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Editorial on the Research Topic

Ethical Machine Learning and Artificial Intelligence

1 INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have increasingly become an every-day reality
for most of us (Elliott, 2019). Typical algorithmic assessment methods, used for predicting human
outcomes such as recruitment, bail decisions, mortgage approvals, and insurance premiums, among
many others, are currently being trialled and subsequently deployed. Hence, the ethical and legal
requirements are moving into the foreground when developing novel AI and machine learning
algorithms (Hagendorff, 2020). For example, the United States’ Fair Credit Reporting Act and
European Union’s General Data Protection Regulation (GDPR) prescribe that data must be
processed in a way that is fair/unbiased—a challenge for AI (Mehrabi et al., 2019). GDPR also
alludes to the right of an individual to receive an explanation about decisions made by an automated
system such as by explainable AI (XAI) (Gunning et al., 2019).

Here, based on a recent research topic held in Frontiers in Big Data, we provide an overview on the
authors’ views and contributions.

This research topic covers but is not limited to the fields of fairness, accountability, transparency,
and trustworthiness (Baird et al., 2019), and covers methods such as causality and counterfactual
reasoning, reinforcement learning, and probabilistic approaches.

2 LITERATURE REVIEW

The research topic provides two overviews on the field.
In the first, Wells and Bednarz discuss in “Explainable AI and Reinforcement Learning – A

Systematic Review of Current Approaches and Trends” 25 studies selected from 520 search hits on this
recent topic. Thereby, they focus on “visualisation, query-based explanations, policy summarisation,
human-in-the-loop collaboration, and verification” which they identify as trends. As others, they
name the urge for user evaluations including laymen of explanations and find examples often over-
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simplified going hand-in-hand with lack in scalability, while
provision of comprehensible explanations remains a key
challenge. Further, they consider more progressive
visualisation approaches under-exploited including multimodal
and immersive forms of visualisation. Ideally, in the authors’
opinion, such would be combined with “well articulated
explanations”.

Next, in their mini review “Considerations for a More Ethical
Approach to Data in AI: On Data Representation and
Infrastructure”, Baird and Schuller observe that data
infrastructures are increasingly managed more democratically,
as decentralisation fosters transparency and therefore can help
better cope with selection-bias. Their review deals with AI-
targeted data representation and infrastructures focussing on
“auditing, benchmarking, confidence and trust, explainability
and interpretability” as key aspects that require
attention—ideally also in an interdisciplinary endeavour. As to
auditing, inmultimodal applications, the authors require standards
per modality to lead to accurate benchmarking. Further, they
support the view that confidence and trust are benefited by
“diverse representations of human data”—the latter also
boosting explainability to all users given “inherent human-like
attributes”. The authors attest energy put into these aspects by the
community, but in particular demand for increased
standardisation.

3 TECHNICAL APPROACHES

The research topic further includes three technical solutions.
First, in “The Moral Choice Machine”, Schramowski et al.

demonstrate that one can “extract deontological ethical
reasoning” with machine learning from human written texts
concerning right or wrong conduct. The authors provide
prompts and responses and define a bias score based on the
score of positive and negative responses. Likewise, they reach to
theMoral ChoiceMachine (MCM), that determines this score per
sentence applying Universal Sentence Encoder embeddings to
cater for context. By that, they observe that textual databases bear
“recoverable and accurate imprints of our social, ethical and
moral choices”. Further, picking selected databases from different
epochs, they find reflection on the evolution of these aspects.
Similarly, the authors consider different cultural sources.
Ultimately, this leads to their view that “moral biases can be
extracted, quantified, tracked, and compared across cultures and
over time”. As future work, the authors name the possibility to
alter the embeddings in targeted ways, such as to eliminate gender
stereotypes. They further suggest having the moral choice
machine in interactive robots enabled with active learning to
have users correct potential biases. Finally, they suggest targeted
alteration of the text sources for observation of effects.

In “Tuning Fairness by Balancing Target Labels”, Kehrenberg
et al. deal with bias in the output as challenge. To this end, they
add a latent target output to cater for a unified approach, apply
marginalisation rather than constraints problem, and provide for

a possibility to integrate knowledge on target unbiased outputs.
The authors argue that fairness is usually mainly handled by
statistical (group) or individual notions and belief that both are
needed for algorithmic fairness. Their approach can be learnt
from an implicitly balanced corpus, hence enabling demographic
parity and equality of opportunity. They also indicate avenues
towards an extension aiming at conditional demographic parity
as well. Finally, their general approach uniquely provides for a
target rate to control the realisation of the fairness constraint.
However, it will need extensions for predictive parity group or
individual fairness.

As a third example of algorithmic contribution to a more
ethical approach serve Ramanan and Natarajan’s with “Causal
Learning From Predictive Modeling for Observational Data”. They
apply causal Bayesian networks to model causal relationships
between data-learnt model variables sequentially using context-
specific and mutual independence. Likewise, potential causal
relationships are first found. Subsequentially, their strength is
determined. The authors verify this approach on benchmark
networks and find superiority over current alternatives.

4 DISCUSSION

Card and Smith finally discuss “On Consequentialism and
Fairness”, focusing on the outcome. They argue that
consequentialism has its deficits such as lacking in an
amenable choice of actions, but is a suited mean to highlight
issues in AI fairness such as “who counts”, disadvantages of policy
application, or the relative weight of the future. The authors give a
consequentialism-based critique of prevailing fairness definitions
in AI. They further also take an AI viewpoint on
consequentialism. Finally, they elaborate on learning and
randomisation in the context of AI ethics.

5 CONCLUSION

As all authors highlight, a more ethical approach is needed to data
in AI. However, algorithmic solutions can be and were partially
given also here. Accordingly, there is a call to action also for those
providing AI algorithms in the first place to actively work on
solutions to benefit and protect all users of AI and society.
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