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Abstract 

 
One starting point to reduce harmful greenhouse 

gas emissions is driving behavior. Previous studies 

have already shown that eco-feedback leads to re-

duced fuel consumption. However, less has been done 

to investigate how driving behavior is affected by eco-

feedback. Yet, understanding driving behavior is im-

portant to target personalized recommendations to-

wards reduced fuel consumption. In this paper, we 

investigate a real-world data set from an IoT-based 

smart vehicle service. We first extract seven distinct 

factors that characterize driving behavior from data of 

5,676 users. Second, we derive initial hypotheses on 

how eco-feedback may affect these factors. Third, we 

test these hypotheses with data of another 495 users 

receiving eco-feedback. Results suggest that eco-

feedback, for instance, reduces hard acceleration 

maneuvers while interestingly speed is not affected. 

Our contribution extends the understanding of meas-

uring driving behavior using IoT-based data. Fur-

thermore, we contribute to a better understanding of 

the effect of eco-feedback on driving behavior. 
 

 

1. Introduction  
 

Rising emissions of greenhouse gases (GHG) such 

as carbon dioxide are accelerating climate change. As 

things stand, the transportation sector produces 23% of 

worldwide GHG emissions [4], a substantial proportion 

of which is produced by road traffic. A reduction in 

GHG may be achieved rather quickly via changes in 

the behavior of drivers [2]. Among others, [7] and [16] 

outline that, in addition to car characteristics, eco-

driving behaviors – such as the maintenance of steady 

speed – reduce fuel consumption. Thus, a change in 

driving behavior has the potential to decrease fuel 

consumption and GHG emissions to increase the 

sustainability of road travel.  

One appropriate tool to reduce fuel consumption is 

the application of eco-feedback. Various research 

projects demonstrated a reduction of fuel consumption 

on average between 1% and 7% when providing eco-

feedback to the driver [e.g., 3, 6, 25, 27]. This means 

that eco-feedback must have an effect on driving 

behavior as driving behavior has a direct impact on 

fuel consumption [7, 16]. Some studies already 

considered how separate driving variables change 

throughout the application of eco-feedback. For 

instance, [19] analyze the effect of eco-feedback on 

fuel consumption, as well as, acceleration, 

deceleration, and average speed. However, research 

indicates that eco-driving strategies could lead to much 

higher fuel savings between 5-30% [26] as compared 

to the fuel savings in eco-feedback studies. Hence, it is 

important to understand how driving behavior changes 

while providing eco-feedback to further develop 

advanced user assistance systems (AUAS) [18] that 

encourage and enable drivers to adopt eco-friendly 

driving strategies [24]. Yet, to date we lack knowledge 

on how driving behavior changes due to eco-feedback. 

A prime reason is the traditional lack of data. Average 

fuel consumption over longer distances and time spans 

can be measured rather easily. However, until recently 

it was practically impossible to obtain detailed data on 

driving maneuvers on scale.  

Nowadays, cars’ built-in sensors and the 

standardized OBD-II interface allow access to rich 

data. Internet-of-Things-(IoT-)based smart vehicle 

services (SVS) collect comprehensive and detailed data 

on vehicle activities and driving behavior, such as 

acceleration, speed, and revolutions per minute (RPM). 
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From this data, we can expect a better understanding of 

the effect of eco-feedback on driving behavior. 

Crucially, the data reflects authentic and unbiased real-

world driving behavior rather than data biased by 

retrospective self-assessments or behavioral change 

due to the awareness of taking part in a research 

project.  

The purpose of our paper is to gain a better 

understanding of the effect of eco-feedback on driving 

behavior by means of IoT-data. For this reason, our 

research method consists of five steps. First, real-world 

driving-data was collected over ten weeks from 5,676 

users of an IoT-based SVS. The users were selected 

randomly from the service‘s customers. We split the 

data into two halves and conduct an exploratory factor 

analysis (EFA) on the first half to derive factors 

characterizing driving behavior (step 2). Subsequently, 

we validated factors for driving behavior by means of a 

confirmatory factor analysis (CFA) on the second half 

(step 3). Thus, each analysis uses data from 2,838 

users. Next, we developed theoretically deduced 

hypotheses on the effect of eco-feedback on our factors 

of driving behavior (step 4). To test these, we collected 

real-world driving data from another 495 users who are 

both customers of the IoT-based service and customers 

of an insurance company and therefore qualified for 

the eco-feedback feature newly introduced by the two 

companies together. After the first four weeks, the eco-

feedback was launched in order to provide eco-

feedback to the user group via the use of a mobile app 

(an integral part of the IoT-based service). 

Subsequently, we recorded the driving data for another 

six weeks. Using hypothesis tests, we derive first 

insights about the effect of eco-feedback on driving 

behavior (step 5). 

Therefore, the remainder of this paper is structured 

as follows: Section 2 discusses the theoretical 

background. Section 3 elaborates on our methodology, 

data set, and the study design. Section 4 presents the 

results of the factor analyses. Subsequently, we derive 

initial hypotheses and gain first insights. Section 5 

discusses our findings. 

 

2. Theoretical background 
 

2.1. (Eco-)driving behavior 
 

Driving behavior has two fundamental aspects. The 

first of these is strategic driving behavior, also referred 

to as travel behavior. It includes, among other things, 

the chosen route and trip goals such as minimizing 

time or costs but also the choice of transportation mode 

[3, 20]. The second aspect of driving behavior is 

execution-related. It encompasses both tactical and 

operational driving behavior, and how driver attitudes 

are reflected in either calm or aggressive driving 

behavior [20, 21]. Studies have found that calm driving 

behavior is characterized by a low gear-shifting 

frequency, slow acceleration, and driving speeds not 

exceeding the legal limit. Aggressive driving,on the 

other hand, involves a higher tendency to shift gears, 

hard acceleration, and speeds above the legal speed 

limit [21]. The existing literature investigates the effect 

of these fundamental aspects of driving behavior on 

fuel consumption. [7] conducted a factor analysis 

based on 62 driving parameters to enlarge the rather 

general aspects of driving behavior. According to her 

results, 16 different and independent factors describe 

driving behavior. Of these, moderate and hard 

acceleration, a strong speed oscillation, many stops 

during a trip and late gear changes from gear 2 to 3 

increase fuel consumption. On the other side, 

deceleration, driving speed between 50 and 90 km/h, 

moderate engine speed at gears 2 and 3 as well as low 

engine speed at gears 4 and 5 decrease fuel 

consumption. These results are also consistent with the 

results of [16]. The driven distance, hard acceleration, 

and a higher average speed increase fuel consumption 

per kilometer driven. Moreover, results show a higher 

fuel consumption for hard deceleration and if one 

considers the number of stops and the idle time during 

a trip separately [16].  

Hence, it is important to achieve eco-driving 

behavior to reduce fuel consumption and thus 

contribute to the fight against rising GHG emissions.  

 

2.2. The influence of feedback on fuel 

consumption 
 

Previous research suggests that a person’s behavior 

can be improved by providing feedback [8]. Feedback 

is a “communications process in which some sender 

[…] conveys a message to a recipient […] [that] 

comprises information about the recipient.” [13]. 

According to the feedback intervention theory, this 

information enables the creation of a gap between a 

person’s behavior and some standard or individual 

goal. Resulting in a person’s desire to reduce this gap. 

To close this gap, feedback can vary from a high-level 

to a detailed one [14]. First, feedback can draw a 

person’s attention to a specific problem and thus 

encourage to consider the ways in which a person’s 

behavior may contribute [8]. In this case, feedback 

rather shows the high-level consequences of one’s 

actions [14]. One example is the environmental 

damage caused by high fuel consumption. Second, 

feedback can raise people’s awareness of the relevance 

of their own behavior. Likewise, it can increase 

people’s understandings of the consequences of 

behavioral change. In this way, feedback makes clear 
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the links between the actions of individuals and the 

problem at hand, for example by explaining the 

increases and decreases in fuel consumption that result 

from specific actions [8]. In this form, feedback offers 

a detailed description of the necessary actions to 

change a person’s behavior [14]. Lastly, feedback can 

provide additional motivation for behavioral change 

[8]. For example, feedback may foster a competitive 

environment, which provokes an improvement in a 

person’s behavior due to the gap between one’s own 

behavior and that of others [14].  

Various studies have already investigated the effect 

of eco-feedback on fuel consumption. Eco-feedback is 

likely to improve rather strategic driving behavior such 

as reducing car usage and therefore annual mileage at 

all. For instance, [11] find a positive effect when 

providing eco-feedback on environmental and financial 

savings (CO2 and money) to a group of students while 

they do not use their cars. 

Also, eco-feedback improves rather execution-

related driving behavior and, therefore, contributes to 

decreasing fuel consumption per driven kilometer. As 

early as 1989, feedback along with other information 

as well as task assignment and control were considered 

as influencing factors to reduce one’s energy 

consumption [25]. As one of the first researches, the 

study mainly concentrated on mail-van drivers of the 

Netherlands Postal and Telecommunication Services. 

To provide these drivers with feedback about their fuel 

consumption, they used a simple notice on a bulletin 

board in the drivers’ canteen. According to their 

results, fuel savings of 7.3% were achieved [25]. 

However, the reduction in fuel consumption could not 

be attributed exclusively to feedback. To address this 

issue, [29] conducted an experiment in a driving 

simulator. Within the simulated environment, the 

system provided the subjects with their individual fuel 

consumption based on their actual driving behavior. 

Their results also show a 7% reduction in fuel 

consumption [29].  

With the spread of digital technologies, also the 

presentation of the feedback has changed. 

Technological progress allows to better investigate the 

influence of feedback directly in real-world 

applications. To collect the necessary data, the OBD-II 

interface of the car may be accessed during a trip. The 

feedback is then displayed using an eco-driving device 

[3]. The results for the 23 selected participants of the 

study [3] show a decrease of 6% while driving in the 

city and 1% for highway driving. A similar approach 

was conducted by [27] using a smartphone application 

to present feedback to 50 corporate drivers. They find 

an improvement in fuel efficiency of 3% and explain 

the smaller effect compared to previous studies with 

the real-world scenario in which the data was collected 

as well as with the absence of any incentive to the 

drivers [27]. [15] support the results of [27] as they 

find a similar reduction in fuel consumption in a real-

world scenario. However, all of the participants in [15] 

were motivated by monetary incentives. Since the 

results of [27] and [15] are quite similar but differ in 

the provision of incentives, incentives are not the main 

reason for the smaller impact of feedback, which is in 

line with the findings of [6]. 

 

2.3. The influence of feedback on driving 

behavior 
 

Feedback must have an effect on one’s driving 

behavior that leads to a decrease in fuel consumption 

[7, 16]. However, little has been done to understand the 

effect of eco-feedback on driving behavior. 

Given the reduction of fuel consumption upon eco-

feedback, it can be assumed that drivers change some 

aspects of their driving behavior based on eco-

feedback. However, it seems that optimal driving 

strategies can save more fuel than the results of the 

eco-feedback studies show [cf. 3, 26, 27]. 

An explanation is that the effect of eco-feedback 

does not sufficiently address all factors of driving 

behavior. For instance, [19] show that eco-feedback on 

fuel consumption and CO2 emissions reduces fast 

driving and favors slow driving. [28] provide rather 

behavior-specific feedback on uneconomical power 

demands of the engine. Their aim is to reduce 

acceleration and early upshifting. Results show 

successful improvements in relation to these two 

driving factors. [11] provide feedback on car usage and 

achieve significant reductions in annual mileage.  

Summarizing, eco-driving has an impact on fuel 

consumption and thus GHG emissions. Numerous 

scientific studies have shown that feedback is a 

possible approach to motivating ecological driving 

behavior and thereby saving fuel. However, there is a 

lack of research investigating which factors from data 

of an IoT-based SVS describe driving behavior and 

how these are affected by eco-feedback. 

 

3. Method 
 

3.1. Design of the eco-feedback 
 

In addition to our study design (as stated in the 

introduction), the SVS provides eco-feedback to 495 

drivers, delivered via a mobile app. At the end of each 

trip, an eco-score between 0 and 100% is calculated 

and sent to the participant’s mobile device. The total 

score is composed of four separate scores, each ranging 

from 0 to 25, together adding up to a maximum of 100. 
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The four scores reflect: average acceleration in 

comparison to other users of the IoT-service; average 

deceleration in comparison to other users of the IoT-

service; trip length (short journeys (<5 km) by car are 

classified as less environmentally friendly); and the 

proportion of the trip driven at speeds in excess of 

130 km/h (which is a reasonable threshold in Germany, 

as there is no general speed limit). Participants receive 

a push notification at the end of each trip (Figure 1, 

bottom) with the score and some details about length, 

duration, speed, and acceleration of the completed trip. 

In addition, participants are able to view their latest 

score, as well as the average score, when they open the 

mobile app (Figure 1, top).  

 

3.2. Variables in the data sets 
 

The service records driving data via the on-board 

diagnostic interface (OBD-II). Recording data enables 

the service to offer its users insights into their cars 

(e.g., battery level, location of the car), and location-

based services (e.g. discounts at selected petrol 

stations), via their mobile devices. Since our data was 

recorded before the inception of this study, users were 

not aware of their inclusion and thus our results are 

unbiased. To preserve privacy, and in accordance with 

the service’s privacy policy, we do not know the 

identities of users, nor do we have access to any 

location data. All included users have agreed to the 

anonymous use of their data in advance by accepting 

the privacy policy of the IoT-based SVS. From the 

SVS, we draw the following available data for each 

short stretch of way of each trip: speed (in km/h), 

acceleration, deceleration (both in g), revolutions per 

minute, driving time, standing time (both in seconds), 

driven distance (in meter), throttle (in degree), and 

engine coolant temperature (in °C). 

Unfortunately, the service does not record which 

gears are engaged. Instead, we use the RPM as an 

approximation of the gear-shifting behavior. The 

variables for acceleration and deceleration exhibit 

outliers. Some observations exceed or fall below 

plausible values and, thus, are capped. We computed 

the 99%-quantile for acceleration and deceleration and 

capped observations to eliminate outliers. As the 

sensing device delivers data continuously, there was no 

need to handle missing data. Following this data 

cleansing, we aggregated the single values of each 

variable for a whole week in order to enable a 

meaningful comparison of a person’s driving behavior 

in regular time intervals. Thus, the aggregation reduces 

inaccuracies, which may result for instance from 

differences in driving behavior on working and leisure 

days, as well as effects of chance. The aggregation is 

done by computing several of the following summary 

statistics: minimum, maximum, sum, average, 

variance, and 95%-quantile.  

 

4. Results 
 

4.1. Identification of factors characterizing 

driving behavior 
 

To assess the effect of feedback on driving 

behavior, we need to clarify the measurable factors of 

driving behavior in our IoT data. Consequently, we 

conduct an EFA on the driving data of 2,838 drivers in 

R [22]. In total, the data comprises of 36 variables 

describing the driving behavior (different weekly 

aggregations of the aforementioned variables). 35 

variables fulfill the Kaiser-Meyer-Olkin criterion with 

a measure of sampling adequacy (MSA) above 0.5 and 

thus are further analyzed. Overall the MSA is 0.79 

which indicates the data is suitable for conducting an 

EFA. Same applies to Bartlett’s test of homogeneity 

which is significant (p-value < 0.001). A parallel 

analysis [12] initially suggests ten factors. After 

oblimin rotation, we excluded items with a major 

loading below 0.4. As a result, one variable (average 

engine coolant temperature) is dropped. Furthermore, 

no item substantially loads on the tenth factor which is 

then removed from the analysis. Rerunning the factor 

analysis with nine factors results in the loadings 

displayed in Table 1. Factor nine is a subset of factor 

four and due to the higher loadings and eigenvalue of 

factor four ignored. The result of the EFA are eight 

factors which describe aspects of strategic and 

operational driving behavior. 

 
Figure 1. Visualization of the eco-score in the app 

(top) and as push notification (bottom); (translated) 

To ensure our results will be useful, we need to be 

able to interpret our factors. If a single factor cannot be 

interpreted, the usefulness of the results is limited. In 

the following, we describe the eight factors identified, 

which serve as our understanding of driving behavior. 
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The first factor can be interpreted as “acceleration 

behavior”. It includes the average, maximum, 95%-

quantile, and variance of acceleration and deceleration. 

The second factor is the “total driving per week” 

composed of the total distance, time in the car, and the 

number of trips per week. The third factor can be 

interpreted as the “speed behavior” encompassing the 

average and maximum speed as well as the variance of 

speed. The fourth factor is related to the first factor 

“acceleration behavior” with the difference that it 

covers the number and frequency of extreme events of 

acceleration or deceleration. The factor can be 

interpreted as “extreme acceleration behavior”. The 

thresholds for those events are defined by the SVS 

provider. The fifth factor reflects the “average driving 

per week” in the sense of average trip distance and 

average trip duration. The sixth factor can be 

interpreted as “minimum driving per week” which 

reflects the shortest trip distance and duration per 

week. The seventh factor is “RPM behavior” 

consisting of the average, maximum, and variation of 

the RPM of the engine. Last is the “throttle behavior”, 

reflected by average, maximum, and variation of the 

throttle position. 

Most factors include at least one loading greater 

than 0.7 but one, the throttle factor, has two indicators 

slightly missing that threshold. These eight factors 

cover 66% of the variance in the data (cf. Table 2). 

Cronbach’s alpha for our factors is mostly excellent. 

Only the throttle factor does not reach 0.7 and, thus, is 

removed for further analysis.  

For some factors like RPM, it might appear 

straightforward that average, maximum and variance 

are highly correlated, although technically this is not 

necessarily the case but a result. For other factors, the 

structure is less straightforward; examples are the 

combination of acceleration and deceleration in the 

first factor but the separation of factor one and four. 

Overall, our factor model seems to be consistent 

with the factors identified by [7]. However, due to 

different availability of data, our factor model 

encompasses three factors of strategic driving behavior 

(total, average and minimum driving per week) and 

four factors related to operational driving behavior 

(acceleration, extreme acceleration, speed, and RPM 

behavior), while [7]’s factor model solely consists of 

factors related to operational driving behavior, 

therefore our factor model is more comprehensive. 

 

4.2. Validation of factors characterizing 

driving behavior 
 

Following the development of our model for 

driving behavior, we validate our factors for driving 

behavior by applying a CFA on an independent data set 

from the SVS provider. The data set results from a new 

set of 2,838 users. The CFA shows good values (>0.7) 

in terms of Cronbach’s Alpha (Cα) for all seven 

factors. Values of 0.6 regarding the composite 

reliability (CR) and 0.5 for average variance extracted 

(AVE) can be seen as good measurement quality [1]. 

All seven factors did meet these thresholds. 

We check the discriminant validity for the seven 

factors by using the Fornell-Larcker criterion that a 

factor’s AVE should be higher than its squared 

correlation with every other factor [9]. Table 3 

summarizes the results. We can assume discriminant 

validity for all seven factors of driving behavior.  

In summary, we can state that we have found – 

based on the data provided by a SVS provider – a valid 

factor structure for assessing driving behavior. 

 

4.3. Developing hypotheses for driving 

behavior affected by feedback 
 

Having identified seven factors which describe 

driving behavior on the basis of our IoT-data set, in the 

following, we introduce hypotheses how the eco-

feedback could affect driving behavior. 

[19] find evidence that both acceleration and 

deceleration are likely to improve if drivers receive 

eco-feedback on their driving behavior. Especially 

forceful acceleration increases fuel consumption and is 

therefore likely to be decreased by knowledgeable and 

eco-conscious drivers [7, 16]. Deceleration, in contrast, 

has no direct impact on fuel consumption but causes 

acceleration back up to speed [16]. Furthermore, the 

eco-feedback of the IoT-based SVS punishes hard 

acceleration and deceleration by a deterioration of the 

eco-score. The driver, in addition, receives the number 

of hard acceleration and deceleration events in the trip 

summary. Thus, we assume that acceleration and 

deceleration will improve when providing feedback to 

the driver, which are reflected in two factors. 

H1(a) Providing eco-feedback decreases the factor 

“acceleration behavior” (b) Providing eco-feedback 

decreases the factor “extreme acceleration behavior” 

In addition to changes in acceleration and 

deceleration behavior, [19] also find evidence that eco-

feedback reduces speed behavior. Speed impacts fuel 

consumption resulting in fuel savings especially when 

driving at moderate speed (between 50 and 70 km/h) 

[7, 16]. Accordingly, we assume that our feedback has 

a reducing effect on speed. 

H2: Providing eco-feedback decreases the factor 

“speed behavior”  

Another factor of driving behavior from our factor 

analysis is the RPM which relates to speed and gears 

engaged. Eco-friendly driving requires early upshifts 

and therefore low RPM [24]. However, the eco-
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feedback of the IoT-based SVS does not address either 

the RPM or the shifting behavior. Total driving per 

week is significantly influenced by feedback which 

supports H5. However, the magnitude of the effect 

seems to be negligible. Nevertheless, we observe that, 

for example, the number of trips per week decreases by 

0.54 trips per user of the IoT-based SVS. 

Table 1. Rotated factor matrix from EFA (with loadings ≥ 0.4) 

Note:  Factors can be named as follows: (1) acceleration behavior, (2) total driving per week, (3) speed behavior, 
(4) extreme acceleration behavior, (5) average driving per week, (6) minimum driving per week, (7) RPM behavior,  

(8) throttle behavior, (9) disregarded as subset of factor (4) 

Original Parameter 

Factor 

1 2 3 4 5 6 7 8 9 

Average Acceleration 0.73 
        

Maximum Acceleration 0.84 
        

95%-Quantile Acceleration 0.76 
        

Variance Acceleration 0.75 
        

Average Deceleration 0.79 
        

Maximum Deceleration 0.89 
        

95%-Quantile Deceleration 0.89 
        

Variance Deceleration 0.89 
        

# Trips 
 

0.85 
  

-0.43 
    

Sum Distance 
 

0.64 
       

Sum Duration 
 

0.91 
       

Sum Driving Duration 
 

0.83 
       

Sum Standing Duration 
 

0.93 
       

# Long Stops (>3m) 
 

0.69 
       

# Stops 
 

0.51 
       

Average Speed of Trip Averages 
  

0.94 
      

Average Speed 
  

0.64 
      

Average Speed when Driving 
  

0.93 
      

Maximum Speed 
  

0.70 
      

Variance Speed 
  

0.70 
      

# Hard Accelerations 
   

0.75 
     

Hard Accelerations per KM 
   

0.85 
     

# Hard Decelerations 
   

0.47 
    

0.45 

Hard Decelerations per KM 
   

0.53 
    

0.47 

Average Trip Distance 
    

0.70 
    

Average Trip Duration 
    

0.86 
    

Minimum Trip Distance 
     

0.90 
   

Minimum Trip Duration 
     

0.92 
   

Average RPM 
      

0.66 
  

Maximum RPM 
      

0.85 
  

Variance RPM 
      

0.68 
  

Average Throttle 
       

0.68 
 

Maximum Throttle 
       

0.67 
 

Variance Throttle 
       

0.55 
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Table 2. Descriptive statistics of factors in EFA 
Note: Factor numbering as in Table 1, Cronbach’s Alpha should be >0.7 

Statistics 

Factor 

1 2 3 4 5 6 7 8 9 

Proportion Variance 0.16 0.13 0.11 0.06 0.05 0.05 0.05 0.04 0.02 

Cumulative Variance 0.16 0.29 0.41 0.47 0.52 0.57 0.62 0.66 0.68 

Cronbach’s Alpha 0.96 0.91 0.91 0.83 0.97 0.91 0.75 0.51 - 

Table 3. Descriptive statistics of CFA 

Note: Factor numbering as in Table 1 
For Fornell-Larcker criterion, diagonal elements represent AVE and off-diagonal elements correlations 

Good measurement quality if: Cronbach’s Alpha >0.7, Composite-reliability >0.6, AVE >0.5, and Fornell-
Larcker criterion met, i.e., AVE is higher than the squared correlation with any other factor 

 

 

Factor 

  Fornell-Larcker criterion 

Cα CR (1)  (4) (3) (7) (6) (5) (2) 

(1) acceleration behavior 0.96 0.96 0.77 
      

(4) 
extreme acceleration  

behavior 
0.79 0.90 0.47 0.82 

     

(3) speed behavior 0.91 0.84 -0.14 -0.04 0.53 
    

(7) RPM behavior 0.91 0.92 0.11 0.12 0.24 0.79 
   

(6) minimum driving per week 0.95 0.98 -0.06 -0.03 0.29 -0.05 0.95 
  

(5) average driving per week 0.97 0.98 -0.29 -0.04 0.67 0.11 0.42 0.97 
 

(2) total driving per week 0.90 0.93 -0.12 0.11 0.18 0.13 -0.15 0.37 0.74 
 

For this reason, we assume that this factor will not 

change, although an eco-friendly strategy would 

require low RPM. 

H3: Providing eco-feedback does not affect the 

factor “RPM behavior” 

Eco-feedback can address driving behavior on a 

rather strategic level as well. [11] uses eco-feedback 

successfully to reduce the number of rides and 

therefore the overall mileage. The study reflects to the 

participants what environmental (CO2) and financial 

savings have been achieved by not using the car. 

Eco-feedback from the IoT-based SVS reduces the 

eco-score when the vehicle is used for short distances, 

reflecting non-ecological use. Accordingly, we expect 

that short distances are avoided and, therefore, the 

remaining trips become longer on average. 

H4(a) Providing eco-feedback increases the factor 

“minimum driving per week” and (b) increases the 

factor “average driving per week” 

The last factor of driving behavior in our study is 

the factor "total driving per week". We assume that the 

distance covered decreases because short distances are 

avoided (see H4a, H4b). In addition, the eco-feedback 

could create awareness for every trip taken [11]. Thus, 

we hypothesize that users may leave their car and use 

alternative means of transport leading to less overall 

driving per week. 

H5: Providing eco-feedback decreases the factor 

“total driving per week”  

 

4.4. Analysis of the effect of eco-feedback  
 

Finally, to assess the effect eco-feedback has on 

driving behavior we conduct our analysis on a third 

data set consisting of 495 drivers. For every driver, we 

have baseline driving data of four weeks. The eco-

feedback was launched during week 5. To ensure the 

baseline and the treatment phase are not mixed, this 

week is removed from the data set. Following the 

launch of the eco-feedback, the data set comprises of 

six weeks of data per driver. As not every car was used 

every week, the baseline record per driver is 3.79 

weeks and 5.37 weeks for the treatment phase on 

average. Based on the factors we identified, we 

calculate the factors of driving behavior per week 

perdriver. We assess the effect of whether and in which 

direction feedback influences driving behavior based 

on the aggregated driving factors. Consequently, the 

factor scores per driver are averaged before and after 

the start of the feedback. First, we check whether the 

aggregated factor scores are normally distributed to 
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choose the appropriate test. Consequently, we perform 

the Shapiro-Wilk test of normality. 

The results suggest that factor scores are not 

normally distributed across the drivers. As a 

consequence, we compare the factor scores before and 

after the launch of the feedback applying the Wilcoxon 

signed-rank test. For H3 where we assume no effect, 

we perform a two-sided test. For all other hypotheses, 

we perform one-sided tests. In addition, we check not 

only the presence and direction of an effect but also the 

effect size (Cohen’s d). The effect size is calculated by 

subtracting the mean of the experimental group (here: 

after application of eco-feedback) from the mean of the 

control group (here: before the application of the eco-

feedback) and dividing the difference by the standard 

deviation of the data. Thus, a negative value of 

Cohen’s d indicates a decrease in the respective factor 

due to the display of feedback. A positive value vice 

versa indicates an increase in the factor score. An 

absolute value of the effect size of 0.2 is termed a 

“small effect“ [5].The results of the Wilcoxon signed-

rank test and the effect size are depicted in Table 4. 

Our data supports H1a and H1b. We conclude that 

in terms of acceleration behavior as well as extreme 

acceleration behavior, feedback does have a desired, 

significant, and meaningful (small) effect. Drivers 

seem to accelerate and decelerate more carefully.  

In terms of speed and RPM, we find no significant 

effects of the eco-feedback. Consequently, we reject 

H2 whereas H3 is supported. However, while the 

average speed slightly increases from 31.51 km/h to 

31.76 km/h the average maximum speed slightly 

decreases from 135.51 km/h to 134.69 km/h, which 

appears to be favorable as especially high speeds cause 

higher fuel consumption. 

The factors for minimum and average driving per 

week are significantly influenced by the application of 

the eco-feedback in that the minimum and average trip 

length and duration increase. This supports H4a and 

H4b. It seems as if our assumption was correct that 

short distances are avoided and thus the average trip 

becomes longer. Both the minimal trip distance and the 

average distance per trip increase from 459 m to 606 m 

and 11.24 km to 12.02 km respectively. Considering 

the effect size, the effect is statistically significant but 

not substantial for both factors. 

Table 4. Summary of effect of eco-feedback (FB) on driving behavior 
Note: *** p-value <0.1%, ** p-value <1%, * p-value <5% 

Factor 

p-value of Wilcoxon 

signed-rank test 
effect size Hypothesis Result 

(1) acceleration behavior <0.001 ***  -0.19 H1a: Decrease through FB Support 

(4) 
extreme acceleration 

behavior 
<0.001 ***  -0.18 H1b: Decrease through FB Support 

(3) speed behavior 0.949   0.06 H2: Decrease through FB Reject 

(7) RPM behavior 0.203   -0.03 H3: No effect through FB Support 

(6) 
minimum driving per 

week 
0.016 *  0.07 H4a: Increase through FB Support 

(5) 
average driving per 

week 
0.015 *  0.12 H4b: Increase through FB Support 

(2) total driving per week 0.025 *  -0.07 H5: Decrease through FB Support 
 

5. Discussion and conclusion 
 

In this study, we derive seven factors from data of 

an IoT-based SVS, which describe strategic and 

operational driving behavior. Furthermore, we 

investigate how eco-feedback impacts driving 

behavior. We show which aspects of driving behavior 

are positively influenced due to the application of eco-

feedback in a real-world scenario.  

A strength of our study is the large real-world data 

set exceeding previous studies, arguably leading to 

more generalizable results. In addition, our data is not 

biased by the Hawthorne effect [23], as participants did 

not know their driving behavior was investigated in the 

context of the eco-feedback. We, thus, can assume the 

observed effects are due to the intrinsic motivation of 

the participants and not due to the fact that they were 

asked to participate in a study. Even if the measured 

effects are only small or almost negligible, if the lever 

is big enough these effects still can make an important 

impact. With regards to climate change, almost any 

effort is important and even small steps can contribute 

to making transportation more sustainable. 

The theoretical contribution of this paper is a 

comprehensive factor model explaining driving 

behavior on a strategic and operational level. In 

comparison to [7], the variables underlying our factor 

model do not need additional specific data collection 

equipment as the respective data can be obtained via 
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the OBD-II-interface and, thus, is widely applicable 

especially as IoT-solutions push into the market for 

additional driving features. Further, we have shed light 

on how drivers adjust their driving behavior based on 

eco-feedback which reflects how drivers expect to 

drive more sustainably. While we observe the strongest 

effects with regards to operational driving behavior 

(acceleration behavior and extreme acceleration 

behavior), the effects on strategic driving behavior 

(average, minimum and total driving per week) seem to 

be smaller and, thus, eco-feedback seems to be less 

effective with regards to this concern. Conclusively, 

eco-feedback alone may not be sufficient to grasp the 

full potential for more eco-friendly driving. For 

example, AUAS [18] may supplement feedback with 

other approaches like goal-setting, rewards [10], or 

personalized recommendations [28] to improve 

previously unaddressed behavior along the path 

towards autonomous vehicles. 

Besides the theoretical contribution, this work 

offers managerial implications. Our findings are 

relevant with regards to designing future feedback 

systems in the automotive sector. We derive first 

insights which allow car manufacturers, insurance 

companies, as well as third-party applications to tailor 

feedback to make it more effective. Practitioners and 

researchers may build on our findings to gain a better 

understanding of how to design AUAS [18] to reduce 

the emission of greenhouse gases. In doing so, 

information systems can contribute to a more 

sustainable lifestyle and help to reduce harmful 

greenhouse gas emissions. Moreover, lower 

greenhouse gas emissions result from reduced fuel 

consumption which leads to lower costs. Thus, 

feedback may help companies, especially logistics 

companies, to save money as their daily business 

consists of many vehicles and drivers. Further, eco-

friendly driving tends to go along with safe driving 

which is the reason why a car insurance company 

sponsored the development of the eco-feedback 

functionality in the IoT-service. Hence, the benefits of 

IoT-based eco-feedback may go beyond the positive 

effect on environmental sustainability. 

Despite the rigor of our study, our findings are 

subject to some limitations. We provided the eco-

feedback only within a mobile app. We could not 

ensure that all participants regularly checked their eco-

feedback or truly received the push notifications. 

Furthermore, we cannot be certain that the cars 

involved in the study were driven only by our 

participants. Thus, the presumed effects of eco-

feedback on driving behavior might, in fact, be 

stronger when the feedback would be more salient in 

the car. Our data setis limited by the variables that the 

SVS has chosen to measure and disclose to us. As a 

consequence, our factor model does lack certain 

variables which are not measured or disclosed by the 

SVS provider, like gear-shifting, type of road or the 

actual fuel consumption. Additional variables could 

enhance the factor model and further investigate and 

improve the effectiveness of feedback. Our sample was 

restricted to customers of the service, which implies a 

limitation to Germany and possibly a self-selection 

bias as customers are presumably more interested in 

vehicles and potentially care about their driving style. 

We only considered the effect of eco-feedback in the 

short term as our data set only contains information 

about the variables for ten weeks in total. Finally, the 

analysis of the effect of eco-feedback does not include 

a control group and, thus, might be affected by 

unmeasured or uncontrolled external conditions, i.e. 

changes in weather between the period prior and after 

the launch of the eco-feedback. We are in the process 

of obtaining data for a control group. Nevertheless, the 

findings offer promising first insights and provide a 

starting point for future research. 

Based on our factor model, more sophisticated 

analyses are conceivable, which could consider that, 

for example, speed or RPM are no linear function in 

terms of fuel consumption and the effectiveness of 

feedback. However, not only the analysis could be 

extended, but also the model itself. Hence, the 

measurement of additional variables could describe 

driving behavior in more detail. In addition, future 

workcould focus on specific groups of drivers, selected 

on the basis of either similar driving behavior or 

personal factors. Personal factors could be of relevance 

in this field as Lewin’s equation states that behavior – 

here driving behavior – is a function of the 

environment (here: among other influences, the 

provided feedback) and the person, respectively 

personal factors, which are not investigated in this 

study [17]. This will allow further investigations into 

the effects of eco-feedback on specific sub-groups and 

will, thus, enable more customized and effective 

feedback in a real-world setting. In addition, driving 

patterns could be used to evaluate different types of 

feedback in order to increase impact, as the feedback 

applied in our study presumably influenced 

participants with environmental awareness. Finally, 

future research might investigate whether a person’s 

(operational) driving behavior is unique – like a 

fingerprint – and, if so, whether it may, for example, be 

used to prevent insurance fraud. 

In summary, we believe that data from IoT-based 

SVSs offer a promising opportunity to better 

understand the effect of feedback and to make 

feedback and AUAS even more efficient. 
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