
                                            

                                                                                

Randomly repeated measurements on
quantum systems: correlations and
topological invariants of the quantum
evolution

K Ziegler1,∗ , E Barkai2 and D Kessler3

1 Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
2 Department of Physics, Institute of Nanotechnology and Advanced Materials,
Bar-Ilan University, Ramat Gan 52900, Israel
3 Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel

E-mail: klaus.ziegler@physik.uni-augsburg.de

                   
                               
                       

Abstract
Randomly repeated measurements during the evolution of a closed quantum
system create a sequence of probabilities for the first detection of a certain quan-
tum state. The related discrete monitored evolution for the return of the quantum
system to its initial state is investigated. We found that the mean number of mea-
surements (MNM) until the first detection is an integer, namely the dimension-
ality of the accessible Hilbert space. Moreover, the mean first detected return
(FDR) time is equal to the average time step between successive measurements
times the MNM. Thus, the mean FDR time scales linearly with the dimension-
ality of the accessible Hilbert space. The main goal of this work is to explain
the quantization of the mean return time in terms of a quantized Berry phase.

Keywords: dynamical invariants, randomly repeated measurements, monitored
quantum evolution

                                                    

1. Introduction

The unitary evolution (UE) of a closed quantum system from the initial state |Ψ〉 to the state
|Ψ(τ )〉 on the time interval τ is defined by |Ψ(τ )〉 = exp(−iHτ/�)|Ψ〉, where H is the Hamil-
tonian of the system. The result of this evolution is characterized by the overlap amplitude
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〈ψ|Ψ (τ )〉 with respect to a given state |ψ〉. Then |〈ψ|Ψ(τ )〉|2 is the probability that the evolu-
tion has reached the state |ψ〉, which obviously depends on the time τ . In a single experiment
the measurement time is fixed and, therefore, the UE allows us to detect the state |ψ〉 with
probability |〈ψ|Ψ(τ )〉|2 only once. The detection of this state at different times would require
the repetition of the experiment, prepared in the same initial state |Ψ〉, for different values of τ
[1]. An alternative approach, which we call ‘monitored evolution (ME)’ is to allow the system
to evolve from the initial state |Ψ〉 for the time τ 1 and then measure whether or not the system
is in the state |ψ〉. If the answer is ‘yes’, we stop the experiment, if the answer is ‘no’ we allow
the system to evolve further after the measurement [2] and perform a second measurement at
time τ 1 + τ 2. This procedure is repeated for times t2 = τ 1 + τ 2, . . . , tk = τ 1 + · · ·+ τ k until
the measurement detects the state |ψ〉 for the first time. We consider cases in which the state is
detected with probability one. This is called a recurrent measurement process [1]. If at time t1

the outcome of the measurement is null this can be associated with a projection of the quan-
tum system (1 − |ψ〉〈ψ|)|Ψ(t1)〉 with a subsequent normalization of the resulting state [3], and
similarly for t2 etc. And when the state is detected for the first time at time tk, the amplitude of
the corresponding state is φk and its probability is |φk|2 [4, 5].

For fixed time steps τ with tk = kτ the repeated measurement approach, also known as
the stroboscopic protocol, has been studied in great detail in references [1, 3–19]. Two cases
have been distinguished, the return probability for |ψ〉 = |Ψ〉 and the transition probability for
|ψ〉 = |Ψ〉. It was found that (i) the return and the transition probabilities differ qualitatively,
(ii) the average first detected return (FDR) time is quantized and given by the winding number
of the Laplace transform of the return amplitude [1], (iii) near degeneracies of the spectrum
of the evolution operator, the fluctuations become very large and diverge at the degeneracies
[3, 11, 18], and (iv) the average first detected transition time also diverges at the degeneracies
[20].

Our main intention is to present in this article a study of the effect of independent and iden-
tically distributed random time steps {τ k} on the ME. For this purpose we want to answer the
following questions: (1) do we still obtain quantization of the number of attempts for the first
successful measurement? (2) Is the average mean time for the first detection also quantized,
as found for stroboscopic measurements? (3) How can dynamical quantization be related to
topological invariants? (4) Do random time steps affect the divergent fluctuations near reso-
nances? To answer these questions we will develop a theory of the first detection time under
repeated random measurements. Our work is based on the ideas presented by Grünbaum et al
[9] for fixed time steps and related to a work by Varbanov et al [21] on random time steps, who
studied the conditions for the existence of non-detectable dark states. Random time measure-
ments were discussed also for open quantum systems [22], while for closed quantum systems
they were recently studied by us in terms of average return and transition probabilities [23].
The present work is an extension of the latter in which we explain in detail the origin of the
quantization of the mean return time. For this purpose we compare the Berry phase of the
return amplitude, averaged with respect to the distribution of the measurement times. It will
be shown that the average Berry phase is equal to the average number of measurements for the
FDR and equal to the dimensionality of the accessible Hilbert space. The average Berry phase
is reminiscent of the quantized winding number in case of stroboscopic measurements [9].

The structure of this article is as follows. In section 2 the definitions of the relevant quantities
for the first detection under repeated measurements are given. Then a short summary of the
main results are presented in section 3. After a brief discussion of the ME for fixed time steps
τ in section 4, we formulate the ME for random time steps in terms of random matrix products
in sections 5–6.2.1. This includes a description of the averaging procedure (section 6) and
the introduction of a generating function for the average return time and its higher moments
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(section 6.1). The quantization of the mean number of measurements (MNM) of the FDR by
the dimensionality of the accessible Hilbert space is studied in sections 6.2 and 6.2.1. Finally,
in section 7 the example of a symmetric two-level system is analyzed, followed by a discussion
of all the results in section 8. Details of the calculations are presented in appendices A–F.

2. Return amplitude of the ME

The return probability as a function of time, with or without intermediate measurements, pro-
vides a measure of how big the accessible space is and how long it takes to return to the initial
state. This is an important quantity for classical random walks [24, 25] and plays also an
important role for characterizing localization in many-body quantum systems [26, 27]. We
will investigate the return amplitude for the ME with measurements at time steps {τk}k=1,2,....
First, we will have need to refer to the return amplitude of the UE

uk = 〈Ψ|e−iH(τ1+···+τk)|Ψ〉, (1)

for the state |Ψ〉 when we measure only once after the time tk = τ 1 + · · ·+ τ k, assuming that
the UE is governed by the Hamiltonian H. Then we turn to the return amplitude for the ME
[3, 4, 13]

φk = 〈Ψ|e−iHτk (Pe−iHτk−1) . . . (Pe−iHτ1)|Ψ〉, P = 1 − |Ψ〉〈Ψ|, (2)

which is the major objective of our inquiry. This is the return amplitude at time tk, provided that
we also measure at times t1, t2, . . . , tk−1 but detect the quantum state |Ψ〉 for the first time at tk

with probability |φk|2. For the time of measurements we assume a distribution density P({τk})
of independent and identically distributed time steps, such that P({τk}) =

∏
kP(τk). This can

be understood as the effect of an inaccurate clock. This enables us to consider the average
〈· · · 〉τ ≡

∫
· · ·

∏
kP(τk)dτk with respect to the ensemble of random time steps. Here we do

not specify the distribution. For instance, P(τk) can be a Dirac delta, which would recover the
stroboscopic ME [3, 9, 13, 18], it could be an exponential distribution or any other distribution,
which allows us to perform the average 〈· · ·〉τ.

Besides the averaging with respect to times steps {τ k} we also need to define the averages

km :=
∑
k�1

km〈|φk|2〉τ , tm :=
∑
k�1

〈tm
k |φk|2〉τ (m = 1, 2, . . .). (3)

Here it is assumed that
∑

k |φk|2 = 1, which is justified for a finite-dimensional Hilbert space
(cf appendix A). This equation means that the state is eventually detected [9]. Thus, the over-
line represents a double average, namely an average with respect to the number of time steps
k = 1, 2, . . . with weight |φk|2, followed by the average 〈· · ·〉τ . For m = 1 both expressions in
equation (3) will be used to characterize the ME: k is the MNM for the FDR and t is the mean
FDR time.

Since both evolutions are defined on an N-dimensional Hilbert space by the Hamiltonian H,
we consider its eigenstates {|E j〉} j=1,...,N and its corresponding eigenvalues {E j} j=1,...,N . Then
the return amplitude φk of the ME can be expressed as a matrix product, which is efficiently
written in the energy representation as a sum over all energy levels {E j} j=1,2,...,N as

φk =

N∑
j1, j2,..., jk=1

〈Ψ|E jk〉e
−iE jk

τk〈E jk |P|E jk−1〉e
−iE jk−1

τk−1 . . . 〈E j2 |P|E j1〉e
−iE j1

τ1〈E j1 |Ψ〉. (4)
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In principle, there is the possibility of degenerate eigenvalues or of a vanishing overlap
pj = |〈E j|Ψ〉|2, which must be treated with care [9]. To understand the effect of degener-
ate energy levels on φk we consider the levels E j, E j′ and assume at first that they are not
degenerate. Then we can write

N∑
jk=1

〈E jk−1 |P|E jk〉e
−iE jk

τk〈E jk |P|E jk+1〉 =
N∑

jk=1, jk= j, j′
e−iE jk

τk 〈E jk−1 |P|E jk〉〈E jk |P|E jk+1〉

+ 〈E jk−1 |P[e−iE jτk |E j〉〈E j|+ e−iE j′ τk |E j′〉〈E j′ |]P|E jk+1〉,

where the second term on the right-hand side describes the evolution of the state P|E jk+1〉 with
the evolution operator

P[e−iE jτk |E j〉〈E j|+ e−iE j′ τk |E j′〉〈E j′ |]

over the time period τ k. The evolution creates a superposition of the states |E j〉 and |E j′〉, which
changes in time due to the time dependent coefficients, provided that E j = E j′ . On the other
hand, for the degenerate case E j = E j′ , the superposition of |E j〉 and |E j′〉 is fixed during the
time period τ k:

e−iE jτk P[|E j〉〈E j|+ |E j′〉〈E j′ |]

and only the global phase changes. This reflects a dimensional reduction of the accessible
Hilbert space by 1, implying that we should use the replacement

|E j〉, |E j′〉 → |E j j′〉 := |E j〉〈E j|Ψ〉+ |E j′〉〈E j′ |Ψ〉

and the simultaneous elimination of j′ from the summation of jk in equation (4).
Another special case is a vanishing overlap pj = |〈E j|Ψ〉|2 = 0. Beginning with the initial

state on the right-hand side of equation (4) we get

N∑
j1=1

〈E j2 |P|E j1〉e
−iE j1

τ1〈E j1 |Ψ〉 =
N∑

j1=1; j1= j

〈E j2 |P|E j1〉e
−iE j1

τ1〈E j1 |Ψ〉.

Next, in the summation with respect to j2 the special value j does not contribute again, since
j2 = j gives

〈E j|P|E j1〉 = 〈E j|E j1〉 − 〈E j|Ψ〉〈Ψ|E j1〉 = 0

due to j1 = j and due to 〈E j|Ψ〉 = 0. Repeating this argument we find that the value j drops
out of all summations in equation (4), reducing the accessible Hilbert space by 1 again.

With these arguments we have removed the degeneracy of the energy levels and the van-
ishing overlaps pj. Therefore, the remaining return amplitude φk depends only non-degenerate
energy levels and on overlaps with pj > 0. For the subsequent analysis we use the convention
that N is the dimensionality of the accessible Hilbert space.

For the subsequent calculations it is useful to introduce two types of discrete Fourier
transformations, where one is based on the phase factors eiωk

φ̃(ω) =
∑
k�1

eiωk φk (5)
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Table 1. Comparison between stroboscopic ME (SME) and random ME (RME) with the
Hilbert space dimensionality N. The FDR agrees for both approaches, provided that we
average over the random measurements.

SME RME

Probability |φ̃(ω)|2 1 Random
Probability 〈|φ̃(ω)|2〉τ — 1
Winding number w of φ̃(ω) N Random
Winding number 〈w〉τ of φ̃(ω) — N
Mean number of measurements for FDR k N N
Mean FDR time t Nτ N〈τ〉τ

and the other is based on the random phase factors eiω(τ1+···+τk) ≡ eiωtk

φ̃τ (ω) =
∑
k�1

eiωtk φk, (6)

provided that these series exist. Both φ̃(ω) and φ̃τ (ω) are still functions of the random variables
{τ k}.

3. Summary and results

It will be shown that for a quantum system with energy levels {E j} and eigenstates {|E j〉} of
a given Hamiltonian H the FDR probability |φk|2 in the case of an ME is determined by the
random phase factors {e−iE jτk} and the overlaps {|〈E j|Ψ〉|2} ≡ {pj} alone. After averaging
with respect to the random measurements we get 〈|φk|2〉τ , which will turn out to be a function
of the N parameters {〈e−iE jτ 〉τ} and of the N2 parameters {〈e−i(E j−E j′ )τ 〉τ}. (Details are given
in section 5.) Using the Fourier transformations (5) and (6), we define the generating functions
F(ω) =

∑
k�1eikω〈|φk|2〉τ and Fτ (ω) =

∑
k�1〈eiωtk |φk|2〉τ . By differentiation with respect to ω

we get the MNM for the FDR and the mean FDR time as

k = −i∂ωF(ω)|ω=0, t = −i∂ωFτ (ω)|ω=0.

Then we will derive the relation t = 〈τ〉τ k, where 〈τ 〉τ is the mean time interval between
successive measurements.

Besides the average FDR probability 〈|φk|2〉τ we will also calculate the corresponding
expressions of the Fourier transform φ̃(ω), namely 〈|φ̃(ω)|2〉τ . This will turn out to be 1, as
shown in equation (33), which is essential for calculating the average Berry phase and the
mean values of the FDR as

k = N, t = 〈τ〉τN. (7)

The main result are listed in table 1.

4. Fixed time step τ

In this section we briefly recapitulate what is known about the FDR problem in the case of
non-random τ to set the stage for our investigation of random time steps {τ k}. Stroboscopic
measurement with τ k = τ has been studied extensively in the literature [3, 9, 11, 13, 14, 18].
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Next we summarize relevant information from previous works, in particular, some results of
reference [18].

At fixed τ the Laplace transformation for the return amplitude of the ME reads

φ̂(z) ≡
∑
k�1

zkφk =
∑
k�1

zk〈Ψ|(e−iHτP)k−1e−iHτ |Ψ〉 = 〈Ψ|(eiτH/z − P)−1|Ψ〉. (8)

Due to the relation of equation (B3) in appendix B, we obtain for K = eiτH/z − 1 the following
identity

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ〉 = 1 − 1
1 + 〈Ψ|K−1|Ψ〉 . (9)

This identity is important because it allows us to represent the projector-dependent left-hand
side by the expression 〈Ψ|K−1|Ψ〉, which is diagonal in terms of the energy eigenstates of H
and independent of the projector |Ψ〉〈Ψ|. A corresponding identity exists in the case of random
time steps, which will be central for our subsequent calculations.

With uk of equation (1) we can write 〈Ψ|K−1|Ψ〉 as the Laplace transform of uk:
〈Ψ|K−1|Ψ〉 =

∑
k�1zkuk ≡ û(z). Then φ̂(z) in equation (8), together with equation (9),

becomes

φ̂(z) = 1 − 1
1 + û(z)

. (10)

By analytic continuation to the unit circle z → eiω we get û(z) → ũ(ω) and φ̂(z) → φ̃(ω). Since
Re[ũ(ω)] = −1/2, the expression φ̃ is unimodular:

φ̃(ω) =
−1/2 + i Im[ũ]
1/2 + i Im[ũ]

= − ũ
ũ∗ , (11)

such that we can write

φ̃(ω) = −e2i arg[ũ(ω)] ≡ eiϕ(ω). (12)

This result for fixed time steps indicates that the UE and the ME have the same phase change
with ω except for a factor 2. The winding number of φ̃(ω) around the unit circle (i.e. for
0 � ω < 2π) is identical with

∑
k�1 k|φk|2, and it is known that the winding number is equal

to the dimensionality of the Hilbert space [9].

5. Matrix products

Our goal is to calculate the probability |φk|2 of the return amplitude φk of equation (4) for
the general case of random time steps. We would expect that the calculations of the previous
section can be extended to this situation. As we will see though it requires some additional
steps to calculate quantities, such as the mean FDR time, that are averaged with respect to the
random time steps. Our calculation starts with the matrix representation of the projector P of
equation (2) in terms of energy eigenstates

〈E j|P|E j′〉 = δ j, j′ − q jq
∗
j′ , q j = 〈E j|Ψ〉, (13)
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since the eigenstates are orthonormal: 〈E j|E j′〉 = δ j, j′ . This is automatically fulfilled for non-
degenerate eigenvalues. The above expression is inserted in equation (4) and yields for the
return amplitude a trace of a matrix product:

φk = Tr
[
Dk(1 − QEQ∗)Dk−1(1 − QEQ∗) . . .D2(1 − QEQ∗)D1QEQ∗]

with the N × N matrix E, whose elements are all 1, and with the diagonal matrices
Dk = diag(exp(−iE1τ k), exp(−iE2τ k), . . . , exp(−iENτ k)) and Q = diag(q1, q2, . . . , qN).

Now QQ∗ = Π is the diagonal matrix Π = diag(p1, p2, . . . , pN), which enables us to rewrite
φk as

φk = Tr [Dk(1 − EΠ)Dk−1(1 − EΠ) . . .D2(1 − EΠ)D1EΠ] , (14)

since Π and D j as diagonal matrices commute. This means that φk depends only on the spectral
weights {pj} through Π and on the energy levels {E j} through Dk.

For the calculation of the return probability we need the product of two traces

|φk|2 = Tr [Dk(1 − EΠ)Dk−1(1 − EΠ) . . .D2(1 − EΠ)D1EΠ]∗

×Tr [Dk(1 − EΠ)Dk−1(1 − EΠ) . . .D2(1 − EΠ)D1EΠ] . (15)

In order to express this product it is convenient to use the notation of the Kronecker product of
matrices

Â = A1 × A2

with the properties

ÂB̂ = (A1 × A2)(B1 × B2) = A1B1 × A2B2, Tr(Â) = Tr(A1) Tr(A2), (A1 × A2)−1 = A−1
1 × A−1

2 .

(16)

The second identity, or trace ‘disentanglement’ relation, is relevant for equation (15). With the
matrix Ĉ = (1 − EΠ) × (1 − EΠ) it gives us

|φk|2 = Tr(D̂kĈ . . . D̂2ĈD̂1ÊΠ̂) (17)

with Ê = E × E, Π̂ = Π×Π and D̂k = D∗
k × Dk. For the matrix elements we use the notation

[A × B]i j,kl = AikB jl. (18)

6. Averaging over the distribution of random time steps

In the previous section we obtained a random distribution of return probabilities {|φk|2}. Here
we are interested in the mean values {〈|φk|2〉τ}, the subsequent calculation of the time average
is based on the fact that the random matrices {D̂k} are statistically independent and identically
distributed. Thus, from equation (17) we get

〈|φk|2〉τ = Tr(〈D̂k〉τ Ĉ . . . 〈D̂2〉τ Ĉ〈D̂1〉τ ÊΠ̂) = Tr([〈D̂〉τ Ĉ]k−1〈D̂〉τ ÊΠ̂). (19)

With the matrices

Γ̂ = 〈D∗(1 − EΠ) × D(1 − EΠ)〉τ = 〈D∗ × D〉τ (1 − EΠ) × (1 − EΠ) = 〈D̂〉τ Ĉ (20)
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and

Ĝ = 〈D∗EΠ× DEΠ〉τ = 〈D∗ × D〉τEΠ× EΠ = 〈D̂〉τ ÊΠ̂ (21)

we obtain the compact expression

〈|φk|2〉τ = Tr[Γ̂k−1Ĝ] . (22)

Γ̂ depends on the averaged product 〈D∗ × D〉τ . The latter cannot be expressed as a Kronecker
product, which prevents us also from applying the trace ‘disentanglement’ relation of equation
(16). This reflects a robust ‘entanglement’ due to 〈D∗ × D〉τ . We will return to this fact in the
next section.

6.1. The generating functions

First, from equation (22) we obtain, after a discrete Fourier transformation, the generating
functions

F(ω) =
∑
k�1

eikω〈|φk|2〉τ = eiω Tr[(1̂ − eiω Γ̂)−1Ĝ], (23)

and

Fτ (ω) =
∑
k�1

〈eiω(τ1+···+τk)|φk|2〉τ = Tr[(1̂ − Γ̂ω)−1Ĝω] (24)

with

Γ̂ω = 〈eiωτ D̂〉τ Ĉ (25)

and

Ĝω = 〈eiωτ D̂〉τEΠ× EΠ. (26)

As shown in appendix E, the matrix (1̂ − zΓ̂)−1 is analytic for |z| < 1. This means that
we should consider the discrete Fourier summation as an analytic continuation z → eiω

from |z| < 1.
From F(ω) and Fτ (ω) we can calculate moments of k and tk = τ 1 + · · ·+ τ k with respect

to the weight 〈|φk|2〉τ and 〈τ |φk|2〉τ , respectively, as

km =
∑
k�1

km〈|φk|2〉τ = (−i∂ω)mF(ω)|ω=0,

tm =
∑
k�1

〈tm
k |φk|2〉τ = (−i∂ω)mFτ (ω)|ω=0.

(27)

The property F(ω = 0) = Fτ (ω = 0) = 1, discussed in appendix A, indicates a close relation
between the two generating functions. Then the ω dependence of the generating functions
is through the fact that (i) F(ω) and Fτ (ω) depend on ω only through 〈eiωD̂〉τ and 〈eiωτ D̂〉τ ,
respectively, and (ii) the matrix 〈eiωτ D̂〉τ is a function of ω + E j − E j′ . It implies that we can
replace a derivative with respect to ω by a derivative with respect to the difference of energy
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levels if E j − E j′ = 0 ( j′ = j). Since the latter is implicitly assumed here for all energy levels,
we can write for the first moment in equation (27)

−i∂ωF(ω)

∣∣∣∣∣
ω=0

=
∑

j, j′
[∂D̄ j j′

F(ω)]∂ωD̄ j j′ (ω)

∣∣∣∣∣
ω=0

=
∑
j= j′

[∂D̄ j j′ (0)F(0)]∂E j−E j′ D̄ j j′(0)+
∑

j

[∂D̄ j j(ω)F(ω)]∂ωD̄ j j(ω)

∣∣∣∣∣
ω=0

with D̄ j j′ (ω) = eiω〈D̂ j j′〉τ . The first sum on the right-hand side vanishes due to F(0) = 1 and
consequently ∂E j−E j′ F(0) = 0, such that we obtain

∂ωF(ω)

∣∣∣∣∣
ω=0

=
∑

j

∂D̄ j j(ω)F(ω)

∣∣∣∣∣
ω=0

i〈D̂ j j(0)〉τ = i
∑

j

∂D̄ j j(ω)F(ω)

∣∣∣∣∣
ω=0

. (28)

The analog calculation is valid for Fτ (ω) and gives

∂ωFτ (ω)

∣∣∣∣∣
ω=0

=
∑

j

∂D̄ j j(ω)Fτ (ω)

∣∣∣∣∣
ω=0

i〈τD̂ j j(0)〉τ = i〈τ〉τ
∑

j

∂D̄ j j(ω)F(ω)
∣∣∣
ω=0

. (29)

Comparing the expressions in equations (28) and (29) implies for the first moments in equation
(27) the relation

t =
∑
k�1

〈tk|φk|2〉τ = 〈τ〉τ
∑
k�1

k〈|φk|2〉τ = 〈τ〉τ k. (30)

6.2. Evaluation of 〈|φ̃(ω)|2〉τ

Next we will show that 〈|φ̃(ω)|2〉τ = 1 holds in general for any integer N due to

T j1 j2 =
∑
j3, j4

[〈D̂〉−1
τ − Ĉ]−1

j1 j2, j3 j4
=

1
pj1

δ j1 j2 , (31)

where Ĉ was defined in section 5. To derive this property and to calculate the mean FDR time
we use the matrix relations

ÊŴ[〈D̂〉−1
τ − Ĉ] = ÊΠ̂, [〈D̂〉−1

τ − Ĉ]T̂Ê = Ê, (32)

where Ŵ is the N2 × N2 diagonal matrix diag(p1, 0N , p2, 0N , . . . , 0N , pN), and 0N is a sequence
of N zeros. T̂ is the N2 × N2 diagonal matrix with elements T j j′ = δ j j′/pj of equation (31). The

〈D̂〉τ contribution on the right-hand side disappears, since Ŵ〈D̂〉τ = Ŵ . The first relation of
equation (32) is obtained from W j1 j2 = pj1δ j1 j2 by a direct inspection of the matrix elements:∑

j1, j2

W j1 j2[−E j1 j3 pj3E j2 j4 pj4 + E j1 j3 pj3δ j2 j4 + δ j1 j3E j2 j4 pj4] = pj3 pj4

and the second relation for T j3 j4 = δ j3 j4/pj3 from∑
j3, j4

[−E j1 j3 pj3E j2 j4 pj4 + E j1 j3 pj3δ j2 j4 + δ j1 j3E j2 j4 pj4]T j3 j4 = 1.

9



                                              

Provided that the inverse of 〈D̂〉−1
τ − Ĉ exists, the second relation of equation (32) implies

[〈D̂〉−1
τ − Ĉ]−1Ê = T̂Ê, which gives directly equation (31) and subsequently the normalization

〈|φ̃(ω)|2〉τ = 1 (33)

according to equation (D8) of appendix D. This result can be used to reduce the integral of the
average winding number

〈w〉τ :=
1

2π

∫ 2π

0

〈φ̃(ω)∗[−i∂ω]φ̃(ω)〉τ
〈|φ̃(ω)|2〉τ

dω, (34)

which is discussed in more detail in section 8, with the help of equation (33) to

〈w〉τ =
1

2π

∫ 2π

0
〈φ̃(ω)∗[−i∂ω]φ̃(ω)〉τdω =

∑
k�1

k〈|φk|2〉τ = k. (35)

In the next section we will see that 〈w〉τ = k is an integer, equal to the dimensionality of the
accessible Hilbert space.

6.2.1. Mean FDR time. Now we return to the first moment in equation (27), using an extension
of the previous calculation. Starting with

− i∂ωF(ω)|ω=0 = Tr[(1̂ − Γ̂)−2〈D̂〉τ ÊΠ̂] (36)

we write for the matrix inside the trace

ÊΠ̂[〈D̂〉−1
τ − Ĉ]−1〈D̂〉−1

τ [〈D̂〉−1
τ − Ĉ]−1

and apply the first relation of equation (32) to the first inverse matrix to obtain

= ÊŴ〈D̂〉−1
τ [〈D̂〉−1

τ − Ĉ]−1 = ÊŴ[〈D̂〉−1
τ − Ĉ]−1, (37)

where the last equation is due to Ŵ〈D̂〉−1
τ = Ŵ. This can be inserted into equation (36), and

with the second relation of equation (32) we get

− i∂ωF(ω)|ω=0 = Tr{ÊŴ[〈D̂〉−1
τ − Ĉ]−1} = Tr{ŴT̂Ê} =

N∑
j1=1

T j1 j1 pj1 = N, (38)

where the last two equations follow from equation (31) and the definition of Ŵ . This result
gives us, together with equations (30) and (38), for the MNM of the FDR and the mean FDR
time

k =
∑
k�1

k〈|φk|2〉τ = 〈w〉τ = N and t =
∑
k�1

〈tk|φk|2〉τ = 〈τ〉τ 〈w〉τ = 〈τ〉τN, (39)

which presents an extension of a central result of the seminal work by Grünbaum et al [9] of
stroboscopic measurements to random time measurements.

As already mentioned in the introduction, higher order moments are not quantized but can
be very sensitive to degeneracies of the spectrum, at least for stroboscopic measurements
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[3, 11, 18]. In the case of random measurements this is also true near degeneracies of the
energy levels when 〈D∗

jD j′〉τ = 〈ei(E j−E j′ )τ 〉τ ( j′ = j) is close to 1. This originates in the fact that
for

− ∂2
ωF(ω)

∣∣
ω=0

= Tr[(1̂ − Γ̂)−3〈D̂〉τ ÊΠ̂] = Tr{Ŵ(1̂ − Γ̂)−1T̂Ê}

small eigenvalues of 1̂ − Γ̂ can appear. This can indeed happen when at least one 〈D∗
jD j′〉τ is

close to 1 or when one pj is close to 0, as shown in appendix E.

7. Example: symmetric two-level system

In the previous section we derived relations between the MNM of the FDR and the mean
FDR time, their relation with the average winding number 〈w〉τ of equation (34) and with
the dimensionality of the Hilbert space in equation (39). These results are general and valid
for any quantum system on an N-dimensional Hilbert space. Besides these mean values we
obtained in equation (27) also higher moments of the number of measurements and the return
time for the FDR. For m > 1 we have not found a simple expression but can obtain these
moments only by calculating the generating functions F(ω) and Fτ (ω) directly. To deter-
mine these generating functions would require the inversion of the N2 × N2 matrix 1̂ − zΓ̂.
This is a tedious task, which goes beyond the scope of this paper. Therefore, we limit our-
selves to N = 2 and calculate the corresponding 4 × 4 matrices (cf appendix F). In particular,
we consider a symmetric two-level system (2LS) with energy levels E± = ±J and spectral
weights p1 = p2 = 1/2 for random times. The Hilbert space is two-dimensional with two
basis states, e.g. |0〉 and |1〉. If the measured state is |0〉, the projector P reads P = |1〉〈1|.
Then we get 〈0|e−iHτ |0〉 = cos(Jτ ) and 〈0|e−iHτ |1〉 = i sin(Jτ ) and the return amplitude φk

reads

φk =

⎧⎪⎪⎨⎪⎪⎩
cos(Jτ1) for k = 1

− sin(Jτ1) sin(Jτ2) for k = 2

− sin(Jτ1) cos(Jτ2) . . . cos(Jτk−1) sin(Jτk) for k � 3

. (40)

The simplicity of the two-level system is manifested in the fact that φk is a scalar product
in contrast to the matrix product in equation (14) of the general case N > 2. This simplifies
calculations with respect to random {τ k} substantially. For instance, we can easily perform the
summation with respect to k to get

n∑
k=1

|φk|2 = 1 − [1 − cos2(Jτ1)]cos2(Jτ2) . . . cos2(Jτn) (41)

as a special case of the general equation (A1). After averaging with respect to {τ k}, we get for
the mean FDR time

t =
∑
k�1

〈(τ1 + · · ·+ τk)|φk|2〉τ = 2〈τ〉τ , (42)

which is in agreement with our general result in equation (39). Moreover, the generating
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functions F(ω) in equation (23) and Fτ (ω) in equation (24) read

F(ω) = eiω (2 eiω − 1)〈cos 2Jτ〉τ − 1
eiω(〈cos 2Jτ〉τ + 1) − 2

,

Fτ (ω) =
(2〈eiωτ 〉τ − 1)〈eiωτ cos 2Jτ〉τ − 〈eiωτ 〉τ

〈eiωτ cos 2Jτ〉τ + 〈eiωτ 〉τ − 2
,

(43)

which gives for ω = 0∑
k�1

〈|φk|2〉τ = F(0) = 1,
∑
k�1

k〈|φk|2〉τ = −iF′(0) = 2,

∑
k�1

k2〈|φk|2〉τ = −F′′(0) = 2
3 − 〈cos 2Jτ〉τ
1 − 〈cos 2Jτ〉τ

, (44)

where the first equation reflects the normalization, the second equation the quantization of the
mean FDR time and the last equation the FDR fluctuations. The latter only diverge for J = 0
in the case of random times steps, but in the case of a fixed time step τ it also diverges for
Jτ = kπ (k = ±1,±2, . . .). For Fτ (ω) we get∑

k�1

〈(τ1 + · · ·+ τk)|φk|2〉τ = −iF′
τ (0) = 2〈τ〉τ . (45)

The two-level systems gives also a direct insight into the effect of random time steps on the
return amplitude φ̃(ω) before averaging, since we can calculate these amplitudes from equation
(40) for special realizations of {τ k}. A few examples are visualized in figure 1, indicating that
|φ̃(ω)| as well as the winding number vary from realization to realization substantially. For
fixed time steps, on the other hand, we have |φ̃(ω)| = 1 and the winding number is 2 in figure
2, as predicted by the general theory of stroboscopic measurements [9, 18].

8. Discussion

The aim of our work has been to calculate the properties of the ME with random measure-
ments through the return amplitude φ̃(ω). For given eigenvalues {E j} and eigenstates {|E j〉}
of the Hamiltonian H the ME of the return to the initial state |Ψ〉 are characterized by the

time averaged phase factors 〈e±iE jτ 〉τ , 〈ei(E j−E′
j)τ 〉τ and by the spectral weights pj = |〈E j|Ψ〉|2.

This allowed us to calculated the mean FDR times and the MNM of the FDR, using the gen-
erating functions defined in equations (23) and (24). The surprising result in equation (39)
is that the MNM of the FDR is just the dimensionality N of the accessible Hilbert space
and that the mean FDR time is 〈τ 〉τN, where 〈τ 〉τ is the mean time between two succes-
sive measurements. The same was previously observed for fixed time steps τ [9, 11, 18]. The
robustness of the average winding number is remarkable, since the winding number of the
return amplitude φ̃(ω) fluctuates strongly from realization to realization of the random {τ k}
(cf figure 1).

Other quantities, such as the correlation function 〈φ∗
kφk′ 〉τ of the return amplitudes for

different discrete times k and k′ in equation (C1), can also be calculated. An example is∑
k,k′�1ei(k′−k)ω〈φ∗

kφk′〉τ = 〈|φ̃(ω)|2〉τ , which is 1 according to the calculation in appendix D.
This enabled us to determine the mean FDR time in equation (39). Its connection with the
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Figure 1. Symmetric two-level system: the return amplitude φ̃8(ω) =
∑8

k=1 eikω φk on
the ω interval [0, 2π) with three randomly chosen realizations of {τ 1, . . . , τ 8} performs
a closed trajectory in the complex plane. The winding numbers in these examples are
wφ = 3, 4, 1, respectively.

integral in equation (34) is a generalization of the quantized winding number wst in the case
of stroboscopic measurements by Grünbaum et al [9, 18]. The latter is based on the fact that
|φ̃(ω)| = 1 (cf equation (12)). Then the winding number wst simply reads for φ̃(ω) = eiϕ (cf
reference [3] and section 4)

wst = − i
2π

∫ 2π

0
φ̃(ω)∗∂ωφ̃(ω)dω =

1
2π

∫ 2π

0
∂ωϕ dω.

In the case of random time measurements |φ̃(ω; {τk})| �= 1, such that we must modify the
definition of the winding number by normalizing φ̃(ω, {τk}). A further problem is that the
winding number depends on the realization of the time steps {τ k}, as we have demonstrated in
figure 1 for the symmetric two-level system. Therefore, we must also perform an average with
respect to the time steps. Then the definition of the winding number becomes equation (34),

13



                                              

Figure 2. Symmetric two-level system: the return amplitude φ̃8(ω) =
∑8

k=1 eikω φk on
theω interval [0, 2π) with fixed time step τ ≈ π/2J. The winding number in this example
is wφ = 2.

Figure 3. Symmetric two-level system: fluctuations of the FDR for stroboscopic ME
and random time steps from equations (48) and (49).

which reads with φ̃(ω) = |φ̃(ω)|eiϕ as an average differential phase change

〈w〉τ =
1

2π

∫ 2π

0

〈|φ̃(ω)|2∂ωϕ〉τ
〈|φ̃(ω)|2〉τ

dω. (46)

Here we note that equation (34) is formally equivalent to the definition of the Berry phase [28]
when we replace φ̃(ω, {τk}) by the spatial wave function φ(ω, r) and replace the time average
〈· · ·〉τ by the usual quantum average in space.
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Averaging over random time steps is crucial to obtain a generic winding number. That dif-
ferent special realizations of the random time steps lead to different winding numbers can be
seen when we assume a finite sequence of {φk} (k � M). The latter is either the result of an
approximative truncation of the sequence or when the sequence terminates with SM = 0 in
equation (A1). Then the Fourier transformed return amplitude in equation (5) becomes a finite
sum

φ̃M(ω) =
M∑

k=1

eiωk φk

for which a winding number wM can be defined for (random) coefficients {φk} as

wM =
1

2π

∫ 2π

0

φ̃∗
M(ω)(−i∂ω)φ̃M(ω)

φ̃∗
M(ω)φ̃M(ω)

dω =
1

2π

∫ 2π

0
(−i∂ω) log[φ̃M(ω)]dω. (47)

Then we rewrite the polynomial φ̃M(ω) as the product

φ̃M(ω) = φM(eiω − z1) . . . (eiω − zM),

such that we get for the winding number

wM =

M∑
k=1

1
2π

∫ 2π

0

eiω

eiω − zk
dω.

With z = eiω this gives

wM =

M∑
k=1

1
2πi

∫
S1

1
z − zk

dz = M′,

where the Cauchy integral is performed over the unit circle S1 and M′ (0 � M′ � M) is the
number of poles inside the unit circle. A simple example is M = 2 with

φ̃2(ω) = φ1 eiω + φ2 e2iω = z(φ1 + φ2z) = φ2z(z + φ1/φ2),

where we get

w2 =

{
1 |φ1/φ2| > 1

2 |φ1/φ2| < 1
.

A detailed calculation of several quantities was presented in section 7 for the case of a sym-
metric two-level system with w = 2 after averaging with respect to {τ k}. The fluctuations of
the return time are finite∑

k�1

k2〈|φk|2〉τ = 2
3 − 〈cos 2Jτ〉τ
1 − 〈cos 2Jτ〉τ

=
1 + 6J2

J2
, (48)

where the last expression is obtained from the Poisson distribution e−τk dτk. In the limit of a
fixed measurement time τ the fluctuations∑

k�1

k2|φk|2 = 2
3 − cos 2Jτ
1 − cos 2Jτ

(49)
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would diverge for Jτ = πn (n = 0, 1, . . .). Thus, the random measurements wash out the diver-
gences of the fluctuations. For most values of the level splitting J the fluctuations are stronger
for the fixed time steps, as visualized in figure 3.

In this paper we have completely focused on the return of the quantum system to its initial
state. A natural extension would be a corresponding analysis of the transition from an initial to
a different final state, monitored by random projective measurements. We have addressed this
topic in a separate article [23].

In conclusion, the mean FDR time of the ME for random time steps is equal to the dimen-
sionality of the accessible Hilbert space. This is very similar to the ME for fixed time steps.
On the other hand, the strong fluctuations of the FDR time, which appear for a small distance
of eigenvalues in the case of fixed time steps, are washed out by averaging with respect to the
random time steps. This was briefly discussed for a two-level system in this article and more
general in reference [23].
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Appendix A. Normalization

The normalization of the vector 
φ = (φ1,φ2, . . . ,φn) with

φk = 〈Ψ|e−iHτk (Pe−iHτk−1) . . . (Pe−iHτ1)|Ψ〉

in the limit n →∞ is based on the normalization of |Ψ〉

〈Ψ|eiHτ1 e−iHτ1 |Ψ〉 = 〈Ψ|Ψ〉 = 1

and will be derived by iteration: for the evaluation of |
φ|2 we consider the sequence of
projection operators {Πk}k=1,2,...,n with

Πk :=PeiHτk e−iHτk P, P = 1 − |Ψ〉〈Ψ| ≡ 1 − P0.

With Πk = P2 = P and |Ψ〉〈Ψ|+ P = 1 we can insert P0 +Π2 = 1 at

1 = 〈Ψ|eiHτ1 e−iHτ1 |Ψ〉 = 〈Ψ|eiHτ1(P0 +Π2)e−iHτ1 |Ψ〉

= 〈Ψ|eiHτ1 |Ψ〉〈Ψ|e−iHτ1 |Ψ〉+ 〈Ψ|eiHτ1 Π2 e−iHτ1 |Ψ〉.

Next we replace Π2 in the second term by

Π2 = PeiHτ2 e−iHτ2 P = PeiHτ2(P0 +Π3)e−iHτ2 P
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to get

1 = 〈Ψ|eiHτ1 |Ψ〉〈Ψ|e−iHτ1 |Ψ〉+ 〈Ψ|eiHτ1 PeiHτ2(P0 +Π3)e−iHτ2Pe−iHτ1 |Ψ〉

= 〈Ψ|eiHτ1 |Ψ〉〈Ψ|e−iHτ1 |Ψ〉+ 〈Ψ|eiHτ1 PeiHτ2 |Ψ〉〈Ψ|e−iHτ2 Pe−iHτ1 |Ψ〉

+ 〈Ψ|eiHτ1PeiHτ2 Π3 e−iHτ2Pe−iHτ1 |Ψ〉.

The replacement of the operator Πk by PeiHτk (P0 +Πk+1)e−iHτk P can be repeated for
k = 3, . . . , n to obtain

1 = 〈Ψ|eiHτ1 |Ψ〉〈Ψ|e−iHτ1 |Ψ〉+ 〈Ψ|eiHτ1PeiHτ2 |Ψ〉〈Ψ|e−iHτ2Pe−iHτ1 |Ψ〉

+ · · ·+ 〈Ψ|eiHτ1(PeiHτ2) . . . (PeiHτn)|Ψ〉〈Ψ|(e−iHτn P) . . . (e−iHτ2 P)e−iHτ1 |Ψ〉

+ 〈Ψ|eiHτ1(PeiHτ2) . . . (PeiHτn)P(e−iHτnP) . . . (e−iHτ2P)e−iHτ1 |Ψ〉

=

n∑
k=1

|φk|2 + Sn,

where

Sn = 〈Ψ|eiHτ1(PeiHτ2) . . . (PeiHτn)P(e−iHτnP) . . . (e−iHτ2P)e−iHτ1 |Ψ〉.

Thus, we have

n∑
k=1

|φk|2 = 1 − Sn, (A1)

where the probability Sn of not recording the state after n attempts is

Sn = 〈Ψ|eiHτ1(PeiHτ2) . . . (PeiHτn)P(e−iHτnP) . . . (e−iHτ2P)e−iHτ1 |Ψ〉.

Provided the remainder Sn vanishes in the limit n →∞, the wave function 
φ = (φ1,φ2, . . . ,φn)
is normalized in this limit: |
φ|2 = 1. Although we do not have proof that Sn always vanishes
with n →∞, the latter is plausible and is supported by the example of the symmetric two-level
system in equation (41), by stroboscopic measurements [9] and in the case of the time averaged
sum

∑
k�1〈|φk|2〉τ = 1 [23].

Appendix B. Recursion

For an operator K and the projector |Ψ〉〈Ψ| we assume that the inverse (K + |Ψ〉〈Ψ|)−1 exists.
Then we get the relation

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ0〉 = 〈Ψ|K−1(1 + |Ψ〉〈Ψ|K−1)−1|Ψ0〉. (B1)

Now we can use the identity

(1 + |Ψ〉〈Ψ|K−1)−1 = 1 − |Ψ〉〈Ψ|K−1(1 + |Ψ〉〈Ψ|K−1)−1

to write for the right-hand side of equation (B1)

〈Ψ|K−1|Ψ0〉 − 〈Ψ|K−1|Ψ〉〈Ψ|K−1(1 + |Ψ〉〈Ψ|K−1)−1|Ψ0〉,
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such that equation (B1) becomes

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ0〉=〈Ψ|K−1|Ψ0〉 − 〈Ψ|K−1|Ψ〉〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ0〉.

This relation is equivalent to

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ0〉 =
〈Ψ|K−1|Ψ0〉

1 + 〈Ψ|K−1|Ψ〉 . (B2)

In particular, for the diagonal case |Ψ0〉 = |Ψ〉 we have

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ〉 = 1 − 1
1 + 〈Ψ|K−1|Ψ〉 . (B3)

These relations read in the energy (spectral) representation, where we assume that K is
diagonal,

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ0〉 =
∑

j, j′
〈Ψ|E j〉〈E j|(K + |Ψ〉〈Ψ|)−1|E j′〉〈E j′ |Ψ0〉

=
∑

j, j′
(K +ΠE)−1

E j,E j′
〈Ψ|E j′〉〈E j′ |Ψ0〉

and

〈Ψ|(K + |Ψ〉〈Ψ|)−1|Ψ〉 =
∑

j, j′
〈Ψ|E j〉〈E j|(K + |Ψ〉〈Ψ|)−1|E j′〉〈E j′ |Ψ〉

=
∑

j, j′
(K +ΠE)−1

E j,E j′
ΠE j′ ,

where K on the right-hand side is in the energy representation 〈E j|K|E j′〉 = KE j,E jδE j,E j′ . This
implies with equation (B3)

∑
j, j′

(K +ΠE)−1
E j,E j′

ΠE j′ = 1 − 1
1 +

∑
j K−1

E j,E j
ΠE j

(B4)

and with equation (B2)

∑
j, j′

(K +ΠE)−1
E j,E j′

〈Ψ|E j′〉〈E j′ |Ψ0〉 =
∑

j K−1
E j,E j

〈Ψ|E j〉〈E j|Ψ0〉
1 +

∑
j K−1

E j,E j
ΠE j

. (B5)

Here |Ψ0〉 can be any state, implying that the relation holds for any QE j′ = 〈Ψ|E j′〉
hE j′ 〈E j′ |Ψ〉 = pj′hE j′ :

∑
j, j′

(K +ΠE)−1
E j,E j′

QE j′ =

∑
j K−1

E j,E j
QE j

1 +
∑

j K−1
E j,E j

ΠE j

. (B6)
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Appendix C. Product matrices

With the properties of equation (16) we get for k′ � k

φ∗
kφk′ = Tr[D∗

k(1 − EΠ) . . .D∗
2(1 − EΠ)D∗

1EΠ] Tr [Dk′ (1 − EΠ) . . .D2

× (1 − EΠ)D1EΠ]

due to Tr(A1)Tr(A2) = Tr(A1 × A2)

φ∗
kφk′ = Tr {[D∗

k(1 − EΠ) . . .D∗
2(1 − EΠ)D∗

1EΠ] × [Dk′(1 − EΠ) . . .D2

× (1 − EΠ)D1EΠ]}

and due to A1B1 × A2B2 = [A1 × A2][B1 × B2]

φ∗
kφk′ = Tr

{[
1 × Dk′ (1 − EΠ) . . . 1 × Dk+1(1 − EΠ)

]
[
D∗

k(1 − EΠ) × Dk(1 − EΠ) . . .D∗
2(1 − EΠ)

× D2(1 − EΠ)] D∗
1EΠ× D1EΠ} .

Averaging with respect to independent random times {τ k} then gives

〈φ∗
kφk′〉τ = Tr{Ĉk′−k

2 Γ̂k−1Ĝ} with Ĉ2 = 1 × 〈D〉τ (1 − EΠ),

since

〈D∗(1 − EΠ) × D(1 − EΠ)〉τ = 〈D∗ × D〉τ (1 − EΠ) × (1 − EΠ)

from the first relation in equation (16) implies

Tr {1 × 〈D〉τ (1 − EΠ) . . . 1 × 〈D〉τ (1 − EΠ)〈D∗(1 − EΠ)

× D(1 − EΠ)〉τ . . . 〈D∗(1 − EΠ) × D(1 − EΠ)〉τ

〈D∗EΠ× DEΠ〉τ}

= Tr {1 × 〈D〉τ (1 − EΠ) . . . 1 × 〈D〉τ (1 − EΠ)〈D∗ × D〉τ (1 − EΠ)

× (1 − EΠ) . . . 〈D∗ × D〉τ (1 − EΠ) × (1 − EΠ)

〈D∗ × D〉τEΠ× EΠ} = Tr(Ĉk′−k
2 Γ̂k−1Ĝ),

where the last equation follows from equations (20) and (21). An analog expression exists for
k � k′, such that we get

〈φ∗
kφk′ 〉τ =

⎧⎪⎨⎪⎩
Tr[(Ĉ1)k−k′ Γ̂k′−1Ĝ] for k � k′ � 1

Tr[(Ĉ2)k′−kΓ̂k−1Ĝ] for k′ � k � 1
,

Ĉ j =

⎧⎪⎨⎪⎩
〈D∗〉τ (1 − EΠ) × 1 j = 1

1 × 〈D〉τ (1 − EΠ) j = 2
.

(C1)
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Appendix D. Generating function

Next we consider the Fourier transform of equation (C1)

〈φ̃∗(ω)φ̃(ω + ω′)〉τ =
∑
k�1

∑
k′�k

ei(ω+ω′)(k′−k)+iω′k〈φ∗
kφk′〉τ

+
∑
k′�1

∑
k>k′

eiω(k′−k)+iω′k′〈φ∗
kφk′ 〉τ (D1)

= eiω′
Tr{[(1̂ − ei(ω+ω′)Ĉ2)−1 + e−iωĈ1(1̂ − e−iω Ĉ1)−1](1̂ − eiω′

Γ̂)−1Ĝ},

which becomes, after rewriting the second term in the trace,

= eiω′
Tr{[(1̂ − ei(ω+ω′)Ĉ2)−1 + (1̂ − e−iω Ĉ1)−1 − 1̂](1̂ − eiω′

Γ̂)−1Ĝ}

and with the expression of F(ω) in equation (23)

= eiω′
Tr{[(1̂ − ei(ω+ω′)Ĉ2)−1 + (1̂ − e−iωĈ1)−1](1̂ − eiω′

Γ̂)−1Ĝ} − F(ω′) . (D2)

To calculate the first term we can use the identity (B5). With A1 × (A2 + B2) = A1 × A2 +
A1 × B2 we get the relation

(1̂ − zĈ j)−1 =

{
[1 − z〈D∗〉τ (1 − EΠ)]−1 × 1 j = 1

1 × [1 − z〈D〉τ (1 − EΠ)]−1 j = 2

such that

[1 − z〈D∗〉τ (1 − EΠ)]−1 = [(z〈D∗〉τ )−1 − 1 + EΠ)]−1(z〈D∗〉τ )−1.

This yields for the first term in equation (D2)

Tr{(1 × [1 − ei(ω+ω′)〈D〉τ (1 − EΠ)]−1)(1̂ − eiω′
Γ̂)−1Ĝ}

= Tr{Π̂(1 × [1 − ei(ω+ω′)〈D〉τ (1 − EΠ)]−1)(1̂ − eiω′
Γ̂)−1〈D̂〉τ Ê}

= Tr{(1 × [1 − ei(ω+ω′)〈D〉τ (1 −ΠE)]−1)Π̂(1̂ − eiω′
Γ̂)−1〈D̂〉τ Ê}

=
∑

j, j′
[1 − ei(ω+ω′)〈D〉τ (1 −ΠE)]−1

j, j′ pj′A j′(ω
′) (D3)

with

A j′(ω
′) =

∑
j1, j2, j3

[(1̂ − eiω′
Γ̂)−1〈D∗ × D〉τ ] j1 j′, j2 j3 pj1 .

These components are linked to the generating function F(ω′) in equation (23) through
F(ω′) =

∑
j pjA j(ω′). Now we write
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∑
j, j′

[1 − ei(ω+ω′)〈D〉τ (1 −ΠE)]−1
j, j′ pj′A j′

=
∑

j, j′
[(ei(ω+ω′)〈D〉τ )−1 − 1 +ΠE)]−1

j, j′
pj′A j′(ω′)

ei(ω+ω′)[〈D〉τ ] j′ j′

and with K = (ei(ω+ω′)〈D∗〉τ )−1 − 1 we can apply equation (B6)

=
∑

j, j′
[K +ΠE)]−1

j, j′
pj′A j′(ω′)

ei(ω+ω′)
[
〈D〉τ

]
j′ j′

= e−i(ω+ω′)

∑
j K−1

j, j pjA j(ω′)/γ∗
j

1 +
∑

j K−1
j, j pj

=

∑
jpjA j(ω′)

∏
k �= j(1 − ei(ω+ω′)γ∗

k )∑
j′ pj′

∏
k �= j′ (1 − ei(ω+ω′)γ∗

k )
(D4)

The corresponding calculation yields for the second term in equation (D2):

Tr
{

([1 − e−iω〈D∗〉τ (1 − EΠ)]−1 × 1)(1̂ − e−iω′
Γ̂)−1Ĝ )

}
=

∑
j, j′

[1 − e−iω〈D∗〉τ (1 −ΠE)]−1
j, j′ pj′B j′ (ω

′)

and again with equation (B6)

=
∑

j, j′
(K′ +ΠE)−1

j, j′
pj′B j′(ω′)

e−iω[〈D∗〉τ ] j′ j′
= eiω

∑
j

K′−1
j, j pjB j(ω′)/γ j

1 +
∑

j
K′−1

j, j pj

=

∑
jpjB j(ω′)

∏
k �= j(1 − e−iω γk)∑

j′ pj′
∏

k �= j′(1 − e−iω γk)
(D5)

with

B j′(ω
′) =

∑
j1, j2, j3

[(1̂ − e−iω′
Γ̂)−1〈D∗ × D〉τ ] j′ j1, j2 j3 pj1 , K′ = (e−iω〈D〉τ )−1 − 1

and
∑

j pjB j(ω′) = F(ω′). This allows us to write for the Fourier transform of equation (C1)

〈φ̃∗(ω)φ̃(ω + ω′)〉τ = eiω′∑
j1, j2

pj1 pj2(h j2 + h′
j1

)
∑
j′1, j′2

[
(1̂ − eiω′

Γ̂)−1〈D̂〉τ
]

j1 j2, j′1 j′2
− F(ω′) (D6)

with

h j =

∏
k �= j(1 − ei(ω+ω′)γ∗

k )∑
j′ pj′

∏
k �= j′ (1 − ei(ω+ω′)γ∗

k )
, h′

j =

∏
k �= j(1 − e−iωγk)∑

j′ pj′
∏

k �= j′(1 − e−iωγk)
, γk = 〈eiEkτ 〉τ .

(D7)

These are analytic functions in ei(ω+ω′) and e−iω, respectively, and their special form implies∑
j p jh j =

∑
j p jh

′
j = 1. For ω′ = 0 the normalization 〈|φ̃(ω)|2〉τ = 1 can be obtained from

equation (D6) with the help of equation (31). This can be shown by the following reasoning.
From appendix A we have F(ω′ = 0) = 1. Then we can write with equation (D6)
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〈|φ̃(ω)|2〉τ =
∑
j1, j2

pj1 pj2(h j2 + h′
j1

)
∑
j3, j4

[
(1̂ − Γ̂)−1〈D̂〉τ

]
j1 j2, j3 j4

− 1

=
∑
j1, j2

pj1 pj2(h j2 + h′
j1

)T j1 j2 − 1. (D8)

Inserting now T j1 j2 from equation (31) and use
∑

j pjh j =
∑

j pjh
′
j = 1 we obtain 1 for this

expression.

Appendix E. Analytic properties of F(ω)

When we consider the trace term in equation (19) as

〈|φn+1|2〉τ = Tr[(D̂Ĉ)nD̂ÊΠ̂] (E1)

with the short-hand notation D̂ = 〈D̂〉τ , we get in the Zeno limit D̂ → 1̂ a vanishing expression
except for n = 0, since ÊΠ̂ and Ĉ are projectors with

(ÊΠ̂)2 = ÊΠ̂, Ĉ2 = Ĉ, ÊΠ̂Ĉ = ÊΠ̂(1 − EΠ) × (1 − EΠ) = 0,

and since for n = 0

Tr(ÊΠ̂) =
N∑

j, j′=1

pj pj′ = 1.

Returning to equation (E1), we can write with Ĉ2 = Ĉ and R̂ = 1̂ − D̂

(D̂Ĉ)n = D̂(ĈD̂Ĉ)n = D̂[Ĉ(1̂ − R̂)Ĉ]n = D̂(Ĉ − ĈR̂Ĉ)n = D̂Ĉ(1̂ − R̂Ĉ)n, (E2)

such that for n � 1

〈|φn+1|2〉τ = Tr[Ĉ(1̂ − R̂Ĉ)nD̂ÊΠ̂D̂] = Tr[Ĉ(1̂ − R̂Ĉ)n(1̂ − R̂)ÊΠ̂(1̂ − R̂)]

and with ÊΠ̂Ĉ = ĈÊΠ̂ = 0

〈|φn+1|2〉τ = Tr[Ĉ(1̂ − R̂Ĉ)nR̂ÊΠ̂R̂] = Tr[R̂Ĉ(1̂ − R̂Ĉ)nR̂ÊΠ̂]. (E3)

Moreover, with R̂Ĉ = 1̂ − (1̂ − R̂Ĉ) we get

〈|φn+1|2〉τ = Tr[(1̂ − R̂Ĉ)nR̂ÊΠ̂] − Tr[(1̂ − R̂Ĉ)n+1R̂ÊΠ̂].

Now we introduce the projector P̂ with R̂ = P̂R̂. Then we can write

Ĉ(1̂ − R̂Ĉ)nR̂ = Ĉ(1̂ − R̂ĈP̂)nR̂ = Ĉ(1̂ − P̂ + P̂ − R̂ĈP̂)nR̂ = Ĉ [(1̂ − P̂)n

+ (P̂ − R̂ĈP̂)n ] R̂

and since (1̂ − P̂)nR̂ = 0

= Ĉ(P̂ − R̂ĈP̂)nR̂. (E4)

The eigenvalues of R̂ĈP̂ might be complex. Therefore, it is better to calculate the eigenvalues
of the Hermitian matrix

(R̂ĈP̂)†R̂ĈP̂ = P̂ĈR̂†R̂ĈP̂,
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whose determinant reads

det(P̂ĈR̂†R̂ĈP̂) = det (P̂ĈP̂)2
N∏

j, j′=1; j′ �= j

|1 − 〈D j j′〉τ |2. (E5)

A necessary condition for a quick decay of (P̂ − R̂ĈP̂)n with n is that the product of
|1 − 〈D j j′〉τ |2 is not small, while the sufficient condition requires that det(P̂ĈP̂) also is not
small. To see the latter, we analyze the elements of the projected matrix

(P̂ĈP̂) j j′,kk′ = (1 − δ j j′)(1 − δkk′ )(δ jk − pk)(δ j′k′ − pk′ ). (E6)

We only consider the projected matrix, which has the following matrix elements with j �= j′

and k �= k′:

k = j, k′ = j′ : (P̂ĈP̂) j j′, j j′ = (1 − pj)(1 − pj′ ), k �= j, k′ �= j′:

(P̂ĈP̂) j j′,kk′ = pk pk′

and

k = j, k′ �= j′ : (P̂ĈP̂) j j′, jk′ = −(1 − pj)pk′ , k �= j, k′ = j′:

(P̂ĈP̂) j j′,k j′ = −pk(1 − pj′).

For the special case of N = 2 this gives a 2 × 2 matrix:(
0 −p2(1 − p2)

−p1(1 − p1) 0

)
,

whose determinant −p1(1 − p1)p2(1 − p2) vanishes only for p1 = 0, 1 and/or p2 = 0, 1.

Appendix F. Symmetric two-level system

The matrix structure of the symmetric 2LS reads

([A × B]i j,kl) = (AikB jl) =

⎛⎜⎜⎝
A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

⎞⎟⎟⎠
and

(Γi j,kl) =

⎛⎜⎜⎝
Γ11,11 Γ11,12 Γ11,21 Γ11,22

Γ12,11 Γ12,12 Γ12,21 Γ12,22

Γ21,11 Γ21,12 Γ21,21 Γ21,22

Γ22,11 Γ22,12 Γ22,21 Γ22,22

⎞⎟⎟⎠
Then we have
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〈D∗ × D〉τ =

⎛⎜⎜⎝
1 0 0 0
0 〈e2iJτ〉τ 0 0
0 0 〈e−2iJτ 〉τ 0
0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 y 0 0
0 0 y∗ 0
0 0 0 1

⎞⎟⎟⎠
with y = 〈e2iJτ〉τ . Moreover,

(1 − EΠ) × (1 − EΠ) =
1
4

⎛⎜⎜⎝
1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎞⎟⎟⎠
such that

Γ̂ = 〈D∗ × D〉τ (1 − EΠ) × (1 − EΠ) =
1
4

⎛⎜⎜⎝
−1 1 1 −1
y −y −y y
y∗ −y∗ −y∗ y∗

−1 1 1 −1

⎞⎟⎟⎠
with three vanishing eigenvalues and one eigenvalue (y + y∗ + 2)/4. With the help of maxima
we obtain with c = z/4

det(1̂ − zΓ̂) = 1 − c(2 + y + y∗) = 1 − z
2

[1 + 〈cos(2Jτ )〉τ ] = 1 − z〈cos2(Jτ )〉τ

(1̂ − zΓ̂)−1 =
−1

1 − z〈cos2(Jτ )〉τ

⎛
⎜⎜⎝

c(y + y∗ + 1) − 1 c c −c
cy c(y∗ + 2) − 1 −cy cy
cy∗ −cy∗ c(y + 2) − 1 cy∗

−c c c c(y + y∗ + 1) − 1

⎞
⎟⎟⎠

(1̂ − zΓ̂)−1〈D∗ × D〉τ

=
−1

1 − z〈cos2(Jτ )〉τ

⎛
⎜⎜⎝

c(y + y∗ + 1) − 1 cy cy∗ −c
cy c(yy∗ + 2y) − y −cyy∗ cy
cy∗ −cyy∗ c(yy∗ + 2y∗) − y∗ cy∗

−c cy cy∗ c(y + y∗ + 1) − 1

⎞
⎟⎟⎠

Then the generating function F(ω) in equation (23) reads

F(ω) =
4e2iω〈cos 2Jτ〉τ − 2eiω(〈cos 2Jτ〉τ + 1)

2eiω(〈cos 2Jτ〉τ + 1) − 4
,

which gives for ω = 0

F(0) = 1, −iF′(0) = 2, −F′′(0) = 2
3 − 〈cos 2Jτ〉τ
1 − 〈cos 2Jτ〉τ

.
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For the φ-correlator we get the winding number

wφ =
1

2πi

∫ 2π

0
∂ω′ log(〈φ̃∗(ω)φ̃(ω + ω′)〉τ )

∣∣∣
ω′=0

dω

=
1

2πi

∫
a2z2 + a1z + a0

4(y + y∗ − 2)(z − C)(Cz − 1)
1
z

dz (F1)

with C = 〈cos Jτ 〉τ and y = 〈e2iJ τ〉τ , with poles

z0 = 0, z1 = C, z2 = 1/C

and with the coefficients

a0 = a2 = (6x∗ + 2x)y∗ + (2x∗ + 6x)y − 8x∗ − 8x

a1 = 4[(−x∗2 − xx∗ − 2)y∗ + (−xx∗ − x2 − 2)y + x∗2 + 2xx∗ + x2 + 4],

where x = 〈e−iJτ 〉τ . After performing the Cauchy integration in equation (F1) for the two poles
z0,1 we get

wφ = 2.
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[22] Riera-Campeny A, Ollé J and Masó-Puigdellosas A 2020 arXiv:2011.04403
[23] Kessler D A, Barkai E and Ziegler K 2020 The first detection time of a quantum state under random

probing (arXiv:2012.01763)

25

https://orcid.org/0000-0001-7050-3883
https://orcid.org/0000-0001-7050-3883
https://orcid.org/0000-0002-5279-1655
https://orcid.org/0000-0002-5279-1655
https://doi.org/10.1103/physrevlett.100.020501
https://doi.org/10.1103/physrevlett.100.020501
https://doi.org/10.1016/j.jcss.2004.03.005
https://doi.org/10.1016/j.jcss.2004.03.005
https://doi.org/10.1103/physreve.95.032141
https://doi.org/10.1103/physreve.95.032141
https://doi.org/10.1103/physreva.91.062115
https://doi.org/10.1103/physreva.91.062115
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1103/physreva.74.042334
https://doi.org/10.1103/physreva.74.042334
https://doi.org/10.1103/physreva.73.032341
https://doi.org/10.1103/physreva.73.032341
https://doi.org/10.1103/physreva.75.062332
https://doi.org/10.1103/physreva.75.062332
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s10955-014-0936-8
https://doi.org/10.1007/s10955-014-0936-8
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1103/physreva.93.050101
https://doi.org/10.1103/physreva.93.050101
https://doi.org/10.1088/1751-8121/aa5191
https://doi.org/10.1088/1751-8121/aa5191
https://doi.org/10.1103/physrevlett.120.040502
https://doi.org/10.1103/physrevlett.120.040502
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1088/1742-5468/aaa79a
https://doi.org/10.1103/physreva.99.012101
https://doi.org/10.1103/physreva.99.012101
https://doi.org/10.1103/physrevresearch.1.033086
https://doi.org/10.1103/physrevresearch.1.033086
https://arxiv.org/abs/2012.01196
https://doi.org/10.1103/physrevresearch.2.033113
https://doi.org/10.1103/physrevresearch.2.033113
https://doi.org/10.1103/physreva.78.022324
https://doi.org/10.1103/physreva.78.022324
https://arxiv.org/abs/2011.04403
https://arxiv.org/abs/2012.01763


                                              

[24] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[25] Bénichou O, Guérin T and Voituriez R 2015 J. Phys. A: Math. Theor. 48 163001
[26] Heller E J 1987 Phys. Rev. A 35 1360
[27] Cohen D, Yukalov V I and Ziegler K 2016 Phys. Rev. A 93 042101
[28] Berry M V 1984 Proc. R. Soc. A 392 45

26

https://doi.org/10.1088/1751-8113/48/16/163001
https://doi.org/10.1088/1751-8113/48/16/163001
https://doi.org/10.1103/physreva.35.1360
https://doi.org/10.1103/physreva.35.1360
https://doi.org/10.1103/physreva.93.042101
https://doi.org/10.1103/physreva.93.042101
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023

	Randomly repeated measurements on quantum systems: correlations and topological invariants of the quantum evolution
	1.  Introduction
	2.  Return amplitude of the ME
	3.  Summary and results
	4.  Fixed time step 
	5.  Matrix products
	6.  Averaging over the distribution of random time steps
	6.1.  The generating functions
	6.2.  Evaluation of 
	6.2.1.  Mean FDR time.


	7.  Example: symmetric two-level system
	8.  Discussion
	Acknowledgments
	Data availability statement
	Appendix B.  Recursion
	Appendix C.  Product matrices
	Appendix D.  Generating function
	Appendix E.  Analytic properties of 
	Appendix F.  Symmetric two-level system
	ORCID iDs
	References


