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n aging population is increasingly prevalent in both devel-
oped and developing countries, raising a series of social 
challenges and economic burdens. In particular, more el-

derly people are staying alone at home than are living with 
people who can take care of them. Therefore, assisted living 
(AL) and health-care monitoring (HM) can be critical issues 
in this era of human-centered artificial intelligence (AI). In 
this context, we aim to provide an encompassing review sum-
marizing the state-of-the-art works combining AI and the In-
ternet of Things (IoT) to help the elderly live easier and better. 
We systematically and comprehensively compare paradigms 
in terms of methodologies and application scenarios. The pros 
and cons among these technologies are discussed in detail. 
Then, we summarize current achievements and indicate their 
limitations. Finally, perspectives on highly promising future 
work are presented.

Overview
According to a report [1] by the World Health Organization, 
an aging population has become more and more prevalent in 
both developed and developing countries. Taking Japan as 
an example, approximately 27.6% of the citizens are already 
65 or older [2], which makes the whole society face a se-
ries of economic burdens and social challenges. In this era 
of human-centered AI (HAI), we have witnessed tremendous 
efforts in the fields of AL and health monitoring that have 
been made by leveraging the power of AI and the IoT, which 
can be referred to by the acronym AIoT by combining the two 
crucial factors in the fourth Industrial Revolution. We can 
see promising achievements using ubiquitous sensors com-
bined with state-of-the-art signal processing (SP) and ma-
chine learning (ML) techniques. Together, they can facilitate 
an easier, higher-quality life for individuals who suffer from 
chronic diseases and need special assistance. In particular, 
the elderly constitute a large market in our societies. To the 
assist the global fight against COVID-19, the AIoT can con-
tribute solutions for eldercare by fully mining smart home 
sensor data.

Artificial Intelligence Internet of Things for the Elderly
From assisted living to health-care monitoring
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An overview of AIoT studies related to eldercare can 
be found in Figure 1. The fundamental motivation should 
come from scenarios in the daily life of the elderly, e.g., falls 
and activity recognition. Then, the data 
modality that can be best used for a spe-
cific scenario will be considered. Finally, 
the IoT and ML/deep learning (DL) can 
enable intelligent systems. When reading 
the literature about AIoT applications for 
the elderly, we may find that there are two 
main directions, i.e., AL and HM. Analyz-
ing the elderly’s daily activities and pro-
viding proactive care are essential factors 
for applications in AL, while monitoring the health status 
and predicting the future health conditions of the elderly who 
are suffering from chronic diseases are the key challenges 
for HM studies.

On the one hand, we have witnessed the great success 
achieved in the information and communications technol-
ogy (ICT) field, e.g., 5G, the IoT, AI, big data, and cloud 

computing. On the other hand, the AIoT 
for the elderly is still a young field and 
underestimated. In particular, considering 
the specific demands of older individuals, 
we are still far from building a smart soci-
ety and smart homes for our parents and 
even for ourselves. For instance, fall detec-
tion (FD) is an essential topic in AL care 
for the elderly who live independently. A 
plethora of efforts has been made to dis-

cover efficient modalities and methods. Yet, the state of play 
remains limited to presenting a robust paradigm that can 
be applied in the real world. Moreover, daily life behavior 
analysis is believed to be useful in activity recognition for 
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FIGURE 1. An overview of the AIoT for the elderly. DL: deep learning; RFID: radio-frequency identification. 
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applications such as feasible alarm systems for emergency 
treatment. Nevertheless, how to protect personal privacy and 
maintain a long-term, low-energy, ubiquitous system is chal-
lenging. Last but not least, much more attention has been 
given to physical rather than mental health care for the elder-
ly. In fact, we cannot fully determine the elderly’s potential 
psychiatric issues.

While there are some previous surveys of ICT applications 
for the elderly, they fail to focus on a comprehensive investiga-
tion of SP and ML techniques in their corresponding fields, nor 
do they provide insights into and perspectives of the state-of-
the-art works in the AIoT for dealing with the aging popula-
tion challenge. For example, a recent survey 
introduced dense sensing network-based 
anomaly detection [1], presenting a detailed 
description of technologies used in home-
based eldercare. However, this topic is only 
a subfield of general AIoT applications for 
the elderly, which limits the readership and 
the larger picture. Another work focused on 
smart homes for aging in place [2], giving a good summary of 
diverse application drivers but lacking an in-depth analysis of 
SP and ML techniques for mining sensor data. Unlike previous 
surveys, we focus on a comprehensive investigation of SP and 
ML methods applied to the AIoT for the elderly in terms of 
methodologies and scenarios. We also aim to provide a clear 
picture of state-of-the-art works and their limitations. As guid-
ance and a tutorial, perspectives of future work will be includ-
ed. Figure 2 describes the article content.

Modalities and scenarios
In this section, we illustrate the main data modalities and their 
applied scenarios for the elderly.

Data modalities
A variety of data modalities has been used for AL and HM 
applications for the elderly. Generally speaking, the data can 
be categorized as wearable and nonwearable. In this study, 
we summarize the main modalities used in the AIoT for the 

elderly according to their signal characteristics, which include, 
but should not be limited to, the following.

Audio
Audio data and related computer audition (CA) technology in-
herently have a noninvasive and ubiquitous character, so they 
can be widely used for in- and out-of-home surveillance-based 
applications in the eldercare field. As an example, Li et al. pro-
posed an acoustic system that can automatically detect falls 
and promptly report accidents to caregivers [3]. In the study, 
a circular microphone array was used to capture the spatial 
information of sound signals, which can be employed to locate 

the near-field source signal via a steered 
response power technique and enhance the 
signal through a suitable beamforming (BF) 
method. Furthermore, a simple ML model, 
namely the k-nearest neighbor (k-NN), 
where k = 1, was used to classify the sig-
nals by extracting the mel scale frequency 
cepstral coefficients (MFCCs). Apart from 

passive sound data, speech can be regarded as an important in-
formation carrier to reflect the physical and mental health sta-
tus of the elderly. In the Conference of the International Speech 
Communication Association Computational Paralinguistics 
Challenge (COMPARE) series, speech is, for example, used to 
estimate the neurological state of Parkinson’s patients (in a re-
gression task) [4] and classify the emotion of elderly people (in 
a classification task) [5], respectively. For these tasks, classic 
ML models (needing handcrafted features) and DL methods 
(owning high-level representations extracted from DL models) 
can be options.

Video
Computer vision (CV) and its related technologies occupy an 
important position in the AIoT for eldercare applications. Yu 
et al. introduced a CV-based method for FD by analyzing pos-
tures recorded by a single camera [6]. The authors included 
a codebook background subtraction algorithm to improve the 
results. For classification, ellipse fitting and a projection histo-
gram were used to form the feature vectors, and a directed acy-
clic graph (DAG) support vector machine (SVM) was adopted 
as the classifier in a multiple classification scheme (bending, 
lying, sitting, and standing). Alaoui et al. proposed an algo-
rithm to detect falls by extracting spatial and temporal features 
from videos [7]. In this method, the key points and skeletons 
of the human body were first detected. Then, the distances 
and angles between two pairs of sequential points were cal-
culated. Principal component analysis was used to unify the 
feature dimensions. Finally, the authors compared four classic 
ML models, i.e., an SVM, the k-NN, a decision tree (DT), and 
the random forest (RF), in which the SVM outperformed the 
other three.

Another 3D skeleton-based approach for describing the 
spatial and temporal aspects of a human activity sequence 
was introduced in [8]. The Minkowski and cosine distances 
between 3D joints were used to represent the spatial  variation 
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of the activity sequence. Meanwhile, the difference in coor-
dinates for the frame sequence between each 3D joint and 
both the maximum and the minimum values of the same 3D 
joint across the entire sequence were calculated to represent 
temporal variation in the activity sequence. An extremely ran-
domized trees (ERT) algorithm was employed for the clas-
sification step. Chen et al. introduced an activity encoding 
scheme by which a skeleton sequence could be estimated from 
red–green–blue (RGB) images [9]. In the study, the skeleton 
sequence was generated from RGB images via a real-time 
pose estimation algorithm. Then, an interframe matching 
algorithm (IMA) was employed to filter the nontarget objects. 
Data augmentation was involved to enrich 
the small-scale skeleton sequences. Sub-
sequently, activity images were generated 
from the gray matrix encoded from the 
skeleton sequences. Finally, a convolutional 
neural network (CNN) was used to fulfill 
the classification task.

Sensors
The fast development of sensors [3] and wearables makes it 
feasible to collect real-world information in terms of tempera-
ture, humidity, illumination, vibration, and human vital signs 
(heart rate, blood pressure, skin conductance, temperature, 
movement, gait, and so on). Furthermore, by leveraging the 
power of AI, sensor data can play an important role in the AIoT 
eldercare applications market. Khandoker et al. recorded foot 
clearance data when participants walked in a steady state on a 
treadmill [10]. A predefined minimum foot clearance (MFC), 
i.e., the value of the minimum vertical distance between the 
lowest point under the front part of the shoe or foot and the 
ground, was used as the gait variable. Wavelet-based features 
were demonstrated to be superior to statistical ones (both ex-
tracted from the MFC) when training an SVM. In addition, 
the models can also be used to estimate the relative risk of 
falls when calculating the calibrated posterior probabilities of 
the SVM. A comprehensive investigation of fall risk predic-
tion capabilities using two types of wearable sensors (acceler-
ometers and pressure-sensing insoles) was given in [11]. The 
authors also studied four accelerometer locations: the head, 
pelvis, and left and right shanks. In addition, they compared 
three types of ML models: a neural network (NN), an SVM, 
and a naive Bayes (NB) classifier. The NN model using dual-
task gait data and features extracted from head, pelvis, and 
left shank accelerometers yielded the best performance.

Gochoo et al. used data collected from passive infrared 
(PIR) sensors to analyze the elderly’s travel patterns accord-
ing to a Martino–Saltzman model in a nonprivacy-invasive 
scenario [12]. The authors compared their proposed deep 
CNN (DCNN) with NB, SVM, k-NN, DT, gradient boost, 
RF, and one-versus-rest models. The DCNN and the RF were 
found to be the best for inferring dementia through travel 
pattern matching. In addition, the PIR motion sensors and 
door sensors were found to be efficient for monitoring the 
activities of a single elderly woman in a smart home for eight 

months [13]. In  the study, the DCNN showed a capacity to 
extract intrasensor patterns from activity images converted 
from recorded PIR and door sensor data. To detect gait anom-
alies among patients suffering from Parkinson’s disease, a 
deep time series-based approach was introduced in [14]. A 
hybrid architecture with a deep NN, including CNN layers 
as the reduction layer and a recurrent NN (RNN) with long 
short-term memory (LSTM) cells, plus a multilayer percep-
tron (MLP) as the classification layer, was used to analyze the 
acceleration values of the elderly’s movements. Those accel-
erometers were placed in subjects’ shoes, and the temporal 
time series were recorded as the sensor data.

A wrist-type three-axis accelerometer 
(i.e., a wristband) was used in [15]. In the 
study, a two-stage method combining RF 
classification and activity similarity cali-
bration was found to be efficient for improv-
ing the recognition of elderly people’s 
activity at home. Aoki et al. used a Kinect 
sensor to capture the elderly’s whole-body 
movements, which were separated into a 

time series of 3D coordinates of body joints [16]. They used 
Hilbert–Huang transformation (HHT) and an SVM to ana-
lyze gait features recorded from the aforementioned data, 
which can be a good predictor of cognitive impairment among 
elderly individuals. Inertial sensors were used in [17], where 
four sensor locations (chest, lower back, wrist, and thigh) 
were explored (with an SVM) to classify the elderly’s physi-
cal activities. The authors found that the sensor worn on the 
lower back achieved the best performance among the single-
sensor solutions. By adding another sensor on the thigh, 
further improvement could be achieved, although including 
more sensors yielded no better results. Alkhatib et al. studied 
the feasibility of using kinetic data, e.g., the vertical ground 
reaction forces collected from various sensors underneath the 
foot, to analyze the elderly’s gait [18]. It was demonstrated 
that spatial and time signal analysis methods combined with 
a linear discriminant analysis (LDA) classifier can be useful 
for detecting the balanced gait of subjects suffering from Par-
kinson’s disease. Yu et al. found that to build a personalized 
health monitoring system for elderly people, smart wearable 
sensors can be necessary to transmit vital signs and physi-
ological changes [19].

As indicated in [20], radar and related technologies are 
important for FD and health monitoring in AL, due to a 
series of inherited characteristics, e.g., proven technology, 
privacy preservation, nonintrusive sensing, nonobstruc-
tive illumination, insensitivity to lighting conditions, and 
safety. Radar frequency changes generated by the backscat-
ters from people in motion, also known as Doppler effects, 
can carry prominent features that reveal different human 
motions and gross motor activities [20]. Su et al. proposed a 
Doppler range control radar that aims to detect falls among 
elderly residents [21]. Wavelet transformation (WT) and the 
k-NN (k = 1 in the study) were used. The general paradigm 
contained two stages: first, the WT coefficients at a given 

To the assist the global 
fight against COVID-19, 
the AIoT can contribute 
solutions for eldercare by 
fully mining smart home 
sensor data.
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scale were used to identify the  possibility of a fall; second, 
the WT coefficients at several scales across many successive 
frames were employed to form the feature vectors for the 
classification of fall and nonfall activities. Shrestha et al. 
introduced another S-band radar system for classifying the 
elderly’s activities in daily life [22]. The authors used the 
traditional fast Fourier transform (FFT) to generate spectro-
grams from raw data, by which a series of time–frequency 
features can be extracted (and selected) for training an SVM 
model. They found it necessary to select frequency bands 
close to human movements.

Others
Apart from the aforementioned modalities, 
we can see other successful applications in 
the AIoT for the elderly’s use. Personal so-
ciodemographic and health-related factors 
were used as features for building an ML 
(the RF was selected) model for predicting 
anxiety and depression in elderly patients [23]. It provided to 
be a feasible method to implement a long-term mental health-
care management system by using data (age, gender, chronic 
medical conditions, and so forth) that can be easily collected 
from ubiquitous devices (e.g., smartphones). Bertini et al. 
studied the use of routinely collected socioclinical data, e.g., 
vital statistics and health information, to predict frailty in 
the elderly [24]. The authors found that a logistic regression 
model achieves the best performance among other ML mod-
els, e.g., an SVM and the RF.

Application scenarios
In this section, we discuss application scenarios in the lit-
erature. To avoid duplicates, we focus on how these applica-
tions could help older people enjoy an active and indepen-
dent life.

FD
Falls can result in injuries (causing personal suffering as well as 
the potential for a high economic cost), and they are a leading 
cause of death among the elderly [20]. Therefore, automatic FD 
is a crucial research direction in AIoT applications for the elderly. 
Table 1 summarizes and compares the main contributions from 
AIoT applications for FD. The current literature focuses on using 
classic ML models (e.g., an SVM, the k-NN, and the RF) and 
feedforward NN (FNN) models that have a shallow layer archi-
tecture. The reason for the lower network depths is that FD-re-
lated data are difficult to collect, which results in small data sets, 

hence restraining the capacity of DL models 
to learn sufficiently generalized representa-
tions from the inputs. In the paradigm of clas-
sic ML, specific human domain knowledge 
is a prerequisite for building a feasible model 
to fulfill a task. As one can see, advanced SP 
methodologies, e.g., WT (see Table 1), are an 
essential part of FD systems. When consider-

ing the data modalities, audio (CA)- and video (CV)-based meth-
ods appear quite efficient in the FD scenario. However, both may 
raise the issue of privacy intrusion, especially CV-based mod-
els. Wearable sensor- and radar-based methods appear better 
at protecting personal privacy and show promising results (see 
Table 1). Nevertheless, wearable sensors may have power man-
agement problems and inconvenience elderly people who have to 
carry them all day [3]. Furthermore, Doppler radar-based meth-
ods may misinterpret normal activities, such as a pet jumping 
and a person sitting down on a chair [20].

Activity classification
The automatic classification of daily activities is a crucial part 
of ambient AL technologies [25], enabling elderly people to 
live independently and facilitating the early detection of dis-
eases, e.g., Alzheimer’s and dementia. Tasks can be divided 

Table 1. A comparison of studies of AIoT FD applications.

Reference Modality SP ML/DL Result Findings
[3] Audio MFCC 1 NN Sensitivity: 100% BF can improve specificity; the proposed model 

BF Specificity: 97% is robust against different acoustic environments and floor materials.
[6] Video Codebook DAG SVM DR: 97.1% The proposed method is robust to background noise; multiple moving 

CV features FDR: 1% objects and occlusions are challenges that needing to be addressed.
[7] Video CV features SVM, DT WAR: 98.5% The best performance is achieved by the SVM; 

RF Sensitivity: 97% the method cannot be used in a dark room; 
k-NN Specificity: 100% the algorithm is time consuming.

[10] Sensors WT SVM WAR: 100% Wavelet-based features achieved higher accuracy 
than the statistical features did; the models could also be 
used for fall prevention.

[11] Sensors Features FNN WAR: 57% The best model is achieved with dual-task gait data collected from 
NB Sensitivity: 43% head, pelvis, and left shank accelerometers; similar fall risk model 
SVM Specificity: 65% performance can be reached using single- and dual-task gait assessments.

[21] Sensors WT 1 NN AUC: 0.82–0.96 WT-based features are more robust than MFCC-based features for 
Sensitivity: 92.3–97.1% FD; WT features can also be used to identify the 
Specificity: 81.4–92.2% possible occurrence of a fall; the best performance will decrease 
WAR: 83.5–93% in real-world settings (such as bathrooms and apartments) but are still 

acceptable.
Results are shown for the best approaches.
WAR: weighted average recall; UAR: unweighted average recall; DR: detection rate; FDR: false detection rate; AUC: area under the curve; FNN: feedforward NN.

We are still far from 
building a smart society 
and smart homes for 
our parents and even for 
ourselves.
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into  several categories, from low-level, easily recognized events 
(e.g., cooking, eating, and sleeping), to high-level abnormalities 
in physical and mental statuses. When looking at the data mo-
dalities used for activity classification (AC), sensors dominate 
(see Table 2). On the one hand, existing studies show encour-
aging results, as most models can reach more than 90% of the 
weighted average recall (WAR), also known as accuracy. On 
the other hand, one of the biggest challenges is the generaliza-
tion of SP and ML methods across households, which still needs 
to be addressed [25]. For instance, when a visitor appears in a 
room, a previously trained model cannot be directly used [12].

Classic ML models can be efficient for a variety of AC tasks. 
At the same time, DL models have been increasingly studied in 
recent years and shown great potential to improve the perfor-
mance of the current state of the art [9], [12]–[14]. Advanced 
SP technologies are quite useful for designing features in terms 
of classic ML methods (see Table 2). For DL models, a CNN 

is the most frequently selected architecture, due to its strong 
capacity to extract local and global features from data. It can 
be seen that adding an RNN structure to a hybrid DL architec-
ture could be better because of the time series characteristics 
of the elderly’s activities (see [14]). It is reasonable to think 
that capturing contextual information from activity data can 
improve the analysis of the elderly’s behavior in daily life.

Health-care management
Considering the typical characteristics of the fast-growing 
elderly population [1], i.e., living alone (most elderly people 
prefer living in their own home even though they could have 
many options, such as nursing homes), cognitive impair-
ments, chronic diseases, and vision and hearing constraints, 
it appears clear that HM plays a crucial role in the current 
and future AIoT application area. Relevant studies covering 
the AIoT for HM are summarized in Table 3. Compared to 

Table 2. A comparison of studies of AIoT AC applications.

Reference Modality SP ML/DL Result Findings
[8] Video CV features ERT WAR: 80.9, The device has a low cost, and the model can be used for real-time monitoring; 

73.4% the number of activities that the model can recognize is limited.
[9] Video IMA CNN WAR: 100% The activity encoding method is robust against an incomplete skeleton; during DL 

Activity encoding WAR: 100% training, data augmentation is needed for small-scale skeleton sequences.
[12] Sensors Features CNN WAR: 97.8% A few episodes with a large number of movements may reduce the accuracy 

of the classifier; the method cannot be used when a visitor is in a house.
[13] Sensor Features CNN WAR: 98.5% The model is bad at recognizing dish washing and meal preparation, due to 

F1 score: 0.79 the fact that those activities are similar in terms of locations and sensors.
[14] Sensors Features CNN, MLP, WAR: 95% The RNN fully considers the characteristics of time series data; 

LSTM–RNN reducing the input dimensions can improve the results.
[15] Sensors Features RF WAR: 95.6% The activity similarity (the correlation between an activity, location, and time) 

ASM should be considered and can improve the AC performance.
[16] Sensors HHT SVM AUC: 0.77 The best performance is achieved when shoulder joint data are 

EMD excluded; dual-task gait features are more effective than single-task features.
[17] Sensors Features SVM WAR: 96.8% The best performance can be achieved using two sensors’ data (lower back 

F1-score: 0.88 and thigh); a feature selection step can reduce the computational cost.
[18] Sensors Correlation LDA WAR: 95% The correlation is a simple but effective feature for gait analysis; 

the curvature radius of Parkinson’s subjects is smaller than that of healthy subjects.
[22] Sensors FFT SVM WAR: 90% Matching frequency bands to human movements during feature extraction 

is important for classifying specific events, e.g., falls.
Results are shown for the best approaches.
ASM: activity similarity matrix; EMD: empirical mode decomposition.

Table 3. A comparison of studies of AIoT HM applications.

Reference Modality SP ML/DL Result Findings
[4] Audio CA features SVR t: 0.39 The severe acoustic mismatch appears because of the 

different recordings between partitions.
[5] Audio CA features SVM UAR: 49.7% The “bad confusions,” i.e., low and high, are infrequent; 

CNN V can be modeled better than A via linguistic features; 
Transformer a late fusion cannot yield the best performance.

[19] Sensors Features LR, FNN WAR: 68.1% The best performance is achieved by DT; the classification rules could 
SVM, DT Precision: 81.7% be quite useful for health-care management.

[23] Text Features RF WAR: 91% Sociodemographic and medical factors can be used for predicting anxiety
Precision: 89% and depression via ML; a larger data set is needed.

[24] Text Features LR AUC: 0.7 The potential risk of missing data can be reduced through 
the use of routinely collected socioclinical data.

Results are shown for the best approaches.
t: Spearman’s correlation coefficient; V: valence; A: arousal; LR: logistic regression; SVR: support vector regression.
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the previous two  application scenarios, the results in terms of 
the robustness and reliability of HM applications are modest. 
This can be explained by the inherited complicated charac-
teristic of the topic itself. An efficient HM system needs to be 
built on massive data and long-term analysis, which requires 
more powerful SP and ML technologies, compared to FD and 
AC tasks. CA-based methods have shown potential for the 
early detection of Parkinson’s disease [4] and the analysis of 
the elderly’s emotions [5]. In this scenario, speech should be 
regarded as a kind of physiological signal that carries infor-
mation about a subject’s physical and mental health. Sensors 
(other than audiovisual ones) also form an important compo-
nent of HM management [19], and other modalities (e.g., text) 
show promising results in mental health care [23] and frailty 
prediction [24].

Paradigms and algorithms
We now introduce the paradigms of classic 
ML and DL. Furthermore, the algorithms 
are briefly discussed in terms of their spe-
cific tasks and applications.

Classic ML
In the paradigm of classic ML (see Figure 3), extracting hand-
crafted features is the first, crucial step after preprocessing 
(which refers to the front end). By considering both the data 
modality and the application scenario, a variety of SP tech-
nologies can be employed for a specific task. Fourier trans-
formation (FT) and its variant, i.e., the short-time FT (STFT), 
have been demonstrated to be efficient in capturing time–fre-
quency information from data. Take CA-based methods as an 
example. Their frequently used features, i.e., MFCCs [3], and 
more sophisticated large-scale feature sets (COMPARE [4], 
[5]), are based on the STFT approach. Moreover, for radar 
signal analysis, the STFT is a powerful tool [22]. The assump-
tion of the STFT is that a longer-duration nonstationary signal 
can be divided into a series of stationary signals with shorter 
lengths (segments), which can be suitable for separately con-
ducting FT in each segment to reveal frequency domain in-
formation. Then, the changing spectra of the whole signal 

through time can be represented by a spectrogram.  Finally, 
predefined features (which need human  expert domain 
knowledge) can be extracted from the STFT consequences 
of the analyzed signals, which are used for building the ML 
model (in a regression or a classification case). As a classic 
SP method, STFT-based features have shown robustness and 
efficiency in a plethora of AIoT applications for the elderly 
(see Tables 1–3).

However, the drawbacks and limitations of the STFT are 
obvious. We cannot perfectly optimize the time–frequency 
resolution tradeoff caused by the Heisenberg effect. To reach 
a better resolution in the frequency domain, we should use a 
longer window length (e.g., a Hamming window) to divide the 
whole signal, although the resolution in the time domain will 
be worse. To this end, more advanced SP methods are worth 

exploring. WT, as a multiresolution analysis 
tool, can help to reach a higher frequency 
resolution in the lower-spectrum band and 
a higher time resolution in the higher-spec-
trum band. In particular, for the FD task, a 
Doppler radar captures the entirety of a fall, 
and its output has similar dynamic charac-
teristics—a short duration of high frequen-

cies and a long period of low frequencies—which makes WT 
more suitable than the STFT for analyzing the signals [21].

Nevertheless, finding a suitable and efficient wavelet func-
tion is not an easy job since it relies on empirical experiments 
and specific data. The HHT provides another option: the signal 
is decomposed into a number of intrinsic mode functions via 
the empirical mode decomposition (EMD) method and then 
applied to the Hilbert spectral analysis. The HHT can preserve 
the characteristics of the varying frequency, which makes it 
suitable for analyzing nonstationary and nonlinear time series 
data. For analyzing the movements of body joints in gait analy-
sis of elderly people, the HHT was found to be superior to WT 
for providing a sharper frequency resolution [16]. But the HHT 
faces challenges in addressing some inherent issues, such as 
the end effects and mode mixing.

Another essential aspect of real-world application is the 
aforementioned preprocessing of signals. We need to take the 

Data

Data
Preprocessing

(Optional)

Feature
Extraction

Feature Selection
(Optional)

Audio,
Video, and

Sensors

Denoise and
Dereverberation

STFT, WT, and HHT CFS, FCBF, and ReliefF Classification
(e.g., SVM)

FIGURE 3. The classic ML paradigm (using a classification task as an example). Feature extraction is a prerequisite for further model training and testing. 
Feature selection options can include correlation-based feature selection (CFS), a fast correlation-based filter (FCBF), ReliefF, and wrapper-based options 
[17]. STFT: short-time Fourier transformation.

Computer vision and its 
related technologies 
occupy an important 
position in the AIoT for 
eldercare applications.
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complex environmental condition into account when design-
ing an AIoT system for the elderly. Array SP technologies, e.g., 
BF, cannot be used only to reduce background noise; they must 
also attenuate any interference from directions other than that 
of the intended source signal [3]. A  background  subtraction 
algorithm is thought to be important in posture analysis based 
on CV methods [6]. Additionally, SP plays an important role 
in calculating specific features from data by using mathemati-
cal, physical, and statistical knowledge—denoted as features 
in Tables 1–3. Interested readers are referred to the “Refer-
ences” section.

When looking into the back end of classic ML, the SVM is 
the most popular model in the AIoT field. For its clear math-
ematical fundamental and stable performance across various 
data sets and tasks, the SVM has repeatedly been chosen as a 
standard baseline classifier [4], [5]. Training an SVM model 
entails finding the best hyperplane, or margin, that maximizes 
the separation between classes. An SVM can use a few sam-
ples (support vectors) from a training set to build the decision 
boundary that makes predictions. By adopting kernel func-
tions, an SVM can be employed for analyzing linearly and 
nonlinearly separable problems. However, an SVM cannot 
perform very well when the data size is large and when the 
data set contains more noise (e.g., the target classes overlap). 
Besides, SVMs were originally designed for binary classifica-
tion problems. This factor may restrain their capacity for multi-
class problems, which are common in the AIoT for the elderly, 
although strategies can be adopted to make them feasible for 
recognizing more than two categories, e.g., “one versus one” 
and “one versus all.”

Other simple classic ML models, such as the NB, LDA, 
logistic regression, the DT, and the k-NN, have been found to 
be efficient in several studies if the features are well designed 
and extracted. As one of several ensemble algorithms, an RF 
uses individual DTs to make a final prediction via a “bagging” 
algorithm. In this method, weak learners are first trained with 
randomly selected subsampled training data sets with replace-
ment. Then, the final prediction will be made by a major-
ity vote of the trained individual DTs. Therefore, the RF is 
thought to be more robust than using only a single DT model 
in real applications. An FNN as a shallow architecture among 
NNs can perform quite well if the data size is not large. Gen-
erally speaking, all the aforementioned classic ML models 

can be sufficiently powerful when handling small data sets, 
whereas they cannot significantly improve their performance 
with the large amounts of data usually produced by today’s 
ubiquitous IoT sensors.

DL
Benefitting from the fast development of computational power 
during the past decade, DL has been applied to tremendous 
real-world AI applications and achieved notable successes in 
building efficient and robust models. In essence, DL is a se-
ries of nonlinear transformations of inputs, which results in 
the automatic extraction of high-level representations of the 
data. Considering the topology categories of DL models, one 
mainly finds that MLPs, CNNs, and RNNs prevail in the field 
(see Figure 4). An MLP is a kind of simple architecture that 
connects neurons (nodes) feeding forward (an FNN) from one 
layer to the next. Each layer is fully connected to all nodes of 
the subsequent layer, which is also known as a fully connected 
(FC) layer, whereas there are no connections between nodes 
within the same layer and across multiple layers.

A CNN is a combination of a series of convolutional layers 
(with a set of convolutional filters, also known as kernels), pool-
ing layers, FC layers, and normalization layers, which can auto-
matically learn features from images, audio, video, and text. 
An RNN is an architecture that features connections between 
neurons that can form a directed graph along a temporal 
sequence, which can learn context information by incorporat-
ing the outputs of a previous time step as the additional inputs 
for the current one. Considering the information flow direction, 
RNNs can be divided into unidirectional types (they have only 
a forward chain) and bidirectional variants (they have forward 
and backward chains). The procedure for training DL models is 
similar, namely, iteratively updating layer parameters to mini-
mize the loss function, which measures the difference between 
the target outputs and the actual outputs. It can be executed 
through a backpropagation (BP) algorithm, and for an RNN, it 
can be performed by a BP-through-time (BPTT) algorithm. To 
overcome the vanishing gradient problem caused by BPTT, an 
LSTM or a gated recurrent unit cell can be used.

As discussed, DL has been incorporated into the AIoT 
for AC and HM application scenarios but not for FD (due 
to the extremely limited data size). Particularly for AC, the 
CNN dominates the choice of DL models (see Table 2) for its 

(a) (b) (c)

FIGURE 4. The main DL model topologies: the (a) MLP, (b) CNN, and (c) RNN.

                                                                                                                                               



86                                                    

strong capacity to extract high-level representations from data. 
However, we can also see that some hand-crafted features may 
still be needed when conducting these tasks. An RNN can 
improve model performance by capturing context information 
when analyzing time series data, such as in the cases of speech 
and gaits [14]. For the speech emotion recognition task in HM 
(see Table 3), we investigated and compared state-of-the-art 
DL models, such as deep transfer learning [5], sequence-to-
sequence autoencoder-based unsupervised learning, and trans-
former-based linguistic feature learning. The best results were 
achieved by a deep transfer learning method for an arousal task 
(a three-class classification task referred to a scaled level of 
arousal) and the transformer-based method for a valence task 
(a three-class classification task referred to a scaled level of 
valence), respectively.

Where are we, and what is the future?
In this section, we first summarize the state-of-the-art works 
and their current achievements. Then, we analyze the limita-
tions and challenges among those studies. Finally, we give our 
insights and perspectives for future directions.

State-of-the-art works
Most of the current studies have shown en-
couraging results even though the AIoT for 
eldercare applications is a young field. For 
the FD scenario, audio- and video-based 
methods can reach a very high FD sensi-
tivity (better than 95%). In particular, by 
leveraging advanced SP technologies, e.g., 
BF and codebook background subtraction algorithms, the 
models can be made more robust to environments. WT can 
facilitate feature extraction from sensor and radar data, a pro-
cess that is thought to be capable of providing multiresolution 
analysis of nonstationary signals (referring to signals related to 
falls). For the AC scenario, most of the studies have achieved 
a WAR better than 90% for recognizing a variety of elderly 
people’s activities in daily life. Among the data modalities, 
sensor-based methods contribute the most to this area. More 
specifically, nonwearable sensors cannot well perform only in 
daily AC; they must also avoid most of the privacy intrusion 
issues caused by audio- and video-based methods. In addition, 
compared to wearable devices, they pose little inconvenience 
for elderly users. Computational human behavior analysis 
plays an important role in improving the performance of AC 
models. One can see that activity encoding, activity similar-
ity, and context information are efficient factors that provide 
a higher-level representation than low-level descriptors in de-
scribing activities. For the HM scenario, both the classic ML 
and the state-of-the-art DL models have been investigated and 
compared. Handcrafted features may not be necessary if a DL 
model can automatically extract high-level features, whereas 
the robustness and generalization should be improved [5]. The 
management of chronic diseases, the early detection of demen-
tia, and emergency care provision are the main directions in 
this domain.

Limitations and perspectives
First, one should note that the existing studies were mainly 
conducted under ideal conditions, e.g., in labs and lab-like 
environments. Take FD task as an example. Most of the data 
were collected by stunt actors performing a fall in a lab, 
which could vary enormously from reality. Thus, to apply 
the methods in real-world situations, we need to consider 
in-the-wild data collection. Furthermore, some studies ig-
nore subject independency in their experiments, which 
likely renders the trained models vulnerable to new data 
collected in a larger population size. Notice also that the 
WAR was widely used to evaluating models’ performance 
in classification tasks. However, the WAR (or accuracy) is 
not a suitable evaluation metric for imbalanced data sets. In 
contrast, unweighted measures, such as the unweighted av-
erage, should be adopted when taking the imbalanced char-
acteristic of a data set into account. In summary, the issues 
among the current studies likely cause overoptimistic results 
and expectations.

Another challenging issue is the lack of comprehensive 
investigations of data modalities that can be used for AIoT-

based eldercare applications. Apart from 
the data modalities introduced in this 
article, it is worth exploring other kinds 
that may provide more opportunities in the 
field. For instance, the sense of touch (hap-
tics) can be an essential sensory modality 
that facilitates daily activities [26]. We can 
imagine that by leveraging the power of AI 
(e.g., reinforcement learning), prostheses 

can be easier for the disabled elderly to use, resulting in faster 
and better rehabilitation. Furthermore, how to balance the 
power consumption and computational capacity of the hard-
ware is another important issue. In real-world applications, 
AIoT designers should pay significant attention to system per-
formance and costs.

Data scarcity is an inevitable challenge in this domain, par-
ticularly for the FD scenario. Data augmentation has shown a 
capacity to improve the generalization of DL models, although 
more advanced technologies should be involved. For instance, 
considering that labeled data are always limited, strategies 
such as unsupervised learning, semisupervised learning, 
active learning, reinforcement learning, and variants of the 
aforementioned algorithms should be explored. Human expert 
annotated data can still be expensive and rare even though the 
number of sensors is dramatically increasing. Moreover, gen-
erative adversarial networks can be used for both generating 
new samples that share the similar distribution of the original 
data set and for extracting more robust high-level representa-
tions of the data.

From the SP side, with the exception of advanced feature 
extraction methods, signal enhancement is also necessary 
in real-world applications. Take IoT-based microlocation in 
smart buildings as an example. Kalman filtering is an effi-
cient method to overcome the interference effects of wireless 
devices [27]. Moreover, utilizing data collected from multiple 

Wearable sensors 
may have power 
management problems 
and inconvenience elderly 
people who have to carry 
them all day.
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sensors is another challenge. In a functional magnetic reso-
nance imaging data analysis task, data fusion methods that 
enabled the exploitation of information shared across data 
sets were demonstrated to be superior to the data integration 
approach, which separately analyses data sets and combines 
the results [28]. Finding more suitable data fusion strategies 
is a promising direction, due to the increasing development of 
IoT sensors.

From the ML side, particularly for DL models, how to 
improve the robustness and generalization should be taken 
into account. A recent study demonstrated that using a noisy 
parallel hybrid DL model architecture can yield an accurate 
and robust estimation of remaining useful life [29]. Con-
sidering the socioclinical data mentioned in this article, 
more sophisticated DL architectures should be investigated. 
Another factor that cannot be ignored is the topology of DL 
models. It was shown that an encoder–decoder temporal con-
volutional network model can make more stable and accurate 
predictions than other framewise or sequential models in 
analyzing electromyographic signals [30]. Temporal infor-
mation in time series signals carries important fingerprints 
of elderly people’s behavior and daily life habits, which 
could be used for higher-level tasks, e.g., the early detection 
of disease and triggering emergency alarms. Moreover, fun-
damental studies of specific tasks are limited. For instance, 
human behavior analysis requires a combination of multiple 
disciplines, such as cognitive sciences, neuro/brain sciences, 
psychiatry, and AI, which cannot produce a solid conclusion 
for AC tasks. Particularly, for building an explainable and 
trustable AI system, we need more efforts from the broad 
scientific community.

Considering the ongoing COVID-19 epidemic and its effects 
on the elderly, AIoT-based applications can raise tremendous 
demands. First, the early detection of symptoms (coughing, pain, 
fevers, and so on) by IoT sensors combined with AI technolo-
gies can trigger an in-time warning and call for emergency care, 
particularly for elderly people who live alone. Second, monitor-
ing the physical and mental health of the elderly can facilitate a 
secure social quarantine policy (e.g., 14 days at home). Last but 
not least, remote health center feedback obtained by analyzing 
big data via AI can maintain elderly people’s confidence while 
they fight through a difficult period.

Conclusions
In this article, we gave a comprehensive overview of the AIoT 
applied to AL and HM for the elderly. Data modalities and ap-
plication scenarios were presented in detail along with SP and 
ML algorithms. We highlighted the state of the art and indi-
cated future directions in research fields. We hope this contri-
bution can attract more attention and effort from academia and 
industry to work toward HAI applications to fight the popula-
tion aging crisis.
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