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1. Introduction

Two-phase energy functionals of the form

E.y;D/ D

Z
�nD

W
�
ry.x/

�
dx C
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�\@�D

 
�
�.D/

�
dHn�1

naturally arise in the study of an elastic material with an unknown void or a soft
inclusion. In this paper, we assume thatW is a function on Rm�n satisfying a standard
two-sided Lp growth condition, the function  is a norm on Rn, � � Rn is an open
(Lipschitz) domain, y 2 W 1;p.�;Rm/ with p > 1, and D is a set of finite perimeter
contained in �. Recall that @�D is the measure-theoretic boundary of D and �.D/ is
the (exterior) measure-theoretic unit-normal of D. We refer to Section 2 for a detailed
account on the notation used in this paper.

In general, the occurrence of a degenerate phase can model a variety of quite
different systems of relevance. Examples include the formation of voids in a device
due to mechanical or chemical degradation (or even enhancement as in Swiss cheese
caused by propionic acid bacteria), soft phases of a material such as a liquid region at
the onset of a solid/liquid-phase transition or a superelastic martensite phase within a
shape memory alloy, cp. [30], as well as material mixtures in which an elastic material
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is invaded by a (chemical or biological) substance that causes the development of
extremely soft regions. Examples of the latter are the immersion of water in gypsum
rock [6, 43], the resulting softening which may have severe impact on the stability
of mining goafs [42, 43], and the cerebral softening [31, 36] in the light of recent
elastic models of brain tissue [35]. At variance with other common models involving
composite materials such as [7,13,14,23], in such situations the position and geometry
of the soft inclusions are not pre-assigned.

Looking more specifically at examples of thin membranes in two-phase models,
which is one of the central topics of this paper, we mention that polymer electrolyte
membranes (PEMs) have received considerable interest recently as they constitute a
basic component in PEM fuel cells. Such devices, which generate electricity from
hydrogen and oxygen, promise to provide an environmentally friendly alternative to
fossil fuels. Their improvement both in performance and longevity is thus a most
desirable goal. As both chemical and mechanical degradation mechanisms may lead to
the formation of voids (and eventually cracks) within the polymer membrane, effective
models for membranes with soft inclusions are of fundamental importance in order to
gain a better understanding of operational failure of such fuel cells. We refer to [40] for
a recent experimental investigation into membrane degradation in PEM fuel cells and
the references cited therein for a broader review of the literature on membrane failure
in such systems.

We finally remark that in our theory both variable and fixed volume fractions of
the two phases can be considered. This allows to describe the possibility of phase
transformations as well as mixtures of different materials like alloys.

As usual in the study of energy functionals, a first basic question asks to determine
the relaxation of E and this question has been first addressed in [10] for quasicon-
vex functions W . The relaxed functional is computed on (a subset of) the space of
generalized special functions of bounded variations GSBV.�IRm/ and it is of the
form

E rel.y;D/ D
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�nD
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where y has jump discontinuities along the codimension one set Sy with unit-normal
�.y/, D0 is the measure-theoretic exterior of D (see Section 2), and W qc denotes the
quasiconvex envelope of W . We also mention that in [24] a strongly related relaxation
result in two dimensions is obtained. A main motivation for such results has derived
from investigations on epitaxially strained films [8,15]. We refer to [19] for latest results
and a detailed account of the literature in that direction.



two-phase models for elastic membranes with soft inclusions 403

In the first part of this paper, we give a new approach to compute this relaxed
functional for every Borel function W satisfying a standard two-sided Lp growth
condition; see (2). We refer to Theorem 3.1 for the precise statement. Our approach
provides a considerably simpler and more direct proof of the lim inf inequality and a
detailed proof of the lim sup inequality, expanding an argument which is only briefly
sketched in [10]. More specifically, our main contributions to the relaxation result are
the following ones.

(A) In [10], the proof of the lim inf inequality is based on a slicing argument.
Because of the technicalities involved, this slicing argument is given in details only in
the scalar case (m D 1) and for a special choice of W and  (while the authors briefly
indicate the necessary modifications in [10, Remarks 6, 7, 8] to handle the general
case). On the other hand, our approach to establish the lim inf inequality is completely
different, considerably simpler, and it allows to directly deal with the general case
without additional efforts. Instead of a slicing argument, our key idea is based on the
choice of a suitable comparison functional of “Griffith type”, which allows to obtain
the sharp lower bound from well-known lower-semicontinuity results for BV elliptic
functions (Theorem 2.3).

(B) We provide a detailed construction of the lim sup inequality in the general case:
we first employ some recent results on the anisotropic Minkowski content (see [34] and
Lemma 3.7) to explicitly find the recovery sequence for regular pairs .y;D/ and then we
pass to more general pairs with the help of suitable density results. This is a very natural
argument, which has been also briefly sketched in [10, Remark 13]. On the other hand,
a careful analysis of the details reveals some geometric-measure theoretic subtleties.
For example, one subtle point is that it is not clear a priori that one may pass to a limit
in the variables y and D simultaneously. We overcome this difficulty by passing to
the limits consecutively. This allows for an application of the standard approximation
result in SBVp1 by Cortesani–Toader (cf. [18]), but then requires a deeper argument for
sets of finite perimeter in terms of one-sided smooth approximations; cf. Theorem 2.5
and cp. [16, 17].

We also mention that we prove that E rel.y;D/ can be realized as limk!1E.yk;Dk/

with yk ! y, Dk ! D, and Ln.Dk/ D ck for any preassigned (positive) sequence
ck with ck ! Ln.D/. In particular, if Ln.D/ D 0, we thus obtain �-convergence to
a pure Griffith-type fracture functional of the form

y 7!

Z
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W qc�
ry.x/

�
dx C 2
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�
�.y/

�
dHn�1;

cp. [5, 25, 29].
In the second part of this paper, we further advance the theory of two-phase energy

functionals providing a novel analysis of thin films in the membrane limit. In partic-



m. santilli and b. schmidt 404

ular, we focus on thin films with reference configuration �h D ! � .0; h/ � R3 of
small “membrane heights” 0 < h� 1 and we provide a novel dimensionally reduced
membrane theory in the limit h! 0 for thin films consisting of an elastic matrix and a
soft inclusion. Our result extends the classical work for purely elastic materials in [33]
and for brittle materials in [9,12]. This is achieved in Theorem 4.1, where we study the
�-convergence of appropriately renormalized versions of the functionals

Gh.u;D/ D

Z
�hnD

W.ru/ dx C
Z
�h\@

�D

 
�
�.D/

�
dH2;

where D � �h is a set of finite perimeter representing the shape of the voids,

u W �h ! R3

is a Sobolev map representing the elastic deformation field, W is a continuous stored
energy function, and is an arbitrary norm, which allows to model a possibly anisotropic
surface energy on @D \�h depending on the (exterior) normal �.D/ to @�D. We
explicitly compute the �-limit, which is given by the functional E rel

0 on (a subset of)
the space of generalized functions of bounded variations GSBV.!IR3/ of the form
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Here W0 and  0 are explicit (see equations (9) and (10)) and W qc
0 is the quasiconvex

envelope ofW0. ( 0 turns out to be automatically BV elliptic.) Moreover, we obtain the
recovery sequence subject to volume constraints on the voids. For certain norms  , one
has that  0.�/ D  .�; 0/ for every � 2 R2, which leads to consider cylindrical shapes
of voids in the recovery sequence. However, the general case poses some additional
difficulties in the construction of recovery sequences and one finds that a crack in the
limiting 2d model might typically be induced from non-cylindrical voids in the parent
3d model whose outer boundary normal has a nontrivial and non-constant out-of-plane
component.

We finally remark that interesting developments and further research projects are
arising from our investigations. In particular, in the setting of more rigid plates, our
recent contribution [37] extends the classical elastic Kirchhoff plate theory [27] and a
Griffith–Euler–Bernoulli theory for thin brittle beams [38] to a novel Blake–Zisserman–
Kirchhoff theory for plates with soft inclusions. Moreover, it would be desirable to
establish effective theories also from atomistic interaction models. A first step in this
direction combining elastic and brittle contributions has recently been achieved in [39].
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2. Functions of bounded variation

We collect here the notation and some basic material on generalized functions of
bounded variation and sets of finite perimeter. For an exhaustive treatment of this
subject, we refer to [5]. We fix a norm  on Rn and write j � j for the Euclidean norm.
The dual norm of  is denoted by

 ı.u/ D max
®
hu; vi W  .v/ � 1

¯
for u 2 Rn.

Let � � Rn be an open bounded set, u W �! Rm a Borel function, and x 2 �. We
say that a 2 Rm is the approximate limit of u at x if

lim
�&0

��nLn
�®
x0 2 B�.x/ W

ˇ̌
u.x0/ � a

ˇ̌
> "

¯�
D 0

for each " > 0, in which case we write Qu.x/ for a. If this limit does not exist, we say
that x belongs to the approximate discontinuity set Su. (The set Su is called weak
approximate discontinuity set and denoted by S�u in [5].) For every x 2 � n Su, we
say that A 2 Rm�n is the approximate differential of u at x 2 � if

lim
�&0

��nLn
�®
x0 2 B�.x/ W

ˇ̌
u.x0/ � Qu.x/ � A.x0 � x/

ˇ̌
> "jx0 � xj

¯�
D 0

for each " > 0. In this case, we write ru.x/ for A.
We say that a Borel subset S �Rn is countably Hn�1-rectifiable if there are at most

countably manyC 1 hypersurfaces of dimension n� 1 in� that cover Su up to an Hn�1

negligible set. If, moreover, Hn�1.S/ <1, then we say that S is Hn�1-rectifiable.
A function u 2 L1.�IRm/ is said to lie in the space BV.�IRm/ of functions of

bounded variation if its distributional derivative Du is a finite Rm�n-valued Radon
measure. The total variation of u with respect to the Euclidean norm is denoted by
jDuj. We also need to consider the anisotropic total variation  .Du/ of Du with
respect to  for a function u 2 BV.�/: this is the Radon measure  .Du/ on � given
by

 .Du/.B/ D

Z
B

 

�
Du

jDuj

�
djDuj for B � � Borel,

where Du
jDuj

is the jDuj-measurable function satisfyingDuD Du
jDuj
jDuj. Setting .Du/

D C1 for u 2 L1.�/ n BV.�/, it follows from the Reshetnyak lower semicontinuity
theorem [5, Theorem 2.38] that the function u 7!  .Du/.U / is lower semicontinuous
in theL1.U / topology for any open subsetU of�. If u 2 BV.�IRm/, the approximate
discontinuity set Su is a countably Hn�1 rectifiable set. The Lebesgue decomposition
of Du turns out to be Du D ruLn CDsu with ru 2 L1.�IRm�n/ and singular
part Dsu. If, moreover, Dsu is concentrated on Su, we speak of a special function of
bounded variation and write u 2 SBV.�IRm/. If u 2 SBV.�0IRm/ for all�0 �� �,
we write u 2 SBVloc.�IRm/.
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A function u W �! Rm is a generalized function of bounded variation, written
as u 2 GSBV.�IRm/, whenever ' ı u 2 SBVloc.�IRm/ for every ' 2 C 1.Rm/ with
sptr' ��Rm. IfmD 1, this is equivalent to uM D .u^M/_ .�M/ 2 SBV.�/ for
every M > 0. Moreover, for 1 � p; q � 1 we define .G/SBVp.�IRm/ as the space
of functions u 2 .G/SBV.�IRm/ for whichru 2 Lp.�IRm�n/ and Hn�1.Su/ <1

and set
.G/SBVpq .�IR

m/ D .G/SBVp.�IRm/ \ Lq.�IRm/:

In [21, Proposition 2.3], it has been noted that GSBVp.�IRm/ is a vector space and
that u D .u1; : : : ; um/ belongs to GSBVp.�IRm/ if and only if ui 2 GSBVp.�/ for
all i and that, as a consequence, the scalar results in [5, Section 4.5] apply to show that
for u 2 GSBVp.�IRm/ still Su is an Hn�1 rectifiable set. If we fix an approximate
unit normal vector field � of S , then Hn�1 a.e. point x 2 Su is an approximate jump
point of u in the sense that there are distinct uC.x/; u�.x/ 2 Rm such that

lim
�&0

��nLn
�®
x0 2 B�.x/ \H

˙
W
ˇ̌
u.x0/ � u˙.x/

ˇ̌
> "

¯�
D 0

for each " > 0, where H˙ D ¹x0 2 � W ˙.x0 � x/ � �.x/ > 0º. With little abuse
of notation, we denote each vector field � as above with �.u/; notice that the triple
.�.u/.x/;uC.x/;u�.x// is uniquely determined up to a sign and a permutation. Setting
uM D .uM1 ; : : : ; u

M
m /, one has Su D

S
M>0 SuM and

rui D ru
M
i Ln a.e. on

®
jui j �M

¯
for i D 1; : : : ;m. The existence of one-sided traces u˙ is guaranteed on any countably
Hn�1 rectifiable set oriented by some normal field. We also note that

GSBVp1.�IR
m/ D SBVp1.�IR

m/

and that Su is the complement of the set of Lebesgue points of u if u 2 L1.�IRm/.
If E � Rn is a Borel subset, then its measure theoretic interior E1, exterior E0,

and boundary @�E are given by

E1 D
®
x 2 Rn W lim

�&0
��nLn

�
B�.x/ nE

�
D 0

¯
;

E0 D
®
x 2 Rn W lim

�&0
��nLn

�
B�.x/ \E

�
D 0

¯
;

@�E D Rn n .E1 [E0/;

which are easily seen to be Borel subsets. If E � � is a Borel set, then we say that
E is a set of finite perimeter in � if and only if �E 2 BV.�/. The total variation
measure of D�E satisfies jD�E j D Hn�1 :.� \ @�E/. Since S�

E
D @�E \�, we

have �E 2 SBV.�/ and we set �.E/D D�E
jD�E j

. We write F .�/ to denote the collection
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of setsE �� of finite perimeter in�. Moreover, ifE 2 F .�/we notice that .D�E /
is the anisotropic surface measure on @�E with density  .�.E//; i.e.,

 .D�E / D  
�
�.E/

�
Hn�1 :@�E:

We recall from [28] the following anisotropic version of coarea formula for BV functions:
if u 2 BV.�/, then

(1)  .Du/.B/ D

Z C1
�1

 .D�¹u�tº/.B/ dt

for each Borel subset B � �.
We proceed to state the relevant compactness and lower semicontinuity results. The

basic compactness theorem in .G/SBVp of Ambrosio is the following (cf. [1, 3, 5]).

Theorem 2.1. Let � � Rn be a bounded open set and .uk/ � GSBVpq .�IRm/ for
p > 1 and q � 1. Suppose that

kukkLq.�IRm/ C krukkLp.�IRm�n/ CHn�1.Suk / � C

for some constant C > 0. Then there exists a subsequence (not relabeled) and a
u 2 GSBVpq .�IRm/ such that

(i) uk ! u Ln a.e. and, in case q > 1, in L1.�IRm/ (strongly),

(ii) ruk * ru in Lp.�IRm�n/ (weakly), and

(iii) lim infk!0 Hn�1.Suk / � Hn�1.Su/.

For the lim inf inequalities, we will make use of lower semicontinuity results. In
particular, the lower semicontinuity of the bulk term follows from Kristensen’s theorem
in [32].

Theorem 2.2. Let p > 1. Suppose that f W Rm�n ! R is quasiconvex with �C �
f .X/ � C jX jp C C for all X 2 Rm�n and for some constant C > 0. Suppose that
� � Rn is a bounded open set and .uk/ � GSBVp1 .�IR

m/ is such that

krukkLp.�IRm�n/ CHn�1.Suk / � C

for some constant C > 0 and uk ! u in L1.�IRm/. Then

lim inf
k!1

Z
�

f .ruk/ dx �
Z
�

f .ru/ dx:

For the surface part, we use the following standard result in the SBV setting; see
[1,2,4] and cf. [5, Theorem 5.22]. We recall that, for a compact setK � Rm, a function
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g W K �K �Rn ! Œ0;1/ is jointly convex if

g.x; y; �/ D sup
h2N

��
Vh.x/ � Vh.y/

�
� �
�

for a suitable choice of Vh 2 C.KIRn/, h 2 N. For later use, we remark that in the
isotropic case g.x; y; �/ D g.x; y/j�j this amounts to requiring

g.x; y/ D sup
h2N

ˇ̌
Vh.x/ � Vh.y/

ˇ̌
for suitable Vh 2 C.K/, h 2 N, while for functions g.x; y; �/ D g.�/ only depending
on the crack normal this is equivalent to having g even, positively 1-homogeneous and
convex.

Theorem 2.3. Let p > 1, let K � Rm be compact, and suppose that g W K �K �
Rn ! Œ0;1/ is jointly convex with g.x; y; �/ � cj�j for a constant c > 0 and all
.x; y/ 2 K2 with x ¤ y and � 2 Rn. Suppose that� � Rn is a bounded open set and
.uk/ � SBVp.�IRm/ is such that

krukkLp.�IRm�n/ � C and uk 2 K Ln a.e.

for all k and some constant C > 0 and uk ! u in L1.�IRm/. Then

lim inf
k!1

Z
Suk

g
�
uC
k
; u�k ; �.uk/

�
dHn�1

�

Z
Su

g
�
uC; u�; �.u/

�
dHn�1:

For the basic density result in SBVp1, we define the set W.�IRm/ to be the space
of functions y 2 SBV.�IRm/ such that

(i) Hn�1.Sy n Sy/ D 0,

(ii) Sy \ � is the intersection of � with a finite union of .n � 1/-dimensional
simplices,

(iii) y 2 W k;1.� n Sy IRm/ for every k 2 N.

The following density result is a special case of the main result of [18].

Theorem 2.4. Let � be a bounded open set with Lipschitz boundary. For every
u 2 SBVp1.�IRm/, there exists a sequence .uk/ � W.�IRm/ with

(i) uk ! u in L1.�IRm/ and lim supk!1 kukk1 � kuk1,

(ii) ruk ! ru in Lp.�IRm�n/ and ruk.x/! ru.x/ for Ln a.e. x 2 �,

(iii)
R
Suk

 .�.uk// dHn�1 !
R
Su
 .�.u// dHn�1,

(iii0)  .�.uk// �H
n�1 :Suk

�
* .�.u// �Hn�1 :Su as Radon measures on �.
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Proof. The existence of a sequence satisfying (i), (ii), and (iii) follows from [18,
Theorem 3.1 and Remark 3.2]. This sequence also satisfies (iii0), as can be checked
with the help of [5, Proposition 1.80] and combining (iii) with the fact that, due to
Theorem 2.3,

lim inf
k!1

Z
Suk\U

 
�
�.uk/

�
dHn�1

�

Z
Su\U

 
�
�.u/

�
dHn�1

for every open set U � �.

While this and related results have been widely used in Gamma-convergence and
relaxation results, for the sets in F .�/we will make use of a particular almost one-sided
smooth approximation scheme, that has been rather recently established in [16, 17]. In
the next theorem, we summarize all statements on smooth approximation of sets of
finite perimeter needed in the sequel.

Theorem 2.5. LetE � Rn be a bounded set of finite perimeter, s > 0, and letK � Rn

be a Borel set with Hn�1.K/ < 1. There exists a sequence of open sets Ek with
smooth boundaries such that, for every Radon measure � on Rn with �� Hn�1 and
each r > 0,

(i) Ln.Ek4E/! 0,

(ii)  .D�Ek /.R
n/!  .D�E /.Rn/ and  .D�Ek /

�
*  .D�E /,

(iii) j�j..E1 [ @�E/4Ek/! 0,

(iv) Hn�1.@Ek \K/ D 0 for every k,

(v) ¹x 2 E W dist.x;Rn nE/ > rº �
S
k

T
m�k Em,

(vi) ¹x 2 Rn nE W dist.x;E/ > rº �
S
k

T
m�k.R

n nEm/,

(vii) ¹x W dist.x;Rn nE/ � sº � Ek � ¹x W dist.x;E/ < 2sº for every k.

Proof. We fix a sequence "k & 0, we define uk D �E � �"k with the standard scaled
mollifier �", and we set F kt D ¹uk > tº for t 2 .0; 1/. Since uk ! �

E in L1.�/ and
jDukj.R

n/! jD�E j.Rn/ (see [5, p. 121]), one has that

Ln.F kt 4E/! 0 for all t 2 .0; 1/

and
lim
k!1

 .Duk/.R
n/ D  .D�E /.R

n/

by the Reshetnyak continuity theorem [5, Theorem 2.39]. Moreover, it follows from the
lower semicontinuity of the anisotropic total variation that for every open set U � Rn

lim inf
k!1

 .D�F kt
/.U / �  .D�E /.U / for all t 2 .0; 1/.
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At this point, we use the coarea formula in (1) and Fatou’s lemma to obtain

 .D�E /.R
n/ �

Z 1

0

lim inf
k!1

 .D�F kt
/.Rn/ dt;

and we combine this inequality with Sard’s theorem to conclude that for L1 a.e. t 2 .0;1/
the sets F kt have smooth boundaries for each k � 1 and

lim inf
k!1

 .D�F kt
/.Rn/ D  .D�E /.R

n/:

Passing to a t-dependent subsequence that realizes the lim inf as a limit and using
[5, Proposition 1.80], we also conclude that  .D�F kt /

�
*  .D�E / for almost every

t 2 .0;1/ along that sequence. Since Hn�1.K/<1, we infer that Hn�1.@F kt \K/D 0

for every k � 1 and for all but countably many t 2 .0; 1/. Moreover, it is proved in
[17, Theorem 3.1] that j�j..E1 [ @�E/4F kt /! 0 for all t 2 .0; 1=2/. Noting that
F t
k
� F kt � F

s
k

for all 0 < s < t < 1
2
, we conclude that j�j..E1 [ @�E/4F kt /! 0

for all t 2 .0; 1
2
/. In conclusion, there exists t 2 .0; 1

2
/ such that for Ek D F kt for a

suitable choice of indices k depending on t all the assertions in (i)–(iv) hold. This
choice also guarantees (v) and (vi). For all k sufficiently large also (vii) holds.

3. Bulk model and relaxation

Suppose that� � Rn is a bounded open set with Lipschitz boundary and 1 < p <1.
We associate to y 2 W 1;p.�IRm/ and any set D � � of finite perimeter an energy

E.y;D/ D

Z
�nD

W.ry/ dx C
Z
�\@�D

 
�
�.D/

�
dHn�1:

In this section, we assume that W W Rm�n ! R is a Borel function which satisfies the
growth condition

(2) NcjX jp � xC � W.X/ � xC
�
1C jX jp

�
for constants Nc; xC > 0 and  is an arbitrary norm on Rn for which we can evidently
assume that Ncjvj �  .v/ � xC jvj for each v 2 Rn. The quasiconvex envelope W qc of
W , given by

(3) W qc.X/ D inf
²Z

.0;1/n
W
�
X Cr'.x/

�
dx W ' 2 C1c

�
.0; 1/n;Rm

�³
for everyX 2Rm�n (see [11, Definition 6.3 and Remark 6.8]) satisfies the same growth
condition.
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Our first result identifies the relaxation of E with respect to L1 convergence of y
and �D . It also allows for volume constraints and provides smooth recovery sequences.
We set

C.�/D¹;º[
®
A\� WA � Rn open with smooth boundary;Hn�1.@A\ @�/D 0

¯
:

Theorem 3.1. The (L1-)relaxation of E on GSBVp1 .�IR
m/ � F .�/ is given by

E rel.y;D/ D

Z
�nD

W qc.ry/ dx C 2
Z
Sy\D0

 
�
�.y/

�
dHn�1

C

Z
�\@�D

 
�
�.D/

�
dHn�1:

More precisely, the following two assertions hold.

(i) Whenever .yk/ � W 1;p.�IRm/ and .Dk/ � F .�/ are such that yk ! y in
L1.�IRm/ and �Dk ! �

D in L1.�/ for some y 2 GSBVp1 .�IR
m/ and D 2

F .�/, then one has

lim inf
k!1

E.yk;Dk/ � E rel.y;D/;

(ii) For each .y;D/ 2 GSBVp1 .�IR
m/ � F .�/ and c1; c2; : : : 2 .0;Ln.�/� with

ck ! Ln.D/, there are .yk/ � C1.x�;Rm/ and .Dk/ � C.�/ with yk ! y

in L1.�IRm/, �Dk ! �
D in L1.�/, and Ln.Dk/ D ck for all k and

lim
k!1

E.yk;Dk/ D E rel.y;D/:

Remark 3.2. The Lipschitz regularity of the boundary @� is needed in the construction
of the recovery sequence. The statement in Theorem 3.1 (i) holds for every bounded
open set �.

Remark 3.3. Assume that y 2 SBVp1.�IRm/ in Theorem 3.1 (ii). Then we can
choose the recovery sequence .yk/ so that it additionally satisfies

(4) lim sup
k!1

kykkL1 � kykL1 :

In fact, it is easy to check that the recovery sequences constructed in Step 1 and in
Step 2 of the proof of Theorem 3.1 (ii) below satisfy the L1 bound in (4).

Remark 3.4. Cracks outside ofD can develop as a result of asymptotically thin tubular
neighborhoods of Sy \D0 whose boundary area is asymptotically twice as big as
the surface area of Sy \D0, which explains the factor 2 occurring in the first surface
term in E rel.y;D/. Indeed, our proof will show that for every energetically optimal
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“recovery” sequence

.yk; �Dk /! .y; �D/ in L1.�IRm/ � L1.�/

such that
lim
k!1

E.yk;Dk/ D E rel.y;D/;

one has
 .D�Dk /

�
* 2 

�
�.y/

�
�Hn�1 :.Sy \D

0/C  .D�D/

as Radon measures on �. In fact, as shown in the proof of Theorem 3.1 (i) (see also
Remark 3.2), on each open subset U � � we readily obtain

lim inf
k!1

Z
�nDk

W.ryk/ dx �
Z
�nD

W qc.ry/ dx;

lim inf
k!1

 .D�Dk /.U / � 2

Z
Sy\D0\U

 
�
�.y/

�
dHn�1

C  .D�D/.U /:

Thus,

lim sup
k!1

 .D�Dk /.�/ � lim sup
k!1

E.uk;Dk/ � lim inf
k!1

Z
�nDk

W.ryk/ dx

� E.u;D/ �

Z
�nD

W qc.ry/ dx

D 2

Z
Sy\D0

 
�
�.y/

�
dHn�1

C  .D�D/.�/

and the conclusion follows from [5, Proposition 1.80].

Since E.rel/.y;D/ D E.rel/.��nDy;D/, the following compactness statement com-
plements Theorem 3.1.

Proposition 3.5. If p; q > 1 and .yk;Dk/ � W 1;p.�IRm/ � F .�/ is a sequence
with

E.yk;Dk/C kykkLq.�IRm/ � C;

then there is a .y; D/ 2 GSBVpq .�IRn/ � F .�/ such that y D ��nDy and, for a
subsequence,

�
�nDkyk !

�
�nDy in L1.�IRm/ and �

Dk !
�
D in L1.�/:

We will henceforth denote by c; C > 0 generic, k-independent constants whose
value might change from one occurrence to the next.
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Proof. This is a direct consequence of the compactness theorem (Theorem 2.1): as
.Dk/� F .�/with Hn�1.�\ @�Dk/� C= Nc, we immediately get a subsequence (not
relabeled) such that �Dk ! �

D inL1.�/ for someD 2 F .�/. Moreover, ��nDkyk 2
SBVp.�IRm/ and, by the growth condition (2),

Nc

Z
�

ˇ̌
r.��nDkyk/

ˇ̌p dx C NcHn�1.S�
�nDk

yk /C k
�
�nDkykkLq.�IRm/

� E.yk;Dk/C kykkLq.�IRm/ C xCLn.�/ � C;

so that, after passing to a further subsequence (not relabeled), ��nDkyk ! y in
L1.�IRm/ for a y 2 GSBVpq .�IRm/, and in combination with ��nDk ! �

�nD in
L1.�/ and thus boundedly in measure, we get that also

�
�nDkyk D

�
�nDk �

�
�nDkyk !

�
�nDy

in L1.�IRm/. This proves the claim.

Remark 3.6. (1) Without any additional bound on yk , the control of the energy alone
is not sufficient to guarantee compactness in GSBV as the specimen may fracture
into pieces and mass might escape to infinity. Remarkably, in such a situation one
can still obtain compactness modulo rigid motions subordinate to a Caccioppoli
partition of the domain; cf. [26].

(2) In physical applications with a bounded region containing yk.�/, one has

kykkL1.�IRm/ � C:

The energy bound E.yk; Dk/ � C then leads to a limiting deformation y 2
SBVp1.�IRm/.

Proof of Theorem 3.1 (i). We can assume that supk2N E.yk;Dk/<1. Let .y;D/2
GSBVp1 .�IR

m/ � F .�/ and suppose that .yk; Dk/ � W 1;p.�IRm/ � F .�/ is
such that yk ! y in L1.�IRm/ and �Dk ! �

D in L1.�/. Note that ��nDy 2
GSBVp1 .�IR

m/ as for each component .��nDyi /M D ��nDyMi 2 SBV.�/ for any
truncation parameterM > 0 andr.��nDyi /D ��nDryi Ln a.e., i D 1; : : : ; n, since
Ln.¹jyi j > M º/! 0 as M !1.

By passing toW �W qc.0/, we may without loss of generality assume thatW qc.0/

D 0. We fix a constant cy 2 Rm such that

Hn�1
�®
x 2 @�D W yC.x/ D cy

¯�
CHn�1

�®
x 2 Sy W

®
yC.x/; y�.x/

¯
3 cy

¯�
D 0;

where y˙ denotes the traces of y on Sy , respectively, @�D and, in particular, yC is
the outer trace of y on @�D. We also define the functions Qyk 2 SBVp1 .�IR

m/ by

Qyk D ��nDk .yk � cy/
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so that Qyk ! Qy D ��nD.y � cy/ in L1.�IRm/ and Hn�1.S Qyk n @
�Dk/ D 0. ThenZ

�nD

W.ryk/ dx �
Z
�

W qc.r Qyk/ dx

and for any truncation parameter M > 0

 .D�Dk /.�/ �

Z
S Qyk

g
�
QyC
k
; Qy�k ; �. Qyk/

�
dHn�1

D

Z
S
QyM
k

g
�
. QyMk /

C; . QyMk /
�; �. QyMk /

�
dHn�1;

where

g.x; y; �/ D

8̂̂<̂
:̂
0 if x D y;

 .�/ if x ¤ y and jxj � jyj D 0;

2 .�/ if x ¤ y and jxj � jyj ¤ 0

and QyM
k

denotes the function obtained from Qyk through a componentwise truncation. It
is not hard to see that g is jointly convex onK �K �Rn for any compact subsetK of
Rm. As, for each fixed M , S

QyM
k
� S Qyk , jr QyM

k
j � jr Qykj L

n a.e., and QyM
k
! QyM in

L1.�IRm/, we infer from Theorems 2.2, 2.3, and the monotonicity of the set family
¹S QyM WM > 0º that

lim inf
k!1

E.yk;Dk/ �

Z
�

W qc.r Qy/ dx C
Z
S Qy

g
�
QyC; Qy�; �. Qy/

�
dHn�1:

Finally, we observe thatZ
�

W qc.r Qy/ dx C
Z
S Qy

g
�
QyC; Qy�; �. Qy/

�
dHn�1

D

Z
D0\�

W qc.ry/ dx CW qc.0/Ln.D/

C 2

Z
Sy\D0

 
�
�.y/

�
dHn�1

C

Z
�\@�D

 
�
�.D/

�
dHn�1:

We now focus on the construction of the recovery sequence. We start with the
following general fact on the asymptotic behavior of the area of tubular neighborhoods
around certain sufficiently regular Borel sets. For every E � Rn and r > 0, we write
ıE .x/ D inf¹ ı.y � x/ W y 2 Eº for x 2 Rn,

Ur.E/ D
®
x 2 Rn W ıE .x/ < r

¯
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and note that @�Ur.E/ D @�¹x 2 Rn W ıE .x/ � rº � @Ur.E/ for every r > 0 and
that ıE is a Lipschitz function. Combining the anisotropic coarea formula in (1) with
results on the outer Minkowski content (see [34]) we prove in the next lemma a key
estimate for the construction of the recovery sequence.

Lemma 3.7. Let E � Rn be a bounded Borel set such that its topological boundary
@E is Hn�1 rectifiable, let �.@E/ be a unit-normal measurable vector field for @E,
and suppose that there exists c > 0 such that

Hn�1
�
Br.x/ \ @E

�
� crn�1 for every x 2 @E and r 2 .0; 1/:

If B � Rn is a Borel set with Hn�1.@E \ @B/ D 0, then

lim inf
r!0

 
�
D�Ur .E/

�
.B/

� 2

Z
B\@E\E0

 
�
�.@E/

�
dHn�1

C

Z
B\@�E

 
�
�.E/

�
dHn�1:

Proof. It follows from [34, Theorem 4.4] that

lim
r!0

Ln
�
Ur.E/ nE

�
r

D 2

Z
@E\E0

 
�
�.@E/

�
dHn�1

C

Z
@�E

 
�
�.E/

�
dHn�1:

Moreover, if A � Rn is an open set, localizing the proof of the inequality [34, (4.8)]
on A, we infer that

lim inf
r!0

Ln
��
Ur.E/ nE

�
\ A

�
r

� 2

Z
A\@E\E0

 
�
�.@E/

�
dHn�1

C

Z
A\@�E

 
�
�.E/

�
dHn�1:

Since the left-hand side of this inequality defines a family of Radon measures �r and
the right-hand side a Radon measure �, we infer from [5, Proposition 1.80] that �r
weakly* converges to � and, noting that �.@B/ D 0, we conclude that

lim
r!0

Ln
��
Ur.E/ nE

�
\ B

�
r

D 2

Z
B\@E\E0

 
�
�.@E/

�
dHn�1

C

Z
B\@�E

 
�
�.E/

�
dHn�1

WD c0:

Evidently, it holds that jıE .x/ � ıE .y/j �  ı.x � y/ for all x; y 2 Rn, whence
we deduce that hrıE .x/; vi � 1 if ıE is differentiable at x 2 Rn and  ı.v/ D 1.
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Moreover, if ıE is differentiable at x 2 Rn n xE and a 2 xE with  ı.x � a/ D ıE .x/,
then ıE .x C t .a � x// D ıE .x/ � tıE .x/ and, differentiating this equality in t D 0,
we obtain hrıE .x/; x � ai D ıE .x/. We conclude that  .rıE .x// D 1 for Ln a.e.
x 2 Rn n xE. Therefore, we can use the anisotropic coarea formula in (1) with ıE and
.Ur.E/ n xE/ \ B to compute

Ln
��
Ur.E/ nE

�
\ B

�
r

D
1

r

Z
.Ur .E/n xE/\B

 .rıE / dx

D
1

r

Z r

0

 
�
D�Ut .E/

�
.B/ dt

D

Z 1

0

 
�
D�Utr .E/

�
.B/ dt:

We infer from Fatou’s lemma thatZ 1

0

lim inf
r!0

 
�
D�Utr .E/

�
.B/ dt � c0

and consequently that there exists t0 2 .0; 1/ such that

lim inf
r!0

 
�
D�Ut0r .E/

�
.B/ � c0:

Remark 3.8. The condition Hn�1.@E/ <1 is not necessary. It is enough to assume
that @E is countably Hn�1 rectifiable and that there exist c > 0 and a Radon measure
� on Rn absolutely continuous with respect to Hn�1 such that �.Br.x// � crn�1 for
every x 2 @E and r 2 .0; 1/; see [34, Theorem 4.4 and Remark 4.2].

For easy reference, we also state the following well-known relaxation result for W
which directly follows from [20, Theorem 9.1] by using (3) instead of [20, Theorem 6.9]
in the proof of that theorem.

Lemma 3.9. Let U � Rn be an arbitrary open set and p � q � 1. For every
u 2 W 1;q.U;Rm/, there exists a sequence 'k 2 C1c .U;Rm/ such that 'k ! 0 in
Lq.U;Rm/ and

lim
k!1

Z
U

W
�
r.uC 'k/

�
dx D

Z
U

W qc.ru/ dx:

Proof of Theorem 3.1 (ii). We proceed in consecutive steps.

Step 1. Firstly, we treat the case y 2 W.�IRm/ (see Theorem 2.4) and D 2 C.�/,
where D D A \� with A � Rn open with smooth boundary such that

Hn�1.@A \ @�/ D 0:
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Suppose that 0 < ck � Ln.�/ with limk!1 ck D Ln.D/. We define E D A [ Sy
and we notice that E0 D Rn n xA, @�E D @A, @E D @A [ .Sy n xA/, and

Hn�1.@E \ @�/ D 0:

In particular, it follows from Lemma 3.7 that there exists a positive sequence �k ! 0

such that
lim
k!1

 
�
D�U�k .E/

�
.x�/ � c0

with
R
�\@D

 .�.A// dHn�1 C 2
R
Syn xD

 .�.y// dHn�1 WD c0. If D D ;, then we
need to select a further subsequence (not relabeled) of .�k/ such that �k � ck . Notice
that �U�k .E/ !

�
E in L1.Rn/. Approximating the sets U�k .E/ with smooth sets

by means of Theorem 2.5, we find a sequence .Ek/ of open sets in Rn with smooth
boundaries such that Hn�1.@Ek \ @�/ D 0 for every k � 1, �Ek ! �

E in L1.Rn/,
U�k=2.E/ � Ek � U3�k=2.E/, and

(5) lim
k!1

 
�
D�Ek

�
.x�/ � c0:

It follows that

Ln.Ek \�/ D Ln.D/CO.�k/:(6)

Now, if D ¤ �, fix x0 2 � n xE and if D ¤ ;, fix y0 2 D. Then, noting that

Ln.Ek \�/ � ck ! 0;

we set
zEk D

�
Ek [ B�k .x0/

�
n B�k .y0/

with null sequences �k; �k � 0 such that B�k .x0/ � � n xE, B2�k .y0/ � D, and

Ln.Ek \�/ � ck D Ln.B1/�
n
k �Ln.B1/�

n
k for all k sufficiently large:

If D D ;, this choice is possible with �k D 0 (and B�k .y0/ D ;) for every k as in
this case Ln.Ek \�/ � ck D O.�k/ � ck by (6) and �k � ck . In case D D �, we
understand that B�k .x0/ D ; and use that ck � Ln.�/ by assumption. The modified
sets zEk still satisfy

(7) lim
k!1

 
�
D� zEk

�
.x�/ � c0

by (5) and � zEk !
�
E in L1.Rn/ with

Ln. zEk \�/ D Ln.Ek \�/C ˛n�
n
k � ˛n�

n
k D ck

for k sufficiently large, as then B�k .x0/ \Ek D ; and B�k .y0/ � Ek .
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Since y 2 W l;1.� n Sy ;Rm/ for every l � 1, we can apply the relaxation result
in Lemma 3.9 to find a sequence 'k 2 C1.RnIRm/ such that spt 'k � � n Ek ,
k'kkL1.�nEk ;Rm/ �

1
k

, andZ
�nEk

W
�
r.y C 'k/

�
dx �

Z
�nEk

W qc.ry/ dx C
1

k
:

For each k � 1, we select cut-off functions �k 2 C1.Rn/ such that 0� �k � 1, �k D 1
on � nEk , �k D 0 on a neighborhood of Jy and �¹�k<1º ! 0 in L1.Rn/ as k !1.
We define Qyk D �k.y C 'k/ and we notice that Qyk 2 W l;1.�;Rm/ for every l � 1,
Qyk ! y in L1.�/ andZ

�nEk

W.r Qyk/ dx �
Z
�nEk

W qc.ry/ dx C
1

k
:

Using Stein’s extension theorem, we obtain that Qyk 2 C1.x�;Rm/; see [41, Theorem 5
in Chapter VI]. Choosing yk D �k Qyk , where �k 2 C1.Rn/ is a cut-off function with
0 � �k � 1 on Rn, �k D 0 on B�k .y0/, and �k D 1 on Rn n B2�k .y0/, and also using
(2) and (6), we obtainZ
�n zEk

W.ryk/ dx �
Z
�nEk

W.r Qyk/ dx C C�k CLn
�
B�k .y0/

�
W.0/

�

Z
�nD

W qc.ry/ dxC
1

k
CC.�k C �k/CLn

�
B�k .y0/

�
W.0/;

while still yk ! y in L1.�IRm/. Combining with (7) and setting Dk D zEk \�, we
find that indeed

lim sup
k!1

E.yk;Dk/ � E rel.y;D/;

which concludes the proof of Step 1.

Step 2. Next, we consider .y;D/ 2 GSBVp1 .�IR
m/ � C.�/, sayD D A\� with a

bounded set A with smooth boundary such that Hn�1.@A \ @�/ D 0.
We notice that, for the functions yk D .yk1 ; : : : ; y

k
n / with cut-off components,

one has yk 2 SBVp1.�IRm/, yk ! y in L1.�IRm/, and, according to Section 2,
Sy D

S1
kD1 Syk , where the family k 7! Syk is increasing, and ryk.x/! ry.x/ for

Ln a.e. x 2�, where jW qc.ryk/j � C jrykjp CC � C jryjp CC 2 L1.�IRm�n/

due to (2). By monotone and dominated convergence, we infer that

lim
k!1

E rel.yk;D/ D E rel.y;D/:

Therefore, we can assume that y 2 SBVp1.�IRm/ and in view of Step 1, by invoking
a diagonal sequence argument, it is now sufficient to provide a sequence .yk;Dk/ �
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W.�IRm/ � C.�/ such that .yk; �Dk / ! .y; �D/ in L1.�IRm/ � L1.�/ with
Ln.Dk/ D Ln.D/ for each k � 1 and

(8) lim sup
k!1

E rel.yk;Dk/ � E rel.y;D/:

We choose approximations yk ! y in L1.�IRm/ as in Theorem 2.4. If D D ;, we
immediately obtain (8) withDk DD D ;. In caseD ¤ ;, arguing as in Step 1 with the
help of Lemma 3.7 and Theorem 2.5 we find a positive sequence �k! 0 and a sequence
.Ak/ of open subsets of Rn with smooth boundaries such that Hn�1.@Ak \ @�/ D 0

for every k � 1, �Ak ! �
A in L1.Rn/, U�k=2.A/ � Ak � U3�k=2.A/, and

lim
k!1

 .D�Ak /.
x�/ �  .D�A/.�/:

We choose y0 2 D and �k > 0 so that ˛n�nk D Ln..Ak \�/ nD/. We set

Dk D .Ak \�/ n B�k .y0/:

Note that B�k .y0/ � D if k is large enough and then Ln.Dk/ D Ln.D/. We have

lim
k!1

lim
h!1

Z
�nDk

W qc.ryh/ dx D lim
k!1

Z
�nDk

W qc.ry/ dx D
Z
�nD

W qc.ry/ dx

by Theorem 2.4 (ii) and the dominated convergence theorem; moreover,

lim sup
k!1

lim sup
h!1

Z
SyhnDk

 
�
�.yh/

�
dHn�1

� lim sup
k!1

lim sup
h!1

Z
SyhnDk

 
�
�.yh/

�
dHn�1

� lim sup
k!1

Z
SynDk

 
�
�.y/

�
dHn�1

D

Z
Syn xD

 
�
�.y/

�
dHn�1

by Theorem 2.4 (iii0) and dominated convergence as �Dk .x/! �
xD.x/ for all x 2

� n ¹y0º. We conclude that

lim sup
k!1

lim sup
h!1

E rel.yh;Dk/ � E rel.y;D/;

whence we can easily obtain the sequence satisfying (8).

Step 3. In this crucial step, we consider the case .y;D/ 2 GSBVp1 .�IR
m/ � F .�/

such that both D and � nD have nonempty interior. We have to provide a sequence
Dk 2 C.�/ with Ln.Dk/ D Ln.D/ such that

lim
k!1

E rel.y;Dk/ D E rel.y;D/:
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To this end, we first extend the setD to a setE withE \�DD in such a way that
Hn�1.@�E \ @�/ D 0 following the procedure outlined in [5, Remark 3.43]: since�
is a Lipschitz domain, the function �D can be extended to a mapping f 2 BV.Rn/with
compact support such that jDf j.@�/D 0. We note that, for a.e. choice of s 2 .0; 1/, the
set Fs D ¹x 2 Rn W f .x/ > sº is of finite perimeter and satisfies Hn�1.@�Fs \ @�/D

jD�Fs j.@�/ D 0 by the coarea formula jDf j.@�/ D
R1
�1
jD�Fs j.@�/ ds. Fixing

such an s, we set E D Fs .
We then choose an approximating sequence Ek for E as in Theorem 2.5 such that

Hn�1.@Ek \ @�/ D 0 for every k 2 N. We fix x0 2 int.� nD/, y0 2 intD and set
� D min¹dist.x0; .Rn n�/ [E/; dist.y0;Rn nD/º and

Dk D
�
.Ek \�/ [ B�k .x0/

�
n B�k .y0/ 2 C.�/;

where 0 � �k; �k � �=2 with �k ! 0, �k ! 0 are chosen such that ˛n.�nk � �
n
k
/ D

Ln.D/�Ln.Ek \�/ for large k. Since B�k .x0/\Ek D ; and B�k .y0/ � Ek \�
for k sufficiently large by Theorem 2.5 (v) and (vi), this, in particular, yields Ln.Dk/D

Ln.D/ for all k large enough.
By Theorem 2.5 (i) and dominated convergence, we have

lim
k!1

Z
�nDk

W qc.ry/ dx D
Z
�nD

W qc.ry/ dx:

Since Hn�1.@�E \ @�/ D 0, then  .D�E /.@�/ D 0, and from Theorem 2.5 (ii) we
get

lim
k!1

 .D�Ek /.�/ D  .D
�
E /.�/:

For the remaining term, we apply Theorem 2.5 (iii) with � D
R
Sy\ �

 .�.y// dHn�1

to get

lim
k!1

Z
Sy\Œ.D1[@�D/4Dk �

 
�
�.y/

�
dHn�1

D 0:

Using D0
k
\� D � nDk and Hn�1.� n .D1 [ @�D [D0// D 0, we thus obtainZ
Sy\D

0
k

 
�
�.y/

�
dHn�1

D

Z
Sy

 
�
�.y/

�
dHn�1

�

Z
Sy\Dk

 
�
�.y/

�
dHn�1

D

Z
Sy

 
�
�.y/

�
dHn�1

�

Z
Sy\.D1[@�D/

 
�
�.y/

�
dHn�1

C o.1/

D

Z
Sy\D0

 
�
�.y/

�
dHn�1

C o.1/

as k !1.
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Step 4. For the general case

.y;D/ 2 GSBVp1 .�IR
m/ � F .�/;

it is now sufficient to provide a sequence .Dk/ � F .�/ such that Ln.Dk/ D Ln.D/,
intDk ¤ ;, int.� nDk/ ¤ ;, and

lim
k!1

E rel.y;Dk/ D E rel.y;D/:

Note that by Step 1 we may assume without loss of generality that 0 <Ln.D/ <Ln.�/.
Fix x0 2 D0 \� and y0 2 D1 and notice that

Ln
�
B�.x0/ nD

�
> 0 and Ln

�
B�.y0/ \D

�
> 0

for all � > 0. Therefore, we can choose two sequences �k & 0 and �k & 0 such that

Ln
�
B�k .x0/ nD

�
D Ln

�
B�k .y0/ \D

�
and define

Dk D
�
D [ B�k .x0/

�
n B�k .y0/:

These sets evidently satisfyDk 2 F .�/with Ln.Dk/DLn.D/ for large k. Moreover,
we have

lim
k!1

E rel.y;Dk/ D E rel.y;D/:

4. Membrane limits

In this section, we fix p > 1, ! � R2 a bounded open set with Lipschitz boundary
and set �k D ! � .0; hk/ � R3 for a sequence of “membrane heights” hk > 0 with
hk ! 0. Also set � D ! � .0; 1/. To simplify the notation, we make the following
identifications:

GSBVp.!IR3/ D
®
u 2 GSBVp.�IR3/ W @3u D 0; �3.u/ D 0

¯
;

F .!/ D
®
D 2 F .�/ W �3.D/ D 0

¯
:

Our goal is to analyze the asymptotic behavior of the energy

Gk W W
1;p.�kIR

3/ � F .�k/! R

given by

Gk.u;D/ D

Z
�knD

W.ru/ dx C
Z
�k\@

�D

 
�
�.D/

�
dH2
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for .u;D/ 2 W 1;p.�kIR
3/ � F .�k/. The function W W R3�3 ! R is a continuous

function and is an arbitrary norm on R3. We assume that they both satisfy the growth
assumptions of the previous section. To set the problem in the fixed domain �, we
apply the usual rescaling�k 3 .x0; x3/ 7! .x0; h�1

k
x3/ 2�. (We use a prime to denote

the first two columns or entries of a matrix, respectively, vector and in particular write
ru D .r 0u; @3u/.) We then consider the rescaled functional

Ek W W
1;p.�IR3/ � F .�/! R

given by

Ek.u;D/ D

Z
�nD

W
�
r
0u; h�1k @3u

�
dx C

Z
�\@�D

 
�
�0.D/; h�1k �3.D/

�
dH2

for .u;D/ 2 W 1;p.�IR3/ � F .�/.
We define the “membrane functional” E0 W W

1;p.!IR3/ � F .!/! R by

E0.u;D/ D

Z
!nD

W0.r
0u/ dx0 C

Z
!\@�D

 0
�
�0.D/

�
dH1

for all .u;D/ 2 W 1;p.!IR3/ � F .!/, where

(9) W0.�
0/ D inf

®
W.� 0; �3/ W �3 2 R3

¯
for all � 0 2 R3�2

and

(10)  0.v
0/ D inf

®
 .v0; v3/ W v3 2 R

¯
for all v0 2 R2.

The relaxation of E0 is given by the functional E rel
0 W GSBVp1 .!IR

3/ � F .!/! R,

E rel
0 .u;D/ D

Z
!nD

W
qc
0 .r

0u/ dx C 2
Z
Su\D0

 0
�
�0.u/

�
dH1

C

Z
!\@�D

 0
�
�0.D/

�
dH1:

We remark thatW0 and thus alsoW qc
0 satisfy the same growth condition (2) asW (with

X replaced byX 0 2R3�2). Moreover, 0 is a norm on R2 with Ncjv0j �  0.v0/� xC jv0j
for each v0 2R2. Our main theorem for membranes is the following�.L1/-convergence
result with possible volume constraints.

Theorem 4.1. The functionals Ek �.L
1/-converge to E rel

0 , in fact, it holds that

(i) whenever .uk/ � W 1;p.�IR3/ and .Dk/ � F .�/ are such that uk ! u in
L1.�IR3/ and �Dk ! �

D in L1.�/ for some u 2 GSBVp1 .!IR
m/ and D 2

F .!/, then one has

lim inf
k!1

Ek.uk;Dk/ � E rel
0 .u;D/;
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(ii) for each .u; D/ 2 GSBVp1 .!IR
3/ � F .!/ and c1; c2; : : : 2 .0;L2.!/� with

ck ! L2.D/, there are .uk/ � C1.x�IR3/ and .Dk/ � C.�/ with uk ! u

in L1.�IR3/, �Dk ! �
D�.0;1/ in L1.�/ and L3.Dk/D ck for all k 2 N, and

lim
k!1

Ek.uk;Dk/ D E rel
0 .u;D/:

As for the bulk model, firstly we notice the following compactness property, which
essentially follows from Proposition 3.5.

Proposition 4.2. If q > 1 and .uk;Dk/ � W 1;p.�IR3/ � F .�/ is a sequence with

Ek.uk;Dk/C kukkLq.�IR3/ � C;

then there exists .u;D/ 2 GSBVpq .!IR3/ � F .!/ such that u D ��nDu and, for a
subsequence,

�
�nDkuk !

�
�nDu in L1.�IR3/ and �

Dk !
�
D in L1.�/:

Remark 4.3. Both in Theorem 4.1 and in Proposition 4.2 suitable loading terms can
be included, e.g., given by some ` 2 Lp0.�IR3/, p0 D p=.p � 1/, acting on the elastic
part of the body. Setting

L W W 1;p.�IR3/ � F .�/! R; L.u;D/ D

Z
�nD

` � u dx;

xL W GSBVp1 .!IR
3/ � F .!/! R; xL.u;D/ D

Z
!nD

` � u dx0;

where x̀.x0/ D
R 1
0
`.x0; x3/ dx3, a standard argument shows that, for a sequence of

almost minimizers .uk; Dk/ of Ek C L with uniformly bounded kukkLq.�IR3/, one
has ��nDkuk ! u in L1.�IR3/ and �Dk ! �

D in L1.�/ for a minimizer .u;D/ of
E rel
0 C

xL.

Proof of Proposition 4.2. Since

W.X 0; h�1k X3/ � Nc
ˇ̌
.X 0; h�1k X3/

ˇ̌p
� xC � NcjX jp � xC

and
 .�0; h�1k �3/ � Nc

ˇ̌
.�0; h�1k �3/

ˇ̌
� Nc;

proceeding as in the proof of Proposition 3.5 we immediately obtain a subsequence
(not relabeled) such that �Dk ! �

D in L1.�/ and ��nDkuk ! u in L1.�IR3/ for
some u 2 GSBVp1 .�IR

3/ and D 2 F .�/ with u D ��nDu.
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It remains to show that �3.D/ D 0, @3u D 0, and �3.u/ D 0. Applying Theorem
2.3, we infer that for every M > 0,

M Nc

Z
�\@�D

ˇ̌
�3.D/

ˇ̌
dH2

� c

Z
�\@�D

ˇ̌�
�0.D/;M�3.D/

�ˇ̌
dH2

� Nc lim inf
k!1

Z
�\@�Dk

ˇ̌�
�0.Dk/;M�3.Dk/

�ˇ̌
dH2

� Nc lim inf
k!1

Z
�\@�Dk

ˇ̌�
�0.Dk/; h

�1
k �3.Dk/

�ˇ̌
dH2

� lim inf
k!1

Ek.uk;Dk/ � C

and, setting vk D ��nDkuk and denoting by vM
k

its componentwise truncation, likewise

M Nc

Z
S
uM

ˇ̌
�3.u

M /
ˇ̌
dH2

� Nc lim inf
k!1

Z
S
vM
k

ˇ̌�
�0.vMk /;M�3.v

M
k /
�ˇ̌

dH2

� Nc lim inf
k!1

Z
�\@�Dk

ˇ̌�
�0.Dk/;M�3.Dk/

�ˇ̌
dH2

� C:

Similarly, Theorem 2.2 gives

Mp
Nc

Z
�

j@3uj
p dx � Nc lim inf

k!1

Z
�

ˇ̌
.r 0vk;M@3vk/

ˇ̌p dx

� lim inf
k!1

Ek.uk;Dk/C xCLn.�/ � C:

The desired conclusion follows by sending M to1.

We now prove the lower bound in Theorem 4.1.

Proof of Theorem 4.1 (i). We may assume that supk2N Ek.uk;Dk/ <1. For �� 0,
we define the auxiliary bulk functionals E

�
0 W W

1;p.�IR3/ � F .�/! R by

E
�
0 .u;D/ D

Z
�nD

W
�
0 .ru/ dx C

Z
�\@�D

 
�
0

�
�.D/

�
dH2;

where W �
0 .X/ D W0.X

0/C �jX3j
p and  �0 .v/ D  0.v

0/C �jv3j, so that

lim inf
k!1

Ek.uk;Dk/

� lim inf
k!1

E
�
0 .uk;Dk/

� � lim sup
k!1

�Z
�nDk

j@3ukj
p dx C

Z
�\@�Dk

ˇ̌
�3.Dk/

ˇ̌
dH2

�
:

(11)
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Noting that .W �
0 /

qc.X/ � .W 0
0 /

qc.X/ D W
qc
0 .X

0/ for every X 2 R3�3, we infer from
Theorem 3.1 (i) that for every � > 0

lim inf
k!1

E
�
0 .uk;Dk/ �

�
E
�
0

�rel
.u;D/ � E rel

0 .u;D/:

Since Ncj.r 0uk; h�1k @3uk/j
p � xC � W.r 0uk; h

�1
k
@3uk/, it follows that

Nc lim sup
k!1

Z
�nDk

j@3ukj
p dx � lim sup

k!1

h
p

k

�
Ek.uk;Dk/C xCLn.�/

�
D 0:

Analogously,

Nc lim sup
k!1

Z
�\@�Dk

ˇ̌
�3.Dk/

ˇ̌
dH2

� lim sup
k!1

hkEk.uk;Dk/ D 0;

and the assertion follows from (11).

Proof of Theorem 4.1 (ii). We proceed in two steps: Step 1 provides a key auxiliary
statement that can be used together with Theorem 3.1 (ii) and a standard diagonal
sequence argument to construct the recovery sequence.

Step 1. Suppose that .u; D/ 2 C1.x!IR3/ � C.!/, c1; c2; : : : 2 .0;L2.!/� with
ck ! L2.D/ and " > 0. In particular, there exists a bounded open set A � R2 with
smooth boundary such that D D A \ ! and H1.@A \ @!/ D 0. We prove that there
exists a sequence .uk; Dk/ 2 C1.x�IR3/ � C.�/ such that L3.Dk/ D ck for each
k � 1, uk ! u in L1.�IR3/, �Dk ! �

D�.0;1/ in L1.�/, and

lim sup
k!1

Ek.uk;Dk/ � E0.u;D/C ":

Let �1; : : : ; �N be the connected components of @A and notice that they are simple
smooth curves in R2. For each i 2 ¹1; : : : ; N º, we choose a parametrization i W
Œ0; l�! R2 of �i by arclength and we define �i W Œ0; li �! R2 to be the exterior unit-
normal of A along �i . A standard measurable selection criterion [22, Theorem 1.2 in
Chapter VIII] in combination with the lower bound  0 � Ncj � j allows us to choose a
function vi 2 L1.Œ0; li �/ such that

 0
�
�i .t/

�
D  

�
�i .t/; vi .t/

�
for every t 2 Œ0; li �:

Approximating the function vi by smooth functions and employing the dominated
convergence theorem, we can find a smooth function �i W Œ0; li � ! R so that the
derivatives of �i satisfy �.m/i .0/ D �

.m/
i .li / for every m � 0 andZ

I

 
�
�i .t/; �i .t/

�
dt �

Z
I

 0
�
�i .t/

�
dt C

"

2N
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for every measurable set I � Œ0; li �. We consider the ruled surfaces 'i;k W Œ0; li � �
.0; 1/! R3 and 'i W Œ0; li � � .0; 1/! R3 of the form

'i;k.t; s/ D
�
i .t/ � shk�i .t/�i .t/; s

�
and 'i .t; s/ D

�
i .t/; s

�
and we denote by Si;k and Si their images. One immediately checks that 'i;k ! 'i ,
@t'i;k! . 0i ; 0/, and @s'i;k! .0; 1/ uniformly in Œ0; li �� .0; 1/ as k!1; moreover,
D'i;k.t; s/ is injective for every .t; s/ 2 Œ0; li � � .0; 1/ and for every k � 1 so that
hk �

1
2k.�i�i /

0k1
. Since i is parametrized by arclength, we notice that

ci WD sup
² ˇ̌
�i .t2/�i .t2/ � �i .t1/�i .t1/

ˇ̌ˇ̌
i .t2/ � i .t1/

ˇ̌ W 0 � t1 < t2 < li

³
<1

and we conclude that 'i;kjŒ0; li / � .0; 1/ is injective for every k � 1 so that h�1
k
> ci .

Consequently, there exists ki � 1 such that for every k � ki the set Si;k is an embedded
smooth hypersurface in R3 and the vector�

�i .t/; hk�i .t/
�
C

shk�
0
i .t/

1 � shk�i .t/
�
�0i .t/ � 

0
i .t/

� . 0i .t/; 0/
is normal to Si;k at 'i;k.t; s/. We set k0 D sup¹ki W i D 1; : : : ; N º and

�i;k.t; s/ D
shk�

0
i .t/

1 � shk�i .t/
�
�0i .t/ � 

0
i .t/

� :
We can now easily find a sequence ¹Ak W k � k0º of open subsets of R2 � .0; 1/ such
that @Ak \ .R2 � .0; 1//D

SN
iD1 Si;k and �Ak ! �

A�.0;1/ inL1.R2 � .0; 1//. Noting
that

�.Ak/
�
'i;k.t; s/

�
D

�
�i .t/; hk�i .t/

�
C �i;k.t; s/

�
 0i .t/; 0

�q
1C �i;k.t; s/2 C h

2
k
�i .t/2

for every .t; s/ 2 Œ0; li � � .0; 1/ andZ
�\@Ak

 
�
�0.Ak/; h

�1
k �3.Ak/

�
dH2

D

NX
iD1

Z
'�1
i;k
.�\Si;k/

ˇ̌
@t'i;k.t; s/ ^ @s'i;k.t; s/

ˇ̌q
1C�i;k.t; s/2Ch

2
k
�i .t/2

 
��
�i .t/C�i;k.t; s/

0
i .t/; �i .t/

��
dtds;

we deduce from the dominated convergence theorem that

lim
k!1

Z
�\@Ak

 
�
�0.Ak/; h

�1
k �3.Ak/

�
dH2

D

NX
iD1

Z
'�1
i
..�i�.0;1//\�/

 
�
�i .t/; �i .t/

�
dt ds



two-phase models for elastic membranes with soft inclusions 427

�

NX
iD1

Z
'�1
i
.Si\�/

 0
�
�i .t/

�
dt ds C

"

2

D

Z
!\@A

 0
�
�0.A/

�
dH1

C
"

2
;

where we have used H1.@A \ @!/ D 0 in the first equality.
We choose x00 2 ! n xD and y00 2 D and we select two nonnegative sequences

�k & 0 and �k & 0 and an integer k00 � k0 such that

Bk WD B�k .x
0
0/ � .0; 1/ � � n Ak; Ck WD B�k .y

0
0/ � .0; 1/ � Ak

and
ck �L3.Ak \�/ D ˛2�

2
k � ˛2�

2
k D L3.Bk/ �L3.Ck/

for all k � k00. Notice that, if D D ;, then Ak D ; for every k � 1 and we only select
x00 and �k; if D D !, then

Ak \� D ! � .0; 1/ for every k � 1

and we only select y00 and �k . For each k � k00, we define

Dk D
�
.Ak \�/ [ Bk

�
n Ck 2 C.�/

and notice that L3.Dk/ D ck , �Dk ! �
D�.0;1/ in L1.�/ and

(12) lim
k!1

Z
�\@Dk

 
�
�0.Dk/; h

�1
k �3.Dk/

�
dH2

�

Z
!\@A

 0
�
�0.A/

�
dH1

C
"

2
:

Following [33], we observe that the measurable selection criterion [22, Theorem 1.2
in Chapter VIII] in combination with the lower bound in (2) and the density of
C1c .! n

xDIR3/ in Lp.! n xDIR3/ allows us to choose w 2 C1c .! n xDIR3/ such
that

(13)
Z
!nD

W.r 0u; e3 C w/ dx0 �
Z
!nD

W0.r
0u/ dx0 C

"

2
:

We define the functions uk 2 C1.x�IR3/ by

uk.x
0; x3/ D u.x

0/C x3hk
�
e3 C w.x

0/
�

for all .x0; x3/ 2 ! �R and for all k � k00 and notice that uk ! u inL1.�IR3/. Since
W is continuous, with the help of the dominated convergence theorem we infer

lim
k!1

Z
�nDk

W
�
r
0uk.x

0/; h�1k @3uk.x
0/
�
dx D

Z
!nD

W
�
r
0u.x0/; e3 C w.x

0/
�

dx0:
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Combining with (12) and (13), we get

lim sup
k!1

Ek.uk;Dk/ � E0.u;D/C ";

which concludes Step 1.

Step 2. Here we prove Theorem 4.1 (ii). Let .u;D/ 2 GSBVp1 .!IR
3/ � F .!/ and

c1; c2; : : :2 .0;1/with ck!L2.D/. Firstly, we use Theorem 3.1 (ii) to find a sequence
.uk;Dk/ � C

1.x!IR3/� C.!/ such that L2.Dk/DL2.D/ for each k � 1, uk ! u

in L1.!IR3/, �Dk ! �
D in L1.!/, and

lim sup
k!1

E0.uk;Dk/ � E rel
0 .u;D/:

Then for each k � 1we use Step 1 to find a sequence .u.k/
h
;D

.k/

h
/2C1.x�IR3/�C.�/

such that L3.D
.k/

h
/D ch for each h� 1, u.k/

h
! uk inL1.�IR3/, �

D
.k/

h

! �
Dk�.0;1/

in L1.�/, and

lim sup
h!1

Eh
�
u
.k/

h
;D

.k/

h

�
� E0.uk;Dk/C

1

k
:

At this point, a diagonal sequence argument completes the proof.
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