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a b s t r a c t 

Consider a multiobjective decision problem with uncertainty in the objective functions, given as a set of 

scenarios. In the single-criterion case, robust optimization methodology helps to identify solutions which 

remain feasible and of good quality for all possible scenarios. A well-known alternative method in the 

single-objective case is to compare possible decisions under uncertainty with the optimal decision with 

the benefit of hindsight, i.e. to minimize the (possibly scaled) regret of not having chosen the optimal 

decision. In this contribution, we extend the concept of regret from the single-objective case to the mul- 

tiobjective setting and introduce a proper definition of multivariate (robust) (relative) regret. In contrast 

to the few existing ideas that mix scalarization and optimization, we clearly separate the modelling of 

multiobjective (robust) regret from its numerical solution. Moreover, our approach is not limited to a 

finite uncertainty set or interval uncertainty and furthermore, computations or at least approximations 

remain tractable in several important special cases. We illustrate all approaches based on a biobjective 

shortest path problem under uncertainty. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

.1. Motivation 

The task of decision making under uncertainty appears in vari- 

us fields. Quite often, the considered decision problem cannot be 

xpressed by a standard formulation as an optimization problem 

ith a single objective. Instead, multiple conflicting criteria have 

o be considered and thus a formulation as an uncertain (or para- 

etric) multiobjective optimization problem is required 

1 In the re- 

ent past, several promising approaches have emerged which al- 

ow to generalize the idea of a robust counterpart of an uncertain 

ingle-objective optimization problem to the multiobjective setup, 

ee for instance the summary ( Ide & Schöbel, 2016 ) or the ex- 

ensive overview ( Goberna, Jeyakumar, Li, & Vicente-Pérez, 2015 ). 

n Goberna et al. (2015, Table 1) , an overview of different ap- 

roaches to robust multiobjective optimization is provided; more 

ecently, Dranichak and Wiecek (2019) and Talbi and Todosijevic 
∗ Corresponding author. 

E-mail addresses: patrick.groetzner@math.uni-augsburg.de (P. Groetzner), 

alf.werner@math.uni-augsburg.de (R. Werner). 
1 We assume a certain familiarity of the reader with the concepts of robust opti- 

ization and multiobjective optimization. 
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 2020 ) add further concepts to the literature, while Schöbel and 

hou-Kangas (2020) provides (theoretical) comparisons between 

ome of these approaches. More specifically, extending the concept 

f point-based minmax robust efficiency from the single-objective 

o the multiobjective case might either lead to multiobjective for- 

ulations or to set-based concepts. Subsequently, we have chosen 

o focus on the pointwise approach, cf. Ehrgott, Ide, and Schö- 

el (2014) ; Fliege and Werner (2014) ; Kuroiwa and Lee (2012) , 

hich relies on the simple and intuitive (albeit quite conserva- 

ive) strategy to minimize the worst possible outcome among the 

ossible scenarios (for each objective function), cf. Section 1.2.2 . 

uite related to Ehrgott et al. (2014) ; Fliege and Werner (2014) ; 

uroiwa and Lee (2012) , Hassanzadeh, Nemati, and Sun (2013) con- 

iders the special case of budgeted uncertainty for function-wise 

ox uncertainty for the coefficients of linear objective functions. 

n the framework of Ehrgott et al. (2014) , Bokrantz and Fredriks- 

on (2017) discusses necessary and sufficient conditions for robust 

fficiency in terms of scalarization functions. An alternative con- 

ept (light robustness) is proposed in Ide and Schöbel (2016) by 

xtending the light robustness concept from the single-objective 

ase. Similarly, the generalization of Hassanzadeh et al. (2013) of 

udgeted uncertainty introduced by Bertsimas and Sim (2003) to 

he multiobjective setup is developed further in Raith, Schmidt, 

chöbel, and Thom (2018) . The further alternative of multi-scenario 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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fficiency is introduced by Botte and Schöbel (2019) . Finally, Ide 

nd Köbis (2014) and Ide, Köbis, Kuroiwa, Schöbel, and Tammer 

2014) discuss the relation of uncertain multiobjective optimization 

roblems to the field of set-valued optimization. 

Although the concept of a robust counterpart to an uncertain 

ingle-objective optimization problem as in Ben-Tal, El Ghaoui, and 

emirovski (2009) is in our view most popular, an alternative is 

vailable based on the notion of regret . For example, Inuiguchi 

nd Sakawa (1995) ; Kouvelis and Yu (1997) contain early treat- 

ents of regret from an optimization point of view and Hauser, 

rishnamurthy, and Tütüncü (2013) ; Simões, McDonald, Williams, 

enn, and Hauser (2018) ; Takeda, Taguchi, and Tanaka (2010) pro- 

ide interesting mathematical analyses as well as real world ap- 

lications in the single-objective setting. Similar to Ben-Tal et al. 

2009) , this alternative is recommended whenever probabilities for 

ach individual scenario are unknown, cf. Kouvelis and Yu (1997) ; 

n such situations it is perceived as a useful way for selecting deci- 

ions under uncertainty, cf. Kouvelis and Yu (1997 , Section 6.1.1). 

oreover, considering the worst case only is a relevant source 

f criticism to the classical worst-case approach, cf. Hauser et al. 

2013) . For instance 2 , considering evaluations of investment man- 

gers, it becomes important to compete against the best competi- 

or’s performance and therefore regret is more suited in this set- 

ing, cf. Simões et al. (2018) . In summary, it can be noted that on

he one hand, robust regret has some modelling advantage over 

raditional robust optimization in several occasions, while on the 

ther hand it might lead to computationally harder optimization 

roblems. As we will illustrate in the following, several impor- 

ant special cases still remain computationally tractable, although 

omputational burden of course increases in comparison to solv- 

ng instances of an uncertain multiobjective optimization problem 

i.e. ( RR (m ) (U) ), Section 2.1 compared to (P (m ) (u )) ), Section 1.2.2 ).

ventually, for a graphical illustration of the two approaches in the 

ingle criterion case, the reader is referred to Fig. 1 . 

In contrast to the single-objective case, no corresponding con- 

ept of regret is available for the case of an uncertain multiob- 

ective optimization problem. The only existing approaches in this 

irection so far were given by Rivaz and Yaghoobi (2013, 2018) ; 

ivaz, Yaghoobi, and Hladík (2016) and Xidonas, Mavrotas, Hass- 

pis, and Zopounidis (2017) . Still, none of these approaches actu- 

lly considers a proper concept of regret in the multiobjective case. 

nstead, it is suggested to first scalarize the uncertain multiobjec- 

ive optimization problems to uncertain single-criterion instances 

hich are then handled within the known single-objective regret 

etting. In the following, we will close this gap and introduce a 

roper concept of multivariate (relative) regret . We will motivate 

he choice of this regret formulation and show that this indeed 

epresents a generalization of the single-objective setting to the 

ultiobjective case. We further analyze the structure of the cor- 

esponding multiobjective robust regret formulation. We especially 

ompare the computational effort for solving such problems in- 

tead of solving standard robust multiobjective optimization prob- 

ems in a variety of common special cases. Not surprisingly, our 

nalysis yields similar results as the analysis in the single-objective 

ase, cf. Hauser et al. (2013) . Finally, we compare our approach 

o the related approaches by Drezner, Drezner, and Salhi (2006) ; 

ivaz and Yaghoobi (2013, 2018) ; Rivaz et al. (2016) ; Xidonas et al.

2017) in more detail. In summary, our approach covers the follow- 

ng novel aspects of uncertain multiobjective optimization: 

• For the first time, we introduce a consistent framework for 

regret optimization in an uncertain multiobjective optimiza- 
2 Another example is the choice of a tour from some point A to a point B, which 

s usually compared with the optimal choice in the given scenario, not against the 

orst case. 
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tion (MOP) setup. In particular, we clearly distinguish the 

modeling approach (i.e. the fact that an uncertain multiob- 

jective optimization problem is cast as a multiobjective regret 

optimization problem) from its numerical solution (e.g. by 

scalarization, by specific genetic algorithms, by direct multi- 

search methods, etc.). As a side result, we obtain the novel 

insight that Chebyshev scalarization actually commutes with 

robustification, thus the order of scalarization and regret is not 

important in this case, see Proposition 2.4 for more details. 
• In contrast to the few existing and rather scattered results in 

the literature on multiobjective regret, our approach is neither 

limited to linear objectives, nor to finite or interval uncertainty 

sets. Thus, all existing approaches are unified and generalized, 

besides the separation of regret modelling and scalarization. 
• We provide a detailed view on the structure of the multiobjec- 

tive regret optimization problem with a special focus on convex 

optimization problems. We also highlight, which instances can 

be solved with polynomial effort and how general formulations 

can be approached via (inner and outer) polytopal approxima- 

tions. For this purpose, a thorough discussion concerning conti- 

nuity with respect to the uncertainty set is carried out. 

We believe that as scalarization is an auxiliary computational 

ool to solve a given multiobjective optimization problem and not 

 modeling paradigm as such, our setting seems to be a quite natu- 

al one. Furthermore, in our opinion, sticking to the multiobjective 

etting as we do, is more intuitive from a modeler’s perspective. Fi- 

ally, our approach now allows to put all existing approaches into 

ore context, cf. Section 5 , and also allows for easy interpretation. 

.2. Problem formulation 

Before we introduce the general multiobjective setup, we briefly 

ecall the main idea of (relative) regret in the single-objective case. 

.2.1. Uncertain single-objective optimization problems 

Consider the following (family of) uncertain optimization prob- 

em(s) 

min 

x ∈ X 
f (x, u ) (P(u)) 

here f : X × U → R is some continuous function, x ∈ X ⊂ R 

n rep-

esents the decision variables and u ∈ U ⊂ R 

n ′ represents uncertain 

arameters. For simplicity of presentation, we assume that both X

nd U are compact. We would like to point out that this in partic- 

lar covers the case of finite X . The robust counterpart to (P(u)) as 

n Ben-Tal et al. (2009) is given as 

min 

x ∈ X 
F (x ) (RC(U)) 

ith F (x ) : = max 
u ∈ U 

f (x, u ) . It is well-known, see e.g. Ben-Tal et al.

2009) , that (RC(U)) can be solved efficiently, if the original uncer- 

ain optimization problem satisfies certain structural requirements, 

.g. f has to be convex in x and F needs to be easily computable. 

owever, it is also well-known that (RC(U)) leads to rather conser- 

ative solutions as it is focused on the worst case instance only. 

s a remedy to this problem, the alternative concept of (relative) 

egret can be applied, see e.g. Kouvelis and Yu (1997) for a more 

etailed discussion. In the single-objective setting, the regret of a 

ecision x in a scenario u ∈ U is defined as 

(x, u ) : = f (x, u ) − f ∗(u ) , with f ∗(u ) : = min 

x ∈ X 
f (x, u ) , 

hile the relative or scaled regret of a decision x in a scenario u ∈ U

an be represented as 

 (x, u ) : = 

f (x, u ) − f ∗(u ) 

f ∗( u ) 
= 

f ( x, u ) 

f ∗( u ) 
− 1 = 

1 

f ∗( u ) 
r( x, u ) , 
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Fig. 1. Illustration of worst-case optimization versus regret optimization under the 

assumption F (x ∗RC ) = max u ∈ U f ∗(u ) . 
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f f ∗(u ) > 0 holds for all u ∈ U . It usually depends on the given

pplication, whether regret or relative regret is considered by the 

ecision maker. 3 

Based on the (relative) regret, the decision maker can now op- 

imize with respect to regret. In uncertain environments, similar 

o the robust counterpart, a worst case (relative) regret is often 

eemed appropriate; hence we introduce 

 (x, U) : = max 
u ∈ U 

r(x, u ) , 

nd, analogously, 

(x, U) : = max 
u ∈ U 

s (x, u ) . 

his leads to the corresponding robust (relative) regret counterparts 

o (P(u)) 

min 

x ∈ X 
R (x, U) , (RR(U)) 

nd 

min 

x ∈ X 
S(x, U) . (RS(U)) 

he differences of the robust counterpart to the robust regret 

ounterpart are illustrated in Fig. 1 . As it can be observed, the 

orst case performance of the robust counterpart is (by definition) 

etter than the worst case performance of the minimum regret de- 

ision. The latter, however, usually comes with a lower worst case 

pportunity loss. Accordingly, in Hauser et al. (2013) , optimal so- 

utions to these optimization problems are called robust (relative) 

egret solutions and in Kouvelis and Yu (1997) , they are called ro- 

ust (relative) deviation decisions. For interval uncertainty, this ap- 

roach can also already be found in Inuiguchi and Sakawa (1995) . 

emark 1.1. It needs to be mentioned that stochastic programming 

epresents an important (quite related) approach to optimization 

nder uncertainty. There, the uncertain parameter u is treated as a 

andom variable and probabilistic criteria are applied instead of a 

orst case criterion. The same distinction can of course be made 

ere, leading to a framework of stochastic regret, where instead 

xpected regret or some risk measure of regret could be considered. 

or instance, in the related paper ( Xu, Zhou, & Xu, 2020 ), total (and

verage) expected regret is considered, already in a multiobjective 
3 If the goal is not to compare the decision to the optimal solution, but to some 

iven benchmark, one can consider the so-called benchmark regret as introduced 

n Simões et al. (2018) . In this case we only need to consider some benchmark 

erformance b(u ) instead of the individual optimal solutions f ∗(u ) in the regret 

ormulation and require the same structural properties for b(u ) as for f ∗(u ) . 
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ramework. The main difference to our approach, besides a rather 

ifferent focus of their paper, is that the authors only consider a 

nite uncertainty set and that no worst-case regret is considered. 

s a thorough analysis of stochastic regret is beyond the scope of 

his contribution, we prefer to leave this for future research. 

We have already mentioned that the robust counterpart can 

e solved efficiently in a variety of common setups; see Ben-Tal 

t al. (2009) for an overview and more details. We will demon- 

trate in the following that although the robust regret counterpart 

epresents a somewhat more involved concept (due to the fact that 

he optimal value f ∗(u ) appears in the formulation), it can still be 

olved with polynomial effort in common specific situations, see 

.g. Hauser et al. (2013) for a detailed analysis of regret in the 

ingle-objective case. As we will see later in Section 4.2 , this re- 

ains to be true for our generalization of robust (relative) regret 

o the multiobjective setup. 

.2.2. Uncertain multiobjective optimization problems 

If instead of an uncertain single-objective optimization prob- 

em an uncertain multiobjective optimization problem is given, the 

onsiderations from Section 1.2.1 get somewhat more involved. As 

lready mentioned, there have been successful approaches how to 

ormulate a robust counterpart for an uncertain multiobjective op- 

imization problem, while the corresponding concept for (relative) 

egret is still missing. For this purpose, let now f : X × U → R 

m 

e an m -variate continuous objective function, representing poten- 

ially conflicting aims. The uncertain multiobjective optimization 

roblem then reads as 

min R 
m ≥

x ∈ X 
f (x, u ) . ( P 

m (u) ) 

ultiobjective optimization problems constitute a special case of 

ector optimization problems (see for example Jahn, 2004 ), where 

he optimization is carried out with respect to a general ordering 

one K. In the case of multiobjective optimization problems, the 

orresponding ordering cone is always given by the specific cone 

 = R 

m ≥ . In contrast to the single-objective setup, minima of the 

mage set Y f (·,u ) : = { f (x, u ) | x ∈ X} will not exist in general. There-

ore, usually (weakly) non-dominated elements of Y f (·,u ) , denoted 

y Y N 
f (·,u ) and Y wN 

f (·,u ) are sought. The corresponding pre-images are 

o-called (weakly) efficient solutions and denoted by X E 
f (·,u ) and 

 

wE 
f (·,u ) , cf. Ehrgott (20 05) , Jahn (20 04) . In our setup, a solution

¯ ∈ X is called efficient (for fixed parameter u ) if and only if there 

oes not exist x ∈ X with f i (x, u ) ≤ f i ( ̄x , u ) for every i = 1 , . . . , m

nd f j (x, u ) < f j ( ̄x , u ) for at least one j ∈ { 1 , . . . , m } . A slightly

eaker version of this concept is the following: a solution x̄ ∈ X

s called weakly efficient if and only if there does not exist x ∈ X

ith f i (x, u ) < f i ( ̄x , u ) for every i = 1 , . . . , m . 

As recently suggested by Ehrgott et al. (2014) , Fliege and 

erner (2014) , Kuroiwa and Lee (2012) , a reasonable, albeit rather 

onservative formulation for a multiobjective robust counterpart, 

aking into account all uncertainty, looks as follows: 

min R 
m ≥

x ∈ X 
F (x ) , ( RC 

m (U) ) 

here, in complete analogy to the single-objective case, F i (x ) : = 

ax 
u ∈ U 

f i (x, u ) for i = 1 , . . . , m . 

emark 1.2. Let us point out that although formulation ( RC (m ) (U) ) 

eems quite straightforward, a thorough discussion of the pros and 

ons of such a formulation had been appropriate and necessary, 

ee especially Ehrgott et al. (2014) and Fliege and Werner (2014) . 

s emphasized there, it is not instantaneously clear how to inter- 

ret the term ”max u ∈ U f (x, u ) ” for an m -variate f . Several interpre- 

ations, ranging from the straightforward idea of a kind of anti- 

fficient frontier with respect to the negative ordering cone to a 
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et-valued interpretation have appeared in the literature. For the 

tandard cone, the pointwise formulation has shown to be quite 

uccessful in terms of interpretation, application and ease of com- 

utation. 

In this paper, we will show that we can obtain a multiobjec- 

ive robust (relative) regret formulation along the same lines as the 

ultiobjective robust counterpart has been obtained, thus general- 

zing the concept of regret from the univariate to the multivariate 

etup. For this purpose, the remainder of the paper is organized as 

ollows: In Section 2 we introduce and motivate the generalization 

f robust regret to the multivariate case. To solve these multiob- 

ective optimization problems, scalarization techniques are usually 

mployed, see e.g. Ehrgott (2005) for more details. We pay special 

ttention to the separation of robustification (as a modelling tool) 

nd scalarization (as a solution procedure). We specifically prove 

hat weighted Chebyshev scalarization actually commutes with ro- 

ustification in our context ( Proposition 2.4 ). We then discuss nu- 

erical aspects of the multiobjective robust regret formulations in 

ection 4 and we show that these formulations can be solved effi- 

iently (or at least be well-approximated) in a variety of common 

etups, especially under polytopal uncertainty. For this purpose, a 

horough analysis of the continuity of the objective function with 

espect to the uncertainty set is provided in Section 3 , as well as

ts consequences on approximations. As a main tool of approxima- 

ion for general convex uncertainty sets we will consider (inner 

nd outer) polytopal approximations in Section 3.2.3 . We provide a 

etailed comparison to existing approaches in Section 5 , before we 

pply the techniques to a specific illustrative example in Section 6 . 

e close the paper by a brief summary and an outlook to future 

esearch directions. 

. Multiobjective robust (relative) regret 

As already discussed, there is currently no extension of the ro- 

ust (relative) regret approach for uncertain optimization problems 

o the multiobjective setting. The main question in this context is 

ow to replace the former scalar term f ∗(u ) ∈ R in a multivariate

egret formulation. It has to be noted that in the multiobjective 

etup, the optimal value is no longer a unique scalar value, but 

epresented by the whole non-dominated set Y N 
f (·,u ) . From this ob- 

ervation, as outlined in Remark 1.2 , it is not straightforward what 

uantity should be used to compare to the what is now multivari- 

te f (x, u ) ∈ R 

m to obtain a meaningful notion of regret. 

.1. Extension of robust regret to the multiobjective setting 

In the following, we argue that a meaningful choice is obtained, 

f the scalar value f ∗(u ) ∈ R is replaced by the corresponding ideal

oint f ∗(u ) ∈ R 

m in the multiobjective setting, defined by 

f ∗i (u ) : = min 

x ∈ X 
f i (x, u ) , for i = 1 , . . . , m. 

lternatively 4 , one could prefer a set valued formulation and work 

ith Y N 
f (·,u ) instead of f ∗(u ) . To see that the ideal point is in-

eed a reasonable choice which also leads to computationally 

ractable optimization problems, we have a closer look at the 

ingle-objective setup. In this setup we have: 

in 

x ∈ X 
R (x, U) = min 

x ∈ X 
max 
u ∈ U 

r(x, u ) . 
4 Indeed, this also represents an interesting and promising approach, which, how- 

ver, needs separate thorough discussion, see also Section 7 . 
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ntroducing a slack variable α for the objective function leads 

o 

in 

x ∈ X 
R (x, U) = min 

x ∈ X, α∈ R 
α

s.t. r(x, u ) ≤ α ∀ u ∈ U. 

ote that the latter constitutes an optimization problem with (po- 

entially) infinitely many constraints, depending on the cardinality 

f the uncertainty set U . We can continue the reformulation and 

btain 

in 

x ∈ X 
R (x, U) = min 

x ∈ X, α∈ R 
α

s.t. f (x, u ) ≤ α + min 

y ∈ X 
f (y, u ) ∀ u ∈ U. 

his can be reformulated in an equivalent way as 

in 

x ∈ X 
R (x, U) = min 

x ∈ X, α∈ R 
α

s.t. f (x, u ) ≤ α + f (y, u ) ∀ u ∈ U, ∀ y ∈ X. 

ow we make the important observation that this final reformu- 

ation with (potentially) infinitely many constraints can easily be 

eneralized to multivariate functions f (together with a corre- 

ponding slack α ∈ R 

m ). Taking R 

m ≥ as ordering cone, we obtain the 

ultiobjective generalization 

min R 
m ≥

x ∈ X, α∈ R m 
α

s.t. f i (x, u ) ≤ αi + f i (y, u ) ∀ u ∈ U, ∀ y ∈ X, ∀ i = 1 , . . . , m. (1) 

emark 2.1. Considering general ordering cones K ⊂ R 

m and re- 

lacing ≤ with the cone inequality ≤K yields optimization prob- 

ems of type: 

min K 
x ∈ X,α ∈ R m 

α

s.t. f (x, u ) ≤K α + f (y, u ) ∀ u ∈ U, ∀ y ∈ X. 

ote that for general ordering cones, the subsequent reformula- 

ions in this Section 2.1 do not apply and different argumentation 

ould be necessary. 

As the constraint (1) can be interpreted as rowwise uncertainty , 

e can get rid of the (potentially) infinitely many constraints 

arametrized by y ∈ X , which yields 

min R 
m ≥

x ∈ X, α∈ R m 
α

s.t. f i (x, u ) ≤ αi + min 

y ∈ X 
f i (y, u ) ∀ u ∈ U, ∀ i = 1 , . . . , m. 

y replacing min 

y ∈ X 
f i (y, u ) by f ∗

i 
(u ) we obtain 

min R 
m ≥

x ∈ X, α∈ R m 
α

s.t. f i (x, u ) ≤ αi + f ∗i (u ) ∀ u ∈ U, ∀ i = 1 , . . . , m. 

his can be equivalently reformulated to 

min R 
m ≥

x ∈ X, α∈ R m 
α

s.t. max 
u ∈ U 

f i (x, u ) − f ∗i (u ) ≤ αi ∀ i = 1 , . . . , m. 

liminating the slack variable α, we finally arrive at the multiob- 

ective robust regret optimization problem 

min R 
m ≥

x ∈ X 
R (x, U) ( RR 

m (U) ) 

ith 

 i (x, U) : = max 
u ∈ U 

r i (u, x ) : = max 
u ∈ U 

f i (x, u ) − f ∗i (u ) , 
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or i = 1 , . . . , m . We immediately see that this indeed represents a

eneralization of the single-objective regret formulation to a mul- 

ivariate setting. Quite obviously, the same arguments can be re- 

eated to obtain the multiobjective robust relative (or scaled) regret 

ptimization problem 

min R 
m ≥

x ∈ X 
S(x, U) ( RS m (U) ) 

s long as f ∗(u ) > 0 for all u ∈ U . Therefore, from now on we as-

ume throughout the rest of the paper that 

 u ∈ U : f ∗(u ) > 0 . 

e would like to mention that both ( RR 

m (U) ) and ( RS (m ) (U) ), like

he robust counterpart (RC(U)) , constitute classical multiobjective 

ptimization problems. Their structure of course depends on the 

ets X and U , as well as on the specific structure of f in x and/or

 . 

emark 2.2. Note that both problems ( RR (m ) (U) ) and ( RS (m ) (U) )

bviously remain invariant under scalar multiplication of f i by 

ome μi > 0 . However, while R i (x, U) itself remains invariant under 

dditive shifts of f i , S i (x, U) might change in a non-linear fashion,

s already the corresponding worst-case u ∈ U may change due to 

uch shifts. 

While in the definition of s i (x, u ) in Kouvelis and Yu (1997) the

ormalization of r i (x, u ) is by 1 / f ∗
i 
(u ) (as we do here), the authors

n Xidonas et al. (2017) prefer to apply a different normalization 

ased on f ×
i 

(u ) : = max 
x ∈ X 

f i (x, u ) : 

˜ 
 i (x, u ) : = 

f i (x, u ) − f ∗
i 
(u ) 

f ×
i 
( u ) − f ∗

i 
(u ) 

, 

hich avoids this issue. Clearly, this kind of normalization is 

ainly (numerically) recommendable for finite X or for linear op- 

imization problems in x as considered in Xidonas et al. (2017) . To 

void potentially computationally hard maximization problems in 

 , it might be more advisable to use the normalization 

¯
 i (x, u ) : = 

f i (x, u ) − f ∗
i 
(u ) 

f N 
i 
( u ) − f ∗

i 
(u ) 

, 

ased on the nadir point f N , which might be easier to compute in

ome specific setups. Unfortunately, in general, both choices typi- 

ally lead to numerically rather intractable optimization problems 

nd are therefore not considered further in this paper. 

.2. An alternative motivation 

By a closer inspection of the robust (relative) regret, it can be 

bserved that there is a close relationship to the robust counter- 

art. Indeed, starting with the family of uncertain optimization 

roblems (P(u)) , we can shift (or scale and shift) each objective 

unction to obtain the uncertain families 

min 

x ∈ X 
f (x, u ) − f ∗(u ) , (P’(u)) 

nd 

min 

x ∈ X 
f (x, u ) 

f ∗(u ) 
− 1 , (P”(u)) 

espectively. Note that these transformations do not change the set 

f optimal solutions of (P(u)) , and hence (P’(u)) and (P”(u)) are 

quivalent to (P(u)) . Now, it becomes obvious that the robust coun- 

erpart to (P”(u)) is exactly (RR(U)) and the robust counterpart 

o (P”(u)) coincides with (RS(U)) . The same is of course true for 

he multiobjective case. We would like to emphasize that – in al- 

ernative to our motivation presented in Section 2.1 – we could 

ave introduced the multiobjective robust regret concept via the 
105 
bservations made here in Section 2.2 instead. These observations 

specially imply that all discussions on robust counterparts to mul- 

iobjective optimization problems directly transfer to the case of 

ultiobjective regret. 

emark 2.3. As argued here in Section 2.2 , the regret formula- 

ion is closely linked to a robust counterpart formulation. Thus, 

pplying the weighted sum scalarization (or the ε-constraint tech- 

ique) first and then robustifying is not the same as robustifying in 

he multiobjective setting and then applying these scalarizations. 

 more detailed discussion of this issue can for instance be found 

n Fliege and Werner (2014) . Hence, robustification and scalariza- 

ion will not commute in general. 

.3. Chebyshev scalarization commutes with robustification 

In contrast to the negative results from Fliege and Werner 

2014) , let us now provide a positive result concerning the order- 

ng of robustification and scalarization: it turns out that in our 

etup weighted Chebyshev scalarization indeed commutes with ro- 

ustification (for more details on Chebyshev scalarization, we refer 

o Ehrgott, 2005 ). 

roposition 2.4 (Chebyshev scalarization commutes with robusti- 

cation) . For w ∈ R 

m ≥ it holds 

ax 
u ∈ U 

max 
1 ≤i ≤m 

w i r i (x, u ) = max 
1 ≤i ≤m 

w i R i (x, U) 

nd especially 

in 

x ∈ X 
max 
u ∈ U 

max 
1 ≤i ≤m 

w i r i (x, u ) = min 

x ∈ X 
max 
1 ≤i ≤m 

w i R i (x, U) 

roof. As can be easily seen, 0 represents the ideal point of both 

(x, u ) and s (x, u ) for each fixed u . Thus, we have for the robusti-

ed scalarized regret: 

ax 
u ∈ U 

max 
1 ≤i ≤m 

w i r i (x, u ) = max 
1 ≤i ≤m 

max 
u i ∈ U 

w i r i (x, u i ) 

= max 
1 ≤i ≤m 

w i max 
u i ∈ U 

r i (x, u i ) = max 
1 ≤i ≤m 

w i R i (x, U) . 
�

The right hand side in Proposition 2.4 coincides with the 

Chebyshev-)scalarized robust regret using 0 as reference point 

or R , while the left hand side represents the robustified 

Chebyshev-) scalarized regret. Thus Chebyshev scalarization com- 

utes with robustification. The same arguments hold of course for 

instead of R . We further note that this argumentation remains 

rue for a general uncertain f instead of r or s , as long as 0 rep-

esents a reasonable reference point – thus extending the analysis 

n commutation given in Fliege and Werner (2014) . The reason ly- 

ng behind this surprising result is the connection of the weighted 

hebyshev scalarization to the ε-constraint scalarization technique. 

s shown in Fliege and Werner (2014) , the ε-constraint scalar- 

zation technique commutes with robustification of generalized in- 

tances of uncertain optimization problems, a property which has 

een used in the above proof when switching the order of maxi- 

ization in u and i . 

. Problem properties 

Before we consider potential solution approaches for both prob- 

ems ( RR (m ) (U) ) and ( RS (m ) (U) ) in Section 4 , let us first gain some

urther insight into the objective functions R and S, especially un- 

er some structural assumptions. We start by providing some re- 

ults concerning continuity and monotonicity of R and S with re- 

pect to U . This will in turn yield results concerning the approxi- 

ation of problems ( RR (m ) (U) ) and ( RS (m ) (U) ). Furthermore, recall

hat we assume f to be continuous in (x, u ) throughout this paper. 

inally, we would like to remark that the results obtained in this 
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ection can be straightforwardly generalized to the pointwise ro- 

ust approach in uncertain multiobjective optimization, as consid- 

red for example in Ehrgott et al. (2014) , Fliege and Werner (2014) ,

uroiwa and Lee (2012) . 

.1. Approximation with respect to U

We start with an obvious observation concerning monotonicity: 

roposition 3.1 (Monotonicity of R and S in U). Let U ⊆ V ⊆ R 

n ′ . 
hen 

 x ∈ X : R (x, U) ≤ R (x, V ) and S(x, U) ≤ S(x, V ) . (2)

As (2) is especially true for each u ∈ U , we get 

 x ∈ X, ∀ u ∈ U : r(x, u ) ≤ max 
v ∈ U 

r(x, v ) = R (x, U) and 

s (x, u ) ≤ max 
v ∈ U 

s (x, v ) = S(x, U) , 

here the maximum should of course be understood componen- 

wise. The consequence of this result is that the non-dominated 

et of the worst-case regret lies to the upper right of all non- 

ominated sets for all scenarios. 

Due to continuity of f in u , we also immediately obtain the 

ollowing continuity results, where d H (A, B ) denotes the Hausdorff

istance between two compact sets A and B . 

roposition 3.2 (Continuity of R and S in U) . Let (U n ) n ∈ N be a se-

uence of compact sets in R 

n ′ . Then d H (U n , U) → 0 for n → ∞ im-

lies 

 x ∈ X : lim 

n →∞ 

R (x, U n ) = R (x, U) and lim 

n →∞ 

S(x, U n ) = S(x, U) . 

roof. This follows directly from (Bank, Guddat, Klatte, Kummer, 

 Tammer, 1983, Theorem 4.2.2,) , where U plays the role of the 

arameter. �

Interestingly, under our assumptions, 

ropositions 3.1 and 3.2 are already sufficient for a uniform 

onvergence (of the objective functions) of monotone outer and 

nner approximations to the original objective. 

orollary 3.3 (Uniform convergence of R and S) . Let (U n ) n ∈ N be 

 sequence of compact sets in R 

n ′ with U n ⊆ U n +1 (or, alternatively, 

 n +1 ⊆ U n ) for all n . If d H (U n , U) → 0 for n → ∞ , then both R (·, U n )

nd S(·, U n ) converge uniformly on X to R (·, U) and S(·, U) , respec-

ively. 

roof. This result follows directly from Dini’s theorem 

see Edwards, 1994 , page 165) based on Propositions 3.1 and 

.2 and due to the compactness of X . �

Under the additional regularity assumption Y N 
R (·,U) 

= Y wN 
R (·,U) 

, we 

lso get convergence of the corresponding non-dominated sets: 

heorem 3.4 (Convergence of the non-dominated set) . Let (U n ) n ∈ N 
e a sequence of compact sets in R 

n ′ with d H (U n , U) → 0 for n → ∞ .

f Y N 
R (·,U) 

= Y wN 
R (·,U) 

, then 

lim 

 →∞ 

d H 
(
Y N R (·,U n ) , Y 

N 
R (·,U) 

)
= 0 . 

he same assumptions imply upper semi-continuity of the correspond- 

ng map V �→ X E 
R (·,V ) at U. Analogous statements hold true for S. 

roof. This result follows from Theorems 3.1 and 3.2 in Tanino 

1990) . All prerequisites of these theorems are obviously satis- 

ed, including R 

m ≥ -mini-completeness. The upper semi-continuity 

f V �→ X E 
R (·,V ) follows from (Tanino, 1990, Theorem 3.3.) . �

Unfortunately, for the corresponding efficient solutions one can 

nly expect upper semi-continuity, as lower semi-continuity comes 
106 
ith much stronger requirements on R (or S), cf. Condition 3 of 

heorem 3.4 in Tanino (1990) . Interestingly, Theorem 3.4 yields 

hat if the uncertainty set shrinks to a single scenario, the corre- 

ponding non-dominated set will converge to the non-dominated 

et of the corresponding single scenario. 

From a more practical perspective, Proposition 3.1 already pro- 

ides us with the insight that under monotone inner and outer ap- 

roximations, one obtains non-dominated sets which sandwich the 

rue non-dominated set: 

roposition 3.5 (Sandwiching the set of non-dominated 

oints) . Let U 

i ⊆ U ⊆ U 

o , and for R let further y N 
R 
(U 

o ) denote

he nadir point of the outer approximation based on U 

o and y ∗
R 
(U 

i )

he ideal point of the inner approximation based on U 

i . Further let 

 R (U 

i , U 

o ) := { y ∈ R 

m | y ∗R (U 

i ) ≤ y ≤ y N R (U 

o ) } (and accordingly for S).

hen we have: 

 

N 
R (·,U) ⊆

((
Y N 

R (·,U i ) + R 

m 

≥
) \ (Y N R (·,U o ) + R 

m 

> 

))
∩ B R (U 

i , U 

o ) , and 

 

N 
S(·,U) ⊆

((
Y N 

S(·,U i ) + R 

m 

≥
) \ (Y N S(·,U o ) + R 

m 

> 

))
∩ B S (U 

i , U 

o ) . 

roof. This directly follows from Proposition 3.1 and the definition 

f non-dominated points. �

.2. Exploiting structure in the uncertainty 

Let us now consider structural assumptions on the set U and 

he dependence of f on u . We will focus on the most important 

ractical cases, which are 

• U is finite, 
• U is a (convex) polytope, or, 
• U is a convex body. 

The last setup especially covers the quite popular case of el- 

ipsoidal uncertainty sets. The assumptions on U will be supple- 

ented by further assumptions on f (x, u ) , as e.g. linear uncer- 

ainty dependence, to obtain relevant structural results. 

.2.1. Finite uncertainty set 

Let us assume that p : = | U| < ∞ such that U is given as a finite

et of scenarios, i.e. U = { u 1 , . . . , u p } . In this case, it is possible to

recompute all optimal values f ∗
i 
(u ) for all i = 1 , . . . , m and for all

 ∈ U . Then 

 i (x, { u 1 , . . . , u p } ) = max 
u ∈{ u 1 , ... ,u p } 

f i (x, u ) − f ∗i (u ) = max 
j∈{ 1 , ... ,p} 

f i (x, u j ) − f ∗i (u j ) . 

he analogous statement for S(x, U) is true as well. 

emark 3.6. The precomputation of the ideal points f ∗(u ) can be 

arried out with polynomial effort, if either X is finite, or (P(u)) is 

 convex optimization problem. More details on this are given in 

ection 4.1 for finite X and in Section 4.2 for continuous X . 

.2.2. Polytopal uncertainty set 

In contrast to the previous Section 3.2.1 , where finiteness of U

as assumed, we now instead assume that the uncertainty set U is 

iven as a convex polytope. As we will demonstrate next, this can 

e used to reduce the polytopal case to the previous setup of finite 

, given that f has some additional structure in u . More precisely, 

e require that f is linear in u for all x ∈ X . We start with the

ollowing observation. 

roposition 3.7 (Polytopal uncertainty) . Let U be a convex polytope 

nd let V (U) denote the finite set of its vertices. Further, let f be lin-

ar in u for all x ∈ X. Then 

ax 
u ∈ U 

f i (x, u ) − f ∗i (u ) = max 
u ∈ V (U) 

f i (x, u ) − f ∗i (u ) 
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nd 

ax 
u ∈ U 

f i (x, u ) − f ∗
i 
(u ) 

f ∗
i 
(u ) 

= max 
u ∈ V (U) 

f i (x, u ) − f ∗
i 
(u ) 

f ∗
i 
(u ) 

olds for every i ∈ { 1 , . . . , m } . 
roof. Consider the first statement: As u �→ f i (x, u ) is linear for

ach x ∈ X , the mapping u �→ f ∗
i 
(u ) = min 

x ∈ X 
f i (x, u ) is concave. Thus,

he function g i (u ) = f i (x, u ) − f ∗
i 
(u ) is convex in u . Since convex

unctions that attain their maximum also attain it in one of the 

xtreme points of the feasible domain (in our case in one of the 

ertices), the first statement of the proposition follows. 

For the second statement, note that it is no longer true that the 

unction g i (u ) = 

f i (x,u ) − f ∗
i 
(u ) 

f ∗
i 
(u ) 

is convex in u . Still, as the numerator 

s convex in u and the denominator is concave in u (and positive), 

t is straightforward to see that g i is quasiconvex in u . Since quasi-

onvex functions that attain their maximum also attain it in one of 

he vertices of the feasible domain (see e.g. Greenberg & Pierskalla, 

971 ), the second statement of the proposition follows. Note that 

uasiconvexity of g i was already observed in Takeda et al. (2010) , 

ection 2.2 . �

Thanks to Proposition 3.7 we can replace the uncertainty set 

by its finite set of vertices V (U) = { u 1 , . . . , u p } in case of linear

ncertainty dependence: 

roposition 3.8 (Special case of polytopal uncertainty) . Let U be 

 convex polytope and let V (U) denote the finite set of its vertices. 

urther, let f be linear in u for all x ∈ X. Then 

 (x, U) = R (x, V (U)) and S(x, U) = S(x, V (U)) 

emark 3.9. For completeness, we would like to remark that more 

enerally, it can be shown that if f is linear in u , then for convex

ncertainty sets U one has 

 (x, U) = R (x, ∂U) = R (x, E (U)) , 

.e. a convex uncertainty set can be replaced by its boundary ∂U or 

ts set of extreme points E(U) . 

.2.3. Convex uncertainty set 

For convex uncertainty sets, more precisely for convex bodies, 

e will now provide some analysis for a lower and upper approx- 

mation based on inner and outer polytopal approximations of the 

ncertainty set. The main reason for this investigation is that un- 

er linear uncertainty dependence, due to Proposition 3.8 , the ro- 

ust regret functions R and S can be computed more easily if the 

ncertainty set is polytopal. 

emark 3.10. An excellent reference on polytopal approximation 

f convex bodies is given by the survey paper Bronstein (2008) and 

he many references therein. Among the numerous interesting 

esults concerning polytopal approximations, it is important in 

ur case that an inner and an outer ε-approximation 

5 (with re- 

pect to the Hausdorff metric) can be obtained by polytopes 

ith O (1 /ε 
d−1 

2 ) vertices in d dimensions, cf. Bronstein (2008) , 

ection 4.1 . 

It should be emphasized that in our case the number of ver- 

ices of the polytopal approximation is the crucial quantity which 

mpacts the numerical complexity, especially also for the outer ap- 

roximation (and not the number of faces, nor some combinato- 

ial complexity as e.g. recently considered by Arya, da Fonseca, & 

ount, 2017 ). 
5 For arbitrary convex sets, it is still possible to obtain a polytopal approxima- 

ion, see e.g. Bronšte ̆ın and Ivanov (1976) , but with a slightly worse approximation 

ate. To the best of our knowledge, this just yields an arbitrary approximation, not 

ecessarily an inner or outer approximation. 

i

a

L

1

o

107 
emark 3.11. For the actual computation of a reasonable inner and 

uter polytopal approximation to a convex body, refer to Bron- 

tein Bronstein (2008) , Section 8 and the references mentioned 

here. For practical purposes, it is usually sufficient to sample 

andom points from U (or ∂U under linear uncertainty depen- 

ence) from an almost arbitrary distribution for which the den- 

ity is bounded away from zero. By known results on random ap- 

roximations of convex bodies, the convex hull of the sampled 

oints yields a reasonable inner approximation also in the Haus- 

orff sense, albeit with a (slightly) worse approximation rate. For 

ore details on the exact statement and the exact asymptotic 

ates, see Dümbgen and Walther (1996) , Corollary 1. 

heorem 3.12 (Inner and outer polytopal approximations) . Let U 

i 
n 

nd U 

o 
n be sequences of inner and outer polytopal approximations to 

 convex uncertainty set U, i.e. let 

 

i 
1 ⊂ U 

i 
2 ⊂ · · · ⊂ U ⊂ · · · ⊂ U 

o 
2 ⊂ U 

o 
1 

nd lim n →∞ 

d H (U 

i 
n , U) = 0 = lim n →∞ 

d H (U 

o 
n , U) . Then, for all n 

 x ∈ X : R (x, U 

i 
n ) ≤ R (x, U 

i 
n +1 ) ≤ · · · ≤ R (x, U) ≤ · · · ≤ R (x, U 

o 
n ) ≤ R (x, U 

o 
n −1 ) 

nd 

lim 

 →∞ 

sup 

x ∈ X 
|| R (x, U) − R (x, U 

i 
n ) || = 0 = lim 

n →∞ 

sup 

x ∈ X 
|| R (x, U) − R (x, U 

o 
n ) || .

If furthermore Y N 
R (·,U) 

= Y wN 
R (·,U) 

, then 

lim 

 →∞ 

d H 

(
Y N 

R (·,U i n ) , Y 
N 

R (·,U) 

)
= 0 = lim 

n →∞ 

d H 
(
Y N R (·,U o n ) 

, Y N R (·,U) 

)
he same results hold true for S. 

roof. The monotonicity is straightforward. The uniform conver- 

ence follows directly from Corollary 3.3 and the convergence 

f the sequence of approximating non-dominated sets is due to 

heorem 3.4 . �

As a consequence, we note that in the setting of Theorem 3.12 , 

he volume of the sandwiching sets (
Y N 

R (·,U i n ) + R 

m 

≥

)
\ (Y N R (·,U o n ) 

+ R 

m 

> 

))
∩ B R (U 

i 
n , U 

o 
n ) 

ecreases to 0. Further, under the regularity condition Y N 
R (·,U) 

= 

 

wN 
R (·,U) 

, we have convergence of this covering set to the true effi- 

ient frontier and analogously for S. 

.3. Exploiting structure in x and (x, u ) jointly 

In this section, we are interested in exploiting structural results 

oncerning the dependence of f in x for a continuous feasible set 

. Let us start with an easy-to-see fact: 

emma 3.13. For some i ∈ { 1 , . . . , m } let f i be convex in x for all

 in U. Then R i is convex in x as well. Under the assumption 

in u ∈ U f ∗
i 
(u ) > 0 , S i is convex in x as well. 

roof. This follows directly from the well-known fact that the 

upremum of convex functions is again convex and that r i (x, u ) 

nd s i (x, u ) are convex in x for all u . �

.3.1. Lipschitz continuity of R and S

To improve Corollary 3.3 to a more quantitative result, let us 

ow assume some additional local Lipschitz continuity 6 of f in 
6 The function f : X × U → R 
m is locally Lipschitz continuous in (x, u ) jointly 

f for all (x, u ) ∈ X × U there exists a neighbourhood V ⊂ X × U of (x, u ) 

nd a constant L > 0 such that for all (y, v ) , (z, w ) ∈ V : || f (y, v ) − f (z, w ) || 1 ≤
 ( || y − z|| 1 + || v − w || 1 ) holds. Here, for convenience, the norm is chosen to be the 

-norm on X × U as this can be represented as the sum of the individual 1-norms 

n X and U . 
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x, u ) jointly. With this we can obtain the following much more 

uantitative result. 

heorem 3.14 (Uniform Lipschitz bounds) . Let f be locally Lipschitz 

ith respect to (x, u ) jointly and U, V ⊆ R 

n ′ . Then there exists a con-

tant K > 0 such that uniformly for all x ∈ X: 

| R (x, U) − R (x, V ) || 1 ≤ Kd H (U, V ) 

nd 

| S(x, U) − S(x, V )) || 1 ≤ Kd H (U, V ) . 

We first state Remark 3.15 and Corollary 3.16 before we proceed 

o the proof of Theorem 3.14 based on Lemma 3.17 . 

emark 3.15. If f is linear in u for all x ∈ X , we have seen in

emark 3.9 that it is sufficient that the boundary ∂U of U is well- 

pproximated by the vertex set of the approximating polytope. 

owever, if no structure of f in u is available, then the complete 

ncertainty set has to be approximated. 

Based on Theorem 3.14 we can now state an immediate corol- 

ary, which improves the results of Proposition 3.5 . 

orollary 3.16 (Uniform Lipschitz sandwich) . Let U 

i ⊆ U ⊆ U 

o and 

et f be locally Lipschitz with respect to (x, u ) jointly. Then there ex- 

sts a constant ˜ K > 0 such that for all x ∈ X

 (x, U 

i ) ≤ R (x, U) ≤ R (x, U 

i ) + 

˜ K d H (U, U 

i ) and 

 (x, U 

o ) − ˜ K d H (U, U 

o ) ≤ R (x, U) ≤ R (x, U 

o ) 

nd thus 

 

N 
R (·,U) ⊂

((
Y N 

R (·,U i ) + R 

m 

≥
) \ (Y N 

R (·,U i ) + 

˜ K d H (U, U 

i ) + R 

m 

> 

))
∩ B R (U 

i , U 

o ) , 

s well as 

 

N 
R (·,U) ⊂

((
Y N R (·,U o ) − ˜ K d H (U, U 

o ) + R 

m 

≥
) \ (Y N R (·,U o ) + R 

m 

> 

))
∩ B R (U 

i , U 

o ) , 

nalogous results hold for S. 

To prove Theorem 3.14 , we first establish a helpful auxiliary re- 

ult on the global Lipschitz continuity of the (scaled) regret. 

emma 3.17. Let f : X × U → R 

m be locally Lipschitz in (x, u ) jointly.

hen there exists a constant L̄ > 0 such that 

 x, y ∈ X, u, v ∈ U : || f (x, u ) − f (y, v ) || 1 ≤ L̄ 
(|| x − y || 1 + || u − v || 1 

)
nd 

 u, v ∈ U : || f ∗(u ) − f ∗(v ) || 1 ≤ m ̄L || u − v || 1 . 
hus, r is globally Lipschitz continuous with constant (m + 1) ̄L and 

 is also globally Lipschitz continuous with some (usually different) 

onstant ˜ L > 0 . 

roof. Since f is locally Lipschitz on X × U and since X and U are 

ompact, there exists an L̄ > 0 such that f is globally Lipschitz con- 

inuous on X × U , i.e. 

 x, y ∈ X, u, v ∈ U : || f (x, u ) − f (y, v ) || 1 ≤ L̄ 
(|| x − y || 1 + || u − v || 1 

)
hich proves the first statement. For the second claim, consider 

he following inequality for f ∗
i 

: 

f ∗i (u ) − f ∗i (v ) = min 

x ∈ X 
f i (x, u ) − min 

x ∈ X 
f i (x, v ) ≤ min 

x ∈ X 
f i (x, v ) 

+ ̄L || u − v || 1 − min 

x ∈ X 
f i (x, v ) = L̄ || u − v || 1 . 

wapping the roles of u and v yields | f ∗
i 
(u ) − f ∗

i 
(v ) | ≤ L̄ || u − v || 1 .

dding all components yields the second claim. The third claim 

ollows directly from the definition of r as the difference of two 

lobally Lipschitz continuous functions with Lipschitz constants L̄ 

nd m ̄L . The analogous statement for s is a bit more involved. For 

his purpose, we define the constants 

 i : = max 
u ∈ U 

1 

f ∗(u ) 
, B i : = max 

u ∈ U 
f ∗i (u ) , and C i : = max 

x ∈ X,u ∈ U 
f i (x, u ) . 
i 

108 
hen 

 i (x, u ) − s i (y, v ) = 

f i (x, u ) 

f ∗
i 
(u ) 

− f i (y, v ) 
f ∗
i 
(v ) 

= 

1 

f ∗
i 
(u ) f ∗

i 
(v ) 

(
f i (x, u ) f ∗i (v ) − f i (y, v ) f ∗i (u ) 

)
. 

s for the term in brackets, we have 

f i (x, u ) f ∗i (v ) − f i (y, v ) f ∗i (u ) = f i (x, u ) f ∗i (v ) − f i (x, u ) f ∗i (u ) 

+ f i (x, u ) f ∗i (u ) − f i (y, v ) f ∗i (u ) , 

hus proper inspection yields that A 

2 
i 
(B i + mC i ) ̄L is a global 

ipschitz constant for s i . The claim then follows with 

˜ L : = mA 

2 
i 
(B i +

C i ) ̄L . �

We now come to the (straightforward) proof of the theorem. 

roof of Theorem 3.14. We only prove the statement for the case 

 = 1 , the generalization to arbitrary dimensions is straightfor- 

ard. To show the statement, note that R (x, U) = r(x, u ∗(x )) for

ome u ∗(x ) which maximizes r(x, u ) in u ∈ U . We can now replace

 

∗(x ) by some v ∗(x ) ∈ V with || u ∗(x ) − v ∗(x ) || 1 ≤
√ 

n ′ d H (U, V ) (the

onstant n ′ appears as the Hausdorff distance is typically defined 

ia the 2-norm). Since R (x, V ) ≥ r(x, v ∗(x )) and since r is globally

ipschitz continuous with Lipschitz constant (m + 1) ̄L thanks to 

emma 3.17 , we get for K = (m + 1) ̄L 
√ 

n ′ that: 

 (x, U) − R (x, V ) ≤ r(x, u 

∗(x )) − r(x, v ∗(x )) 

≤ (m + 1) ̄L || u 

∗(x ) − v ∗(x ) || 1 ≤ Kd H (U, V ) . 

wapping the roles of U and V shows the claim. �

.3.2. Improving the inner polytopal approximation 

Let us finally mention that it is possible to improve the inner 

olytopal approximation along the lines of Takeda et al. (2010) . 

or specific special cases of f and U (see Takeda et al., 2010 for 

ore details), this improved approach still remains computation- 

lly tractable. For this purpose, choose (for fixed i ) u 1 , . . . , u K ∈ U

ogether with some x k ∈ X such that f i (x k , u k ) = f ∗
i 
(u k ) for k =

 , . . . , K. The main idea of Takeda et al. (2010) is to replace the

pproximation of U by an approximation of f ∗(u ) . We start by ob- 

erving that 

 i (x, { u 1 , . . . , u K } ) = max 
u ∈{ u 1 , ... ,u K } 

r i (x, u ) = max 
k =1 , ... ,K 

f i (x, u k ) − f i (x k , u k ) 

≤ max 
k =1 , ... ,K 

max 
u ∈ U 

f i (x, u ) − f i (x k , u ) 

= max 
u ∈ U 

max 
k =1 , ... ,K 

f i (x, u ) − f i (x k , u ) 

nd furthermore, as f i (x k , u ) ≥ f ∗
i 
(u ) , 

ax 
u ∈ U 

max 
k =1 , ... ,K 

f i (x, u ) − f i (x k , u ) ≤ max 
u ∈ U 

max 
k =1 , ... ,K 

f i (x, u ) − f ∗i (u ) 

= max 
u ∈ U 

r i (x, u ) = R (x, U) . 

n this way, for the function 

i (x, { u 1 , . . . , u K } , U) : = max 
u ∈ U 

max 
k =1 , ... ,K 

f i (x, u ) − f i (x k , u ) , 

otivated by the definition of (CRP) in Takeda et al. (2010) , we 

ave that 

 x : R i (x, { u 1 , . . . , u K } ) ≤ ρi (x, { u 1 , . . . , u K } , U) ≤ R (x, U) , 

nd thus ρi provides a better lower bound than the simple inner 

olytopal approximation. Although at first glance the definition of 

i does not seem to be numerically tractable (due to the appear- 

nce of max u ∈ U ), it is shown in Takeda et al. (2010) , Section 4 , that

or f convex-quadratic in x and linear in u , ρi can be efficiently 

omputed. More precisely, for norm-constrained uncertainty, this 
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7 We say that a function is sufficiently smooth if it is twice continuously dif- 

ferentiable and if its Hessian satisfies the relative Lipschitz condition (1.2) in Jarre 

(1992) . 
pproximation can be formulated as a multiobjective second or- 

er cone program, and for ellipsoidal U , it can be formulated as a 

ultiobjective semidefinite program. For more details on this re- 

ormulation, we refer to the original paper Takeda et al. (2010) . 

. Numerical tractability 

In this section, we discuss the computational tractabil- 

ty of a few important special cases of problems ( RR (m ) (U) ) 

nd ( RS (m ) (U) ), based on structural assumptions similar to 

ection 3 . We start with some straightforward observations for fi- 

ite X , before we discuss the case of continuous optimization prob- 

ems in more detail. 

.1. Numerical tractability of finite optimization problems 

In the following let χ : = | X| < ∞ and let p = | U| < ∞ . Then

asy observations yield the following results, where we provide 

he complexity in terms of the number of function evaluations of 

ne component of f (x, u ) and assume that this is computationally 

ore expensive than for instance comparisons, look-ups, etc. 

• (C1): The computation of { f ∗(u ) | u ∈ U} has complexity

O (χmp) : this holds as mp minimization problems in x have to 

be solved (plus the same number of comparisons). 
• (C2): The computation of { R (x, U) | x ∈ X} has complexity 

O (χmp) : based on (C1), the remaining argumentation is analo- 

gous to (C1), with r replacing f . 
• (C3): The computation of Y N 

R (·,U) 
based on { R (x, U) | x ∈ X} needs

at most χ2 comparisons. 

Summarizing and and keeping in mind the similarities between 

 and S, we obtain: 

roposition 4.1 (Complexity for finite X) . For χ = | X| < ∞ and 

p = | U| < ∞ , the sets Y N 
R (·,U) 

and Y N 
S(·,U) 

can be computed with at

ost O (χmp) function evaluations and at most O (χmp + χ2 ) com- 

arisons. 

This result shows in particular that the effort to compute rea- 

onable approximations to Y N 
R (·,U) 

and Y N 
S(·,U) 

for general convex U

rows linearly with the number of vertices of the polytopal ap- 

roximation to U , which in turn grows polynomially in the approx- 

mation accuracy ε of the uncertainty set. 

emark 4.2. For simplicity, in this Section 4.1 , we focus on com- 

lexity considerations in | X| only, as it is well-known that for some 

ultiobjective combinatorial optimization problems (like multiob- 

ective shortest path, see for example Serafini, 1987 ), the cardi- 

ality of the non-dominated set can be almost as large as | X| ;
ore precisely, for some combinatorial multiobjective optimiza- 

ion problems with X = { 0 , 1 } n one has that | Y N | is exponential

n n . Thus, these kind of optimization problems need individual+/ 

ifferent investigations which we leave for future investigations. 

or some recent related reference, let us refer to the PhD the- 

is ( Bökler, 2018 ). 

.2. Numerical tractability of continuous optimization problems 

Let us now focus on numerically tractable continuous opti- 

ization problems, i.e. problems which can be solved numerically 

ithin polynomial time up to a certain precision. To be able to ap- 

ly classical complexity results, in this Section 4.2 we make the 

sual assumptions (e.g. similar to Jarre, 1992 ) that 
109 
• (A1): X = { x ∈ R 

n | g i (x ) ≤ 0 , i = 1 , . . . , M} for some M ∈ N with

g i convex and sufficiently smooth 

7 for i = 1 , . . . , M. 
• (A2): ∃ ̄x ∈ R 

n with g i ( ̄x ) < 0 for i = 1 , . . . , M (Slater condition). 
• (A3): f i is convex and sufficiently smooth for i = 1 , . . . , m for all

u ∈ U . 
• (A4): All function values, gradients and Hessian matrices can 

be computed with an effort of at most O (n 2 ) and efforts for 

comparisons, look-ups, etc. can be neglected. 

Based on these assumptions, we can state the classical com- 

lexity result for (P(u)) , where we especially emphasize the mild 

ependence of the complexity on the number of constraints. 

heorem 4.3 (Complexity of IPMs, Jarre, 1992 ) . Under assumptions 

A1) to (A4), each instance of (P(u)) can be solved to ε-optimality in 

olynomial time with an effort of at most O ( 
√ 

M (n + M) n 2 log (1 /ε)) .

roof. In Jarre (1992) , an interior-point method (IPM) is presented 

hich needs O ( 
√ 

M log (1 /ε)) iterations to obtain an ε-optimal fea- 

ible point. The effort needed in each iteration (typically for solving 

 Newton system) is at most O ((n + M) n 2 ) , see e.g. Jarre (1989) ,

. ∼71. �

Theorem 4.3 immediately yields for p = | U| < ∞ that the pre-

omputation of f ∗
i 
(u j ) up to an accuracy ε f ∗ for i = 1 , . . . , m ,

j = 1 , . . . , p, comes with an effort of at most [ O (mp 
√ 

M (M +
 ) n 2 log (1 /ε f ∗ ))] iterations. Of course, warm-start ideas might be 

xploited to reduce this complexity further. 

These considerations can now easily be extended from (P(u)) to 

onvex multiobjective programming, i.e. to (P m (u )) as well as 

o ( RR (m ) (U) ) and ( RS (m ) (U) ). We here follow the ideas from

he pioneering work ( Fliege, 2006 ) and the very recent analy- 

is ( Bergou, Diouane, & Kungurtsev, 2020 ), who (implicitly) work 

ith a solution concept, which we formalize here: 

efinition 4.4. Let � := { λ ∈ R 

m 

> | ∑ m 

i =1 λi = 1 } , δ > 0 , and �δ ⊂ �

uch that | �δ| < ∞ and sup 

λ∈ �
inf 

λδ∈ �δ

|| λ − λδ|| ∞ 

< δ/ 2 . Then a set

 ε,δ ⊂ f (X ) is called an (ε, δ) -solution for 

in R 
m ≥

x ∈ X 
f (x ) (3) 

f it satisfies the two conditions 

(i ) ∀ y ∈ Y ε,δ : ∃ λδ ∈ �δ : λ� 
δ y ≤ min 

x ∈ X 
λ� 

δ f (x ) + ε, and 

ii ) ∀ λδ ∈ �δ : ∃ y ∈ Y ε,δ : λ� 
δ y ≤ min 

x ∈ X 
λ� 

δ f (x ) + ε. 

If in (3) all f i , i = 1 , . . . , m are strongly convex then one can eas-

ly show that 

lim 

,δ→ 0 
Y ε,δ = cl(Y N f ) (4) 

n a Painlevé-Kuratowski sense, cf. Rockafellar and Wets (1998 , 

efinition 4.1). Without strong convexity, only 

im sup 

ε,δ→ 0 

Y ε,δ ⊆ cl(Y N f ) (5) 

olds. Due to (5) , Fliege (2006) additionally considers a related 

uadratic scalarization, for which (4) already holds in the general 

onvex case (but which comes with a slightly worse polynomial 

omplexity). 

Obviously, an (ε, δ) -solution for (3) with cardinality O (1 /δm −1 ) 

an be obtained by the following construction: 

• Choose a grid �δ with cardinality O (1 /δm −1 ) within the set of 

scalarization parameters � as in Bergou et al. (2020) . 
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• Solve the corresponding weighted-sum scalarized instance 

of (3) for each scalarization parameter in �δ up to accuracy ε. 

Based on this concept of an (ε, δ) -solution, it is possible to ob- 

ain the following complexity result for a finite uncertainty set U , 

hich yields a polynomial complexity in n , p, 1 /δ and 1 /ε, but an

xponential complexity in m : 

roposition 4.5 (Complexity for finite U) . Under assumptions (A1) 

o (A4), for p = | U| < ∞ , the sets Y N 
R (·,U) 

and Y N 
S(·,U) 

can be approxi-

ated by an (ε, δ) -solution in the sense of (4) and (5) with a com-

utational effort of at most 

 

(√ 

M + mp (n + m + M + pm )(n + m ) 2 log (1 /ε) /δm −1 

+ mp 
√ 

M (M + n ) n 

2 log (1 /ε) 
)
. (6) 

roof. Consider the weighted sum scalarization for ( RR (m ) (U) ) for 

nite U and λ ∈ �δ: 

min 

x ∈ X, α∈ R m 
λ� α

s.t. f i (x, u j ) − f ∗i (u j ) ≤ αi ∀ i = 1 , . . . , m, j = 1 , . . . , p. 

ue to Theorem 4.3 , each of the O (1 /δm −1 ) many instances 

an be solved up to ε/ 2 -accuracy with an effort of at most 

 

(√ 

M + mp (n + m + M + pm )(n + m ) 2 log (1 /ε) 
)

. Taking into ac- 

ount that || λ|| 1 ≤ 1 and that each f ∗
i 
(u j ) can be precomputed up

o ε/ 2 -accuracy with effort O ( 
√ 

M (M + n ) n 2 log (1 /ε)) yields a to-

al effort of 

 

(√ 

M + mp (n + m + M + pm )(n + m ) 2 log (1 /ε) /δm −1 

+ mp 
√ 

M (M + n ) n 

2 log (1 /ε) 
)
. 

�

emark 4.6. We would like to mention that Fliege 

2006) and Bergou et al. (2020) have successfully exploited 

arm-start ideas to significantly reduce the complexity (6) to 

 ( log (1 /ε) + log ( log (1 /ε)) /δm −1 ) (for p = 1 , m and n fixed). We

xpect that similar ideas could be applied to the precomputa- 

ion of f ∗
i 
(u j ) such that the above complexity might be further 

educed. 

Based on Proposition 4.5 and the results from 

ections 3.2 and 3.3 , we can now approximate Y N 
R (·,U) 

or Y N 
S(·,U) 

suf- 

ciently well in polynomial time in the corresponding frameworks 

f Sections 3.2 and 3.3 . 

.3. Alternative computational approaches for continuous 

ptimization problems 

Note that besides the approach via polytopal inner and outer 

pproximation, there are alternative approaches to solve for Y N 
R (·,U) 

r Y N 
S(·,U) 

in case of general convex U . As these are not within 

he focus of this contribution, we prefer to just outline these ap- 

roaches rather briefly and leave a detailed analysis (especially 

ompared to the complexity of the polytopal approximation) for 

uture research. 

.3.1. Semi-infinite formulation 

For example, let us return to the equivalent formulations 

f ( RR (m ) (U) ) or ( RS (m ) (U) ), where the slack variable α has been

ntroduced, i.e. we write ( RR (m ) (U) ) as 

min R 
m ≥

x ∈ X, α∈ R m 
α

s.t. α ≥ r (x, u ) for i = 1 , . . . , m, ∀ u ∈ U, 
i i 

110 
nd analogously for ( RS (m ) (U) ). Both formulations constitute semi- 

nfinite multiobjective optimization problems. Unfortunately, to the 

est of our knowledge no specific numerical algorithm for such a 

ype of problem is available, although it has been already analyzed 

rom a theoretical perspective, see for instance ( Chuong & Kim, 

014; Guerra-Vásquez & Rückmann, 2015 ) and further references 

herein. Of course, after scalarization, the semi-infinite multiobjec- 

ive optimization problem becomes a (parametric) standard con- 

ex semi-infinite optimization problem (SIP) which is then open 

o a variety of existing methods for convex SIPs. For a survey on 

emi-infinite programming, we refer to Stein (2012) or the more 

etailed book ( Goberna & López, 2001 ). More specifically, some 

umerical experience is reported in Auslender, Ferrer, Goberna, 

nd López (2015) , while modern versions of an exchange method 

nd a cutting surface method are covered in Mehrotra and Papp 

2014) and Okuno, Hayashi, Yamashita, and Gomoto (2016) . For the 

on-smooth case, more details are given in Pang, Lv, and Wang 

2016) . Further results on the (typically linear) rate of convergence 

f a cutting surface method can for example be found in Mehrotra 

nd Papp (2014) , while Still (2001) provides convergence rates for 

iscretization methods. For a very recent improved result, we fi- 

ally refer to the working paper ( Seidel & Küfer, 2020 ). 

.3.2. Improved inner polytopal approximation 

As a second alternative, let us mention the approach considered 

n Takeda et al. (2010) : Similar to the idea of selecting a random

nner polytopal approximation, it is suggested there that points 

 1 , . . . , u K are selected (in an optimal manner / randomly) in U . 

ased on these, the lower approximation ρi is used to approximate 

 i from below. For the single-objective case, a convergence analysis 

s provided in Takeda et al. (2010) , Section 3 , which shows that the

ptimal value converges in probability. The corresponding analysis 

an be extended to our setup, straightforwardly for scalarized in- 

tances, and also to the multiobjective case due to the fact that 

he approximation ρi is sandwiched between the inner polytopal 

pproximation and the true objective function. As mentioned, to 

eep focus of presentation, we prefer to leave rigorous mathemat- 

cal statements for future work. 

. Connection to existing approaches 

As already mentioned, other authors ( Drezner et al., 2006; Rivaz 

 Yaghoobi, 2013; Xidonas et al., 2017 ) have already studied robust 

egret approaches to solve uncertain multiobjective optimization 

roblems. However, all these approaches are based on the main 

dea to first scalarize the uncertain multiobjective optimization 

roblem by some scalarization technique and then to apply the 

ingle-objective robust regret approach. In our view, the main 

rawback of proceeding in this order is that it mixes the com- 

utational technique scalarization with the modelling paradigm 

ultiobjective optimization. Instead, we favor a clear separation 

etween problem modelling and problem solution, including a 

ransparent definition of what we understand as a solution. In the 

ollowing, we discuss in more detail these existing approaches. 

.1. Connection to Drezner et al. (2006) 

The approach by Drezner et al. in Drezner et al. (2006) can be 

een as a first step into multiobjective regret, introducing (deter- 

inistic) relative multiobjective regret for the first time. To be more 

recise, 

• Drezner et al. do not consider uncertainty, or, to fit within our 

setting, they assume U = { ̄u } to be a singleton; and, 
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• similiar to our approach, the authors work with the ideal point 

based relative regret as 

s i (x, ū ) = 

f i (x, ū ) − f ∗
i 
( ̄u ) 

f ∗
i 
( ̄u ) 

, 

for each objective function f 1 (x, ū ) , . . . , f m 

(x, ū ) individually. 
• By applying a specific Chebyshev scalarization with weight vec- 

tor w equal to the all-ones vector and using the ideal point 

0 (which is indeed the ideal point for s in the given setup, 

whereas 0 becomes a utopian point in the uncertain setup), the 

authors finally suggest to consider the single-objective robust 

optimization problem 

min 

x ∈ X 
max 

i =1 , ... ,m 

s i (x, ū ) . 

• The authors do not consider different weight vectors and thus 

obtain only a single weakly efficient point. 8 

The insight that this approach indeed yields a weakly efficient 

olution is of course only possible within our setup and thus not 

iscussed by the authors. 

.2. Connection to Xidonas et al. (2017) 

An approach, which is in our opinion closer to ours than the 

ne of Drezner et al. (2006) is due to Xidonas et al. (2017) . It

an be seen as a second step, adding uncertainty to the approach 

y Drezner et al. However, instead of considering general uncer- 

ain setups, in Xidonas et al. (2017) the authors focus on the spe- 

ial case where the uncertainty set is a finite set of scenarios U = 

 u 1 , . . . , u p } ; this setup is later extended to ellipsoidal uncertainty

n Li and Wang (2020) . Furthermore, our understanding of the au- 

hors’ framework is that they also focus solely on linear multiob- 

ective optimization problems. Xidonas et al. apply the weighted 

um scalarization technique prior to the regret formulation in or- 

er to work with the single-criterion regret. To be more precise, 

• the authors consider the same approach as in Drezner et al. 

(2006) , except for the scalarization technique. For each i , let 

˜ s i (x, u ) again denote the individual regret as introduced in 

Remark 2.2 . Then the corresponding scalarized single-objective 

function reads as 

m ∑ 

i =1 

λi ̃  s i (x, u ) . 

Applying the classical robust counterpart to this objective func- 

tion, they finally introduce the robust scalarized relative regret 

optimization problem: 

min 

x ∈ X 
max 
u ∈ U 

m ∑ 

i =1 

λi ̃  s i (x, u ) . 

• To obtain different optimal solutions of the single-objective for- 

mulation, they suggest to vary the scalarization parameter λ. 
• As the authors do not discuss any (robust regret) multiobjective 

formulation or solution concept thereof, they simply take the 

single-objective optimal solutions as solutions to the original 

question. This is in strong contrast to our approach which starts 

by introducing a corresponding multiobjective formulation of 

robust regret together with the usual concepts of (weakly) effi- 

cient solutions. 

Without further strong assumptions on the uncertainty (like e.g. 

eparability) it cannot be expected that any solution obtained by 

he authors’ approach is (weakly) efficient in our setting. 
8 It needs to be mentioned that one particular weakly efficient solution was suf- 

cient for the specific application in Drezner et al. (2006) . 

s

r
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.3. Connection to Rivaz and Yaghoobi (2013, 2018) ; Rivaz et al. 

2016) 

Finally, the following approach by Rivaz et al. in Rivaz and 

aghoobi (2013) is again motivated by a priori scalarization. For 

onvenience, we have translated their maximization approach 

with corresponding adjusted definition of regret) to our notation. 

• The approach in Rivaz and Yaghoobi (2013) is similar to that 

of Drezner et al., but focuses on a linear multiobjective opti- 

mization problem with interval uncertainty for the coefficients 

of the objective functions. In Rivaz and Yaghoobi (2013) , the au- 

thors aim to find necessarily / possibly efficient solutions of the 

linear multiobjective optimization problem under interval un- 

certainty. 
• Translated to our notation, the authors consider the same defi- 

nitions as we do, but instead of first setting up a multiobjective 

regret optimization problem, the authors directly start with a 

scalarized formulation: 

min 

x ∈ X 
max 
u ∈ U 

max 
1 ≤i ≤m 

r i (x, u ) . 

This represents the minimization of the robustified scalarized 

regret, where a Chebyshev scalarization with ideal point 0 (for 

r(x, u ) ) has been used together with the weight vector of all- 

ones. 
• Since for the Chebyshev scalarization we can swap robustifica- 

tion and scalarization (see Proposition 2.4 ), this can be equiva- 

lently reformulated as 

min 

x ∈ X 
max 
1 ≤i ≤m 

max 
u ∈ U 

r i (x, u ) . (7) 

The same observation was made by the authors in Rivaz and 

Yaghoobi (2013) , however without explicitly noting that this in- 

deed allows to swap the order of robustification and scalariza- 

tion in general, as observed in Section 2.3 . 

In (7) the authors first robustify then scalarize by Chebyshev 

calarization, however, without referring to a corresponding multi- 

bjective regret optimization setup. Nevertheless, Problem (7) can 

e seen as another step towards introducing a kind of scalarized ro- 

ust regret for the first time, of course limited to the special setting 

onsidered in Rivaz and Yaghoobi (2013) . 

The same uncertain multiobjective optimization problem as 

n Rivaz and Yaghoobi (2013) is considered in the two follow- 

p papers ( Rivaz & Yaghoobi, 2018; Rivaz et al., 2016 ), with the

ame aim of identifying possibly or necessarily efficient solutions. 

ithin this setup, the authors introduce weights in Rivaz et al. 

2016) and suggest a robustified weighted Chebyshev scalarized 

9 

egret formulation. Based on Proposition 2.4 , we can now recog- 

ize that their formulation is actually equivalent to a weighted 

hebyshev scalarized multiobjective robust regret formulation. In 

heir most recent paper ( Rivaz & Yaghoobi, 2018 ), they start with a 

wapped order of scalarization and robustification and replace the 

obustified weighted Chebyshev scalarized regret by a weighted- 

um scalarized robust regret (see their Eq. (10) ), i.e. in our no- 

ation a weighted-sum scalarized multiobjective robust regret. In 

oth Rivaz and Yaghoobi (2018) ; Rivaz et al. (2016) , the authors 

rovide sufficient conditions that optimal solutions to their single- 

bjective optimization problems are indeed possibly / necessarily 

weakly) efficient solutions. As the connection to a multiobjec- 

ive robust regret formulation has not been recognized in Rivaz 

nd Yaghoobi (2018) ; Rivaz et al. (2016) , no statement concerning 

weak) efficiency could be made. 
9 As reference point for the scalarization, some arbitrary image point is used in- 

tead of the ideal or a utopian point. Therefore, the authors also slightly modify the 

egret function. 
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Table 1 

Optimal solutions and optimal values for c and w for the example in Fig. 2, 

with U = {(-1, 0), (1, 0), (0,-1), (0, 1)}. 

u (−1 , 0) (1,0) (0 , −1) (0,1) 

c ∗(u ) 3 19 7 14 

x ∗ for c s − f − c − d − t s − b − t s − f − c − d − t s − f − c − t

w 

∗(u ) 5 8 3 10 

x ∗ for w s − a − c − t s − b − t s − f − b − t s − a − c − t
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Note that several of these results, more precisely, Rivaz et al. 

2016) , Theorems 3, 5 and 6, as well as Rivaz and Yaghoobi (2018) ,

heorems 4.1, 4.5 and 4.6 become straightforward corollaries in our 

etup. Connections are thus established between possibly / neces- 

arily (weakly) efficient solutions and our multiobjective robust re- 

ret framework. Further, it becomes apparent that the mentioned 

heorems just differ in the scalarization techniques, thus allowing 

or a unification of these results. Finally, this also shows that their 

ramework can be easily generalized to the non-linear setup. 

. An illustrative example 

To illustrate the techniques and theoretical aspects covered in 

his paper, we consider an illustrative example motivated by the 

outing of airplanes subject to uncertain flight costs on the one 

and and to uncertain weather conditions on the other hand. This 

etting was introduced in Kuhn and Raith (2010) and investigated 

umerically in Kuhn, Raith, Schmidt, and Schöbel (2016) . 

In this specific application, a detailed description of the route 

he plane will take needs to be determined a priori. The routing is 

riven by a trade-off between efficiency and risk, due to possible 

urbulence or hazardous weather conditions. Therefore the aircraft 

oute guidance problem can be interpreted as a biobjective short- 

st path problem on a network representing a discretized airspace. 

ore specifically, we consider a graph G (V, E) , with vertices v ∈ V 

epresenting grid cells in a discretized airspace and edges e ∈ E

epresenting potential flight routes between these grid cells within 

he network. We highlight two vertices: the origin s ∈ V (source) 

nd the destination t ∈ V (sink). For the uncertainty set U ⊂ R 

| E| let

s introduce the corresponding uncertain functions c : E × U → R ≥
or the costs and w : E × U → R ≥ for the uncertain weather expo-

ure for all connections within the network, as introduced in Kuhn 

t al. (2016) . Further, let u ∈ U be some fixed scenario and let x

enote the decision variable, i.e. some path from s to t . The total 

osts c(x, u ) and the weather exposure w (x, u ) for path x in sce-

ario u are then given as 

(x, u ) = 

∑ 

e ∈ x 
c(e, u ) and w (x, u ) = 

∑ 

e ∈ x 
w (e, u ) . 

ith X denoting the finite set of all paths from s to t , we obtain

he uncertain biobjective shortest path problem: 

in 

R 
2 ≥

x ∈ X 

(
c(x, u ) 
w (x, u ) 

)
. 

he multiobjective robust regret formulation now reads as follows, 

f. ( RR (m ) (U) ): 

in 

R 
2 ≥

x ∈ X 
R (x ) = min 

R 
2 ≥

x ∈ X 

(
max u ∈ U c(x, u ) − c ∗(u ) 

max u ∈ U w (x, u ) − w 

∗(u ) 

)
. 

or illustration purposes, let us specify a toy instance of this prob- 

em, i.e. we consider the graph displayed in Fig. 2 together with its 

dge labels c and w , which are chosen to be linear in u ∈ U ⊆ R 

2 . 

.1. Finite set of scenarios 

First, we consider a finite set of scenarios, e.g. let U = 

 (−1 , 0) , (1 , 0) , (0 , −1) , (0 , 1) } . As a first step, we compute the op-

imal values c ∗(u ) = min x ∈ X c(x, u ) and w 

∗(u ) = min x ∈ X w (x, u ) for

very u ∈ U . The results as well as the corresponding optimal solu- 

ions are collected in Table 1 . In our example, the set X consists of

ll 13 paths from s to t , denoted as 
112 
 = { x 1 , x 2 , . . . , x 13 } 
:= { (s − a − c − d − t) , (s − a − c − t) , (s − a − d − t) , 

(s − f − c − t) , (s − f − c − d − t) , (s − f − b − c − d − t) , 

(s − f − b − c − t) , (s − f − b − t) , (s − f − b − e − t) , 

(s − b − t) , (s − b − e − t) , (s − b − c − d − t) , (s − b − c − t) } 
or the worst case regret, we now compute R c (x ) := 

ax u ∈ U { c(x, u ) − c ∗(u ) } as well as R w 

(x ) = max u ∈ U { w (x, u ) −
 

∗(u ) } for every x ∈ X . The results are collected in Table 2 . The set

 (R c (x ) , R w 

(x )) | x ∈ X} as well as the non-dominated points are

llustrated in Fig. 3 and were obtained by direct comparison. We 

btain Y N 
R (·,U) 

= { (5 , 17) , (7 , 13) , (9 , 7) , (10 , 5) } and the correspond-

ng efficient paths x 3 = (s − a − d − t) , x 5 = (s − f − c − d − t) ,

 4 = (s − f − c − t) and x 10 = (s − b − t) . 

.2. Polytopal uncertainty set 

As a second step, we now consider the polytopal uncer- 

ainty set U = { u ∈ R 

2 | ‖ u ‖ 1 ≤ 1 } . Since c and w are linear

n u for every path, it is sufficient to analyse the vertices 

 (−1 , 0) , (1 , 0) , (0 , −1) , (0 , 1) } due to Proposition 3.8 . Thus, we

gain obtain the results in Table 1 . Moreover, the values R c (x ) and

 w 

(x ) for every x ∈ X are exactly those collected in Table 2 while

ig. 3 again shows the resulting non-dominated points. 

.3. Convex uncertainty set and inner and outer polytopal 

pproximation 

In the third step, we consider a more general, i.e. convex, uncer- 

ainty set, e.g. U := { u ∈ R 

2 | ‖ u ‖ 2 ≤ 1 } . Accordingly, we choose the

et U 

i := { u ∈ R 

2 | ‖ u ‖ 1 ≤ 1 } as a polyhedral inner approximation

f U , and U 

o := { u ∈ R 

2 | ‖ u ‖ ∞ 

≤ 1 } as a polyhedral outer approx-

mation of U . For these specific approximations, the quality of the 

pproximation is still rather low, as the computation of the corre- 

ponding Hausdorff distances shows: 

d H (U 
i , U) = d H ( con v { (−1 , 0) , (1 , 0) , (0 , −1) , (0 , 1) } , { u | ‖ u ‖ 2 ≤ 1 } ) ≈ 0 . 29 

 H (U 
o , U) = d H ( con v { (−1 , −1) , (−1 , 1) , (1 , 1) , (1 , −1) } , { u | ‖ u ‖ 2 ≤ 1 } ) ≈ 0 . 41

s can be seen in Table 2 , the set of non-dominated 

oints for the inner approximation reads as Y N 
R (·,U i ) = 

 (5 , 17) , (7 , 13) , (9 , 7) , (10 , 5) } . To obtain the set of non-dominated

oints for the outer approximation, we proceed analogously 

nd obtain c ∗(u ) = min x ∈ X c(x, u ) , w 

∗(u ) = min x ∈ X w (x, u ) and

he corresponding optimal solutions for every u ∈ V (U 

o ) := 

 

(−1 , −1) , (−1 , 1) , (1 , 1) , (1 , −1) } . The result can be found 

n Table 3 . The values R o c (x ) := max u ∈ U o { c(x, u ) − c ∗(u ) } as

ell as R o w 

(x ) = max u ∈ U o { w (x, u ) − w 

∗(u ) } for every x ∈ X

ased on the outer approximation U 

o = 

{
u ∈ R 

2 | ‖ u ‖ ∞ 

≤ 1 
}

f U are collected in Table 4 . We finally get Y N 
R (·,U o ) = 

 (7 , 20) , (11 , 12) , (14 , 7) } with corresponding efficient paths

 3 = (s − a − d − t) , x 8 = (s − f − b − t) and x 4 = (s − f − c − t) .

he set { (R o c (x ) , R o w 

(x )) | x ∈ X} as well as the non-dominated

oints are illustrated in Fig. 4 . According to Proposition 3.5 which 

ields 

 

N 
R (·,U) ⊂

((
Y N 

R (·,U i ) + R 

m 

≥
) \ (Y N R (·,U o ) + R 

m 

> 

))
∩ B R (U 

i , U 

o ) , 
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Fig. 2. Illustrative example graph for the biobjective shortest path problem. The cost function is displayed as an edge label in black and the weather exposure as an edge 

label in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

The values R c (x ) and R w (x ) for every x ∈ X , based on U = { (−1 , 0) , (1 , 0) , (0 , −1) , (0 , 1) } and 

the optimal values in Table 1 . Bold values denote non-dominated points. 

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 

R c (·) 13 15 5 9 7 21 19 9 11 10 17 16 20 

R w (·) 15 7 17 7 13 15 11 9 13 5 7 16 8 

Fig. 3. The dominated points { (R c (x ) , R w (x )) | x ∈ X} marked by black dots and the 

non-dominated points Y N 
R (·,U) 

illustrated by red circles. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

w

o

T

i

Table 3 

Optimal solutions and optimal values for the outer approximation U o = { u ∈ 
R 

2 | ‖ u ‖ ∞ ≤ 1 } . 
u (−1 , −1) (−1 , 1) (1,1) (1 , −1) 

c ∗(u ) -4 8 19 15 

x ∗ for c s − f − c − d − t s − f − b − t s − b − t s − a − d − t

w 

∗(u ) -1 5 11 5 

x ∗ for w s − f − b − t s − a − c − t s − b − t s − b − t

o

d

s

M

e

c

t  

[

7

t

e

(

w

u

e can determine a region where the true non-dominated set 

f the robust regret optimization problem has to be located. 

he corresponding visualization of this region can be found 

n Fig. 5 . Successively improving the quality of the inner and 
Table 4 

R o 
k 
(x ) for every k ∈ { c, w } and x ∈ X base{

u ∈ R 2 | ‖ u ‖ ∞ ≤ 1 
}

of U . Bold values denote non-

x 1 x 2 x 3 x 4 x 5 x 6 x

R o c (·) 17 22 7 14 13 29 2

R o w (·) 17 10 20 7 14 15 1

113 
uter approximation then enables us to identify the true non- 

ominated set: Since the assumptions in Theorem 3.12 are 

atisfied, the volume of the sandwiching set shrinks to 0. 

oreover, since the mapping x �→ R (x, U) is bijective, we can 

ven identify the corresponding efficient paths. The true effi- 

ient paths and the corresponding non-dominated points even- 

ually read as [ x 10 , (12 . 63 , 5 . 71)] , [ x 4 , (10 . 43 , 7)] , [ x 8 , (9 . 24 , 9 . 06)] ,

 x 5 , (8 . 63 , 13 . 06)] , [ x 3 , (5 . 38 , 17 . 39)] . 

. Conclusion and outlook 

We have introduced a novel consistent framework for mul- 

iobjective robust regret, which can be seen as an extension of 

arly approaches in Drezner et al. (2006) , Rivaz and Yaghoobi 

2013) and Xidonas et al. (2017) . In contrast to these, our frame- 

ork is not limited to linear objective functions and/or finite 

ncertainty sets, or linear interval uncertainty. Furthermore, we 
d on the outer approximation U o = 

dominated points. 

 7 x 8 x 9 x 10 x 11 x 12 x 13 

1 11 14 17 23 18 29 

4 12 17 8 9 21 12 
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Fig. 4. The dominated points in { (R o c (x ) , R o w (x )) | x ∈ X} marked by black dots and 

the corresponding non-dominated points Y N 
R (·,U o ) illustrated by red circles. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 5. Illustrating the set Y N 
R (·,U) 

(black circles) as a subset of the sandwiching set ((
Y N 

R (·,U i ) + R 
m 
≥
) \ (Y N 

R (·,U o ) + R 
m 
≥
))

∩ B R (U i , U o ) . 
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onsistently work in a multiobjective setting and introduce a 

ultivariate (relative) regret based on a clear separation between 

roblem modelling and problem solution, whereas the earlier 

entioned approaches first scalarize the optimization problem 

o be able to apply the concept of single criterion robust regret. 

n addition, we observe that Chebyshev scalarization actually 

ommutes with robustification in the context of this paper. For 

he multiobjective regret framework, we gain several interesting 

nsights concerning continuity of the objective functions with 

espect to the uncertainty set; results which are also valid within 

he classical framework of (pointwise) robust multiobjective pro- 

ramming. We especially analyze the impact of the uncertainty on 

umerical tractability by investigating all common cases for the 

ncertainty. For approximations of the non-dominated set in the 

ase of general convex uncertainty sets, we introduce inner and 

uter polytopal approximations. Finally, we show that the effort to 

ompute reasonable approximations to the set of non-dominated 

oints for general convex U grows linearly with the number of ver- 
114 
ices of the polytopal approximation to U in the finite setting and 

an still be computed in polynomial time in the continuous setting. 

Finally, we would like to suggest some further research op- 

ortunities. From a modeling perspective, first of all, alternatives 

o the pointwise approach for robust multiobjective optimization 

eed to be considered, cf. Section 1.1 for a list of alternative con- 

epts. Second, set valued concepts for f ∗(u ) could be investigated, 

.g. by replacing the ideal point f ∗(u ) by the set Y N 
f (·,u ) . Third, our

nalysis is focused on multiobjective optimization, i.e. vector opti- 

ization with ordering cone R 

m ≥ . It is currently open how regret 

ould be extended to a general vector optimization problem un- 

er uncertainty. Last but not least, the framework of multiobjective 

tochastic regret as for instance considered in Xu et al. (2020) also 

onstitutes a promising field for future research. 

From an algorithmic point of view, it currently remains open 

hich approach is the most suitable one for general convex uncer- 

ainty. As promising alternatives to inner and outer polytopal ap- 

roximations, we have mentioned semi-infinite programming and 

he improved inner approximating, which both deserve further in- 

estigations in our context. 
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