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ABSTRACT
Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin
lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-
derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A
recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein MYD88,
Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients. We therefore screened
the potential of MYD88L265P-derived peptides to elicit cytotoxic T cell responses as tumor-specific
neoantigens. Based on in silico predictions, we identified potential MYD88L265P-containing HLA ligands for
several HLA class I restrictions. A set of HLA class I MYD88L265P-derived ligands elicited specific cytotoxic T
cell responses for HLA-B�07 and -B�15. These data highlight the potential of MYD88L265P mutation-specific
peptide-based immunotherapy as a novel personalized treatment approach for patients with MYD88L265PC

NHLs that may complement pharmacological approaches targeting oncogenic MyD88 L265P signaling.

Abbreviations: aAPC, artificial antigen-presenting cell; APC, antigen-presenting cell; CFSE, carboxyfluorescein diace-
tate succinimidyl ester; CIP, cancer immunoguiding program; CLL, chronic lymphocytic leukemia; DLBCL, diffuse
large B cell lymphoma; E/T, effector to target ratio; FAM, fluorescein; Fmoc/tBu, 9-fluorenylmethyl-oxycarbonyl/tert-
butyl; HBDs, healthy blood donors; HIV, human immunodeficiency virus; IOL, intraocular lymphoma; L265P, Leu265-
Pro; LPL, lymphoplasmacytic lymphoma; NHL, non-Hodgkin lymphoma; PBMCs, peripheral blood mononuclear cells;
PCNHL, primary cerebral non-Hodgkin’s lymphoma; PHA, phytohaemagglutinin; TLR, Toll-like receptor; WT, wild-
type (i.e., non-mutated sequence); YAK, yakima yellow
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Introduction

The immune system can recognize and to some extent eradi-
cate tumor cells.1,2 Nevertheless, this antitumor response is
often inefficient.3 Antigen-specific immunotherapy holds the
potential to induce and boost clinically effective anticancer T
cell responses4 and might be used to guide and increase the
specificity of cancer immunotherapy in future combination tri-
als,5 especially when combined with newly available immune
checkpoint inhibitors.6 For this purpose, the exact knowledge
of tumor-associated or tumor-specific immunogenic T cell epit-
opes is crucial. Tumor-specific neoepitopes, derived from pro-
tein-altering mutational events like missense mutations, may
be perceived as foreign by the immune system and elicit
tumor-specific T cell immunity. 7,8

Being tumor-specific, such neoantigens promise high speci-
ficity but are largely patient-specific, and therefore, hard to
identify and mainly singular events in a patient cohort.
Recurrent mutations could overcome this problem of patient-
specificity and could be targeted in broadly applicable immuno-
therapeutic treatments of different types of cancer.

A recurring somatic and oncogenic driver mutation of the
Toll-like receptor (TLR) adaptor protein MYD88, Leu265Pro
(L265P) was identified in up to 90% of certain non-Hodgkin
lymphoma (NHL) subtypes.9-15 NHLs like diffuse large B cell
lymphoma (DLBCL) or chronic lymphocytic leukemia (CLL) are
the cause of death for more than 199,000 patients annually
world-wide.16 The success of established therapies varies strongly
between these diseases. Whereas other DLBCL subtypes can be
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effectively treated, the activated B cell-like lymphoma subtype,
for example, is characterized by a less than 40% overall survival
following standard therapy.17 For CLL, there is currently no
curative treatment and for some patients aggressive chemothera-
pies or allogenic stem cell transplantations are required.18 There-
fore, novel treatments are needed to further improve clinical
outcome in these patients. Immunotherapy based on peptide-
vaccines or adoptive immune cell transfers might represent ideal
treatments, since they are well tolerated and have fewer side
effects than chemotherapeutic agents. Growing evidence demon-
strates that therapeutic peptide-vaccines can induce specific
immune responses, impact clinical outcome19 and even prolong
overall survival in cancer patients.4 Besides, peptide-vaccines
experimental cancer immunotherapy using adoptive transfer of
antigen-specific or genetically engineered T cells20,21 as well as
antigen-presenting dendritic cells22 showed also high efficiency
in different studies. Furthermore, vaccines may potentially yield
a sustained antitumor effect by inducing immunological mem-
ory.23 Thus, the identification of cancer-associated and cancer-
specific antigens offers a great variety of treatment possibilities in
cancer patients.

As MYD88L265P is a widely occurring and tumor-specific
mutation, MYD88L265P-based immunotherapy might constitute
an ideal alternative or complementation to ongoing attempts to
target this mutation pharmacologically24 in NHLs. We, there-
fore, screened the potential of MYD88L265P-containing peptides
for CD8C T cell-mediated immunotherapy and identified
potential HLA ligands encompassing theMYD88L265P mutation
for several HLA class I restrictions based on in silico predic-
tions. We focused on three HLA-B�07-restricted peptides and

one HLA-B�15-restricted peptide to examine the immunoge-
nicity of these tumor-specific neoantigens. The present study
shows that MYD88L265P-derived peptides can induce mutation-
specific and functional immune responses in vitro, which may
pave the way for developing new personalized immunothera-
peutic strategies with broad applicability for different NHLs.

Results

In silico prediction yields several likely MYD88L265P-derived
HLA class I ligands

We identified 23 different MYD88L265P-derived peptides pre-
dicted by SYFPEITHI and/or NetMHC 3.4 to bind one or more
HLA class I allotypes with a score of IC50� 500 nM for
NetMHC 3.4 or with � 50% of the maximum allotype-specific
score for SYFPEITHI. These algorithms predicted 8, 15, and 8
peptides restricted by 5, 17 and 5 different HLA-A, -B, and -C
allotypes, respectively (Table S2). Notably, only four ligands
were concordantly designated as ligands of the same HLA allo-
type by both algorithms (Fig. 1). This is mainly due to a differ-
ent set of available HLA allotypes for the two algorithms (e.g.,
SYFPEITHI cannot predict 12mer peptides or HLA-B�30:01-
restricted peptides).25-29 For effective, on-target immunother-
apy the identification of immunogenic tumor-specific antigens
that do not elicit cross-reactivity with benign tissue is of para-
mount importance.30 Therefore, we aimed at identifying
mutated peptides with increased binding affinities compared
with their non-mutated counterparts. This was realized by pre-
dicting the score for every potential mutation-derived ligand,

Figure 1. Prediction of MYD88L265P-derived HLA class I ligands. 50 MYD88L265P-derived 8- to 12-mer peptides were scored by the online prediction tools SYFPEITHI and
NetMHC 3.4, as well as an extended in-house database. Peptides with NetMHC 3.4 IC50� 500 nM were defined as binders (region left of the dotted line). SYFPEITHI scores
are displayed as percent of the maximum score for the respective HLA allotype. The threshold for binders is defined as � 50% of the maximum score (above the dotted
line). For some HLA:peptide combinations scoring was possible with only one of the prediction tools due to limited availability of predictors. The figure illustrates the pre-
dicted ligands for HLA-A and -B allotypes. Fold-change ratios in binding scores of mutated peptides compared with the corresponding WT peptides are indicated by the
size of the respective dot: large dots indicate an at least 2-fold better score, mutated ligands illustrated by small dots exhibit no increased binding score in comparison to
their corresponding WT ligand. Out of 50 unique peptide sequences, 23 were scored as potential HLA class I ligands. Four ligands were concordantly designated as ligands
of the same HLA allotype by both algorithms with three of them having an at least 2-fold higher score as their corresponding WT peptide. The black dots indicate the pep-
tides which were tested in aAPC-based in vitro primings in HBDs or CLL patients. Abbreviations: max., maximal.
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as well as the score for the corresponding WT peptide on the
same HLA class I allotype. We highlighted 16 of the 52 pre-
dicted mutated peptide:HLA combinations, which have a more
than 2-fold higher predicted binding affinity compared with
their non-mutated corresponding peptides. Among these, we
identified two MYD88L265P-derived gain-of-anchor antigens
mutated in their P2-anchor position. These two peptides
(P1 and P2) were therefore preferentially selected for further
characterization and immunogenicity testing. In total, all 18
8–11mer peptides predicted as potential ligands for HLA class I
were synthesized and subjected to functional characterization.
For 13/18 predicted HLA class I ligands PBMCs of HLA-
matched MYD88L265P-mutated NHL patients were available
and could therefore be tested in IFNg ELISPOT assays for
spontaneous memory T cell responses. To verify the ability of
the predicted HLA ligands to indeed bind to the respective
HLA class I allotypes, 10 of the predicted peptides were ana-
lyzed in in vitro monomer refolding assays. The peptides for
the refolding experiments were selected according to their pre-
dicted binding score as well as available HLA molecules. Four
peptide:HLA complexes (P1B�07, P2B�07, P3B�07, and P4B�15)
were refolded successfully in vitro (Table S2). The successfully
refolded HLA–peptide complexes were all used in experiments.

Spontaneous memory T cell responses targeting
MYD88L265P-derived peptides are very infrequent in NHL
patients

Functional characterization of the predicted candidate
HLA class I MYD88L265P-derived NHL-specific ligands was
performed by 12-d recall IFNg ELISPOT assays using PBMCs
obtained from MYD88L265P-mutated and MYD88WT patients

(Table S1). In one (out of 22 tested) MYD88L265P-mutated
NHL patients, memory T cell responses targeting two different
MYD88L265P-derived HLA class I ligands were detected by
IFNg ELISPOT (Fig. 2). Importantly, one of the peptides (P5)
is a predicted ligand for both, HLA-B�15 and -B�40, which are
both expressed by the patient. Therefore, we could not resolve
which peptide:HLA combination is responsible for the
observed IFNg secretion. Importantly, no IFNg secretion was
observed for any tested ligand in MYD88WT patients. The fre-
quency of memory T cell responses in 1/22 MYD88L265P-
mutated NHL patients appears low, but it is important to be
aware of the HLA allotype-specific frequencies. The peptide P1,
which is among others analyzed in further immunogenicity
experiments, leads to a detectable memory T cell response in 1/
3 (33%) tested HLA-matched MYD88L265P-mutated NHL
patients. For the other positive peptide P5 memory T cell
responses could be detected in 1/4 (25%) HLA-B�15 patients
and in 1/3 (33%) HLA-B�40 patients. Furthermore, only two-
digit HLA typings were available for the NHL patients. There-
fore, it is possible that a negative response is due to a different
four-digit HLA restriction of the tested peptide and the HLA
type of the patient. Table S3 summarizes all tested
MYD88L265P-derived HLA class I ligands.

Generation of MYD88L265P-specific T cells in vitro from
naive T cells of CLL patients and HBDs

To assess whether MYD88L265P-derived peptide-specific T cell
responses can be induced from naive T cells in vitro, we isolated
CD8C T cells from six HLA-B�07C and three HLA-B�15C HBDs
as well as from two HLA-B�07C MYD88WT CLL patients. We per-
formed artificial antigen-presenting cell (aAPC)-based in vitro

Figure 2. Spontaneous memory T cell responses are detectable in a leukemia patient. The presence of memory T cell responses in leukemia and lymphoma patients was
analyzed using 12-d recall IFNg ELISPOT assays. (A) In a single (out of 22 tested) MYD88L265PC NHL patients (CLL-05-R) IFNg secretion was observed after stimulation with
the MYD88L265P-derived peptides P5B�15/B�40 (HQKRPIPI) and P1C�03 (RPIPIKYKAM). (B) Representative example of a MYD88L265PC patient (CLL-03-R) where no IFNg secre-
tion was observed after stimulation with the MYD88L265P-derived peptides P5B�15 (HQKRPIPI) and P1C�03 (RPIPIKYKAM). An EBV epitope mix containing the frequently rec-
ognized peptides BRLF1 109–117 YVLDHLIVV (HLA-A�02) and EBNA3 247–255 RPPIFIRRL (HLA-B�07) served as positive control. Benign-tissue derived peptide DDX5
YLLPAIVHI (HLA-A�02) served as negative control. The dotted line indicates the 3-fold number of spot forming unit of the negative control. Error bars indicate § SEM of
two independent replicates. Abbreviations: SFU, spot forming unit; neg., negative; pos., positive; SEM, standard error of the mean.
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priming using the three HLA-B�07-restrictedMYD88L265P-derived
peptides RPIPIKYKAM (P1B�07), RPIPIKYKA (P2B�07) and
SPGAHQKRPI (P3B�07) as well as theHLA-B

�15-restricted peptide
HQKRPIPIKY (P4B�15). Using HBD-derived CD8

C T cells, P4B�15-
tetramer-positive CD8C populations with frequencies of 1.50–
10.68% of viable cells were detected in 2/3 HBDs after priming
(Fig. 3A). For the HLA-B�07-restricted peptide P1B�07, we observed
tetramer-positive CD8C populations with frequencies of 0.47–
14.04% of viable cells in 6/6 HBDs (Fig. 3B). For P2B�07, 1/3 (33%)
HBDs showed a tetramer-positive CD8C population with a fre-
quency of 0.15% of viable cells (Fig. S1A). P3B�07-tetramer positive
CD8C populations with frequencies of 0.20–1.56% of viable cells
were detected in 3/4 HBDs (Fig. S1B). Notably, after aAPC-based
in vitro priming of CD8C T cells from MYD88WT B�07C CLL
patients without previous T cell reactivity for P1B�07 (as detected by

12-day recall IFNg ELISPOT assay and ex vivo tetramer staining),
we observed in 1/2 patients a population of 0.40% P1B�07-specific
CD8C T cells within the viable cells (Fig. 3C). No tetramer-positive
T cell populations >0.10% (>0.50%) were detectable in control
stainings with an HLA-B�07 (HLA-B�15)-tetramer containing a
control peptide. In ex vivo control stainings no tetramer-positive T
cell populations >0.01% were detectable. Furthermore, Peper
et al.31 demonstrated that T cell responses observed after three
rounds of aAPC-based stimulations were mediated by in vitro
primed naive T cells rather than by pre-existing memory T cells, as
short-time stimulation of the same PBMC did not result in the
detection of specific T cell populations. Collectively, all 4/4 (100%)
refolded MYD88L265P-derived peptides thus are able to efficiently
prime mutation-specific T cells in certain HLA contexts in HBDs
as well as in CLL patients.

Figure 3. Efficient in vitro generation of P4B�15- and P1B�07-specific CD8
C T cells from naive T cells of CLL patients and HBDs. Representative tetramer stainings of CD8C T

cells after three cycles of aAPC-based in vitro priming using CD8C T cells derived from HLA-matched HBDs primed with (A) the HLA-B�15-restricted peptide HQKRPIPIKY
(P4B�15) and (B) the HLA-B

�07-restricted peptide RPIPIKYKAM (P1B�07) as well as from HLA-matched MYD88WT CLL patient (CLL-05) primed with (C) the HLA-B�07-restricted
peptide RPIPIKYKAM (P1B�07): 1st column: tetramer staining of CD8C T cells primed with the MYD88L265P-derived peptide; 2nd column: control staining with HLA-matched
tetramer containing a non-relevant control peptide on CD8C T cells derived from the same population as T cells depicted in the 1st column; 3rd column: ex vivo tetramer
staining of CD8C T cells. In vitro primings with HBD-derived PBMCs were performed in six (P1B�07) and three (P4B�15) independent replicates, respectively. For the in vitro
priming with PBMCs of CLL patients two independent replicates were conducted. Abbreviations: neg., negative.
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MYD88L265P-specific T cells selectively recognize the
mutated epitopes and are multi-functional

To assess the functional potential of MYD88L265P-specific
CD8C T cells, the peptide-specific secretion of IFNg and
TNFa as well as the expression of the degranulation marker
CD107a were analyzed after stimulation with mutation-derived
peptides in comparison to the corresponding WT peptides.
P1B�07-specific CD8

C T cells of three different HBDs primed in
vitro with aAPCs secreted IFNg after stimulation with the pep-
tide P1B�07 but not after stimulation with the corresponding
WT peptide, as detected by IFNg ELISPOT assay (Fig. 4A) or
intracellular cytokine staining (Fig. 4B). P1B�07-specific CD8

C T
cells of two tested HBDs also showed an increased TNFa secre-
tion in response to the mutation-derived peptide, but not in
response to the corresponding WT peptide (Fig. 4C). More-
over, the P1B�07-specific CD8

C T cells of 1/2 donors expressed
the degranulation marker CD107a after stimulation with the
peptide P1B�07 (data not shown). P4B�15-specific CD8C T cells
showed IFNg as well as TNFa secretion after stimulation with
the peptide P4B�15 but not after stimulation with the respective
WT peptide (data not shown).

To investigate the possibility that the observed T cell
responses against the mutated MYD88L265P peptides resulted
from molecular mimicry, the MYD88L265P-derived peptides
were compared with proteins from microorganisms and
viruses. Sequence homology screens against prokaryotic and
virus protein sequences (using Smith–Waterman protein
searcher), identified no homologous sequences for the peptides
P1 (RPIPIKYKAM), P2 (RPIPIKYKA), P3 (SPGAHQKRPI)
and P4 (HQKRPIPIKY). Thus indicating that the detected
responses are not the result of cross-reacting microorganism-
or virus-specific T cells.

MYD88L265P-specific CD8C T cells elicit mutation-restricted
cytotoxicity

To examine peptide recognition and antigen-specific cell lysis of
P1B�07- and P4B�15-stimulated CD8C T cells, cytotoxicity assays
(VITAL assays) with in vitro primed effector cells of HBDs were
performed. The effector cells were polyclonal cell populations
with 0.12% and 0.74% frequencies of P1B�07- and P4B�15-specific
CD8C T cells, respectively (Fig. 5A, Fig. S2A). P4B�15-specific
CD8C T cells showed 17.9% (§1.2%) MYD88L265P-peptide-spe-
cific significant cell killing at an effector to target ratio (E/T) of
1:1 compared with 2.6% (§1.2%) of non-specific cell lysis of
unspecific effector cells against the same targets in three indepen-
dent replicates, respectively. The specific lysis showed E/T ratio
dependent characteristics with specific lysis decreasing with
reduced E/T ratios (Fig. 5C). P1B�07-specific CD8

C T cells specifi-
cally killed 11.4% (§1.7%) of MYD88L265P-loaded targets at an
E/T ratio of 0.7:1 in comparison to 2.1% unspecific lysis of unspe-
cific effector cells (Fig. S2C). These results demonstrated clearly
MYD88L265P-specificity and cytolytic potential of the in vitro
primed CD8C T cells.

Discussion

T cell based immunotherapy combined with immune checkpoint
modulation has enabled new treatment possibilities for a range of
solid tumors.32-35 Furthermore, the clinical investigation of T cell
based immunotherapy for hematological malignancies has made
significant progress over the past years.36,37 Specific anticancer
immune responses could be improved and guided further by anti-
gen-specific immunotherapy. To this end, the identification and
exact knowledge of immunogenic tumor-specific as well as tumor-
associated T cell epitopes is essential.8,38 In NHL, a multitude of

Figure 4. Functionality and specificity of MYD88L265P-specific T cells. Functionality and specificity of MYD88L265P-specific CD8C T cells were analyzed by (A) IFNg ELISPOT
assay or (B, C) intracellular cytokine staining. Both assays showed increased production of IFNg or TNFa after stimulation with the mutation-derived peptide (P1B�07) in
comparison with the corresponding WT peptide (P1WT). Representative examples of two different donors are shown. The frequency of P1B�07-specific CD8

C T cell popula-
tions was 2.69% (A) and 0.40% (B and C), respectively, as detected by tetramer staining (not shown). Error bars indicate § SEM of two independent replicates. Abbrevia-
tions: SFU, spot forming unit; neg., negative; pos., positive; SEM, standard error of the mean.
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studies have examined tumor-associated antigens, and identified
an array of promising targets.39-41 Tumor-specific neoantigens,
which are derived from protein-altering mutational events, are
being viewed as the most attractive targets of T cell based immuno-
therapy because they may be recognized as foreign by the immune
system and can indeed provoke tumor-specific T cell immunity. 7,8

Mutations in the nucleophosmin 1 gene, which are among the
most common molecular alterations in acute myeloid leukemia,
give rise to immunogenic peptides, which elicit spontaneous T cell
responses in patients.42 Furthermore, patients with immune
responses to these peptides showed an improved overall survival.43

For these reasons, the identification and characterization of further
mutation-derived HLA ligands for T cell based immunotherapy is
of great interest. The recurrent oncogenic driver mutation of the
TLR adaptor proteinMYD88, Leu265Pro (L265P) fulfills the crite-
ria of being tumor-specific yet widely occurring with up to 90% fre-
quency of different NHL subtype patients.9-15 In the present study,
we therefore screened peptides containing the L265P mutation
(MYD88L265P) for immunogenicity and thus as potential tools for
tumor-specific immunotherapy.

In a reverse immunological approach we predicted potential
MYD88L265P-derived HLA class I ligands. Two of these peptides
emerged as gain-of-anchor antigens carrying the mutation in
their P2-anchor position. Based on other studies, such peptides
have been proposed to be especially suited for immunotherapy
since their WT counterpart would not be bound by the same
HLA molecule.30

Out of 22 tested MYD88L265P-mutated NHL patients, only one
showed a weak preexisting immune response againstMYD88L265P-
derived epitopes.We analyzed all predicted binders on every HLA-
matched MYD88L265P-mutated NHL patient matching only the
two digit typing of patient and prediction to maximize the number
of possible tests and to account for the inaccuracy of the predic-
tions. Therefore, it is possible that a negative result in the IFNg ELI-
SPOT could be due to imprecise match with the four digit typing of

the predictions and tested patients. However, the allotype-specific
frequencies (25–33%) for detectable memory T cell responses in
MYD88L265P-mutated NHL patients are comparable to frequencies
described in previous studies (CLL, Myeloma). Furthermore, in
DLBCL, for example, mutations of genes controlling the immune
recognition by T cells have been described.13 However, the overall
survival was better in patients carrying the MYD88 mutation sug-
gesting thatMYD88-directed immune responses could be involved
in tumor rejection.44 Although this awaits formal proof, the
observed recall response could be taken as an indication that
L265P peptides can be naturally presented. Additionally, in vitro
aAPC-based priming in HBDs and CLL patients showed clearly
that a T cell response against MYD88L265P-derived peptides could
be effectively induced fromna€ıve T cells. The strong immunogenic-
ity of the mutation-derived peptides P1B�07 and P4B�15, as well as
the mutation-specificity of the peptide-specific CD8C T cells was
demonstrated by IFNg and TNFa secretion, expression of the
degranulation marker CD107a, and the specific cytotoxic activities
of the effector cells. These results demonstrated clearly that the
gain-of-function driver mutation12 MYD88L265P could be highly
immunogenic.We present evidence that peptide-loaded target cells
can be killed by MYD88L265P peptide-primed T cells with an effi-
ciency similar to other published studies.42,45,46 Nevertheless future
studies outside the scope of this screening approach should investi-
gate whether killing of cells naturally expressing WT vs. L265P-
mutated MYD88 is as effective. Should this indeed be the case,
MYD88L265P-based peptide vaccination, alone or in combination
with checkpoint inhibitors or additional immunogenic peptides,
could maybe be used to induce or boost effective antitumor
immune responses; as a complementation to current approaches
to targetMYD88L265P-mutated NHL pharmacologically at the level
of MyD88 dimerization47 or downstream Interleukin-1 receptor-
associated kinase, Bruton’s tyrosine kinase or TAK1.48 This could
either be done by vaccination of the patient using MYD88L265P-
derived peptides orMyD88L265P-encoding RNA;49 alternatively, for

Figure 5. MYD88L265P-selective cytotoxicity of P4B�15-specific effector cells. The MYD88L265P-specific cytotoxicity was analyzed in a VITAL cytotoxicity assay with CD8C

effector cells of in vitro primed cells of HBDs. (A, B) Tetramer staining of polyclonal effector cells one day before the VITAL assay determined the number of P4B�15-specific
effector cells in the (A) population of successfully P4B�15-primed CD8C T cells and in the (B) population of control cells primed with a HLA-matched non-relevant peptide.
These control cells were used as unspecific effectors for the determination of the unspecific lysis of target cells. (C) At an effector to target ratio of 1:1 P4B�15-specific effec-
tors (~) exerted 17.9% (§1.2%) MYD88L265P-specific and significant higher lysis of P4B�15-loaded autologous target cells in comparison to P4WT-loaded cells. P4B�15-unspe-
cific effectors (£) only caused 2.6% (§1.2%) unspecific lysis of the same targets. Results are shown for three independent replicates. Error bars indicate § SEM.
Abbreviations: SEM, standard error of the mean; n.s., not significant; � p > 0.05; �� p > 0.01; ��� p > 0.001.
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example if priming in the patient is suboptimal, na€ıve T cells could
be isolated, primed and expanded ex vivo and re-administered to
the patient; third, the transduction of non-specific T cells with TCR
a and b chains conferring specificity 50 for MYD88L265P peptide:
HLA complexes could be envisaged. Further investigations will be
necessary to fully explore and harness this potential.

In conclusion, our study shows that MYD88L265P can elicit
specific CD8C T cell responses and therefore may emerge as a
promising target for tumor-specific immunotherapy in a
variety of different NHL subtypes.

Materials and methods

Patients and blood samples

CLL, DLBCL, lymphoplasmacytic lymphoma (LPL), primary
cerebral NHL (PCNHL) or intraocular lymphoma (IOL)
patients were recruited at the Erasmus Medical Center Rotter-
dam, the Department of Hematology, Oncology and Stem Cell
Transplantation of the University Medical Center Freiburg, the
Department of Hematology and Oncology of the University
Hospital T€ubingen as well as at the University Eye Hospital
T€ubingen in collaboration with the Department of Pathology,
T€ubingen. Informed written consent was obtained in accor-
dance with the Declaration of Helsinki protocol. The study was
performed according to the guidelines of and approval by the
local ethics committees (373/2011BO2). Patient characteristics
are provided in Table S1. Peripheral blood mononuclear cells
(PBMCs) from patients as well as PBMCs from healthy blood
donors (HBDs) were isolated by density gradient centrifugation
(Biocoll, Biochrom GmbH, L 6113). PBMCs from patients were
cryopreserved and stored at -80�C until analysis in ELISPOT
assays. HBDs were recruited at the University Hospital
T€ubingen Blood transfusion unit and respective whole blood
obtained from blood donations.

MYD88L265P genotyping of cancer cells and HLA typing of
patients

For the identification of MYD88L265P-mutated CLL patients,
DNA of PBMCs was isolated with the QIAamp DNA Mini
Kit (Qiagen, 51304). Each 5 ml reaction consisted of 2.5 ml
of TaqMan Universal Master Mix II (life technologies,
4440047), oligonucleotides (0.5 mM of each primer GCA-
GACAGTGATGAACCTCAGGA and AAGGGCCTGATGC-
CAGC) from TIB MOLBIOL, 0.25 mM of each probe
(YAK-AGCGACCGATCCCCATCA-Q and FAM-AGC-
GACTGATCCCCATCAAGT-Q) and 10 ng of sample
DNA. The probes were labeled with the fluorescent dyes
yakima yellow (YAK) and fluorescein (FAM). The PCR was
performed in a QuantStudio 7 Flex instrument (life technol-
ogies, Carlsbad, California, USA) with the following condi-
tions: 95�C for 10 min, followed by 40 cycles of 95�C for
15 s and 60�C for 1 min. In a cohort of n D 456 CLL
patients, MYD88L265P mutation was detected in 10/456
specimens (2.2% MYD88L265PC CLL patients). In DLBCL,
PCNHL, IOL and LPL the MYD88L265P mutation was deter-
mined as described previously.51,52

The HLA typings were performed by the Department of
Hematology and Oncology, Tübingen and the German Red
Cross blood donation center NSTOB, Institute Dessau (accred-
ited by the European Federation for Immunogenetics). In total,
the MYD88L265PC patient cohort comprised 24 patients cover-
ing 11 different HLA-A and 14 HLA-B alleles. HLA typing for
HLA-C alleles was performed for 15 patients and revealed
seven different HLA-C alleles (Table S1).

Prediction of peptide binding to HLA class I alleles

To discover peptide targets, HLA-binding affinity was pre-
dicted across all possible 8- to 12-mer peptides encoded by the
MYD88L265P mutation by using the HLA-peptide binding pre-
diction algorithms NetMHC 3.4,26-28,53 SYFPEITHI29 and an
extended in-house database. This in-house database imple-
ments the NetMHC 3.4 prediction server as well as the latest
SYFPEITHI matrices which are regularly updated by the new-
est results generated in our department. For the predictions by
SYFPEITHI the threshold for binders was defined as 50% of
the maximum score for each HLA allotype. Peptides predicted
by NetMHC 3.4 with IC50<50 nM were considered strong
binders; peptides with IC50 values of 50–500 nM were consid-
ered weak binders. To verify the ability of the identified pepti-
des to indeed bind to the predicted HLA class I molecules
HLA:peptide monomers were produced.

Peptide and HLA peptide monomer synthesis

Peptides were synthesized using the automated peptide synthe-
sizer EPS221 (Abimed, Langenfeld, Germany) by applying
standard 9-fluorenylmethyl-oxycarbonyl/tert-butyl (Fmoc/tBu)
strategy.54,55 Purity was assessed by reversed phase HPLC
(e2695; Waters, Eschborn, Germany) and identity affirmed by
mass spectrometry. Lyophilized peptides were dissolved at
10 mg/mL in DMSO (WAK Chemie, WAK-DMSO) and fur-
ther diluted in bidestilled H2O. Biotinylated recombinant HLA
molecules, HLA:peptide monomers and fluorescent HLA:
peptide tetramers were produced as described previously.56,57

Amplification of peptide-specific T cells for IFNg ELISPOT
assays

PBMCs from patients were cultured as described previ-
ously.41,58 In brief, for CD8C T cell stimulation, PBMCs were
pulsed with 1 mg/mL per peptide 24 h after thawing and cul-
tured for 12 days, adding 5 ng/mL human IL-4 (PeproTech,
200–04) and 5 ng/mL human IL-7 (PromoKine, C-61712) on
day 0 and 1 as well as 2 ng/mL human IL-2 (R&D Systems,
202-IL) on day 3, 5, 7 and 9, respectively. Peptide-stimulated
PBMCs were analyzed by IFNg ELISPOT assays on day 12.

IFNg ELISPOT assay

IFNg ELISPOT assays were performed as described previ-
ously.59 In brief, 96-well nitrocellulose plates (Merck Millipore,
MSHAN4B50) were coated with 1 mg/mL IFNg mAb (Mab-
tech, 3420–3–250) and incubated overnight at 4�C. Plates were
blocked with 10% human serum for 2 h at 37�C. 2.5 – 5 £ 105
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cells/well of pre-stimulated PBMCs were pulsed with 1 mg/mL
peptide and incubated for 24 h. For IFNg ELISPOT assays
implementing CD8C effector cells obtained by aAPC-based in
vitro priming, autologous PBMCs depleted of monocytes and
CD8C T cells were used as antigen-presenting cells (APCs). For
this purpose, APCs were pulsed before the ELISPOT assay for
2 h with 2 mg/mL of the respective peptide. Secretion of IFNg
was detected using an ELISPOT kit (Mabtech, 3420–2A)
according to manufacturer’s instructions. Phytohaemagglutinin
(PHA; Sigma Life Science, L1668) as well as an EBV epitope
mix containing the frequently recognized peptides YVLDH-
LIVV (BRLF1, HLA-A�02), RLRAEAQVK (EBNA3, HLA-
A�03), RPPIFIRRL (EBNA3, HLA-B�07), RAKFKQLL (BZLF1,
HLA-B�08), and AEGGVGWRHW (EBNA6, HLA-B�44)
served as positive controls. HLA-A�01 (GSEELRSLY,
POL_HV1H2), -A�02 (YLLPAIVHI, DDX5_HUMAN), -A�03
(RLRPGGKKK, GAG_HV1BR), -A�24 (AYVHMVTHF,
BI1_HUMAN), -B�07 (TPGPGVRYPL, NEF_HV1H2), and
-B�08 (DIAARNVL, FAK1_HUMAN) -restricted control pep-
tides derived from the human immunodeficiency virus (HIV)
or benign tissues served as negative controls. Spots were
counted using an ImmunoSpot S5.0.9.21 analyzer (CTL, Shaker
Heights, Ohio, USA). T cell responses were evaluated according
to the cancer immunoguiding program (CIP) guidelines60 and
considered to be positive when >10 spots/well were counted
and the mean spot count per well was at least 3-fold higher
than the mean number of spots in the negative control wells.

Generation of peptide-specific CD8C T cells by aAPC-based
in vitro priming

For generation of aAPC, 5.6-mm-diameter streptavidin-coated
polystyrene beads (Bangs Laboratories, CP01N) were re-sus-
pended at 2 £ 106 particles per mL, incubated with 200 pM of
biotinylated HLA:peptide monomer and 20 nM biotinylated
anti-CD28 antibody (produced in-house) for 30 min at room
temperature.61 CD8C T cells from patients and HBDs were
enriched from PBMCs by positive selection using magnetic cell
sorting (Miltenyi Biotec, 130–045–201). 1 £ 106 CD8C T cells
per well were cultured in round bottom 96-well plates (Costar/
Corning) and stimulated with 2 £ 105 aAPCs and 5 ng/mL
human IL-12 (PromoKine, C-62213) three times with a 7 d
stimulation interval. 65 U/mL IL-2 (R&D Systems, 202-IL)
were added 2 d after stimulation.31 After priming the cells were
expanded over 2–6 weeks, fed every 3–4 d with medium con-
taining 150 U/mL IL-2 as well as every 2 weeks with feeder cells
(freshly isolated PBMCs of HBDs plus LG2-EBV cells) together
with 1 mg/mL PHA-L (Sigma-Aldrich, 11249738001) and
150 U/mL IL-2.

Tetramer staining

The frequency of peptide-specific CD8C T cells after aAPC
priming was determined on a FACS Canto II cytometer (BD

Bioscience, Franklin Lakes, New Jersey, USA) by staining with
anti-CD8-PerCP (BioLegend, 301030) and HLA:peptide-tetra-
mer-PE as described previously.61 Stainings with tetramers of
the same HLA allotype containing irrelevant control peptides
served as negative controls. The priming was considered suc-
cessful if the frequency of peptide-specific CD8C T cells was �
0.1% of sorted CD8C T cells and at least 3-fold higher than the
frequency of peptide-specific CD8C T cells in the negative
control.

Intracellular cytokine staining

The functionality of peptide-specific CD8C T cells was ana-
lyzed by intracellular IFNg and TNFa staining as well as
staining of the degranulation marker CD107a as described
previously.59,62 PBMCs were pulsed with 1mg/mL of indi-
vidual peptide and incubated in the presence of 10 mg/mL
brefeldin A (Sigma-Aldrich, B6542) and 10mg/mL Golgi-
Stop (BD Bioscience, 51–2092KZ) for 12–16 h. Cells were
labeled using anti-CD107a-FITC (BD Bioscience, 555800),
anti-CD8-PerCP (BioLegend, 301030), Cytofix/Cytoperm
(BD Bioscience, 554722), anti-TNFa-Pacific Blue (BioLe-
gend, 502920), and anti-IFNg-PE (BD Bioscience, 559327).
Samples were analyzed on a FACS Canto II cytometer (BD
Bioscience, Franklin Lakes, New Jersey, USA). Cells stimu-
lated with the corresponding non-mutated (WT) peptide
served as negative control.

Cytotoxicity assay (VITAL assay)

The cytolytic capacity of peptide-specific CD8C T cells was
tested using the flow cytometry-based VITAL assay, essen-
tially as described previously.63 Autologous target cells (2 £
106 PBMCs depleted of monocytes and CD8C T cells) were
loaded with peptides by overnight incubation in T cell
medium supplemented with 10 mg/mL of the respective
peptide. Cells loaded with mutation-derived peptides and
the corresponding WT controls were labeled with 0.5 mM
of the fluorescent dyes carboxyfluorescein diacetate succini-
midyl ester (CFSE) and Far Red (both Invitrogen, C34554,
L34973), respectively. The differentially labeled targets were
combined in a 1:1 ratio and 6,000 cells of each fluorescent
population were plated in a 96-well round-bottomed plate.
Effector cells were added in the indicated effector to target
ratios (E/T) in triplicates. Following incubation for 24 h at
37�C, all cells were assessed by FACS analysis using a
FACS Canto II cytometer (BD Bioscience, Franklin Lakes,
New Jersey, USA).

The specific lysis of mutated peptide-loaded target cells was
calculated relative to WT peptide-loaded control targets. Effec-
tor-independent lysis was assessed in parallel in wells contain-
ing no effector cells and the specific lysis was normalized
according to the following equation:

% specific lysisD 1¡ targets loaded with MYD88L265P peptide= targets loaded with MYD88WT peptide
mean % survival in absence of effectors

� �� �
£100
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Search for homologous peptide sequences

Screening sequence homology of MYD88L265P peptides with
prokaryotic and virus proteins was performed for P1 (RPIPI-
KYKAM), P2 (RPIPIKYKA), P3 (SPGAHQKRPI), and P4
(HQKRPIPIKY), using the Smith–Waterman protein searcher
application (SSEARCH) on the European Molecular Biology
Laboratory server (http://www.ebi.ac.uk/Tools/sss/fasta/), using
default settings.

Software and statistical analysis

Flow cytometric data analysis was performed using FlowJo
10.0.7 (Treestar, Ahland, Oregon, USA). Taqman assay data
analysis was performed using the QuantStudioTM Real-Time
PCR software (ThermoFisher, Waltham, Massachusetts, USA).
GraphPad Prism 6.0 (GraphPad Software, La Jolla, California,
USA) was used for the generation of plots and for statistical
analysis. Statistical analysis of MYD88L265P-specific lysis was
based on unpaired t tests.
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