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Abstract. Instantaneous dynamic equilibrium (IDE) is a standard
game-theoretic concept in dynamic traffic assignment in which individual
flow particles myopically select en route currently shortest paths towards
their destination. We analyze IDE within the Vickrey bottleneck model,
where current travel times along a path consist of the physical travel
times plus the sum of waiting times in all the queues along a path.
Although IDE have been studied for decades, no exact finite time algo-
rithm for equilibrium computation is known to date. As our main result
we show that a natural extension algorithm needs only finitely many
phases to converge leading to the first finite time combinatorial algo-
rithm computing an IDE. We complement this result by several hardness
results showing that computing IDE with natural properties is NP-hard.

1 Introduction

Flows over time or dynamic flows are an important mathematical concept in net-
work flow problems with many real world applications such as dynamic traffic
assignment, production systems and communication networks (e.g., the Inter-
net). In such applications, flow particles that are sent over an edge require a
certain amount of time to travel through each edge and when routing decisions
are being made, the dynamic flow propagation leads to later effects in other
parts of the network. A key characteristic of such applications, especially in traf-
fic assignment, is that the network edges have a limited flow capacity which,
when exceeded, leads to congestion. This phenomenon can be captured by the
fluid queueing model due to Vickrey [23]. The model is based on a directed graph
G = (V,E), where every edge e has an associated physical transit time τe ∈ Q>0

and a maximal rate capacity νe ∈ Q>0. If flow enters an edge with higher rate
than its capacity, the excess particles start to form a queue at the edge’s tail,
where they wait until they can be forwarded onto the edge. Thus, the total travel
time experienced by a single particle traversing an edge e is the sum of the time
spent waiting in the queue of e and the physical transit time τe.

This physical flow model then needs to be enhanced with a behavioral model
prescribing the actions of flow particles. There are two main standard behavioral
models in the traffic assignment literature known as dynamic equilibrium (DE)
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(cf. Ran and Boyce [19, Sect. V–VI]) and instantaneous dynamic equilibrium
(IDE) ([19, Sect. VII–IX]). Under DE, flow particles have complete information
on the state of the network for all points in time (including the future evolution
of all flow particles) and based on this information travel along a shortest path.
The full information assumption is usually justified by assuming that the game
is played repeatedly and a DE is then an attractor of a learning process. In an
IDE, at every point in time and at every node of the graph, flow particles only
enter those edges that lie on a currently shortest path towards their respective
sink. The behavioral model of IDE is based on the concept that drivers are
informed in real-time about the current traffic situation and, if beneficial, reroute
instantaneously no matter how good or bad that route will be in hindsight. IDE
has been proposed already in the late 80’s (cf. Boyce, Ran and LeBlanc [1,20]
and Friesz et al. [7]).

A line of recent works starting with Koch and Skutella [17] and Cominetti,
Correa and Larré [3] derived a complementarity description of DE flows via so-
called thin flows with resetting which leads to an α-extension property stating
that for any equilibrium up to time θ, there exists α > 0 so that the equilibrium
can be extended to time θ + α. An extension that is maximal with respect to
α is called a phase in the construction of an equilibrium and the existence of
equilibria on the whole R≥0 then follows by a limit argument over phases using
Zorn’s lemma. In the same spirit, Graf, Harks and Sering [10] established a
similar characterization for IDE flows and also derived an α-extension property.

For both models (DE or IDE), it is an open question whether for constant
inflow rates and a finite time horizon, a finite number of phases suffices to con-
struct an equilibrium, see [3,10,17]. Proving finiteness of the number of phases
would imply an exact finite time combinatorial algorithm. Such an algorithm is
not known to date neither for DE nor for IDE.1 More generally, the computa-
tional complexity of equilibrium computation is widely open.

1.1 Our Contribution and Proof Techniques

In this paper, we study IDE flows and derive algorithmic and computational com-
plexity results. As our main result we settle the key question regarding finiteness
of the α-extension algorithm.

Theorem 1: For single-sink networks with piecewise constant inflow rates
with bounded support, there is an α-extension algorithm computing an IDE

1 Algorithms for DE or IDE computation used in the transportation science literature
are numerical, that is, only approximate equilibrium flows are computed given a cer-
tain numerical precision using a discretized model, see for example [1,6,11]. While a
recent computational study [24] showed some positive results in regards to conver-
gence for DE, Otsubo and Rapoport [18] also reported “significant discrepancies”
between the continuous and a discretized solution for the Vickrey model.
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after finitely many extension phases. This implies the first finite time com-
binatorial exact algorithm computing IDE within the Vickrey model.

The proof of our result is based on the following ideas. We first consider the
case of acyclic networks and use a topological order of nodes in order to schedule
the extension phases in the algorithm. The key argument for the finiteness of
the number of extension phases is that for a single node v and any interval with
linearly changing distance labels of nodes closer to the sink and constant inflow
rate into v, this flow can be redistributed to the outgoing edges in a finite number
of phases of constant outflow rates from v. We show this using the properties
(derivatives) of suitable edge label functions for the outgoing edges. The overall
finiteness of the algorithm follows by induction over the nodes and time. We then
generalize to arbitrary single-sink networks by considering dynamically changing
topological orders depending on the current set of active edges.

We then turn to the computational complexity of IDE flows and show that
several natural decision problems about the existence of IDE with certain prop-
erties are NP-hard.

Theorem 2: The following decision problems are all NP-hard:

– Given a specific edge: Is there an IDE using/not using this edge?
– Given some time horizon T : Is there an IDE that terminates before T?
– Given some k ∈ N: Is there an IDE with at most k phases?

1.2 Related Work

The concept of flows over time was studied by Ford and Fulkerson [5]. Shortly after,
Vickrey [23] introduced a game-theoretic variant using a deterministic queueing
model. Since then, dynamic equilibria have been studied extensively in the trans-
portation science literature, see Friesz et al. [7]. New interest in this model was
raised after Koch and Skutella [17] gave a novel characterization of dynamic equi-
libria in terms of a family of static flows (thin flows). Cominetti et al. [3] refined
this characterization and Sering and Vargas-Koch [22] incorporated spillbacks in
the fluid queuing model. In a very recent work, Kaiser [16] showed that the thin
flows needed for the extension step in computing dynamic equilibria can be deter-
mined in polynomial time for series-parallel networks. The papers [3,16] explic-
itly mention the problem of possible non-finiteness of the extension steps. For fur-
ther results regarding a discrete packet routing model, we refer to Cao et al. [2],
Ismaili [14,15], Scarsini et al. [21], Harks et al. [12] and Hoefer et al. [13].
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2 Model and the Extension-Algorithm

In this paper we consider networks N = (G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t)
given by a directed graph G = (V,E), edge capacities νe ∈ Q>0, edge travel
times τe ∈ Q>0, and a single sink node t ∈ V which is reachable from anywhere
in the graph. Each node v ∈ V \ { t } has a corresponding (network) inflow rate
uv : R≥0 → Q≥0 indicating for every time θ ∈ R≥0 the rate uv(θ) at which
the infinitesimal small agents enter the network at node v and start traveling
through the graph until they leave the network at the common sink node t. We
will assume that these network inflow rates are right-constant step functions
with bounded support and finitely many, rational jump points.

A flow over time in N is a tuple f = (f+, f−) where f+, f− : E×R≥0 → R≥0

are integrable functions. For any edge e ∈ E and time θ ∈ R≥0 the value
f+

e (θ) describes the (edge) inflow rate into e at time θ and f−
e (θ) is the

(edge) outflow rate from e at time θ. For any such flow over time f we
define the cumulative (edge) in- and outflow rates F+ and F− by F+

e (θ) :=
∫ θ

0
f+

e (ζ)dζ and F−
e (θ) :=

∫ θ

0
f−

e (ζ)dζ, respectively. The queue length of
edge e at time θ is then defined as qe(θ) := F+

e (θ) − F−
e (θ + τe).

Such a flow f is called a feasible flow in N , if it satisfies the following con-
straints (1) to (4). The flow conservation constraints are modeled for all nodes
v �= t as

∑

e∈δ+
v

f+
e (θ) −

∑

e∈δ−
v

f−
e (θ) = uv(θ) for all θ ∈ R≥0, (1)

where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges from

v and incoming edges into v, respectively. For the sink node t we require
∑

e∈δ+
t

f+
e (θ) −

∑

e∈δ−
t

f−
e (θ) ≤ 0 (2)

and for all edges e ∈ E we always assume

f−
e (θ) = 0 for all θ < τe. (3)

Finally we assume that the queues operate at capacity which can be modeled by

f−
e (θ + τe) =

{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , if qe(θ) ≤ 0
for all e ∈ E, θ ∈ R≥0. (4)

Following the definition in [10] we call a feasible flow an IDE (flow) if when-
ever a particle arrives at a node v �= t, it can only ever enter an edge that is
the first edge on a currently shortest v-t path. In order to formally describe this
property we first define the current or instantaneous travel time of an edge e at
θ by

ce(θ) := τe +
qe(θ)
νe

. (5)
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We then define time dependent node labels �v(θ) corresponding to current short-
est path distances from v to the sink t. For v ∈ V and θ ∈ R≥0, define

�v(θ) :=

{
0, for v = t

min
e=vw∈E

{�w(θ) + ce(θ)}, else. (6)

We say that an edge e = vw is active at time θ, if �v(θ) = �w(θ) + ce(θ), denote
the set of active edges by Eθ ⊆ E and call the subgraph induced by Eθ the active
subgraph at time θ.

Definition 1. A feasible flow over time f is an instantaneous dynamic equilib-
rium (IDE), if for all θ ∈ R≥0 and e ∈ E it satisfies

f+
e (θ) > 0 ⇒ e ∈ Eθ. (7)

During the computation of an IDE we also temporarily need the concept of
a partial IDE up to some time θ̂. This is a flow f such that constraints (1) to (4)
as well as constraint (7) only hold for all θ ∈ [0, θ̂), while f+

e (θ) = f−
e (θ+τe) = 0

for all θ ≥ θ̂. For any such flow, we then define the gross node inflow rates b−
v by

setting b−
v (θ) :=

∑
e∈δ−

v
f−

e (θ) + uv(θ) for all v ∈ V \ { t } and θ ∈ [θ̂, θ̂ + τmin),
where τmin := min { τe | e ∈ E } > 0.

As shown in [10, Sect. 3] such a partial IDE can always be extended for some
additional proper2 time interval on a node by node basis using constant edge
inflow rates. The existence of IDE for the whole R≥0 then follows by applying
Zorn’s lemma. This also leads to the following natural algorithm for computing
IDE in single-sink networks:

1. Start with the zero-flow f – a partial IDE up to time 0.
2. While f is not an IDE for all times, extend f for some additional interval.

In the extension step, we first determine a topological order of the nodes in the
active subgraph (e.g. sort the nodes w.r.t. to their current node labels �v). Then
we go through the nodes in this order (beginning with the sink node t) and at
each node determine a constant distribution of the current gross node inflow rate
to the outgoing active edges in such a way that the used edges remain active for
some proper time interval into the future. Finally, we take the smallest of these
intervals and extend the whole partial IDE over it. For the extension at a single
node v at some time θ, we can use a solution to the following convex optimization
problem, which can be determined in polynomial time using a simple water filling
procedure (see [10, Algorithm 1 (electronic supplementary material)]):

min
∑

e=vw∈δ+
v ∩Eθ

∫ xe

0

ge(z)
νe

+ ∂+�w(θ)dz (OPT-b−
v (θ))

s.t.
∑

e∈δ+
v ∩Eθ

xe = b−
v (θ), xe ≥ 0 for all e ∈ δ+v ∩ Eθ,

2 We call an interval [a, b) proper if a < b.
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where ∂+ denotes the right side derivative and ge(z) := z − νe, if qe(θ) > 0, and
ge(z) := max { z − νe, 0 }, otherwise. Any solution to (OPT-b−

v (θ)) corresponds
to a flow distribution to active edges so that for every edge e = vw ∈ δ+v ∩ Eθ

the following condition is satisfied (see [10, Lemma 3.1])

f+
e (θ) > 0 =⇒ ∂+�v(θ) = ∂+ce(θ) + ∂+�w(θ)

f+
e (θ) = 0 =⇒ ∂+�v(θ) ≤ ∂+ce(θ) + ∂+�w(θ).

(8)

Because the network inflow rates as well as all already constructed edge inflow
rates are piecewise constant and the node label functions as well as the queue
length functions are continuous, the used edges will remain active for some proper
time interval. As IDE flows in single-sink networks always have a finite termi-
nation time ([10, Theorem 4.6]) it suffices to extend the flow for some finite
time horizon (in [9] we even provide a way to explicitly compute such a time
horizon). Thus, the only possible obstruction for the extension algorithm to
terminate within finite time is some Zeno-type behavior of the lengths of the
extension phases, e.g. some sequence of extension phases of lengths α1, α2, . . .
such that

∑∞
i=1 αi converges to some point strictly before the IDE’s termination

time. In fact, in the full version of this paper [8], we provide an example of a
rather simple network wherein extension phases may indeed become arbitrarily
small, provided a long enough lasting network inflow rate.3 However, this is not
a counter example to the finiteness of the extension algorithm, as the shrinking
of the extension phases is slow enough to still allow for a finite number of phases
to span any fixed time horizon. In the following section we will show that this
is in fact true for all single-sink networks, i.e. that we can reach any given time
horizon within a finite number of phases.

3 Finite IDE-Construction Algorithm

For the proof of our main theorem we will employ two reductions: First, we
observe that for acyclic networks, it suffices to consider a single node with con-
stant gross node inflow rate for a given interval and linear node label functions
at all the nodes reachable via a single edge from this node. For this situation, we
show that the incoming flow can be distributed over active edges using a finite
number of phases. Second, we argue that for general networks, we can group
the extension phases into finitely many larger intervals such that during each
such interval the extension algorithm only has to consider a certain fixed acyclic
subgraph (reducing to the first case).

3 This example also shows that the number of (distinct!) extension phases can be
exponential in the encoding size of the given instance and that networks with forever
lasting network inflow rates may require IDE flows which never reach a stable state.
An exponential number of extension phases has also been observed in DE flows while
stable states are always reached there (see [4]).



110 L. Graf and T. Harks

Acyclic Networks. Due to our first reduction, which we will justify afterwards,
the proof for acyclic networks essentially rests on the following key lemma.

Lemma 1. Let N be a single-sink network on an acyclic graph with some fixed
topological order on the nodes, v some node in N and θ1 < θ2 ≤ θ1 + τmin two
times. If f is a flow over time in N such that

– f is a partial IDE up to time θ1 for nodes at least as far away from t as v,
– f is a partial IDE up to time θ2 for nodes closer to t than v,
– during [θ1, θ2) the gross node inflow rate into v is constant and
– the label functions at the nodes reachable via direct edges from v are linear on

this interval,

then we can extend f to a partial IDE up to θ2 at v in a finite number of phases.

Fig. 1. The situation in Lemma 1: We have an acyclic graph and a partial IDE up to
some time θ2 for all nodes closer to the sink t than v and up to some earlier time θ1
for v and all nodes further away than v from t. Additionally, over the interval [θ1, θ2)
the edges leading into v have a constant outflow rate (and a physical travel time of at
least θ2 − θ1) and the nodes wi all have affine label functions �wi . The edges vwi start
with some current queue lengths qvwi(θ1) ≥ 0.

Proof. Let f be the flow after an, a priori, infinite number of maximal extension
steps getting us to a partial IDE up to some θ̂ ∈ (θ1, θ2] at node v. Furthermore,
let δ+v = { vw1, . . . , vwp } be the set of outgoing edges from v. Then for every
such edge vwi we can define a function hi : [θ1, θ̂) → R≥0, θ 
→ cvwi

(θ) + �wi
(θ),

denoting for every time θ ∈ [θ1, θ̂) the shortest current travel time to the sink t
for a particle entering edge vwi at that time. Consequently, during this interval
we have vwi ∈ Eθ if and only if hi(θ) = min {hj(θ) | j ∈ [p] } = �v(θ). We start
by stating several important observations and then proceed by showing two key-
properties of the functions hi and �v, which are also visualized in Figs. 2 and 3:
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Fig. 2. The first three phases of a possible flow distribution from the node v for the
situation depicted in Fig. 1. The corresponding functions hi are depicted in Fig. 3

Fig. 3. The functions hi corresponding to the flow distribution for the situation
depicted in Fig. 1 and depicted in Fig. 2 for the first three phases. The second, third
and fifth phase start because an edge becomes newly active (edges vw3, vw1 and vw3

again, respectively). The fourth phase starts because the queue on the active edge vw1

runs empty. These are the only two possible events which can trigger the beginning of
a new phase. Edge vw2 is inactive for the whole time interval and, thus, has a convex
graph. The bold gray line marks the graph of the function �v.

(i) The functions hi are continuous and piece-wise linear. In particular they
are differentiable almost everywhere and their left and right side deriva-
tives ∂−hi and ∂+hi, respectively, exist everywhere. The same holds for the
function �v.

(ii) A new phase begins at a time θ ∈ [θ1, θ̂) if and only if at least one of the
following two events occurs at time θ: An edge vwi becomes newly active
or the queue of an active edge vwi runs empty.

(iii) There are uniquely defined numbers �I,J for all subsets J ⊆ I ⊆ [p] such
that �′

v(θ) = �I,J within all phases, where { vwi | i ∈ I } is the set of active
edges in δ+v and { vwi | i ∈ J } is the subset of such active edges that also
have a non-zero queue during this phase.

Claim 1. If an edge vwi is inactive during some interval (a, b) ⊆ [θ1, θ̂), the
graph of hi is convex on this interval.
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Claim 2. For any time θ define I(θ) := { i ∈ [p] | hi(θ) = �v(θ) }. Then, we have

min { ∂−hi(θ) | i ∈ I(θ) } ≤ ∂+�v(θ). (9)

If no edge becomes newly active at time θ, we also have ∂−�v(θ) ≤ ∂+�v(θ).

Proof of Claim 1. By the lemma’s assumption �wi
is linear on the whole interval.

For an inactive edge vwi its queue length function consists of at most two linear
sections: One where the queue depletes at a constant rate of −νe and one where
it remains constant 0. Thus, hi is convex as sum of two convex functions. �

Proof of Claim 2. To show (9), let I ′ be the set of indices of edges active imme-
diately after θ, i.e. I ′ := { i ∈ I(θ) | ∂+hi(θ) = ∂+�v(θ) }. Since the total outflow
from node v is constant during [θ1, θ̂) and flow may only enter edges vwi with
i ∈ I ′ after θ, there exists some j ∈ I ′, where the inflow rate into vwj after θ is
the same or larger than before. But then we have ∂+hj(θ) ≥ ∂−hj(θ) and, thus,

min { ∂−hi(θ) | i ∈ I(θ) } ≤ ∂−hj(θ) ≤ ∂+hj(θ) = ∂+�v(θ).

If, additionally, no edge becomes newly active at time θ, all edges vwi with i ∈ I ′

have been active directly before θ as well implying

∂−�v(θ) = min { ∂−hi(θ) | i ∈ I(θ) }
(9)

≤ ∂+�v(θ).

�
Using these properties we can now first show a claim which implies that

the derivative of �v can attain the smallest �I,J only for a finite number of
intervals. Inductively the same then holds for all of the finitely many �I,J , which
by observation (iii) are the only values �′

v can attain. The proof of the lemma
finally concludes by observing that an interval with constant derivative of �v can
contain only finitely many phases.

Claim 3. Let (a1, b1), (a2, b2) ⊆ [θ1, θ̂) be two disjoint maximal non-empty
intervals with constant �′

v(θ) =: c. If b1 < a2 and �′
v(θ) ≥ c for all θ ∈ (b1, a2)

where the derivative exists, then there exists an edge vwi such that

1. the first phase of (a2, b2) begins because vwi becomes newly active and
2. this edge is not active between a1 and a2.

In particular, the first phase of (a1, b2) is not triggered by vwi becoming active.

Claim 4. Let (a, b) ⊆ [θ1, θ̂) be an interval during which �′
v is constant. Then

(a, b) contains at most 2p phases.

Proof of Claim 3. Since we have ∂+�v(a2) = c, Claim 2 implies that there exists
some edge vwi with hi(a2) = �v(a2) and ∂−hi(a2) ≤ c. As (a2, b2) was chosen to
be maximal and �′

v(θ) ≥ c holds almost everywhere between b1 and a2, we have
∂−�v(a2) > c. Thus, vwi was inactive before a2.
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Now let θ̃ < a2 be the last time before a2, where vwi was active. By Claim 1
we know then that h′

i(θ) ≤ c holds almost everywhere on [θ̃, a2]. At the same
time we have �′

v(θ) ≥ c almost everywhere on [a1, a2] and �′
v(θ) > c for at least

some proper subinterval of [b1, a2], since the intervals (a1, b1) and (a2, b2) were
chosen to be maximal. Combining these two facts with �v(θ) = hi(θ) implies
�v(θ) < hi(θ) for all θ ∈ [θ̃, a2) ∩ [a1, a2). As both functions are continuous we
must have θ̃ < a1. Thus, vwi is inactive for all of [a1, a2). �

Proof of Claim 4. By Claim 1 an edge that changes from active to inactive during
the interval (a, b) will remain inactive for the rest of this interval. Thus, at most
p phases can start because an edge becomes newly active. By Claim 3 if a phase
begins because the queue on an active edge vwi runs empty at time θ, we have
∂+hi(θ) > ∂−hi(θ) = ∂−�v(θ) = ∂+�v(θ) meaning that this edge will become
inactive. Thus, at most p phases start because the queue of an active edge runs
empty. Since by observation (ii) these are the only ways to start a new phase,
we conclude that there can be no more than 2p phases during (a, b). �

Combining Claims 3 and 4 we see that [θ1, θ̂) only contains a finite number
of phases and, thus, we achieve θ̂ = θ2 with finitely many extensions. ��

For acyclic networks we can now fix some topological order of the nodes w.r.t.
the whole graph at the beginning of the algorithm and then always do the node-
wise extensions in this order. Since in a partial IDE up to time θ̂ the gross node
inflow rates are already completely determined for the interval [θ̂, θ̂ + τmin) we
can – for the purpose of the following analysis – slightly rearrange the extension
steps, without changing the outcome of the algorithm, by directly extending the
partial IDE at each node for this whole interval (using multiple phases). It then
suffices to show that these extensions (of constant length τmin > 0) at a single
node only need a finite amount of phases, which follows by repeatedly applying
Lemma 1 and using the fact that, by induction, the gross node inflow rate at
the current node as well as the label functions �wi

at all nodes closer to the sink
are piece-wise constant and piece-wise linear with finitely many breakpoints,
respectively.

General Networks. In order to extend this result to general networks, we
introduce the concept of a lazy set of active edges, which is a time dependent
subset of edges Ẽ(θ) satisfying the following properties:

– At every time θ the set Ẽ(θ) contains all currently active edges but no cycle.
– There are (flow independent) constants C,D > 0 such that during any time

interval of length at most C the set Ẽ(θ) changes at most D times.

This allows us to subdivide the whole time into a finite number of intervals
during which Ẽ(θ) does not change and, during those, we can restrict ourselves
to considering only edges in the fixed acyclic subgraph induced by the edges in
Ẽ(θ). To obtain such a lazy set of active edges we add edges, whenever they
become active, but only remove edges if, otherwise, Ẽ(θ) would contain a cycle.
Additionally, in this case we always only remove the “most inactive” edge of
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the cycle. This leads to the final variant of the extension algorithm which is
formalized in Algorithm1 and for which we will now show our main theorem.

Algorithm 1: IDE-Construction Algorithm for single-sink networks
Input: A network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T large enough such that all IDE flows in N terminate before T

2 Let f be the zero flow, set θ ← 0 and Ẽ ← E0

3 Determine a top. order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ
4 while θ < T do
5 Choose the largest α0 > 0 s.th. all b−v are constant over (θ, θ + α0)
6 for i = 1, . . . , n do
7 Compute a constant distribution to the outgoing active edges from vi

satisfying (8)
8 Determine the largest αi ≤ αi−1 such that the set of active edges does

not change during (θ, θ + αi)
9 end for

10 Extend the flow f up to time θ + αn and set θ ← θ + αn

11 if Eθ \ Ẽ �= ∅ then

12 Define Ẽ ← Ẽ ∪ Eθ.

13 while there exists a cycle C in Ẽ do
14 Remove an edge e = xy ∈ C with maximal �y(θ) − �x(θ)

15 end while

16 Find a top. order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ

17 end if

18 end while

Theorem 1. For any single-sink network with piecewise constant network-
inflow rates an IDE flow can be constructed in finite time using the natural
extension algorithm (Algorithm1).

Proof. As we already have the above theorem for acyclic networks and Algo-
rithm1 only uses a fixed acyclic subgraph of the whole network as long as the
set Ẽ used in Algorithm 1 remains unchanged, it suffices to show that this set is
indeed a lazy set of active edges. The first property is obvious from the way Ẽ is
obtained in the algorithm, for the second one we need the following two claims:

Claim 5. Any edge xy removed from Ẽ in line 14 satisfies �x(θ) < �y(θ).

Claim 6. For any given network there exists some constant L > 0 such that for
all flows, all nodes v and all times θ we have |�′

v(θ)| ≤ L.

Proof of Claim 5. Let C ⊆ Ẽ be a cycle containing the removed edge xy. Since Ẽ
was acyclic before we added the newly active edges in line 12, this cycle also has to
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contain some edge vw which is currently active, therefore satisfying �v(θ) > �w(θ).
Thus, summing the differences of the label functions at the two ends of every edge
over all edges in C yields the existence of at least one edge uz ∈ C with �z(θ) −
�u(θ) > 0. This then, in particular, also holds for edge xy. �
Proof of Claim 6. For any node v we can bound the maximal inflow rate into this
node by the constant Lv :=

∑
e∈δ−

v
νe +max {uv(θ) | θ ∈ R≥0 } using constraint

(4). Together with flow conservation (1) this, in turn, allows us to upper bound
the inflow rates into all edges e ∈ δ+v and, thus, the rate at which the queue length
and the current travel time on these edges can change by Le := Lv

νe
. Since this rate

of change is also lower bounded by −1 setting L :=
∑

e∈E max { 1, Le } proves
the claim, as for all nodes v and times θ, we then have |�′

v(θ)| ≤ ∑
e∈E |c′

e(θ)| ≤∑
e∈E max { 1, Le } = L. �
Combining these two claims with the fact that an edge xy is only added to

Ẽ if it becomes active, i.e. �x(θ) = �y(θ) + cxy(θ) ≥ �y(θ) + τxy, shows that no
edge can enter Ẽ twice during any sufficiently small time interval, which implies
the second property concluding the proof of the theorem. ��
Remark 1. A closer inspection of the proofs allows us to also derive the following
rough but explicit bound on the number of phases needed assuming that all
edge travel times and capacities are integers (which can always be achieved by
rescaling the network):

O
(

P
(
2(Δ + 1)4

Δ+1
)D/C·T ·|V |)

.

Hereby, Δ := max { |δ+v | | v ∈ V } is the maximum out-degree of any edge, T
the termination time of the IDE and P is the number of intervals with constant
network inflow rates. A formal deduction of this bound can be found in the full
version of this paper [8].

4 Computational Complexity of IDE

While Theorem 1 shows that IDE can be constructed in finite time, the derived
explicit bound is clearly superpolynomial. In this section we complement this
result by showing that many natural decision problems about IDE are NP-hard.

Theorem 2. The following decision problems are NP-hard:

(i) Given a network and a specific edge: Is there an IDE not using this edge?
(ii) Given a network and a specific edge: Is there an IDE using this edge?
(iii) Given a network and a time T : Is there an IDE that terminates before T?
(iv) Given a network and some k ∈ N: Is there an IDE with at most k phases?

This theorem can be shown by a reduction from the NP-complete problem
3SAT to the above problems. The main idea of the reduction is as follows: For
any given instance of 3SAT we construct a network which contains a source node
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for each clause with three outgoing edges corresponding to the three literals
of the clause. Any satisfying interpretation of the 3SAT-formula translates to a
distribution of the network inflow to the literal edges (where sending at least 1/3
of the flow along an edge corresponds to the respective literal being true), which
leads to an IDE flow that passes through the whole network in a straightforward
manner. If, on the other hand, the formula is unsatisfiable, every IDE flow will
cause a specific type of congestion which will divert a certain amount of flow into
a different part of the graph. This part of the graph may contain an otherwise
unused edge (for (i)), a gadget blocking access to an otherwise used edge (for
(ii)), a gadget which results in a long travel time (for (iii)) or one which produces
many phases (for (iv)). The congestion occurs because the flow corresponding
to a variable being false forms a queue while the flow corresponding to the same
variable being true is delayed. Thus, when the latter finally arrives, the former
has already blocked the direct path and diverts the latter away from it. On the
other hand, in a flow corresponding to a satisfying interpretation of the formula
this does not happen, as only one of the two types of flow is present for every
variable. The detailed construction of the described gadgets as well as the formal
proof of the reduction’s correctness can be found in the full version of this paper
[8]. For an illustration of the reduction see Fig. 4.

Fig. 4. The whole network for the 3SAT-formula (x1∨x2∨¬x3)∧(x1∨¬x2∨x4)∧(¬x1∨
x3 ∨ x4). The bold edges have infinite capacity, while all other edges have capacity 1.
The solid edges have a travel time of 1, the dashdotted edges may have variable travel
time (depending on the subnetwork N ). The network inflow rates are 12 over the
interval [0, 1] at all nodes ci and 0 everywhere else.

5 Conclusion

We showed that Instantaneous Dynamic Equilibria can be computed in finite
time for single-sink networks by applying the natural extension algorithm. We
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complemented this result by showing that several natural decision problems
involving IDE flows are NP-hard by describing a reduction from 3SAT. One
common observation that can be drawn from many proofs involving IDE flows
(in this paper as well as in [9,10]) is that they often allow for some kind of local
analysis of their structure – something which seems out of reach for DE flows.
This was a key aspect of the positive result about the finiteness of the extension
algorithm where it allowed us to use inductive reasoning over the single nodes
of the given network. At the same time, such local argumentation allows us to
analyse the behavior of IDE flows in the rather complex instance resulting from
the reduction in the hardness-proof by looking at the local behavior inside the
much simpler gadgets from which the larger instance is constructed. We think
that this local approach to the analysis of IDE flows might also help to answer
further open questions about IDE flows in the future. One such topic might be a
further investigation of the computational complexity of IDE flows. While both
our upper bound on the number of extension steps as well as our lower bound for
the worst case computational complexity are superpolynomial bounds, the latter
is at least still polynomial in the termination time of the constructed flow, which
is not the case for the former. Thus, there might still be room for improvement
on either bound.
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