the recorded pHRI signals. Therefore, we set the segment
width as l = 300 (ms), as a balanced result. Then, we label
the two types of segment samples, respectively, as collision
[Fig. 2(a)] and contact [Fig. 2(b)]. The segmented parts of the
raw signals are marked by colored areas in Fig. 2. During the
segmentation, invalid data due to storage damages or unrecog-
nizable pHRI waveforms are eliminated. As a result, we obtain
6718 collisions and 7346 contacts, which are approximate to a
balanced radio 1:1. We also create signal segments without any
pHRI waveform and label them as free. However, the number
of free samples should not be equal to the other two classes
since the frequency of contact-less cases is usually higher than
pHRI. In practice, both collisions and contacts are positive
instances which will call the corresponding safety mechanism,
while frees are negative instances which do not trigger the
safety mechanism. Therefore, a reasonable idea would be to
keep a balance between the free samples and the summary of
all pHRI samples, i.e., a scale ratio 1:1:2 between collision,
contact, and free. Therefore, we take the free segments, respec-
tively, in the front, rear, and middle of the pHRI segments in
the raw signals, and finally obtain 13 633 of them.

Until now, a data set containing the pHRI signal segments
is constructed. We randomly shuffle all the samples and split
them into a training set and a test set with the partition
ratio 3:1. The training set will be applied to feature engineering
and model selection, while the test set will be used to evaluate
the trained model.

IV. DEVELOPMENT OF THE SIGNAL CLASSIFIER

In this section, we develop the signal classifier component
in the CDI scheme. As explained in Section II, we do
not consider the probabilistic series models to avoid prior
knowledge on the distributional dependence of the raw signals.
In addition, although the end-to-end learning mechanisms,
such as the convolutional neural network (CNN) and recur-
rent neural network (RNN), have drawn much attention and
made great achievements in image recognition and model-free
planning, they still suffer from the lack of explainability and
high dependence on complex manually designed structures.
Therefore, in this article, we develop the signal classifier based
on the paradigm of supervised learning, by which we assume
that the samples in the data set are independent of each other.

A. Feature Extraction

To form a feature set that benefits the signal classification,
we consider both the properties of pHRI signals and the suc-
cessful experience in the previous work [27], [38]. From Fig. 2,
we can conclude that the waveform of collisions [Fig. 2(a)] has
sharp shapes and fast amplitude changes, while the waveform
of contacts [Fig. 2(b)] changes more gently and lasts for a
longer time. We also investigate the spectrum of the signal
segments in Fig. 2 and shown it in Fig. 3. Compared to the free
sample, the collision and contact possess more components
in all frequency ranges. Especially, the collision shows a
large amplitude in the frequency interval 10 – 20 Hz, while
the contact shows that in the frequency interval 0 – 10 Hz.
Therefore, distinguishable properties between the two classes
are found in both time and frequency domains. Based on this,
we initially extract 18 features in both domains. Most of these
features also have achieved success in the previous work [38].

1) Features in the Time Domain: The time-domain features
are frequently used in the fields like signal processing and
pattern recognition [39], [40]. Since each sample is naturally
a segmented time series T = {τ1, τ2, . . . , τl}, the time-
domain features can be represented as the functions of T .
Here, we mainly select features that are concerned with the
amplitude changes of the signals. First of all, the first- to
fourth-order statistical moments, namely the mean value Mτ ,
the variance Vτ , the skewness Sτ , and the kurtosis Kτ of
samples T , are applied to depict the stochastic properties

                                                                                                                                               



1148                                                                       

Fig. 3. Spectrum of signal segments (external toques on seven joints), respectively, with classes of (a) collision, (b) contact, and (c) free using FFT.

of the signal segment, where Mτ = (1/ l)
∑l

i=1 τi , Kτ =
(1/ l)V −2

τ

∑l
i=1(τi − Mτ )

4 − 3, Vτ = (1/ l)
∑l

i=1(τi − Mτ )
2,

and Sτ = (1/ l)V −(3/2)
τ

∑l
i=1(τi − Mτ )

3. The median value
m̃τ , the extreme range Rτ , and the extreme deviation
Dτ of T are also used as supplementary, where Rτ =
maxi |τi | − mini |τi | and Dτ = maxi |τi | − Mτ , for 1 �
i � l. In addition, we propose the energy increasing rate
E I = (1/2)lg(

∑n
i=[n/2] τ

2
i /

∑[n/2]
i=1 τ 2

i ) to represent the temporal
change of signal energy within a segment, where the ratio is
made between the squared signal sums within the two halves
of the segment. Here, [·] rounds a real number to integer.

2) Features in the Frequency Domain: The frequency-
domain features are commonly applied to depict the
spectral profiles of signals [11], [41], which are mostly
calculated by fast Fourier transformation (FFT). The FFT of
a signal sequence T includes a sampled frequency sequence
F = { f1, f2, . . . , fm} with the frequency sampling interval
fs/m and the corresponding complex spectrum sequence
S = {S( f1), S( f2), . . . , S( fm)}. The length of the spectrum
sequence m is usually equal to l. The frequency-domain
features used in this article are mainly concerned with
the amplitudes and phase angles of the signal spectrum in
different frequency intervals, such as the mean frequency f̄ ,
the fundamental frequency f ∗, and their corresponding spec-
tral amplitudes |S( f̄ )|, |S( f ∗)| and phase angles φ( f̄ ), φ( f ∗),
where | · | : C → R and φ(·) : C → R, respectively, denote
the amplitudes and phase angles. The mean frequency f̄
is defined as f̄ = ∑m

i=1 fi |S( fi )|/∑m
i=1 |S( fi )|, and the

fundamental frequency f ∗ is the frequency point such
that S( f ∗) is the spectrum summit. The crest factor Fcrest,
the average signal energy Erms, and the subband energy
ratio E fc

r are, respectively, defined as Fcrest = |S( f ∗)|/
((1/m)

∑m
i=1 |S( fi )|2)1/2, Erms = ((1/m)

∑m
i=1 |S( fi )|2)1/2,

E fc
r = (1/2)lg(

∑ fs
fi = fc

|S( fi )|2/∑ fc
fi =0 |S( fi )|2 for fc = 10,

20 Hz. These features are also widely used in [38], [39],
and [42] to depict the energy properties of signals. The crest
factor Fcrest, also known as peak-to-average ratio, represents
the significance of the signal peak. The average energy Erms

denotes the average signal power level, and the subband
energy ratio E fc

r reflects the relative energy proportion on
the two sides of the subband frequency fc. Here, we define
two subband energy indexes. The corresponding subband
frequencies 10 and 20 Hz are determined according to the
distinguishable spectral features of collisions and contacts.

In summary, we extract the following features X+ = {Mτ ,
Vτ , Sτ , Kτ , m̄τ , Rτ , Dτ , E I , f ∗, |S( f ∗)|, φ( f ∗), f̄ , |S( f̄ )|,
φ( f̄ ), Fcrest, Erms, and E10

r , E20
r }, where X+ denotes a full

feature set. For brevity, we order these features and number
them from #1 to #18. Note that the signals have seven
dimensions corresponding to the seven robot joints. Therefore,
in total, 126 features are generated.

B. Feature Selection

To select the beneficial features for the classification, we use
the Spearman correlation analysis and the Relieff algorithm
to evaluate the 126 features in X+. The former inspects
the dependence between any two features, while the latter
calculates weights for the features that are recognized as
their importance to the classification. Features with high
dependence on the others or low importance are eliminated
after the analysis. Note that we only use the data in the training
set during the entire feature selection procedure.

1) Dependence Analysis: High dependence among features
brings redundancy to the model training, which potentially
causes a poor generalization ability to the classifier.
Therefore, we analyze the Spearman correlation between
the features to investigate their dependence. The Spearman
rank correlation analysis is an efficient tool to describe
the general monotonic relationship between two stochastic
variables, which applies to not only the linear dependence
but also the nonlinear cases. Given the values of two
features X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym},
where m is the size of the data set, the Spearman
correlation coefficient ρX,Y is calculated by ρX,Y = ∑m

i=1
(xi − x̄)(yi − ȳ)/(

∑m
i=1(xi − x̄)2 ∑m

i=1(yi − ȳ)2)1/2, where
x = {x1, x2, . . . , xm} and y = {y1, y2, . . . , ym} are the ranks of
features X and Y , and ·̄ denotes the mean value [43]. Ranging
from −1 to 1, the coefficient ρX,Y depicts the dependence
between X and Y , of which the sign denotes whether the
relationship of the two variables is proportional (when
positive) or inversely proportional (when negative), and the
absolute value indicates the extent of dependence. We apply
the Spearman correlation analysis to all 126 features in X+.
The results are illustrated in Fig. 4 by colored matrices.

Fig. 4(a) displays the dependence between all 126 features
that are grouped by the joint numbers. Each square block
(surrounded by black dashed lines) on the diagonal represents
the self-feature dependence of each joint, i.e., the dependence
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Fig. 4. Spearman correlation analysis of the features. Each microsquare block
represents the correlation coefficients between the corresponding two features,
of which the values are marked by colors. A darker block indicates higher
dependence between the corresponding features. (a) Spearman correlation
between the 126 features. (b) Spearman correlation between the 18 features
on joint # 1.

between the features of the same joint. Meanwhile, the blocks
off the diagonal indicate the dependence among the features of
different joints. It is noticed that the blocks on the diagonal are
highly similar to each other, which indicates that the features
on all robot joints possess similar self-dependence properties.
Therefore, it is reasonable to only investigate the analysis
result of a single joint and selected or eliminated the features
in batches in the unit of joint.

The correlation analysis of all 18 features on joint # 1, which
corresponds the block in the down-left corner in Fig. 4(a),
is illustrated in Fig. 4(b). It can be seen that # 1 (Mτ ) is
highly dependent on # 5 (m̄τ ). Meanwhile, # 2 (Vτ ), # 6 (Rτ ),
# 7 (Dτ ), and # 16 (Erms) also indicate high dependence on each
other. Therefore, these features are preferably considered to be
eliminated from X+ yet their importance to the classification
still needs to be considered.

2) Importance Analysis: After analyzing the dependence of
the features, we apply the Relieff algorithm to the 126 features
in X+ to evaluate their importance. As a popular feature
engineering technique used in the previous work [38], it pro-
vides a weight for each feature to depict its importance to the

classification, which is independent of the classifier models.
The predecessor of Relieff, known as Relief, is originally
proposed in [44] for binary classification problems. Its main
idea is to recursively and randomly select a sample x from
the data set and find out its closest samples with the same
and different labels (respectively, referred to as the near-hit
z+ and the near-miss z−). For the i th feature of sample x , xi ,
its weight wi is iteratively updated by the following law:

wi = wi − (
xi − z+

i

)2 + (
xi − z+

i

)2

where z+
i and z−

i are the i th features of z+ and z−. The
weight wi depicts the reward (if wi is positive) or punishment
(if wi is negative) of the i th feature to the classification, and a
larger wi indicates higher importance. Relieff is adapted from
Relief as the extension to multiclass problems [45].

On the training set, we calculate the weights or importance
of all 126 features using Relieff and illustrate the results
in Fig. 5, grouping them, respectively, by the feature number
[see Fig. 5(a)] and joint number [see Fig. 5(b)]. The results
indicate that the feature importance varies among both features
and joints. In Fig. 5(a), the feature # 2 (Dτ ) shows the lowest
importance (0.49), followed by # 4 (Kτ ), # 5 (m̄τ ), # 9 ( f ∗), and
# 13 (S|( f̄ )|). In Fig. 5(b), the feature weights on joints # 1,
# 2, and # 4 are higher than the other joints.

Since the classifier is supposed to function in an online
scheme, we are quite concerned with the computational load
of the features. Therefore, we tend to form a small feature set
while maintaining a decent classification accuracy. Consider-
ing both high dependence and low importance, we eliminate
features # 2 (Dτ ), # 4 (Kτ ), and # 5 (m̄τ ). Features # 6 (Rτ ) and
# 16 (Erms) are also eliminated due to their strong relationship
with # 7 (Dτ ), as well as # 18 (E20

r ) due to its redundancy
to # 17 (E10

r ). In addition, we remove the features of joints
# 3, # 5, # 6, and # 7 due to their low importance. Therefore,
we determine the feature set for the development of the signal
classifier as X ∗ = {Mτ , Sτ , Dτ , E I , f ∗, |S( f ∗)|, φ( f ∗), f̄ ,
|S( f̄ )|, φ( f̄ ), Fcrest, E10

r }1,2,4 that contains 36 features, where
the subscript denotes the joints. To evaluate X ∗, we also define
a minimum set X− = {Mτ , Sτ , Dτ , E I , f ∗, |S( f ∗)|, φ( f ∗),
f̄ , |S( f̄ )|, φ( f̄ ), Fcrest, E10

r }1, which only includes 12 features
on joint # 2. We will evaluate the three feature sets X+, X ∗,
and X− and select the best when determining the classifier
models. Note that such a development procedure is justified
since the entire feature selection process is independent of the
classification models.

C. Model Validation

After determining the feature sets X+, X ∗, and X−, we are
ready to select the model for the signal classifier. Since a large
number of models are used in the literature for the classifica-
tion of time series, enumerating all of them for the best one is
a tedious and unnecessary process. Instead, we assign several
popular models with representative properties as candidates
and validate these candidate models using the training set,
before selecting the best one. In this article, we determine the
candidate models based on the three factors, namely, the pHRI
signal properties, engineering experience in the previous work,
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Fig. 5. Weights of the features obtained by Relieff algorithm. (a) Feature
weights grouped by feature numbers. The average weight over all seven joints
is marked for each feature. (b) Feature weights grouped by joint numbers. The
average weight over all features is marked for each joint.

and the values of models in practice. Thus, four classifier
models, namely, a linear discriminant analysis (LDA) model,
a k-nearest neighbors (kNN) model, an SVM model, and
a feedforward neural network (FNN) model, are chosen as
candidate models, due to their simple structures and successful
applications in the previous work [38]. These four models
are featured with various properties and essentially cover
most representative classifier structures. Specifically, the LDA
model is well-known for its high efficiency and stable perfor-
mance and is able to achieve high prediction accuracy for the
linearly classifiable data sets. The kNN model is supported
by well-developed theoretical foundations and is easy to be
extended to a larger scale database in future work. The SVM
model shows the excellent ability of generalization. The NN
model, as a powerful and comprehensive approximator, has
strong adaptability and flexibility for various data sets. In this
article, we only consider the NN model with one hidden layer.
Note that simple structures are always preferred in practice
since the reliability of the system tends to decrease when
the system becomes more complicated. To evaluate the four
classifier models on the training set with the feature sets X+,
X ∗, and X−, we use a tenfold cross-validation method and

TABLE I

HYPERPARAMETERS FOR GRID-SEARCHING VALIDATION

TABLE II

MODEL CONFIGURATIONS WITH BEST VALIDATION SCORES

calculate the mean values of the ten validation scores which are
briefly referred to as score. We also apply a grid search method
to seek for the best hyperparameters of the models. The models
and the corresponding grid values of their hyperparameters are
shown in Table I.

The four models and the corresponding hyperparameter
values achieving the best scores in the validation are listed
in Table II, where the hyperparameter values are in the
same order as the hyperparameter values in Table I. The
validation scores of the models trained with various feature
sets are presented in the score columns, X+, X ∗, and X−,
respectively, which show that all the four models achieve
satisfactory scores, with the FNN model showing the highest
(96.6%). Thus, we select FNN with 48 hidden-layer neurons,
with “logistic” activation function as the model for the signal
classifier of the CDI scheme. In the meantime, the results also
reveal that the scores using X ∗ are close to that using the full
feature set X+ for all models, despite slight decreases. On the
contrary, the scores of the minimum feature set X− drastically
drop compared to X+ X ∗. Therefore, we determine X ∗ as the
feature set to train the FNN model since it achieves similar
scores to the full feature set X+ with a greatly reduced number
of features.

D. Model Test

After determining the model for the signal classifier
(FNN, 48 hidden-layer neurons, “logistic” activation function),
we train the model using all samples in the training set
with the feature set X ∗ and evaluate its prediction accu-
racy using the test set. The tested accuracy score, 96.5%,
is generally comparable with the score 96.6% in the model
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Fig. 6. Confusion matrix in the test of the well-trained FNN classifier.

validation in Section IV-C, which indicates that the signal
classifier possesses a satisfactory ability of generalization.
The confusion matrix of the test is presented in Fig. 6,
where the prediction accuracy for collisions, contacts, and free,
respectively, achieves as high as 95.6%, 93.7%, and 98.4%,
thus showing a decent performance of the classifier. Especially,
the higher accuracy rate of collisions than contacts reveals that
the classifier is more sensitive to accidental collisions, which
is reasonable since collisions are more dangerous to humans
than contacts. The high-accuracy score for free means that the
classifier hardly produces false-positive results.

V. DESIGN OF THE ONLINE DIAGNOSOR

Although the signal classifier shows high accuracy for
samples with complete pHRI waveform, the same performance
is not likely to be ensured in the early stage of a pHRI in online
applications since the segmented waveform is incomplete.
As discussed in Section I, the main reason is the distribution
inconsistency between the training set and the segmented
online signals, such that a single prediction result of the
classifier does not guarantee a reliable CDI before the pHRI
vanishes. To resolve this issue, we design an additional online
diagnosor for the CDI scheme to produce online decisions
based on a series of prediction results, which is proven to be
more reliable than using a single result.

A. Prediction Analysis of Incomplete pHRI Waveform

As the first step in designing the online diagnosor, we inves-
tigate the prediction accuracy of the signal classifier for
signal samples with incomplete pHRI waveform. We create
several test sets from the raw signals with various b values,
which represent the segmented online signals with a different
proportion of pHRI waveform, and use them to evaluate the
prediction accuracy of the signal classifier. Note that all the
test sets are of the same size as the one in Section IV-D. The
accuracy scores with different b values are illustrated in Fig. 7.

As a general tendency, the prediction accuracy increases
when the segment bias b becomes larger. An intuitive expla-
nation is that more useful information on the pHRI waveform

Fig. 7. Accuracy scores of the signal classifier when predicting samples with
various b values.

naturally leads to higher accuracy scores. Within the interval
b � 50, the prediction accuracy is lower than 77.3%, which
indicates that a prediction result within 50 ms after the pHRI
is very likely to be incorrect. In contrast, when b > 200,
the accuracy is higher than 93.0%, which reveals that an
accurate result is only possible after 200 ms. Apparently,
a single prediction result of the signal classifier does not offer
a reliable CDI decision in the early stage of pHRI.

B. Diagnosis Using Confidence Indexes

Our solution to this problem is to extend the decision
horizon, such that the CDI result C∗ is produced based on a
series of successive prediction results. Moreover, a quantified
metric is need to depict the reliability of the CDI result. Let
us assume that the pHRI occurs at time t0. At a certain time
instant t1 = t0 + b, a segmented torque signal T1 is given
to the signal classifier which then reports a prediction r1.
The value of the prediction result r1 can be −1, 0, or 1,
which corresponds to collision, contact, and free. Here,
r1 is not directly used to make the decision C∗. Instead,
we postpone s sampling intervals until we obtain s signal
segments T1,T2, . . . ,Ts and a series of prediction results R =
{r1, r2, . . . , rs}. Here, we refer to R as an observation series
with the window size s. According to the Bayesian decision
theory, the posterior probability of the class C = {−1, 0, 1}
based on the observation series R with parameter b reads

p(C|R, b) = p(C|b)p(R|C, b)

p(R|b)
(1)

where p(C|b) is the prior knowledge of proportions of the data
set, p(R|C, b) is the likelihood of class C , and p(R|b) is the
evidence that adjusts the weight of the posterior probabilities,
where p(R|b) = ∑

C p(C|b)p(R|C, b). As mentioned in the
beginning of Section IV, the signal segments T1,T2, . . . ,Ts are
independent of each other, which leads to a series of indepen-
dent prediction results r1, r2, . . . , rs . Therefore, the likelihood
p(R|C, b) can be calculated by the following product:

p(R|C, b) =
s∏

j=1

p(r j |C, b j) (2)
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where for each r j , j = 1, 2, . . . , s, p(r j |C, b j) represents
the likelihood of a single prediction result r j with given
pHRI class C . The parameter b j is the bias of segment T j ,
reflecting a hidden condition that r j is the j th element of R.
The likelihood p(r j |C, b j) depicts the probability that the
classifier predicts a sample labeled C as r j , which depends
on the capability of the classifier.

Here, the posterior probability p(C|R, b) serves as a con-
fidence index for decision C given observation series R.
It indicates the belief on the classifier to produce an accu-
rate diagnosis result within b ms after the occurrence of the
pHRI. A larger value of p(C|R, b) corresponds to a more
trustful decision C . Therefore, the decision law for the online
diagnosor can be designed as

C∗ = i, if p(C [i]|R, b)=max
C

p(C|R, b), i = −1, 0, 1 (3)

where C∗ is the diagnosis result (C∗ = −1 for contacts,
C∗ = 1 for collisions and C∗ = 0 for free) and C [i] represents
the event C = i for brevity. The confidence index for decision
C∗ is IC∗

R = p(C∗|R, b).
To calculate the posterior probabilities, the likelihoods

p(r j |C, b j ) for all r j = {−1, 0, 1} and C = {−1, 0, 1} can
be approximated by experimental methods similar to that in
Section V-A. The difference is that the calculation of the
likelihoods requires the values in the confusion matrices, rather
than the overall accuracy scores. Such an approximation is jus-
tified by the large number principle. The observation window
size s can be determined accordingly. A wider window leads
to a higher resolution of the confidence index and provides
more flexibility to the collision handling pipeline, which,
on the other hand, involves more computational load. Note
that the value b, as a parameter to be assigned, represents a
conservative estimation, rather than the true diagnosis delay.
A reliable CDI diagnosis is guaranteed in the early stage of
a pHRI, as long as a high confidence index is obtained for
even small values of b. Therefore, in the practical design
of the CDI scheme, b can be heuristically determined as a
reference reaction time. By designing the decision law (3)
with the confidence index I, the collision handling pipeline
can be implemented in a more flexible manner.

C. Fast Online Diagnosis Algorithm

The decision law in (3) requires the calculation of the
posterior probabilities for every observation series R, which is
not suitable for online applications due to the large computa-
tional load. Here, we propose a fast online diagnosis algorithm
(as Algorithm 1) that only involves simple comparison logic
but ensures high reliability. In the algorithm, the observation
window size is set as s = 5. The main routine of the algorithm
is to compare the observation R with two reference events
R4

l and R2
t , where R4

l means that at least 4 collisions are
observed in R, and R2

t represents at least two contacts are
witnessed. To evaluate the reliability of Algorithm 1, we cal-
culate its posterior probabilities, p(C [1]|R4

l , b), p(C [1]|R2
t , b)

and p(C [1]|R f , b) with b = 50, where R f denotes R4
l ∨ R2

t ,
i.e., neither a collision nor a contact occurs. Here, ∨ denotes
the union of two events and (·) represents the compliment

Algorithm 1 Fast Online Diagnosor
Input: R = {r1, r2, r3, r4, r5}
Output: C∗
1: if R ∈ R4

cls then
2: C∗ = 1;
3: else if R ∈ R2

ctc then
4: C∗ = −1;
5: else
6: C∗ = 0;
7: end if

of an event. Therefore, the posterior p(C [1]|R4
l , b) represents

the confidence index of Algorithm 1 when making a decision
C = 1 given R ∈ R2

l , p(C [1]|R4
l , b) is for decision C = −1

with R2
t , and the else is depicted by p(C [0]|R f , b), which

describes the reliability of the algorithm in free cases.
To calculate the posteriors, we first use (2) to calculate the

following likelihoods:

p(R4
l |C i , b[50]

j ) =
∑

R∈R4
l

s∏
j=1

p(r j |C i , b[50+ j ]
j ), i = [1], [1]

p(R2
t |C i , b[50]

j ) =
∑

R∈R2
t

s∏
j=1

p(r j |C i , b[50+ j ]
j ), i = [−1], [−1]

p(R f |C i , b[50]
j ) =

∑
R∈R f

s∏
j=1

p(r j |C i , b[50+ j ]
j ), i = [0], [0]

where b[50] means b = 50 and C [1] denotes the event that
C �= 1, i.e., C [1] = C [−1] ∨ C [0], while similar is C [−1]. Such
a compact form is for the purpose of brevity. We assume that
p(r j |C [1], b[50+ j ]

j ) ≈ p(r j |C [1], b[50]
j ), for all j = 1, 2, . . . , 5,

considering a high sampling rate of the system. Therefore,
the likelihoods are calculated as follows:
p(R4

l |C i)

= p(r [1]|C i )5 + 5 p(r [1]|C i)4 p(r [1]|C i ), (4a)

p(R2
t |C i )

= 1− p(r [−1]|C i )5−5 p(r [−1]|C i )4 p(r [−1]|C i ) (4b)

p(R f |C i)

= p(r [0]|C i)5 + 5 p(r [0]|C i )4 p(r [1]|C i)

+ 10 p(r [0]|C i)3 p(r [1]|C i)2+10 p(r [0]|C i )2 p(r [1]|C i)3

+ 5 p(r [−1]|C i)×(
p(r [0]|C i )4+4 p(r [0]|C i )3 p(r [1]|C i)

+6 p(r [0]|C i)2 p(r [1]|C i )2

+ 4 p(r [0]|C i)p(r [1]|C i)3) (4c)

respectively, for i = [1], [1], i = [−1], [−1], and i = [0], [0],
where b[50] and the subscript j for r j are omitted for brevity.
Similar to above, we use r [1] and r [1] to represent r = 1
and r �= 1. To obtain the values of the single-prediction
likelihoods on the right sides of (4), we evaluate the signal
classifier using the test set with b = 50 (ms) and calculate
the confusion matrix which is decomposed to three matrices
in Table III, respectively, for the calculation of (4a)–(4c). The
rows of Table III C [i], i = −1, 0, 1 represent the ground truth,
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TABLE III

CONFUSION MATRICES OF SIGNAL CLASSIFIER WITH TEST SET b = 50 ms

while the columns r [i] denote the predicted classes. In each
block, both the number of samples and the accurate scores
are presented, which explicitly correspond to the values of the
likelihoods p(r |C). For example, the value of p(r [1]|C [1]) is
approximated as 0.73 corresponding to the value in C [1], r [1].

Checking the values in Table III and using (4), we calculate
the values of the likelihoods as

p
(
R4

l |C [1]) = 0.87, p
(
R4

l |C [1]
)

= 9.80 × 10−5

p
(
R2

t |C [−1]) = 0.51, p
(
R2

t |C [−1]
)

= 6.74 × 10−2

p
(
R f |C [0]) = 0.99, p

(
R f |C [0]

)
= 0.52.

Here, we set the prior probabilities as p(C [0]) = 0.5,
p(C [1]) = p(C [−1]) = 0.25, according to the proportion of
samples in the data set. Therefore, according to the Bayes law
in (2), we calculate the confidence indexes for Algorithm 1 as
follows:

p
(
C [1]|R4

l

) = p(C [1])p
(
R4

l |C [1])
∑[1]

i=[1] p(C i)p
(
R4

l |C i
)

p
(
C [−1]|R2

t

) = p(C [−1])p(R2
t |C [−1])

∑[−1]
i=[−1] p(C i )p

(
R2

t |C i
)

p
(
C [0]|R f

) = p(C [0])p(R f |C [0])
∑[0]

i=[0] p(C i )p
(
R f |C i

)

which leads to p(C [1]|R4
l ) = 0.99, p(C [−1]|R2

t ) = 0.72, and
p(C [0]|R f ) = 0.66.

The results of the posterior probabilities indicate that
Algorithm 1 produces high confidence on its diagnosis for
collisions (I1

R = 0.99) and contacts (I−1
R = 0.72) with

given observation series R. A larger value of p(C [1]|R4
l ) than

p(C [−1]|R2
t ) means that the diagnosor is more sensitive to

collisions than contacts. The confidence index I0
R = 0.66 for

free reveals that the diagnosor is also trustful for avoiding false
detection. Due to the fact that p(C [1]|R4

l ) = maxC p(C|R4
l ),

p(C [−1]|R2
t ) = maxC p(C|R2

t ), and p(C [0]|R f ) =
maxC p(C|R f ), Algorithm 1 is consistent with the decision
law in (3). Therefore, the confidence index I can be explicitly
obtained without calculation, which leads to a faster and easier
implementation for online applications.

D. Comparison With the Single Prediction

To justify the advantage of the online diagnosor using
observation series instead of a single prediction result, we also
calculate the confidence indexes for the latter for comparison.

The confidence index for class C i , with a single observation r i ,
is calculated by

p(C i |r i) = p(C i)p(r i |C i )
∑i

k=i p(Ck)p(r k |Ck)
, i = [−1], [0], [1].

Checking the likelihoods in Table III, we obtain
p(C [−1]|r [−1]) = 0.57, p(C [0]|r [0]) = 0.75, p(C [1]|r [1]) = 0.99.
The results show that such a scheme ensures a low reliability
on identifying contacts (0.57), i.e., the diagnosor is sensitive
to collisions but quite dull to contacts, which shows an
inferior performance than Algorithm 1.

VI. EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the proposed
CDI scheme in terms of both the identification accuracy and
the responsiveness by applying it to an online validation on the
recorded raw signals. These signals contain 242 collisions and
225 contacts and have never been used during the development
of the signal classifier. The torque signal is sequentially
sampled at the rate of 1 kHz and recursively segmented as
new samples for the signal classifier. The online diagnosor
is equipped with the fast online diagnosor in Algorithm 1 to
provide online diagnosis. Note that the evaluation method and
metrics in this experiment are different from the model test
in Section IV-D. For the classifier development, the accuracy
scores are calculated based on the number of signal segments
containing the pHRI waveform, while in a human–robot
collaboration, a CDI scheme focuses more on the number of
correctly identified collisions or contacts. The main difference
is that the pHRI, in an online application, usually produces
several segments with various b values, corresponding to the
signals segmented in different sampling instants. Therefore, for
the experimental validation, we must clarify that we evaluate
the performance of the CDI scheme with respect to the entire
pHRI, rather than its segments. We recognize that the pHRI is
accurately identified, if the scheme proposes a correct diagnose
before it vanishes.

During the experiment, 240 out of 242 collisions and all
225 interactions are correctly identified, with two collisions
misclassified as one contact and one free, achieving an overall
accuracy 99.6%. Some identification instances are shown
in Fig. 8, which illustrates the accuracy and responsiveness
of the scheme. It is noticed that most of the diagnosis results
are correctly produced in the early stages of the pHRI, which
confirms the high accuracy of the online CDI scheme. The fast
response of the scheme is also clearly reflected in Fig. 9 with
both instances of a collision and a contact. The two pHRIs
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Fig. 8. Experimental results of the online CDI scheme, respectively, for
collisions and contacts. (a) CDI diagnosis of collisions. Red solid lines: raw
signals. Black dotted lines: occurrence instants of the collisions. Gray regions:
time instants when collisions are detected and identified. (b) CDI diagnosis of
contacts. Red solid lines: raw signals. Black dotted lines: occurrence instants
of the contacts. Blue regions: time instants when contacts are detected and
identified.

Fig. 9. Diagnosis results of a collision and a contact. (a) CDI diagnosis of a
collision. Red solid lines: raw signals. Black dotted lines: occurrence instants
of the collisions. Gray regions: time instants when collisions are detected and
identified. (b) CDI diagnosis of a contact. Red solid lines: raw signals. Black
dotted lines: occurrence instants of the contacts. Blue regions: time instants
when contacts are detected and identified.

are all correctly identified within 20 ms after their occurrence,
which confirms the responsiveness of the scheme.

To demonstrate the applicability of the proposed online
CDI scheme in a practical task, we implement it on the

Fig. 10. Application demonstration of the online CDI diagnosis to the KUKA
manipulator platform. The CDI scheme identifies collisions and interactions,
such that different reaction routines are activated. (a) Collision is exerted.
(b) Emergency stop. (c) Interaction is exerted. (d) Guidance mode.

Kuka LWR4+ robot platform (as shown in Fig. 10) together
with a collision reaction routine. The task is intended to survey
the external torques on the robot joints, detect any pHRI,
and activate the corresponding reaction strategies. During a
robot task routine, if a collision is detected [as Fig. 10(a)],
an emergency stop is triggered and the robot holds on the
current position until the safety alarm is deactivated [as
Fig. 10(b)]. If a contact is detected [as Fig. 10(c)], the robot
enables its gravity compensation mode such that the human
can conduct active guidance on the robot [as Fig. 10(d)].

During the operation of the robot, the CDI scheme cor-
rectly detects and identifies most of the pHRI and enables
the corresponding reaction procedure although some week
contacts and collisions fail to be detected. When the robot
is smoothly moving, the false diagnosis of collisions and
contacts is hardly witnessed. Nevertheless, a false diagno-
sis occurs when the robot motion shows large vibrations
due to fierce motion or bad controller design. Therefore,
a smooth functioning condition is still necessary. As for the
responsiveness, the diagnosis delay is basically not obviously
perceivable experimenters, which is acceptable in a typical
human–robot collaborative task. Therefore, the demonstration
confirms the performance of the proposed CDI and indicates
its applicability to human–robot collaboration tasks in practice.

VII. CONCLUSION

In this article, we develop a novel online CDI scheme for
robot manipulators using supervised learning and the Bayesian
decision theory. During the data collection process, we try
to cover various execution conditions of the robot to ensure
a representative data set. After carefully investigating the
properties of the pHRI signals, we extract and select the
features by analyzing their dependence and importance. As a
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result, the signal classifier presents excellent predictability
and generalization ability. Based on this, we propose a fast
and simply implementable online diagnosor with a quantified
confidence index to depict the reliability of the diagnosis result
based on the Bayesian decision theory. Examined by both
theoretical analysis and experimental validation, the proposed
CDI scheme shows a promising value to improve the safety
of human–robot collaboration systems.

In general, our work in this article has achieved the target
raised in the beginning, i.e., to rapidly and correctly detect
and identify collisions in their early stages. As a result,
a collision is predicted before it vanishes, such that further
damages or injuries can be avoided. The common ground of
our work and the probabilistic-series-model-based methods is
to make a decision using the observation series. Nevertheless,
the proposed CDI scheme in this article is more suitable to
be widely applied in practice since it does not require prior
knowledge of the signal dependence and assumptions on the
data distribution.

It should be noted that the development of the CDI scheme,
including the procedures of the data collection, feature engi-
neering, and the model training, is conducted on a specific
robot platform. Thus, the applicability of the developed CDI
scheme to different platforms needs further investigations,
which motivates our future work on the adaptation of the CDI
scheme to a wider range of platforms. Another interesting
topic is to compensate for the effects of the varying robot
loads, which can be solved by dynamic-model-based distur-
bance estimation methods [9]. To investigate the influence
of the individual uncertainties on the classification accuracy,
we will also collect collision data with more experimental
subjects in future work.
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