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Abstract: The diagonal elements of the time correlation matrix are used to probe closed quantum
systems that are measured at random times. This enables us to extract two distinct parts of the
quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly
affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry
breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing,
and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the
diagonal elements of the time correlation matrix is discussed as a general concept and tested in the
case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition
to Hilbert-space localization.

Keywords: dynamics of closed quantum systems; random probing; separation of time scales; Hilbert-
space localization

1. Introduction

Symmetries play a central role in classical and in quantum many-body systems. They
determine the macroscopic behavior of these systems. Moreover, symmetries of macro-
scopic states reflect symmetries and spontaneous symmetry breaking of the underlying
system. For instance, the Hamiltonian of the Ising model has a global Z2 symmetry,
and with ferromagnetic nearest-neighbor spin–spin coupling its ground state is two-fold
degenerate with | ↑, . . . , ↑〉 and | ↓, . . . , ↓〉. Spin flip dynamics will create excited states
that are generically not Z2 symmetric. Moreover, we can prepare the initial state of the
Ising system in one of the ground states, e.g., in the state | ↑, . . . , ↑〉 that breaks the Z2
symmetry. Then the dynamics prefer the vicinity of the initial state because it would cost
too much energy to overcome the barrier to the other ground state | ↓, . . . , ↓〉, although
the Hamiltonian and the spin-flip operator obey the Z2 symmetry. As a result, the system
experiences dynamical symmetry breaking by which it prefers to remain in the vicinity of
a symmetry-broken state.

In the following we consider the unitary evolution of closed quantum many-body
systems. It is based on the idea that the extraction of information about the quantum
system in an experiment is limited. In other words, not all properties or degrees of freedom
of the quantum model are accessible by an experiment. Typical exceptions are the return
and transition probabilities for quantum states. Moreover, quantum systems have complex
dynamics. Although the evolution is deterministic, even for a few particles it can looks
erratic, similarly to a classical random walk. Such behavior suggests a statistical approach
to extract generic information about the quantum evolution, using averaged quantities.
A statistical approach is also supported by the fact that large sets of experimental data
are available whose properties can be treated statistically. This idea is not new and found
very successful realization in random matrix theory (RMT). It has been applied to many
physical systems, such as nuclei, atoms and mesoscopic systems [1–7]. The motivation for
RMT is that there is no way of knowing the Hamiltonian of even a relatively small many-
body quantum system, such as an atomic nucleus. On the other hand, the spectra of these
systems, complex though they are, have some characteristic features, such as level repulsion.
Thus, instead of guessing a specific Hamiltonian, a random ensemble of Hamiltonians
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is chosen, which describes the generic features of a class of quantum systems. The class
is characterized by the invariance of the random ensemble with respect to symmetry
transformations. These are typically orthogonal, unitary or symplectic transformations.
Another application of RMT has been recently proposed for the description of random
measurements. It is based on Dyson’s circular matrix ensemble [3,6,8,9]), which represents
random unitary matrices and has been used as a tool to determine the trace of powers of
the density matrix and the related Rényi entropy [10–14].

In contrast to these RMT approaches, we consider in the following a dynamical
approach in which only the time of a measurement is random, whereas the energy levels
{Ej} of the Hamiltonian H and the overlaps 〈Ej|Ψ0〉, 〈Ej|Ψ〉 of the energy eigenstates
{|Ej〉} with a given initial state |Ψ0〉 and a measured state |Ψ〉 are not random. This leads
to the time correlation matrix (TCM) as the central tool for the definition of the statistical
model, instead of the random ensemble of Hamiltonians in RMT. We employ this approach,
which was previously described in [15] to analyze the evolution of the return and transition
probabilities. In more concrete terms, for a given time tk we evaluate (in a calculation or in
a real experiment) the probability pk that the system is in a certain state. Then we evaluate
the probabilities {p1, p2, ...} at different discrete and randomly chosen times {t1, t2, ...}.
This can be translated into practical observations, for which it was assumed that each
experiment was prepared in the same initial state and all measurements were performed
for the same final state of the evolution at different times. These experiments provide an
ensemble of probabilities {p1, p2, ...} with the corresponding times {t1, t2, ...}.

For given overlaps 〈Ej|Ψ0〉, 〈Ej|Ψ〉 we can immediately predict some restrictions
for the evolution of the probability pk in the N-dimensional Hilbert space. When the
overlaps vanish for some of the eigenstates |En〉, the evolution cannot reach those states
and the accessible Hilbert space is restricted to the states |Ej〉 with j 6= n. This reduction
of the Hilbert space can be interpreted as Hilbert-space localization [16] or Hilbert-space
fragmentation [17]. This effect can be associated with spontaneous symmetry breaking,
induced by the choice of the initial and measured states. In the case that the overlaps with
some states are not strictly zero but very small, the access to those states may be negligible
and can be ignored. This corresponds to complex dynamical behavior and requires a
careful analysis. It is addressed briefly for the example of a bosonic Josephson junction in
Section 3, where the mirror symmetry of the junction is spontaneously broken.

This paper is organized as follows. After the definition of the TCM in Section 2 we
focus on the properties of its diagonal elements (Section 2.1). Then the effect of spectral
degeneracies on the diagonal TCM elements are discussed in Section 2.2. In Section 3, we
analyze the diagonal TCM elements in the specific example of a bosonic Josephson junction.

2. Time Correlation Matrix

We consider the transition amplitude from |Ψ0〉 to |Ψ〉

uk = 〈Ψ|e−iHtk |Ψ0〉 , (1)

which is based on the unitary evolution with the Hamiltonian H from the initial state |Ψ0〉.
The probability of measuring the state |ψ〉 at time tk is given by |〈Ψ|e−iHtk |Ψ0〉|2. In other
words, pk = |uk|2 is the probability of finding the quantum system in the state |Ψ〉 after the
unitary evolution from the initial state |Ψ0〉 over the time tk. Since the evolution is defined
by the Hamiltonian H, we consider its eigenstates {|Ej〉}j=1,...,N and its corresponding
eigenvalues {Ej}j=1,...,N and write the amplitude in spectral representation as

uk =
N

∑
j=1
〈Ψ|Ej〉〈Ej|Ψ0〉e−iEjtk ≡

N

∑
j=1

qje
−iEjtk . (2)
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Although the phases are not directly experimentally observable, their effects can be
detected through the interference of different quantum states. For instance, the product of
amplitudes at different times with probabilities of interfering amplitudes reads

u∗k uk′ + u∗k′uk =
1
2
(
|uk + uk′ |2 − |uk − uk′ |2

)
,

i(u∗k uk′ − u∗k′uk) =
1
2
(
|uk + iuk′ |2 − |uk − iuk′ |2

)
,

(3)

where the probabilities can be detected in interferometric measurements. These relations
suggest considering the correlation of the amplitudes uk and uk′ at different times through
the TCM 〈u∗k uk′〉τ , where the average 〈...〉τ is taken from the distribution of times {tk}
as a result of inaccurate clocks: The time is measured by a clock in each laboratory by
counting time steps {τn}. These clocks have a limited accuracy, such that the time steps
vary randomly. This implies a sequence of measurements in each laboratory, where the
clocks indicate k time steps and a total evolution time tk = τ1 + · · ·+ τk for different values
of k. Now we can compare the measured sequences of different laboratories. This provides
a distribution of results for u∗k uk′ due to different inaccurate clocks, where we assume that
the fluctuations of the time steps {τn} are independently and equally distributed. Then the
TCM is, as a spectral representation,

〈u∗k uk′〉τ = ∑
j,j′

q∗j qj′〈eiEj(τ1+···+τk)e−iEj′ (τ1+···+τk′ )〉τ (4)

= ∑
j,j′

q∗j qj′


〈ei(Ej−Ej′ )(τ1+···+τk)〉τ〈e−iEj′ (τk+1+···+τk′ )〉τ k′ > k

〈ei(Ej−Ej′ )(τ1+···+τk′ )〉τ〈eiEj′ (τk′+1+···+τk)〉τ k′ < k

〈ei(Ej−Ej′ )(τ1+···+τk)〉τ k′ = k

. (5)

When λj = 〈eiEjτ〉τ and λjj′ = 〈e
i(Ej−Ej′ )τ〉τ the TCM elements become

〈u∗k uk′〉τ = ∑
j,j′

q∗j qj′

{
λk

jj′λ
k′−k
j′ k′ ≥ k

λk′
jj′λ
∗
j

k−k′ k′ < k
. (6)

The TCM decays exponentially with |k− k′|, provided that |λj| < 1. Moreover, for
fixed |k− k′| the TCM is constant for the diagonal elements λjj = 1. This reflects the fact
that a unitary evolution between the same energy eigenstates gives just a phase factor
e−iEjτ (cf. Equation (2)). For different energy states, on the other hand, these phase factors
lead to a decay due to interference effects after the time average.

2.1. Diagonal Elements of the TCM

The diagonal TCM element 〈|uk|2〉τ is the probability of measuring the state |Ψ〉 at
time tk. Before time averaging, the expression |uk|2 is a diagonal element of the density
matrix ρ(tk) with respect to the state |Ψ〉. The trace of |uk|2 with respect to all states |Ψ〉 of
the underlying Hilbert space is the spectral form factor, often used for the characterization
of many-body quantum chaos [18–20]. We only mention this, but do not study it here.
In comparison with the spectral form factor, the diagonal elements of the TCM refer to
a specific measured state and to the time index k of the measurement. Thus, 〈|uk|2〉τ
might be useful when we analyze a large set of experimental data for a specific state at
different times.

According to Equation (6) the average transition probability 〈|uk|2〉τ reads

〈|uk|2〉τ = PN +
N

∑
j,j′=1;j′ 6=j

q∗j qj′λ
k
jj′ , PN =

N

∑
j=1
|qj|2 . (7)
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The term PN describes the recurrent behavior, which does not depend on time. It is
the asymptotic transition probability for k→ ∞

PN = lim
k→∞
〈|uk|2〉τ , (8)

provided that the energy levels are not degenerated. The case of degenerate energy levels
is discussed in the next section. The second term in Equation (7) decays exponentially with
time due to |λjj′ | < 1, and only this term describes a change of the transition probability
during the evolution of the quantum system. This result provides a separation of the
diagonal elements of the TCM into a static recurrent term PN and a dynamic term that
decays quickly.

The recurrent term PN provides important information regarding the properties of the
quantum system. Since |qj|2 = |〈Ψ|Ej〉|2|〈Ψ0|Ej〉|2 is a product of the overlaps between the
energy eigenstate |Ej〉 with the initial state and with the measured state, it is a measure
of how much this energy eigenstate contributes to the transition |Ψ0〉 → |Ψ〉 during
the unitary evolution. This can be used, for instance, to describe localization with the
asymptotic behavior of the return probability to the initial state |Ψ0〉 → |Ψ0〉: With the
dimensionality N of the underlying Hilbert space, we get localization when limN→∞ PN >
0, whereas the absence of localization is characterized by limN→∞ PN = 0 [16]. This can be
understood by noting that the normalization of quantum states implies ∑N

j=1 |〈Ψ0|Ej〉|2 = 1,
and that for a localized state, only a few energy eigenstates have nonzero overlaps with
|Ψ0〉. For a delocalized state, on the other hand, the overlaps are nonzero for a number
of order N of energy eigenstates. A special case is when all these overlaps are equal. In
that case we have |〈Ψ0|Ej〉|2 = 1/N due to the normalization, which implies PN = 1/N.
Anderson localization is associated with a random Hamiltonian [21]. According to the
above described picture, we can also consider Hilbert-space localization for a deterministic
Hamiltonian, which depends strongly on the initial state. For an energy eigenstate, the
system will always remain in the latter under unitary evolution. More generally, if the
initial state is a superposition of m energy eigenstates, the system will always remain
inside the m–dimensional Hilbert space, spanned by these energy eigenstates. In the
case, where the initial state is the eigenstate of H0 of the Hamiltonian H = H0 + ηH1.
η is a small parameter. ηH1 is a small perturbation. In that case, it is possible that this
perturbation provides an exponentially decaying evolution away the initial state. This
would be considered as exponential Hilbert-space localization.

In the subsequent discussion we focus on the diagonal elements of the TCM, since the
off-diagonal TCM elements decay exponentially with |k− k′| according to Equation (6).

2.2. Effect of Spectral Degeneracies

Assuming that there is a spectral degeneracy E1 = E2, we have λ12 = λ21 = 1, and
the diagonal TCM elements in Equation (7) read in this case

〈|uk|2〉τ =
N

∑
j,j′=1

q∗j qj′λ
k
jj′ = PN + q∗1q2 + q∗2q1 +

N

∑
j,j′=1;j′ 6=j;(j,j′) 6=(1,2),(2,1)

q∗j qj′λ
k
jj′ , (9)

such that the recurrent part of the transition probability becomes

lim
k→∞
〈|uk|2〉τ = PN + q∗1q2 + q∗2q1 = |q1 + q2|2 +

N

∑
j=3
|qj|2 . (10)

Thus, the effect of a spectral degeneracy is a change of the recurrent and the decaying
behavior, where the recurrent term changes by |q1 + q2|2 − |q1|2 − |q2|2. This means that
the diagonal elements of the TCM are very sensitive in terms of spectral degeneracies.
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After applying a discrete Fourier transformation to the decaying part of 〈|uk|2〉τ , we
obtain the function

Ũd(eiω) = ∑
k≥1

eiωk
N
∑

j,j′=1;k′ 6=k;(j,j′) 6=(1,2),(2,1)
q∗j qj′λ

k
jj′

=
N
∑

j,j′=1;j′ 6=j;(j,j′) 6=(1,2),(2,1)
q∗j qj′

λjj′

e−iω−λjj′
,

(11)

which is a function of ω on the interval [0, 2π). In other words, Ũd(z) is a sum of poles
inside the unit circle due to |λjj′ | < 1. The poles λnn′ and λn′n approach the unit circle
when we get closer to a degeneracy of En and En′ . This should be visible in Ũd(eiω). The
corresponding decay time Td = −1/ log |λnn′ | diverges due to |λnn′ | ∼ 1. Therefore, the
decay time Td is a measure of the distance from a spectral degeneracy; it diverges when we
approach the degeneracy. In general, we can define

Tm = max
j,j′=1,...,N

− 1
log |λjj′ |

(12)

as the largest decay time as a measure of level degeneracy.

3. Example: Bosonic Josephson Junction

In this section, we study the diagonal TCM elements of a bosonic Josephson junction
(BJJ) with N bosons as a closed quantum system. The motivation for choosing this example
is at least threefold: The model is (i) simple enough but not trivial, with interesting features
based on tunneling and boson–boson interaction; (ii) it can be solved exactly; and (iii)
it has been realized experimentally [22,23] with applications for commercial quantum
computers [24]. The BJJ consists of two identical wells filled with interacting bosons and
a tunneling junction between them. More formally, it is defined by the Bose–Hubbard
Hamiltonian [25]:

H = − J
2
(a†

l ar + a†
r al) + U(n2

l + n2
r ), nl,r = a†

l,ral,r , (13)

where a†
l,r (al,r) are the creation (annihilation) operators in the left and right wells, respec-

tively. The first term of H describes tunneling of atoms between the wells, and for U > 0
the second term represents a repulsive particle–particle interaction that favors energetically
a symmetric distribution of bosons in the double well. Without tunneling (i.e., for J = 0)
there are two-fold degenerate energy levels Ek = U[(N − k)2 + k2]/2 with eigenstates that
are superpositions of the product Fock state |k, N − k〉 (≡ |k〉 ⊗ |N − k〉) and its mirror
image |N − k, k〉. This two-fold degeneracy is similar to the two-fold degeneracy of the
Ising model, mentioned in the Introduction. In contrast to the Z2 symmetry of the Ising
model, the BJJ Hamiltonian has mirror-type symmetry due to the double well structure.
Individual tunneling of bosons between the wells plays the role of the symmetry-breaking
term, similarly to a local spin flip in the Ising model. Thus, an arbitrarily small tunneling
parameter J will lift the two-fold degeneracy of the Fock states. A difference between the
Ising model and the BJJ is that without tunneling in the latter, all energy levels are two-fold
degenerate. Therefore, the initial state can be prepared in any of these energy levels to
follow the evolution due to tunneling in the vicinity of degenerate levels. This is important
because the degenerate ground state may not be reached due to the energy conservation in
the closed quantum system.

For the following we use |Ψ0〉 = |0, N〉 as the initial state and |Ψ〉 = |N, 0〉 as the
measured state. Then we define the return probability (RP) and the transition probability
(TP) as

|ur,k|2 = |〈0, N|e−iHtk |0, N〉|2 , |ut,k|2 = |〈N, 0|e−iHtk |0, N〉|2 . (14)



Symmetry 2021, 13, 1796 6 of 10

Since both states |Ψ0〉, |Ψ〉 are eigenstates of H in the absence of tunneling (J = 0),
we get

|ur,k|2 = 1 , |ut,k|2 = 0 (15)

for any k due to orthogonality. This reflects the fact that this pair of states breaks the
mirror symmetry of the double well. The opposite extreme is the BJJ without boson–boson
interaction (U = 0), which is more complex and will be discussed in the next subsection.
As we will see, this case can be described by simple functions for |ur,k|2, |ut,k|2. For
the interplay of tunneling and boson–boson interaction (J, U 6= 0), the behavior is more
complex and we rely on the time averaged expressions 〈|ur,k|2〉τ , 〈|ut,k|2〉τ with τk = τ̄ + τ′k
and an exponential distribution for τ′k:

〈...〉τ =
∫ ∞

0
... ∏

n≥1
e−τ′n dτ′n , (16)

where the time is measured in units of h̄/J.

3.1. Non-Interacting Bosons

For U = 0 the spectrum of H consists of equidistant energy levels Ej = −J(N/2− j)
(j = 0, 1, ..., N) and eigenstates

|Ej〉 =
2−N/2√
j!(N − j)!

(a†
l + a†

r )
j(a†

l − a†
r )

N−j|0, 0〉 .

Then the RP and the TP at time tk for N bosons read

|ur,k|2 = |〈0, N|e−iHtk |0, N〉|2 = | cosN(Jtk/2)|2 ,
|ut,k|2 = |〈N, 0|e−iHtk |0, N〉|2 = | sinN(Jtk/2)|2 .

(17)

For the average TP we get tk = kτ̄ + τ′1 + · · ·+ τ′k and the exponential distribution of
Equation (16):

〈|ut,k|2〉τ = 2−2N
N

∑
l,l′=0

(
N
l

)(
N
l′

)
(−1)l+l′

[
e−i Jτ̄(l−l′)

1− i J(l − l′)

]k

= 2−2N
N

∑
l=0

(
N
l

)2
+ 2−2N

N

∑
l,l′=0;l′ 6=l

(
N
l

)(
N
l′

)
(−1)l+l′

[
e−i Jτ̄(l−l′)

1− i J(l − l′)

]k

, (18)

whereas the average RP is the same without the factor (−1)l+l′ . From these results we get
for the asymptotic value at k ∼ ∞ for both probabilities

PN ∼ 〈|ur,k|2〉τ ∼ 〈|ut,k|2〉τ ∼ 2−2N
N

∑
l=0

(
N
l

)2
, (19)

which reflects the mirror symmetry of the BJJ.

3.2. Interacting Bosons

Exact solutions exist for this model also for J, U 6= 0, but in contrast to the non-
interacting case they are complex and difficult to present in general. For instance, the
resolvent is a meromorphic function with polynomials of orders N and N + 1 [16,26].
Therefore, we only plot the results for the RP and the TP and their averaged counterparts
here. For transparency, we chose for all subsequent plots N = 20 bosons.

First, the evolutions of the RP and the TP are presented in Figure 1 for two values
(u = 1, 2) of the interaction parameter u = NU/J. This clearly reveals that the RP
dominates over the TP for increasing u, as we expected from the results of the two limits
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J = 0 and U = 0. It is interesting to note that in a mean-field (classical) approximation
of the BJJ there is a sharp phase transition in terms of the interaction parameter, where
the mean-field TP is completely suppressed when u ≥ uc = 2 [27]. The strong interaction
phase is also called the self-trapping phase. The analogue of the latter in the quantum BJJ
is Hilbert-space localization, reflected by the scaling behavior of the inverse participation
ratio [16]. This also indicates the existence of a critical uc.
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Figure 1. Signatures of a qualitative change in the evolution of a bosonic Josephson junction upon
increasing interaction strength u. The plots represent the dynamics of 20 bosons for u = 1, 2, where
the top panel gives the return probability |ur,k|2 and the bottom panel the transition probability |ut,k|2.

In Figure 2, the effect of time averaging on |ur,k|2 and |ut,k|2 for u = 1 is visualized. It
reflects the smoothing of the strongly fluctuating dynamics with a recurrent and a decaying
contribution according to Equations (7) and (9). It is obvious that the separation of the
recurrent and the decaying behavior is not feasible without time averaging.

The existence of a critical interaction strength uc ≈ 1.89... is demonstrated in Figure 3,
where the 〈|ur,k|2〉τ jumps upon increasing u at uc. Moreover, 〈|ut,k|2〉τ develops a charac-
teristic peak at uc. This behavior reflects the appearance of nearly degenerate energy levels,
as described in Section 2.2.

Finally, in Figure 4 the change of the time scales for the decay of the average TP
〈|ut,k|2〉τ is visualized for u = 1.7, ..., 2.2. The decay is reduced by increasing interaction
strength u. This reflects the fact that the splitting of the energy levels is reduced by the
interaction, as we expected.
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Figure 2. A comparison of the return probability |ur,k|2 and the average return probability 〈|ur,k|2〉τ
(top panel) and of the corresponding transition probabilities (bottom panel). The average was taken
with respect to the exponential distribution of Equation (16). The interaction parameter is u = 1, and
τ̄ = 1/10.
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〈|ur,k|2〉τ and 〈|ut,k|2〉τ at k = 70.
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Figure 4. Decay of 〈|ut,k|2〉τ for different interaction parameters u = 1.7, . . . , 2.2.

4. Discussion and Conclusions

Our analysis of the quantum unitary evolution was strictly focused on the result of
a single measurement in each of many identical experiments, which were subject of a
unitary evolution. Averaging with respect to the statistical outcome due to measurements
at randomly distributed times led to the TCM. We focused on the diagonal TCM elements to
study the evolution of the quantum system. The analysis of the off-diagonal TCM elements
was the subject of a previous work [15]. Similarly to the off-diagonal TCM elements, the
diagonal TCM elements revealed separation of the evolution into a static recurrent part and
a dynamic decaying part. We found that the decay rate of the latter is related to the spacing
between energy levels, which diverges when the spacing vanishes near a degeneracy. Thus,
the decay rate is a quantity that can be used to detect symmetry changes or the appearance
of spontaneous symmetry breaking. This was observed in the example of the BJJ: In this
model the energy levels were two-fold degenerate in the limit u→ ∞. This is reflected in
Figure 4, where the decay decreases with increasing u.

Another interesting aspect of the BJJ is the transition to Hilbert-space localization [16].
This transition was also detected with the help of the average RP and average TP in Figure 3,
where the average RP experiences a jump to a higher value for u > uc. On the other hand,
the average TP has only a sharp peak near uc but has the same value away from uc.

We can conclude that time averaging over an ensemble of measurements is crucial
for extracting the (static) recurrent behavior and the (dynamic) decaying behavior. This
can be formulated in terms of the TCM. The separation of static and dynamic behavior is
generic for the unitary quantum evolution. The TCM provides a tool to analyze properties
of the quantum system, which are associated with spectral degeneracy in the case of phase
transitions. It can be applied to theoretical calculations and to experimental data, collected
from many experiments in identical quantum systems. We have demonstrated in the case
of the BJJ that the TCM approach delivers interesting generic information. The BJJ can be
considered as a building block of the Bose–Hubbard model on a lattice. Therefore, the
TCM approach should be applicable to more complex quantum models, including bosonic
and fermionic Hubbard models and quantum spin systems.
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