
 2575

Guided Generative Adversarial Neural Network for
Representation Learning and Audio Generation

Using Fewer Labelled Audio Data
Kazi Nazmul Haque , Rajib Rana, Jiajun Liu , John H. L. Hansen , Fellow, IEEE, Nicholas Cummins,

Carlos Busso , Senior Member, IEEE, and Björn W. Schuller , Fellow, IEEE

Abstract—The Generation power of Generative Adversarial
Neural Networks (GANs) has shown great promise to learn rep-
resentations from unlabelled data while guided by a small amount
of labelled data. We aim to utilise the generation power of GANs
to learn Audio Representations. Most existing studies are, however,
focused on images. Some studies use GANs for speech generation,
but they are conditioned on text or acoustic features, limiting their
use for other audio, such as instruments, and even for speech
where transcripts are limited. This paper proposes a novel GAN-
based model that we named Guided Generative Adversarial Neural
Network (GGAN), which can learn powerful representations and
generate good-quality samples using a small amount of labelled
data as guidance. Experimental results based on a speech [Speech
Command Dataset (S09)] and a non-speech [Musical Instrument
Sound dataset (Nsyth)] dataset demonstrate that using only 5%
of labelled data as guidance, GGAN learns significantly better
representations than the state-of-the-art models.

Index Terms—Audio Generation, Disentangled Representation
Learning, Guided Representation Learning, and Generative
Adversarial Neural Network.

I. INTRODUCTION

THE generation power of a Generative Adversarial Neural
Networks (GANs) [1] is useful for learning a meaningful

representation [2]–[5] from an unlabelled dataset. However, the

Kazi Nazmul Haque and Rajib Rana are with the University of
Southern Queensland, Darling Heights, QLD 4350, Australia (e-mail:
shezan.huq@gmail.com; Rajib.Rana@usq.edu.au).

Jiajun Liu is with the Distributed Sensing Systems Group, Data61,
CSIRO Australia, Pullenvale QLD 4069, Queensland, Australia (e-mail:
liujiajun.nju@gmail.com).

John H. L. Hansen and Carlos Busso are with the University of Texas
at Dallas, Richardson, TX 75080 USA (e-mail: john.hansen@utdallas.edu;
busso@utdallas.edu).

Nicholas Cummins is with the King’s College London, WC2R 2LS London,
U.K. (e-mail: nick.cummins@kcl.ac.uk).

Björn W. Schuller is with the GLAM – Group on Language, Audio, and Music,
Imperial College London, London SW7 2BX, U.K., and also with the Chair of
Embedded Intelligence for Health Care and Wellbeing, University of Augsburg,
86159 Augsburg, Germany (e-mail: schuller@tum.de).

success of a GANs can mainly be found in image generation;
it does not perform equally well for audio generation, as it
requires to generate complex waveforms. Encouragingly, recent
studies, such as for Parallel WaveGAN [6], and GAN-TTS [7]
have shown success of GANs for audio generation. Most of
these GAN models are, however, based on speech audio gener-
ation and conditioned on text or acoustic features, therefore,
they can not be generalised for other audio domains, even
for speech audios where transcripts are limited. Some studies
such as WaveGAN [8], GANSynth [9], and TiFGAN [10] have
shown intriguing results for text/acoustic feature independent
audio generation using GAN based models. In these studies,
researchers focused on strategies to generate low-dimensional
acoustic features/representation, such as audio spectrograms,
rather than generating raw waveform. The spectrograms are
then converted back to audio. Most of these models are based
on the conventional DCGAN architecture [11], which leaves
room to explore high performing GAN based architecture such
as BigGAN [4] and StyleGAN [3]. In this paper, we focus on
the BigGAN architecture.

Like any GAN based model, BigGAN shows good perfor-
mance for conditional generation using labelled data (categor-
ical labels). These categorical labels add useful side informa-
tion for BigGAN, which help it to generate correct samples.
BigGAN requires an enormous amount of labelled data [12].
However, for audio, acquiring labels is very expensive and
error-prone. Therefore, using a BigGAN for conditional (cat-
egorical) audio sample generation with fewer labelled data is a
challenge.

This paper tackles this challenge by proposing the new model
called Guided Generative Adversarial Neural Network (GGAN),
which is based on the BigGAN architecture, but can generate
conditional audio samples successfully using a small number of
categorical labels.

The proposed GGAN offering not only to produce high-
quality generation, but also to learn useful representations for
two reasons: First, BigGAN, which is the core of GGAN, is
useful for representation learning [5]. Second, Locatello et al.
show that unsupervised representation learning is fundamen-
tally impossible because many variational factors of the data
distribution are dependent on the human perception/bias, which
cannot be discovered from a dataset without any supervision

https://orcid.org/0000-0001-8882-5194
https://orcid.org/0000-0002-5301-8314
https://orcid.org/0000-0003-1382-9929
https://orcid.org/0000-0002-4075-4072
https://orcid.org/0000-0002-6478-8699
mailto:shezan.huq@gmail.com
mailto:Rajib.Rana@usq.edu.au
mailto:liujiajun.nju@gmail.com
mailto:john.hansen@utdallas.edu
mailto:busso@utdallas.edu
mailto:nick.cummins@kcl.ac.uk
mailto:schuller@tum.de

2576

towards that bias [13]. This observation implies that learning a
good representation using BigGAN should require some form of
supervision. GGAN using guidance from labelled data coincide
with this finding.

We evaluate the performance of conditional (categorical)
audio sample generation and representation learning the qual-
ity of the GGAN model using the widely used Speech Com-
mand Dataset (S09) and the Musical Instrument Sound dataset
(Nsyth). A comparison with the existing studies shows that the
GGAN performs significantly better than the state-of-the-art
(SOTA) [8], [10] methods.

II. BACKGROUND AND RELATED WORK

In this section, we discuss related studies in audio generation
and representation learning.

A. Audio Generation

Generating human-like speech audio with a neural network
(NN) is an active area of research. Successful audio generation
with NNs is hard, as it depends on generating coherent periodic
waveforms maintaining the regularity in the periodicity, where
the temporal resolution (sampling rate) and time scale (audio
length) are high with short and long-term dependencies [9],
[14]. Human hearing is highly sensitive to irregularities and
discontinuities in the periodic nature of any audio [9], which
makes it even harder for any NN to generate human-like speech
audio. However, in recent years, researchers have achieved ex-
traordinary success using neural networks for generating speech
audio from text [15]. Most of these successes are dominated by
the autoregressive models. Oord et al. [16] proposed “WaveNet”
as a powerful autoregressive model for Text-To-Speech (TTS)
synthesis for both English and Mandarin. Later, Oord et al.
improved this work by proposing “Parallel WaveNet,” which
is 20 times faster [17]. This research proposed a new method
for training a parallel feed-forward network from a trained
WaveNet. Further improvement of WaveNet was proposed in
the CLARINET [18], where they introduced a parallel wave
generation method using Gaussian inverse autoregressive flow.
Researchers have also used seq2seq-based models for acoustic
modelling (text to acoustic features) such as TACOTRON (1 &
2) [19], [20] and Char2Wav [21]. Here, TACOTRON 1 adopts
Griffin-Lim [22] for vocoding (acoustic features to waveform),
TACOTRON 2 adopts WaveNet for vocoding, and Char2Wav
adopts SampleRNN [23] for vocoding. Eunwoo et al. [24]
proposed a Long-Short-Term-Memory (LSTM) based Recurrent
Neural Network for TTS. Furthermore, many researchers have
used other Neural Networks for TTS [25], [26]. These autore-
gressive models directly generate raw audios, which makes them
expensive and slow.

As an alternative approach (non-autoregressive models),
many researchers are currently focusing on generating low-
dimensional acoustic features/representation, such as audio
spectrograms, rather than generating a raw waveform. The gen-
erated spectrograms are then either converted back to audio
using low computational methods such as IFFT/PGHI [8]–[10]
or using a neural network [14]. Recently, GAN-based models

are becoming popular to provide a non-autoregressive solution.
A GAN generally consists of two neural networks, the Gen-
erator and the Discriminator, both trained using an alternat-
ing minimax-game optimisation process. During training, the
Discriminator tries to distinguish between real samples from a
data distribution and fake samples generated from the Generator,
while the Generator tries to fool the Discriminator by producing
samples closer to the real sample [1]. Parallel WaveGAN [6],
generates high-quality speech using a GAN-based technique
where the Generator uses a WaveNet-like architecture. Kumar
et al. [14] have proposed the MelGAN framework, which gen-
erates waveform samples using mel-spectrograms. Moreover,
other studies propose GAN-based solutions for speech genera-
tion such as GAN-TTS [7]. In the GAN-TTS paper, the authors
propose a text-conditional feed-forward Generator using multi-
ple discriminators which evaluate the generated audio based on
multi-frequency random windows. Other studies have utilised
GANs for spectral conversion in speech data [27], [28]. The
above GAN-based Parallel WaveGAN, GAN-TTS, and Mel-
GAN are conditioned on text or acoustic features and mainly
focus on speech generation. Therefore, these models cannot be
generalised directly to other audio domains. They cannot even
be used for speech generation, where text is not available.

For generating audio/speech without text/acoustic features as
input, researchers are also using GAN-based solutions. In the
SpecGAN work, the authors generate spectrograms and then
convert them back to audio [8] using the Griffin-Lim algo-
rithm [22]. Marafioti et al. [10] in their TiFGAN paper showed
a significant improvement using the Phase Gradient Heap In-
tegration (PGHI) [29] algorithm for converting spectrograms
to audio. As the PGHI algorithm can reconstruct audio from
a spectrogram with minimal loss in the perceptual quality [10],
generating real-like spectrograms should result in a high-quality
audio generation. The high performing GAN architectures, such
as Style GAN [3], or BigGAN [4] usually work fine for spec-
trogram generation. The BigGAN model has been successfully
explored in the field of image datasets. However, it is an open
research question to explore its benefits in the audio domain,
which we address in this paper.

B. Audio Representation Learning

In any high dimensional data distribution, the variational
factors of the data are entangled and cannot be easily identified.
Representation learning aims to disentangle these variational
factors by mapping the high dimensional data to a low di-
mensional latent/representation space [13]. For any particular
domain, learning representation from vastly available unlabelled
data can improve the post-use case scenario where the availabil-
ity of the labelled data is limited. Researchers are currently using
deep neural networks to learn successful representation from any
labelled or unlabelled audio dataset [30]–[36].

Among the unsupervised representation learning techniques,
self-supervised learning is dominant in the field of computer
vision [37]–[40]. In self-supervised learning, an alternative su-
pervised signal is created from the information that exists in the
unlabelled data to train the model for representation learning.

 2577

An example is predicting the rotation angle of images where the
rotation angle is the supervised signal for training the model [41].
Similarly, audio researchers have achieved successful results
using self-supervised representation learning. Van den Oord
et al. [42] proposed a model for learning representation pre-
dicting future latent observations. In another study, De Chau-
mont Quitry et al. [43] have learnt representation by predict-
ing the instantaneous frequency. Likewise, other researchers
have achieved improvement in performance using different self-
supervised techniques [43]–[48].

For self-supervised learning, we have to manually design the
supervised signal, which is a major drawback [49]. This leads
the researchers to focus on fully unsupervised representation
learning techniques. Most of the unsupervised representation
learning studies use autoencoders [50], [51]. Several researchers
have utilised Variational Autoencoders (VAEs) [52] to learn a
useful representation from an unlabelled speech dataset. Recent
literature has used GANs for learning meaningful representa-
tions in an unsupervised manner [53], [54].

Unsupervised representation learning looks intriguing as it
can utilise an enormous amount of unlabelled data. However,
recent work of Locatello et al. have shown that entirely unsuper-
vised representation learning is not possible without any short
of supervise signal [13]. Furthermore, learning representation
in an unsupervised manner does not guarantee its usability in
the post-use case scenario. Therefore, we propose the Guided
Generative Adversarial Neural Network (GGAN), which can
learn an useful representation from an unlabelled audio dataset
according to the categorical supervision given from a limited
amount of labelled data.

C. Related Guided Generative Adversarial Neural
Network Architectures

In Spurr et al. [55] proposed a method to guide an InfoGAN
network. They use a small number of labels to help the InfoGAN
to capture a specific representation. However, it fails to perform
well for complex datasets such as SVHN [56], CelebA [57], and
CIFAR-10 [58]. Springenberg et al. [59] suggested learning a
classifier from a partially labelled dataset and then used that
classifier for semi-supervision in a GAN architecture. They
empirically evaluated their method on synthetic data as well as
on challenging image classification tasks. Kumar [60] proposed
two discriminators in a GAN architecture where one discrimi-
nator learns to identify real or fake samples from the unlabelled
dataset, and another discriminator learns to identify real or fake
samples with their labels from some labelled dataset. A recent
study from Lucic et al. [12] explored different semi-supervised
methods for images. They predict the missing labels of the
dataset with the help of a small labelled dataset. First, they
train with self-supervision and then fine-tune the classifier with
a small labelled dataset. Subsequently, they predict the labels for
other missing labelled datasets. They also propose a co-training
method for this task, where they train this classifier on top of the
discriminator during the training.

The review of the related guided GANs shows that most of the
studies are focused on images generation. Also, representation

learning has received a small focus from yhe community. We
propose the GGAN, capable of learning a meaningful represen-
tation from an unlabelled audio dataset with some guidance from
a minimal amount of labelled samples. The newly introduced
GGAN can also generate higher quality audio samples than the
state-of-the-art [8], [10] models given the small guidance.

III. ARCHITECTURE OF GGAN

A. Overview of the GGAN

In our proposed model, we have eight networks. These are the
Encoder E, Generator G, Feature Extractor F , two Classifiers
Ce and Cx, and three Discriminators D1, D2, and Df . Fig. 1
shows the essential connections between different parts of the
model.

The Generator of any unsupervised GAN usually takes a
random latent space as input and generates samples from the
real data distribution. It learns to map any latent space to the
data distribution. In the data distribution, the factors of variation
are entangled and not easily separable, but in the latent space,
these categories are disentangled, and can be easily separated.
The BiGAN [61] framework uses an extra network to learn the
reverse mapping from the data distribution to the latent space.
In our GGAN model, rather than feeding a random latent space
to the Generator, we feed it with a generated latent space u(z),
which is easily classifiable into n categories. Our aim is that
the Generator learns to map different latent space categories to
different data categories, according to our guidance. However,
the challenge is to force the Generator to create such different
samples for different categories of latent space. To guide the
Generator, we use a small percentage of labelled samples from
the training datasets. This is how we achieve semi-supervised
learning.

The first task is to generate a latent space u(z), which can be
divided into our desired n categories. In the GGAN model, the
encoder E learns to generate a new latent space u(z) from any
known distribution p(z) and categorical distribution Cat(c, k =
n), where Ce can classify u(z) into n categories.

The second task is to force the Generator G to generate
different categories of data samples from different latent space
categories. We utilise the classifier Cx to guide the Generator
G to generate accurate samples for different latent space
categories. Note that we only have a small percentage of
labelled samples from the training data, which is not enough
to successfully train the Classifier Cx. To address this problem,
we use these generated samples and the labelled samples from
different categories to train the Classifier Cx. In the beginning,
G produces incorrect samples, asCx learns to classify only some
samples correctly based on the used labelled samples. Then,
Cx forces the Generator G to generate those samples correctly.
Gradually, the Generator G learns to generate new samples with
new characteristics, matching some characteristics from those
correct categories. These news samples with correct categories
improve the learning of Cx, which recursively improves G.

When our Generator G can successfully map n categories of
latent samples ze ∈ u(z) to the n categories of data samples,
the latent space becomes a useful representation of the data

2578

Fig. 1. The architecture of the proposed GGAN model. The model consists of the Encoder E, Generator G, Feature Extractor F , two Classifiers Ce and Cx, three
Discriminators D1, D2, and Df Networks. Here, z is the random sample from a continuous distribution, c is the random sample from a categorical distribution, x̂
is the generated sample, x is the sample from real train data distribution, xl is the labelled sample from the real train data distribution. Different colour of the arrow
shows the direction from the input to output. For the Discriminator D1, D2, and Df , the red colour indicates the real samples, where the green colour indicates
fake/generated samples.

distribution. We then connect a Feature Extractor network F ,
which learns to map real data samples to the latent space u(z).
The output of the feature extractor then essentially becomes our
“learnt representation.”

B. Detailed Architecture of the GGAN

1) Encoder and Classifier (Ce): The Encoder, E, learns to
map any sample z and c to ze ∈ u(z), where u(z) is any
continuous distribution generated by E, z ∈ p(z), and c ∈
Cat(c, k = n); pz is a random continuous distribution, e. g., a
continuous uniform distribution and Cat(c, k = n) is a random
categorical distribution with n number of categories.

When E learns to map z and c to ze, it can easily ignore the
categorical distribution. To address this problem, we introduce
a classifier network Ce, which takes ze as input and outputs the
predicted class ĉe, where the true label is the given categorical
sample c. By using the network Ce, we force E to maximise
the mutual information between c and ze. Therefore, E learns
to create a sample space u(z), which can be classified into n
categories by the network Ce.

2) Generator: Like any other GAN framework, we have a
Generator G, which learns to map ze into sample x̂∈PG, where

PG is the generated sample distribution. One of the major goals
ofG is to generatePG so that it matches the true data distribution
Pdata. Another goal of G is to maximise the mutual information
between x̂ and the given random condition c (random categorical
sample) ensuring that there are categorical variations in the
generated samples. This formulation ensures that G generates x̂
according to the input condition c.

3) First (D1) and Second (D2) Discriminators: The Dis-
criminator plays primary roles in the GGAN model. Like all
GAN models, it forces the Generator to generate samples from
the training distribution. In the GGAN model, we have two
sample Discriminator D1 and D2. The Discriminator D1 has
two parts: a feature extraction part D, and the real/fake sample
identification part D′. From D, we obtain the features dx̂, dx,
and dxl

for x̂, x and xl, sampling from the data distribution
respectively, where a real data sample is x∈Pdata and a labelled
data sample xl ∈ Pldata; Pldata is the labelled data distribution.
Here, Pldata can be the subset of the Pdata or any other data
distribution. For a real sample x and a fake sample x̂, we obtain
the output d′x andd′x̂ fromD′ respectively. In ourD1 Network,D
optimises the feature learning for both the classification and the
discrimination tasks, making the optimisation task considerably

 2579

more complex. So, D1 cannot focus only on discrimination.
Therefore, we have added another Discriminator D2 to focus
solely on the sample discrimination task.

4) Feature Extractor, Classifier (Cx), and Third Discrimina-
tor (Df): The feature extractor network F learns the represen-
tation fx̂, fx, and fxl for x̂, x, and xl, respectively. To map
x̂, x and xl to the feature space, we need a network similar to
D. So, rather than introducing another network, we use D to
get a lower dimensional representation (dx̂, dx and dxl

) of the
samples. Then, F is trained to map dx̂, dx and dxl

to the latent
space u(z). As we do not use another network similar to D, it
reduces the computation as well as it helps F from overfitting
as the extracted representation/features from D is constantly
changing during the task of discriminating real training samples
and generated/fake samples.

To ensure that F can generate fx from the known distri-
bution u(z), we have another discriminator Df following the
implementation from the “Bidirectional Generative Adversarial
Networks” framework [61]. For any GAN based architecture,
the generated samples are considered as fake samples and the
training samples as real samples. Similarly, as ze is a sample
from u(z) and x̂ is a generated sample from ze, Df learns this
(ze, x̂) pair as a real sample. We want F to map real sample x
to fx according to the relationship presents between ze and x̂.
Therefore, the (fx, x) pair is considered as fake sample for the
discriminator Df .

The second Classifier Cx learns to classify labelled data as
well, as it learns to classify the generated sample x̂ according
to a given categorical, conditional class sample c. For the clas-
sification of x̂ and xl, we feed the features generated from F to
Cx.

C. Losses

1) Encoder, Classifier (Ce), and Generator Loss: For the En-
coder E and the Classifier Ce, the classification loss is ECloss.
We have ze = E(z, c), where z is sampled from p(z) and c is
sampled from Cat(c, k = n). Therefore,

ECloss = −
∑

c log(Ce(ze)). (1)

For the Generator G, we have two generation losses coming
from the discriminators D1 and D2. Our GGAN model is
inspired by the BigGAN architecture [4], which uses hinge loss.
We therefore use the hinge loss for both of our Generator and
Discriminator. We have x̂ = G(ze) and dx̂ = D(x̂). Therefore,

Gloss1 = −D′(dx̂), (2)

Gloss2 = −D2(x̂). (3)

The Generator G has another loss for the classification of
the samples. We have fx̂ = F (dx̂), so the Classification Loss,
GCloss for G is,

GCloss = −
∑

c log(Cx(fx̂)). (4)

Mode Divergence Loss. Similar to other GAN architectures,
GGAN faces the challenge of mode collapse [62], where the

Generator only produces samples from fewer modes (variational
factor) of the data distribution. Moreover, the latent input vari-
able has a minor impact on the generated samples from the
Generator. To address mode collapse, we design a loss named
“Mode Divergence Loss,” MGloss, which is inspired by the
study of Mao et al. [62]. Our, Mode Divergence Loss forces the
Generator to generate samples from different modes by penalis-
ing the Generator for generating similar samples. For calculating
this loss, we take two random inputs z1, z2 sampled from p(z),
and the same conditional code c sampled from Cat(c, k = n).
For z1, z2, we get x̂1 = G(E(z1, c)) and x̂2 = G(E(z2, c)),
respectively. We also take two random samples x1 and x2 from
the real data distribution pdata, where x1 �= x2. We calculate the
loss based on the feature extracted from D. Let dx1 = D(x1),
dx2

= D(x2), dx̂1 = D(x̂1), dx̂2 = D(x̂2), and α has a small
value such as 0.0001. So we get,

MGloss = max{1,∑ (|dx1−dx2|)/(∑ (|dx̂1−dx̂2|) + α)}. (5)

Here, dx1, dx2, dx̂1 and dx̂2 are the extracted features from
the D network. To identify the real and fake samples, D′ is
trained on the representation from the D network. Therefore,
D has to learn the key attributes of the data distribution. Now,
|dx1 − dx2| calculates the differences between the attributes/
characteristics of the real samples in the representation space.
Similarly, |dx̂1 − dx̂2| calculates the difference for the gener-
ated samples. Therefore,

∑
(|dx1−dx2|)/(∑ (|dx̂1−dx̂2|) calculates

the ratio between the difference of the attributes for real and
generated samples. The target of the Generator G is to minimise
this ratio, which implies that G needs to maximise the term
|dx̂1 − dx̂2| as it does not have any control over |dx1 − dx2|.
Now, to maximise |dx̂1 − dx̂2|, G has to create two samples
(x̂1, x̂2) with different attributes for different samples (z1, z2)
from the p(z) distribution. Since the EncoderE is also trained to
minimise theMGloss loss, it is also forced to create two different
samples ze1, ze2 for two different samples z1 and z2. Otherwise,
G can not generate two different samples from ze1, ze2 where
ze1 = ze2.

Hence, we have a combined loss, ECGloss for E, C, and
G. We average the Gloss1, Gloss2, and MGloss as all of these
are losses for the generation of the sample. The E, C, and G
networks are updated to minimise the loss ECGloss.

ECGloss = α((Gloss1 +Gloss2 +MGloss)/3)

+ β(ECloss) + γ(GCloss). (6)

Here, α, β and γ are the regularising hyperparameters.
2) Feature Extractor and Classifier (Cx) Loss: We have the

feature generation loss, FGloss, coming from the third Discrim-
inator Df , enforcing F to create features like ze from real data.

FGloss = −Df (fx, dx), (7)

where, dx̂ =D(x̂) and x is a sample from the real data distribu-
tion Pdata.

We have two classification losses for Cx, one for the labelled
sample, Clloss, and another one for the generated sample,
Cgloss. The label of the real sample is y. Now, we have fxl =
F (dxl), where xl is sampled from the labelled data distribution

2580

and fx̂ = F (dx̂). Therefore,

Clloss = −
∑

y log(Cx(fxl)), (8)

Cgloss = −
∑

c log(Cx(fx̂)). (9)

Likewise, the total loss for F and Cx is FCloss, which is the
sum of the above losses:

FCloss = Clloss + Cgloss + FGloss. (10)

We update the F and Cx network to minimise the FCloss.
3) Discriminators Loss: The D′ part of D1, and D2 are two

discriminators for identifying the real/fake samples generated
from the generator. D1 also has a part D, which is responsible
for generating features for the F and Cx networks. It is also
optimised to reduce the classification loss, Clloss, of the real la-
belled samples. Finally, the Discriminator Df identifies the real
or fake feature sample pairs from F . The discriminator losses
D1loss, D2loss, and Dfloss for D1, D2, and Df , respectively,
are given by,

D1loss = −min(0,−1 +D′(D(x)))

−min(0,−1−D′(D(x̂)))− Clloss, (11)

D2loss = −min(0,−1 +D2(x))

−min(0,−1−D2(x̂)), (12)

Dfloss = −min(0,−1−Df (fx, dx))

−min(0,−1 +Df (ze, dx̂))), (13)

where, x is a sample from the real data distribution Pdata.
Here, the discriminators’ weights are updated to maximise these
losses. The algorithm to train the whole model is given in
Algorithm 1.

We present the architectural difference between GGAN and
other related models in Table I. The GGAN model can be
considered as an extension of the InfoGAN model [63]. We
have added an extra Discriminator for latent space, a Classifier
for latent space, and a Feature extractor for the real sample.
These networks are added to facilitate the accurate conditional
sample generation and guided representation learning using
fewer labelled data. Comparison of the primary tasks of GGAN
with other models are summarised in Table II.

IV. DATA AND IMPLEMENTATION DETAILS

A. Datasets

We have validated GGAN based on two different scenarios:
Speech audio and non-speech music audio tasks. For the speech
audio dataset, we use the S09 [64] corpus and the Librispeech
dataset [65]. For the non-speech music audio dataset, we use the
popular Nsynth dataset [66].

In the S09 dataset, digits from zero to nine are uttered by 2618
speakers [64]. This dataset is noisy and includes 23 000 samples,
where many of these samples are poorly labelled. Labels for
the speakers and gender are not available in the S09 corpus.
LibriSpeech is a corpus of approximately 1000 hours of 16 kHz

Algorithm 1: Minibatch stochastic gradient descent training
of the proposed GGAN. The hyperparameter k represents
the number of times the discriminators are updated in one
iteration. We use k = 2, which helped to converge faster.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m, noise samples

{z(1), . . . ,z(2 m)} from pz , conditions
{c(1), . . . , c(m)} from Cat(c), data points
{x(1), . . . ,x(2 m)} from pdata and labelled data
points {xl(1), . . . ,xl(m)} from Pldata.

4: Update the parts D,D′ of discriminator D1 by
ascending its stochastic gradient:

∇θd,θd′
1

m

m∑
i=1

[
D1loss

(i)
]
.

5: Update the discriminator D2 by ascending its
stochastic gradient:

∇θd2

1

m

m∑
i=1

[
D2loss

(i)
]
.

6: Update the discriminator Df by ascending its
stochastic gradient:

∇θdf

1

m

m∑
i=1

[
Dfloss

(i)
]
.

7: end for
8: Repeat step [3].
9: Update the Generator G, Encoder E, and Classifier

Ce by descending its stochastic gradient:

∇θg,θe,θce

1

m

m∑
i=1

[
ECGloss

(i)
]
.

10: Repeat step [3].
11: Update the Feature Extractor F and Classifier Cx by

descending its stochastic gradient:

∇θf ,θcx

1

m

m∑
i=1

[
FCloss

(i)
]
.

12: end for

read English speech. In the dataset, there are 1166 speakers,
where 564 are female, and 602 are male [65].

The Nsynth dataset consists of 305 979 musical notes with
four seconds duration from ten different instruments including
acoustic, electronic, and synthetic ones [66]. For our experiment,
we use three acoustic sources: Guitar, Strings, and Mallet from
the Nsynth dataset.

B. Measurement Metrics

To evaluate the generation results, we use the Inception Score
(IS) [67], the Fréchet Inception Distance (FID) [68], [69], Clas-
sification Accuracy [70] and Mean Opinion Score (MOS) [71].

 2581

TABLE I
DIFFERENCE BETWEEN THE CONSTITUENT NETWORKS OF THE GGAN MODEL AND THE OTHER RELATED MODELS FROM THE LITERATURE

TABLE II
COMPARISON BETWEEN THE PRIMARY TASKS OF THE GGAN MODEL AND THE OTHER MODELS FROM THE LITERATURE

1) Inception Score (IS): The IS score measures the quality of
the generated samples as well as the diversity in the generated
sample distribution. A pretrained Inception Network V3 [72] is
used to get the labels for the generated samples. The conditional
label distribution p(y|x̂) is derived from the inception network,
where x̂ is the generated sample. We want the entropy to be low,
which indicates a good quality of the sample. It is also expected
that the samples are diverse, so the marginal label distribution∫
p(y|x̂)dz should have a high entropy. Combining these two

requirements, the KL-divergence between the conditional label
distribution and the marginal label distribution is computed as
the IS score: exp(Ex̂KL(p(y|x̂)||p(y))). A ‘higher’ IS score
indicates that the generated samples have good quality.

2) Fréchet Inception Distance (FID): The IS score is com-
puted solely on the generated samples. The Fréchet Inception
Distance (FID) improves the IS score by comparing the statistics
of generated samples to real data samples. First, the features
are extracted for both real and generated samples from the
intermediate layer of the inception network. Then, the mean
μr, μg and covariance Σr, Σg for real and generated sam-
ples are calculated respectively from those features. Finally,
the Fréchet Distance [73] between two multivariate Gaussian
distributions (given by the μr, μg and Σr, Σg) is calculated
using: ||μr − μg||2 + Tr(Σr +Σg − 2(ΣrΣg)

1/2). A ‘lower’
FID score indicates a good quality of the generated samples.

Note that the Inception V3 model is trained on the ImageNet
dataset [74], which is completely different from audio spectro-
grams. Therefore, it will not be able to classify spectrograms
into any meaningful categories, resulting in poor performance
on the calculation of the IS and FID scores for our datasets.
In the “Adversarial Audio Synthesis” [8] paper proposed by
Donahue et al. instead of using the pretrained Inception V3
network to calculate the IS and FID scores, the authors trained
a classifier network on the S09 spoken digit dataset and obtain
good performance. We, therefore, use their pretrained model to
calculate both the IS and FID scores for our generated samples.

For the Nsynth dataset, there is no pre-trained classifier available.
Therefore, we train a simple Convolutional Neural Network
(CNN) on the training dataset.

3) Classification Accuracy: To evaluate the accuracy of the
conditional sample generation, we use the approach similar to
the study of Shmelkov et al. [70]. We train two CNN networks;
the first one is trained with all the labelled training data, and
the second one is trained with the generated samples from
the GGAN model for different random conditions/categories.
For training the second CNN network, the random condi-
tions/categories are used as true labels. Now, the classification
accuracy is calculated based on the test dataset for both of
the CNN models. The classification accuracy of the second
classifier is compared with the first classifier. Here, the second
CNN model will perform better when the GGAN model can
generate correct and diverse samples according to the given
conditions/categories. This classification accuracy metric can
evaluate both conditional sample generation as well as the
sample diversity.

4) Mean Opinion Score (MOS): For subjective evaluation,
we had 20 student volunteers (10 Males and 10 Females). The
students were in their undergraduate studies and their medium of
study was English. For the S09 and Nsynth datasets, we collected
ten real and ten generated samples for each model. The students
marked the audio samples in the range from 1 to 5 presented
in Table III. Then, the scores were averaged for each of the
datasets. We informed the students that some recordings are real,
and others are generated using a computer program. Finally, for
different models, we averaged the scores for each of the datasets.
This average value is called as Mean Opinion Score (MOS) [71].

C. Data Preprocessing

We conduct experiments based on one-second audio segments
with a sampling rate of 16 kHz. For the Nsynth dataset, we take
the first one second from any audio clip. After investigating

2582

TABLE III
MEANING OF THE DIFFERENT SCALES IN THE MEAN OPINION SCORE

the Nsynth sample, we found out that the first second of the
audio represents most of the sound from any instrument. For
the Librispeech dataset, a one-second audio segment is sampled
randomly from any audio clip. We convert the audio data to
log-magnitude spectrograms with the short-time Fourier Trans-
form. The generated log-magnitude spectrograms are converted
to audio through the PGHI algorithm [29]. We followed the
exact method from TifGAN [10] to calculate the log-magnitude
spectrograms. We calculate the short-time Fourier Transform
with overlapping Hamming window of size 512 ms, and a
hopping length of 128 ms, which gives us a spectrogram of size
256 × 128 (matrix). The spectrogram is standardised with the
equation X−μ

σ , where X is the spectrogram, μ is the mean of the
spectrogram, and σ is the standard deviation of the spectrogram.
We limit the dynamic range of the log-spectrogram by clipping
the values at−r. For the S09 and Librispeech datasets, we found
10 as a suitable value of r, and for the Nsynth dataset, we found
15 as suitable value. After the clipping, the values of the spec-
trograms are normalised between 1 and −1. This spectrogram
representation of audio is used to train the Discriminators, the
Feature Extractor, and the Classifier. The Generator generates
the spectrogram with the values between 1 and −1. Then, the
above steps are reversed before applying the PGHI algorithm.

V. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION

For our Generator and Discriminator network, we use the
BigGAN [4] architecture for its unprecedented success. We
maintain the same parameters as BigGAN, except we only
change the input size of the Discriminator and output size of the
Generator to accommodate the 128 × 256 size log-magnitude
spectrogram. During the training of GGAN, we keep the learning
rate of the generator and Discriminator equal. The architecture
details are given in the supplementary document.

A. Impact of Labelled Data on Conditional Audio Generation

1) Setup: The conditional sample generation quality of the
GGAN model for different percentage of labelled data (1% -
5%, 50%, 75%, 100%) as guidance is measured with the IS and
FID score. The IS and FID scores are calculated based on 50 000
generated samples from the GGAN model [67]. To calculate the
IS and FID scores, we first convert the generated log-magnitude
spectrograms of the models to audio using the PGHI algorithm.
We then convert the audio to spectrogram to pass through the
pretrained classifier to calculate the IS and FID scores, as the
input spectrogram format for the pretrained model is different.
We follow this process for both the S09 and the Nsynth dataset.

For a given percentage of data, we train the GGAN model
three times. Each training takes approximately 36 000 iterations
with mixed-precision [75] for a batch size of 128. For training,
we randomly sample the datasets, and repeat training only for
three times. A single training run time on two Nvidia p100
GPUs is approximately 19 hours, making the total training time
approximately 17 × 3 × 8 (1-5%, 50%, 75%, 100% data) × 2
(two datasets) = 816 hours or 34 days.

2) Results and Discussions: Fig. 2 shows the impact of the
percentage of labelled training data used as guidance and the IS
and FID score of the GGAN model. For both datasets, we notice
that the performance of the GGAN model improves along with
the increase of the percentage of the data. We also note that with
5% of labelled data as guidance, GGAN can achieve IS and FID
scores close to the score we achieved with 100% labelled data.
Therefore, we compare the score of GGAN achieved with 5%
of the labelled data with the results from other models.

B. Conditional Audio Generation Based on Guidance From
the Same Dataset

1) Setup: In this section, we evaluate the quality of the gen-
erated samples with the FID, IS, Classification Accuracy, and
MOS Score. Moreover, Classification Accuracy and a manual
hearing test of the authors are used to evaluate the correctness of
the conditional audio generation according to the given guidance
from 5% labelled samples from the same dataset. For different
categories, we generate audio samples and check manually to
verify the quality of the conditional generation. For large-scale
validation, we use classification accuracy from the CNN models
trained on the generated audio samples.

We train the Supervised BigGAN, and an Unsupervised
BigGAN [4] model from scratch for both of the datasets for
comparison. Moreover, we compare our GGAN model with
other existing models from the literature.

2) Results and Discussions: Test for the Quality of the Gen-
erated Samples: For the S09 dataset, using an unsupervised
BigGAN model, we achieve an IS score of 6.17± 0.2, and an
FID score of 24.72± 0.05, whereas we receive an IS score of
7.3± 0.01, and FID score of 24.40± 0.5 for the supervised
BigGAN. For our GGAN model, with 5% labelled data as guid-
ance, we achieve an IS score of 7.24± 0.05, and an FID score
of 25.75± 0.1 for the generated samples, which is very close
to the performance of the fully supervised BigGAN model and
considerably better than unsupervised BigGAN model in terms
of the IS score. For the FID score, the performance of the GGAN
seems similar to the Unsupervised BigGAN. Comparison of the
IS score and FID scores between different models are shown in
the Table IV. We observe that the performance of the proposed
GGAN is better than that of other models reported in Table IV.
We also note similar performance for the Nsynth dataset in
Table V. Note that the Nsynth dataset is being relatively new
— many studies have not used it. Hence, we compare the
performance of GGAN only with Supervised and Unsupervised
BigGAN.

We present the comparison of the MOS score between dif-
ferent models in Table VI. We observe that the GGAN model

 2583

Fig. 2. The figure shows the relationship between the scores (IS and FID) and the percentage of data used as guidance for training GGAN model. Here, Left
columns (a), (c) show the comparison for the S09 dataset, and the right columns (b), (d) show the comparison for the Nsynth dataset.

TABLE IV
COMPARISON BETWEEN THE PERFORMANCE OF THE GGAN MODEL AND THE

OTHER MODELS ON THE S09 DATASET, IN TERMS OF THE QUALITY OF THE

GENERATED SAMPLES, MEASURED WITH IS AND FID SCORE

outperforms the Unsupervised BigGAN and achieves a score
close to the score given by the Supervised BigGAN.

The spectrogram of the generated samples from the S09
and Nsynth dataset are reported in Fig. 3. We observe some
similarities between the generated samples and the real samples
in the spectrogram space. As there is no one-to-one mapping
relationship between the generated and real samples, the visual
observation of the spectrogram cannot verify the quality of the
spectrogram. Therefore, we have conducted further evaluations.

3) Results and Discussions: Manual Hearing Test: We
manually checked the generated audios for different cate-
gories/condition. After reviewing 50 samples from each cate-
gory, we note that the GGAN model can generate audio samples

TABLE V
COMPARISON BETWEEN THE PERFORMANCE OF THE GGAN MODEL AND THE

OTHER MODELS ON THE NSYNTH DATASET, IN TERMS OF THE QUALITY OF THE

GENERATED SAMPLES, MEASURED WITH IS AND FID SCORE

TABLE VI
COMPARISON BETWEEN THE PERFORMANCE OF THE GGAN MODEL AND THE

OTHER MODELS ON BOTH THE S09 AND THE NSYNTH DATASET, IN TERMS OF

MOS SCORE WITH 95% CONFIDENCE INTERVAL

almost correctly for different categories for both the Nsynth and
the S09 datasets. For the S09 dataset, we check the zero to nine

2584

Fig. 3. This figure shows the generated samples from the GGAN and the real samples for both the S09 and the Nsynth dataset. Here, the left part shows the
samples for the S09 dataset (ten digits categories), and the right part shows the samples for Nsynth dataset (three categories). The first row exhibits the real samples,
and the second row exhibits the generated sample from GGAN.

TABLE VII
THE COMPARISON BETWEEN DIFFERENT CNN CLASSIFIERS BASED ON THE

TEST DATA CLASSIFICATION ACCURACY FROM THE S09 DATASET. THE CNN
MODELS ARE TRAINED WITH THE GENERATED SAMPLES FROM

DIFFERENT MODELS

categories and for the Nsynth dataset, we check three categories:
Guitar, Strings, and Mallet.

4) Results and Discussions: CNN Based Classification Ac-
curacy: For the S09 dataset, the classification accuracy for the
CNN model is 95.52% ± 0.50 when it is trained on the whole
training dataset. We receive an accuracy of 86.72%±0.47 for the
CNN model trained on the generated samples from the GGAN
model (with 5% labelled data). Table VII shows the comparison
with other models.

The GGAN generated samples belong to the training data
distribution, and are not exactly the same as the available training
data. Therefore, we can use these generated samples to augment
the training dataset. To test the feasibility of data augmentation
using the generated samples from GGAN, we mix together the
train data and the generated data from GGAN and train another
simple CNN model. The accuracy of the CNN model increases
from 95.52%± 0.50 to 96.36%± 1.07. Therefore, the generated
samples from the GGAN model can be useful at augmenting
a dataset. We observe similar results for the Nsynth dataset
(Table VIII). These results show that our GGAN model achieves
superior performance in terms of generating correct samples for
different categories.

TABLE VIII
THE COMPARISON BETWEEN DIFFERENT CNN CLASSIFIERS BASED ON THE

TEST DATA CLASSIFICATION ACCURACY FROM THE NSYNTH DATASET. THE

CNN MODELS ARE TRAINED WITH THE GENERATED SAMPLES FROM

DIFFERENT MODELS

C. Conditional Audio Generation Based on Guidance From
Different Dataset

1) Setup: We also test the possibility of using the GGAN
model to generate based on a given condition, where the guid-
ance categories/condition comes from a non-related dataset. We
use the whole S09 training data as the unlabelled dataset and the
Librispeech as the labelled dataset for guidance on the gender
categories. Note that gender information is not available for the
S09 dataset. We take 10 male and 10 female speakers from the
Librispeech dataset with labels. Our expected output from the
GGAN is to produce the male and female spoken digits based
on the guidance from the Librispeech dataset.

The pretrained network used before to calculate the IS and
FID scores is no longer effective, as it was trained on the digit
classification task. So, we train another simple CNN model for
the gender classification task as we want to evaluate gender-
based generation. This pretrained model is used for calculating
IS and FID scores. To achieve this goal, we randomly select 15
male and 15 female speakers from the Librispeech dataset. We
use ten males and ten females to train the CNN model and the
others for testing. We achieve an accuracy of 98.3 ± 0.50. This
pretrained model can be used for calculating the IS and FID

 2585

TABLE IX
COMPARISON BETWEEN THE PERFORMANCE OF THE GGAN MODEL (TRAINED

WITH GENDER GUIDANCE) AND THE OTHER MODELS ON THE S09 DATASET.
THE QUALITY OF THE GENERATED SAMPLES BASED ON THE GENDER

ATTRIBUTES OF THE SPEAKER IS MEASURED WITH THE IS AND THE FID SCORE

scores for different models to evaluate the sample generation
quality for gender attributes.

2) Results and Discussions: After evaluating the generated
samples of GGAN, we successfully generate samples of the
0-9 digits for male and female speakers. We achieve an IS
score of 1.73± 0.08, and an FID score of 23.72± 0.04. From
Table IX, we observe that GGAN performs well when it was
guided with gender categories. These results prove that guidance
from another dataset is effective for the GGAN model.

D. Guided Representation Learning

1) Setup: For representation learning, we compare the
GGAN model with unsupervised the BigGAN and a supervised
Convolutional Neural Network (CNN). Our primary goal is to
learn representation from the unlabelled S09 training dataset so
that we can get better classification result on the S09 test dataset.
For any unsupervised GAN model, the latent space captures
the representation of the training dataset. To map the real data
samples to that latent space, we follow the strategy from the
BiGAN study [61].

After training the unsupervised BigGAN, we train a feature
extraction network to reverse map the sample to a latent distribu-
tion to get the representation for real samples. Then, we train a
simple classifier at the top of the feature extraction network with
different percentage of the randomly sampled labelled dataset
(1% to 5%, 50%, 75%, 100%) from the training dataset and
evaluate on the test dataset. The sampling of the training dataset
is repeated three times, and the results are averaged. We use
the same percentage of labelled data (1% to 5%, 50%, 75%,
100%) for the training of a CNN network and use the same
CNN architecture as of the feature extraction network.

We take the pretrained D, F , and Cx networks from the
GGAN models, and pass the test dataset through those pretrained
networks to get the prediction for classes Cx(F (D(xtest))).
Then we compute the classification accuracy on the test dataset.
The C network is built on top of the F network. Therefore, if the
F network of the GGAN model cannot learn the representation
according to the given guidance, theC network will not perform
better on the test dataset.

To investigate the quality of the learnt latent/representation
space by the generator, we conduct a linear interpolation be-
tween two random points in the latent space as in the DCGAN
work [11]. Furthermore, if the F network of the GGAN model
can learn a representation according to the guidance, the guided

TABLE X
RELATIONSHIP BETWEEN THE PERCENTAGE OF THE DATA USED AS THE

GUIDANCE DURING THE TRAINING AND THE S09 TEST DATASET

CLASSIFICATION ACCURACY OF THE GGAN MODEL

TABLE XI
RELATIONSHIP BETWEEN THE PERCENTAGE OF THE DATA USED AS THE

GUIDANCE DURING THE TRAINING AND THE NSYNTH TEST DATASET

CLASSIFICATION ACCURACY OF THE GGAN MODEL

categories should be easily separable in the latent space. To
investigate this scenario, we visualise the learnt representation in
the 2D plain. We take the representation/feature F (D(xtest)) of
the test dataset passing through the trained D and F networks.
Then, the higher dimensional features are visualised with the
t-distributed stochastic neighbour embedding (t-SNE) [76] vi-
sualisation technique.

2) Results and Discussions: Classification Accuracy: A
comparison on the test accuracy between the CNN, BiGAN,
and GGAN is shown in Table X and XI. For the S09, with 5%
labelled data, GGAN achieves an accuracy of 92.00± 0.87%,
which is close to the accuracy of the fully supervised CNN
model (95.52± 0.50%). For the Nsynth dataset, the GGAN
(92.45± 0.14%) outperforms the fully supervised CNN model
(92.01± 0.94,%).

3) Results and Discussions: Linear Interpolation of the La-
tent Space: After the linear interpolation in the S09 dataset, we
observe a smooth transition in the generated spectrogram space
and the audio after converting the spectrogram to audio. Here,
if the interpolation is conducted between the same digits from
different speakers, we notice the changes in voice characteristics.
Moreover, if we interpolate between two different digits and
different speakers, we notice changes in the voice characteristics.
In the middle point, it sounds like mixed digits. The more we
approach towards a digit in the interpolation space, the more it
sounds like that digit.

For the unsupervised BigGAN, during the linear interpolation,
we notice a smooth transition in the generated spectrogram

2586

Fig. 4. Generated spectrogram from the interpolation of the latent space from the male sound of digit 2 to the female sound of digit 2 (left to right). The top row
is the linear interpolation for the unsupervised BigGAN, and the bottom row represents the linear interpolation for the proposed GGAN.

space, but after converting them to the audio, we find that the
transition becomes non-smooth. As the Unsupervised BigGAN
is trained independent of any condition on the categorical dis-
tribution, it does not learn the relationship between different
audio data categories. In contrast, our GGAN model can learn
the categorical distribution of the dataset given guidance from a
fewer percentage of labelled data; it learns the attributes related
to categories in the latent space. This results in a smooth tran-
sition in both the spectrogram and the (temporal) audio space.
For the Nsynth dataset, we observe similar results.

In Fig. 4, we show the linear interpolation for both the
unsupervised BigGAN and the proposed GGAN. We avoid
the latent space interpolation for the supervised BigGAN. The
generator of the supervised BigGAN uses both conditions, c,
and the latent space, z, during the sample generation, G(z, c).
As the condition code is given during the training, it makes the
supervised BigGAN condition-independent, discouraging the
Generator from learning any conditional characteristics in the
latent space. It instead learns the common attributes in the latent
space. In our S09 dataset experiment, the supervised BigGAN
does not disentangle the digit categories (condition) in the latent
space. It learns the common characteristics like gender, pitch,
volume, noise, etc. in the latent space, and generates different
digits for the same latent space given different conditions.

4) Results and Discussions: T-SNE Visualisation: In Fig. 5,
we observe that the features of the similar categories are clus-
tered together, and they are easily separable. This implies that in
the latent space, the GGAN disentangles the categories success-
fully. We also observe similar behaviour for the Nsynth dataset.

E. Impact of the Hyperparameter

In the GGAN model, the Encoder E, Classifier C, and Gen-
erator G are core networks, and the weights of these networks
are updated together based on equation 6. In this equation, we
have losses Gloss1, Gloss2, and MGloss responsible for sample

Fig. 5. t-SNE visualisation of the learnt representation of the test data of the
S09 dataset. Here, different colours of points represent different digit categories.
Representations of the different digit categories are clustered together.

generation. To give equal importance to each of the losses, we
average these three losses (divided by three). We also have
ECloss and GCloss in the equation. ECloss ensures that the
latent space is divided according to the given category, and
GCloss makes sure that the samples are generated according
to the correct category.

We have three hyperparameters;α,β, and γ. The hyperparam-
eter α is the weight for the overall Gloss1, Gloss2, and MGloss

losses in the context of the whole Equation 6. Therefore, α con-
trols the generation quality of the GGAN model. If we increase
the value of α, the model will reduce its focus on ECloss and
GCloss and vice versa. Increasing the value of β will increase
the focus of GGAN on the latent classification, and the purpose
of the latent space for generating diverse samples will be lost. A
higher β value forces the latent space to converge into a single
point for any given condition. Lowering the β value will reduce
the quality of encoding categorical distribution in the learnt
latent space from the Encoder E. Finally, γ is responsible for

 2587

TABLE XII
ABLATION STUDY OF THE GGAN MODEL. A SCORE (IS, FID, AND

CLASSIFICATION ACCURACY) IS CALCULATED AFTER REMOVING ANY

COMPONENT FROM THE MODEL KEEPING OTHER COMPONENTS UNCHANGED

generating samples according to the given category/condition.
If the value of γ is increased, the Generator will focus on sample
classification rather than diversity. The model will, therefore,
not be able to produce diverse samples for each category. If the
value of γ is reduced, then the Generator will not be forced to
generate samples according to the given categories. Considering
these scenarios, we want to give equal weights to α, β, and γ,
and we use a value 1 for all of these three hyperparameters.
This essentially confirms that we provide equal weight to the
losses, while considering (Gloss1 +Gloss2 +MGloss)/3 as a
single loss.

VI. ABLATION STUDY

We conduct an ablation study to understand the significance
of the components of the GGAN model. The study is conducted
on the S09 dataset with 5% labelled data as guidance. Table XII
shows the IS score, FID score, and Classification Accuracy after
removing related components from the GGAN model. After
removing Df , we notice that the IS and FID scores improve,
but the classification accuracy decreases. Note that, the third
discriminator Df forces to reverse map the generated sample to
the latent space. Also note, the Feature ExtractorF is built on top
of the Discriminator D1, which focuses on both feature learning
and discriminating real or fake samples from the Generator.
When Df is removed, D1 can only focus on the generated
samples to discriminate, thus improving the generation of the
Generator. However, whenDf is removed, the Feature Extractor
F cannot utilise the learnt latent space from Encoder E and
thus, the classification accuracy drops. Here, we use the extra
discriminator D2 in our model because D1 cannot focus only on
discrimination only. Without D2, the performance of our model
drops significantly, which is evident from Table XII.

VII. CONCLUSION

In this paper, we proposed the novel Guided Generative
Adversarial Neural network (GGAN), where we guide an unsu-
pervised GAN network with only 5% of the labelled data. This
method allows the network to learn specific class dependent
attributes while learning the representation of the dataset. We
showed that the GGAN can learn powerful representations as
well as generate good-quality samples given a small amount of
labelled data as guidance. As we guide the model during the
training process according to a post-task, the proposed GGAN
can be used to learn task-specific representations.

The key challenge we faced is related to the sample generation
of the model. In particular, there was an issue of mode collapse,

which we could not sufficiently address implementing different
techniques in the literature [67]. However, inspired by the Mode
Seeking GAN [62], we modified the loss function and created a
unique feature loss, which immediately fixed the mode collapse
problem. The feature loss calculates the ratio of the difference
between the two real samples and two generated samples. If
the generator creates very similar or the same samples, it gets
penalised and tries to find more modes. The Audio samples
discussed in this paper can be found under the GitHub link.1

We used one-second audio following the current literature [8],
[10]. One-second audio provides a good trade-off between com-
plexity and information contained. Less than one-second audio
might reduce the complexity but can cause information sparsity,
impacting the generation and representation performance [77].
Usually, GAN-based frameworks show good performance with
low-resolution data [1], [4]. Therefore, our GGAN model should
work well for any audio dataset with lower temporal resolution
(less than one second). However, it remains a challenge to make
it useful for long audio with higher complexity. Nevertheless,
any long audio can be divided into one-second audio and used
with the GGAN model.

Our GGAN model is not likely to perform well at gener-
ating continuous speech audio where it is not conditioned on
the speech-related features. To obtain good quality continuous
speech generation with GGAN, different techniques from the
recent literature can be used [6], [14], [27], [28], [78]. In the
future, one should aim to explore the impact of using other high-
performing GAN architectures such as progressive GAN [2]
or the StyleGAN [3] within GGAN framework replacing the
BigGAN architecture.

REFERENCES

[1] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[2] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in Proc. Int. Conf.
Learn. Representations, 2018.

[3] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 4401–4410.

[4] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” in Proc. Int. Conf. Learn.
Representations, 2019.

[5] J. Donahue and K. Simonyan, “Large scale adversarial representation
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 10541–10551.

[6] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast wave-
form generation model based on generative adversarial networks with
multi-resolution spectrogram,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 6199–6203.

[7] M. Bińkowski et al., “High fidelity speech synthesis with adversarial
networks,” Proc. Int. Conf. Learn. Representations, 2020.

[8] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,”
in Proc. Int. Conf. Learn. Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=ByMVTsR5KQ

[9] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts,
“GANSynth: Dversarial neural audio synthesis,” in Proc. Int. Conf. Learn.
Representations, 2019.

[10] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio synthesis,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 4352–4362.

1[Online]. Available: https://knhuq.github.io/GGAN.html

https://openreview.net/forum{?}id$=$ByMVTsR5KQ
https://knhuq.github.io/GGAN.html

2588

[11] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2016,
arXiv:1511.06434.

[12] M. Lucic, M. Tschannen, M. Ritter, X. Zhai, O. Bachem, and S. Gelly,
“High-fidelity image generation with fewer labels,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 4183–4192.

[13] F. Locatello et al., “Challenging common assumptions in the unsupervised
learning of disentangled representations,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 4114–4124.

[14] K. Kumar et al., “Melgan: Generative adversarial networks for conditional
waveform synthesis,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 14910–14921.

[15] G. Yang, S. Yang, K. Liu, P. Fang, W. Chen, and L. Xie, “Multi-band
MelGAN: Faster waveform generation for high-quality text-to-speech,”
Proc. IEEE Spoken Lang. Technol. Workshop, 2021, pp. 492–498.

[16] A. van den Oord et al., “WaveNet: A generative model for raw audio,” in
Proc. Speech Synth. Workshop, 2016.

[17] A. Van Den Oord et al., “Parallel wavenet: Fast high-fidelity speech
synthesis,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 3918–3926.

[18] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave generation in
end-to-end text-to-speech,” in Proc. Int. Conf. Learn. Representations,
2019.

[19] Y. Wang et al., “Tacotron: Towards end-to-end speech synthesis,” in Proc.
Interspeech, 2017.

[20] J. Shen et al., “Natural TTS synthesis by conditioning wavenet on mel
spectrogram predictions,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2018, pp. 4779–4783.

[21] J. Sotelo et al., “Char2wav: End-to-End speech synthesis,” in Proc. Int.
Conf. Learn. Representations, 2017.

[22] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier
transform,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 2,
pp. 236–243, April 1984.

[23] S. Mehri et al., “Samplernn: An unconditional end-to-end neural audio
generation model,” in Proc. Int. Conf. Learn. Representations (ICLR),
2017.

[24] E. Song, F. K. Soong, and H. Kang, “Effective spectral and excita-
tion modeling techniques for LSTM-RNN-based speech synthesis sys-
tems,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 11,
pp. 2152–2161, Nov. 2017.

[25] Y. Ai and Z. Ling, “A neural vocoder with hierarchical generation of
amplitude and phase spectra for statistical parametric speech synthesis,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 839–851,
January 2020, doi: 10.1109/TASLP.2020.2970241.

[26] Z. Ling, Y. Ai, Y. Gu, and L. Dai, “Waveform modeling and generation
using hierarchical recurrent neural networks for speech bandwidth exten-
sion,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 5,
pp. 883–894, May 2018.

[27] T. Kaneko and H. Kameoka, “Cyclegan-VC: Non-parallel voice conver-
sion using cycle-consistent adversarial networks,” in Proc. 26th Eur. Signal
Process. Conf., 2018, pp. 2100–2104.

[28] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “StarGAN-VC2: Re-
thinking conditional methods for StarGAN-based voice conversion,” in
Proc. Interspeech, 2019.

[29] Z. Průša, P. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The
large time-frequency analysis toolbox 2.0,” in Proc. Int. Symp. Comput.
Music Multidisciplinary Res., Springer, 2013, pp. 419–442.

[30] H. Phan, L. Hertel, M. Maass, R. Mazur, and A. Mertins, “Learning
representations for nonspeech audio events through their similarities to
speech patterns,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24,
no. 4, pp. 807–822, Apr. 2016.

[31] S. Parekh, S. Essid, A. Ozerov, N. Q. K. Duong, P. Pérez, and G.
Richard, “Weakly supervised representation learning for audio-visual
scene analysis,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28,
pp. 416–428, December 2020, doi: 10.1109/TASLP.2019.2957889.

[32] Y. Chen, S. Huang, H. Lee, Y. Wang, and C. Shen, “Audio word2vec:
Sequence-to-sequence autoencoding for unsupervised learning of audio
segmentation and representation,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 27, no. 9, pp. 1481–1493, Sep. 2019.

[33] P. Agrawal and S. Ganapathy, “Interpretable representation learning for
speech and audio signals based on relevance weighting,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 28, pp. 2823–2836, October 2020,
doi: 10.1109/TASLP.2020.3030489.

[34] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and A. Mertins,
“Improved audio scene classification based on label-tree embeddings and

convolutional neural networks,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 6, pp. 1278–1290, Jun. 2017.

[35] H. Xie and T. Virtanen, “Zero-shot audio classification via semantic
embeddings,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 29,
pp. 1233–1242, Mar. 2021, doi: 10.1109/TASLP.2021.3065234.

[36] J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord, “Unsupervised
speech representation learning using wavenet autoencoders,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 27, no. 12, pp. 2041–2053,
Dec. 2019.

[37] R. Zhang, P. Isola, and A. Efros, “Colorful image colorization,” in Proc.
Eur. Conf. Comput. Vis., 2016, vol. 9907, pp. 649–666.

[38] S. Liu, A. Davison, and E. Johns, “Self-supervised generalisation with
meta auxiliary learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1679–1689.

[39] X. Zhan, X. Pan, Z. Liu, D. Lin, and C. C. Loy, “Self-supervised learning
via conditional motion propagation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 1881–1889.

[40] Z. Feng, C. Xu, and D. Tao, “Self-supervised representation learning by
rotation feature decoupling,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 10364–10374.

[41] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised Representation
Learning by Predicting Image Rotations,” CoRR, vol. abs/1803.07728,
2018. [Online]. Available: http://arxiv.org/abs/1803.07728

[42] A. Van Den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018, arXiv:1807.03748.

[43] F. de Chaumont Quitry, M. Tagliasacchi, and D. Roblek, “Learning audio
representations via phase prediction,” 2019, arXiv:1910.11910.

[44] A. Nagrani, J. S. Chung, S. Albanie, and A. Zisserman, “Disentangled
speech embeddings using cross-modal self-supervision,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2020, pp. 6829–6833.

[45] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsuper-
vised pre-training for speech recognition,” in Proc. Interspeech, 2019.

[46] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. v. d. Oord, “Learning
robust and multilingual speech representations,” 2020, arXiv:2001.11128.

[47] M. Rivière, A. Joulin, P.-E. Mazaré, and E. Dupoux, “Unsupervised
pretraining transfers well across languages,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 7414–7418.

[48] A. Baevski, M. Auli, and A. Mohamed, “Effectiveness of self-supervised
pre-training for speech recognition,” 2019, arXiv:1911.03912.

[49] S. Latif, R. Rana, S. Khalifa, R. Jurdak, J. Qadir, and B. W. Schuller, “Deep
representation learning in speech processing: Challenges, recent advances,
and future trends,” 2020, arXiv:2001.00378.

[50] S. Amiriparian, M. Freitag, N. Cummins, and B. Schuller, “Se-
quence to sequence autoencoders for unsupervised representation
learning from audio,” in Proc. DCASE 2017 Workshop, 2017,
pp. 17–21.

[51] Y. Xu et al., “Unsupervised feature learning based on deep models for
environmental audio tagging,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 6, pp. 1230–1241, Jun. 2017.

[52] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013,
arXiv:1312.6114.

[53] J. Chang and S. Scherer, “Learning representations of emotional speech
with deep convolutional generative adversarial networks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2017, pp. 2746–2750.

[54] H. Yu, Z. Tan, Z. Ma, and J. Guo, “Adversarial network bottleneck features
for noise robust speaker verification,” in Proc. Interspeech, 2017.

[55] A. Spurr, E. Aksan, and O. Hilliges, “Guiding infogan with semi-
supervision,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov.
Databases. Springer, 2017, pp. 119–134.

[56] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in Proc. NIPS
Workshop Deep Learn. Unsupervised Feature Learn., 2011.

[57] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. Int. Conf. Comput. Vis., 2015, pp. 3730–3738.

[58] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Uni. Toronto, 05 2012.

[59] J. T. Springenberg, “Unsupervised and semi-supervised learning with
categorical generative adversarial networks,” 2015, arXiv:1511.06390.

[60] K. Sricharan, R. Bala, M. Shreve, H. Ding, K. Saketh, and J. Sun, “Semi-
supervised conditional Gans,” 2017, arXiv:1708.05789.

[61] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,”
2016, arXiv:1605.09782.

[62] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang, “Mode seeking
generative adversarial networks for diverse image synthesis,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1429–1437.

https://dx.doi.org/10.1109/TASLP.2020.2970241
https://dx.doi.org/10.1109/TASLP.2019.2957889
https://dx.doi.org/10.1109/TASLP.2020.3030489
https://dx.doi.org/10.1109/TASLP.2021.3065234
http://arxiv.org/abs/1803.07728

 2589

[63] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets,” Adv. Neural Inf. Process. Syst., vol. 29,
pp. 2172–2180, 2016.

[64] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018, arXiv:1804.03209.

[65] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
asr corpus based on public domain audio books,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2015, pp. 5206–5210.

[66] J. Engel et al., “Neural audio synthesis of musical notes with wavenet
autoencoders,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1068–1077.

[67] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X.
Chen, “Improved techniques for training gans,” Adv. Neural Inf. Process.
Syst., vol. 29, pp. 2234–2242, 2016.

[68] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” Adv. Neural Inf. Process. Syst., vol. 30, pp. 6626–6637, 2017.

[69] S. Barratt and R. Sharma, “A note on the inception score,” 2018,
arXiv:1801.01973.

[70] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my gan?” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 213–229.

[71] F. Ribeiro, D. Florêncio, C. Zhang, and M. Seltzer, “Crowdmos: An
approach for crowdsourcing mean opinion score studies,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2011, pp. 2416–2419.

[72] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[73] D. Dowson and B. Landau, “The fréchet distance between multivariate
normal distributions,” J. Multivariate Anal., vol. 12, no. 3, pp. 450–455,
1982.

[74] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[75] P. Micikevicius et al., “Mixed precision training,” 2017,
arXiv:1710.03740.

[76] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov.Nov., 2008.

[77] W.-C. Lin and C. Busso, “An efficient temporal modeling approach for
speech emotion recognition by mapping varied duration sentences into
fixed number of chunks,” in Proc. INTERSPEECH, Shanghai, China,
Oct. 2020, pp. 2322–2326.

[78] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from unaligned corpora using variational autoencoding wasser-
stein generative adversarial networks,” 2017, arXiv:1704.00849.

Kazi Nazmul Haque received the master’s degree
in information technology from Jahangirnagar Uni-
versity, Dhaka, Bangladesh. He is currently working
toward the Ph.D. degree with the University of South-
ern Queensland, Toowoomba, QLD, Australia. He is
currently an Research Associate with the University
of Southern Queensland. He has been working profes-
sionally in the field of machine learning for more than
five years. His research interests include unsupervised
representation learning for audio data.

Rajib Rana is an Experimental Computer Scientist,
Advance Queensland Senior Research Fellow, and an
Associate Professor with the University of Southern
Queensland, Toowoomba, QLD, Australia. He is also
the Director of the IoT Health research program with
the University of Southern Queensland. His research
work aims to capitalise on advancements in technol-
ogy along with sophisticated information and data
processing to better understand disease progression
in chronic health conditions and develop predictive
algorithms for chronic diseases, such as mental illness

and cancer. His current research interests include unsupervised representa-
tion learning, reinforcement learning, adversarial machine learning, emotional
speech generation, and domain adaptation.

Jiajun Liu received the B.Eng. degree from Nanjing
University, Nanjing, China, in 2006 and the Ph.D. de-
gree from the University of Queensland, Toowoomba,
QLD, Australia, in 2012. He is currently the Sci-
ence Leaderwith Distributed Sensing Systems Group,
Data61, CSIRO, Australia. He was an Associate Pro-
fessor with the Renmin University of China, Beijing,
China. From 2006 to 2008, he was a Researcher with
IBM China Research Labs.

John H. L. Hansen (Fellow, IEEE) received the
B.S.E.E. degree from Rutgers University, New
Brunswick, NJ, USA, and the M.S. and Ph.D. de-
grees in electrical engineering from the Georgia In-
stitute of Technology, Atlanta, GA, USA. In 2005,
he joined the Erik Jonsson School of Engineering
and Computer Science, the University of Texas at
Dallas, Richardson, TX, USA, where he is currently
an Associate Dean of research and a Professor of
electrical and computer engineering. He also holds
the Distinguished University Chair of telecommuni-

cations engineering and a joint appointment as a Professor of speech and hearing
with the School of Behavioral and Brain Sciences. From 2005 to 2012, he was
the Head of the Department of Electrical Engineering, the University of Texas
at Dallas. At UT Dallas, he established the Center for Robust Speech Systems.
From 1998 to 2005, he was the Department Chair and a Professor of speech,
language, and hearing sciences, and a Professor of electrical and computer
engineering with the University of Colorado Boulder, Boulder, CO, USA, where
he co-founded and was an Associate Director of the Center for Spoken Language
Research. In 1988, he established the Robust Speech Processing Laboratory.
He has authored or coauthored 765 journal and conference papers, including
13 textbooks. He is an ISCA Fellow. He was the recipient of the Acoustical
Society of America’s 25 Year Award in 2010, and is currently serving as ISCA
President (2017-2022). He was also a Member and the past Vice-Chair on
U.S. Office of Scientific Advisory Committees (OSAC) for OSAC-Speaker in
the voice forensics domain from 2015 to 2021. He was the IEEE Technical
Committee (TC) Chair and a Member of the IEEE Signal Processing Society:
Speech-Language Processing Technical Committee (SLTC) from 2005 to 2008
and from 2010 to 2014, elected the IEEE SLTC Chairman from 2011 to 2013, and
elected an ISCA Distinguished Lecturer from 2011 to 2012. In 2016, he was
awarded the honorary degree Doctor Technices Honoris Causa from Aalborg
University, Aalborg, Denmark in recognition of his contributions to the field of
speech signal processing and speech or language or hearing sciences. He was
the recipient of the 2020 Provost’s Award for Excellence in Graduate Student
Supervision from the University of Texas at Dallas and the 2005 University of
Colorado Teacher Recognition Award. He organised and was the General Chair
for ISCA Interspeech-2002, the Co-Organiser and Technical Program Chair for
the IEEE ICASSP-2010, Dallas, TX, and the Co-Chair and Organiser for IEEE
SLT-2014, Lake Tahoe, NV. He will be the Tech. Program Chair for the IEEE
ICASSP-2024, and Co-Chair and Organiser for ISCA INTERSPEECH-2022.

Nicholas Cummins is currently a Lecturer of AI for
speech analysis for health with the Department of
Biostatistics and Health Informatics, King’s College
London, London, U.K. His current research interests
include speech processing, affective computing, and
multisensory signal analysis. He is fascinated by the
application of machine learning techniques to im-
prove our understanding of different health condi-
tions and mental health disorders in particular. He
is actively involved in the RADAR-CNS project in
which he assists in the management. After completing

his Ph.D., he was a Postdoctoral Researcher with the Chair of Complex and
Intelligent Systems with the University of Passau, Germany. Most recently, he
was a habilitation candidate with the Chair of Embedded Intelligence for Health
Care and Wellbeing with the University of Augsburg, Germany. During his time
in Germany, he was involved in the DE-ENIGMA, RADAR-CNS, TAPAS, and
sustAGE Horizon 2020 projects. He also wrote and delivered courses in speech
pathology, deep learning and intelligent signal analysis in medicine.

2590

Carlos Busso (Senior Member, IEEE) received the
B.S. and M.S. degrees (with high honours) in elec-
trical engineering from the University of Chile, San-
tiago, Chile, in 2000 and 2003, respectively, and the
Ph.D. degree (2008) in electrical engineering from
the University of Southern California (USC), Los
Angeles, CA, USA, in 2008. He is an Associate Pro-
fessor with Electrical Engineering Department, The
University of Texas at Dallas (UTD), Richardson, TX,
USA. He was selected by the School of Engineering
of Chile, as the Best Electrical Engineer graduated

in 2003 across Chilean universities. At USC, he received a Provost Doctoral
Fellowship from 2003 to 2005 and a Fellowship in Digital Scholarship from
2007 to 2008. At UTD, he leads the Multimodal Signal Processing (MSP)
laboratory. His research interests include human-centred multimodal machine
intelligence and applications. His current research interests include affective
computing, multimodal human-machine interfaces, nonverbal behaviours for
conversational agents, in-vehicle active safety system, and machine learning
methods for multimodal processing. He was the recipient of the NSF CAREER
Award. In 2014, he was the recipient of the ICMI Ten-Year Technical Impact
Award. In 2015, his student was the recipient of the third prize IEEE ITSS Best
Dissertation Award (N. Li). He was also recipient of the Hewlett Packard Best
Paper Award at the IEEE ICME 2011 (with J. Jain), and the Best Paper Award
at the AAAC ACII 2017 (with Yannakakis and Cowie). He is the coauthor of
the winner paper of the Classifier Sub-Challenge event at the Interspeech 2009
emotion challenge. His work has direct implication in many practical domains,
including national security, health care, entertainment, transportation systems,
and education. He was the General Chair of ACII 2017. He is a Member of
ISCA, and AAAC, and a Senior Member of the ACM.

Björn W. Schuller (Fellow, IEEE) received the
Diploma in 1999, the Doctoral degree for his study on
automatic speech and emotion recognition in 2006,
and the Habilitation and Adjunct Teaching Profes-
sorship in the subject area of signal processing and
machine intelligence in 2012, all in electrical engi-
neering and information technology from the Tech-
nical University of Munich, Munich, Germany. He is
currently a Professor of artificial intelligence with the
Department of Computing, Imperial College London,
London, U.K., where he heads GLAM – the Group

on Language, Audio, & Music, a Full Professor and the Head of the Chair of
Embedded Intelligence for Health Care and Wellbeing with the University of
Augsburg, Augsburg, Germany, and CEO of audEERING. He was previously
a Full Professor and the Head of the Chair of Complex and Intelligent Systems
with the University of Passau, Passau, Germany.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

