
                                        
                                                        

             
                                          

                         
                       

Elastoplasticity of gradient-polyconvex materials

Martin Kruž́ık and Jǐŕı Zeman

Abstract. We propose a model for rate-independent evolution in elastoplastic materials under external loading, which allows
large strains. In the setting of strain-gradient plasticity with multiplicative decomposition of the deformation gradient, we
prove the existence of the so-called energetic solution. The stored energy density function is assumed to depend on gradients
of minors of the deformation gradient which makes our results applicable to shape-memory materials, for instance.

                                                  

                                                                                        

1. Introduction and notation

Elastoplasticity at large strains is an area of ongoing research, bringing together contributions from
modelling, analysis and numerical simulations. For the mathematical analysis of elastoplastic models,
it is often convenient to use powerful tools from the calculus of variations, which are now able to treat
quasistatic evolutionary problems as well (see e.g. [49], [41] as pioneering works). In principle, the existence
of solutions could be ensured by assuming some generalized convexity of the strain energy, but general
material behavior may contradict this assumption. For example, this is manifested in shape-memory
alloys (SMA) [4], magnetostrictive [14] and ferroelectric materials [54], even if convexity is understood in
a generalized sense, such as polyconvexity (first defined in [1]).

As a remedy, one can then recourse to higher-gradient regularizations, where the stored energy density
W also depends e.g. on the second gradient of the deformation. From a mathematical point of view,
this adds compactness to the model, which is instrumental in proving the existence of solutions by the
direct method. [2] Materials with such constitutive equations are referred to as non-simple and were
introduced by Toupin [57,58]. Since then, the concept has been elaborated by many authors so that its
thermodynamical side is also better understood [7,13,18,19,25,45,50].

Gradient-polyconvex (GPC) materials form a special class of non-simple solids and appeared in [5]
for the first time. Their stored energy density is not a function of the full second gradient ∇2y of the
deformation y : Ω → R

3, which maps the reference configuration Ω to R
3 , but it only depends, in a

convex way, on the weak gradients of cof∇y (and that of det∇y, if desirable). (See Section 3 for the
definition of a cofactor matrix.) To interpret the condition physically, note that since det∇y measures
the local change in volume between the reference and current configuration of the material and cof∇y
describes the transformation of area [27, p. 78], the stored energy W depending on their gradients offers
a control of how abruptly these changes vary in space. Gradient polyconvexity has since been applied
to the evolution of SMA [35] and a numerical implementation of GPC material models is also available
[32]. GPC allows us to consider stored energy densities without assuming any notion of convexity in the
deformation gradient variable. This makes it suitable for modelling of shape-memory alloys, for instance,
because the resulting functional is lower semicontinuous in the underlying weak topology. An alternative
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approach to energy functionals that are not lower semicontinuous is relaxation [10], however, available
results prevent us from considering energies tending to infinity for extreme compression. In this article,
we study an elastoplastic model using gradient polyconvexity.

The idea of strain-gradient plasticity is similar to that of nonsimple materials, as it also uses higher-
order terms to prevent physical quantities from unrealistic fine-scale oscillations. Incorporating gradients
of plastic variables in the constitutive equations is common in the engineering literature [44, p. 250] and
we refer an interested reader to [3,15,26,28,36,48,59] or [16] and the references therein. Gradient terms
account for non-local interactions of dislocations and we include them as well, as they offer a suitable
regularization to our model.

For our problem, we formulate the so-called energetic solution (let us name [46] as an early reference;
other related sources are cited in [44]). One advantage of the energetic formulation is that it avoids
derivatives of constitutive equations and time derivatives of the solution itself. [41] The variational nature
of this solution concept also combines well with homogenization and relaxation. Two conditions lie at the
core of the energetic formulation: a stability inequality, which couples minimization of the elastic energy
with a principle of maximum dissipation, and an energy balance. The two requirements together imply
that a usual plastic flow rule is satisfied for sufficiently smooth solutions. Our model describes large-strain
multiplicative elastoplasticity similarly to [38].

The plan of the paper is as follows: in Sect. 2 we review some basic facts from the modelling of
materials with internal variables, loosely following [21] and [30]. For the sake of completeness, we also
motivate the definition of an energetic solution, although this has been done more thoroughly in previous
works of Mielke et al. The main part of this paper is Section 3, where we study the rate-independent
behavior of elastoplastic GPC materials under external loads and prove the existence result. The section
is concluded with an example from crystal plasticity, which illustrates the usability of our findings.

Our approach draws inspiration from [39], where the existence of energetic solutions in large-strain
elastoplasticity is proved in the presence of plastic strain gradients and a polyconvex W . However, as our
stored energy is gradient polyconvex, our findings apply to the setting of multiwell energies, as encountered
e.g. in shape-memory alloys, cf. [6], [43] or [37] for instance. See also the end of Subsection 3.1. We remark
that energetic formulations in elastoplasticity have also been propounded: in the linear framework [22],
without strain gradients [8], using a finite quasiconvex energy [33], involving a plastic Cauchy-Green tensor
[23,24], for numerical computations [45], and elsewhere. The paper [12] discusses different assumptions in
quasistatic large-strain elastoplastic evolutions. Lastly, in [34], rate-independent dislocation-free plasticity
is treated.

In what follows, Lβ(Ω;Rn), 1 ≤ β < +∞ denotes the usual Lebesgue space of mappings Ω → R
n

whose modulus is integrable with the power β and L∞(Ω;Rn) is the space of measurable and essentially
bounded mappings Ω → R

n. Further, W 1,β(Ω;Rn) standardly represents the space of mappings which
live in Lβ(Ω;Rn) and their gradients belong to Lβ(Ω;Rn×n). Finally, W 1,β

0 (Ω;Rn) is a subspace of
W 1,β(Ω;Rn) of maps with a zero trace on ∂Ω. The weak convergence in Lβ(Ω;Rn) is defined as follows:
yk → y weakly in Lβ(Ω;Rn) (weakly star for β = +∞) if

∫

Ω

yk(x) · ϕ(x) dx → ∫

Ω

y(x) · ϕ(x) dx for all

ϕ ∈ Lβ′
(Ω;Rn) where β′ = β/(β − 1) if 1 < β < +∞, β′ = 1 if β = +∞ and β′ = +∞ for β = 1. Weak

convergence of mappings and their gradients in Lβ then defines the weak convergence in W 1,β(Ω;Rn).
We also write w -limk→+∞ yk = y or yk⇀y to denote weak convergence. Finally, C(Ω) or C(Rn×n) stand
for function spaces of functions continuous on Ω or R

n×n, respectively.

If f : Rn → R is convex but possibly nonsmooth we define its subdifferential at a point x0 ∈ R
n as

the set of all v ∈ R
n such that f(x) ≥ f(x0) + v · (x − x0) for all x ∈ R

n. The subdifferential of f will be
denoted ∂subf and its elements will be called subgradients of f at x0.



                                                             174

2. Motivation: modelling inelastic processes with internal variables

Consider Ω ⊂ R
n, a bounded Lipschitz domain representing the so-called reference configuration of a

solid body, and a mapping y : Ω → R
n, the deformation which the body is subjected to. We explain the

idea of elastoplasticity and the concept of energetic solutions following freely the exposition in [21] and
restricting ourselves to simple materials.

According to Han and Reddy [30, p. 34], plastic deformation ‘is most conveniently described in the
framework of materials with internal variables’. Those material models are not only governed by external
(controllable) variables, such as temperature or strain, but also incorporate a vector z ∈ Z ⊂ R

m of
internal variables, which describe e.g. an ongoing chemical reaction, elastoplastic behavior or material
damage. (Details can be found in [29] or in [30, p. 39].) The hyperelastic stored energy density W then
has the form W = W(F, z), if we consider a simple material, i.e. a material with constitutive equations
involving only the first gradient F = ∇y of the deformation y.

The thermodynamic conception is usually that differentiating W with respect to F , we get the mechan-
ical stress, whereas the derivative −∂zW gives another stress-like variable – the so-called thermodynamic
force

Q := − ∂

∂z
W(F, z) (2.1)

associated with the internal variable z. We can imagine that Q tries to restructure the material irreversibly,
which would lead to changing the value of z. The development of convex analysis [47] allowed quite a
general formulation of an evolution rule for the internal variable z. Assuming the existence of a nonnegative
convex potential of dissipative forces δ = δ(ż), where ż denotes the time derivative of z, we write the flow
law as

Q(t) ∈ ∂subδ(ż(t)) (2.2)

everywhere in Ω. A common simplifying assumption is rate-independent behavior. It is suitable for some
particular materials or for the modelling of processes with low rates of external loading. In simple terms,
rate-independence means that rescaling the loading in time only results in a corresponding time-rescaling
of the deformation and no additional viscous, inertial or thermal effects arise. Rate-independence trans-
lates into positive one-homogeneity of δ, i.e. δ(αż) = αδ(ż) for all α > 0.

Remark 2.1. Since the subdifferential is monotone (see [51]), by (2.2) we have

(Q(t) − θ) · (ż(t) − ξ) ≥ 0. (2.3)

for all θ ∈ ∂subδ(ξ). Choosing ξ = 0 and observing that the one-homogeneity of δ implies δ(ż) = ω · ż for
all ω ∈ ∂subδ(ż) we get

δ(ż(t)) = Q(t) · ż(t) ≥ θ · ż(t) (2.4)

for all θ ∈ ∂subδ(0). Hence we derived the so-called maximum dissipation principle (see e.g. [31] or [52,53])
which states that the plastic dissipation that takes place in reality is not less than any possible dissipation
due to thermodynamic forces ‘available’ in the so-called elastic domain ∂subδ(0).

Hereafter, ν is the outer unit normal to ∂Ω, and ∂Ω ⊃ Γ0, Γ1 which are disjoint. Let f(t) : Ω → R
n be

the (volume) density of external body forces and g(t) : Γ1 ⊂ ∂Ω → R
n be the (surface) density of surface

forces. The conservation of momentum yields the equilibrium equations

−div
(

∂

∂F
W(∇y(t), z(t))

)

= f(t) in Ω, (2.5)

y(t, x) = y0(x) on Γ0, (2.6)
∂

∂F
W(∇y(t), z(t))ν(x) = g(t, x) on Γ1. (2.7)
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If z0 ∈ Z is an initial condition for the internal variable, the system of equations (2.5)-(2.7) together
with (2.8):

− ∂

∂z
W(∇y(t), z(t)) ∈ ∂δ(ż(t)), z(0) = z0, (2.8)

governs the mechanical behavior characterized by the unknowns y(t), z(t).
Unfortunately, the system (2.5)-(2.7) is ill-posed in many situations. See the works of Suquet [55] and

Temam [56] for early analysis of this problem.
To get existence results, it seems necessary to include the gradient of the internal variable, i.e. use the

strain energy density

W̃(∇y, z, ∇z) := W(∇y, z) + ε|∇z|α
for α ≥ 1 and ε > 0. Let us briefly recall how an energy balance, which appears in the energetic formulation
of this regularized problem, is obtained, under sufficient smoothness and integrability assumptions on all
the present mappings. For details, see [21,41].

The functional

I(t, y(t), z(t)) :=
∫

Ω

W(∇y(t), z(t)) dx + ε

∫

Ω

|∇z(t)|α dx − L(t, y(t)), (2.9)

expresses the potential energy in our system, where the work done by external forces is

L(t, y(t)) :=
∫

Ω

f(t) · y(t) dx +
∫

Γ1

g(t) · y(t) dS. (2.10)

We also introduce the total dissipation along z,

Diss(z; [0, t]) :=

t∫

0

∫

Ω

δ(ż(s)) dxds.

Calculating the thermodynamic force ∂zW̃, using the relation δ(ż) = ω · ż, ω ∈ ∂subδ(ż), mentioned
above (2.4), we can deduce from (2.5)-(2.7) the following energy balance:

I(t, y(t), z(t)) + Diss(z; [0, t]) = I(0, y(0), z(0)) +

t∫

0

L̇(s, y(s)) ds.

Due to low regularity in time, a more general expression for Diss(z; [0, t]) must be used in practice,
though – see (2.14) below.

To this end, we define a dissipation distance between two values z0, z1 ∈ Z of the internal variable:

D(z0, z1) := inf
z

⎧
⎨

⎩

1∫

0

δ(ż(s)) ds; z(0) = z0, z(1) = z1

⎫
⎬

⎭
, (2.11)

where z ∈ C1([0, 1];Z), and set

D(z1, z2) =
∫

Ω

D(z1(x), z2(x)) dx (2.12)

for z1, z2 ∈ Z := {z : Ω → R
m; z(x) ∈ Z a.e. in Ω}, as in [41].

In order to find a quasistatic evolution of the system Mielke, Theil, and Levitas [46] came up with
the following definition of the energetic solution which conveniently overcomes nonsmoothness mentioned
above. Moreover, it fully exploits the possible variational structure of the problem and allows for very
general energy and dissipation functionals. This concept has versatile applications to many problems in
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continuum mechanics of solids. Additionally, working with I and D directly allows us to include also
higher derivatives of y into the model or to require integrability of some functions of ∇y as also done in
this contribution.

2.1. Energetic solution

Let Y be the set of admissible deformations (usually a subset of a Sobolev space) and suppose that the
evolution of y(t) ∈ Y and z(t) ∈ Z is studied during a time interval [0, T ]. The following two properties
characterize the energetic solution due to Mielke et al. [46].
(i) Stability inequality:
∀t ∈ [0, T ], z̃ ∈ Z, ỹ ∈ Y:

I(t, y(t), z(t)) ≤ I(t, ỹ, z̃) + D(z(t), z̃) (2.13)

(ii) Energy balance: ∀ 0 ≤ t ≤ T

I(t, y(t), z(t)) + Var(D, z; [0, t]) = I(0, y(0), z(0)) +

t∫

0

L̇(ξ, y(ξ)) dξ,

where Var(D, z; [s, t]) := sup

{
N∑

i=1

D(z(ti), z(ti−1)); {ti} partition of [s, t]

}

. (2.14)

Definition 2.2. The mapping t �→ (y(t), z(t)) ∈ Y × Z is an energetic solution to the problem (I, δ, L) if
the stability inequality and energy balance are satisfied for all t ∈ [0, T ].

Remark 2.3. The mechanical idea behind stability inequality (i) is the following: imagine first that
z̃ := z(t), then D(z(t), z̃) vanishes, since no change in the internal variables implies no dissipation.
Consequently, (i) simplifies to I(t, y(t), z(t)) ≤ I(t, ỹ, z̃) for all ỹ ∈ Y and y(t) is a global minimizer of
I(t, ·, z(t)) over Y. So we see that in this case, (i) has the meaning of an elastic equilibrium. If z̃ �= z(t),
then the amount of dissipated energy between the states z̃ and z(t) must, by (i), at least compensate for,
if not outweigh the associated loss in the total energy, which is a version of the principle of maximum
dissipation. [41]

We will write Q := Y × Z and set q := (y, z). Next let us define the set of stable states at time t as

S(t) := {q ∈ Q; ∀q̃ ∈ Q : I(t, q) ≤ I(t, q̃) + D(q, q̃)} (2.15)

and

S[0,T ] :=
⋃

t∈[0,T ]

{t} × S(t). (2.16)

Moreover, a sequence {(tk, qk)}k∈N is called stable if qk ∈ S(tk).

Remark 2.4. Energetic solutions are applicable to convex as well as nonconvex problems. In nonconvex
problems, however, they do not necessarily provide proper predictions of the mechanical behaviour of the
system, as jumps of the solution in time appear ‘too early’ when compared to physical experiments in sev-
eral applications, for example in models predicting damage and fracture. In fact, energetic solutions jump
immediately when there is enough energy available. In this sense, they represent the worst-scenario ap-
proach. Nevertheless, they are very flexible and applicable to nonlinear problems in continuum mechanics.
We refer to [44] for further discussions on this topic.
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3. Applications to elastoplasticity

This section shows how the energetic approach can be applied to an elastoplastic problem of gradient-
polyconvex materials.

3.1. Gradient polyconvexity

Gradient polyconvexity was first defined in [5] in analogy with classical polyconvexity [1]. The difference
is that here we assume that the stored energy density is convex in gradients of minors of the deformation
gradient but not in minors alone. More precisely, the following definition is taken from [5]. We recall that
for an invertible F ∈ R

n×n we define the cofactor of F , cofF = (detF )F−� ∈ R
n×n. As is shown in [5]

there are maps y ∈ W 1,1(Ω;R3) such that det∇y and cof∇y are Lipschitz continuous but y �∈ W 2,1(Ω;R3).
The same conclusion can be reached for every n ≥ 3. On the other hand, if n = 2 then ∇cof∇y has the
same entries (up to the minus sign) as ∇2y.

Definition 3.1. Let Ω ⊂ R
n be a bounded open domain. Let W1 : Rn×n × R

n×n×n → R ∪ {+∞} be a
lower semicontinuous function. The functional

J(y) =
∫

Ω

W1(∇y(x), ∇[cof∇y(x)]) dx, (3.1)

defined for any measurable function y : Ω → R
n for which the weak derivatives ∇y, ∇[cof∇y] exist and

are integrable is called gradient polyconvex if the function W1(F, ·) is convex for every F ∈ R
n×n.

We assume that for some c > 0, and numbers α > n − 1, s > 0 it holds that for every F ∈ R
n×n and

every H ∈ R
n×n×n we have that

W1(F, H) ≥
{

c
(|F |α + (detF )−s + |H|α/(n−1)

)
if detF > 0,

+∞ otherwise,
(3.2)

where | · | denotes the Euclidean norm. These growth assumptions can be surely weakened but we stick
to them in order to simplify our presentation.

The idea behind condition (3.2) is that the energy blows up if the deformation does not preserve
orientation or if the measures of strain on the right-hand side grow to extreme values. Coercivity conditions
involving |F | and detF are commonly used in nonlinear elasticity (see e.g. [9]) and reflect variations in
volume or changes of the distances of points caused by the deformation. The term H which is a placeholder
for ∇cof∇y penalizes spatial changes of cof∇y and, consequently, it aims at suppressing abrupt areal
changes in the deformed configuration.

An important feature of gradient polyconvexity is that no convexity assumptions on W1 are needed in
the F -variable, so that very general material laws can be considered including multiwell energy functions
[6] or the St. Venant–Kirchhoff energy density [9]. Indeed, assume that we are given matrices Fi ∈ R

n×n

with positive determinants that define mutually different preferred right Cauchy-Green strains Ci = F�
i Fi

of martensitic variants for 1 ≤ i ≤ M and define

W1(F, H) =

{
mini=1,..., M

1/2
Ci(C − Ci) : (C − Ci) + ε|H|α/(n−1) + 1

detF if det F > 0,

+∞ otherwise,

where Ci is the tensor of elastic constants of the i-th variant and C = F�F . Clearly, W1 is admissible in
(3.1) and models a multiwell energy density of a shape-memory alloy.

We call materials whose stored energy J obeys (3.1) also gradient-polyconvex.
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3.2. Assumptions on problem data

We work under the assumption of multiplicative decomposition of the deformation gradient F = FeFp,
where Fe is the elastic part and Fp the plastic one (see Section 3.3 for more details). As in [26] we will
consider so-called separable materials, i.e. materials where the elastoplastic energy density has the form

W(Fe, H, Fp, ∇Fp, p,∇p) := W1(Fe, H) + W2(Fp, ∇Fp, p,∇p). (3.3)

We will assume that W1 is continuous and satisfies (3.2) while for W2 we require:
(i) The plastic part W2 is continuous in its all arguments.
(ii) Suppose that there are two constants C, c > 0 so that the following assumption holds for constants
c1 > 0, β > n, and ω > n:

C(1 + |Fp|β + |G|β + |p|ω + |π|ω) ≥ W2(Fp, G, p, π)

≥ c(|Fp|β + |G|β + |p|ω + |π|ω) − c1. (3.4)

(iii) There is c2 > 0, v∗ ∈ R
m and a modulus of continuity ω̂ such that for all α̂ > 0 , Fp ∈ R

n×n,
G ∈ R

n×n×n, p ∈ R
m and π ∈ R

m×n:

|W2(Fp, G, p + α̂v∗, π) − W2(Fp, G, p, π)| ≤ ω̂(α̂)(W2(Fp, G, p, π) + c2). (3.5)

Furthermore, let us suppose that for every Fe, Fp ∈ R
n×n and p ∈ R

m, the functions W1(Fe, ·) and
W2(Fp, ·, p, ·) are convex.

The dissipation distance D : Z×Z → [0, +∞] takes the form (2.12) for a function D : Ω×(SL(n)×R
m)2

and we only change the definition of Z to (3.11) below. We make the following assumptions on D:
(i) Lower semicontinuity:

D(z, z̃) ≤ lim inf
k→∞

D(zk, z̃k), (3.6)

whenever zk⇀z and z̃k⇀z̃.
(ii) Positivity:

If {zk} ⊂ Z is bounded and min{D(zk, z), D(z, zk)} → 0 then zk⇀z. (3.7)

(iii) For all z1, z2 ∈ Z: D(z1, z2) = 0 if and only if z1 = z2.
(iv) Triangle inequality: D(z1, z3) ≤ D(z1, z2) + D(z2, z3) for all z1, z2, z3 ∈ Z.

We refer the reader to [39] to see that (ii) follows from (i) and (iii). After stating Proposition 3.6, we
specify further assumptions on D ((3.16) or (3.A)–(3.C)). Besides, it is naturally required that D be such
that (i)–(iv) holds.

In order to prove the existence of a solution to (3.18) we must impose some data qualifications. In
what follows, we assume that

f ∈ C1
(
[0, T ]; Ld̃ (Ω;Rn)

)
, (3.8)

g ∈ C1
(
[0, T ]; Ld̂ (Γ1;Rn)

)
, (3.9)

where d̃ ≥ [nd/(n − d)]′ = nd/(nd − n + d) if 1 ≤ d < n or d̃ > 1 otherwise. Similarly, we suppose that
d̂ ≥ [(nd − d)/(n − d)]′ = (nd − d)/(nd − n) if d < n or d̂ > 1 otherwise.

3.3. Formulation of the problem

From now on, y : Ω → R
n will represent the deformation of a material body, whose reference configuration

is a bounded Lipschitz domain Ω ⊂ R
n. Since y models both elastic and plastic behaviour, we split the

deformation gradient F = ∇y as F = FeFp, where Fe stands for an elastic part and Fp ∈ SL(n) :=
{A ∈ R

n×n; det A = 1} is a plastic part, which irreversibly transforms the material. To capture e.g. back
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stresses, we use the vector p ∈ R
m of hardening internal variables. Written together, z(x) = (Fp(x), p(x))

is a plastic variable, lying in SL(n) × R
m for almost all x ∈ Ω.

The energy functional I is given by

I(t, y(t), z(t)) :=
∫

Ω

W(∇yF−1
p , ∇[(cof∇y)F�

p ], Fp, ∇Fp, p,∇p) dx − L(t, y(t)), (3.10)

with L defined in (2.10).
Our stored energy density W does not explicitly depend on the spatial variable x, but treating the

inhomogeneous case would not need many modifications.
Let us remark that (cof∇y)F�

p is the cofactor of the elastic part Fe, since by the product rule for
cofactor matrices [9, p. 4] and by Fp ∈ SL(n), we have

cofFe = cof(FF−1
p ) = (cofF )cof(F−1

p ) = (cofF )det(F−1
p )(F−1

p )−� = (cofF )F�
p .

The admissible deformations y lie in

Y := {y ∈ W 1,d(Ω;Rn); y = y0 on Γ0},

where Γ0 ⊂ ∂Ω with a positive surface measure and y0 ∈ W 1−1/d,d(Γ0;Rn) is given. Assuming that
Γ1 ⊂ ∂Ω as in Sect. 2, we suppose Γ0 ∩ Γ1 = ∅. For the internal states z let us define the set

Z := {(Fp, p) ∈ W 1,β(Ω;Rn×n) × W 1,ω(Ω;Rm) : Fp(x) ∈ SL(n) for a.e. x ∈ Ω}. (3.11)

For ease of notation, we write q = (y, z) ∈ Q = Y×Z and understand I(t, ·), L(t, ·) and D as functions
of q, that is:

I(t, q(t)) =
∫

Ω

W(∇yF−1
p , ∇[(cof∇y)F�

p ], Fp, ∇Fp, p,∇p) dx − L(t, q(t)),

L(t, q(t) := L(t, y(t)),
D(q1, q2) := D(z1, z2)

if q1 = (y1, z1) and q2 = (y2, z2).
In order to prove the existence of an energetic solution to our problem we will need the following

results of technical nature.

3.4. Auxiliary results

We start this section by the following reverse Young inequality.

Lemma 3.2. Suppose that a > 0, b > 0, δ > 0, r > 1. Then
a

b
≥ rδ

r
r−1 a

1
r − (r − 1)δ

r2

(r−1)2 b
1

r−1 .

Proof. Young’s inequality states that given a pair of positive numbers α, β and 1 < p, q < +∞, 1
p + 1

q = 1,
then

αβ ≤ αp

p
+

βq

q
. (3.12)

Set p = r, α = a
1
r , β = δ

r
r−1 b in (3.12). Then q = r

r−1 and Young’s inequality yields

r − 1
r

δ
r2

(r−1)2 b
r

r−1 +
1
r
a ≥ δ

r
r−1 a

1
r b,

which after multiplying by r
b implies the desired result. �

It will also be useful to give a name to a kind of convergence which makes I(t, ·) lower semicontinuous.
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Definition 3.3. We say that the sequence {qk}k∈N ⊂ Q, qk = (yk, zk) = (yk, Fpk, pk) gpc-converges to
q∗ = (y∗, z∗) = (y∗, Fp∗, p∗) if zk⇀z∗ in Z, ∇cof(∇ykF−1

pk )⇀∇cof(∇y∗F−1
p∗ ) in Lα/(n−1)(Ω;Rn×n×n) and

∇yk → ∇y∗ in measure. We write qk
gpc→ q∗ for short.

Lemma 3.4. Let tk → t∗ with tk, t∗ ∈ [0, T ], k ∈ N, and qk
gpc→ q∗, {qk}k∈N ⊂ Q. Then I(t∗, q∗) ≤

lim infk→∞ I(tk, qk).

Proof. This is an immediate consequence of [17, Corollary 7.9]. Note that we can construct a subsequence
such that ∇ykj

F−1
pkj

→ ∇y∗F−1
p∗ almost everywhere. �

Even though we do not have the weak lower semicontinuity of I in general, we can get it for a
subsequence provided the respective values of I are bounded.

Lemma 3.5. Provided that α−1 + β−1 ≤ d−1 < (n − 1)−1 and d > β(n−1)
β−1 , let tk ∈ [0, T ], k ∈ N, and

qk⇀q∗ in Q. Suppose there is CI > 0 such that for all k ∈ N the bound I(tk, qk) ≤ CI holds true. Then
there exists a subsequence {qkj

}j∈N of {qk}k∈N that gpc-converges to the same limit q∗.

Proof. The proof goes the same way as in Proposition 3.8. To keep the flow of ideas uninterrupted there,
we postpone the presentation to that section. �

Proposition 3.6. Let I be lower semicontinuous with respect to gpc-convergence and let (3.8) and (3.9)
hold. Let it for all (t∗, q∗) ∈ [0, T ]×Q and all stable sequences {(tk, qk)}k∈N such that w-limk→∞(tk, qk) =
(t∗, q∗) be true that for all q̃ ∈ Q there is {q̃k} ⊂ Q such that

lim sup
k→∞

(I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃)). (3.13)

Then for any stable sequence {(tk, qk)}k∈N such that w-limk→∞(tk, qk) = (t∗, q∗) and I(tk, qk) ≤ C for
some C > 0, we have limk→∞ I(tk, qk) = I(t∗, q∗) and q∗ ∈ S(t∗).

Proof. We follow the proof of Prop. 4.3 in [39]. Take q̃ := q∗ in (3.13), which yields a sequence {q̃k}k∈N.
Then we get, by the stability of qk,

lim sup
k→∞

I(tk, qk) ≤ lim sup
k→∞

((I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃) = I(t∗, q∗). (3.14)

The assumptions (3.8) and (3.9) on f and g further give

lim
k→∞

|I(tk, qk) − I(t∗, qk)| = lim
k→∞

|L(tk, qk) − L(t∗, qk)| = 0. (3.15)

Since I is lower semicontinuous with respect to gpc-convergence (and by Lemma 3.5 we can pass to
a gpc-convergent subsequence, without relabeling it), we deduce by equation (3.15) that

lim inf
k→∞

I(tk, qk) = lim
k→∞

(I(tk, qk) − I(t∗, qk)) + lim inf
k→∞

I(t∗, qk) ≥ I(t∗, q∗).

This combined with (3.14) establishes the weak continuity along a stable sequence: I(tk, qk) → I(t∗, q∗).
In the end, pick a q̃ ∈ Q and apply (3.13) to it:

I(t∗, q∗) = lim
k→∞

I(tk, qk) ≤ lim inf
k→∞

(I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃);

hence, the stability of q∗ is proved. �

A natural question is how to ensure the validity of (3.13). If D : Q×Q → [0, +∞), i.e. no irreversibility
constraint is imposed on plastic processes, then it is sufficient if D from (2.12) satisfies

D is continuous and

D(z1, z2) ≤ c + C(|Fp1|β∗−ε + |Fp2|β∗−ε + |p1|ω∗−ε + |p2|ω∗−ε),
(3.16)
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where ε > 0 is small enough and β∗ := nβ/(n−β) if n > β and β∗ > 1 if β ≥ n. Similarly, ω∗ := nω/(n−ω)
if n > ω and ω∗ > 1 if ω ≥ n. Then the compact embedding provides the continuity of D. This shows
that (3.13) is valid with a constant sequence q̃k = q̃.

If D : Q × Q → [0, +∞], the assumptions are more elaborate. Following [39] we impose the following
sufficient conditions on D from (2.11):
(3.A) D(·, ·) : D → [0, +∞) is continuous, where D := {(z1, z2); D(z1, z2) < +∞},
(3.B) For every R > 0 there is K > 0 such that: D(z1, z2) < K if z1, z2 ∈ D and |z1|, |z2| < R, and
(3.C) The direction v∗ ∈ R

m from (3.5) has the property that for all α, R > 0 there is ρ > 0 such that
for every z, z0, z1:

|z − z0| < ρ, (z0, z1) ∈ D and |z0|, |z1| < R implies (z, z1 + (0, αv∗)) ∈ D.

Proposition 3.7. Let β, ω > n. Let D satisfy (3.A)–(3.C). Then (3.13) holds.

Proof. The reasoning follows the lines of [39]. If D(q∗, q̃) = +∞ in (3.13), the proof is finished. So, we
assume that

D(q∗, q̃) ∈ R.

If qk⇀q∗, we observe that

ρk := ‖Fpk − Fp∗‖C(Ω̄;Rn×n) + ‖pk − p∗‖C(Ω̄;Rm) → 0. (3.17)

by the compact embedding. Then |zk| + |z∗| + |z̃| < R for some R > 0 if k is large enough. Define
z̃k := (F̃p, p̃ + αkv∗) where αk → 0 and relates to ρk as in (3.C) (we may need to redefine the ρk from
(3.17) by passing to a subsequence, which is without loss of generality). Thus, (zk, z̃k) ∈ D(x) a.e. in Ω and
we have |zk|, |z̃k| < R. The continuity of D gives the convergence of D(x, zk, z̃k) → D(x, z∗, z̃) pointwise
so that D(qk, q̃k) → D(q∗, q̃) by condition (3.B) and the dominated convergence theorem. Furthermore,
properties of W2 and L (assumptions (3.8), (3.9)) imply that I(tk, q̃k) → I(t∗, q̃∗). Summing up, we
deduce that (3.13) is satisfied with equality. �

3.5. Incremental problems

Next, we define the following sequence of incremental problems. We consider a stable initial condition
q0
τ := q0 ∈ Q.

Let us take τ > 0, a time step, chosen in the way that N = T/τ ∈ N. For 1 ≤ k ≤ N , tk := kτ , find
qk
τ ∈ Q such that qk

τ solves

minimize q �→I(tk, q) + D(qk−1
τ , q)

subject to q ∈ Q.

}

(3.18)

Proposition 3.8. Let α−1 + β−1 ≤ d−1 < (n − 1)−1, d > β(n−1)
β−1 . Let the assumptions on W and D be

satisfied. Let further (3.8) and (3.9) be satisfied. Then the problem (3.18) has a solution for all k =
1, . . . , T/τ . In addition, for the solution qk

τ = (yk
τ , zk

τ ) we get det∇yk
τ > 0 a.e. in Ω.

Proof. Given qk−1
τ ∈ Q from the previous time step, suppose that {qj} ⊂ Q is a minimizing se-

quence for q �→ I(tk, q) + D(qk−1
τ , q). The assumption (3.4) implies that {zj} is uniformly bounded

in W 1,β(Ω;Rn×n) × W 1,ω(Ω;Rm). Hence, as β, ω > 1 we can extract a weakly converging subsequence
(not relabeled) zj⇀z in W 1,β(Ω;Rn×n) × W 1,ω(Ω;Rm). The strong convergence of zj → z := (Fp, p)
in Lβ(Ω;Rn×n) × Lω(Ω;Rm) ensures that Fp(x) ∈ SL(n) almost everywhere. Write zj = (F j

p , pj),
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qj = (yj , zj). Exploiting the submultiplicativity of the Euclidean norm, we estimate using Lemma 3.2
∫

Ω

|∇yj(x)(F j
p )−1|α dx ≥

‖∇yj‖α
Ld(Ω;Rn×n)

‖F j
p‖α

Lβ(Ω;Rn×n)

≥ α

d
δα/(α−d)‖∇yj‖d

Ld(Ω;Rn×n) − α − d

d
δα2/(α−d)2‖F j

p‖β
Lβ(Ω;Rn×n)

. (3.19)

The Ld-term on the right hand side is bounded due to (3.4) and the boundedness of {yj} in W 1,d(Ω;Rn)
follows by the Poincaré inequality if δ > 0 is taken small. Hence yj⇀y in W 1,d(Ω;Rn) (up to a subse-
quence). This then also implies that cof∇yj⇀cof∇y in Ld/(n−1)(Ω;Rn×n); cf. [9]. Due to reflexivity of
W 1,α/(n−1)(Ω;Rn×n) we get for a non-relabelled subsequence that (cof∇yj)F j�

p ⇀ Ξ in W 1,α/(n−1)(Ω;Rn×n)
for some Ξ . However, the weak convergence of {cof∇yj}j and the strong convergence of {F j

p} allow us to
identify Ξ = (cof∇y)F�

p . Moreover, the growth condition (3.2) implies that det∇y > 0 a.e. in Ω (see [5]).
Cramer’s rule together with detF j

p = 1 and detn−1(∇yj(F j
p )−1) = det(cof[∇yj(F j

p )−1]) = det(cof∇yj)
give

cof[∇yj(F j
p )−1]

det∇yj
= (∇yj(F j

p )−1)−�

and the transpose of the left-hand side converges pointwise (for a subsequence again) to (∇y(Fp)−1)−1

a.e. in Ω. This, together with the fact that det∇y > 0 a.e., implies that ∇yj(F j
p )−1 → ∇y(Fp)−1 a.e. in

Ω. Then by [17, Corollary 7.9] we see that I is weakly lower semicontinuous.
The assumptions on D ensure that it is sequentially weakly lower semicontinuous on Q, too. By the

direct method of the calculus of variations, we conclude that a minimizer qk
τ exists. �

Remark 3.9. Note that in fact, we proved that a minimizing sequence has a gpc-convergent subsequence.

3.6. Interpolation in time

We denote by qτ a piecewise constant interpolation of qk
τ =: (yk

τ , zk
τ ), i.e. qτ (t) = qk

τ if t ∈ [kτ, (k + 1)τ)
and k = 0, . . . , T/τ − 1. Finally, qτ (T ) := qN

τ . Analogously, Lτ (t, qτ (kτ)) := L(kτ, qτ (kτ)) is a piecewise
constant interpolation of L and Iτ (t, qτ (kτ)) := I(kτ, qτ (kτ)) is a piecewise constant interpolation of I.
Propositions stated below are classical in the context of energetic solutions. We refer to [21,44] for proofs.

Proposition 3.10. Under the assumptions of Proposition 3.8, problem (3.18) has a solution qτ (t) which
is stable, i.e., for all t ∈ [0, T ] and for every q ∈ Q,

Iτ (t, qτ (t)) ≤ Iτ (t, q) + D (qτ (t), q) . (3.20)

Moreover, for all tI ≤ tII from the set {kτ}N
k=0, the following discrete energy inequalities hold if one

extends the definition of qτ (t) by setting qτ (t):=q0 if t < 0:

−
tII∫

tI

L̇ (t, qτ (t − τ)) dt ≤ I (tII , qτ (tII)) + Var (D, qτ ; [tI , tII ]) − I (tI , qτ (tI))

≤ −
tII∫

tI

L̇ (t, qτ (t)) dt. (3.21)

We would like to pass with the step size τ to zero and for this we need certain a priori bounds.
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Proposition 3.11. Let (3.8) and (3.9) be satisfied. Then there is κ > 0 such that for any τ > 0:

‖yτ‖L∞(0,T ;W 1,d(Ω;Rn)) < κ, (3.22)

Var(D, qτ ; [0, T ])) < κ, (3.23)
‖zτ‖L∞(0,T ;W 1,α(Ω;Rn×n)×W 1,β(Ω;Rm)) < κ. (3.24)

3.7. Limit passage

The following lemma is proved in [38].

Lemma 3.12. Let D : Z × Z → [0, +∞] satisfy (3.6) and (3.7). Let K be a weakly sequentially compact
subset of Z. Then for every sequence {zk}k∈N, zk : [0, T ] → K for which supk∈N Var(D, zk; [0, T ]) < C,
C > 0, there exists a subsequence (not relabelled), a function z : [0, T ] → K, and a function Δ: [0, T ] →
[0, C] such that:
(i) Var(D, zk; [0, t]) → Δ(t) for all t ∈ [0, T ],
(ii) zk⇀z in Z for all t ∈ [0, T ], and
(iii) Var(D, z; [t0, t1]) ≤ Δ(t1) − Δ(t0) for all 0 ≤ t0 < t1 ≤ T .

Let us denote X := Lβ(Ω;Rn×n)×Lω(Ω;Rm). Finally, we proved the existence of an energetic solution.

Theorem 3.13. Let α−1 + β−1 ≤ d−1 < (n − 1)−1, d > β(n−1)
β−1 . Let q0 ∈ Q be a stable initial condition.

Let the assumptions on W, D, f and g from Section 3.2 hold. Let further (3.16) or (3.A), (3.B), (3.C)
hold. Then there is a process q : [0, T ] → Q with q(t) = (y(t), z(t)) such that q is an energetic solution
according to Definition 2.2. The following convergence statements also hold:
(i) for a t-dependent (not relabelled) subsequence w-limτ→0 yτ (t) = y(t) in W 1,d(Ω;Rn) for all t ∈ [0, T ],
(ii) for a (not relabelled) subsequence limτ→0 zτ (t) = z(t) in X for all t ∈ [0, T ],
(iii) for a (not relabelled) subsequence limτ→0 Iτ (t, qτ (t)) = I(t, q(t)) for all t ∈ [0, T ], and
(iv) for a (not relabelled) subsequence limτ→0 Var(D, qτ ; [0, t]) = Var(D, q; [0, t]) for all t ∈ [0, T ].

Proof. We have adapted the proof from [21,42] and divided it into three steps.
Step 1: Assertion (i) follows from the a priori estimate in Proposition 3.11 and (ii) results from Lemma 3.12.
Hence we have a limit q(t) = (y(t), z(t)). We easily get that q(t) ∈ Q for all t ∈ [0, T ].

Put S(t, τ) := maxk∈N∪{0}{kτ ; kτ ≤ t}. Then limτ→0 S(t, τ) = t and by definition qτ (t) := qτ (S(t, τ)) ∈
S(S(t, τ)). As we have seen, D can be assumed such that (3.13) holds. Hence by Proposition 3.6, the limit
is stable, i.e. q(t) ∈ S(t) (thanks to our a priori estimates, we can pass to a gpc-convergent subsequence
to get lower semicontinuity).
Step 2: Notice that θτ (t) := ∂L

∂t (t, qτ (t)) is bounded in L∞(0, T ) by (3.8), (3.9) and (3.22), so we deduce
a weak*-convergent subsequence, which we do not relabel, with the limit θ. By Fatou’s lemma θi ≤ θ.

Our interpolation satisfies qτ (t) = qτ (kτ) for 0 ≤ t − kτ < τ . Successively using (3.21), (3.8), (3.9)
and (3.22), we get for some C, C1 > 0

I(t, qτ (t)) + Var(D, qτ ; [0, t]) ≤ I(kτ, qτ (kτ)) + Var(D, qτ ; [0, kτ ]) + Cτ

≤ I(0, qτ (0)) −
kτ∫

0

L̇(s, qτ (s)) ds + Cτ

≤ I(0, qτ (0)) −
t∫

0

L̇(s, qτ (s)) ds + C1τ.
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On account of Lemma 3.12 (i) and Proposition 3.6 we find that for τ → 0

I(t, q(t)) + Δ(t) ≤ I(0, q(0)) −
t∫

0

θ(s) ds.

Following [42] we set θi(t) := lim infτ→0 θτ (t). Since Δ(t) ≥ Var(D, q; [0, t]) and by Fatou’s lemma
t∫

0

θ(s) ds ≥
t∫

0

θi(s) ds, for a.a. t ∈ [0, T ] we get

I(t, q(t)) + Var(D, q; [0, t]) ≤ I(0, q(0)) −
t∫

0

θi(s) ds.

The convergence θτ (s) = L̇(s, qτ (s)) → L̇(s, q(s)) and extracting an s-dependent subsequence of
{θτ (s)} converging to θi(s) show that θi(s) = L̇(s, q(s)). We finally get the upper energy estimate

I(t, q(t)) + Var(D, q; [0, t]) ≤ I(0, q(0)) −
t∫

0

L̇(s, q(s) ds. (3.25)

Step 3: The fact that q(t) is stable for all t ∈ [0, T ] will be useful in proving the lower estimate. Consider
a partition of a time interval [tI , tII ] ⊂ [0, T ] such that tI = ϑM

0 < ϑM
1 < ϑM

2 < · · · < ϑM
KM

= tII and
maxi(ϑM

i −ϑM
i−1) =: ϑM → 0 as M → ∞. Let us test the stability of q(ϑM

k−1) with q(ϑM
k ), k = 1, . . . , KM .

We get
KM∑

k=1

[
L

(
(ϑM

k−1, q(ϑ
M
k )

) − L
(
ϑM

k , q(ϑM
k )

)] ≤ I (tII , q(tII)) − I (tI , q(tI)) (3.26)

+
KM∑

k=1

D (
q(ϑM

k−1), q(ϑ
M
k )

)
.

Thus,

KM∑

k=1

−
ϑM

k∫

ϑM
k−1

L̇(s, q(ϑM
k )) ds ≤ I (tII , q(tII) − I (tI , q(tI))

+Var(D, q; [tI , tII ]). (3.27)

We finally rearrange the terms as

KM∑

k=1

ϑM
k∫

ϑM
k−1

L̇(s, q(ϑM
k )) ds =

KM∑

k=1

L̇(ϑM
k , q(ϑM

k ))(ϑM
k − ϑM

k−1)

+
KM∑

k=1

ϑM
k∫

ϑM
k−1

(L̇(s, q(ϑM
k )) − L̇(ϑM

k , q(ϑM
k ))) ds. (3.28)

The last sum on the right-hand side of (3.28) goes to zero with ϑM → 0 because the time derivative of
the external loading is uniformly continuous in time by (3.8) and (3.9). The first sum on the right-hand

side converges to
tII∫

tI

L̇(s, q(s)) ds by [11, Lemma 4.12].
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Altogether, the upper and lower estimates give us the energy balance

I(t, q(t)) + Var(D, q; [0, t]) = I(0, q(0)) −
t∫

0

L̇(s, q(s) ds. (3.29)

Moreover,

I(0, q(0)) −
t∫

0

θi(s) ds ≤ I(t, q(t)) + Var(D, q; [0, t])) ≤ I(t, q(t)) + Δ(t)

≤ I(0, q(0)) −
t∫

0

θ(s) ds ≤ I(0, q(0)) −
t∫

0

θi(s) ds. (3.30)

Thus in fact, all inequalities in (3.30) are equalities and we get (iv). Proposition 3.6 also implies (iii). �

Finally, we include a simple example from single-crystal plasticity, covered by our approach, in the
spirit of [26] and [40].

Example 3.1. (single slip without hardening). Consider two orthonormal vectors a, b ∈ R
3, describing

the motion of edge dislocations in such a way that a is the glide direction and b is the slip-plane normal.
Further we focus on a particular case of the so-called separable material where

W(Fe, H, z) = W1(Fe) + c|H|2 + cdet(Fe)−s + ε|Fp|6 + ε|∇Fp|6, c, s, ε > 0,

with Fp(x, t) = I + γ(x, t)a ⊗ b where γ is the plastic slip and we can choose W1 to be e.g. the stored
energy density of the Saint Venant–Kirchhoff material, i.e. W1(Fe) = 1

8 (FeFe − I) : C : (FeFe − I) so
that W1(Fe) ≥ c(|Fe|4 − 1). The vectors a, b are not fixed in the reference configuration in general (more
precisely, they lie in an intermediate lattice space, see [27]). The slip-plane normal b̃ in the reference
configuration is given by b̃ = (Fp)�b. However, in the special case of a single slip we obtain b̃ = b and the
slip-plane normal remains unchanged during plastic transformations.

As Fp is completely described by γ, we identify z := γ and use the dissipation potential

δ(γ̇) = κ|γ̇|,
where κ > 0 represents the resistance to the slip.

This corresponds to the dissipation distance

D(γ1, γ2) =
∫

Ω

κ|γ1(x) − γ2(x)|dx.

An extension to multi-slip, described by several glide directions {ai} and slip-plane normals {bi}, 1 ≤ i ≤
N , would be feasible, cf. [40].

As a last remark, note that our stored energy W could also depend on F−1
e , cf. [5].
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