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ABSTRACT

We study the Riemannian geometry of the group of diffeomorphisms of principal S'-
bundles M?" ! preserving a stable Hamiltonian structure (w,A) or a Hamiltonian
structure w such that the kernel foliation ker w is periodic with some generator R.
Herein, we extend results mainly by Ebin and Marsden [EM70], and more recent work
by Ebin [Ebil2], and Ebin and Preston [EP13]. We first determine conditions under
which the structure-preserving Sobolev diffeomorphisms Diff; ,(M) and Diffy, , (M)
are smooth submanifolds of Diff*(M). Following the strategy used in [EM70], we
show that for the S'-bundle over the cylinder B = S! x [~1,1], the orthogonal projec-
tion of the tangent bundles projecting TDiff’ (M)|pig , (m) to TDiff;, (M) is a smooth
bundle map. As a consequence, local geodesics and therefore, local solutions to the
Euler equation exist. Furthermore, we show long-time existence for solutions to the
Euler equation on M preserving R and w for trivial S'-bundles M*" ™! = B2" x §! and
compute the Euler equation for the general case.
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INTRODUCTION

The Euler equations in hydrodynamics are a set of quasilinear hyperbolic differential
equations to describe the motion of an ideal fluid. On a Riemannian manifold M -
possibly with boundary dM -, Levi-Civita connection V and (not necessarily Rieman-
nian) volume form vol, the Euler equations are:

dyv+V,v=-Vp,

dinol v=0,

for the time-dependent velocity vector field v tangent to the boundary dM of some
ideal fluid and for the pressure function p. As a special case of the more general
Navier-Stokes equations, which deal with viscous fluids, they are of great interest to
both mathematicians and physicists. One of the Millenium Prize problems by the
Clay Mathematics Institute offers $1 million to the first person to prove or give a
counterexample for the following statement:

In three space dimensions and time, given an initial velocity field, there
exists a vector velocity and a scalar pressure field, which are both smooth
and globally defined, that solve the Navier-Stokes equations.

This Millenium Prize problem is still open. To get closer to an answer, mathematicians
have been trying to prove or find counterexamples to similar statements for the Euler
equation.

Vladimir Arnold [Arn66] showed in 1966 that many equations, in particular the
Euler equations of an inviscid incompressible fluid, can be viewed as geodesic flows
on the infinite dimensional manifold of volume-preserving diffeomorphisms of M.
In his blog, Terence Tao [Taol0] provides a summary of this paper. We will also
describe in Section 2.3 how to get from the geodesic equation on the manifold of
volume-preserving diffeomorphisms to the Euler equations. Arnold’s idea has been
used extensively in the past, most notably by Ebin and Marsden [EM70], who study
the Hilbert manifold of volume-preserving Sobolev diffeomorphisms and prove ex-
istence and uniqueness theorems for solutions to the Euler equations on a compact
oriented manifold, possibly with boundary. We summarize the important results in
Section 2.4. To apply this to other diffeomorphism groups D(M) of some manifold
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M, one has to show that D(M) c Diff*(M) is a smooth submanifold and that for
n € D(M), the orthogonal projections

P, : T, Diff (M) — T,D(M)
induced by the given metric on M form a smooth bundle map

Further work by Ebin and his coauthors includes long-time existence of solutions to
the Euler equation for volume-preserving diffeomorphisms of two-dimensional man-
ifolds [Ebi84], long-time existence for symplectomorphisms [Ebil2], and local exis-
tence for contactomorphisms of certain contact manifolds [EP15], with some results
concerning the long-time existence for strict contactomorphisms (quantomorphisms)
of S-principal bundles already published in [EP13]. For more details, see Section 2.5.

This thesis proves some results in a similiar spirit for principal bundles S! —
M2+ 5 B2 with a stable or stabilizable Hamiltonian structure and their structure-
preserving diffeomorphisms. A stable Hamiltonian structure is a pair (w, A) such that
the closed two-form w € Q?(M) has maximal rank, A € Q! (M) satisfies ker w C kerd A
and A A 0" is a volume form. In Sections 3.1 and 3.2, we start by defining manifolds
with a (stable or stabilizable) Hamiltonian structure and their structure-preserving
diffeomorphisms. In Sections 3.3 and 3.4, we restrict our manifolds to S!-principal
bundles such that the Reeb vector field defined by the stable Hamiltonian structure
generates the S'-action. In this case, the stabilizing one-form A is also a connection
form for our circle bundle and 7 € Q?(B) defined by d = 7*7 is the curvature form.
For trivial S!-bundles, which we discuss in Section 3.5, the curvature form 7 is exact,
i.e. T = du for some u € Q' (B). The form y is uniquely defined by the identity A =
d6 + 7", where we denote the S'-coordinate of M = B x S! by 6. While it is well
known that the classical Sobolev diffeomorphism groups discussed in Section 2.5 are
smooth submanifolds of the full diffeomorphism groups, we have to formulate and
prove conditions such that the diffeomorphisms preserving the stable Hamiltonian
structure (w, ) are indeed a smooth submanifold of the full diffeomorphism group.
To that end, we identify the diffeomorphisms D° of the base manifold B that lift to
diffeomorphisms preserving (w,A) on M = Bx S! as

D’ = {v e Diff;, . (B) | J (u—v*u)eZforany y € Hl(B;Z)}‘
Y

In particular, we show in Theorem 3.29 that DS c Diff*(B) is a smooth Hilbert sub-
manifold iff

D°x S' = Diff; ,(BxS') c Diff'(Bx S')

is also a smooth Hilbert submanifold. In Section 3.6, we describe the metrics we con-
sider on M = B x S! and how results for smooth bundle maps transfer under diffeo-
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morphisms of manifolds with a different stable Hamiltonian structure. Similarly to
the trivial bundle case, we show in Section 3.7 (specifically Theorem 3.43) for gen-
eral S'-principal bundles S! — M 5> B that there also is a subset D° C Diff*(B) of
diffeomorphisms of B that lift to Diff}, , (M). Then, Diff; (M) is also an S'-bundle

s' > Diff , (M) - D"

In particular, we again get that Diff; (M) C Diff’(M) is a smooth submanifold iff
D* C Diff*(B) is a smooth submanifold.

Chapter 4 fully proves all the statements for the cylinder B = S! x[~1,1] and the
trivial circle bundle over the cylinder

M =BxS'=(S'x[-1,1]) xS

Any stable Hamiltonian structure (w,A) on M induces two two-forms (o,7) on B =
S!'x[~1,1] by @ = 7*o and dA = 7*1. Since B is two-dimensional, o is an area form
and 7 is a multiple of 0, i.e. T = ho for some h € C*(B,R). Section 4.1 deals with
the standard metric on B with its induced area form ¢ and t© = zo, where z € [-1,1]
denotes the height coordinate on B. We prove both that D° c Diff*(B) is a smooth
submanifold and that the projection P : TDiff*(B)|ps — TD® is a smooth bundle map.
In Section 4.2, we compute the Euler equation on B with respect to the standard met-
ric and its area form for vector fields in T4Diffj, . (B), which turns out to be triv-
ial. Similarly, in Section 4.3, we lift the two-forms (o, 7) from Section 4.1 to a stable
Hamiltonian structure (w, A) on M and prove that Diff; (M) C Diff°'(M) is a smooth
submanifold and the projection P : TDiff’(M)Ipi ,(m) — TDiff;, , (M) is a smooth
submanifold. As before, in Section 4.4 we show that the corresponding Euler equa-
tion is trivial. In Sections 4.5 and 4.6, we then extend those results to any metric on B,
its Riemannian area form o}, := bo for some b € C*°(B,R) and 7, = zo}, on B. For the
S!-bundle M = Bx S! in Sections 4.7 and 4.8, we consider the bundle metric induced
by the given metric on B. We let wy, := 7" 0y, and for A = d6 + "y such that dA = 7' 1y,
we choose one representative for each possible cohomology class of . In Section 4.9,
we now also include any possible primitive y for 1, i. e. we explain how to transform
the metric on M such that we can change y by exact one-forms to end up in one of
the cases of the previous section. Finally, in Section 4.10, we also allow more general
submersions h € C*(B,R) and consider T = ho. The last two sections in this chapter,
Sections 4.11 and 4.12, provide a brief outlook on how to possibly construct an ex-
ample where Diff; | (M) is not a smooth submanifold of Diff’(M) and what happens
with two-dimensional base manifolds other than the cylinder B = S* x [-1,1].

In Chapter 5, we also discuss S!-principal bundles M with a Hamiltonian struc-
ture w such that the kernel foliation ker w is periodic with some generating vector
field R. Such a Hamiltonian structure is always stabilizable but, in contrast to the
earlier chapters, we now consider the diffeomorphisms preserving only w and R, and
not neccessarily the stabilizing one-form. In Section 5.1, we recall our results on the
diffeomorphism group Diffy (M), which are already shown in Chapter 3. For trivial
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bundles M = Bx S! with the standard S'-invariant bundle metric (Section 5.2) and
a general S'-invariant bundle metric (Section 5.3), we compute the Euler equation
given by variation of the energy of paths in the diffeomorphism group Diffy (B x sh.
In the standard case, we can also prove long-time existence of solutions to the Euler
equation.



THE EULER EQUATION

2.1 The Hilbert manifold Diff*(M)

Let M be a compact Riemannian manifold. For now, we will assume that M has no
boundary even though we will later extend the results to manifolds with boundary.

We will denote the Riemannian metric on M by g(-,-) or (-,-). Let also s € N, s >
dim M

41, so that by the Sobolev Lemma, H*(M,M) < C!(M,M). In particular, any
element of H*(M, M) is differentiable.

Definition. Let C'Diff (M) denote the group of C!-diffeomorphisms of M, i.e.
C'Diff (M) := { € C' (M, M) | 5 is bijective and 5" € C' (M, M)}

and define the H®-diffeomorphisms Diff’(M) as the connected component containing
the identity in H*(M, M) N C' Diff(M).

Equivalently, using the Sobolev Lemma, we can identify Diff’(M) as the connected
component containing the identity in

{11 e H*(M,M) | 1 is bijective and 17! € HS(M,M)}. (2.1)

We first want to prove that Diff’(M) is a Hilbert manifold. To that end, we will
construct charts for the continuous maps C(N, M) for compact manifolds N (possibly
with boundary) and then restrict those to H*(N, M) and then finally to Diff’(M). This
section follows the computations in [Cie92], which in turn is based on the results
in [Eli67]. There is also a short summary in Section 2 of [EM70].

Note that the Riemannian metric on M induces an exponential map on a neigh-
bourhood U, € T,M of the origin for every p € M, i.e. we have exp,, : U, — M, which
sends x € T,M onto y (1) for the unique geodesic y satisfying (0) = p and y’(0) = x.
Those exponential maps fit together to a smooth bundle map exp : U - M x M,
(p,x) — (p,expp x) defined on an open neighbourhood U C TM of the zero section.
We can choose U sufficiently small such that exp : U - M x M is a diffeomorphism
onto an open neighbourhood of the diagonal and such that the image exp(U) ¢ MxM
is invariant under the diffeomorphism (p,q) — (g,p) of M x M. We can further choose
U,=UNT,M.
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Let 17 € C(N,M). The space E, := C(N,*TM) of continuous sections in the pull-
back bundle #*TM — N is a Banach space with norm [£] := mﬁlé(pﬂ. The pullback
pe

n'u = {(p,x) | (q(p),x) € U} cn'TM
is an open neighbourhood of the zero section and

V= C(N,*U) ={& € E, | (n(p),&(p)) € U for all g € N}

is an open neighbourhood of the origin in E,;. The exponential map induces a contin-

uous map

eXpy, - Vr] — C(N,M), (expné)(P) = exp,](p)cf(P)

which is a homeomorphism onto its image

Uy, = {p eC(N,M) | (q(p),p(p)) eexp(U) for all g EN}.

Proposition 2.1. The charts exp:l1 : Uy =V, for 1 € C(N,M) define a smooth Banach
atlas on C(N,M). A different Riemannian metric induces an equivalent atlas. The Ba-
nach manifold C(N,M) is covered by the chart domains U, centered at smooth maps
n€C®(N,M).

Let VB(N) denote the category of smooth vector bundles over N and B the cate-
gory of Banachable spaces.

Definition. A covariant functor T : VB(N) — B is a section functor over N if for all
vector bundles E,F € VB(N),

(a) elements of T(E) are equivalence classes of sections in E, and

(b) the map T : C*(Hom(E,F)) — L(T(E),T(F)), ¢ — T(¢) is continuous linear,
where T(¢)(E) = Ppoé.

Definition. A section functor S : VB(N) — B is a manifold model, if for all E,F €
VB(N)

(a) S(E) < C(N,E) is continuous linear.
(b) S(Hom(E,F)) < L(S(E),S(F)) is continuous linear.

(c) Let O C E be an open subset projecting onto N and i : O — F be a smooth
fibre preserving map. Then for each & € S(O) :={£ € S(E)|E(N) c O}, we have
Yo & € S(F) and the corresponding map

5(¢):3(0) > S(F), & ot

is continuous.



2.1 THE HILBERT MANIFOLD Diff’(M)

Definition. A section functor T : VB(N) — B is compact with respect to a manifold
model S if for any E,F € VB(N),

(a) S(Hom(E,F)) < L(T(E),T(F)) is continuous linear.
(b) T(Hom(E,F)) — L(S(E),S(F)) is continuous linear.

Theorem 2.2. Let N be a compact n-dimensional manifold (possibly with boundary) and
M be an m-dimensional manifold without boundary. Let further S be a manifold model
over N. Then the charts S(exp;l) :S(Uy) — S(V,) for 1 € C¥(N, M) define the structure
of a smooth Banach manifold on S(N,M).

Let T : TM — M denote the canonical bundle projection.

Corollary 2.3. Let M, N be as in the previous theorem. The space H*(N,M) of Sobolev
maps for s € N and s > g is a separable smooth Hilbert manifold with tangent bundle

TH(N,M)=H'(N,TM) = | | T,H*(N,M)
neHs(N,M)

for

T,H*(N,M) = (V e H*(N,TM)|to V = 1}.

1 3 . 1: . 1 dim M

The C"-diffeomorphisms C'Diff(M) are open in C* (M,M). For s > +1,
the Sobolev lemma implies that H*(M,M) c C!(M, M) is a continuous linear inclu-
sion, hence Diff'(M) c H*(M,M) is open and Diff’(M) is a Hilbert (sub-)manifold,
see §3 in [Ebi70].

Now let M have boundary. We consider the double M = M Ugy; M and choose a
metric such that dM is totally geodesic. Then the image of the exponential charts on

H®(M,M) is always already contained in M and, similarly to Eq. (2.1), we can define
Diff*(M) as the identity component in

{n e H*(M,M) | im(n) C M, 7 is bijective and 1! € H*(M,M)}.

Using this, one can show

Corollary 2.4 (§3 in [Ebi70], §6 in [EM70]). Let M be a compact manifold with or with-
im M
+ 1, then Diff* (M) is a smooth Hilbert manifold.

out boundary and s >

Theorem 2.5 ([EM70], Proofs of Theorems 6.1 and 6.2). (a) Let M be a compact man-
ifold without boundary and N C M a closed submanifold without boundary. Then,
Diffy; (M) = {n € Diff' (M) | n(N) c N}
and

Diffy, ,(M) := {n € Diff (M) | (x) = x for any x € N}
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are smooth submanifolds of Diff*(M).

(b) Let M be a compact manifold with boundary dM, then Diff* (M) is a smooth mani-
fold and

Diff}, (M) = {n € Diff* (M) | 11(x) = x for all x € IM}

is a smooth submanifold of Diff* (M).

Now we will describe an atlas of the tangent bundle TDiff*(M) — Diff* (M) over
the given atlas on Diff°(M) using the exponential maps. The metric on M induces
a Levi-Civita connection V. For any (p,x) € TM, let V be a neighbourhood of p in
M such that exp, : T,M — M maps some neighbourhood vV’ of 0 in T,M diffeomor-
phically onto V. Recall the canonical projection 7 : TM — M. Let further denote
Vp: (V) > T,M the smooth fibrewise isometry such that for (g,y) € I (V)c TM,
we parallelly transport y from g to p along the unique geodesic in V. For u € T,M, de-
fine the translation R_,, : T,M — T,M, R_,(x) = x — u. Then we define the connection
map

K(p,x) : T(p,x) ™ — TPM'

A Ty (exp,oR ;o y,) (A).

If we write A = T,X(Y,) for some X € X(M), which we view as a map X : M — TM
such that X, = X(p) = x, and Y, € T,M, then

K(p,x) (A) = K(p,x)(TpX(Yp)) = (VYPX)p/

see also [Dom62, §§2-4]. The map t: TM — M also induces the bundle Tt: TTM —
TM with vertical bundle T'TM := kerTt ¢ TTM. The map T(expp oR_,) is an iso-
morphism Ty T,M — T,M. Let 1, : T,M — TM denote the inclusion map, then

TV

b TM = Tiy (T T,M)

and
T(1oy)(A)=A

TMZTV

for any A € T(’;'x) TM. Hence, K, x|t (o)

. TM — T,M is an isomorphism. Fur-
pX

ther, we define
(T(p,x) eXP)lT(;lx) ™ = T(p,x) (explTpM) : T(zz,x) ™ — Texpp(x) ™.
Finally, we let

%) €XP(p,x) = (T eXp)lT&’x)TM o (KlT(z”x)TM)_l : TpM - Texpp(x)M- (2.2)



2.2 RIEMANNIAN METRICS ON Diff'(M) anp Diff]

(M)

Proposition 2.6 ([Eli67], Theorem 5.2). Let s > 4. The bundle T : TM — M induces a
vector bundle

S(1):S(N, TM) — S(N,M)

ar—>Tow

of class CS73, which is naturally equivalent to the tangent bundle of S(N,M). Moreover,
given any connection on M, let S(exp) : S(D,)) — S(N, M) be the natural chart centered
at 1€ C"(N,M). Then,

S(Vyexp) : S(D,) xS(E,) = S(N,TM)
(a,B) = Vaexpo(a,p)

is a trivialization of S(t) over S(exp) corresponding to the tangent trivialization TS(exp)
under the bundle equivalence.

Since Diff*(M) c H*(M,M) is an open subset, we have local charts for any 7 €
Diff*(M) given by
T, Diff* (M) = (X € H*(M, TM) | T 0 X = 5} — Diff* (M)
XH(exp,lX:MeM,
P €XPy(p) X(p))

Finally, we want to adapt the last proposition to the tangent bundle TDiff*(M).
To that end, note that for any p € M, the map V;exp, () x(p)) maps T M to the
space Texp  x(p)M. For any Y € T, Diff' (M), we define the map
(VQ exp(rl’X))(Y) M—->TM
P (Vaexp o) (o) ) (Y (P)),

hence (Vyexp, x))(Y)(p) € Texp,]XDiffs(M).
Corollary 2.7. Local charts for the Hilbert bundle TDiff* (M) — Diff* (M) in a neighbour-
hood of any 1 € Diff* (M) are given by

T, Diff' (M) x T, Diff' (M) — TDiff* (M)

(X,Y) > (expn X, (V2 exp(q’x))(Y)).

2.2 Riemannian metrics on Diff*(M) and Diff}

Vol(M )
We first recite the standard proof using the implicit function theorem to show that
Diff} (M) c Diff*(M) is a smooth submanifold, which can also be found in [EM70].

vol
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Theorem 2.8 ([EM70], Theorems 4.2 and 8.1). Let

Diff?

vol

(M) = { € Diff*(M) | *vol = vol}.

Then Diff; |(M) C Diff*(M) is a smooth Hilbert submanifold.
Proof. Define

[vol]’ = vol + dH* (A" M) c HS 1 (A"M).

This is a closed affine subspace of H*™!(A"M) because of the Hodge decomposition
of n-forms. Now let 1 € Diff’(M). Then #"vol = vol + a for some n-form a and we can

compute
0= f (1vol —vol) = J a,
M M
hence a is exact. This implies [°vol]*"! = [vol]*!, or equivalently #*vol € [vol]*!.

We want to use the implicit function theorem for Hilbert manifolds, so we define the
smooth map

¥ : Diff' (M) - H" Y (A"M), 1+ n*vol
with tangent map

T, : T,Diff (M) —» H" ' (A"M), V5" (Lyoy-1vol).
At the identity, we get for any vector field X € T,yDiff*(M)

Tap(X) = id"(Lx4q-1vo0l)

= Lxvol = dixvol.

We first want to show that Tiqi is surjective. To that end, let da € dH*(A"'M) =
T,o1[vol]*~L. Since vol is non-degenerate, there is an isomorphism

HS(TM) — HS(A"'M), X ixvol.
Hence, there is X € H¥(A""'M) such that ixvol = a and

Tiq¢(X) = dixvol =da.
For any other diffeomorphism 7 € Diff*(M), both " and the right translation by 7 are
isomorphisms and therefore, T, is also surjective. Finally, Diff; (M) = P~ (vol) C
Diff°*(M) is a closed submanifold. O

Theorem 2.9 ([EM70], Theorem 3.1). Let M be a compact n-dimensional manifold with-
out boundary, s > g + 2 and Diff* (M) the group of H® diffeomorphisms.

(a) If V is an H® vector field on M, its flow 1, is a one parameter subgroup of Diff*(M).



2.2 RIEMANNIAN METRICS ON Diff'(M) anp Diff]

(M)

(b) The curve t + 1, is of class C.
(c) The map E : T,Diff*(M) — Diff*(M), V + 1, is continuous (but not C').

Theorem 2.10 ([EM70], Theorem 6.3). For s > g + 2, the two groups Diffy; (M) and
Diffy ,(M) as well as Diff’ (M) and Diff,, (M) of the previous theorem admit exponential
maps. That is in (a), if V is an H® vector field on M which is tangent to N (resp. 0 on N)
the flow of V is a one parameter subgroup of Diffy (M) (resp. Diffy ,(M)). In (b), if V is
an H® vector field on M parallel to M (resp. 0 on dM), the flow of V is a one parameter
subgroup of Diff* (M) (resp. Diff,(M)). A similar result holds for time dependent vector
fields.

Definition. A weak pseudo-Riemannian metric on some manifold M is a symmetric
(0,2)-tensor field g such that at any point x € M, g,(vy,w,) = 0 for all w, € T,M
implies that v, = 0. A weak Riemannian structure or weak Riemannian metric is a weak
pseudo-Riemannian metric that is also positive definite.

Note that the non-degeneracy condition given in the definition of a weak Rie-
mannian structure only implies that the linear map T,M — Ty M, v, — g(vy,-) is
injective but not necessarily an isomorphism.

Now let 7: TM — M denote the canoncial projection of the tangent bundle of M
onto M. Note that for € Diff'(M) and s > g + 1, we have

T, Diff' (M) = {V € H'(M,TM) | to V = 1}.
At the identity, we will also use the notation

X* (M) = TyDiff' (M),
and we can define a metric for V, W € T;4Diff* (M) by

(V,W):= JM(V(x),W(x))xvol. (2.3)
There are two natural extensions to weak Riemannian structures on Diff* (M), which

coincide for 7 € Diff], | (M): First, we can extend Eq. (2.3) to a right-invariant weak
Riemannian structure on the full tangent space, i. e. for V, W € T, Diff’ (M), we let

(V,W):= fM(V(x), W (x))y(x) 11" vol. (2.4)

We will use the second choice, namely for V,W € T,7Diff5 (M), we let

(V,W):= JM<V(X)’W(X)>’7(X) vol. (2.5)

The first part of Theorem 2.11 shows that this also defines a weak Riemannian struc-

ture on Diff*(M), although it is only right-invariant under the action of Diff] (M)

vol

and not the full diffeomorphism group.

11
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Note that for 1 € Diff;;(M) and V,W € T, Diff’(M), 1 satisfies #"vol = vol and
hence, the two options (2.4) and (2.5) coincide on Diff; ;(M).
Theorem 2.11 ([EM70], Theorem 9.1). Let M be compact without boundary with a Rie-

mannian metric (-,-) given. We define a bilinear form on T, Diff* (M) by

(V,W) = JM(V(x), W (x))y(x) vol(x). (2.5 rev.)

Then:
(a) (-,-) defines a weak Riemannian structure on Diff* (M),

(b) (-,-) has associated a unique torsion free affine connection V; that is, for smooth vector
fields X, Y, Z on Diff* (M), we have

l) X(Y,Z) = (ny,Z) + (Y,VXZ) and
i) VxY -VyX =[X,Y].

(c) Let exp: TM — M be the exponential map corresponding to the connection V on M.
Then E : TDiff* (M) — Diff°*(M) defined by E(V) = expoV is the exponential map
of V; E is defined only on a neighbourhood of the zero section of TDiff*(M), and is a
C* mapping onto a neighbourhood of id € Diff*(M).

2.3 Derivation of the Euler equation

Let #(t) : [0,T] — Diff] (M) be a path in Diff] (M) with tangent vector 7j(t) €
T, (1) Diff;,; (M). We define a time-dependent, divergence-free vector field

v(t) € X3;, (M) = TyDiff] (M) = {u eX’(M | ) | divye u = O}
() = v(t) on(t)

and the energy

N | =

E(y(1)) = f (7(0) () dt

LT J i (£) (x))y (1)) VOl dt.

The path 7(t) is a geodesic in Diff*(M) iff it is an extremal point of the variation
of the energy. We consider a variation #(t,7) of (t,0) = #(t) with fixed end points
1(0,7) =1n(0) and n(T,7) = 5(T), i.e. a variation in the direction

o (t) = 9en(t,7)le—o € Ty Diff} (M).
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Again, we define a corresponding time-dependent, divergence-free vector field w(t) €
X5, (M) via

o(t) =w(t)on(t).

Because of the fixed end points of the variation #(¢,7), o satisfies 0(0) = 0 = o(T).

This yields

0= 3, E((t,7))le—o

J\ J\ J <17 t T ( )(x»r](t,r)(x) vol dt |T:0
- EL IM (i (6, T) (™ (1) (x)), 11(60) (17 (£,7) (x)) ) vol dt Je—g

since the metric on Diff}, | (M) is right-invariant
T
— L jM(arﬁ(t,r)(n—l(t,r)(x)), A6 7) (1171 (£,7) (%)) vol dt |,—g (2.6)

To improve readability, we will supress the dependence on ¢, T and x for the next few
steps. Note that for the first vector field in Eq. (2.6), we can compute

dy(denon™)=didemon™ —(denon ) (dmon™")
= de(non™)=0dmon —(dmont)Iemon™)
=3y on™)+(denon™)Imon™)
—(@mon™)Demon™)
= 0(denon)+[denon ™, dmon!]
= 9w+ [w,v].

The second entry in the metric of Eq. (2.6) is just equal to v(t) and therefore,

26) JTJ (o (t) + [w(t),v (1)), v(£)) vol dt
f J(w )voldt+J J< v(1)) vol dt
Using integration by parts for the first summand, we get
j f (1), v(t)) vol dt = j (w(t) ol
J f (w(t), 3(1)) vol dt
:L me(t), _o(t)) vol dt

13
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since w(0) = 0 = w(T). For the second integral, the compatibility of the metric and
the covariant derivative implies [w,v] = Vv — V,w. Hence, we have

([w,v],v) = (Vyv,v) = (Vyw,v)
= %((va,w + (v,va)) - (v(w,v) —(w, Vvv>)
= %w(v,v) -v(w,v) +{(w,V,v)

The first summand is equal to

1 1 1
Ew(v,v) = E(w,grad(v,v» =(w, 5 grad(v,v)),

whereas integrating the second term yields

R
f v{w,vyvol = | (L,(v,w))vol
M Jm
r
=1 L,({v,w)vol) —J (v,w)L,vol
JMm M
r
= | di((v,w)vol) —J (v,w) divv vol
JM M ——
=0
"
= 1, ({(v,w)vol)
JOM—e—oo
=(v,w)1,vol=0 on IM
=0. (2.7)

Combining all these computations, we get
1
f ([w,v],v) vol = J (w, = grad(v,v))vol + J (w,V,v) vol
M M 2 M
1
= J (w,V,v + ~grad(v,v)) vol.
M 2

The full equation is

T
0= f f (w,—-v+V,v+ lg.;rad(v,v)) vol dt (2.8)
0o Jum 2

for any w € X3, (M).

Remark. If we used the right-invariant metric as in Eq. (2.4) instead of Eq. (2.5) to
define the energy E on the full diffeomorphism group, there would also be a contri-
bution from the summand computed in Eq. (2.7). In this case, the full equation is

T
0 :J- J- (w,-v+V,v+ %grad(v,v)—kvdivv) vol dt.
0o JMm
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Restricting this to divergence-free vector fields, i. e. to the volume-preserving diffeo-

morphisms Diff] (M), also yields Eq. (2.8).

To further simplify Eq. (2.8), we recall the Hodge decomposition for (smooth)
forms

Q'(M) =dQ°(M) & (6Q* (M) @ H' (M)).
It has a Sobolev equivalent given by
H*(A'M) = dH* "1 (A°M) & (6H* ™! (A>M) @ ker Algys(a1ar)),
which carries over to vector fields via the given metric on M and we get

X (M) = VH*" (M, R) & {w € ¥*(M) | divw = 0}.

:Xsdiv (M)

This implies that grad(v,v) = V(v,v) is always perpendicular to the space of diver-
gence-free vector fields and hence,

1
0 =<(w, B grad(v,v))

for any w satisfying divw = 0. Therefore, the full equation Eq. (2.8) reduces to

T
0= f f (w,-v 4+ V,v)) vol dt.
0o JM

Replacing v with —v yields

T
0= J f (w, v+ V,v) vol dt. (2.9)
0 M

Finally, for v + V,v to be perpendicular to the space of divergence-free vector fields,
it has to be an element of VH*"!(M,R), i.e. there is a so-called pressure function p
(unique up to constants) such that

v+V,v=-Vp,
which is the well-known Euler equation for incompressible fluids.
2.4 Strategy to prove local existence of solutions

Ebin and Marsden [EM70] have a series of arguments showing that geodesics exist at
least locally on certain Hilbert manifolds of Sobolev diffeomorphisms.

15
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Let P, : T, Diff’ (M) — T, Diff;

vol

(M) denote the orthogonal projection induced by
(+,+), which form an (a priori not neccessarily smooth) bundle map

P : TDiff (M) Ipige_ () — TDiff} (M).

Since the metric is right-invariant on the tangent spaces of Diff; (M), this projection
is given by
B, =TR, oBgqoTR,, (2.10)

where R, denotes the right-translation by 7, so it is completely determined by the
projection at the identity P4. Unfortunately, the right-translation is not smooth in the
base point. Hence, in general, not any bundle map of the form (2.10) will be smooth
in the base point. Whether P is a smooth bundle map depends on the specific form of
Bg.

Theorem 2.12 ([EM70], Theorem 9.6). Let M be compact without boundary. Then (-,-)
defined on Diff; (M) is a Diff; (M) right invariant weak Riemannian metric. It induces
a smooth affine connection P oV and an exponential map E on Diff; | (M) defined on a
neighbourhood of the zero section of TDiff; | (M). Both V and E are invariant under right
multiplication by Diff;, (M), and E|r, pige_ (m) covers a neighbourhood of the identity id €
Diff

vol(M)'

Since we want to use similar theorems to extend the diffeomorphism groups of
manifolds on which solutions to the Euler equation exist, we will recall the main ideas
needed for the proof.

Proposition 2.13. Let X be a Riemannian manifold with connection V, Y C X a smooth
submanifold and P : TX|y — TY the orthogonal projection on each fibre over Y. Then
V = P oV is the Riemannian connection on Y, i.e. V satisfies the conditions (i) and (ii) in
Theorem 2.11(b). If P is a smooth bundle map, then V = PoV will be a smooth connection
on Y which is compatible with the Riemannian structure.

Proof of Thm. 2.12. We apply the previous proposition to the manifolds X = Diff* (M),
Y = Diff] ; (M) and the orthogonal projection

P,7 : Tquffs(M)|Difffml(M) d Tquffs

vol

(M)

as above. In particular, we can show that P is smooth as in [EM70, §14], so V=PoVis
the (smooth) Riemannian connection on Diff] ;(M). Hence, the exponential map on
Diff*(M) induces an exponential map on Diff} ; (M). O

Note that this really only relies on the fact that the orthogonal projection

P,7 : Tquffs(M)|Difffml(M) d Tquffs

vol

(M)

is smooth in 7.
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A similar result holds for manifolds with boundary. If M is a compact manifold
with boundary dM such that JM is totally geodesic in M, the exponential map exp
will also be defined on TM and we can extend the previous theorems to also cover
those manifolds.

If dM is not totally geodesic in M, i. e. we do not necessarily have an exponential
map on TM, we have to adapt the projection. We will fix this by considering the
smooth manifold H°(M, M) instead, where

M :=M><{O,1}/ (x,0) ~ (x,1) for x € IM
denotes the double of M. Then
T, H* (M, M) = {X € H* (M, TM) | To X =5}

for € H*(M, M) and bundle projection 7 : TM — M. As before,

(X,Y) = jM<x<m>,Y<m>>q(m>vol<m>

for X,Y € T,DDiff] | (M) defines a weak Riemannian metric, where (,) denotes the
metric on M induced by the metric on M, and H*(M, M) inherits an affine connection
V and exponential map E(X) = expoX, where exp : TM — M is the exponential map
of M.

Using this notation, we can extend Theorem 2.12 to manifolds with boundaries.

Theorem 2.14 ([EM70], Theorem 10.2). Let M be a compact manifold with smooth
boundary dM. Then (-,-) is a right invariant Riemannian metric on Diff] (M) and in-
duces a smooth affine connection V.= P oV and smooth exponential map E defined on
a neighbourhood of the zero section of TDIff] | (M). Both V and E are invariant under
right multiplication by Diffy, | (M) and E|r pige_ (m) covers a neighbourhood of the iden-
tity id € Diff; | (M).

Following [EM70, §§11, 14 and 15], we will now describe how Theorems 2.12
and 2.14 are sufficient to get solutions to the Euler equation. To that end, we first
introduce (geodesic) sprays following [Lan02, Chapter VII, §7].

Definition. (a) A second-order vector field over M is a a vector field F on the tan-
gent space TM, i.e. F: TM — T>M, such that t, o F = id); for the canonical
projection 7 : TM — M and its differential t, : T°’M — TM.

(b) Let I € R be an interval. A curve y : I — M is a geodesic with respect to F if
its derivative " : I — TM is an integral curve of F. This is equivalent to the
condition y” = F(y’), which is called second-order differential equation for y de-
termined by F.

Conversely, if B is an integral curve of F in TM, then t(f) is a geodesic with
respect to F.

17
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Now let s be a real number. Let spy; : TM — TM and s72p; : T°M — T>M denote
the multiplication by s on TM and T?>M, resp., and we also get the differential (s7p/), :
T’M — T*M.

Definition. The second-order vector field F is a spray if it satisfies the homogeneous

quadratic condition

F(stmv) = (sTm)<ST2MF (V).

The geodesic (or canonical) spray is a special kind of spray associated to geodesics
on the Riemannian manifold M.

Definition. Let v € TM with x := t(v) € M. By y,(t), we denote the geodesic on M
with initial data ¥(0) = x and y,(0) = v. Then y,(t) defines a curve in TM which
projects onto y,. We define Z(v) to be the tangent vector to this curve at ¢t = 0. This
defines the geodesic spray Z : TM — T*M.

In particular, geodesics on M are geodesics with respect to the geodesic spray Z,
as defined above. We can now use the geodesic spray associated to the metric on M to
compute the geodesic spray associated to the metric (.,.) on Diff] ;(M).

Theorem 2.15 ([EM70], Theorem 11.1). Let M be compact (possibly with boundary) and
let Z : TM — T?M be the geodesic spray associated to the metric on M. Let

P : H¥(M, TM)lpiges, () — TDiff:

vol

(M)

be the orthogonal projection as before. Then the spray associated to the metric (.,.) on
Diff;, | (M) is given by

S : TDiff

vol

(M) — T?Diff (M)

X TP(ZoX)

and S is a smooth map.

In particular, S is a smooth vector field on TDiff] (M) and defines a second
order equation, so it has a unique smooth local flow.
The geodesic spray S is explicitly computed in §14 of [EM70]:

Theorem 2.16 ([EM70], Theorem 14.2). Let X € T, Diff; | (M). Then

_ 1\
S(X) = T(XO17 I)OX_(Pid[vqu’lxon 1])0017’

where (w)} denotes the canonical vertical lift of w € TM to TM, i.e. (w)) satisfies
TT((w)é) = 0 for the canonical projection T : TM — M and Tt : T>M — TM.
Theorem 2.17 ([EM70], Theorem 14.4). Let 7 : TDiff] (M) — Diff] (M) denote the

canonical projection. If v, is an integral curve of S in TDIff;, | (M), define 1, = 7(v;) and

N -1
Vy =V OH;
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then ¥y is an integral curve of the vector field on Ti4Diff] (M) given by

Y(u) = -Ra(Vyu).
Conversely, if u; is an integral curve of Y (u) in H® with flow n;, then u; o 1y is an integral
curve of S in TDIff; | (M).

Since integral curves of S are geodesics in Diff] (M), this is sufficient to get
solutions to the Euler equation.
mM

d
Theorem 2.18 ([EM70], parts of Theorem 15.2). Let s > ! + 1.

(i) (Existence and uniqueness) If ug is an H® vector field, divug = 0 and uq parallel to
JdM, there is a unique solution u, defined for —6 <t < 6 for some 6 > 0. The solution
uy is an H*-vector field and is C' as a function of (t,x) for =6 <t <& and x € M. It’s
flow 1, is a volume-preserving H*-diffeomorphism.

(ii) (Continuous dependence on initial conditions) For each ug, the 6 > 0 in (i) is uniform
in a whole H® neighbourhood of uy and the map ug v u; is continuous for each t,
-0 <t <. Each u; is a continuous curve in H® and, in particular, 1in(1) Uy = ug in the

t—

H? topology.

(iii) (Regularity of solutions) If uq is smooth, so is u; on int(M) and u; is smooth as a
function of (t,x) as long as u; is defined in H°. The map uy +— u; is smooth in the
C® topology.

(v) (Extendability for all t) Let (a,b) be the maximal open interval on which a solution
u; is defined. Then a = —oo and b = oo if and only if for any finite subinterval

(ay,b1) C (a,b), sup |lusllgs < co. If solutions are extendible for all t for some s,
a,<t<b;

they are for all s as well, if IM = 0.

If we now want to show the existence of solutions to the Euler equation for sub-
manifolds D of Diff] (M) (for M with or without smooth boundary), we only need
to check that the bundle projection P : TDiff] ;(M)|p — TD induced by orthogonal
projection in each tangent space is a smooth bundle map, i.e. is smooth in the base
point.

We will use this method to show the local existence of solutions to the Euler
equation for other diffeormorphism groups: First, we show that the diffeomorphism
group is a smooth subgroup of some group where we already have an exponential
map (e.g. Diff] (M) for M with or without smooth boundary). This will be done
by either the implicit function theorem (see Proposition 2.19 below) or the image of
a known smooth Hilbert submanifold under some embedding (see Proposition 2.20
below).

Proposition 2.19 (Implicit Function Theorem for Hilbert manifolds). Let A, B be
Hilbert manifolds and f : A — B smooth. Let further b € B be a regular value, i. e. for any
a € f1(b), the differential T,f : T,A — T,B is surjective. Then f~'(b) C A is a smooth
Hilbert submanifold.

19
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Remark. The implicit function theorem for Banach spaces also requires the kernel
ker T,f to be complemented. Since any closed subspace of a Hilbert space has an
orthogonal complement, this condition is not necessary for Hilbert (sub-)manifolds.

Proposition 2.20 ([Upm85], Prop. 8.7). Let A, B be Hilbert manifolds and f : A — B
a smooth embedding, i.e. f is a homeomorphism onto its image im(f) such that T,f is
injective for any a € A. Then im(f) C B is a smooth submanifold and f : A — im(f) isa
diffeomorphism.

In the second step, we show that the orthogonal projection of the tangent bundles
is smooth in the base point and finally apply an adapted version of Theorem 2.12
resp. 2.14.

To extend those local solutions to global ones, it remains to show that the local
solutions and its derivatives are bounded in time. To that end, one can follow and ex-
tend the computation on page 15 to find an explicit equation and use that to estimate
the vector field and its derivatives.

2.5 Previous results

As mentionend in the introduction, there already exist results regarding local and
sometimes even global existence of solutions to the Euler equation, i. e. of geodesics
in the (structure-preserving) diffeomorphism group.

A few years after the results on the volume-preserving diffeomorphisms of gen-
eral compact manifolds, Ebin [Ebi84] also explictly showed the long-time existence
of solutions to the Euler equation for two-dimensional manifolds, which we review
in Section 2.5.1. More recently, in 2012, Ebin has used similar methods to also show
long-time existence of geodesics on the symplectomorphism group in [Ebil2], see also
Section 2.5.2. A year later, Ebin and Preston published a preprint [EP13] for quanto-
morphisms/strict contactomorphisms for contact manifolds that are also principal
S!-bundles such that the Reeb vector field generates the S!'-action. Their preprint
uses very similar methods to this thesis, which are described in Section 2.5.3 They
also proved the local existence of geodesics on the contactomorphism group of con-
tact manifolds in [EP15]. Since the contactomorphisms are not a smooth submanifold
of the H*-diffeomorphisms, they used the so-called padded contactomorphisms in-
stead. Unfortunately, it has not yet been proven whether the geodesic equation is a
smooth ODE for the padded contactomorphism group, so they cannot rely on the re-
sults in [EM70]. Therefore, this paper is mathematically very different from the rest
and we will only present a very brief summary in Section 2.5.4.
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2.5.1 Volume-preserving diffeomorphisms of two-dimensional manifolds

Let M be a two-dimensional manifold, possibly with smooth boundary and unit out-
ward normal vector v. We further have a Riemannian metric with Riemannian volume

form vol. As before, the Euler equation is

v+ V,v =-Vp

dinol v=20

for a pressure function p (unique up to constants), and boundary condition (v,v) = 0.
Let v” denote the one-form associated to the vector field v via the metric, i. e. v° = (v, ).
Then the Euler equation is equivalent to

W+ Vb = —dp,
which can be rewritten as
o L,0" = d( Sl - p)
v 2

and, hence, any vector field v satisfying the Euler equation with flow # also satisfies

n
o1
=d(n(t) (5l (0)F ~p)). (2.11)
There is a projection

p:ckre(TM) - {v e C*+(TM) | divyo v = 0 and (v,v) = o}
given by
v v-Vf,

where f is a solution to the Neumann problem
Af =divy, (Vf,v)={(v,v).
Using the metric, we can define the corresponding projection

p:ckHeAl) - {a e CHra(Al) | da=0and a(v) = O} =H®sdA(HY),

a=v" (Pv)’ = (Pv,").
which maps into the first two summands of the Hodge decomposition

CHa(Al) = HesdA ™ (HY) @doA™ (HY),
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where H denotes the Hodge forms. Applying this projection to the form #(t)*v(t)
and using Eq. (2.11) yields

CP(n(1)v (1) = P Sy (1)
2 p{d(n () (510 - p)))
=0.

In particular, P(q(t)*vb(t)) is independent of t and

B(n(1)"(t)) = P(1(0)""(0))
= P(id"v"(0))
=2(0),

since divv(0) = 0 implies that 5v”(0) = 0. Hence, we can define f; € C>**(M) such
that

Since 7 is the flow of v, this implies
1,y =" (t) oy (t) = P((n(t)™")vh)on(t)
Splitting P : CK+*(A') - H®8dA™' (H*) into the two projections

P : CH (A" > H, and

Py : CKra(A) = 6dATH(HY)

yields
Gy = Py(n(6) ™)) wh) o (8) + P2 (£) ™)) wh) o (1)
=F1(’7) :3F2(ﬂ)
= 1 =Fi(n)+Fan). (2.12)

In particular, solving the Euler equation with initial condition v(0) = v is equivalent
to solving Eq. (2.12) with initial condition 7(0) = id and parameter v,.

Theorem 2.21 ([Ebi84], Prop. 4.1 and Local Theorem 4.9). The projections Fy and F,
are smooth in 1. Hence, the Euler equation has at least local solutions.
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The proof uses the explicitly-known integral kernel of A™' and, for F,, also relies
on the fact that

Fa(n) = (8dA™ (7 )vp) o
= (6A™ () *dvg) o1, (2.13)

i. e. since the exterior derivative commutes with the pull back, we can shift one deriva-

tive from 11_1 to the initial condition vg.

To show global existence of solutions, one has to estimate both Fy (1) and F;(7).
As with the proof of the previous theorem, computing the norm of Fy(#) is fairly
straightforward whereas the norm of F(7) is more work but not necessarily more
difficult when using Eq. (2.13).

2.5.2 Symplectomorphisms

Let (M?",w) be a compact, oriented symplectic manifold with Riemannian metric
such that the Riemannian volume form is vol = w". Ebin [Ebil2] also needs the metric
g and the symplectic form w to be compatible, i. e. that there exists an almost complex
structure J that satisfies w(v,w) = g(Jv,w) and J> = —id. Let further

Diff;, (M) = {n € Diff’ (M) | "0 = w).
Recall the Hodge decomposition

H¥(T*M) = He&doH > (T*M) @ 6dH 2(T*M).
Then,

T Diff;, (M) = {v € ¥(M) | £, = 0}
={ve¥ (M)|do’(v) =0}
W (HedsH (T M)).

Hence, the variation of energy yields

dv + Vv L T,4Diff} (M),
iLe. dw+Vyw=0w(sda)ew(sdHT2(T*M))
for some a € H*"2(T*M). Let A = dd + 6d denote the isomorphism of the orthogonal

complement of H in H"1(T*M) to the orthogonal complement of H in H™'(T*M),
then we can rewrite this equation as

9,4 Vv = wfsA™! [da’,V,]v,

23
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where, notably, the right-hand side
F(v) = 0*6A[dw”,V,]v

is a smooth operator of order 0 for v.
Let us view geodesics on H*(M, M) and, in turn, Diff’ (M) as integral curves of a
vector field on TH*(M,M) = H*(M,TM). As before, a vector field on TH*(M,M) is a

smooth map
Z:TH*(M,M) — TTH*(M,M) = H*(M,TTM)

such that T o Z = idrps(pm,u) for the canonical bundle projection
T:TTH*(M,M) — TH*(M,M).

If welet 1y : TTM — TM be the canonical bundle projection and view T as a map
T:H(M, TTM) - H*(M,TM), then T(v) = 7y ov. We furtherlet Z: TM — TTM
be the spray of the metric on M, i. e. Z is the vector field on TM whose integral curves
are y(t) for ¥ a geodesic on M. In local coordinates x = (x!,...,x*") on M, we get

Christoffel symbols I}; and for v = Zvia,-, we define T'(v,v) = l"i]-vivj. Then we can

i
write Z(v,x) = (v, —F(x)(v,v)) and Z(v) = Z ov has integral curves #(t), where for
each x € M, the curve p(t) := 7(t)(x) is the lift of a geodesic. As a consequence, Z is
the spray for the L?-metric on H*(M,M).

Theorem 2.22 (Theorem 5.2 in [Ebil2]). Since the geodesic spray

Z(n,von) = (von,~Tjv'vion+(dv+V,v)on)
= (v o q,—l}jvivj on+ whsA™! [da)b,Vv]v o 17)

is a smooth vector field on TDIff], (M), local geodesics exist on Diff},(M).

Estimating ||#||ys yields that it remains bounded for all times, hence geodesics
exist for all times.

Khesin [Khel2] extends those result to symplectic manifolds with Riemannian
metrics that are not necessarily compatible.

2.5.3 Quantomorphisms/strict contactomorphisms

Let (M?"1, 1) be a contact manifold with Riemmanian metric such that the Rieman-
nian volume form vol is a constant multiple of A A (d1)". We further assume that the
Reeb vector field R is also Killing and regular with all orbits of the same length 1,
hence M is a principal S!-bundle with S!-action induced by R. We define the strict
contactomorphisms or quantomorphisms as

DiffS (M) := {5 € Diff' (M) | /' = A}.
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Theorem 2.23 ([EP13], Section 2). The following inclusions are actually smooth subman-
ifolds:

Diffy (M) C Diff' (M),  Diffy,, C Diff,(M),  Diffy,,, C Diffg(M),

Diff} (M) C Diffg (M), Diff} (M) C Diffy, ,, (M).

Theorem 2.24 ([EP13], Theorem 3.1). Diffy, | (M) is a totally geodesic submanifold of
Diffffol (M)

Theorem 2.25 ([EP13], Theorem 3.4). The orthogonal projection
P: TDiffy ) (M)Ipige, () — TDiff (M)

is a smooth bundle map.

Corollary 2.26 ([EP13], Theorem 4.1). The geodesic equation is a smooth ODE on the
diffeomorphism group Diff’ (M) and hence, there is a smooth exponential map exp;q : Q —
Diff} (M) for some neighbourhood 0 € Q C T,4Diff’ (M) such that exp;4(v) is the geodesic
(1), where 1(0) = id and n°(0) = v.
. : oS . D dpy D

Proof. The geodesic equation on Diffy (M) is given by ET T 0, where N denotes
the covariant derivative. Using that Diff} (M) C Diffy (M) is a smooth submanifold,
D dn
dt dt
this ODE is smooth on Diff’ (M) and, hence, we have local solutions, i. e. an exponen-

the geodesic equation on Diff} (M) is then given by PU( ) = 0. Since P is smooth,

tial map. O

By finding an explicit representation of the tangent spaces T, Diff} (M), they use
the fact that v, + V, v, has to be perpendicular to T4Diff} (M) to explictly compute
this ODE. Using this description, they can show that solutions stay bounded for all
times and, hence, solutions exist for all times, see Section 4 in [EP13].

Those theorems can also be found in Section 4.1 of [EP15] with proofs relying on

the corresponding results for contactomorphisms.

2.5.4 Contactomorphisms

Let M?"™! be an oriented manifold with contact structure & and some contact form
A. The proofs in [EP15] use an associated Riemannian metric (i.e. for any u,v € TM,
we have A(u) = (u,R) and there is a (1,1)-tensor ¢ such that ¢p?(u) = —u + A(u)R
and dA(u,v) = (u,¢v)) but the authors claim that the results are also true for any
Riemannian metric on M. The group of contactomorphisms is

Diffy (M) = {17 € Diff (M) | n*A = e™ ) for some function A € H° (M,IR)},
and the group of padded contactormophisms

Diffe (M) = {(n,A) | 1A = ™A},
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which is not just a subgroup but also a smooth submanifold of W(M) := Diff’ (M) <
H?*(M). Unfortunately, since not much is known about geodesics on the padded diffeo-
morphisms, they cannot rely on the results in [EM70] to deduce the existence of local
geodesics but have to work with explicit descriptions of the tangent space Tidl’)‘igfzg (M)
and compute the Euler-Arnold equation for geodesics. They then show that one can
rewrite the geodesic equation as a first-order ODE on If)‘lfffg (M) and show in Theorem

d
3.1 that the expression one gets for the derivative a(q,A) is smooth in (17, A).

Theorem 2.27 (Corollary 3.2 in [EP15]). There is a smooth, locally invertible Riemannian
exponential map which takes sufficiently small tangent vectors in TidDiﬁé (M) to the time-
one solution (;7(1),[\(1)) € Diﬁé (M).

This gives local solutions to the Euler equation.



DIFFEOMORPHISMS OF MANIFOLDS WITH A STABLE
HAMILTONIAN STRUCTURE

3.1 Manifolds with a stable Hamiltonian structure

Definition. A Hamiltonian structure on an oriented (2n + 1)-dimensional manifold
M is a closed two-form w of maximal rank, i.e. such that " vanishes nowhere. As-
sociated to w is its one-dimensional kernel distribution (foliation) ker w. A stabilizing
one-form for w is a one-form A such that A A @" is a volume form and ker w C kerdA.

A Hamiltonian structure w is called stabilizable if it admits a stabilizing one-form
A, and the pair (w, A) is called a stable Hamiltonian structure (SHS) on M.

Examples. (a) For a contact manifold (M, 1), the pair (w := dA, 1) is an SHS on M
and finding geodesics on Diff;) (M) = Diff} (M) is equivalent to the quanto-

morphism case.

(b) Let (B,o) be a symplectic manifold with a Riemannian metric. Define a trivial
bundle 7 : S! x B — B with S!-coordinate 6. Then (w := 7t*0, A := d@) is an SHS
on S! x B with Reeb vector field R = dyy. Define a Riemannian metric on S! x B
by |R| =1, R L TB and the given metric on TB. Finding geodesics on Diff;, (B) is
equivalent to the existence of solutions on Diff},. 4o(S' x B).

Additionally, we need a compatible Riemannian metric g on M, i.e. we assume
that the volume form induced by g is a constant multiple of the volume form A A .

Definition. Similarly to contact manifolds, we can define a Reeb vector field R by
irw =0 and A(R)=1.

Because A A w is nowhere 0, the kernel of w is one-dimensional and kerw Nker A =
{0}. The condition A(R) = 1 then normalizes R. Hence, the Reeb vector field is well
defined.

Lemma 3.1. There is an isomorphism of C* (M )-modules

@” :ker A - ann(R) = {a eQ'(M) | a(R) = Ol

U l,w.

Its inverse is denoted by wh: ann(R) — ker .
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Proof. This homomorphism is injective: Let u € ker A be a vector field in the kernel of
this map, i.e. 1,4 = 0 and 1, = 0. The second condition implies that we can write
u = fR for some function f € C*(M). Since, furthermore, u € ker A, we know

0=A(u) =A(fR) = fAR) = f,

hence u = fR=0-R=0.

The map is surjective: Let « € ann(R),i.e. a(R) = 0. Since AAw@" is a volume form,
w is non-degenerate on any complement of ker w in I'(TM). Therefore, we can find a
vector field v € X(M) such that 1, = a. Define u := v — A(v)R. Then, 1,0 = 1,0 = «a
and

Au)=A(v-A(v)R)=A(v)-A(v)A(R) =0,
hence u € ker A and u is a preimage of a € ann(R). O

Remark. If dim M = 3, then ker w C kerdA implies that we can find a unique function
h e C®(M) such that d)A = how.
This thesis deals with manifolds M with stable Hamiltonian structure (w, 1) that

are also equipped with a Riemannian metric g such that

* the Reeb vector field is regular, i. e. all orbits are periodic and of constant period
(w.1l.0.g. of period 1),

* the Reeb vector field R for (w, A) is also a Killing field for g,i.e. Lrg =0, and

* the Riemannian volume form vol induced by g is a constant multiple of the
volume form A A @" (w.1.0.g. vol = A A @").

Since all orbits of the vector field R are periodic of period 1, we get an S!-action
that induces a principal bundle S — M ~, B for some 2n-dimensional base mani-
fold B.

3.2 Diffeomorphisms preserving the stable Hamiltonian structure

As defined on page 5, C! Diff (M) denotes the group of C!-diffeomorphisms of M, and
Diff° (M) denotes the identity component of H*(M,M)NC!Diff(M) for s > dim M +1.

The H°®-diffeomorphism group of M preserving the stable Hamiltonian structure is

given by
Diff}, \(M) = {n € Difff (M) | n*A = A, n*w = w} C Diff*(M).

In the previous examples, the groups of volume-preserving diffeomorphisms, sym-
plectomorphisms and quantomorphisms all are smooth submanifolds of Diff*(M).
Unfortunately, this might generally not be true for the diffeomorphism groups pre-
serving the stable Hamiltonian structure as will be discussed in Section 4.11. We will
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devote a significant portion of this thesis to examples where we can explicitly show
that Diff;) ) (M) is not just a subgroup of some known Hilbert manifold like Diff* (M),
but also a smooth submanifold.

Instead of the very restrictive group Diff;, ) (M), one might also consider only
preserving the Hamiltonian structure w. Any such diffeomorphism will automatically
preserve the kernel of w, i. e. the subspace generated by the Reeb vector field R. Since
we might not be able to control R with those diffeomorphisms and in turn cannot be
sure about the long-time existence of solutions to the Euler equation, one might want
to also preserve R itself. We will discuss those diffeomorphism groups in Chapter 5.

3.3 Principal circle bundles

Let S' > M 5 B be a circle bundle with SHS (w,1) on M and Reeb vector field R.
We also assume that the flow of the Reeb vector field generates the S'-action on M.
Following Geiges [Gei08, Def. 7.2.3ff], the stabilizing one-form A is also a connection-
1-form for our S'-bundle, since it is invariant, i.e. LxgA = digA 4+ 1gdA = 0, and nor-
malized by A(R) = 1.

Remark. The usual definition of a connection form is a one-form with values in the
Lie algebra iR of S' = U(1). This corresponds to our definition by identifying iR with
R and, hence, viewing connection forms as regular, real-valued differential forms on
M.

Definition. Let S! — M — B be a fibre bundle. The kernel of w,: TM — TB is
called the vertical bundle T'M = kerm,. At each point x € M, we can choose a (not
necessarily unique) horizontal space, i.e. a complement T/'"M of T’M in T,M and we
get

TM=T'M&T'M.

A form a on M is called horizontal if v € T'M implies that 1, = 0.

Note that the definition of a horizontal form is independent of the choice of
the horizontal bundle, and that the projection © : M — B induces isomorphisms
n, : (TI'M) 5 Ty (x)B. With our assumptions (see page 28), the kernel of 7, is gen-
erated by the Reeb vector field R. Hence, R generates the vertical tangent space T'M.

Definition. A connection in M is a smooth distribution T"M = l_[ T!'M of S'-equi-

xeM
variant horizontal spaces, i. e. the horizontal spaces satisfy

(¢o).(TIM) = Ty, ()M
for the flow ¢ of R for @ € S*.

The choice of a connection is equivalent to choosing a connection form, for details
see [KN96, Prop. II.1.1]. In particular, we have the following lemma:

29



30

DIFFEOMORPHISMS OF SHS

Lemma 3.2. Any connection form A induces an S'-equivariant connection by T'M =
ker A.

Proof. To prove that ker A is a connection, we need to show that any u € TM can
be uniquely written as the sum of two elements in T"M and T?M. To that end, let
u € TM and we need to find its components in T"M and T'M. Define f := A(u).
Then fRe T"M and v := u — f R satisfies u = fR+ v and

AMu~fR) = A(u) - FA(R) = f ~f =0,

i.e. v € ker \. Now assume that also u = f'R+ v’ for some smooth function f’ and
v’ € ker A. Then

f=Au)=A(fR+v)=f'AR) = f
and hence also
vV=u-f'R=u-fR=v. O

Remark. For manifolds with SHS (w, 1) we can also use Lemma 3.1 to show that ker A
is a connection: Let u € TM and define a = 1,w. Since (ga = i1x,,w = 0, a is an
element of ann(R) and we can apply Lemma 3.1 to get a vector field v € ker A such
that a = 1, w. Also, 1,_,w = 1,w — 1,0 = & —a = 0. Hence, u — v € ker w and there is
some function f € C*®(M) such that u —v = fRe T'M.

Lemma 3.3 ([KN96], Prop. 11.1.2). Given a connection in M and a vector field v on B,
there is a unique horizontal lift v* of v on M. The lift v* is invariant by the induced S'-
action on TM.

Corollary 3.4. If a differential form a on M is invariant (Cra = 0) and horizontal (1igax =
0), then a descends to a form on B, i. e. there is a form @ on B such that a = 10" a. O

Corollary 3.5. Let A\, X € Q' (M) be two connection forms for the same circle bundle S' —
M 5 B. Then there is p € QY (B) such that

A=A+rp.
Proof. A— A is both invariant (Lz(A—A) = 0) and horizontal (iz(1—A) = 0). O

Since A is a connection form, we also have that d\ is both invariant (LzpdA =
dLrA = 0) and horizontal (R € kerw C kerd]). Hence, dA also descends to a two-
form 7 on B. We call 7 the curvature form of the connection form A. Since R as the Lie
algebra of S! is abelian, this again corresponds to the usual definiton of the curvature
form of a principal bundle, which otherwise would also include a commutator term.

Further, since 7t is a bundle projection, it is also a submersion. Therefore 7, is
surjective and 7" is injective. Then the computation

dr =dri*t=d*A =0
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implies that 7 is closed.

Note that Corollary 3.5 also implies that the cohomology class [t] € Hgg(B) does
not depend on the choice of the connection form for the bundle M — B. This is a
special case of the Theorem of Chern-Weil: If we identify S' = R/Z, then the first
characteristic class or Euler class of M,

¢ (M) :=—[t] e H*(B; Z),

is an invariant of the bundle M — B up to (continuous) isomorphisms. For S!-prin-
cipal bundles, H?(B;Z) actually classifies the principal bundles over B up to (con-
tinuous) isomorphisms, see also [Hatl7, Prop. 3.10]. Furthermore, w is also both
invariant and horizontal, and can therefore be written as the pullback w = 7o of
some o € Q?(B). Again, dw = 0 implies that do = 0. We also have

o =" 20,

since A A " is a volume form on M, hence ¢” # 0 and o is a symplectic form on B.

Remark. The list of conditions on page 28 do not imply that (M, 1) is a contact man-
ifold. In the contact case, i.e. if w is such that w = d, we need to have o, T on the
base B such that

no=w=dA=n't
on M. Since 7¢* is injective, this implies 0 = 7 on B. Conversely, 0 = t implies dA =

7't = "0 = w, hence (M, 1) is contact.

3.4 Structure-preserving diffeomorphisms a submanifold?

We already showed in Theorem 2.8 that Diff*(M) is a smooth Hilbert manifold with
smooth submanifold Diff; ; (M) = {1 € Diff*(M) | 1*vol = vol} c Diff*(M).

We first expand the results already cited in Theorem 2.23 with all the necessary
conditions so that we can apply them to our situation.

Lemma 3.6 ([EP13], Lemma 2.1). Let N be a C*™ Hilbert manifold with C® Hilbert
submanifolds L,M. If L C M, then L is also a C* Hilbert submanifold of M.

Theorem 3.7 ([EP13], Theorem 2.2). Let R be a vector field on M with closed orbits all of
the same period. Then

Diff, (M) := {] € Diff'(M) | 7,R = R} C Diff* (M)

is a smooth Hilbert submanifold.
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Theorem 3.8 ([EP13], Theorem 2.3). Let M be compact, R a smooth vector field with
closed orbits all of the same period, vol a volume form which is invariant under the flow of
R (i.e. divyq) R = 0). Then

Diff}, ,o1(M) = {1 € Diff*(M) | #"vol =vol, 7,R = R} C Diffy (M)

is a smooth Hilbert submanifold.

Corollary 3.9 ([EP13], Corollary 2.4). Let M be compact, R a smooth vector field with
closed orbits all of the same period, vol a volume form which is invariant under the flow of
R (i.e. divyo R = 0). Then Diffy, (M) C Diff; | (M) is a C* submanifold.

Theorem 3.10 ([EP13], Theorem 3.1). Suppose M is a compact Riemannian manifold
with Killing field R with all orbits closed and of the same period. Then in the metric induced
by Eq. (2.5), the submanifold Diffy (M) is a totally geodesic Riemannian submanifold
OfDiﬂ:f/ol(M)-

We want to figure out when the diffeomorphisms Diff;, ) (M) for M satisfying the
conditions on page 28 is a smooth submanifold of some known Hilbert manifold, e. g.
of Diffy (M).

Lemma 3.11. Diff; (M) is a subgroup (but not necessarily a submanifold) of Diff,,
Diff (M) and Diffy,  ,(M).

(M),

ol

Proof. Let n € Diff;, ,(M). Since we assume that the volume form vol is a constant
multiple of A A ", any diffeomorphism preserving A and w also preserves vol.

Also, since R is uniquely determined by irw = 0 and the normalization A(R) =1,
we only need to compute

by, RW = R(nw) o 17_1 = IRW O 17‘1 =0,
A(1.R) = (1" ) (R) o™ = A(R) oy~ = 1.

This yields 77,R = R. O

Lemma 3.12. Let S' > M 5 Bbea principal circle bundle with vector field R € X(M)
generating the S'-action. Any n € Diffy, (M) is a lift of some v € Diff*(B) and we can define
a smooth projection

g : Diff, (M) — Diff'(B)

Proof. Let n € Diffy(M), ie. 7.R = R. This is equivalent to 1 o g = ¢Pg o 17 for the flow
¢ of R. As a consequence, for any x,x” in 7w ! ({b}), there is ¢g such that x’ = ¢g(x)
and we have

n(n(x")) = n(n(Pox)) = n(po(n(x))) = n(n(x)).
Hence, we can define a diffeomorphism v := g(1) € Diff*(B) by

v(b) == 7e(n(x)) for any x € 71 ({b})
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and v satisfies mon = vom,i.e. 1 is a lift of v. O

Let 0,7 € Q%(B) such that 70 = w and 7"t = d\ as explained in the previous

section.
Lemma 3.13. (a) ' =w e vio=o0.

(b) “"A=A=y'dl=dlevir=r
In particular, if 11 € Diff; | (M) C Diffy(M), then v = q(n) € Diff; . (B). Conversely, if
v € Diff}, (B) and 1€ ' (v) C Diffy (M), then 1] € Diff} ;,(M).

Proof. (a) v'o = o implies that
Hw=n"n"o=(non)o=(von)o=nvo=n0=w.
Conversely, if 1°w = w, then
wv'o=(von)o=(non)o=nrno=nw=w=rn0c
and since 7" is injective, this yields v'o = 0.

(b) v*t =t implies that
Wdd=n"r't = (non)'t=(von)rt=nvr=n't =dA\
Conversely, if 1°A = A, then y°'dA =dn"A =dA,
vt =(von)'t=(non)t=n""'t=n"dl=dl=n"t

and since 7" is injective, this yields vt = 7. O
3.5 Special case: Trivial circle bundles

Let S' — BxS! - B be the trivial principal S!-bundle over some even-dimensional
manifold B with S!-coordinate 6, i. e. the S!-action is generated by the flow of R = dy.
Let (w, ) be a stable Hamiltonian structure on Bx S!. According to the discussion in
Section 3.3, we know that w and dA descend to two-forms o and 7 on B, respectively.
We know (Lemma 3.13) that if 1 € Diff,, ,(Bx S') is a lift of some v € Diff(B), i.e.
o = vor,then v also preserves ¢ and 7, i.e. v is actually an element of Diff, ,(B).
Conversely, we know that any lift 57 € Diff(B x S') of v € Diff,, ,(B) preserves w and
dA, i.e. satisfies §'w = w and 1°dA = dA.

Since [t] € H?(B) is the Euler class of the (trivial) bundle, [7] = 0 and hence, 7
is exact. Further, if 6 denotes the S'-coordinate, then d6 is a connection form of the
trivial bundle: It satisfies 1igd6 = 15,d0 = 1 and is also invariant (Lgd6 = digd6 =
d1 = 0). Since A is also a connection form of the trivial bundle, Corollary 3.5 yields a
1-form p € Q' (B) such that A = d6 + 7c*p. Then, 7t = dA = d?0 + dr*u = w*dp and
since 7¢" is injective, this actually yields T = dy, i.e. p is a primitive of 7.
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Lemma 3.14. The map

@ : Diff° (B) x H*(B,S') — Diff,(Bx S')

(v,k) = ((0,6) = (v(b), 0+ k(D))
is a smooth diffeomorphism with inverse
Diff} (Bx S') — Diff*(B) x H*(B,S")
n=1"n") = (a0 =n',n°-0)
Hence, Diff*(B) x H*(B,S!) and Diff},(Bx S') are diffeomorphic.

Proof. If well defined, the two maps are obviously smooth inverses to each other. We
only need to check that the map Diff}(B x S') — Diff(B) x H*(B,S") is well defined.
To that end, let 5 € Diff}(B), i.e. 1 = (n',1?) for some 1'(b,0) € H*(Bx S!,B) and

n%(b,0) € H(Bx S',S!). Let b',...,b%" be local coordinates on B and write ! =

(171,1}.“,;71,2;1>

. Since 7 preserves R = dy, we have

89 :R; 1’]*R: 17*89

Zanllf?w %o.

1,i

877 _ 8772 _ . 1 1
TR = 0 for any i € {1,...,2i} and Fr) = 1. Equivalently, 1" (b,0) = 1" (b)

defines an element in Diff*(B) and #%(b,0) — 6 defines an element in H*(B,S!). [

Hence,

Corollary 3.15. Any element of Diffy (B x S') is the lift of some element in Diff*(B) (see
Lemma 3.12), and if we have a lift nj € Diffy (B x S') of some v € Diff*(B), then 1 is of the
form

n(b,0) = (v(b), 6 +k(b)). O

Now let ¢ be a symplectic form on B and let w = "6 on M = B x S'. Note that
the symplectomorphisms Diff;, (B) C Diff°(B) are a smooth submanifold.

Corollary 3.16. If we consider the restrictions

Dlpige: (B)xm: (B,s1) : Diffy (B) x H'(B,S') — Diffy, ,(Bx S')
and

O pigey () : Diffg , (Bx S') — Diff}, (B) x H'(B,S"),

then those define diffeomorphisms and, in particular, Diff, (B x S1) is a smooth subman-
ifold of Diffy (B x S1). O
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Lemma 3.17. Let 1 € Diff (Bx S') be the lift of some v € Diff’(B), i.e. 7 = (v,1%). Then
n? is also of the form n*(b,0) = 0 + k(b) for some k € H*(B,S') and the map k satisfies
p—vu=dk.

Proof. Let bl,...,b*" denote local coordinates on B. We compute

do+m'u=27A L N'A=n"(d0 + " p)
=dy’ o'

~——

= (mon)'p=(vom)'p=mn"viy

M iy N o
. - . o
Comparing the coefficients of dO6 on both sides of the equation yields 20 = 1 and

we can write 1%(b,0) = 6 + k(b) for some map k : B— S!. The equation A = 5*A then

becomes
dO+'u=d(0+k(b))+n'nt'u=d0+dk+ vy,

ie.y—viu=dk. O
Lemma 3.18. Let 17 € Diff; (B x S') c Diffy(Bx S'). By Lemma 3.14 (or Lemma 3.17),
1 is of the form 1(b,0) = (v(b),0 + k(b)) for v := n' € Diff'(B) and some k € H*(B,S?).
Since 1 preserves w und A, v preserves ¢ and v, i.e. v € Diff;,  (B). Then there is exactly

an S*-collection of lifts of v in Diff} ) (B x S1). More precisely, we have:

(a) Any 0y e S defines an element v € Diff} | (B x S by

7(b,0) = (v(b),0 + 0o + k(b)) € Diff;, ,(Bx sh.
(b) Let 7j € Diff;, | (B x S1) be some other lift of v, i. e. using Lemma 3.14 we can write

1(b,0) = (v(b),0 + k(b)),
7(b,0) = (v(b),0 +k(b)).

Then k(b) = k(b) + 0, for some constant Oy € S*.

Proof. (a) The map 7 is clearly a lift of v. Since v preserves both ¢ and 7, 77 auto-
matically preserves w and dA by Lemma 3.13. We only need to check that 7 also
preserves A. To that end, we compute

A =1"(d0 + 1)
=d(0+0¢+k)+7mu
= dO +dk + v
=1*A
=\
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(b) Using Lemma 3.17, we know that

dk =n"(p—v'u) =dk,

hence k is equal to k up to some additive constant 6, € S. O

In Lemma 3.23, we will see that Diff;, , (Bx S1) really is homeomorphic to D* x S!
for some subspace D* C Diff;, . (B). We will first discuss the definition of D°.

Let now v € Diffs (B). If v is at least a C*-diffeomorphism so that y— vy is still
C!, we can compute

dvip=vidu=vit=r
and hence,
d(p—v'p)=1-1t=0,

i.e. y—v*'pis a closed form. Using Stokes” Theorem for a null-homologous loop y in
B bounding some disk u : D> — B, we get

J;8u(y—vw)=£d(y_v*y):L(T_T):o, (3.1)

Hence, if v is C?, then p — v*u immediately defines a cohomology class in HéR(B).
In general, we might not be able to take the differential of y — v*y, but using the
next lemma, we will be able to show that it still defines a cohomology class.

Lemma 3.19. Let y : S' — B be a null-homologous loop, i.e. y = du is the boundary of
some disk u : D*> — B. Let u € Q'(B) and v € Diff*(B) be at least C' (but not neccesarily
C?). Then

J vip= J vidpu.
Y u

Proof. Define f := vou € C'(D?,B). Then there exists a sequence of smooth functions

1
f, € C*(D?,B) such that f, <, f and
n—-oo

Jy V= o 1 Jpfrdp=],vdp
n—00 n—-o0

(o) (ol

L;szr:”l = L)z d(fip) = sz fodp

Corollary 3.20. y—v*p defines a cohomology class in H}, (B).
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Proof. The Theorem of de Rham and the Universal Coefficient Theorem yield isomor-
phisms

H}:(B) = H'(B;R) = Homz (H, (B),R).
Hence, it suffices to prove that y — v*u defines a homomorphism
([#=v"p],) € Homz(H; (B),R).

For any representative y : S' — B of a homology class [y] € H; (B), we let

((p=v'ul, [yl = f (H=v"p).

Y

To show that this is well defined, we need to check that

L(ﬂ—V*#)=0

for any null-homologous loop y in B. To that end, let ¥ be such a loop, i.e. ¥ = du is
the boundary of some disk # : D> — B. Lemma 3.19 shows that

J vVip= J vidp.
Y u

Hence, the same computation as in Eq. (3.1) shows that f (p—v*u) = 0if y is null-

14
homologous. O

Lemma 3.21.
1 . 1] ~ . .
Hix(B)/{[dk] | k: B— S'} = Hom(H, (B; Z),R)[Hom(H, (B; Z), Z). (3.2)
Proof. De Rham’s Theorem says that integration is an isomorphism
oy J
Hjg (B) = Hom(H; (B), R). (3.3)

Restricting this map to {[dk] | k:B— Sl} C Hyp (B) yields a map

{[dK] | k:B — s} J, Hom(H, (B), Z).

We claim that this is also an isomorphism: For injectivity, let k,k : B — S! such that
J dk = j dk for any y € H,(B). Hence,
4 Y

J (dk—dk) =0 for any y € H;(B),
Y
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i.e. dk —dk is an exact 1-form and there is a function I : B — R such that dk — dk = dl.
This implies [dk] = [dk + dI] = [dk] and integration is injective.

To show surjectivity, we let f € Hom(Hl(B),Z) C Hom(H1 (B),]R). By Eq. (3.3),
there is a cohomology class [a] € H} (B) for some closed a € Q' (B) such that for any
y € H(B), we have

Fix some base point b, € B and define

b
k:B—>S'=R/Z, b a modl
b()

for b € B;. This definition is independent of the path from b to b: Let 1,8, be two
such paths, then B1#(—p,) is a closed path and defines an element y := [B1#(—f;)] €
H;(B). Hence,

fa—ja modlzfa mod1=f(y) modl=0,
1 2 Y

since f(y) € Z. Finally, [a] = [dk] is a preimage of f in {[dk] | k:B— Sl}.
We have shown that we have a commuting diagram

H} (B) —i> Hom(H, (B),R)

J

{{dk] | k: B — s} £—>Hom(H1(B),Z)

and this implies the lemma. O
Proposition 3.22. A diffeomorphism v € Diff; . (B) has a lift 1 € Diff;, , (B x sh. =
f (u—v*u) € Z for any loop y € H| (B; Z).

)4

Remark. In particular, if B is a surface of genus g, those are just 2¢ conditions for the
2g generators of H (B;Z).

Example. The condition in the previous proposition is not always satisfied, i. e. not
any element of Diff}, ,(B) has a lift in Diffi)’A(Bxsl). As an example, let B=1Y = T2 be
the two-torus and choose coordinates (b, b,) such that o = db; A db, is an area form.
Let further a;,a, € R and define p := a; db; + aydb,. Then v : T> — T?, (by,b,)
(by,—by) is an element of Diff’, . (T?): It is a (smooth) diffeomorphism of T? and pre-
serves T = du = 0 and o since v*o = db, Ad(-b;) = db; Adb, = 0. The cohomology
class of

p—v'u=a;db, +a,db; - (a;db, +a,d(-by))
= (111 —|—a2)db1 =+ ([12 —al)dbz
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has no integer period if a; + a,, a; —a; € Z, hence we can apply the previous Lemma
in those cases to get that v does not have a lift in Diff,, ,(T? x S') for @ = 7' and
A=dO0+r'p.

Proof of Proposition 3.22. "=": Let 1 be a lift of v. Using Lemma 3.17, we know that
pu—vp=dk

for some k : B — S!. By Corollary 3.20, we can consider the cohomology class [dk] =

[ —v*u] € H(B;R). Using the isomomorphism in Eq. (3.2), this implies that J u—
V4

viu= j dk € Z for any loop y € H|(B; Z).
Y

"<": Let y—v*u be such that f u—v'u e Z for any loop y € Hy(B;Z). Again, using
Y
the isomorphism in Eq. (3.2), we can find ; : B — S! such that [u—v*u] = [dl;]. This

implies that there is a function /; : B— R such that y—v*u = dl; +dl,. Let us project
l,:B—>R —R/Z =S and define k :== 1, +1, : B— S!. Then p—v'u =dk and we
claim that

n:BxS'—>B
(b,0) > (v(b), 6+k(D))

is a lift of v € Diff, . (B) in Diff,, y (BxS'). The map 1 clearly satisfies tonj = vor, i.e.
it is a lift of v in Diff’(M). Lemma 3.13 implies that 1 € Diff; ;,(M). It only remains
to check that "1 = A. To that end, we compute

n'A=n"(d0 +1"p)
=dO0+dk+n'cu
~——

=1'v'u =1 (p—dk)
=dO+ 1= A O

Remark. As a special case of the previous theorem, we can show that if B satisfies
H'(B) = 0 (e.g. if B = S*"), then any diffeomorphism v € Diff; ;(B) has a lift 11 €
Diff;, (B x S1): To that end, let v € Diff] ,(B). Since Hyy(B) = 0, any form repre-
senting a first cohomology class is exact. In particular, y — v*u is exact and hence,

J (u—v*u) = 0 for any loop y € H;(B;Z). Using Proposition 3.22, we get that v has
4

alift n € Diff}, | (Bx S').

This proposition motivates the definition

D = {v € Diff;, . (B)

J (p—v'u)eZforall y eHl(B;Z)}
14

for the diffeomorphisms in Diff;, . (B) that admit a lift to Diff;, ) (B x S1). According
to Lemma 3.18, there is a S'-collection of lifts for any v € Diff}, ,(B), i.e. we expect
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Diffzjl/\(Bxsl) to be diffeomorphic to D°xS! if D° c Diff’. (B) is a smooth submanifold.
We will make this statement precise in the rest of this section by trying to further
restrict the diffeomorphisms given in Lemma 3.14.

The set Diff;, ) (B x S!) is contained in Diffy ,(Bx S'). We will now discuss a
continuous map ¢ : D x S! < DiffS (B) x H*(B,S') such that we can restrict ® to
D x S! via 1.

Lemma 3.23. There is a continuous embedding 1 : D° x S' < Diff’ (B) x H*(B,S') such
that the image of the composition W := ® o1 : DiffS, (B) x S' — Diffy (B x S1) actually
lies in Diff; | (B x S1), i.e. the following diagram commutes:

Diff} x H*(B,S') —2— Diff}, , (Bx S!)

2
DS x St —— Diff;, , (Bx st

The map \V is a homeomorphism.
Proof. Step 1.Let v € D° and 6 € S'. We will define a continuous map

k:D° — H*(B,S'),

vk,
and then let
1(v,0p) = (v,0¢ + k,(b)).

To that end, we start with v € D?, i.e. v € Diff, . (B) such that J. (u—v'u) € Z for

4
all y € H{(B;Z). Corollary 3.20 implies that p — v*u represents a cohomology class

(n—v'ul e H'(B;Z). In particular, the map D° — H* ! (A!B), v — 41— v*5 has image
H;7'(A'B), where
heH'(B;Z)
Hisz_l (A'B) = {a e H1(AB) | « is a representative of hl.
If v is at least C2, then this definition is equivalent to

Hy ' (A'B)={a e H"'(A'B) | da =0, [a] = h}.

For every cohomology class h € H'(B;Z), fix some map k, € C*(B,S!) such that
h = [dk;] (see Lemma 3.21) and define a;, := dk, € Q'(B). Any other element a €
H; ' (A'B) can then be written as

a=ap+p
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for some exact f € H"!(A!B). In particular, the one-form

Py = BV = Ay

is exact. Fix some base point by € B and define a map H: ., (A'B) — H*(B,S') by
mapping an exact one-form f§ to the function kg defined by

b
kg(b) = J; B for any path from b to b.
0

This is well defined since f is exact. Since dkg = p € Hi,((A'B), Lemma 3.24 (after
this proof) implies that ks € H*(B,SY). In particular, we let

b
k., (b) = J; py  for any path from b, to b.
0

Then we define k,, =k, + k[, € H*(B,S'). Note that the map
BxS' > BxS!, (b,0)(v(b),0+k, (b))
is a lift of v in Diff}, | (Bx S").

In summary, for every cohomology class h € H!(B;Z), we fixed some map k;, €
C*(B,S') such that h = [dky] and defined a;, € Q' (B) by @, := dk;,. Then we let

Ds v
[ | =B pevp
heH' (B;Z) T

|| hxHGa(A'B)  ((p= vl =V =)

heH'(B;Z)
l =y

H*(B,S') ky = Kjyeye ) + ki,

The map v > k, is continuous since H! (B;Z) is discrete.
Step 2. The image of the composition W := ® o1 : D°x S' — Diffy ,(Bx S') lies in
Diff} | (BxS').

Let v € Diff}, . (B) and x € S*. Then 17 := W(v,0,) € Diffy (B x S1) is of the form

7(b,0) = (v(b),0+x+k, (b)) € BxS!
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and it remains to check that 7 also preserves A. Write A = d6+ 7"y for some y € Q' (B)
and first compute

dk, = dk,, + dk

p=v'p
= Ky T vy
= (V — VR Ay ) T vy
=u-vu.

Now we can check that

NA=n"(d0+'p) =d0+dk, + 7 viu
~——
=p—dk,

=d6 +dk, + ' —-rdk,
=dO+1'u

= A
Step 3. The (continuous) inverse of W is given by

Diff, ,(BxS') > D°x §!
n=(n"n%) = (> =0 k). O

Remark. There is a similar theorem describing the quantomorphisms of a contact S*-
principal bundle S! — M % B with contact form A as an S!-principal bundle over
the Hamiltonian diffeomorphisms of B with symplectic form w defined by 7*w = dA,
see also Theorem 3.1 in [RS81].

To really complete this proof, we need to provide the next lemma.
Lemma 3.24. Let k € H"'(B,R) such that dk is of the same Sobolev class s — 1, i.e.

dk e H'(A'B). Then k € H*(B,R).
The same result holds for maps to S'.

Proof. Let B have coordinates b'. Since dk € H*"! (A!B), all the coefficent functions of

dk = Z%dbi satisfy 5—:1 e H*"}(B,R) for all i. Hence, k € H*(B,R). O
1

We will now define a group structure on D° xS, which induces the regular group
structure given by the composition of maps in Diff;, , (M) via W : DxS! — Diff; (M)
as defined in Lemma 3.23.

Lemma 3.25. The composition
(va,x2) 0 (v, K1) = (va o vy, 1 + 12 =Ky, (vi(bo)))

defines a group structure on D° x S,
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Proof. The identity element is given by (idg,0): For any (v,x) € D* x S!, we have

(v,x) o (idp,0) = (voidp, 04+ x—k,(bg)) = (v,x),
(idp,0) o (v,x) = (idgov, x + 0 —-kig,(v(bg)) = (v,x).

The inverse of (v,«) is given by (v™1,k, (v (b)) - ):

(vk) o (v Lk, (v (o)) —x) = (vov™!, k(v (bo)) -k + Kk, (v (b))
= (idg,0),
(v Lk (v (b)) —x) o (v,x) = (v o, ke + Ky (v (bo)) — k — Kyt (v(bo)))
= (id,0)
v(bo)

“1(by)
bo
= J (vViu-p)
v (bo)
v(by) §
= (h=v"p)

Finally, the composition is associative:

((V3;K3) °© (Vz'Kz)) o (v, K1) = (Vs 0V, K2 + K3 —kv3(V2<b0))) o (vi,x1)

= ((V3 o Vz) oV, K1 +Kp + K3 — kv3(V2(b0)) —kv30v2(V1 (bo))) (34)
We compute
r~vi(bo)
kv3ov2(vl (bo)) = ) (I‘_<V3OV2)*F)
< b
r~vi(bo)
= (n=vyviu)
Jby
r~vi(bo) vy (bo)
= (ﬂ—VEIH'J vi(n=-vin)
Jb, bo
v2(v1(bo))
k() + [ (v
va(by)
va(v1(bo)) vy (bo)
=ky,(v1(bo)) +J; (n=v3p) —L (n=vip)
0 0

= ky,(vi(bo)) +ky, (v2(vi(bo))) = ky; (v2(bo)),
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hence

—ky, (v2(bo)) = Kyyov, (Vi (bo)) = =ky, (v1(bo)) = ky, (v2(v1(bo)))

and continuing Eq. (3.4) yields

((Vs,Ka)O(Vz,Kz))O(VhKl)
= (V3° (vo0ovq), k1 + K2 —ky, (v1 (b)) +K3—kv3(V2(V1)(bo)))
= (v3,x3) o (V20 vy, K1 + %2~ ky, (v1(bo)))
= (v3,x3) o ((v2,%2) 0 (v1,%1)). D

Proposition 3.26. The map W : D° x S' — Diff | (Bx S') as defined in Lemma 3.23 is a
group homomorphism.

Proof. For (vi,k1),(vy,k2) € DS xS!, we have

(‘I’(Vz;Kz) oW (v1,x1))(b,0) = W (vy,100)(v1(b), O+ Ky, (b) + 1)
= (v2(v1(b)), 6+ Ky, (b) + 11 + Ky, (v1(B)) + 12),
(3.5)

We compute

rb
kvzovl(b) = H- (VZOvl)*l"
rb
= | povivop
rb b
= ﬂ—VIwrf vi(p=vip)

Vl(b)
=kvl<b>+j P
Vl(bo)

v (b) ) vi (bo) )
:kvl(b)"’_j M—vzﬂ—f H=Vou
bo b

0

=k, (b) + Ky, (v1 (D)) =Ky, (v (by)),

hence

ky, () + ky, (vi (b)) = Kyou, (D) + Ky, (v1(bo))
and continuing Eq. (3.5) yields
(W (v2,x2) 0 W (v1,51)) (D, 0)

= ((Vz ov1)(b), 0+ (11 + x5 +ky, (vi(bo))) + ky,or, (b))
=W(vy0v1, k1 + K2+ ky, (v1(Dp)))
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= ‘I’((Vlez) o (V1,K1))- O

Up to now, we have only discussed the continuous structure of the bundle W :

D'xS' S Diff;, ,(M), so we will spend the rest of this section prove that if D° C
Diff} .(B) is a smooth submanifold, then the map k : D° — H*(B,S') is smooth and
W is actually a diffeomorphism.

A candidate for the differential of k is the directional derivative. Let vq € D° and
for any path v(t) € D for t € (—€,€) such that v(0) = vy, we have

ky (1) (b) =k, (b)

T, k(v9)(b) = lim

~vo(b)

Jvg(bo)

rvo(b)

= - dixp+1x dp .
JVO(bO) ~——
=7

Since both the full integral and

Vo(b)
_ vo(b)
L ) dixp= le|v0(bo)

0( 0
= pu(X)(vo(b)) = u(X)(vo(bo))
= poy () (X (V0 (D)) = Py (by) (X (Vo (bo)))
=ty (b) (V0 (D)) = Py (vy) (Vo (Do)
vo(b)

are independent of the path from b, to b, also j 1xT is and we get
vo(bo)

Vo(b)
Ty k(v0) (b) =~y () (Vo (D)) + Py (vy) (Vo (Do) —f Lygovy! T-

Vo( 0)
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In particular, at the identity we have

b
Togk(X) = —p(X) + u(X) (bo) - L X, (3.6)

Lemma 3.27. If D° C Diff’(B) is a smooth submanifold, then the map

k:D* — H%(B,S!)

vi>k,
is differentiable with tangent map
T,k : T,D° — H*(B,R)

X b (11 0 0K i (K00 - [

v(bo)

Proof. We have to verify that

i JE(eXB, X) K (v) = T (Ol

— 0.
X—0 [|1X ||z

We will omit the computation as this lemma also follows from the corresponding
statement for general S!-bundles, see the proof of Theorem 3.43 and the remark on
page 63. O

Inductively, one can show
Corollary 3.28. If D° C Diff*(B) is a smooth submanifold, then the map k is smooth.

This also follows directly from Theorem 3.43.

We are now in a position to find out when the diffeomorphisms preserving the
stable Hamiltonian structure of a trivial S!-bundle are a smooth submanifold of the
tull diffeomorphism group.

Theorem 3.29. Assume that D* C Diff* (B) is a smooth submanifold. Then also Diff;, ) (Bx
S1) c Diff'(Bx S!) is a smooth submanifold and

W :D* xS — Diff} | (BxS')
(v,60) = ((b,0) > (v(b),6 +k, (b) + 6p))
is a diffeomorphism with inverse
=)= (pin) =10 (5,0) -k (b) - 6).
Proof. 1f we view W as a map

WD xS! — Diffy(Bx S!)
(v,x) — ((b,@) = (v(b), 6 +k,(b)+ K))
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then W is a homeomorphism onto its image im(W) = Diff; (B x S1) by Lemma 3.23.
Let ve T,D and x € R = T,.S'. The tangent map of W is given by

T )W (v,x) =v+ (Tvk(v) + x)ag.

This is an injective map: Let v;,v, € T,D and x;,x; € R such that T(, WV (vy,x;) =
T(V'K)\P<7/2,X2), i.e.

vi +(Tyk(v1) +x1)99 = v2 + (T k(v2) + x2) -

Since v; and v, only depend on the coordinates of B, this yields v; = v,. Then also
T,k(vy) = T,k(v,), which in turn implies x; = x,.

Therefore, we can apply Proposition 2.20 to find that im (W) = Diff; , (B x st is
a smooth submanifold of Diff(Bx S!). O

3.6 Metrics on trivial circle bundles

As in the previous section, let M?"T! be a trivial circle bundle
s' —M=BxS' 5B

with S'-coordinate 6, and we let (w,A) be a stable Hamiltonian structure on B x st
such that the Reeb vector field is R = dy. The discussion in the previous section im-
plies that w = 7o for some symplectic 2-form ¢ on B and A = d6 + "y for some
one-form p on B. Furthermore, there is T € Q%(B) such that d A = 77, namely 7 := dy.

Now let (@, = dO + 7*ji) be another such stable Hamiltonian structure on M =
Bx S!, which also induces &,7 € Q?(B) by @ = 1°G and 7 = dji. We further choose a
metric (-,-)% on B.

Lemma 3.30. Let p : B— B be a smooth diffeomorphism such that p*c = 6 and p*t = 1.
(a) The map
Cp = Ry1 o L, : Diff} ;(B) — Diff;, . (B)
V> povo (f1
is a group isomorphism with inverse
C,' = Cp1 = RyoL,1 : Diffy (B) — Diff} +(B)
Vi p_l ovop.

In particular, Diff;, (B) C Diff*(B) is a smooth submanifold iff the corresponding
diffeomorphism group Diff}; ;(B) C Diff*(B) is a smooth submanifold. In this case,
Cp is a smooth diffeomorphism.
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(b) Let P, : T,Diff°(B) — T,Diff;, . (B) for v € Diff;, . (B) be the orthogonal projection
with respect to the metric induced by (-,-)5. Then

P, : TyDiff*(B) — T;Diff} ;(B)
V= (TCp—l o PCp(ﬁ) o TCp)(v)
is the orthogonal projection with respect to the metric induced by the pullback metric

of (-,-Y8 under p. In particular, P is a smooth bundle map iff P is a smooth bundle
map.

Proof.  (a) It only remains to show that this map is well defined. Let v € Diff} ;(B),
i.e. V"6 = 6 and v'T = 7. Then

Il
—~
o)

L
N—
¥
<@
%
o)
v
)

(povo p’l)*a

and similarly for . The same computation shows that if v preserves o and 7,
then the preimage p™! o v o p preserves & and 7.

(b) We first show that the L>-metric on TDiff*(B) induced by the pullback metric
on B with respect to p is equal to the pullback metric with respect to C, of the
L?-metric on TDiff*(B) induced by the chosen metric on B: The pullback of the
L%-metric with respect to C, is given by

(“'”)Z - ((CP)*“’ (CP)*V)CP(V)

— B((CP)*ut(Cp)*v>CP(v)(b)On(b)

-
= B(TRpfl TLyu, TRy~ Tva>p(v(p‘1 (b)) o"(b)

~
= ((TLpu)op_l,(Tva)op_l)p(v(pfwb)))a”(b)

JB
b=p(b’ ,
p:( ) L<TLP”'TLPV>P(V(17’)) (p*a™)(b")

~——

U”

B L<p*”'f’*”>p(v<b')> ¢"(b')

= L(u,v);(b,) ¢"(b"),
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which is the L?-metric induced by the pullback metric with respect to p. B, is a
projection if P, is a projection since
P} = (TCpi0Pc ()0 TC,)?
=TCp10 PCp(v) oTCyoTCpi1o0 PCP(V) oTC,

_ 2
= TCp-l o PCp o TCP

(v)
= Tcp—l o PCP(V) o TCP

_p,

It remains to check that P, is the orthogonal projection. By definition, P, satisfies

(u —Pv(u),v)v =0 (3.7)
for any u € T, Diff*(B) and v € T, Diff;, . (B), where
(u —Pv(u),v)v = L(u —Pv(u),v>v(b) o"(b).

We have to show that P, satisfies the same equation for the pull back metric. To
that end, let ii € T;Diff*(B) and 7 € T; Diff}; ;(B), then

(11 _P(ﬁ)'ﬁ)ﬁ - (TCPIZ - Tcpp(ﬁ))TCpﬁ)cp(ﬁ)
= (Tcpa—TCpTCp—l Pe,(v) TCy(1), TCPﬁ)cp(ﬁ)
—_——— — —
—ueTe, ) Diff (B) =id =u =€Te,(nDiffy.«(B)
= (“_PCp(ﬁ)W)’U)cp(v)
vi=Cy (V)
= (u—PV(M),V)V
5, =

Recall the diffeomorphisms of B that have a lift to Diff] (M) and Diff’. (M),
) @,A
resp., given by
D5, = (veDiff _y,(B)] J (4= v") € Z for any € Hy (B;Z)
Y

and

D5 ;= {v € Difff}’f:dﬂ(B) | J (i—-v'ji)eZforany y € Hl(B;Z)}.
)4

Corollary 3.31. If we further assume that im<Cp|Dgﬁ) = D5 i-e. C, induces a group
isomorphism

o,u

.S Sys
Cplpfm2 . Dd,ﬁ —D
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then the previous lemma is still true if we replace Diff; - (B) by Dg ; and Diff; . (B) by
D, respectively. O

We further have to choose a Riemannian metric on M such that the induced
Riemannian volume form is given by vol = A A w” = d6 A @". To that end, we denote
by (-,-)2 some given metric on B with area form ¢”. On the horizontal bundle, i. e. for
v,w € ker A, C T, M, we use the isomorphism 7, : ker A — T B and pull the metric back
to

(v, w), = (mv,n*w)ﬁ(x).

Its complement, the horizontal bundle, is generated by R = dy. We let R have length
1 and be perpendicular to the vertical bundle.

Proposition 3.32. Let (&, A) be another such stable Hamiltonian structure on M = Bx S!
and assume that we have a bundle diffeomorphism p : Bx S — Bx S!, i.e. p satisfies
p.R = R. We further assume that p*w = & and p*A = A. Then:

(a) The map

Cp = Rp_l oLp : Diff’ (M) - Diﬂ:fu,/\(M)

@,X
neporop!
is a group isomorphism. In particular, Diff;’j (M) c Diff*(M) is a smooth submani-

fold iff Diff;, , (M) C Diff* (M) is a smooth submanifold. In this case, C, is a smooth
diffeomorphism.

(b) The pullback metric (-,-)* of (-,-) under p is of the same form as :,-), i.e. dg has
length 1, dy is perpendicular to ker A and on ker A, the metric is the pull back of
some metric on B via the projection ..

(c) Let P, : T, Diff' (M) — T, Diff;, ,(M) for 1 € Diff;, , (M) be the orthogonal projec-
tion with respect to the metric induced by (-,-) on M. Then
Py T, Diff* (M) Ipige L) T, Diff}, +(M)
U (TCpn o Pc, () © TC,)(?)

is the orthogonal projection with respect to the metric induced by the pullback metric
of -,-) under p. In particular, P is a smooth bundle map iff P is a smooth bundle map.

Proof.  (a)

It only remains to show that this map is well defined. Let 7 € Diff. (M),
i.e."®@ = @ and 1*A = 1. Then
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and similarly for A. The same computation shows that if # preserves w and A,
then the preimage p~! o 17 0 p preserves @ and 1.

We compute

<86186>’e = <P*96: p*89>
=(dg, dp)
=1.

Now let v € ker 1. Then p,v € ker A since
Alp.v) = (p"A)(v) = A(v) =0,

and we have

<86)v>’e = <P*96; P*V>

:<89' PV >
~——
eker A
=0.

Finally, for v,w € ker A and x = (b,0) € M,

(@, ), = (P, pw)p(x)
_ B
= (TP, TPWN ()

_ /B B B
= (p, 0.V, Py mw)pB(b).

In particular, the metric on ker A is the pullback (via 7,) of the pullback of the
chosen metric (-,-)% on B via pB.

As in the proof of Lemma 3.30, we first show that he L?-metric on TDiff*(M)
induced by the pullback metric on M with respect to p is equal to the pullback
metric with respect to C, of the L%-metric on TDiff*(M) induced by the chosen
metric on M: The pullback of the L>-metric is given by

(u,v):] = ((Cp) u,(Cp)*v)cp(
=«

) )
N (Cp)utt, (Cp)uvdc, () (x) AN @" (%)

= ijzp_l TLou, TRy TLov)o((p-1 (1) A A 0" (%)

= | (L) 00 (L) 0 6yt A1 (3)
=p(¥) JM<TLpu,Tva>p(,,(x,)) ("(A A ™) (x)

= jM<TLpu, TLp”)p(q(x’)) AN @"(x)
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N JM@*”"’*”%(?:(W)) AN&"(x)
= JM<u,v>;(x,) AANO"(x),

which is the L>-metric induced by the pullback metric. 15,7 is a projection if P is
a projection since
B} = (TCp10Pc ()0 TC,)?
=TCp10Pc ()0 TCyoTCp10Pc (40 TC,
=TCpr10PE (,)°TCp
=TCpr0Pc (o TC,
=5,

It remains to check that 15,1 is the orthogonal projection. By definition, P, satisfies

(4=Py(u),v) =0 (3.8)

n

for any u € T, Diff’(M) and v € T, Diff; (M), where

(uP j(uP U),v)y(x) AN @"(x).

We have to show that 15,7 satisfies the same equation for the pullback metric. To
that end, let 7 € T;Diff’ (M) and ¥ € T;Diff’, ;(M), then

(- P(ﬁ),ﬁ)ﬁ = (TC,i1 - TC,P (1), TCpﬁ)Cp(ﬁ)
= (TCpit=TCyTCp1 P () TCp (), TCpﬁ)Cp(ﬁ)
—_—— —— —_—— ——
::ueTCp(yl)Diffs(M) =id =u ::veTcp(,,)Difffn,A(M)
=(u-"P 71 (u),
(u ¢ (,1)<M) v)cp(ﬁ)
1:=Cp (1)
= (u —P,](u),v)’7
. O
Corollary 3.33. Let (w, A = d@ 41 y) and (&, X = dO + 7" i) be two SHS on M = BxS™.

They define two-forms (0,7 = du) and (6,7 = ) on B, resp. Let further p € Diff(B) as
in Lemma 3.30, i.e. p*0 = & and p*t = T, and assume that

f (i-p'u) € Z forany y € H, (B, Z).
V4

Then there is a lift pM € Diff* (M) satisfying the conditions of Proposition 3.32.
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Proof. Since j (i—p*p) € Z for any y € Hy(B;Z), the map
4

kp :B—> R
b
b | (i-p'n)
bo
is well defined. Then the lift
oM:M—-M
(b,0) > (p(b),6 +ko(b) mod 1)

satisfies the conditions of Proposition 3.32: We have

(p™).d0 = o —g—gk(b)) do = dyp,
(") 'w=(pM)ro

=1p'o

=76

- @,

and

(pM)" A= (pM)*(dO + 1)
=d(pM)'0 +n'p"u
=d(0+ k) +p*u
=dO+ " (dk+p*p)

3.7 General circle bundles

In this section, let M be a manifold with SHS (w, 1) such that the flow ¢, 6 € S?,
of the Reeb vector field R induces a free S'-action and M —> B is the corresponding
principal S'-bundle. Let further v € Diff}, ,(B) be an H*-diffeomorphism of the base
manifold B which, in particular, also preserves the curvature form 7. We first assume
that v has at least one S'-equivariant lift 7j, : M — M. As before, Lemma 3.13 shows
that 7, as a lift of v € Diff}  (B) already preserves w and dJ, i.e. it is actually an
element of Diff; 4, (M).

Lemma 3.34. Since A is a connection form on 7 : M — B and 7, preserves R, the pullback
iy A is again a connection form on w: M — B.
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Proof. We compute

KR(WV/\) =Ly R(/\) =LrA =0,
= A((7y)<R) = A(R) = 1.

Hence, 7], A satisfies the conditions given in the beginning of Section 3.3. O]

By Corollary 3.5, there is a unique g, € H*"' (A'B) such that

A =A+m1p,. (3.9)
Remark. If 7j, is at least C?, then the form g is closed since

wdp=dr'p=d(f,A-A) =7,dA-dA

=iy () -t =n"(v'tr-1) =7"0=0

and 7" is injective. A computation similarly to the one for the trivial bundle in Corol-
lary 3.20 shows that p always defines a cohomology class in H OllR(B).

Now consider an H*-map k : B— S!. Any such map induces a lift iy x € Diff* (M)
of v by setting

e (%) = K(7(x) ) 7y (%) = Prireio) (70 (%)), (3.10)

where ¢ denotes the flow of the Reeb vector field R. This defines an action of H*(B, S )
on Diff’(M). To show that 7, \ still preserves R, which implies that 7, ; is also a bun-
dle diffeomorphism, it suffices to show that 7, ; o pg = ¢y o 7j, k. To that end, we
compute

((PQ Oﬁv,k)( qbe(qvk ) ((Pk(n(x))(ﬁv(x)))

24
(x)) since 7}, preserves R

Hence, 7,  is an H’-diffeomorphism of principal S!-bundles and H*(B,S') acts on
Diff} (M). Furthermore, since 7j,, j also satisfies

n(ﬁv,k (X)) = n((pk(n(x))(ﬁv (x)))
= Tc(ﬁv (x))
= v(n(x))

for every x € M, it is still a lift of v € Diff;, . (B). Hence, also 1, x € Diff; ;,(M). We
now identify a condition such that 7, ; preserves A instead of just dA.
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Lemma 3.35. Let 1 € Diff;, ;| (M) be a lift of some v € Diff; . (B) and k € H*(B, S1). The
M), iff A -7, A = " dk.

Remark. This condition is very similar to the trivial bundle case as in Proposition 3.22:

lift ni € Diff; 4, (M) preserves A, i. e. 1)y is an element of Diff; , (

If a is a form on M that descends to a form on B, we use a for the form on B that

satisfies @« = w*@. For A — 11"\, we get

A-n*A=rm'dk for some ke H°(B,S")
& A-y*A=dk asforms on B for some k € H*(B,S!)

@J A-n*AeZ VyeH(BZ).
Y

Proof. We let v € T,M and compute

(dxﬂk) V= dx((z)k(n(x))(n(x))) v
= (dy () Pr(m(x))) - (ds) -
= (dyy(x) Pr(n(x))) - (daty) -

Applying A to this expression yields

/\qk(x)((dqu) 'v> = /\qk(x)((dq(x)(;bk(n(x))) : (dx”) 'v>
F A ) (R () (70 e k) - v

_
= (W*‘PZ(H(X))/\)x(V) + (r*dk)y - v.
Since LrA = 0 implies ¢y A = A for any 0 € St, we know that
Pr((an A =2
for any x € M and, in particular,
(PZ(n(x))/\x - /‘¢k(n<x>>(x)'
hence
(mA)(v) = (1" M) (v) + (*dk) - v
or, equivalently,
mA =n"A+n*dk.

Therefore, 1, A = Aiff A —y*A = " dk.

v+ Ry (x) dy(kom)-v
v+R, (T(*dn(x)k) Y

(3.11)
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Now let v € Diff;, . (B) and suppose that 7, € Diff; ;,(B) is an S!-equivariant lift
of v. By Lemma 3.34 and Corollary 3.5, there exists a unique one-form g, € H*"! (A!B)
such that A -7, A = 7*p,, as in (3.9). Similarly to the trivial bundle case, we define

D’ = {v e Diff} . (B) | v has at least one S'-equivariant lift 7j,, € Diff*(M) and

J Py € Z for any y € Hl(B;Z)}. (3.12)
Y

can use Lemma 3.35 to identify the diffeomorphisms of B that have a lift to Diff;, , (M)
as

Conversely, we can also show that any other lift of v is of the form given by
Eq. (3.10):

Lemma 3.36. Foranylift M M of v € DiffS, . (B) as maps of principal S'-bundles,

T TC
B——B
there is an H -map k : B— S' such that n’ = j, .

Proof. For any x € M, j,(x) and #’(x) lie in the same fibre of M over B. Hence, we can
define a (possibly not H®) map k : B — S! such that " = fly k and it remains to check
that k is H®. To that end, for any point b € B, choose an open set b € U C B such that
for V := ! (U), we have a trivial bundle 7|y : V — U. We also have a local section
s:U — Vofn|y:V — U and can define an H*-map 6 : U — S! for any c € U by the
equation

V3s(c)=(c,0(c)) e UxS!
Further, for any c € U, we have
(7, 0 1") (s(c)) = () (s(c)) = (c,0(c) +k(c)) e U xS

Since the left hand side is in H*(U,U x S'), the right hand side is aswell, and in
particular, k|;; is an element of H*(U,S'). Hence, k € H*(B,S!). O

There are conditions under which we can guarantee the existence of an S!-equi-
variant lift 7, of v € Diff;  (B): Consider the pullback bundle

v'M ={(b,x) e BxM | v(b) = m(x)} c Bx M,

with projections p; and p, onto the first and second component, respectively, which
is defined such that

MM
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commutes. This construction yields a principal S!-bundle v*M B such that p; is
S'-equivariant. Note that by [Hat17, Prop. 3.10], the first Chern class in Hszmg(B;Z)
determines circle bundles over a given base manifold up to continuous isomorphisms.
While v*M — B and M — B have the same curvature form v't = t € H3, (B), their
first Chern classes might differ.! To determine the connection between the first Chern
class and the curvature form, let T; C H;(B;Z) denote the corresponding torsion sub-

groups of the singular homology groups and f3, the second Betti number of B, so that

Hy,(B;Z)=ZFP & T, and  H.(BZ)=ZPeT, (3.13)
then
H3: (B) = Hszmg(B'IR) by de Rham’s Theorem
= Hom]R(Hz(B;]R),]R) by the Universal Coefficient Theorem

as given on page 198 of [Hat02]
=~ H,(B;R) since H(B;R) is finite dimensional
= (HZ(B;Z) ®IR) @Tor(Hl (B;Z),IR)
by the Universal Coefficient Theorem
for homology [Hat02, Theorem 3A.3]

~H,(B;Z)®R since R is flat and hence, Tor vanishes
= (Hy(B;Z)/T,)®R by (3.13)
= (Hszmg(B;Z)/Tl)@R also by (3.13).

Hence, the curvature form determines the non-torsion component of the Chern class.
In particular, we also get the following lemma:

Lemma 3.37. The curvatureform of a principal S'-bundle uniquely determines the Chern

classiff Ty = 0, i.e. iff H- . (B;Z) has no torsion elements. O

smg

Recall that we have v € Diff  (B), so that v’ = 7 implies that v"M — B and

M — B have the same curvature form. If we assume that Hszmg(B;Z) has no torsion

elements, this uniquely determines the bundle and by [Hat17, Prop. 3.10], there is a
continuous isomorphism F,, : M — v*M

M—)V

N

Many thanks go to Thorsten Hertl for questioning my use of Hatcher’s Prop. 3. 10 for ]ust the curvature
form with the following counterexample: The two bundles §1 — S!'xRP? - RP?and §' - g0g — RRP?
for the Whitney sum of the tautological bundle g both admit a flat connection, but are not isomorphic,
because they have different Chern classes.
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of principal S'-bundles. We can smoothen F, to get a smooth bundle diffeomorphism
F,:M — v*M. In particular, F, is also S'-equivariant.

Lemma 3.38. IfHSZing(B;Z) has no torsion elements, then 7, = p, o F,, : M — M is well
defined. The map 7, is an S'-equivariant diffeomorphism which is a lift of v and satisfies
(7,).R=R.

Proof. Since

M—" MM

nl/ ln
7T

B B

commutes and both p, and F, are S!-equivariant, i. e. they commute with the flow ¢g
of R, we compute

(1) (Re) = (10):( 5o o0(3)) = 5],y (00())
= ol () = Ry, 0

Corollary 3.39. If Hszing(B;Z) has no torsion elements, then any v € Diff;,  (B) has some
lift 7, € Diffy (M) as constructed in Lemma 3.38. In this case, Eq. (3.12) simplifies to

DS — {v € Diff}, . (B) | J p, € Z for any y € H; (B;Z)}. O
14

Now we get back to discussing the structure of Diff;, ,(M). Our goal is to show
that Diff; (M) is an S!-bundle over D*. First, recall the projection g : Diffy(M) —
Diff*(B) defined in Lemma 3.12.

Lemma 3.40. The action of H*(B,S') on Diffy(M) given by Eq. (3.10) is free and transi-
tive on each fibre g' ({v}) for any v € D°(B).

Proof. The action is free: Let v € D° and 7 € g7 ({v}). Let further k € H*(B,S') and
we assume 1, = 1], i.e. q[)k(n(x))(q(x)) = 1(x) for any x € M. Locally, for any b € B,
choose an open set U C B such that b € U and for V = 77 ! (U) c M, the restriction

ntly : V — U is a local trivialization. Any x € V can be written as (b,0) € U x S! and 7
is of the form 1(x) =1 (b,0) = (171 (b,@),qz(b,e)) = (v(b),nz(b,e)). Then we have

(v(b),1%(b,0)) =1 (b,0) = n(x)
= Pr(re())(1(%))
= ¢k(b)(V(b)ﬂ72(b;9))
= (v(0),1%(b,0) + k(b)),

i.e. k(b) =0.
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The action is transitive: Let v € D° and 1,i1" € ¢! ({v}). Recall that by the def-
inition of D°, we can also fix a lift 7, € Diff; ;,(M). By Lemma 3.36, there exist
k,k’ € H*(B,S') such that 5y = (7, ) and 1" = (7], ). Hence, 7j,, = #_ and

1= ) = (- = N-ksk

with —k + k" € H*(B,S!). O
As in the trivial bundle case, we define the restriction
p = qlpiee, , () : Diff;, (M) > D’ (3.14)

and we show that the fibre over each v € D° is isomorphic to S': Every 6, € S! in-
duces the constant map k € H*(B,S'), k(b) = 6, and for every 1 € Diff;, , (M), we also
have 7, € Diff; ,(M). Conversely, the following lemma shows that any two lifts in
Diff} ) (M) of some fixed v € D only differ by a constant map.

Lemma 3.41. Let v € D° and n,11" € p™' ({v}) C Diff;, \(M). Then there is a constant
0o € S' such that ' = ny for k € H*(B,S') with k(b) = 6.

Proof. By Lemma 3.36, there is a H*-map k : B — S! such that " = ;. By Eq. (3.11),
we have
A=) A=mA
P2 4 redk
= A+ w*dk,

and get dk = 0. Hence, k is constant. ]
As a special case of Lemma 3.40, we get

Corollary 3.42. The action of S on Diff;, (M), defined by the constant action in (3.10),
is free and transitive on each fibre p~* ({v}) for any v € D*. O

Now, we can finally describe Diff;, (M) as an S!-bundle over D*.

Theorem 3.43. Assume that D° is a smooth submanifold of Diff*(B). Then there is a
smooth principal bundle

. p
st Diff} (M) — D*,
where the first map is the action of the constant map k € H*(B,S'), k(b) = 6, for 6, € S*
on Diff}) | (M) as described in Eq. (3.10), and the second map is the projection p defined in
Eq. (3.14).
In particular, Diff;) | (M) C Diff*(M) is a smooth submanifold.

Proof. By Corollary 3.42, it only remains to show that for every v, € D?, there is a
neighbourhood v € U C D° such that there is a smooth section s : ¢/ — Diff; . Hence,
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for every vy € D°, let U C D’ be a sufficiently small, contractible neighbourhood of
vg in D° and for every v € U, we now want to construct s(v) € Diff;, ) (M) such that
s(v) € p~1({v}). By Lemma 3.38, there is a smooth bundle diffeomorphism

—>
M Vo

N, A

Define a new bundle $! — E 5 ¢/ x B by E(,p) = v'"M|, = M,y for (v,b) € U x B.
Since U C D?, this bundle also has an infinite-dimensional base space.

Step 1. The bundle pr : E — U x B is diffeomorphic to the pullback bundle
(idyy, 10) : U x vgM — U x B.

Proof of Step 1. Since U is contractible, U/ x B is homotopy equivalent to {vy} x B.
Let f; : U x B — U x B be a homotopy from fy : Y x B — U x B, (v,b) — (vq,b) to
fi = idyxp. Using Theorem 3.44 below for the principal S!-bundle E — U x B yields a
(continuous) isomorphism ¥ : ffE — f;'E over U x B, which we can then smoothen to
a diffeomorphism ¥ such that

N

UxB

1|t~

(3.15)

commutes. Since f; = idyp, the bundle fE — U x B is just the original bundle pr :
E — U x B. For fjE, we recall the definition of the pullback bundle

foE= {(v,b,e) €UxBXE | fo(v,b) = pr(e)}
Since pr(e) = fo(v,b) = (v, b) is equivalent to e € E(,, ) = vyM|y, the bundle fiE —

UxBis given by (idy, 7o) : UxvgM — UxB. Hence, the diffeomorphism ¥ in Eq. (3.15)
is between

feE=UxVv;M E=fE

(m %

U xB

Step 2. There is a smooth map §: U — Diff}, 4, (M) such that §(v) isaliftof v € U,
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Proof of Step 2. First define the bundle diffeomorphism S := Xo(id;, Fg) : UxM —
E, so that

idy,F
Ux M) e — 2 S E

UxB

commutes. For every (v,x) € Y x M, we have

S(v,x) € Eltidym)(vx) = Elvn(x)) = V' Mlr(x) = Mly (e (x))-

Therefore, the diffeomorphism S(v,-)M — M fits into the commuting diagram
S(v,)
— M,

Af \

i.e. S(v,-) is a lift of v € D°. In particular, S(v,-) automatically preserves w and dA

4

and we can define
§:D° — DiffS, 4, (M)

v S(v,).

Step 3. There is a smooth map k : ¢/ — H*(B,S'), v > k, such that the shifted
diffeomorphism 3(v);, preserves A, i.e. §(v), € Diff; | (M).

Proof of Step 3. Since §(v) is a lift of v € D°, there is k, € H*(B,S') such that
§(v), €Diff;, ,(M). The map k, is unique up to constants in S', so we want to normal-
ize this choice: Fix by € B and 0 € S! (independent of v;). Then define k, € H*(B,S!)
by

ky(b) = ]zv(b>_l~cv(b0)l (3.16)

so that k, (bg) = 0.

For this step, it remains to show that k : &/ — H*(B,S!), v  k,, is smooth. To
that end, define p, € H* ' (A'B) by n*p, = A —3§(v)*A. Since v > 3(v) is smooth,
also v - p,, is smooth. The map k, € H*(B,S') as defined in Eq. (3.16) is the unique
primitive of p, (i.e. we have p, = dk,) satisfying k, (by) = 0 and we want to prove
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that p, - k, is smooth. To that end, fix k,, such that dk,, = p,, and k, (by) = 0,
define the Hilbert spaces

K :={le H'(B,R) | (bo) = 0},

A= {a e H1(AB) | J- a =0 for any y € H; (B,Z)},
V4

and let

f

T,

K~ H(B,S') — %A

l———ky, + 11— f(l):=d(k,, +1)

Then f is a continuous linear operator that is also bijective:

For surjectivity, let a € A, i.e. @ € H ' (A!B) such that I a = 0 for any y €
Y
H,(B;Z). Then there is a unique map a € H°(B,S') such that a = da and a(bg) = 0.

Since TkVOHS(B,Sl) = H*(B,R), we can find a function ! € H°(B,R) such that a =
ky, + 1, and can compute

I(bo) = a(bg) —ky,(bg) =0-0=0,

ie.lek.

For injectivity, let I;,1, € K such that f(I;) = f(I,), i.e. d(k,, + 1) = d(k,, +15).
This implies dI; = d/, and therefore, /; is equal to I, up to some constant in R. Since
I1(bg) = 0 =1,(by), this constant has to be 0 and we get I; = I,.

Now we can apply the Open Mapping Theorem (see Theorem 3.45 below), which
yields that the inverse operator

fliAsK

is continuous linear, and therefore smooth. Since p, € A and f~!(p,) = k,, this im-
plies that k : 4/ — H*(B,S!), v > k, is smooth.

Step 4. For every vq € D° with (contractible) neighbourhood vy € U C D?, there is
a smooth section s : U — Diff; ) (M) of the bundle p : Diff; (M) — D".

Proof of Step 4. Define

s:U — DIff’, | (M)

v 5V, -

Since both §: U - Diff; (M) and k: U — H*(B,S') are smooth, s is also smooth.
This completes the proof. O

In the previous proof, we have used the two following theorems:
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Definition ([Hus94]|, Definitions 9.1 and 9.2). (a) An open covering {U,};c; of a to-
pological space B is numerable provided there exists a (locally finite) partition
of unity {u;};¢; such that ui‘l ((0,1]) c U; for each i € I.

(b) A principal G-bundle £ : X — B is numerable provided there is a numerable
cover {U;}¢ of B such that &|y, is trivial for each i € I.

In particular, a locally trivial principal G-bundle over a paracompact space is
numerable.

Theorem 3.44 ([Hus94], Theorem 9.9). Let G be a group and & : X — B a numerable
principal G-bundle over B. Let f; : B" — B be a homotopy. Then the principal G-bundles
foX = B’ and f{ X — B’ are isomorphic over B’.

Theorem 3.45 (Open Mapping Theorem, see e.g. [Werll], Theorem IV.3.3 and Ko-
rollar 1V.3.4). Let X and Y be Banach spaces and assume that f : X — Y a bijective
continuous linear operator. Then the inverse ' : Y — X is also continuous.

Note that if M = B x S! is a trivial bundle with stable Hamiltonian structure
(w,A =dO+1"y), we can add a constant 8y € S! to k,, (depending on the choice of F
and the base point by) in the proof of Theorem 3.43 such that the lift of v coincides
with the lift of v, in the proof of Lemma 3.23. By adding this constant 6, to any other
k, (i.e. we normalize to k,(by) = 6y), the two sections U — Diff; , (B x S1) in the
proofs of Lemma 3.23 and Theorem 3.43 coincide. In particular, Lemma 3.27 also
follows from Theorem 3.43.
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In this chapter, we discuss the principal circle bundle S! — M 5 st x [-1,1] over
the cylinder B := S' x [-1,1] in detail. Since H*(B) = {0}, M is a trivial circle bundle,
i.e. M = BxS!. Denote by € R/Z = S' the S'-bundle coordinate in the trivial
bundle M = Bx S! = (§! x [-1,1]) x S! and let (@,z) € R/Z x [-1,1] denote the
coordinates on the cylinder B = S! x [~1,1]. In Sections 4.1 and 4.2, which only deal
with the cylinder itself, we let (.,.) be the standard metric in which (8(P,8Z) is an
orthonormal basis. The corresponding Riemannian area form is o := dp A dz. We
further let h: B—> R, (¢,z) > z and define smooth forms on B by

2
W= —%d(p, t:=du=zde Adz=h(¢p,z)o.

In Sections 4.3 and 4.4, we consider the stable Hamiltonian structure on M given by
w:=1'c, A:=dO0+7npu.

This notation matches the one in the previous chapters. In particular, we have
dA =d(d0 + 'u) = 'dp = ',

as before.

We will show for both (B,0,7) and (M, w, A) that the structure-preserving diffeo-
morphisms are smooth submanifolds of the full diffeomorphism groups and that the
projections of the tangent bundles induced by the Riemannian metrics on B and M,
resp., are smooth bundle maps. We will also explicitly compute all solutions to the
Euler equation using variational principles as in Section 2.3, which only yields trivial
solutions in those cases.

In Sections 4.5 and 4.6, we generalize this to an arbitrary metric on the cylinder
B. We will show that we can reduce this case to a Riemannian area form given by o, :=
a(z)o for some smooth function a € C*°([-1,1],R). We use 1, := ho, with primitive

Ho=-my(z)de for m,(z) = Ji Ca(C)dcC.
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That is, we have

d”a = d(_ma d(p)
om,

0z
=za(z)dp Adz

dzAde

=1,

Note that this choice for y, differs from the standard metric, where we start integrat-
ing at 0 instead of —1. The stable Hamiltonian structure on the bundle B x S! is then

w, =10, and A, =d0+ 1y,

In Section 4.10, we also generalize the standard situation to

w:=10, A=dO0+1j
for some ji € Q!(B) such that 7 := dji = ho for any smooth submersion /1: B — [~1,1]

which maps S! x {+1} to +1, respectively.

41 B=S'x[-1,1], standard metric

Our goal in this section is to show:

Theorem 4.1. (a) Diff’, (S’ x[-1,1]) = Difffj’h(S1 x [-1,1]) is a smooth Hilbert sub-
manifold of Diff* (S x [-1,1]).

(b) The orthogonal projection
P: TDIHS(B)llef:TT — TDIH:(SJ,T(B>

induced by the standard metric on B is a smooth bundle map.

In the first subsection, we will prove Theorem 4.1(a). In Section 4.1.2, we com-
pute local bundle trivializations for TDiff*(S! x [-1,1]) following the steps in Sec-
tion 2.1. To verify Theorem 4.1(b), we will compute the orthogonal projection of the
tangent bundle

P: TDIff (8" x [-1,1])lpite,, (stx[-1,1)) = TDIff; (S x[-1,1])
using the local bundle trivializations of Section 4.1.2.
4.1.1 Smooth submanifold Diff;, . (B) c Diff*(B)

First note that by definition, Diff*(S! x [-1,1]) only consists of the connected compo-
nent containing the identity map. Since any diffeomorphism of S! x [-1,1] preserves
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its boundary S! x {+1}, any element of Diff*(S! x [-1,1]) preserves both S! x {1} and
Stx{-1}.

Furthermore, the boundary 9B is totally geodesic in B = S! x[~1,1]. This implies
that Diff*(S' x[~1,1]) is a smooth manifold with an exponential function as described
in Section 2.4.

We now start with Diffff’h(S1 x [-1,1]) and want to show that it is a smooth sub-
manifold of Diff* (S!x[~1,1]). A first idea might be to use that the volume-preserving
diffeomorphisms DiffS (S x[~1,1]) ¢ Diff (S x[~1,1]) are a smooth submanifold (see
Theorem 2.8) so that we only have to show that Diffsg'h(S1 x[-1,1]) c Diffs (S'x[-1,1])
is also a smooth submanifold, e. g. by using the implicit function theorem for Hilbert
manifolds.

Unfortunately, this approach does not work. If we define

F: DiffS (S! x [-1,1]) = H*(S' x [-1,1],R)
1

v=>wLv) s vh=1?

to get Difffj'h(S1 x [-1,1]) = F7Y(h) = F71(z), then the tangent space at id € F~!(z) is
given by

TDiff; (8" x [-1,1]) = {v € ¥°(S" x [-1,1]) | div, v = 0}

{v =v'9,+v20, € X°(S x [-1,1]) ‘

w
dp = dz

and the tangent map by

TigF : TgDiff (8! x [-1,1]) = T,H*(S' x[-1,1],R) = H*(S! x [-1,1],R)

v= vla¢ +v%9, > v

We would now have to show that T,4F is surjective. To that end, let ¢ € H*(S! x
[-1,1],R) and we need to find f € H*(S' x [-1,1],R) such that v := fd,, + g0, sat-
of | 9¢

isfies div,v = 0, i.e. that 70 + o 0. This implies that f has to be of the form

fe(p,2) = —J:P %(w,z)dl,b +c(2).

as—H

Since we cannot control we cannot guarantee the existence of a function ¢(z) :

ozst1’
[-1,1] — R such hat f.(¢,z) is of Sobolev class s. This implies that for any such map
f, the vector field fd,, + gd, is generally not an element of T,4DiffS (S x [-1,1]) and

hence, Ti4F is not necessarily surjective.
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Changing the function F for the implicit function theorem runs into the same
problem: If we copy the proof for Theorem 2.8 and define

2

F:Diff’ (S! x[-1,1]) = zo + H*(S! x [-1,1],R)0o
= (vLv?) s v (1) = v*(20) = V70,

v
then Diff} . (S! x [-1,1]) = F~'(7). The map F is well defined, i.e. the image of F
is really contained in zo + H*(B,R)o because any map v*(¢,z) can be written as
z+ (v? —z) with v> —z € H%(B,R). At the identity, the tangent map is given by
T4F : TgDiffs (S' x[-1,1]) = H*(S' x [-1,1],R) o
v = vla(p + 029, - L, (1),

for any v satifying div, (v) = 0. Computing this map yields
L,(t) =Ly(z0)

= (Lyz)o +2zL,0

= (1,dz)o + zdiv(v)o

:7}20'.

To show that T,4F is surjective, we let go € H*(S! x [-1,1],R)0. Again, finding f €
H*(S! x [-1,1],R) such that v := fd, + gd; satisfies div, (v) = 0 has the exact same
problem as in the previous approach.

Instead, we will show that Diffir,h(S1 x [-1,1]) c Diff (S x [-1,1]) is a smooth
submanifold by using the implicit function theorem for the inclusion

Diff; (S! x [-1,1]) c Diff*(S! x [-1,1])

and then explicitly compute a local description of Difffj,h(s1 x [-1,1]) in Diff; (S' x
[-1,1]).

Proposition 4.2.
Diff} (S' x [-1,1]) c Diff* (! x [-1,1])
is a smooth submanifold.

Proof. We let Subm(S!x[-1,1],IR) denote the C!-submersions, define the H*-submer-
sions as

Subm®(S! x[-1,1],R) := Subm(S! x [-1,1],R) N H*(S! x [-1,1],R),
and let

f = {f (S Subms(sl X [_1,1],R) |f|Sl><{i1} = i]_}
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to be the set of H®-submersions f : S' x [-1,1] — R such that flsixz1y = =1. Because
we only consider submersions, any such f satisfies im(f) = [-1,1] and so,

F ={f €Subm®(S' x [-1,1],[-1,1]) | flsix(e1) = =1}.
We want to use the implicit function theorem for

F:Diff'(S! x [-1,1]) - F c H5(S! x[-1,1],R)
v=Yep,2),v}(p,2) > vh=hov=1v?(p,z). (4.1)

Hence, we first have to show that F is a smooth submanifold of H*(S! x [-1,1],R):
1 1

Since s > Edim(M) +1> Edim(B) +1, i.e. any element of H*(S' x [-1,1],R) is also

differentiable, this is an open subset of

A= {f e H (" x[-L1LR) | flsixqer) = 1}
We further define
Bi={ge H'(S' x [1,1,R) | glsixs1) = 0},

which is a closed subspace of the Hilbert space H*(S! x [-1,1],R). In particular, B is
also a smooth Hilbert submanifold of the Hilbert manifold HS(S1 x[-1,1],R). For any
f € A, we have A = f + B. We now fix f € A. Since

H(S'x[-1,1],R) = B& B+ — H*(S! x[-1,1],R)
gte —f+g+g
is a diffeomorphism which maps B & 0 onto A, A is also a smooth submanifold of
H%(S' x[-1,1],R). Hence, F is a smooth submanifold of H*(S! x[-1,1],RR).
Since Diff(S! x [-1,1]) = F~!(h) for Eq. (4.1), it only remains to show that / is
a regular value of F, i.e. that all preimages v of h under F are regular points. To that

end, we need to show that for any preimage v of h under F, T, F is surjective. We first
compute

TgDiff* (' x [-1,1]) = {x = X'9,, + X?9, e ¥*(S" x [-1,1]) |
X is tangent to st x{J_rl}}
= {X=X'9,+X%0, € ¥*(S" x[-1,1]) |
X s1x(e1) = 0}
:{X = (X1 X?) | XPlsixer) = 0}-
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Recall that we can describe the tangent spaces of Diff*(S! x [-1,1]) by the isomor-
phisms
TaDiff’ (S' x [-1,1]) > T,Diff (' x [-1,1]) = TDiff (S' x [-1,1]) o v
X—Xowv.
Also,
ThwF = {g € H*(S' x [-1,1,R) | glsix(sr) = 0} =B

and
T,F : T,Difff (S! x [-1,1]) - T, F

Xov:(Xla(p—i—Xzaz)OVHXzov.

Now let v € Diff*(S! x[~1,1]) be some preimage of h under F. For any g € T;,F, we can
define X := g(d,0v) € T, Diff*(S!x[-1,1]). Then T,,F(X) = g and T, F is surjective. [

Proposition 4.3. Diff’ ,(S' x[-1,1]) c Diff} (S' x [-1,1]) is a smooth submanifold.

Remark. Again, using the implicit function theorem as in the proof of Theorem 2.8
does not work. Recall the closed affine subspace of H*™' (A"),

o] =0+ dH* (A" )

from the proof of Theorem 2.8. Let [0]5™' c [0]*™! denote the subset we can use for
the image of

i Diffy (1 x [~1,1]) — [o];"

vi—vio.

We want to show that Diffy, | (S'x[-1,1]) = ;' (o) is a smooth submanifold, i. e. that
the tangent map

T, ¢y, : T,Diff}, (S' x [-1,1]) = Ty [0]5!

Vio V*('CVOV‘1 ‘7)

is surjective for any v € ;' (o). At the identity, any X € T,4Diff; (S' x [-1,1]) can be
written as the vector field X = X! d, and we can compute

Tiapn(X) = Lxo =dixo
= d([Xla(ﬂ d(p A dZ)
=d(x'dz).
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Now let da € T,[0];!, i.e. a = fdz + gdg for some f,g € H°(S' x [-1,1],R). If we

chose [0];7! = [0]°"!, then we would have to let

0
1_ ¢ 8
X _f Ll aZd(P'

which generally is not an H*-map. If we want to ensure that T;q1;, is surjective, we
would have to restrict to

[o)it =0 +dlae H'(A") |a = f(p,z)dz},

since then we can let X! = f € H¥(S! x [-1,1],R). Unfortunately, this space is equal
to

05! =0 +d{a|a=f(pz)dzeH (A))
f € H'(B,R)}

a<p dp Adz|f € H'(B,R)}

0
but {é | fe HS(B,]R)} c H*1(B,R) is not a closed Hilbert space.

Proof of Proposition 4.3. Let v € Diff; (S! x [-1,1]), i.e. v is of the form v = (v!,z).
For v to be an element of Diffff’h(s1 x [-1,1]), it has to also satisfy v*o = o, which is
equivalent to

a

d(p/\dz:a;v*a:dvl/\dz: 70

dp Adz, (4.2)
1

i.e. 90 = 1. Since being a smooth submanifold is a local condition, we first consider

a small neighourhood U around the identity id € Diff; (S! x [-1,1]). We can uniquely

write any v € U as v(@,z) = (¢ + f (9,2),z) for some small f € H*(S! x[-1,1],R) and

U is isomorphic to some neighbourhood V of 0 in H*(S! x [-1,1],R). Then,

veUNDIff ,(S'x[-1,1]) & ——=1 o ===0,

d
i.e. f € H*(|-1,1],R) only depends on z. Hence, U = {f eV | é = 0}. Since the space

)
{f ev | —; = 0} = ker(%) <V is a closed Hilbert subspace, Diff} ,(S' x [-1,1]) is
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a smooth Hilbert submanifold of Diff; (S' x [~1,1]) close to the identiy with tangent
space

TiDiff;, , (Bx S') = iU

= To{f e H*(B,R) | z—é =0}
={f e H'(B,R) g—qf; =o}.

By right translation, the same local situation occurs at any other v € Diffffh(S1 X

[-1,1]). Therefore
Diff’ (S x [-1,1]) c Diff; (S' x [-1,1])
is a smooth submanifold. O

Eq. (4.2) also implies that any v =€ Difffj'h(S1 x [-1,1]) can be written as

v(p,z) = (¢ +f(2),2)
for some f € H*(B,R).

Corollary 4.4 (=Theorem 4.1(a)). Propositions 4.2 and 4.3 show that
Diff’ (5" x [-1,1]) c Diff’ (S' x [-1,1])

is a smooth submanifold. O]

Even though we have not proved that Difffjlh(S1 x [-1,1]) c Diffs (S x [-1,1]) is
a smooth submanifold, it now follows from Corollary 4.4 and the next lemma.

Lemma 4.5 ([EP13], Lemma 2.1). Let A and B be smooth Hilbert submanifolds of some
smooth Hilbert manifold C. If A C B is a subset, then A is a smooth Hilbert submanifold of
B.

Since

smth submfd smth submfd
(Proposition 4.3) (Proposition 4.2)

Diff} ; (S! x [-1,1]) ———— Diffy (8! x [-1,1]) ———— Diff* (s x [-1,1])

\ %submfd
subse (Theorem 2.8)

DiffS (S! x [-1,1])

it follows that also

Diff; (5! x [-1,1])=— Diff;

submfd o
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Since we have shown that Difffjlh(s1 x [-1,1]) c Diff*(S! x [-1,1]) is a smooth
submanifold, we can now continue with the tangent bundle maps. Recall that we
have to show that the bundle projection

P: TDiff' (8" x [-1,1])lpige,, (stx[-1,17) = TDIff; , (S x[-1,1]),
which is the orthogonal projection in each tangent space
P, : T,Diff* (' x [-1,1]) > T, Diff} ,(S' x [-1,1]),

is smooth in the base point v € Difffjlh(S1 x[-1,1]). To check smoothness, we will need
to compute P in local charts of TDiff*(S! x [-1,1]).

4.1.2 Charts for TDiff’(B) and its submanifolds
Adapting Corollary 2.7 to our situation yields the local bundle trivializations:
@ : T,Diff* (S! x [-1,1]) x T, Diff (S' x [-1,1]) — TDiff*(S! x [-1,1])
(X Y) 1 (exp, X, (V2exp(,.0) (1))
Recall that

T,Diff (S! x [-1,1]) = TuDiff (! x [-1,1]) o v = X¥*(S! x [-1,1]) o v,

hence d,,0v and d,ov generate T, Diff* (S!x[-1,1]). Write X = X! (dpov) +X2(d,0v).

Since (d, d;) is an orthonormal basis, the map exp, X maps (¢@,z) to

(exp, X)(@,2) = exp, () X (9,2)
=v(,2) + (X' (p,2), X*(9,2))
= (vM(p,2) + X (9,2), V2(@,2) + X*(,2))
= (v+X)(p,2).

We now compute VeXP (¢, x(¢,2))- L€t P = (@,2) € S'x[-1,1] and x € T,,(S" x
[-1,1]),i.e. (p,x) € T(S! x [~1,1]). Recall the definition in Eq. (2.2),

Vaexp, ) Tp(S! x[-1,1]) - Texpp(x)(sl x [-1,1])
Vaexp, ) = (Tx eXp)|T(’;‘X)T(Sl><[—1,1}) o (K|T(’;lx)T(Slx[—l,1}))_l’

(4.3)

Following [Dom62], let ¢,z be the coordinates on S! x [-1,1] and let 7 : T(S! x
[1,1]) = S! x [~1,1] denote the canonical projection. Then

v1!:(po’[, v2i=zo1, v3:=d(p, vti=dz
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d

are coordinates on T(S! x [~1,1]) and 57 fori=1,...,41s a basis of TT(S! x[-1,1]).
v

Since

T2 T(S'x [-1,1]) = ker(Telr, , 7(six(-11))

4
we let A Za € T, T(S' x [-1,1]), f(¢,2) € C*(S! x [-1,1],R) and we com-

pute

(To)(A)(f) =A(for)

_( 881 +a —)(foT)
since (f o7)(v!,v2,v3,0%) = f(v!,v?)

i vl 29f ov?

T T T 9T
:alafof+a2 f oT.
dp
This yields
Jd 4
T(’;,x)T(Slx[—l,l]):ker(TT|T<w>T(51X[_MD) span{a 3 81}4}

To compute the connection map K, first note that since our metric is constant
on St x [-1,1], all Christoffel symbols vanish. Eq. (11) in [Dom62] states for A =

Za —— € T(pyT(S' x[-1,1])

0 J
K(p’x)(A) = 38 +a4£

Restricting K, ,) to T(I; X)T(Sl x[-1,1]) = span{ 883 884} yields an isomorphism

T(S'x[-1,1]) > T,M

dv3 ovt dp 0z

Kip): T,

with inverse

1<(—1 )i M — T(”p,x)T(Sl x [-1,1]

8 oz " 91/4 '
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Finally, we compute
(Txexpp)|T(vp’x)T(51X[,1’1]) : T(v’ )T(Sl x[-1,1]) — Texpp(x)sl x [-1,1].

0 0

3 4 v
TO that end, let a % + a m € T(P,X)
Then

0
+a* =L o (v! + 03,02 +0v4).

Jz
of of
— 3 4
=a 90 oexp,+a e oexp,

and hence

0 d 0 0
3 4 _ 3 4
(Txexpp)(a 53 +a _81/4) =a 70 oexp,+a 5 0exp).

Combining our results for K(p’x) and T, exp,, yields for Eq. (4.3)

Vs, exp, : Tv(q)’z)sl x[-1,1] - TeXpV(q,,Z)X(v(q),z))Sl x[-1,1]

v18(p +v%9, > v18<p +v29,,

where the tangent vectors d,, and d, are evaluated at the respective base points v(¢, z)
and exp, () X(v(¢,2)) = (v + X)(¢@,z). Finally, the local bundle trivializations are
given by

O(X,Y)=(v+X, Y'9,0(v+X)+Y?9,0(v+X)). (4.4)
Theorem 4.6. (a) For any v € Diff} (B), the restriction of @ to a map
@ : T,Diff; (B) x T, Diff*(B) — TDiff'(B)
is a local bundle trivialization for a neighbourhood of v in TDiff* (B)|pigs; ()-
(b) Similarly, for any v € Diff;,  (B), the restriction of @ to a map
@ : T,Diff’, ,(B) x T, Diff, (B) — TDiff*(B)
is a local bundle trivialization for a neighbourhood of v in TDiffZ(B)lDiff;,T(B).

Proof. For part (a), we have to show

T(S! x [-1,1]), f(@,2) € C*(S! x [-1,1],R).
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¢ that

im (P71, pisg; (B)xT, Dife (8)) C TDIff* (B) b, ()

i.e. that for (X,Y) € T,,Diffz x T, Diff*(B), we get D(X,Y) € TDiffs<B)|Diff;(B),
where

O(X,Y)=(v+X, Y'9y0(v+X)+ Y20, 0(v+X)),

* and that for any ¥ € Diff} (B) and Z € T;Diff’(B), there is (X,Y) € T, Diff; (B) x
T, Diff°(B) such that Z = (X, Y).

For the first step, since Y18<p o(v+X)+Y?d,0(v+ X) € T, xDiff (B), we only
need to check that v + X e Diff; (B). To that end, we compute

(v+X)z=v2+X>=z+0=z
since X € T, Diff} (B).

For the second step, let ¥ € Diff; (B) and Z = Z! (dpo¥) +7?(d,07) € T;Diff*(B).
The map

(p,2) ~ 7' (@,2) - v (p,2)

then defines an element of H*(S! x [-1,1],S!) and we choose a lift X! € H*(S! x
[-1,1],R). We let X := X' (d,, o v) € T, Diff;,(B), such that

(v+X)(g2) =

and we further let Y := Z'(d,, 0 v) + Z*(9, 0 v) € T, Diff*(B). Then we get

O(X,Y)=(v+X, Z'9gy0 (v+X)+ 20,0 (v+X))
= (17, Zla(poﬁ—l—Z2azo17)
= (7, 2).
A similar computation proves part (b). O

Remark. The previous theorem is true because of the specific form of ® on Diff’(B).
In general, for a submanifold D c Diff*(B) there is no reason for exp, X with v € D,
X € T, D to define an element of D.
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4.1.3 Smooth orthogonal bundle projection

Similarly to our Section 4.1.1 on the submanifolds, we split the map
P : TDiff’ (B)Ips ,(p) — TDiff; - (B)

into the two projections P = P? o P! with
P} : T, Diff*(S' x [-1,1]) — T, Diff; (S x [-1,1])

at v € Diff} (S' x [-1,1]) and
P} : T,Diff; (S' x [-1,1]) - T,Diff] ,(S' x [-1,1])

atve Diff‘:;’h(S1 x [-1,1]) = Diff’, . (S' x [-1,1]). We first compute P! at the identity
id: Let

X = (Xx',X?) =X"'9, + X?9, € TyDiff’ (' x [-1,1]).
Then we must have P} (X) € T,gDiff} (S' x [-1,1]), i. e. we can write

Py(X) = pig(X)9,

1

for some operator py such that pl;(X) : S* x [-1,1] — R and for any vector field
Y18(p € T,gDiff; (S' x [-1,1]), we need to have

0= (PLy(X)-X, Y'd,)
= 1]<Pi(1t1(X)_X’ Y'9p) () dp Adz
= 1](pild(X)8(P—X18(p—X28Z, Y'94)(p,2) dp Adz

C

C

r

_ ((pild(X)—XI)Y1(8¢,9¢>—X2Y1(az,aq,>)d(p/\dz

JS1x[-1,1] —_ —_—
=1 =0
-
— (pig(X)-x')Y"dgp A daz.

JSIx[-1,1]

This is solved by

Pild(X) = X!
and hence,

Py : TiaDiff* (' x [-1,1]) I (s1x[-1,11) = TiaDiff;, (8" x [-1,1])
(x',X*)=X'9,+X%9, > X',
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Since
T,Diff* (S! x [-1,1]) = TigDiff (S x[-1,1]) o v,
we can similarly compute the projection P!. Let
X =(X!',X*) =X"(dy0v)+X*(d,0v) € T,Diff (S x [-1,1]),

then P, (X) € T, Diff;,(S' x [-1,1]), i. e. we can write P, (X) = p,(X)d,, o v and for any
y! 8(p o v, we need to have

0= (PH(X)-X, Y'9,0v)

= (P} (X) =X, Y'9y0v)y(pdp Adz

STx[-1,1]

= i 1]<p11,(X)9(P ov—Xla(pov—Xzazov, Yla(pov%,(qo’z)

(@

(@

dp Adz

= Yl((p}/(X)—Xl)(a(pov,a(pov>v(¢,z)

=(dy,dp)ov=1

-X%(d,0 v,dg0 v),,((p,z)) dp Adz

=(9,,9,)ov=0
:f Y1(pL(X)-X")de A dz.
Six[-1,1]
This is solved by
py(X') =X,
which implies
Py (X! (g0 v) +X?(d;0v)) = X' (dpov). (4.5)

To show that P! is smooth in the base point, we will use the local trivializations
TDiff (S! x [~1,1]) as computed in Section 4.1.2, more specifically Eq. (4.4).

Proposition 4.7. P! : TDiff*(S! x (=1, 1])Ipite (51x[-1,1]) = TDiff} (S' x [-1,1]) induced
by Eq. (4.5) is a smooth bundle map, i.e. P! is smooth in the base point.

Proof. Our trivializations for TDiff*(S! x [-1, 1])Ipife; (s1x[-1,1]) are given by

@ : T, Diff; (S* x [-1,1]) x T, Diff ($* x [-1,1])
— TDiff' (' x [-1, 1])Ipige; (s1x[-1,1))
(X,Y)=Y'9,0v+Y?0,0v) > (v+X, Y'9p0 (v +X) + Y20, 0 (v +X)).
(4.4 revisited)
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In a neighbourhood around any v € Diff;,(S' x [-1,1]), P! therefore takes the form

T, Diff; (S x [-1,1]) x T, Diff* (S' x [-1,1])
— T,Diff} (S' x [-1,1]) x T, Diff* (S x [-1,1])
(X,Y) = (@ loPlo®)(X,Y).

We get for Y:Ylawov%—Yzazov

(@ toPlo®)(X,Y) =07 (PHD(X,Y)))
= (P (v+ X, Y!9po0 (v+X)+ Y29, 0 (v+X)))
= (v+ X, Y!9y0(v+X))
= (X, Y'9,0v).

This map is smooth in the base point X and hence, P! is a smooth bundle map. O]

Our next goal is to show that P? is also a smooth bundle map. At the identity, Plé
is a map of the form

P} : TDiff}, (S x [-1,1]) > TDiff} ,,(S' x [-1,1])
X =X'9, - p4(X)d,

for some smooth map p, such that pZ,(X) only depends on z. For any Y = Y (2)d, €
TidDiffth(Sl x [-1,1]), we must have

0= (PA(X)-X, V)
= (Pi(zi(X)—X, Y)yde Adz
Sx[-1,1]

C

= (p(X)dy, - X'y, Y'0,)de Adz

C
[99)
X

|
—_
—

= (pizd(X)—Xl)Yl(a(p,a(p)dqo/\dz
———
=1

_( YI(J:(pizd(X)—Xl)dgo)dz

J-1

C
%}
=
X
|
—_
—_

1
= Yl(pfd(X) —J. X! d@)dz
0

J-1

1
= pi(X) :J; xtde

Let now v € Diff’ ,(S' x [~1,1]). Since v preserves the area form o, both the metric
and orthogonal projection are right invariant and we can extend Plé to

P} : T, Diff; (S' x [-1,1]) — T, Diff; (S x [-1,1])
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by

P}(X) = (TR, 0 PjoTR,1)(X)
= TR, (P3(TR,-(X)))
=TR,(P5(Xov™h))
=TR,(p}(Xov™")d,)
:pid(Xov ) v (dgyov).

Since the map pizd(X ov71) only depends on z and v preserves z, we can compute

pizd(Xov_l) oV Zpizd(Xov_l)
pizd(X1 oyt 8(p)

1
j X'ov7ld
0

1

1

We know that v(¢,z) (v ) hence for fixed z, we can write v, (@) = (vz ((p),z)
)=

and we also have v, ! (¢ (( ) L), ) Hence, we can change coordinates to

We define an operator
p?:H%(S'x[-1,1],R) — H*([-1,1],R)
X' pizd(Xlﬁq,) = jol X'de.
Then we can rewrite the previous computation as
p*(X! o) =p*(X")
and we finally get for X = X! (dyp ov) that
PI(X) =p*(X')(dg0v)
for any v € Difffr’h(S1 x [-1,1]).

Proposition 4.8. P? is a smooth bundle map, i. e. it is smooth in the base point.
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Proof. Again using the trivializations

@ : T,Diff} ,(S' x [-1,1]) x T, Diff;, (' x [-1,1])
— TDiff; (! x [-1,1])Ipige

o,h

(S'x[-1,1])

(X, Y=Y'9,0v) > |v+X, Y'd,0(v+X)|,

we can write

T,Diff} (S x [-1,1]) x T, Diff}, (S x [-1,1])
— T,Diff, ,(S' x [-1,1]) x T, Diff; (S* x [-1,1])
(X,Y) > (@ LoP?o®)(X,Y).

We compute for Y = Y1 (dpov)

(@71 o P20®)(X,Y) =71 (P3(P(X,Y)))
= (PY(v+X, Y'9,0(v+X)))
=0 (v+X, P2 x(Y'9,0(v+X)))
=0 (v+X,p?(Y") 9o (v+ X))
= (X,p2(Y1)8(p ov).

Since the map
2(y1
(X,Y) = p“(Y')dyov
is constant in X, it is in particular also smooth in X. O

Corollary 4.9. The previous two propositions show that

P = P20 P! : TDIff' (S' x [-1,1])lpie , (st x[-1,17) = TDIff;, (S x[-1,1])
is a smooth bundle projection. O
4.2 Euler equation on Diff;  (B)

Recall the result of the variation of energy in Section 2.3: Let v; € Tichiffi,’T(S1 X
[~1,1]) be a time-dependent vector field, i. e. v; is of the form v, = v,(z)d,,. If

T
0= j J-(wt,v't +V,,v) o dt (2.9 rev.)
0o JB



s!-BUNDLES OVER THE CYLINDER b = s! x [-1,1]

for any time-dependent w; = w;(z)d,, € T,4Diff}, . (S' x[~1,1]), then v, is a solution to
the Euler equation. We compute

Vvtvt = vv,(z)(?(pvt (Z) a(p

= (=¥, 0 (2)
= v4(2)((9v4(2)) I +:(2) V3,9,

=0 =0 since all the metric coefficients are constant
=0

Then

(Wi, Uy + Vo, vp) = (wy, v + 0)
= <wt(z)8(plvt(z)a(p>
= w;(2)7;(z) <8(pza(p>

=1
= wy(2)04(2). (4.6)

Equation (2.9) becomes
T
0 (2£9)f j (wy, Vs + Vy,v) vol dt
0 JMm

T
(48) J f wy(2)3,(z) vol dt
0 M

for any w;(z) € H*([-1,1],R). This is equivalent to
T)t(Z) - 0.

Proposition 4.10. The previous computation shows that the only solutions to the Euler
equation on S x [-1,1] preserving o and t are all stationary vector fields of the form
v, =v =1v(z)d,. O

The corresponding path v, in Diff;, . (B) then satisfies
Vi =vr0vy = (v(2)dy) o vy = v4(2)(dg 0 V1)
since v; preserves z. Hence,
vi(@,2) = (¢ + tv,(2), 2).

and geodesics on Diff;, ,(B) are given by straight lines.
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43 M = BxS!', standard metric

Let M = (S' x[-1,1]) x S' 55 B = S' x [-1,1] be the trivial S'-bundle with stable
2
Hamiltonian structure w = "o and A = d6 + 7’y for y = —%d(p. The Reeb vector

field is given by R = dy. We will first consider the standard metric (-,-}? on B, in which
(dy,dz) is an orthonormal basis as in Section 4.1. Then we get two-forms 0 = dp Adz
and 7 = zo = zdp A dz = dy on B. We further consider the metric on M = B x §!
defined by

o kerA L R,i.e.kerA 1 dg,
* [RI=1,

* and for any v,w € ker A, we have
— B
W, w), = (mv,n*w)n(x).
Using this metric, the Riemannian volume form on M is given by

vol=wAA=dpAdzAdb.

We will also follow the same steps as in Section 4.1: In Section 4.3.1, we first
show that Diff;, , (M) c Diff*(M) is a smooth submanifold (which is independent of

the chosen metric). In Section 4.3.2, we compute local charts for the tangent bundle.

In Section 4.3.3, we finally prove for this specific metric, that the induced projection
on each tangent space of Diff; (M) defines a smooth bundle map.

4.3.1 Smooth submanifold Diff; ,(M) C Diff*(M)

Our first goal is to use Theorem 3.29 to prove
Theorem 4.11. Diff; |(M) C Diff’(M) is a smooth submanifold.

Recall that
Diff}, | (M) =D°x S'
for
D = {v e Diff;, . (B) | f u—v'ueZ foranyyeH, (B;Z)}.
)4

We will start with results on y—v*pu.

Lemma 4.12. Let v € Diff,  (B). Then p—v*u is exact.

83



84 s!-BUNDLES OVER THE CYLINDER b = s! x [-1,1]

0 1
Proof. Recall that v = (v!,v?) € Diff}, .(B) is equivalent to v

de
hence
2 232
pvip=-2de+ (vz) dv!
z2 22, vl avt
= - d(p"i‘? %d(p—i—gdz)
~——
=1
22 ov!
3 Edz
Define
_ z Cz avl
M(p,2): TE( ,0)dC
so that
oM oM
_ ZCZ 9 avl 281/1
=], 7%E((p,c)dC)d(p—l—?Edz
—_————
EE—
B 2¢?2 9 ovt .
.29z 9p (@,0) dC)d(p+y—v 7
~——
=1
—_——
=0
=u—-vu.

=1and v?(¢,2) = z,

O]

Proof of Theorem 4.11. The previous lemma implies that J p—vu =0 forany y €
Y

H;(B;Z), hence

D = {v e DiffS _(B)

j pu—viueZforall y e H (B;Z)}
)4

— DiffS ,(B).

In particular, D° = Diff;, . (B) is a smooth submanifold of Diff*(B), so by Theo-
rem 3.29, also Diff; ) (B x S') c Diffy(Bx S') c Diff'(Bx S!') are smooth submani-

folds.

O]

Recall the map k : D° — H*(B,S!) used in Theorem 3.29 defined by

b b
kv(b) :J; Ky :J; I"_V*I‘
0 o
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for by = (0,-1) € S* x[-1,1].
Corollary 4.13 (see Theorem 3.29). We have smooth diffeomorphisms
Diff}, (BxSl) = DiffS. ( ) x §!
= - (1, k1 (b) - 0)
(v(b), Ky (b) +6+60) (v, 90) O

We will use the rest of this section to explicitly compute the map k : D° —
H*(B,S') used in Theorem 3.29 and verify Corollary 3.28, i.e. that k is smooth. Fol-
lowing the construction of k in Lemma 3.23, we start with the cohomology class de-
fined by p—v*p for v € D*. Since [p—v*u] = [0], we only need to choose ajg) := 0 €
Q(o)(B) and the constant map ki) := 0. As required, ajg] = dk|o]. Then,

Py = p=V =g = p— V.

With the base point by = (0,-1) € S! x [-1,1] = B, we get
b b
=f My =j PV

#y:Bx St = BxSl,
1y (0,0) = (v(b),0 +k, (b))

Then

is a lift of v in Diff}, , (Bx S").
To compute 1,, ‘recall that any v = (v!,v?) € Diff5,  (B) = Diff} ; (B) for h(¢p,z) =
z satisfies

v (@,z) =z and — =1.

In particular, v! is of the form v!(¢,z) = ¢ +¢(z) mod 1 for some g € H*([-1,1],R).
This yields

(p)z) .
ky(¢,z) :f( p=v'u

0,-1)

Then

7y (S'x[-1,1]) xS =M - M
(0,0) = (v(b),0 +k, (b))
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or explicitly for v(¢p,z) = (¢ + g(2),2),
2
(92).0) (9502, 0+ [ Sa()ac)
S — -1
=v(p72)

is an element of Diff; )(M). Note that this also proves that for v € Diff; . (B), i.e.
g€ H*([-1,1],R), we get 1, of the same Sobolev class.

Lemma 4.14. The operator

H*([-1,1],R) — H*([-1,1],R)

g [ Seoa]

Proof. First note that this is a linear map. To show smoothness, we only need to check

is smooth.

continuity. Integration by parts yields

CZ
<c>dc——g OF, ng 0)de

2g ng
2

z
Both g — ?g( z) and the evaluation g g( 1) are continuous. It remains to com-

-1

rz
pute the H*>-normof ¢ — | (g(C)dC.
J-1
I[ cetcrae] - 2 [ e
-1 J-1 H0 Hsl
= Lt L
[ s+l
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The first term can be estimated using the Cauchy-Schwarz inequality (CSI)

o
[ ([ o]
2 ([eul [ o
<[, el [, eierac)e

3 — 2 2
_Cp=z =lgli<lgl

2 1
< —llgll,zsj dz
-1

4 2
= Slgli

2
L2

[

Since s is sufficiently large, H*([-1,1],R) is a Hilbert algebra and hence

<liglizs
—_—

2 2 2
llzg (2)lIzs-1 < llzllzemr lgllpsms
\,—/

< () () et ) a2, S
8 2
< Slgll-

Using the two previous results yields

z 2 z 2
2
| csoae]| <|[ co@ac| +le@l.
-1 Hs -1 L?
4 8
< Sl + 5 gl
= 4/lglIF-- O
Corollary 4.15. The map
k : Diff’ . (B) — H*(B,R)
(p,2) . z CZ ,
(v: (@2 (0 +g2)) o (ki@ | (v = | Sg@ad)
(0,-1) -1

is smooth. O
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4.3.2 Charts for TDiff’(M) and its submanifolds

In this subsection (and only in this subsection), we consider the standard (orthonor-
mal) metric on (S x [-1,1]) xS', i.e. d,), 9, and dg form an orthonormal basis.
Adapting Corollary 2.7 to our situation yields the local bundle trivializations
@ : T, Diff* ((S' x [-1,1]) x S') x T, Diff' (($' x [-1,1]) x )
— TDIff ((S* x [-1,1]) x S)

(X,Y) (equ X, (V2 exp(rl’x))(Y))

around 1 € Diff* ((S! x [~1,1]) x S1). Recall that

T, Diff* ((S" x [-1,1]) x S') = TgDiff ((S' x[-1,1]) x S") o7y
=X ((S'x[-1,1])x SN o1,
hence d, o1, d; 01 and dg o] generate T,7Diff5"((S1 x[-1,1]) x S1). Write X = X?(dgo0

1) +X?(d,01)+X%(dgon). Since (dp, 92, dp) is an orthonormal basis, the map exp, X
maps (¢@,z,0) to

(equ X)((p,z,Q) = eXPy(¢,2,0) X(¢,2,0)
= (1 +X)(9,2,0),
where we define the addition component wise.

We now compute V,eXP(, (4 2,0),x(¢2,0)) Let P = (¢,2,0) € S'x[-1,1] and x €
T,((S'x[-1,1])xS"),i.e. (p,x) € T((S'x[-1,1])xS"). Recall the definition in Eq. (2.2),

Vzexp(p’x) : Tp((S1 x [-1,1]) x Sl) — Texpp(x)((sl x [-1,1]) xSl)
Vs XP(p,x) = (Tx eXp)'T(”p’x)T((Slx[—l,l])xSl)
° (K|T(’;’X)T((Slx[—l,l])xSl))71'
Following [Dom62], let ¢,z,0 be the coordinates on (S! x [-1,1]) x S! and let 7 :
T((S'x[-1,1]) xS') = (S! x [~1,1]) x S! denote the canonical projection. Then
vl::(poT, v2::zor, 1/3::601,
vh = de, v° =dz, v :=do

d

are coordinates on T((S! x[-1,1]) xS!) and 57 fori=1,...,61s a basis of TT((S! x
v

[-1,1]) x S1). Since

TV

G TS % [=1,1]) x §1) = ker(Tlr,,, 7((s'x[-1,1])xs1)):
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we let A = aiii S T(I[,'X)T((S1 x[-1,1])xS1), f(p,2,0) € C*((S' x[-1,1]) xS!,R)

d d d
(4! 22 3
= FEw I a—ﬂ)(fOT)
since (f o) (v?,...,v%) = f(v!,v%,0%),
of ov' af v? af
_ 17 2 a3
9 0T T 0 az+ 20°" 81}3
of of 9if
— 1 2 3
=a a(Por—l—a aZor—l—a 0 oT.
This yields
T(I;,,x)T((Sl x [-1,1]) x ') = ker(Tlg,  7((s'x[-1,1])xs1))

Jd d d
- Span{a 4 95’ 81}6}

To compute the connection map K, first note that since our metric is constant
on (S' x [~1,1]) x S!, all Christoffel symbols vanish. Eq. (11) in [Dom62] states for

6
;0
A= ;“ 5.7 € T T((STx [-1,1]) x 5,

d d d
4 5 6
Kipn(4) =a g P ERIT

Restricting K, x) to T(';M)T((S1 x [-1,1]) x St) = span{%,%,%} yields an iso-

morphism

Kpy): :r(i;m)T((s1 x[-1,1])xS') > T,M

a4i+ 5.9 +a ? r—>a41—|—aSi+a6i
vt Ers 87/6 dp Jz 20
with inverse
K(_l )i M — Tp) )T(slx[—l 1]
i 2.9 + X3 — o X1i+ 2 +X3— ?

1_
X P X gt X g o X g g + Xog 5+ X050
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Finally, we compute

(Teexpp)lry 7((s'x-1,1))xs") :

T o T((S" X [F1,1]) x S1) = Teyp (1 (8" x [-1,1]) x 8™,
To that end, let a4aiv4 + QS% +36% c T(;‘X)T«Sl % [_111]) % Sl) and a function

f(@,2,0) e C®((S! x[-1,1]) x S',R). Then

= (f% +a’—+ aé%)f o (v +vhv? 402,07 +0°)
(v +v?)
v
d(v? +v°)
o>
d(v? +v°)
dvo

=q g—(P o (v1 +v4 0?2 40203 +v6)-

—HzS% o (vl +v*v2 495,03 +v6)-

+a6§—g o (vt +vtv? +v°,0° +09).
s of of

" oexp, —l—a5z oexp, +a6% oexp,

and hence

(Txexpp)(a4i + asi + a6i)

of of of
vt v ovo 0

" oexp, +a52 oexp, +a6% oexp,.

-1

Combining our results for K (%)

and Tyexp,, yields for Eq. (4.3)

Vaexpy : Ty(pz0)(S" ¥ [FL) X ST = T, o x(y(pz0))(S" X [-1,1]) xS
VIB(F, + 129, +v39g v18(P +v%0,+ 139y,

where the tangent vectors d,,, d, and dy are evaluated at the respective base points
1(@,z,0) and exp, (,, . 0) X (11(9,2,6)) = (1+X)(¢,2,0). Finally, the local bundle triv-
ializations are given by

(X, Y) = (n+X, Y90 (n+X)+Y20,0(n+X)+Y?dgo (1 + X)).
Theorem 4.16.  (a) For any 1 € Diffy((S! x [~1,1]) x S1), the restriction of @ to a map

@ : T, Diffp ((S' x [-1,1]) x S') x T, Diffy ((S' x [-1,1]) x S')
— TDiffy ((S' x [-1,1]) x S1)

is a local bundle trivialization for a neighbourhood of 1 in TDiff}((S'x[~1,1])xS!).
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(b) Foranyn e Difffu’/\((s1 x [-1,1]) x S1), the restriction of ® to a map
@ : T,Diff}, | ((S" x[-1,1]) x S') x T, Diffy ((S" x [-1,1]) x S")
— TDiffy (S x [-1,1]) x S1)
is a local bundle trivialization for a neighbourhood of 1 in TDiffy((S! x [-1,1]) x
SV IDife,  ((5'x[-1,1])xS")-
Proof. For part (a), we have to show

« that for (X,Y) € T, Diffy ((S' x[-1,1]) x $') x T, Diffy (' x [-1,1]) x S'), we get
®(X,Y) e Diffy ((S! x[-1,1]) x S') with

D(X,Y) =(1+X, YP9y0(+X)+Y*d;0(n+X)+Y%g0 (+ X))

for Y =Y%d,0n+Y?d,0n+Y%gon.

« and that for any 7j € Diffy(Bx S!) and Z € T;Diffy (B x S1), there is (X,Y) €
T, Diffy (Bx S') x T, Diffy (Bx S') such that Z = ®(X,Y).

For the first step, since the tangent vector of @ (X, Y) satisfies Y¥d, 0 (7 +X) +Y*d, 0
(n+X)+Y%g 0 (n+X) €T, xDiff ((S' x [-1,1]) x S"), we need to check that

1+ X e Diffy ((S' x[-1,1]) x S1)
and
Lr(Y?9go0 (+X)+ Y, 0(n+X) +Y%9g0 (n+X))=0.

To that end, we compute

P
(14 X).R = (1 +X). >
_d(n' +X9) d(n* + X?) (> 4+ X9)
- 20 dpt 20 Jz+ 00 %o
~— ~—— ~—
=0 =0 o3
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Furthermore,
Lr(Y?9go0 (n+X)+Y?0,0(n+X)+Y%g0 (n+X)) =
=[RY?90 (1 +X)+ Y0, 0 (n+X)+ Y9990 (1 + X)]
= [90 0 (1+X),Y?9yy 0 (1 +X) + Y?9; 0 (1 + X) + Y99 0 (1 + X))

oY ? oY*? oY?
~—— ~—— ~——
=0.

For the second part, let 7j € Diffy (BxS') and Z € T; Diffy (Bx S1). Note that since both
1,177 € Diff} (B x S1), the first two components 1%, and #?, 7%, resp., only depend on
¢ and z, whereas the last components 7? and 7 are of the form 6 + k(ye47) (@, 2) and
0 + k(i 7z) (@, 2), resp. This implies that all three of the maps

(9,2,0) = 77(,2,0) -n%(¢,2,0)

(¢,2,0) =7 (¢,2,0) -1°(¢,2,0)

(¢,2,0) = 7°(9,2,0) =1°(¢,2,0)
only depend on ¢ and z, and not on 6. The first and last define elements of H*(B,S!) =
H%(S! x [-1,1],8!), which we can lift to X¥,X? € H*(S! x [-1,1],R). The second

already maps into R, i.e. defines an element X* € H*(S! x [-1,1],R). We let X :=
X?(dgo0n)+X*(d,01) + X?(dg on) € T, Diffy(Bx S'), such that

(1+X)(9,2,0) = (1?(9,2,0) + X?(9,2,0), *(9,2,0) + X*(,2,0),

1% (9,2,0) +X%(¢,2,0))
=1(¢,z,0).

We further let Y := Z%(d, o) + Z*(d, 0 17) +2%0gon) € T, Diffy (B x S1). Then we
get

D(X,Y)=(n+X, Z?9y0 (n+X)+ 29,0 (n+X) +2%9g 0 (1 + X))
(;7, Z@a(poﬁ+zzazoﬁ+2989 017)

(7, 2).

A similar computation proves part (b). O
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4.3.3 Smooth orthogonal bundle projection

Since Diff5,(B x S') ¢ Diff'(B x 1) is totally geodesic (see Theorem 2.2 in [EP13]), it
only remains to show that the orthogonal projection

P : TDiff (Bx S")Ipige:, , (xst) = TDiff;, , (Bx S*)
is a smooth bundle map. Recall Corollary 4.13
Diff}, . (B) x S' 5 DiffS , (Bx S')
(v, %) = ((9,2,0) = (v(,2),0 + &, (2) + %)),
which implies
T,aDiff5 . (B) x TyS' = TiyDiffS, | (Bx S*)
(v, c&’K) v+ (Tidk(v) + c)ag. (4.8)

We let V € TDiffy(Bx S'), i.e. V.= V¥ (,2)d, + V*(,2)0, + V9(p,2)dg. Since
any element v € TyyDiff}, . (B) is of the form v = v(z)d,,, we further define pE(v) e
H*([-1,1],R) and pX (V) e R by

Pa(V) = ps(V)dy + (Tiak(pf (V) 9y) + pfi(V))do-

For any V € TgDiffy(Bx S'), we have Py(V) € T,gDiff}, | (B x S1), i.e. the coefficient
p2 (V) € H*([-1,1],R) only depends on z and p{(V) € R is constant. Then for any
W € T,yDiff}, ,(Bx S'), i.e.

W = w(z)dy +(Tiak(w) + x)9p,
——
=w
we need to have
|
0=(V-Pa(V),W)
= j (V-Pq(V),W)dO Adg Adz
BxS!
- J (VP0y+ V30, + V999 -pli(V)d,
BxS!

~(Tak(pE (V)2y) + PR (V)6
W)do Adg Adz
= L Sl[(V"’*pi‘éw))@(p, W)+ V(d,, W)

+ (V= Tak(piy(V)9y) = pig(V) o, W)
doAde Adz
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- Lxsl[( VO = pla(V))[w(2)(@p, B) + (Tiak(w) +x)(3y,0)]
+ V[ w(2)402 9p) + (Tiak(w) + x)(9, 9)]
(VO - Tak(p5(V)a,) pF (V)
[w(2)(90, 9} + (Tiak (w) + ), 9]}
déAde Adz
)+ (k) + 5 )
_|_\/~[w z)- ( idk(w)—i_x)'o]
(VO Tak(ps(v)2,) ~ply (V)
[w(e(2y) + Tok(w) +]
dOAdp Adz
= [ w{(ve -V +p@,2)
+ (V7 = Tiak(pfy (V) )~ ply (V) )u(3y)]
+ Tk (w)[(V? = pE (V))u(3,)
+(V7 = Tak(py (V) 9y) - p& (V)]
+a[ (VO =P (V))(9,)

_|_(V9 Tldk( 1d( ) ([J) pllfi( ))]}
de Adz

vl vt st
([ Vo ap=Tak(pl(V)2,) ~p(V)Iu(a,)]az
1
| k([ vrap-ph)u(a,)
+ [ VO o= Tkl (V)2,) - ply(V)]dz
1
x [ [ vrao-phv)ua,)

+ [ VO o= Tkl (V)2,) ~ply(V)] e

(4.9)
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For the coefficient of x to vanish, we get

1
o= | [(] vrap-phv)uta,)
+ [ VO o= Tkl (V)2,) - pl(V)]dz
j[y leq)dgo—y(aq))pi‘;m
+ [ VO do- k(e (v)a,)|dz - 205V,

which is equivalent to

1 1
=3 | [10p) | V7 ap-u@ppiv)
+J V?de - Tak(pf(V)d,)|dz. (4.10)
Sl

Lemma 4.17. For any z € [-1,1] and functions b(C) and u(C), we have
1
[ 6@)- Tok(ua, e =
z

:——u( j dCJ daflc»t(c)dc
+L [b(C)%Z—i—L)b(a)da-C]u(C)dC (4.11)

Proof. First note that by Eq. (3.6),

(p.2)

3.6)
Tgk(ud,) % —y(uaww(ua(p)(o,—l)—j(o T

ZZ 22 ((P‘Z)
= 7d(p(u&(p) —(?dgo(ua(p))(O,—l) _J‘(o,—1) tug, Cdp AdC
22 1 z
= Su(z)—zu(=1)- | Cu(C)dC (4.12)
-1
z CZ
-1

by integration by parts. Then

1 1 C
| 660 Tak(way)ac 2 [ o) [S @)~ gu(-1)- [ auta)da]ac
=f b(C)C2 (C)dc——u( 1)fb(c>ac- 1b(C)Jcau(a)dadC. (4.14)

2 z z -1
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Integrating the last term by parts yields

1 rC
—J- b(C) | au(a)dadl =
’ Jr‘}l r‘C
= b(a)da J J a)da-Cu(C
Jz u—l
r1
=— b(a)da da+f J a)da-Cu(C)dC
r1
=— b(a)da dC+f f a)da-Cu(C)dC.

Plugging Eq. (4.15) back into Eq. (4.14) yield

fb(é)-ndk(ua )d =
2 1
:f () S u(C) e~ su(- )f b(c)de

f daJ- Cu(C dc+j f a)da-Cu(C)dC
- f 0)dc - f daleu(C)dC
+L [b(c)%2+£b(a)da.c]u(c)dc
In particular, for b = 1, Eq. (4.11) yields
Ll Tak(udy)dC = — Ju( f 1dC - J 1daf Cu(t
+L [1.?+L’1da.c]u(c)dc
S 1_z)J1 Cu(C)de
[ b
_J_1Cu(C)dC+z£1Cu(C)dC

dc

+J1 §C2u(g)dc—zfcu(é)dc

J cu(C dC+zf cu(C

+3

z

—u
2

(C)dC.

(4.15)

(4.16)
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We will also need Eq. (4.11) for z = —1:

fb((:)-ndk(ua )dC =

1

_ _%u(_l J 0)d- j daf Cu(C)de
+£1[b(c)%2+£1b(a)da~C]u(C)dC
1 1
_ _Eu(_an(c)dc
P
:_%u(—l)Jillb(C)dC+j_l[b(C)7—L b(a)da-Clu(c)dL. (4.17)

Again for b = 1, this simplifies to

1 1 1 12 1
f Tiak(udy)dC = ~Zu(- 1)f 1dC+J [1-7-j lde-CJu(c)de
i 4
= u(-1)- f (c-—c) (©)dc. (4.18)
-1
Plugging Eq. (4.18) for u = pJ,(V) into Eq. (4.10) yields
01 ! @ B
03 [ 1120 | vede-pa,ev)
+J VOde - Tiak(pl (Vv ]dz
St
1 (!
=3 | [0 [ vedg-ua,phv)
1
+f Ved(p]dz—lj Tiak(p2(V)9,,) dz
st 2J)4a
wis) 1 (1 22
L8 Efl[_%fsl VPde + Ll v d(p]dz
1 (122 B
+§J1 ?pid(V)dZ

+3P5(V)(1)
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1 ! 22 @ 0
= E_Iil[_?Ll 14 d(P+L1 14 d(p]dz

1
—1—%J:l(z—zz)pfi(V)dz—i—%pﬁl(V)(—l) (4.19)

Similarly, all terms containing w in Eq. (4.9) are

1
0= [ w@(] vrap-ph )1 +12,?)
([ VO a0 Tk ol (V)2,) ~p (V)2

1
+ [ Takwa)[( [ v de-ph(v)ua,)

1
+ [ VOdg - Tkl (V)2,) - p1y ()] (4.20)
S]

For the second integral, we use Eq. (4.17) with u = w and

h— (Ll V(’)d@—Pi%(V)),”(an)

+ Ll VPde - Tak(py(V)d,) - p (V)

72

=-= V(Pdgo+J vode
2 Sl Sl

2
Z
+ ZpB (V) - Tak(pE(V)9y) - Py (V)

to get

1
| Takwa, ([ v de-ph(n)uca,)

1 St
+ [ VO dp-Tak(p1(V)9,) - ply(V)]dz =

(4.17) w(—l)j1 sz J‘ 0

A7) _ 2 veq vod
2 _1[ 2 Sl g0+ Sl go
2

+ ZEP%(V) ~Tak(pia(V)9y) - p§ (V)] dz

1 2
—I—J w(z)[(—Z—J- V")d(p+J vode
-1 2 Sl Sl

ZZ
+ ZpB V) = Tk (p5(V)3,) - P (V)2

1 -2
—zj (—C—J V(f’d(p—i—J v9de
2 2 Js st

+7Pid(v)—7}dk(Pﬁi(V)aqo)
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Note that the coefficient of w(-1) vanishes because of the definition of pilfi(V) in
Eq. (4.10), hence we are left with

1
|| makwo)[( [ v dp-phv))uca,)

1

+ [ Voo k(e ()9,) - (v)]dz =

= J_ll w(z)[(—é L1 VPde + Ll vode

22 ZZ
+ EPin(V) — Tk (pf(V)d,,) —Pﬁ(v))j

1 2
—zj (—C—J- V(Pd(p-i-j vode
z 2 Sl Sl

Going back to Eq. (4.20), we get

1
o= [ wel [, vrap-r)i - na, )

-1
+ ( .[51 vode - T}dk(pi%(\/)a(p) —Pﬁ(V))#(aq))]dz

1 2
+J w(z)[(—%j V‘Pd(p—kj vPde
-1 Sl SI

2 ZZ

+ %pfi(v) - Tiak(piy(V)d,) _pﬁ(v))?

1 2
C
‘ZJ (‘7f1"“”d¢+flved¢
z S S

2
+ EpB (V) = Tak(p5(V)9,) ~p5y(V)) dc ]z

1 Z4
= vl veae-phv)+ )

z? 0 z? B z2?
) 14 d(P""?ndk(pid(v)a(p)+?pid(v)]dz
Sl
1 4 2
—|—j w(z)[—ZJ V‘f’d(p+% vode
_1 Sl Sl
2

2
Z z z
+ P (V) = 5 Tak(pE(V)3) - Spf (V)

1 2
—ZJ\ (—C—f V"Jd(p—k'[ vode
2 2 Js st

2
+ (V) - Tak(p(V)a,) ~ ply (V) dc | dz
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1
= | v vrap-piv)
1 CZ
T i [ vap
2 2 s st

2
+ (V) - Tk (pla(V)a,) (V) dcdz

This expression has to vanish for every choice of w, hence the coefficient of w has to

vanish. This yields
0= J VPde -pl (V)
Sl

1 2
—zf (—C—f V(Pd<p—|—j v9de
2 2 s st

CZ
+ 5 pia(V) = Tak(piy (V)9y) ~pR(V) )dC
1 22
:f V(Pd(p—p%(V)—zj —C—j V(pdqo-i-J- Vedgo]dC
st ' 2t 2 Js st
1(;2 1
—2 [ Sz | Tak(ph(v)a,)dC

1
+Zf piy(V)dC

1 L VPde -pl(V J [__J1 V(qu0+J;1 Ved(p]dC

+zf oo (v)dc+s [ Spn(vyac]
-1 z

+z(1-2)pf(V)

(4.19) B b2 0
= J- V(Pdgo—pid(V)—zj ——f V(Pdg0+J- %4 dgo]dC
st b 2 Jst st

1 72
+z(1—z)[;f —sz V"’d(p#-J_ VQd(p]dC
-1 Sl Sl

+;L@_mpg(v)duipfd(vx—l)]
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- LIV")d@—pﬂ(V)
1 (2
—ZJ —’J V(”dq)Jrj Vf)d([)]dC
-1 2 Sl Sl
z CZ
-I-zf [——f V¢d(p+f Ved(p]d(:
b2 s1
lc2 B
—z Tpid(v))dc
z

21 )p.B (V)(-1)-z | cpB(v)de

+22J:1Cpﬁ(V)dC+3zL %pfﬁ(V)dC
1 ! Cz | 6)d di
+Z(]_Z)2J1[_2J;1V </)+L1V (p] C
1 1
+a(1-2); [ (C-IpBMC
-1
1
+2(1-2)5pia(V)(-1)
=J VPde-ply(V)
g1
+Z(—1—z)1jl[—czj V"’dq)+f V()dq)]d(
2 -1 2 Sl Sl i
z CZ
+zf [——j V"’d(p—i—f Ved(p]dc
2 Jgi
v [ enpvac- o
= [ epvyace [ CP%(VMC
-1 -1

+1<z—z2>j CpE (V) d

zz prld

N
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:J VPde—pli(V)
Sl
NS 0
+(-z-z )—J- ——j V‘Pd(p-l-J 1% d(p]dC
2 —1 2 Sl Sl
z_ 72
+zj [—C—f V‘Pd(p—kj Ved(p]dC
-1 Sl
_ZJ- C pld
+z f Cpid(V)dC

—(z+2%) J- [— f V‘Pd(p+j ng(p]dC
f Cpld dC J- C pld
+zj [——j V(quo—kf Ved(p]d(:
Sl

—zJ- c? pld dC+22j_lei%(V)dC.

This is equivalent to

)+ 342 [ cmviac- [ envac]
+ZJ C*pB(v)de - 22 J CpB(V)de
-1
_ - 2 _C_Z Q@ 0
- 2(z+z ) L[ ; LV d(p—l—LlV d(p]dC]
z 2
—|—zj [—C—J V(Pd(p—l—J vZdgldc.
-1 2 Sl Sl

Define a linear operator K : H*([-1,1],R) —» H*([-1,1],R

the previous equation, i. e.

K(u)(z) = %(z + zz)Ul1 Cu(C)dc - fll Czu(C)dC]

+zf Czu(C)dC—ZZJ- Cu(C)dcg,
-1 -1

(4.21)

) by the green part of
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so that Eq. (4.21) becomes
(id + K) (pig (V) (2) =
—1(+2) S Vvede + | VP%deldc
_Ez z [J-l —7L1 ¢ J-Sl qo] ]
z_ 72
+zj [—C—j V(pdgo—kJ- vPdeldc. (4.22)
-1 2 gt gl

Lemma 4.18. The operator id + K : H*([-1,1],R) — H*([-1,1],R) is injective.

Proof. Since id 4 K is linear, this is equivalent to showing that (id + K)(u)(z) = 0
implies u(z) = 0. To that end, we try to solve

= (id+K)(u)(z

= %z—kz J-Cu )dc - jCz dC

+zf1c2u(c>d<:—z JICu(C)dC- (4.23)

Note that this equation immediately implies

0=u(l)+ %2“11 Cu(C)dC—Jl C*u(C )d(]

1 1
+f czu(C)dC—f Cu(C)dc
-1 -1
Furthermore, for z # 0, Eq. (4.23) is equivalent to

== +z)U_l1 Cu(C)dC - fl C2u(c) de
[ cutyacz [ o

u(z)

equation can be written as

S(1+ Z)U_ll Cw(C)dC - fl Cw(C)de
= ez [ cuac

=u(1).

Hence, let w(z) = with initial conditions w(1) = 0 = w(-1) and the previous
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with first derivative
’ 1 ! 2 ! 3
w(z) = 5” c w(C)dC—J c w(c)dc]
-1 -1

+23w(z) - Jizl CPw(C)dC-z- 2> w(z)

- %Ull CPw(T)de - fl Cw(C) dC]
—flczw(C)dC,

and second derivative

—w”(z) = —Z2?w(z).

The last equation is equivalent to

0=w"(z) - z*w(z). (4.24)
This is a special case of Weber’s equation with general solution

w(z) = e1D_1/5(V22) + ¢2D_1 /5 (V2iz)

for the parabolic cylinder function D_y 5(z). Using the intial conditions w(1) = 0 =
w(-1), we have

! .
0= w(l) = ClD—l/Z(\/E) + C2D_1/2<\/§l)

!

0=w(-1) =c;D_1/5(-V2) + c2D_1 /(- V2i).

Since D_1/5(V2) 4 D_1/2(~V2) = D_y /5(V2i) + D_1 /»(~V2i) € R\{0}, adding those
two equations yields

0= c1t+c;
and the first equation can be written as

0=w(1)=c;D_1/2(V2) = c; D_y /5(V2i)
= (D71/2(\/§) —Dfl/z(‘/zi))-

=0

This implies ¢c; = —c; = 0. Therefore, the only possible solution is w(z) = 0 and hence
u(z)=0.
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Instead of solving Eq. (4.24) explicitly, we can also multiply it with w(z) and take

the full integral

1
0= .[ w” (2)w(z) - 22w?(z)dz

1

1 1
=w'(z)w(z) |i:_1 - J_l (w')?*(z)dz - '[ 22w?(z)dz

1

1
= —f_ (w')?(z) + 22w?(2) dz,

1

hence (w)?(z) + z*w?(z) = 0, which implies w(z) = 0 and u(z) = 0.

At 11 € Diff; | (Bx S1), we can consider the projection

P, : T, Diffy(Bx S') — T, Diff; ,(BxS")
V> P, (V)= (TR, 0PBgoTR,-1)(V).

If we write
V=V?d,0n)+Vi(don)+V?(dgon),
then
TR (V)= (VPor)dy+ (Ve )d, + (Vo )dg

and

P,(V)=(TR,0PgoTR,1)(V)

— TR,(Ra(TRy (V)
=TR,(p} (TR, (V))d, +
+ (Tak (P (TR 1 (V))9) + P (TR 1 (V))) 96
= py(TR1 (V) on-(dg0m) +
+(Tak(py (TR 1 (V))dp) 0+ p& (TRy1 (V) 017)(9g 0 1)
= ply (TR, (V) (9 0n) +
+(Tak(p (TR 1 (V))dy) + pi& (TR 1 (V) ) (9o 0 ).

Lemma 4.19.

p(VPo,+VZ9,+VY99g) = p& (TR, (V)).

(4.25)
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Proof. Note that

(id +K)(Pld(TR H(V))(z

(4.22) J [_ J V‘Pon_1d<P+J Vgon_ld(p]dC]
¢ S
—|—2J [——f V‘poq_ld(p—l—J v?on ' de|dc
a4t 2 s S!
1 NG CZJ f 0
= = -=— | v¥d VPde|d
2(Z+Z )[\f—l 2 g1 (P+ g1 (P] C]

z 2
—i—zj —C—f V‘Pd(p+J ng(p]dC
~1 2 Sl Sl
(4.22

22 (id + K) (pB(V2,, + V70, + V93p)) (2).
Since id + K is injective (Lemma 4.18), this implies the statement of the lemma. [

Lemma 4.20.
P (VPI,+V?0,+VY99g) = pi (TR, (V)). (4.26)

Proof.

@191 (1 22 _ )
pilfi(TRn‘l(V)) = EJ [—7f V¥on 1d<p+f Veoq 1d(p]dz
-1 St St

1 (!
+ Efl(z—zz)pﬁl(v¢on‘l,vz017‘1,V9 on~1)dz

1 _ _ _
—|—Epﬁl(V‘Po17 l,Vzoq 1,V9017 1)(—1)

1 1 22 @ 0
= E.[l[_?Ll 1% d(p—i—L1 \% d(p]dz

1 (!
+ 5L<Z_Z2)I751(V(pa¢ + V29,4 V9dy)dz

1 Z
+ Epﬁi(v‘#’a@ +VZ9,+V9%4)(-1)
=p (VP9 + V33, + VYy) O

Theorem 4.21. The projection P : TDiffy (B x Sl)lDiffqu(Bxsl) — TDiff;, | (B x SYisa
smooth bundle map.

Proof. Around any 1 € Diff} (S x [-1,1]), P takes the form
T,Diff},  (S' x [-1,1]) x T, Diffy (' x [-1,1])

— T,Diff}, | (S" x [-1,1]) x T, Diffy (S" x [-1,1])
(X,Y) > (P 1oPo®)(X,Y).
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and we get for Y =Y%d, 0+ Y*d,0on + Y%9g o1 that

(@ oPo®@)(X,Y) =07 (P(D(X,Y)))
= O (P(n+X, Y?0,0 (14 X) + Y790 (14 X) + Y%9g 0 (1 + X)))
= ®71(PW+X<Y(P8¢ o (17 +X) + Yzazo <1/] —|-X) + Y@ae o (11 —|-X>))

=@l pﬂ(TR(f,+X)4(Y<Pan o(n+X)+Y?d,0(n+X)

1Y%, 0 (17+X)))a(po (1 +X)
+ (Tidk(pj%(TR(n—&—X)l(Yq)a(p o (77 +X)+ Y, 0 (77 +X)

+Y%g 0 (1 +X)))8(p)

—i—pilfi(TR(,HX)fl(Y")&q) o(n+X)+Y?*d,0(n+X)

+Y9890(17+X))))990(17+X)

Since

PE(TR (151 (Y00 (1 +X) + Y?9, 0 (5 + X) + Y099 o (1 + X)) ) =

4.25
U2 B (Y90, + Y20, + Y0,)

(4.25)
=7 pl (TR, Y)

and similarly

PRITR(4x)1 (Y990 (1 +X) + Y200 (n +X) + Y099 0 ( +X))) =

4.26
U2 bR (Y99, + Y70, + Y00,

(4.26)

=" pR (TR, Y),
we get

(@ 1oPo®)(X,Y) =

— ! pi%(TR,rl Y)dg o (1n+X)

+ (Tidk(pi%(TR,ll Y)dp)+ pli (TR Y))&e o (n+X)

= (X, pB(TR;1Y)dy 01
+(Tiak (Pl (TR Y)) + pR (TR, 1Y) )dg 0 1),
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Since the first component of this map is the identity and the second component is
independent of X, this map is smooth in the base point X. Hence, P is a smooth
bundle map. O

4.4 Euler equation on Diff; , (M)

Recall Eq. (4.8):

T,aDiff5, . (B) x TyS' = TiyDiff, (Bx S!)
(v, caK) — V, + (Tidk(v) + c)ag. (4.8 rev.)

We already know that v = v(z)d,, and Tiqk is of the form

z 72
Tak(v()9,) = | %v’(C)dC. (4.13 rev)

Hence, we can write any V € TyDiff; , (B x S1) as
V = 1)(2)8(’) =+ (Tldk(v) + c)89.

Recall the result of the variation of energy in Section 2.3: Let V; € TiyDiff;, , (B x
S') be a time-dependent vector field, i.e. V; is of the form V; = v,(2)d,, + (T.ak(v;) +
Ct)ag. If

T
0 :f J (W, Vi +Vy, Vy) vol dt (2.9 rev.)
0 M

for any time-dependent W, = w;(z)d,, + (Tigk(w;) + d;)dg € TigDiff;, | (B x S1), then
V; is a solution to the Euler equation. We first compute

(dp,dg) =(dy = p(9y) e, da) +(1(dy)de, dp)

— —
cker A —1(2,)
=0
= V(atp)l

<a(p'8(p> = <a(p _I/‘(a(p>89racp _P‘(acp)86> + 2#(9({,)(9(’,,39) - /”(a(p)z(a@:aé))
= (9 9)” + 21(9p) p(9) — ()
= <a(p)ag0>B + V(a(p)z'
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In particular, (d,,, dy,) is independent of 6. We use these computations for

Vv, Vi =V, (2)a,+( idk(v,)+ct)39(vt(z)a(p+ (Tigk(vy) +Ct)86)
:Vt(z)va(p( 1(2)dp + ( 1dk(vt)+ct)99)
+ (Tiak(ve) + Ct)vag(vt(z)a(p + (Tiak(vs) + Ct)ae)
=v(z )( ((2)Vo, ¢ + (Tiak(v) +¢,)V5,9p)
(Tigk(ve) + ¢4 (v z)V5,94 + ( 1dk(vt)+ct)vagae)
—Vt( Vo, +vi(2)(Tiak (vs) + ¢,)Va, do
(Tigk(vs) + ¢1)v(2)Va,9¢ + ( idk(vt)+ct)2V3689.

Pairing the covariant derivatives with d,, and dg yields

= a(ﬂ(<a(ﬂ'a<ﬁ>3 + P‘(a¢>2)
A
- a(ﬁ(l - Z)
=0, (4.27)
2V, 20,9) = (. 9) = 0,
2<v968(p1 a(p> = a9<a(p: 8(p> = 0;
2Vy,09,dp) =20dg(dg,dy,)~ 0y, (dg,dg) =0,

[ — ~—
:P(aq7) =1
—_——
———

=0
=0

2V, 90, D0) = 20490, ) ~ D( D, )
=29, 1(d,) =0, (4.28)

~——
_Z2

2(V;,00,99) = dp(dp,dg) =0,
AV,0¢,99) = dy(dp,dg) =0,
2(V;3,d0,d9) = dg(dg,dg) = 0.

Note that all these computations — except for Eqs. (4.27) and (4.28) — do not rely on
the specific form of y or the chosen metric on B, but just on the fact that (d,, 8(,7)3 and
#(d,,) are functions on B and do not depend on 6. Then

<Wt/VVt Viy=20

and the full equation is

T
OZJ‘ f <Wt,Vt>/\/\(L)dt.
0 JBxS!
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In particular, for W, = V,, we get

T
0 :f J (V,, VHA A wdt,
0 JBxS!

hence
O == Vt
=v4(2)dy + (Tidk(vt(z)) + ét)ae-

This implies v; = 0 (as the coefficient of d,,) and then also ¢; = 0.

Proposition 4.22. The previous computation shows that the only solutions to the Euler
equation on M = B x S1 preserving w and A are all stationary vector fields of the form

Vi =V =(2)9 + (Tiak(v(2)dy) + )dp. 0

4.5 B=S'x[-1,1], general metric

In the following sections, we will generalize the situation to an arbitrary Riemannian
metric (-,-) on B = S! x [-1,1]. The Riemannian area form is then given by o} =
b(¢,z)o for some smooth map b € C*(B,R), which is nowhere 0. We will still let
Ty = hoy, = zb(@,z)0.

Proposition 4.23. Let (-,-) be a Riemannian metric on B with Riemannian area form
oy, = b(p,z)de Adz. There is a diffeomorphism p of B such that p preserves z and the
Riemannian area form p*oy, of the pullback metric satisfies p*o, = a(z)o =: o, for some
smooth function a € C*([-1,1],R) that only depends on z.

Proof. We first lift b : S! x [-1,1] — R to a smooth function by : R x [-1,1] - R
satisfying br(x +1,z) = bgr(x,z) and define a smooth map B: Rx [-1,1] -» R,

B(x,z) = J: br(y,z)dy.

This map satisfies

x+1z j
0

x+1
me dy+j br(y,z)dy

—_

0
=a(z) + . bR(y,2)dy
=a(z) + B(x,z)
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For fixed z € [-1,1], let B, : R > R, x > B(x,z). Since

dB,, ., OB B
E(x) = g(x,z) = br(x,z) =0,

B, is an isomorphism with inverse B;'. We define a diffeomorphism pR by

Pr:Rx[-1,1] > Rx[-1,1]
(x,2) (B;1 (a(z) -x),z).

Then the first component of pR satisfies

hence pR descends to a diffeomorphism p of the cylinder S! x [-1,1], defined by

p:Sx[-1,1] - St x[-1,1]
(p,z) = (le (a(z)-x) modl, z)

for any representative x € R of ¢ € S! =IR/Z. Then p preserves z and for any repre-
sentative x € R of ¢ € S! ~IR/Z, we have that

p*op = (p'b)p"(dp Adz)

= (bop)(p,z)dp' Adp?
apl
=(bo p)((p,z)%(q),z) dp Adz

~br(pn(62) 2 (x,2) -0
= 2 (5,2 2R (5,2 -
= L Blok(x2),2) -0

= L B.(B (a(2) ) -0
- %a(z) -

—a(z)-0

is independent of . O]
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Using this proposition and Lemma 3.30, we can w.l. 0. g. assume that we have a
Riemannian metric on S! x [~1,1] such that the Riemannian area form is of the form
0, =a(z)o,and 1, = za(z)o.

Proposition 4.24.
Diff;, ., (B) = Diff; . (B)
Proof. First note that

Diff;, . (B) = Diff}_,(B)
= {v € Diff; (B) | v*o, = o}

We let v € Diff} (S' x [-1,1]), i.e. v(¢@,z) = (v'(¢,2),z) and analyze the condition

vio, = o0,

adp Adz=o0, L vio,
=v*(adp Adz)

= aov dv' Adz
~——

=a since a only depends on z

v

dp

=a

dp Adz.

1
L . v
This is equivalent to — = 1. Hence,

dp
© cos © cos av! B
Diff}, .. (B) = {v € Diff; (B) | 50 = 1}
= Diff, (B)

with the last identity being shown in the proof of Proposition 4.3. O]

Corollary 4.4 then shows that Diff;, . (B) = Diff; ,(B) is a smooth submanifold
of Diff*(B).
In the second part of this section, we have to show that the orthogonal projections

in each fibre form a smooth bundle map

P: TDiff'(§' x [~1,1])lpite_, (s1x[-1,1]) — TDiff;, (8" x [~1,1]).
Again, we split the map in two projections P = P? o P! for

P! : TDIff (S" x [-1,1])Ipigr; (s1x[-1,1])) — TDiff},(S' x [-1,1])
and

P2 : TDiff; (8" x [1,1])lpite, (s1x[-1,1)) — TDiff}, (8" x[-1,1]).
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We first compute P. Let X = xla(p + X209, € T,gDiff* (S x[~1,1]). Then we must have

Plzl(X) = pild(X)an
for some operator pjy such that piy(X) € H'(S' x [-1,1,R). For any Y = Y'9,, €
T;qDiff;, (S' x [-1,1]), P} has to satisfy

0= (Py(X)-X, V)
= <Pli1(X) - X, Y>(g0,z) o
Six[-1,1]

= (pig(X)dp—X'0 = X?9;, Y'9p) g2y a(2) dp A dz

C

C
9]
X
|
—_
—_

_ Yl((pild(X) = XDy D) - XX, a¢>))a<z) do A dz

(02,04)

1 oyl 2
= pug(X)=X +X Gprd0)

Hence,

P} : TigDiff (S x [-1,1])Ipigr; (s1x(-1,1])) — TaDiff, (S* x [-1,1])
(02,9¢) p

X=Xx'9,+ X%, —|x'+ X2 )
¢ z (9,9 ) ¢

Recall that
T, Diff* (S! x [-1,1]) = TyDiff (S! x [-1,1]) o v.

For any X = X'd,,0v+X?d,0v € T, Diff’(S' x[-1,1]), the projection P, (X) has to be
of the form

Py (X) =p,(X)d, o v € T,Diff; (' x [-1,1])
for pl(X) e H*(S! x [-1,1],R). For any Y18<p o v, we need to have
0= (P/(X)-X, Y'9,0v)
= (p) , 0

r

= (P}(X) =X, Y'9y0v)y(p2) 0
S1x[-1,1]

C

r

= - 1]<p11/(X)8q,ov—Xla(pov—Xzazov, Yla(pov)v(%z)

C

a(z)dp Adz

r

= Yl((pi(X)—Xl)(8<pov,8(pov>v((p’z)
Six[-1,1]

-X*(d,0 v,dg 0 v)v((p’z)) a(z)de Adz

C
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= Y (pl(X) =X )2y, )0 v
le[—l,l] ((p (X) )< @ (p>°
—x2<az,a¢>ov) a(z)dep Adz

(02 9) )
N

= p}/(X):Xl—i—Xz-(

and we get for X :X18(pov—|—X28Zov,

d,,0
x4+ x2. (faw’a(j))ov]aq, ov.

PL(X) =

We now want to show that combining all P} yields a smooth bundle projection.
Note that even though we used the standard metric to compute the trivializations
(4.4), they are still trivializations even if we work with a different Riemannian metric
in this section.

Proposition 4.25. P' : TDiff*(S' x [-1,1])Ipi; (s1x[-1,1)) — TDiff},(S' x [-1,1]) is a
smooth bundle projection, i.e. P! is smooth in the base point.

Proof. In those coordinates, P! takes the form

T, Diff (S x [-1,1]) x T, Diff* (S x [-1,1])
— T,Diff} (S' x [-1,1]) x T, Diff* (S x [-1,1])
(X,Y) > (@ toPlo®)(X,Y)

and
(@' oPlo®)(X,Y) =07 (P (P(X,Y)))
:CI)—l(Pl(V+X, Y18¢O(V+X)+Yzazo(v+x)))
=07 (v +X, Pl y(Y' 90 (v+X) + Y200 (v+X)))

(3210,

= !
(9, dp)

v+ X, a(po(v+X)

yl 4+ YZ(

)o(v—i—X)

(92,0y)
(9, 9p)

X, |yt + Yz(

)o(v+X)

aq)ov].

Theorem 1.2 in [IKT13] shows that for any smooth f € C*(S! x [-1,1],R), the left
translation

Diff* (8! x [-1,1]) - H*(S! x [-1,1],R)

vis fov
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(D290)
@)

smooth, also the composition

is smooth. Since both S! x[-1,1] - R and the exponential function are

T,Diff} ,(S' x[-1,1]) — Diff ,(S'x[-1,1]) —  H*(S'x[-1,1],R)
(92,d¢)
(dp,dp)

X - exp, X=v+X ( )o(v+X)

1
is smooth. Since s > 5 dim(S! x [~1,1]) + 1, the product of two H*-functions is again

an H®-map. This implies that

(D21 9)

X+—>Y1+Y2( )o(v+X)

is smooth and hence, P! is a smooth bundle map. O

We now let P? : TDiff;l(B)lDiff;a,h(B) — TDiff}, ,(B) denote the orthogonal pro-
jection of the tangent bundle with restriction Plé = leTidDiff;’(Slx[_L”). Recall that
Diff, ,(B) is locally diffeomorphic to H*([-1,1],IR) as in the proof of Proposition 4.3.
Therefore, we have

TaDiff, ,,(S' x[-1,1]) = H*([-1,1],R)d,,

and for v € Diffgwh(s1 x[-1,1]),i.e. v(@,2) = (vI(@,2),v*(¢,2)) = (v (@,2),2),

T,Diff} (' x[-1,1]) = TygDiff}, (S x[-1,1])ov
= H*([-1,1,R) 0 v?- (d,, 0 v)
=H*([-1,1,R)0z- (a(P ov)
= H*([-1,1],R) - (9, 0 v).

Lemma 4.26. The orthogonal projection P1<21 is given by

P} : TyDiff;, (S' x [-1,1]) > TDiff ,(S' x [-1,1])

X =X"'9, p*(x")d,

for
p?:H*(S'x[-1,1],R) - H*([-1,1],R)
2o Iolf((sz)<8quaq7>d(P)
folw(wa(p)d@

re

Proof. We first note that for any X € T,4Diff} (S' x [-1,1]), the image under PJ is an
element of TidDiffff’h(S1 x [-1,1]), hence it can be written in the form p*(X')d,, for
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some map p*(X!) € H¥([-1,1],R). Furthermore, for any xla(p € T,gDiff; (S' x [-1,1])
and any Y = Y18(p € TidDiffSG,h(S1 x [-1,1]), we have

PAOX V)= [ B, adp nds

:J (pz(Xl)aq)—X18(p,Y18(p)ad(p/\dz
Six[-1,1]

J (fo (1,2)(9,99)(,2) d#)) 2
Six[-1,1] fo (09, 9p) (p,2) dip
- X' (¢,2)0p, Y'(2)9y)-a
:L (folXl(l’vb'z)@@'a(ﬂ)(ll)ﬂ)d"b —Xl((p,z))
L Jo 90190 (p2) A9
Y'(2)(dg, 9p)-a(z)dgp Adz
_ U L(1,2)(9, D) (p2) 4P
[RERERIRET:

- X! (,2)(dg,dp)de|dz

a(z)dp Adz

2 ,)

_ a . [J‘ f X l,b, <a(p19<p>1pz) P
Jo (g, 9p)(y,2) AP

1
- L XY (p,2) )(8(,;, dy)de|dz

1
XY (,2)(dy, D) (w AP (]
Jy E¢ 2)(0gps D) 2y AP f (90,3,)d

jO <aqwaq)>(1/),z) dll)

)2y, 0,)de

1
—J X' (,2)(9g,dp)dg|dz
0

X (,2)(0gp D) (,2) A

0

1
—J X' (9,2)(9p, ) dep|dz
0

=0. ]

Let v € Diff® , (S x [-1,1]). Since v preserves the area form o, both the metric
and orthogonal projection are right invariant and we can compute

P} : T, Diff; (S' x [-1,1]) — T, Diff; (S x [-1,1])
=X'(dpov) > (TR, 0PjoTR,)(X)
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which equals for X = X' (d,, 0 v)

P2(X)= (TR, 0P} 0 TR,1)(X)
= (TR, oP})(X'ov7'd,,)
=TR,(Pi(Xov'd,))
= TR, (p*(X' ov71)d,)
= pz(X1 o V_l) o V(a(p ov)
=p*(X'ov ) (dpov)

since p?(X! o v™1) only depends on z and v preserves z. Furthermore,

_ fol (X o v ) (1,2)(9g, 0p) (p,2) AP

pZ(X1 o vfl) :
Jo (P19} (p,2) dp
o XN (,2) (0, 0 0 v) (,2) vidy
- fol<a<p'a<p>(¢»2) d
o XN (9,2) (9, ) 0 v) (1,2) dp
- folwq)'aqo)(W)d‘/’ |
Hence,

PA(X) = p2(X 0 v1)(3, 0v)
_ Jol X' (9,2)((9g, dp) 0 v) (p,2) dyp
jol (9, 99p)(p,2) AP

(dpov).

Proposition 4.27. P? is a smooth bundle map, i. e. it is smooth in the base point.

Proof. Using the trivializations
@ : T,Diff, ,(S' x [-1,1]) x T, Diff; (" x [-1,1])
— TDiff; (" x [-1,1])Ipige; , (51 x[-1,1])
(X,Y =Y'9p0v) > (v+X, Y90 (v+X)),

we can write

T, Diff; (S' x [-1,1]) x T, Diff},(S' x [-1,1])
— T, Diff; (S x [-1,1]) x T, Diff; (S x [-1,1])
(X,Y) > (@ 1oP2o®)(X,Y).
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We compute for X,Y = Yla(p ov e T,Diff; (S' x [-1,,1])

(@' oP?o®)(X,Y) =07 (PX(P(X,Y)))
®!(P? (V—I—X Y'9,0 (v +X)))
O v+ X, P2 (Y90 (v +X)))
=07 (v+X, pPP(Y o (v+ X))y (v+X))
= (X, p’(Y' o (v+X)")dpov)

Hence, we need to check whether the map
1
Jo Y1 (,2)((9g,0p) 0 (v + X) (9,2) ) dyp
1
fo (9, 09)(p,2) dY

is smooth in X. Since (d,,d,) : S x [~1,1] = R is smooth, Theorem 1.2 in [IKT13]
implies that

Xp*(Ylo(v+X) ) =

X (dy,d¢) 0 (v+X)
is smooth as in the proof of Proposition 4.25. Hence, P? is a smooth bundle map. [J

Corollary 4.28. The previous two lemmas show that

P=P?oP": TDiff (S' x [-1,1])Ipite.__(six[-1,1]) — TDiff; . (S' x[-1,1])
is a smooth bundle map. O
4.6 Euler equation on Diff;, . (B)

Recall the result of the variation of energy in Section 2.3: Let v; € TidDifff,wTa(S1 X
[-1,1]) be a time-dependent vector field, i.e. v; is of the form v, = v;(z)d,,. If

T
0= J- J(w,v +V,v) g, dt (2.9 rev.)
o JB
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for any time-dependent w; = w;(z)d,, € TyDiff;, . (S' x [-1,1]), then v; is a solution
to the Euler equation. Let us use this information to compute

<w,1} + Vvv> = <wta(P, vta(P + Vvtaq)vta(p)
[ —
:‘I/tvlg(p‘l/ta(p:‘l}tzvly(pa

— w,(2) [vtw(p, 9,)+v? <a(p,va¢a¢>]
| S

P

2
Uy

. d
Since the coefficients of w; and v; only depend on z, we compute the integral

j (wy, Uy + Vy,vp) (adp Adz) =
Sx[-1,1]

" 2
_JSIX[_l'l]wt[vt<a<p,a<p>+ > a(p(a(wa@) (ade Adz)
r1 1 2 900 ’a
1 rl v2 18(8 ,8 >
- ' i | %%/
- [ wta[vtuo (D ) dep+ = & )d@]dz
=0
r1 1
— 1"Wt(11}t[ . (8(p,8¢,>d(p] dz.
—_—

>0

The Euler equation

0= J (wy, Uy 4+ Vy,v;) (adp Adz)  for any wy(z)
Six[-1,1]

is then equivalent to

1
0= a(z) vtf <a(p;a(p>d(pz
~—— 0

20 —————
=0
or

Ozvt.

Proposition 4.29. The previous computation shows that the only solutions to the Euler

equation on S' x [~1,1] preserving o, and T, are all stationary vector fields of the form
v =v =10(2)d,. O
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4.7 M = BxS!, general metric

TC

Let M = (S! x [-1,1]) x S! = B = S! x [-1,1] be the trivial S'-bundle with stable

Hamiltonian structure w, = 7o, = 7" (bo) and A, , = dO + 7y, , for

z
pop = —mpi(@,z)de  for  my(@,z) = J Cb(p,C)dC+7
-1
with 7 € R. In particular, m;, ;(¢,—1) = 7. Then we get two-forms o, = b(¢p,z)dp Adz
and

0 -
O, P ’gjrdmd(p = 2b(p,2) dp Adz = h(z)b(¢p,2)dp Adz

on B, as in the last section.

This seemingly random choice for p;, , corresponds to dealing with one represen-
tative of each cohomology class in the following sense: Let y, ji be two one-forms
corresponding to the same two-form 7 on B, then dy = © = dji, hence those two
one-forms differ by a closed form. Any closed form can be written as the sum of an
exact form and an element of H!(B). We will deal with adding exact one-forms in
Section 4.9 and H!(B) = R is generated by 7d¢ for 7 € R.

Remark. Please note that this choice for y; 1/, is equal to the one in Section 4.3. Here,
for b(¢p,z) =1, we get

‘ 22 1
mia(2) = | Cdl+o=5-o+

Hi1/2 = —m1,1/2((P:Z) de = ) do,

2
which is equal to y = —% de.

As in Section 4.3, we consider the metric on M = Bx S! defined by
* ker/\bi LR= (99,
* IRI=1,

* and for any v,w € ker(A; 7), C TyM, we have

(v,w), = (v, mw)ﬁ(x).

Using this metric, the Riemannian volume form on M is given by

vol = Ay Awy =b(@,2)dO Adz Ade.
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We want to lift the diffeomorphism p : S'x[~1,1] — S'x[~1,1] in Section 4.5 (con-
structed in Proposition 4.23) as in Corollary 3.33. Recall the construction in Proposi-
tion 4.23

p:Sx[-1,1] - S x[-1,1]
(p,z) > (B;l(a(z) x) mod 1, z)

for any representative x € R of ¢ € S! = R/Z and where we define B,(x) = B(x,z2),
x 1

B(x,z) = j br(y,z)dy and a(z) = B(1,z) = J b(@,z)de. For y = [S! x {-1}], let
0 0

ri= fj p*(de) e R.
Y

Lemma 4.30. The diffeomorphism p in Proposition 4.23 lifts to a diffeomorphism p™ :
M — M such that (p™)*w, = w, and (M) Ay ;= Ay p

Proof. Since H;(B;Z) is generated by ¥ = [S! x {—1}], it suffices to compute

1 1
L(ﬂw P pr) = JO ~ g, (~1) dp + L (myop)(@,~1)p"(dp)

=-r

1
= —r—|—-f0 mb,;(pl ((P;_l)f_l) P*(dq’)

=7

1
=—r+fj o"(dp)
0

=0€eZ,

as required by Corollary 3.33. O]

Hence, we can wlog assume that our stable Hamiltonian structure is given by
w, =m"0,and A,, =d6 + 'y, , for a(z) e C*([-1,1],R) and r e R.
Our first goal is to use Theorem 3.29 to prove

Theorem 4.31. Diff;, , (M) cC Diff’(M) is a smooth submanifold.

Recall that
Difff | (M)=Dj,xS!

ar’ta,r ar

for
D;, = {v € Diff;, . (B) ' J (Bay—V'Har) €Z forany y e H (B;Z)}.
)4

We will start with results on p, , — v, ,.

Lemma 4.32. Let v € Diff;, . (B). Then p,, — v, is exact.
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0 1
Proof. Recall that v = (v!,v?) e Diff;, . (B) = Diff;, ,(B) is equivalent to %Y —1and

I
v2(@,z) = z, hence we can write v!(¢@,z) = ¢ + g(z) and get
Pay =V Hay = —tg,(2)dep + ((vz)*ma’r)(z) dv!
vl ov!
= —mw(z) d(P + ma’r(Z)( % d(P + E dZ)
\,—/
=1
=m,,(2)¢g'(z)dz. (4.29)
Define
z
Mo (2) = [, (Og'(0)d0
so that
, (4.29) "
dMa,r = ma,r(z)g (Z) dz = Har =V Har- O

Proof of Theorem 4.31. The previous lemma implies that f (Bayr —V'pa,) = 0 for any

4
v € H{(B;Z), hence

D5, = {v € Diff, . (B)

J (l/‘a,r - V*,uu,r) €eZftorall y e Hl(B;Z)}
V4

= Diff, . (B)
= Diff}, (B)

by Proposition 4.24. In particular, D; , = Diff}  (B) is a smooth submanifold of the
full diffeomorphism group Diff’(B), so by Theorem 3.29 also Diff;, ; (B x sh) c

Diff} (B x S') ¢ Diff'(Bx S!) are smooth submanifolds. O

Recall the map k,, : D5, — H*(B,S') used in Theorem 3.29. Following the con-
struction of k, , in Lemma 3.23, we start with the cohomology class defined by p, , —
Vg, for v € D°. Since [y, — v*pq,] = [0], we only need to choose ag) := 0 € Q) (B)
and the constant function (k)] := 0. As required, a[o) = d(k,,;)[o]- Then,

(l’lu,r)v = Har — V*l’lu,r —aj0] = Har — V*,ua,r'

With the base point by = (0,-1) € S! x [-1,1] = B, we get

mmxw=£&w%=j7mfwm»

bo
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Corollary 4.33 (see Theorem 3.29). We have smooth diffeomorphisms

Diff;, , (BxS')=Diff; . (B)xS'

= (1" 1?) e (', 12 (5,0) = (kay )y (b) - 0)
(v(D), (kar)y(b) +6 4 60) — (v, 6) O

We will now explicitly verify Corollary 3.28, i.e. that k, , is smooth. To compute
the lift 7,

7y :Bx St — BxS1,
1y (%,0) 1= (v(x),0 + (ko) (x))

of v in Diff;, | (Bx S1), recall that any

ar

v(g.z) = (v!(,2),v*(¢,2)) € Diff;, . (B) =Diff; ()

satisfies
1
v¥(@,z) =z and % =1.
In particular, v! is of the form v! (¢,z) = ¢ + ¢(z) mod 1 for some g € H*([-1,1],R).
This yields
(¢.2) .
(ka,r)v((P'z) = J‘ (I"a,r -V l”a,r)
(0-1)
(4.29) (* ov!
= Mg,y —-d
L A(0) 5 de
— | m0g @4
-1
Then

7y (S'x[-1,1]) xS =M - M
(0,0) = (v(b),0 + (ko) v (%))
or explicitly for v(¢@,z) = (v!(¢,2),2),

z Vl
(9,2),0) — (v (9,2),2), e+j ma,r«:)aa—cdc)

(S -1
=v(p.2)

is an element of Diff; o (M).
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Lemma 4.34. The operator
H*([-1,1],R) —» H*([-1,1],R)

g (ZH [ martorg@c

-1
is smooth.

Proof. We will use the same argument as in the proof of Lemma 4.14. Since this map
is linear, we only have to check continuity to prove smoothness. Integration by parts
yields

| mar @ ©dt = ma, @@ - | mip©)s0)d0
=a(C)C
= s (2)g(2) =y () (1) + [ a(O)Cg(€)

The maps g +— m,,-g and g — rg(—1) are continuous, so it only remains to compute
z

the H*-norms of g — f a(C)Cg(C)dc.
-1

2

= Hfla(C)Cg(C)dC B

2
H

Hﬁa«:yzg(odc

2

45 [ a@rg@a

z
-1

Hs1

| [ ersoa]| +le@zsl

The first term can be estimated using the Cauchy-Schwarz inequality

p 2 1/ rz 2
HLa(cxg(c)dc ) :L (La(C)Cg(C)dC) dz
2 ([ fwara
Jfoeaf riom)s

=lla(2)21,

= lla(z2)zl7 fl[fl gz(C)dC]dz

~—_——
=llgll?,

= 2lla(2)zII7.lIglI7

< 2lla(2)zl. ligll..
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Since s is sufficiently large, H*([-1,1],IR) is a Hilbert algebra and hence

lla(2)2g ()11 < lla(2)2I1Fo-1 18117

2 2
<lla(z)zllz llgll:-

Using the two previous results yields

2
2
@zl

:s = ’U_Zl a(C)cg(C)de

< 2lla(2) 2l 1 lglys + lla(z) 2l lIgllEr

= 3lla(2) 27, . lIgllZ: O

[ aoestorac

Corollary 4.35. The map
ka, : Diff; . (B) — H*(B,R)

(v (p2) = (94 8(21,2) )= (ke < (92) f((wz

(l"a,r - V*,ua,r) =
0,-1
z

| a0y @ac)
-1

is smooth. O
In the second part of this section, we want to show that the orthogonal projection

P : TDiff} (B x S? Ibie, . (mxst) = TDiff;, , (Bx sh

a,r

is a smooth bundle map.
To that end, we first compute all the metric coefficients. Recall from Section 3.6
that R = dy has length 1 and is perpendicular to ker A, , for A, , =d6 + 7"y, , with

Hay = -, (z)de andm,, = f Ca(C)dC+r.
-1

Hence, any element of ker A, , is of the form v — y, ,(v)dg for v € X(B). Then we can

compute
<86)86> =1,
<a(pl a@) = <a(p - ,”a,r(acp)861 89> +Pa,r(a(p) <891 a@)
~——
=0 =1

=0+ pa,r(dyp),
(09, 9p) =g~ Ha,r(9p) 0, I = pa,r () do)
+ 2414, (0)(9 ) Do) — pay () *(de, Do)
= (9 9)’ + 2410 (9)* = o (9
= (99, 9p)" + par(99)7,
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(9;,09) = (92— pa,r(92)dg, o) + par(9;)( g, dp)
=0+ ptg,(9;)
=0,
(02,04) = (02~ pa,r(92) 99,9 — Har (d) dg)
+ pa,r(92)(dg,9p) + pa,(4)(92, dg)
— pa,r (92) a,r (94)(0, 90)
=(0,,0)"
+ Ha,r (92) Har (9) + Ha,r (9g) Har (92)
~ Har (9) prar (92)
= (02,9)" + pa,r (92) o (9g)
=(0;,94)°

and also for b = (¢,z) and by = (0,-1)

b
Tk (0(2)00) = oy (v(2)9) + oy (v(2)9) (bo) L b5 T

=Ca(C)dypAdc
(p.2)

:—v(z)ua,r@q))+v<—1>ua,r<a¢><o,—1>—f v(0)Ca(C)dC

- j o (C)0'(C)dC.

-1

(0-1)

v(C)Ca(C)dC (4.30)

Let now V € TyDiffy(Bx S!), i.e. V = Ve(p,2)dy + Vi(p,2)d; + V9 (p,2)dg. We
further define p} : TiDiffy (Bx S') — H*([-1,1],R) and py : TiaDiffy (Bx S') — R by

Pa(V) = p(V)(2)9y + (Tiakar (P (V) (2)9,) + i (V) p. (4.31)

For any V € TygDiffy o (Bx S'), we have P4(V) € TgDiff;, | (BxS'),i.e. p}(V)(2)
only depends on z and p (V) € R. Then for any W € TaDiff;, | (Bx sh,i.e.

W =w(z2)dy + (Tiaka, (w(2)dy) + x) o

a,r
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with w € H°([-1,1],R) and x € R arbitrary, we need to have

0=(V=Pa(V), w)
:j V P4(V /\ar/\wa
BxS!
:J (V09 + V0, + V90— pb (V) (2)d,
BxS1
( 1dku,r(p1d( )( )a(p)+pid( ))891

W) (a(z)d6 Adg A dz)
- JB sl(V"’—Pi’i(V)(z))@w W)+ V02, W)
+ (VO = Tiaky, (95 (V) (2)2) = R (V) (8, W)
a(z)dO Ade Adz
= | (V) E) [l )+ (T (w(2)3) + )24 90)
+V~[w z (82,8(p>+( Tigks,,(w(z)0 )‘H‘ (8 89)]
+ (VO = Tk, (pF (V)(2)9) = (V)
~[w(z)<89,a¢>+(Tidka,r(w( ) (p)+x <89’89>]
a(z)dO Ade Adz
B f (VI V) @) [ (P 00) + 1ar(9)°)
+(Tidka,r( ( )a )+x)ﬂar( ‘P)]
+ VA [w(2) (9, 90)® + (Tiaka,r (w(2)d) +x) - 0]
+(V8_Tidka,r(pilfi(v)(z)a(l)) pid(v))
(@@ par(3y) + Tiakar (w(2)9,,) + 2]
a(z)dO Ade Adz
- Lw<z>[(V‘P—pﬁi<v><z>)(<8@8¢>3+m,r<9<o>2)
+ V7 (02,9,)"
(VO = Tiaka (DB (V)(2) ) = P (V) (9 >]
+Tidka,r(w(z)a(p)[(vq) pld Z))I"ar
+ (V7 = Tiakar (P (V)(2)0y) - pfz<v>)]
+X[(Vq) pld( )(z ))Far( (P)

+(V9— iaka, (Pl (V )(2)dg) - pig(V ))]
a(z)de Adz
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= fl w(z)[—[ V®{d,,d }Bd(p—f (0, d)Bde - pB (V) (2)
1 s1 ¢ si Y id
(] vrde-ph(v)@)(2,)°
+ Ll V30,0,  do

([ Vo dp Tk, (V) (220) =PV s (0 Ja2) 82

n f_t Tidku,r(W(Z)aw)[(f

Sl

+ | VP a0 Tk, (1Y) (2)0,) 5 (V)|a(z)

Vede—pfy (V) (2) )par(9,)

1
x| (], veae=ph(v)@)hns(2y)
+ [ Vo= Tk, (R(V)@) P (V)aa)dz 432
For the coefficient of x to vanish, we need to have
1
0= | [(], v7ao-phE@)(a,)
+ | V00 Tiko, (V) (2)09) =P (V)Ja(z) oz
1
= [ [mrt@y) [ v de - (0,065 ()2
-1 Sl

+ [ VP ao-Tiks, (R0 i) b= [ arazpli(v),

which is equivalent to
vol,(Bx S') - pf(V) =
1
= Jl[ﬂa,r(aw) L‘ VPde - l‘a,r(a(p)pilfi(v) (Z)

+ f VOde - Tk, (pf(V)(2)9,) |a(z) dz. (4.33)
Sl
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Note that for any z € [-1,1] and functions b(C) and u(C), we have

J‘lb(c> : Tidka,r(u)dc =
1 C
“i“’f b(C)[u(C)ma,T(C)—fu(—l)—j_l (B)
1 1
— [ b©u(©m, @ dc-ru-) [ p(0)dc

j b(C)Lﬁu(/ﬂ)a(ﬁ)

Integrating the last term by parts yields

p)dp]dc

dpdc.

1 rC
-[v© 4ﬁu(ﬁ)a(ﬁ>dﬁdc -
rC rC
—- b(ﬁ)dﬁd pagl_+ [ j B)dp-Cu(c
r1
-- b(ﬁ>d/5J dﬁ+j f B)d-Cu(c
r1
== b(ﬂ)dﬁJ dc+j J B)dp-Cu(C
Plugging Eq. (4.35) back into Eq. (4.34) yields
1
j b(C) ' Tidka,r(”(C)a(p)dC =
) 1 1
— [ s ©m @ ac-rut-n [ v
1 1
—J b(p dﬁf cu(C dC+J J B)dp-cu(C

o) b0
o[ o

C)dc - J d/ﬂf_lCuCa

©+ [ 05 caoucc)ac

(4.34)
(€)dc
(€)dc
(C)dC.
(4.35)
(C)dc
(4.36)
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For z = -1, this is

j—llb(c) - Tigka,r (u(C)dy,)dC =

= —ru(- 1)J-1 —J dﬁj cu(C

f [(C)ma (€ f (B)dB-Ca(0)]u(C)de
= —ru(- 1)[ b(C)dC
J [6(C)ma,(C f (B)dp-Ca(C)- J-_llb(ﬁ)dﬁ'éa(é)]u(f?)dc

1
. 1f d(j+j [6(C)mar (€ Lb(ﬁ)dﬁ-Ca(C)]u(C)dC.
(4.37)

Plugging Eq. (4.37) for b =a and u = p5,(V)(z) into Eq. (4.33) yields
vol,(Bx $")-pR (V) =
42 fl[ua,(a@)f VP dg - jiay ()2, (V) (2)
+ [ V0o~ Tk, (o (V) (209, ]o(z) d
= [ rar@) [ Voo @)
+ L vPdgla(z)dz- fl Tiake, (p5(V)(2)9,)a(2) dz

f [ my . (z L V¢d¢+J1Ved¢]a(z)dz

+ j e, (pl(V)(2)afz) dz

+rpi%<v><—1>jla<c>dc

=vol,(BxS")

J [ z)m, (2 J C)dC - za( ]pld (z)dz
:j [—mar z L V<Pd(p_|_L V9d<p]a(z)dz
J J C)dC - za( pld V)(z)dz

+rvol,(Bx SY) - pB(V)(~1). (4.38)
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Similarly, all terms containing w in Eq. (4.32) are

0= fl w(z)[L V(34,9 dep - L(a@,a@B dg-p5(V)(2)
([ vedo-sh)@ar(a,)’
+ Ll Vi(d,,0,)" do
+ (Ll VO dp - Tigke, (p5 (V) (2)9y) = pR (V) )0 (9)]a(z) dz
" f 11 Tidka(Z)%)[(L Vedp—pfi(V)(2) J1ar ()
" L VOdp-Take, (b (V)(2)9p) - pR(V)]a(2)dz (439)

For the second integral (i.e. the last two lines in the previous equation), we use
Eq. (4.37) with u = w and

o= ([, v do -l (V)(@)ns 0y)
+ | V00 Tk, (V)20 =P (V)]a(2)
to get
1
-[1 ndka,r(w(z)a(p)[(-l-sl ve dq) —pi%(V)(z) )Va,r(a(p)
+ [ VP a0 Tk, (B(V)E)0,) -y (V)]a(z) dz =
1
= L[[( L v de - pig(V) (@) (95) (4.40)
+ | VP a0~ Tk, (V) (2)00) S (V) |a(2 1 (2)
1
_J; [(L‘ ve d(P _pfj(vﬂc))l‘a,r(a‘l’)

+ | Va0 Tk (R (V)(©)9y) -V a0 4L -20(2)]

‘w(z)dz
1
—rw) [ (] v de =l (V) @) (2y)

+ [ V00 Tiake, (pA(V)(2)00) =P (V) |a(z)
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Trying to simplify the coefficient of —rw(-1) in this equation yields

1
L[(Ll V‘Pd(P_Pi%(V)(z))ya'r(a(p)

+ | VP a0 Tk, (V) 2)9,) =3 (V) ]o(z) dz =

1
= J:l[—ma,r(z)(\fl ve d(P_pﬁl(V)(z)) -+ Ll V9 d(P]ﬂ(Z) dz

1

—L ldkar<pld<v><z>a<,,>a<z>dz—pﬁw)La(z) dz

=vol,(BxS!)

-38) fl[_ma,,(z)(Ll VPde - ph(V)(2))+ L vPdgla(z)dz
—Jl[—mm (z le‘f’d(p+J ng(p]a(z)dz
j J C)dC - za( pld V)(z)dz

~rvol,(BxS1) - pig(V)(~1)

1
_Jl Tiaka, (piy(V)(2)d)a(z)dz

(4.37)

1
2 j oy (2)p% (V) (2)a(2) dz

J f C)dC - za( pld V)(z)dz

—rvol,(Bx S1)- pld( )(-1)
o (V)(-1) [ a0y
=vol,(BxS!)

1 1
- [ [o©mar0)= | atp)ap-ca@]pfi(v (0 a0
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hence the previous equation (4.40) becomes

1
|| Bakarw@ap)[( [ V7 do-plhv)@)r(2,)
+ [ VP a0 Tk, (V)@ -y (V)]a(z) dz =
1
“O I, v ee-rh)@)s@,) (4.41)

+ Ll V9 de - Tk, (P (V)(2)9) = pR (V) |a(2) 4,0 (2)

1
- [ 1], vrae -V @)ar 2y)
+ | Va0 Tk (R (V)(©)9y) - (V)0 4L -20(2)]
-w(z)dz.
Going back to Eq. (4.39), we get

(4.39)

1
0= J_1W(Z)[Ll V(P@(p'a(p)Bd(P_Llw"”a‘P)Bd(P'pilii(v)(z)
([ vrde- @) 3,2
+ Ll VX(d,,d,) dg

(V0 a0~ Tk, (V) (2)0,) 3 (V) s (0 Ja(z)
1
+ [ Bako, @) VP dp-ph() (@) ar(2,)

-1

+ [ VO dp = Tk (0 (V)(202y) - pIy(V)az) o

133



134  s'-BUNDLES OVER THE CYLINDER b =s' x[-1,1]

420 L w(z)[L1 V(D ) dp - L(a(p,a(p)B dg-piy(V)(2)
([ v ap-ph()@)as (2,
+ L Vi(9.,0,)" dg
-|-(J;] VPde - Tk, (p2 (V) (2)dy) - pR(V ))P‘“( )] (z)dz
1
+ [ I, vrae-ph @)@,
+ J-sl VQ d§0 - Tidka,r<pj€j(v) (Z)aw) —pﬁ(V)]a(z)ma,r(z)
1
-1, vrae-phv)©)nar(a,)
+ [ V0o~ Tk (o (V)(©)3,) - P (V)]a(0) T -202) jwle) d
1
= L w(z)[J;l VP9, d,)° d(p—L(a(p,&(p)B dg-piy(V)(2)
([ vrap-sh @)
z B
+L1 V3, 0,)" dg
([ VO a0 Tk, (V) (@29) = (V)10 (2)Ja(z)

1
+J “—mar(Z)J V")d<P+f vPde
-1 St St

+ 1, ()P (V) (2) = Tiakar (p (V) (2)9p) = pI (V) |a(2) g0 (2)

j [ mgy (C J VPdp+ | vPde

+ ma,r(C)p%( )(C) 1dka r (pld(v)(c)a(p) —pﬁ(V)]a(C) dC ' za(z)]w(z) dz
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1
= | wE@a] [ vropa a0 | @007 a0 (V)2
-1
+ m?],r(z) J Vede - mﬂ . (z)p{é(Vi)(z)
Sl
+f V30,0,  de
Sl
— 1y, (2) f VO de + mqy,(2) Tigka, (piy (V) (2)dg) + ma, (2)ply (V)
Sl

-m?,(z) J vPde +m, . (z) J vode
sl sl
+Hl(”< )Pb(v ”111/< ) 1d/\ur<p]d< )< )()q?)_ 111(Z>pi[fj<v)

-z —-m 0

f [ ar( LIV‘Pd(p+L1V do

11, (C)p8y (V) (©) = ik (P (V)(©)9) = py (V) Ja(0) d [z
1

~ [ w@a@ [ V7020 d0- | (0,2, dp ph(V)(2

1
+ J V40,0, dg
Sl

—zf [ gy (C J V‘Pd(p—l-f v9de
St S1
1 (C)PE (V) (€)= Tuaka (o (V)(€)) = S (V) |a(€) d | .

This expression has to vanish for every choice of w, hence the coefficient of w has to
vanish. This yields

0= | V7000 a0 | (90,2, d0-ph(V)(2)

+ [ V.00 d
Sl

—ZJ [ g, (C J V¢d¢+J1V9d¢
st S

+ 1, (O)p (V)(€) = Tiaka,r (pE(V)(€)0y) - p (V) |a(C) dC
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= L v¢<a(p,a(p>3d<p—L(a(p,a(p)Bdcp'pﬁ(V)(Z)
+ L V¥(0,,0,)E dg
1
-2 [ rmant) [ veap+ [ voaplacrac
1
—zj g, (C)pE (V) (€)a(C) dC
1
+2 f Tiakar (pig(V)(C)9p)a(C) dC
? 1
+zj pig(V)a(C)dC
(426) L] V(p<afpla(P>Bd(P_ L1<8(P’a§0>3d(p pl%(V)(Z)
+ L V¥(3,,0,) do

—le[—mW(C) Ll VPde + J;l v d(p]a(C) dc

—zj g, (©)pE (V) (C)a(C) dC
sz [V [ alc)dc- j dﬁf CP (v dc
1 ’ C
[ [a@man(@)+ [ alp)dp-ca@)]ph () ) ]
1
+zj a(€)dT -k (V)
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(4.38)
2 L vq’<a(p,a¢>3d<p—L(aqya(p)Bd(p~pﬁl(V)(Z)
+ [ V.o d
Sl

2 [ [ [ veaps [ voaroac

j gy (O)pF(V)(C)a(C) dC

_zrpfil(vx—l)f( C)dc-z f dﬁf Pl “

vz [ alCma @BV d(+sz B)dB - CaQ)p(V)(O)dC
+Z£10(C)d mu‘ [_mar J V?de
+L1V9d(p] d(+J J B)dp-Ca(C)pl(V)(C)de]

+z£ a(C)dCrpl(V)(-1)

= L V#(dy,d,) dep -~ L(a(p,a@)B de-pig(V)(2)

+J V3,9, dg
Sl

—zf[—mam [ vrap+ [ voapla)ac
—zjla dﬁjl Cpl (V) (©)a(r)de

+sz B)dB-Ca(C)pt (V) (C)dC

+Z.L a(¢)de Vol B><S1 [J [ Mg, (C J- V¥de
+L1 V9d(p] dC+j j B)dp-ca(c Pld(V)(C)dC]
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z
Let A(z) = J a(C)dc, i.e. A(z) is the antiderivative of a(z) satisfying A(-1) = 0.
1

Then also A(l_) = vol,(Bx S!) and we have
= | vr@pptae- | @00 a0-phv)

+ J V(d,,0,)" de
Sl

1
“L (A(C) - Al2))ca(C)pEy(V)(C) d

1
+3(a00) -4 [mrte) [ veaos [ voaglacrac
1
+L (A(1) = A(0))ca(@)pfy (V) (C) dL]

=f V‘P<9¢,9¢>qu0—J (D )P dep- B (V) (2)
St St

+f V4(3,,3,) g
Sl

1
—z-[ [—ma’,,(C)J- V(’)d(erJ Vad(p]a(()dT
z St St

~(A)-4@) | aphv)@a0)dc

+2 [ AQC@V)(©)d-2A) [ Cal0py(v) ()

z

; jl[ g, (C jl V(qu)+J;l Ved(p]a(()d(

A 1

IIONE

Al (Y 0
ZA(I)J-_l[ ma,r(C)L1 V(pd(P+_J-51V dgo]a(C)dC
]

flCa@)p{é(vmdc

1
A1) g7 | AT (V) (@) de

4 2A(z)— J A©)Ta(C)pf(V)(c)de
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— L V#(dy,d,) dep - L(a(p, dp)Pde-pli(V)(2)

+f V4(3,,9,)P do
Sl

+ zfj [—ma,,,(C) Ll VPde + Ll v d(p]a(C) dc
—zﬁéf; fl[—ma,r(c) L VPde + L v?dgla(c)dc

z 1
zjlmmmmp{d( )(C)dC—zA(z)f Ca(C)pB (V) () dC

1 1
+2A(E) 575 [ ATV ) e,
i.e. p5(V)(2) is defined by

0 :J v¢<a¢,8¢>3d<p—j (9, )P dep - pB (V) (2)
st st

+f V4(3,,3,)Pdp
St

—l—zj [ gy, (C L V(”d(p—i—L1 Ved(p]a(C)dC
zA(SJ‘ [ mar(C)J;lV(Pd(p+J;l Ved(p]a(C)dC

z 1
—zf A<c:>c:a<c>pid<v><z;>dc—zA<z>j Ca(©)ph(V)(C)dC

-1

1

+2A(2) s [ AT (V)(©)

1
Let f(z f (dy 8(p>B d¢ and define a linear operator K : H® — H® by

z

AQ)Ca(C)u(z)dC +zA<z>fCa<c>u<c>dc

1
A1)

fl)Kw)(a) =2

-1

1
~24() 5 | AT
-1
and a linear operator R: H°(B,R) x H*(B,R) x H*(B,R) — H*(|-1,1],R) by

R(V?,VZ,VO)(2) = f V‘”<8¢'%>Bd<p+f V¥(d,,9,)" dg
sl Sl

w2 [ foma© [ vrdes [ vodelaac

A(z) 1—m 0 40l
ZA<1>L[ Mc)L v%lev dgla(c) dC

(4.42)

(4.43)
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so that Eq. (4.42) is equivalent to
Pa(V)(2) +K(p3(V)(2))(2) = ﬁR(V"’:Vz:VQ)(Z)-
Note that
R(V¥ oy, Vion™,vlon™)(z) =
= L V?on 0y, dp)  dep + Ll VZon (0,0,  do

+2f [—ma,r(C)J V(”on‘ld<ﬁ+j v9oydgla(c)de
-1 St St

Az 1 B )
Elif_l[_m“”(@fsl V¥ern 1d(P+LIVeon 'dgla(c)dc

= [ v 0o endes | Vi@, endy
s s
+ZJ [_ma,r(C)J V@d(P+J Vedfp]a(c)dC
1 St St

—ZA(Z) 1 -m o a
A(l)L[ a,r<C)L1 V‘Pd(PJrLV dola(c)dc

is smooth in 7.

Lemma 4.36. Let ki,k, € C*([-1,1],R) be smooth. Any operator F : H*([-1,1],R) —
H*([-1,1],R) of the form
1

(@) F(u)(2) =k2<z>j_ ki (Q)u(C)d

(b) F(u)(2) = k() j ki (©u(0)dC

is compact.

Proof.  (a) Since F has its image generated by k,, it is an operator of rank 1 and
therefore compact.

(b) Since multiplication with a smooth function is continuous, we only have to

z

check that F(u)(z) = J u(C)dC is compact. Note that F is actually a bounded
-1

linear operator H*([-1,1],R) — H*"!([-1,1],R) because we can estimate

_ (1 OF (u) 2
IF ()l = | F(u)(2)?dz+| a(z)le

J-1

1 z 2
_ (j u(C)dC) dz + [l
J-1

-1

< [([Crac) [ werac)az
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fl 12“)(]_11“2<C>d6)dz+nuu§,s

=2 =lull?, <llullfs

<[

2
< 5||ull7s.

Hence, F : H° — H*"! is continuous. Furthermore, the inclusion H*t! < H* is

compact by the Sobolev lemma. Therefore, we can write F as the composition of

a compact operator with continuous operators, which implies that F is compact.

O
Corollary 4.37. The operator K defined in Eq. (4.43) is compact.
Proof. If we rewrite
z z
K@) = 75 | A@)cau(c)
- f(%;()l) L (C)ca(C)u(c)dC
oz (F . _ZA(2) ! .
— = [ aweaou@ac- 25 [ Ao
zA(z) ~ zA
+ 22 f o©u(c)ac- 2 [ cauoyac,

then each of the summands is compact by the previous lemma. O]

Hence, id + K is a Fredholm operator of degree 0 and our goal is to invert it. To
that end, we first compute its kernel.

Lemma 4.38. The operator id + K is injective.

Proof. Since K is linear, we have to check that the only solution to (id + K)(u) =0is
u = 0. To that end, let u € H°([-1,1],R) such that (id + K)(u) = 0. Multiplying this
equation with f(z) = 0 yields

+2A(z JCa C)dC-zA(2) . JilA(C)Ca(C)M(C)dC- (4.44)

I)>

In particular, we immediately get
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FEME) [ aqeycateputerac- ) [ catcru

+ A(z)

Taking the derivative yields

%(Mu(z)) = -A(z)za(z)u(z)

z
1

~a(z) [ calOu(©)dcA@z0()u(z)

4 @)= - [ coura

1
* fﬁf_lA(C)Ca(C)u(c)dg

Again taking a derivative yields

4. 2>%<f<z>u<z>>>=m<z>u<z>-

z

i [ Acaouac
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and our initial conditions become @w(-1) = 0 = w(1). We change coordinates from z
to y := A(z) and define w(y) := w(A(y)). Then dy = A’(z)dz = a(z) dz and we get

w(y),

Al
)=\ <IZE>)

f(ATH ()

| —
=F(y)?

or, equivalently,
0=w"(y) - F(y)*w(y) (4.46)

with initial conditions w(0) = 0 = w(A(1)). We multiply this equation by w(y) to get

0=w"(y)w(y)-F(y)*w(y)”.

Integrating from 0 to A(1) yields

0- LA(”(w”@)w(y) ~F(») () )dy

A(1)

A1)
—w O [ - [ (w0 Feu))e

= —LA(I)(w’(y)2 + F(y)zw(y)z)dy- (4.47)

Hence, any solution to Eq. (4.46) also satisfies Eq. (4.47). Since the integrand u/(y)2 +
F(y)*w(y)* > 0, we in particular get

0=w'(y)> +F(y)’w(y)?

which is equivalent to w(y) = 0. Then also w = 0 and u(z) = = 0. O

By the Fredholm alternative, id + K is invertible and (id + K)™' : H* - H®is a
bounded linear operator and hence smooth. Equation (4.42) is now equivalent to

p(V)(z) = (id-I-K)‘l(ﬁR(V(P,VZ,VQ)(z)),

which can be used to define pJ, (V). Then, Eq. (4.38) defines p3(V):
vol,(Bx S1) pld f [ my . (z j V(”d(p—FJ‘ Ved(p]a(z)dz
St
J j 0)dC - za(z)p5 (V)(2)dz

(4.38 rev.)
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and, finally, we can define

Pa(V) = pla(V)(2)9g + (Tiaka,r (P (V) (2)9y) + pf (V) o. (4.31 rev.)
Theorem 4.39. The fibrewise orthogonal projection
P, : T, Diffy (M) — TWDifffua,/\a,r (M)
Vi (TR, 0o Pgo TR,1)(V)
defines a smooth bundle map
P : TDiffy (M)lpi,, (m) — TDiff;, ) (M).
Proof. We first compute

( )= (TR oB4oTR,- 1) (V)

(P Vo17 ) o1

(Pld Vo ™)dy +(Tiaka, (Pl (V on~ >9¢)+pﬁ(V0ﬂ‘1))89)0ﬂ
= pB (Vo ™)dp o n +(Tiaker (Pl (Vo ™)dp) + pl(Vor™))dg o,

since all coefficients either only depend on z, which is preserved by 1, or are constant.
If we write V. = V%9, 0n+ V%, on + V99901, then Voy™t =Vv® on‘la(p + Vo
1719, + V?,719,. The right hand side of

pl(Von™) = (id+K) =RV o™, Vion ™, v0on™)(z))

( 1
f(2)
is smooth in 77 (see page 140). Also,

Vola(Bxsl)-pﬁ(Voqfl) =

= f_ll[—ma,xz)f veo e+ [ V0o dpla(z)dz
fj 0)dC - za(z2)pP (Vo) (2) dz
= jl [—ma,r(z) J.sl VPde +J-1 v d(p]a(z)dz

j f 0)dC - za(2)pl(V o) (2) dz

is smooth in 77, hence P is smooth in 7. ]



4.8 EULER EQUATION ON lefw 2 (M)

a,r

4.8 Euler equation on Diff}, A, 1 (M)

r

Recall the result of the variation of energy in Section 2.3: Let V; € TiyDiff;, | (Bx sh
be a time-dependent vector field, i. e. V; is of the form

Vi =v,(2)dy + (Tidka,r(vt(z)afp) + Ct)ae-

If
T .
0= f j (W;, V; +Vy, V) vol dt (2.9 revisited)
0 M

for any time-dependent W; = w;(z)d,, —I—( Tigka,r(wi(2)dy) —l—dt)ae € T4Diff}, | (BxS!),
then V; is a solution to the Euler equation. We now compute
Vv, Vi = Vo, ()9, +(Taky, (v,(2)9,) +,) 190 (v1(2) 9 + (Tiaka,r (v4(2)) + ¢1) )
=v,(2)Va, (v¢(2) g + (Tiaka, (v4(2)9y) + ;)0
+ (Tiaka r(vt(2)9<p) +¢)Va,(v4(2) 9y + (Tiaka (ve(2)9) +¢1) o)
=v,(z 2)Va,9¢ + (Tidka, (vi(2)dp) +¢1) Vs, 89)

(

+ (T;dka r vt + Ct)(vt(z)vaga + 1dka,r(vt (z)a(p) + Ct)vag 86)
w(2)(v(2) (
+(

)7
)o

9 < akar (v1(2)9,) + 1) V3,90
1dkar vt +Ct)(vt(z)vaga(p + Tigka r(vt(z)aw) +Ct)v3689)

_vt( )VB aq)""'ut( )( 1dka r(vt(z) )+Ct)vz9 af)

+ < idka,r(vt<z)a(p) + Ct)vt(z)vag aq} + ( idka,r<vt(z)aq0) + Ct)zvaga(}-
(4.48)

Recall from page 109 that for pairing the covariant derivatives with d,, and dy, the

only possibly nonzero terms are

2(V3,9¢,9p) = (9, ),
2Va,0p,d0) = 20,(dg,dp) ~ 9p{dp, )
= 20 pha,r ()
= —28(pmw(z)
=0.
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Hence, d,, only yields nonzero metric terms when paired with Va, dy, i.e. the first
summand of Eq. (4.48), the remaining terms pair to 0. Furthermore, all of the sum-
mands of Eq. (4.48) pair to 0 with dg. Hence,

<Wt)vV, Vi) = wt(z)<8q,, Vv, Vi) + (Tidku,r(wt(Z)a(p) + dt)<86' Vy, Vi)
=0
= wt(‘z) 'Vt(2>2<3<p»va¢ a(p>
= wi(2)u1(2)° 52y (3, 2y)

and in turn
1
f (W Vo, Vi) Ay A = j Wi (2)01(2)* 29,0, 3, (a(2) d0 A dp A dz)
BxS! ' BxS! 2

! 1
:J_ wt(z)vt(z)za(z)ELla(P(a(p,a@)d(p dz

1

=0
=0.

Then the full equation is

T
0= j J\ <th Vt>/\a/\(l)a dt.
0 JBxS!

Again for W, =V, this is

T
OZJ‘ J <Vt,Vt>Aa/\(1)a dt,
0 JBxS!

which implies V;, = 0 and in turn v, = 0 and ¢, = 0.

Proposition 4.40. The previous computation shows that the only solutions to the Euler
equation on M = B x S! preserving w, and A, are all stationary vector fields of the form
Vi =V =v(2)9 + (Tiake,s (v(2)9y) + ¢)p. O

4.9 Generalization: any SHS on M descending to (0,7 = ho) on B

Let (wy Ay, = dO + 104, ,) be a stable Hamiltonian structure on M = Bx S!, as in
Section 4.7. This determines unique two-forms (o0,,7,) on B by w, = 7’0, and 7, =
dp,. Note that when given (0,,7,) on B, then not every possible associated SHS on M
is of the form (w,, A, ,): Let (&, X = dO+7*ji) be some other choice that also descends
to (0,,7,) on B, i.e. ® = '0, = w, and 1, = dji. Since

dji =1, =dp,,,

there is a closed € Q'(B) such that ji = p, , + B.



4.9 GENERALIZATION: ANY SHS ON M DESCENDING TO (0,7 = ho) oN B

Note that since HéR(B) =~ IR with representatives 7d¢ for any 7 € R, we can write

p=df +7de
for some f € C*(B,R) and 7 € R. Then
A=Ay, +17B=Agysr+df.
Lemma 4.41. The diffeomorphism

p:-M—->M
(,2,0) > ((p,z,6+f((p,z) mod 1)

satisfies p,R =R, p'w, = @ = wyand p* Ay, i 5 = A, i. e. the conditions of Proposition 3.32.

Proof. We compute

w0,

PR = p.dg = 50
plw, = p*(a(z) de A dz)
=a(z)dp Adz
= wy
=

and
P Agrii = p*(d@ + T(*I’la,r+f)
=d(0+ f) + r'id* (pa, + Fde)
=d0+df +n'p,, + " (Fde)
=dO+ i
=1 O

Corollary 4.42. Let (w, A = d6 + 1" ) be a stable Hamiltonian structure on M = Bx S'

such that w = 100 for some area form o € Q(B) and t = dy = h(¢@,z)o with h(¢,z) = z.

Then Diff;, , (M) C Diff’(M) is a smooth submanifold and the orthogonal projection in
each tangent space P, : T, Diffy (M) — T, Diff; (M) for 1 € Diff;, | (M) yields a smooth
bundle map P : TDiffy (M)lpi |, (m) — TDiff;, ) (M).

Proof. Combine the diffeomorphisms in Lemma 4.41 and Lemma 4.30 with the result
in Proposition 3.32. ]
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4.10 Generalization: i any submersion

The most general stable Hamiltonian structure on a cylinder bundle we will consider
in this thesis is some two-form

Q=716

for some area form 6 on B = S'x[-1,1] and A = d@-+1*ji for some one-form ji € Q! (B).
Since 7 = dji is another two-form on B, there is a smooth function /1 : B — R such that
T = hé. In this section, we assume that /1 is a submersion satisfying fl(Sl x{-1}) ={-1}
and ii(St x {1}) = {1}.

Proposition 4.43. Let i be a submersion satisfying h(S' x{-1}) = {-1} and h(S* x{1}) =
{1}. Then there is a diffeomorphism p : B — B such that (p*h)(¢,z) =z = h(¢@,z).

Proof. Since h is a submersion, the gradient vector field V1 is transversal to the level
sets i1 (c) for any c € [~1,1] with respect to some metric on B. Let (¢,z) € S! x[-1,1].
The point (¢,—1) corresponds to the endpoint of the flow line of V(-k). Now consider
the flow line of Vh starting at (¢,—1). There is a unique point in the intersection of
this flow line and /7! (z). Define this point to be the image of (¢,z) under p, see
Fig. 4.1

flow of —=Vh

(¢,-1) plp,~1) = (¢,-1)
Figure 4.1: Definition of p: B — B

By construction,

(0"h)(@,2) = h(p(@,2)) =z = h(e,2). O



4,11 OUTLOOK: COUNTEREXAMPLE

Proposition 4.44. Let (& = 7*G,A = d6 + 1c*ji) be a SHS on M = B x S' such that
7 := dji = hé for some submersion h : B— R such that h(S*x{-1}) = —1 and h(S'x{1}) =
1. Then Difffb’j (M) c Diffy(M) is a smooth submanifold and the orthogonal projection
P, : T, Diffy (M) — TquffiDj(M)for ne Diff“;j (M) is a smooth bundle map.

Proof. We extend p defined in Proposition 4.43 to a diffeomorphism p™ on M = BxS!
by the identity on 6 € Sl, i.e.

oM (9,2,0) = (p(¢,2),6).

We define ¢ := p*6 and

* % *

M) M)*n*c?:npc?:na.

@=(p
We further let p := p*ji and get
A= (pM)A
= (oM (d0 +m°p)
=dO+ i
=do + ' p.

Now, (wp, A = dO+7c* ) is a stable Hamiltonian structure on M = BxS' that descends

to o and
T:=du=dp'ji
= p'dp
= p*f
=p*(ho)
=ho
on B and we can apply Corollary 4.42. O

4.11 Outlook: counterexample

We tried finding an example for a manifold M with a stable Hamiltonian structure
(w, A) such that Diff; (M) C Diff’(M) is not a smooth submanifold. We suspect that,
varying examples of this section, for the cylinder bundle M = Bx S! with B = §! x
[-1,1], choosing a stable Hamiltonian structure (w,A) on M that descends to the two-
forms (0,7 = ho) on B such that h has at least one critical point, may provide such
an example. The results in the previous section already show that if & has no cricital
points, i.e. it is a submersion, then for all such choices, the diffeomorphism groups
are smooth submanifolds and h being a submersion was critical for our proof. As
a candidate, we tried : S' x [-1,1] - R, (¢,z) ~ sin(27@) - z, which has level sets
roughly shown in Fig. 4.2. In particular, the green level set k! ({0}) looks suspiciously
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Figure 4.2: Level sets of h(¢,z) = sin(2ng) -z

non-smooth and strongly restricts the structure-preserving diffeomorphisms of S! x
[-1,1]. Unfortunately, there is no nice criterion to show that something is not a smooth
submanifold and we could not come up with a rigorous proof.

4.12 Owutlook: other 2-dimensional base manifolds

The cylinder as discussed in this chapter is a very specific choice of base manifold.
We expect the results to also hold for the standard two-torus as the computations are
very similar. It is an open question as to what happens with other 2-dimensional base
manifolds. A natural choice might also be the sphere S? with the standard metric.
In cylindrical coordinates (¢,z) for ¢ € S' = R/Z and z € [-1,1], we have the Rie-
mannian volume form o = dg A dz and for T = ho, we can also consider the height
function h(¢,z) = z similar to the cylinder. Unfortunately, this height function has
critical points at the two poles of the sphere, which might already cause problems
with the submanifold structure of Diffﬁ,’f(Sz) as discussed in the previous section.



DIFFEOMORPHISMS OF MANIFOLDS WITH A (STABILIZABLE)
HAMILTONIAN STRUCTURE

Recall from the definition at the beginning of in Section 3.1 that a Hamiltonian struc-
ture on a compact, oriented (21 + 1)-dimensional manifold is a closed two-form w of
maximal rank, i. e. such that w" vanishes nowhere. We further assume that the kernel
foliation ker w is periodic, so that we can choose a vector field R generating ker w all of
whose orbits have period 1. As before, this implies that M is an S'-principal bundle
over some compact 2n-dimensional base manifold B, i.e.

s'>M 5B,
where the S!-action is generated by R. Associated to this bundle, we can choose a

connection form A € Q' (M).

Lemma 5.1. The connection form A is a stabilizing one-form for the Hamiltonian struc-
ture defined by w on M. In particular, any Hamiltonian structure w with periodic kernel
foliation ker w is stabilizable.

Proof. The S!'-action on M is generated by R, hence the connection form A satisfies
LrA=0and A(R) = 1. This implies R € kerdJ, i.e. kerw C kerdA:

le/\:d lR/\ —|—1Rd/\:£R/\:0
~——
=1

Furthermore, since R generates kerw and A(R) = 1, we also know that A A 0" is a

volume form. O

5.1 Structure-preserving diffeomorphisms of principal circle bundles

For such a stabilizable Hamiltonian structure on a prinicpal circle bundle ! — M —
B, we consider the diffeomorphisms preserving the Hamiltonian structure w and the
chosen generator R of the kernel foliation kerw, i.e.

Diffy , (M) := {1 € Diff' (M) | .R =R, 1w = ).

In contrast to the previous sections, we do not require that the diffeomorphisms also
preserve the stabilizing one-form A.
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By Theorem 2.23 and Corollary 3.16, we already know that
Diffy ,,(M) c Diffy (M) c Diff* (M)

are smooth submanifolds.

Now choose an S!-invariant metric {.,.) on M such that R has length 1. Then this
metric descends to a metric (.,.)? on B and we assume that its Riemmanian volume
form is given by ¢", where o € Q%(B) is defined by w = 7*o. Furthermore, this de-
fines an orthogonal complement of ker w in TM, i. e. choosing a metric automatically
defines a stabilizing one-form A. Locally, A can be written as A = d6 + 1"y for the
S!-bundle coordinate 6 and a one-form y on some subset of B. For any such choice of

metric, the Riemannian volume form is locally given by vol = A A 0" = dO A 0.

Lemma 5.2. Diff, (M) C Diff; (M) is a smooth submanifold.

vol

Proof. We first check that any 7 € Diffy (M) also preserves vol = d6 A @": In local
coordinates around (b,0) € U x S! for b € U C B, we can use Corollary 3.16 to write
n(b,0) = (v(b),@ + k(b)) for some v € Diff$ (B) and k € H*(U,S!). Then, we compute

n'vol = n*(dO A w")
=d('0) A ('w)"
=d(6+k)A"

=dO A" +dk A"
[

=0

=vol.

This implies that Diffy (M) is a subset of Diff; ;(M). Since both are also smooth

Hilbert submanifolds of Diff°’(M), the statement follows from Lemma 4.5. O

In particular, the induced metric defined by Eq. (2.5) on TDiffy (M) is right-
invariant and we can use the computation in Section 2.3 for the derivation of the
Euler equation.

For trivial circle bundles M = B x S!, we denote the S!-coordinate by 6 and get
R = dg. As in Section 3.5, we can write A = d6 + 1c*y for some (fixed) y € Q' (B) and
the Riemannian volume forms are vol = A A 0" =d6 A " on M and ¢" on B.

Also recall Corollary 3.16, which yields the diffeomorphism

Dlpiges (B)xrs(B,s1) : Diffy, (B) x H(B,S') — Diffy , (M)
(v,k) > ((b,e) > (v(b), 0+k(b)))

with tangent map

T(y k) Plpite (B)xrs(B,s') * Ty Diffy, (B) x H(B,R) — To(y ) Diffy ,,(M)
(v,1) > v +1dg.



5.2 BULER EQUATION ON Diff},  (BxS'), STANDARD BUNDLE METRIC

Hence, every tangent vector V € TiyDiffy (M) can be written as
V=v+ 189

for some v € TiyDiff}, (B) and I € H°(B,R).

5.2 Euler equation on Diff, (B x S1), standard bundle metric

As in the previous sections on the Euler equation, we start by recalling the result of
the variation of energy in Section 2.3: Let V, € Ty Diff}, (B x S') be a time-dependent

vector field, i. e. V; is of the form V; = v, +1;dg with v; € T;4Diff} (B) and I; € H*(B,R).

If
T .
0= J f (W, Vi + Vy, V) vol dt (2.9 revisited)
0 M

for any time-dependent W, = w; + m,dg € TgDiffy ., (B x S1), then V; is a solution to
the Euler equation.

Still considering a general bundle metric, which induces a stabilizing one-form
A =d6 + ", we compute

(Wi, Vi) = (wy + mydg, Vi)
= (w; — p(w;)dg, vy + it89> + (I/‘(wt) + mt)<8617}t + it86>
= (wy — p(wy)do, Ve — p(v¢)do) + (P‘(vt) + it)<wt — u(wt)dg, do)

NI
eker A
=0
+(P‘(wt) +mt)(<8617)t_.”(vt)86>+(ﬂ(vt) +it)<86!89>)
e —_—
eker A =1
=0
= (wy, )% + (p(wy) + my ) (u(vr) + 1) (5.1)
The covariant derivative is
Vv, Vi = Vy, (v + 119p)
= Vy, v +1,Vy.dg + Vi(l;)dg
= Vvt—HtaQVt + ltvvt—s—ltagae + (Vt + ltae)(lt)ae
=V, v+ 1;Vg,vi + iV, dg +17V5,00 + v4(1;) 9. (5.2)

Using the Koszul formula for the vector fields X, Y and Z,

2UX,VyZYy=Y(Z,X)+ Z(X, V)= XY, Z) +(X, [Y, Z]) =Y, [Z,X]) - (Z,[Y, X]),
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then pairing these covariant derivatives with w; yields

2wy, Vo, vp) = 20wy, V) — wivy, V) (W, [V4, v4]) = 2(y, [wy, v4])

N———

-0
= 2vt(<wt!vt>B + ﬂ(wt)ﬂ(vt)) - wt((”tﬂ/t>3 + I/‘(Vt)z)
- 2((% [we,va)® + p(ve) p(fwr,vi]))
= 2v(wy, v’ + 2#(%)”:%(.”(%)) + Zy(wt)vt(y(vt))
—wi(vy,vp)’ - 2//‘(Vt)wt(l4(vt))
= 2wy, [wy, vy])’ = 2p(ve) p([wr, vi)),
2wy, Vo, vp) = dolwy, vy) + vi{wy, dg) —wi(dg,vy)
+(wy, [9o, ve]) = (9o, [ve, wi]) = (i, [do, wi])

~—— ~——
=0 =0

= Vt(#(“’t)) - wt(,u(vt)) - (v wi),
2(wy, Vy,dg) = vi{wy, dg) + do{wy, vi) — wi(vy, dg)
+(wy, [vy, dol) = (vr, [, wi]) = (g, [V, wi])

~— ~—
=0 =0

= Vt(V(wt))—wt(P‘(Vt)) = u([vewil),
2(wy,Vj,00) = 209wy, dg) —w; (dg,dg)—2(dg, [dg, wi])

— —
1 =0

= 2dgp(w;)
=0,
(wy, dg) = p(wy),

whereas pairing them with dg yields

2<89'vv,vt> = 2v(dg, V) — dg(vs, vy) +(dg, [vtﬂ/t]> - 2Avy, [aeﬂ’tb

= 2Vt(14(7/t))»
2(dg,V,vi) = v{dg, dg) — (v, [dg, dg])
P
—0
—0,
2(dg,Vy,d9) = vi(dg,dg) — (v1,[de, dg])
—_——
-0
—0,

2(dg,V5,90) = dg(dg,dg) — (g, [de,dp])
p— Ol
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(dg,dg) = 1.

We now restrict to the standard product metric on M = BxS!, i. e. we assume that
dg is perpendicular to any tangent vector to B. This corresponds to y = 0 € Q! (M)
and A = d6. The previous computation simplifies to

2wy, Vo, vp) = 20wy, ) — wivy, V) — 2(vy, [wy, v4])
= 2v(wy, v)’ —wi(vy, v)P - 2wy, [wtﬂ/th
= 2<wtlvv,vt>B;
2wy, Vo, vp) = vt(y(wt)) - wt(y(vt)) = pu([ve,wi])
=0,
2wy, Vy,dg) = vt(y(wt)) - wt(ﬂ(”t)) = u([ve,wi])
=0,
2(wt,V9699> =0,
(wy,dg) = p(w) =0,

and

29, Vo, v1) = 2v,(p(v,)) =0,
2<89;V89Vt> =0,
2(dg,V,,dg) =0,
2(dg,V5,99) =0,
(dg,dg) = 1.

Then we get for the full covariant derivative

(5.2)
<Wt;VVtVt> = <Wt1vv,vt>+lt<Wt1v99vt>+lt<wtzvvt86>
+I1HW;,Va,90) + v, (1) (Wy, dg)
= (wy, Vy, vp) + 1 {wy, Vi, vp) 1 (wy, Vo, dg)

=0 =0
+ 17 (wy,V g,90) +v: (1) (wy, D)
—_— S———
=0 =0
+ my <89, vavt> +ltmt <ag, Vagvt) +ltmt <ae, V-,/t 89)
———— | — —_————
=0 =0 =0
+17m; (g, V,0) +v;(1;)m; (Ig, dg)
| ~— _
-0 =1

= <wt'vv,vt>B + v (l)my.
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Combining this result with Eq. (5.1) yields
(W, Vi +Vy, Vi) = (Wi, )P + myly + <wt1vvtvt>B + () my

and for the Euler equation

T

P .
O = <Wt) Vt + th Vt> VOl dt

Jo JIM
~rT r )

— (e, 0)? + el + (w, Vo, v)P v (1)my)  dOA"  dt
JO JBxS!
~T r )

= B((wt,vt>3+mtlt+(wt,Vvtvt>B+vt(lt)mt) o" dt
J J
T r T .

— (wt,l)t-l-Vvtvt)O”dt-i-j J-mt(lt-l-vt(lt))andt
JOo JB 0 B

for any w; € T4Diff;, (B) and m; € H*(B,IR). Hence,

T
0= —[ J(wtlvt + Vvtvt>0ndt; (53)
0 B

i.e. v is a solution to the Euler equation on the symplectomorphisms of (B,0), and I,
then solves

0 =1, +vi(ly). (5.4)

Theorem 5.3. For the standard product metric on M = B x SY Hamiltonian structure w,
generator R = dg of ker w and Riemannian volume form given by vol = dO Aw", the Euler
equations preserving R and w is given by Eqs. (5.3) and (5.4). For any initial condition
(vo,lg) € TiyDiff}, (B), H*(B,R), solutions exist for any time t € R and depend smoothly
on (vg,lp).

Proof. Using the results by Ebin [Ebil2] (see Section 2.5.2), we have long-time exis-
tence of solutions v; to the Euler equation on the symplectomorphism group of (B,0).
Their paper also includes smooth dependence of the solution v, on the initial condi-

: . R |
tion vg. Let v; denote the flow of v, i. e. v; satisfies —v; = v; o v;. Then

%(V;‘lt) = ;i + Lo 1) = (i + (1)) =0,
———
(554)0

hence I; o v; = v;l; = vyly = Iy and given the initial condition /;, we can solve [; =
lyo vt‘l. Then also I; depends smoothly on v and /. O
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5.3 Outlook: Euler equation on Diffy  ,(BxS 1), general bundle metric

Going back to a general metric, we have

(5.2)
<Wt:VV,Vt> = <Wt!vv,vt>+lt<Wt)vagvt>+lt<wtfvv,89>
+1H(W,,V3,90) + v, (1)(We, o)
= (wt,Vvtvt) + lt<wt)v99vt> +1; <wtlvvt do)

S —
:<wtlv{79 yt>

+ lt2 <wtlvag do) +vi(ly) (wy, dg)
———— ~—
=0 =p(wr)

+m(dg, Vo, ve) +1im (dg, Vi, ve) +1mi (g, Vy,dg)

S —

vy ((u) - -
+ 17m; (g, V,90) +v,(1;)m; (g, dg)
N — P —
—0 -1
= v(w,v)® + p(wy Vt( )+P‘ Wi Vt(P‘(Vt))
1
_Ewt<vt'vt> = p(v)we(p(v )
_<vtl[wt1vt]> _”{<vt> ([wtlvt])
+lt(vt(l"( )) ( (ve)) - ([Ut)wt]))
+ p(wy) +mtvt(ﬂ(vt))+vt(lt)mt~ (5.5)

\_/~:

Plugging Egs. (5.1) and (5.5) into the variation of the energy, we get
T .
0 == J‘ f <th Vt-f—VVth) VOl dt
BxS!

J LXS (Wi, 00 + (u(we) +my )(p(vy) + 1)
+ v(wy, vy)° +P1(Vt)vt(ﬂ( ))+,u(wt)vt(;4(vt))
~ 3w ) = (e wi(p ()

_<Ut1[wt'vt]>B_.”(vt)
+lt(vt(y(wt))—wt(,u(vt) —y([vt,wt]))
—I—ﬂ(wt)+mtvt(y(vt))—kvt(lt)mt)de/\w” dt
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T
= j J ((wtﬂ)OB +I4(wt)(ﬂ(77t) +Zt)
0 JBxS!
+ v wy,ve)® + V(Ut)vt(l"(wt)) + V(wt)vt(ﬂ(vt))
- %wt@tﬂ/t)B - V(Vt)wt(ﬂ(vt))
= (e, w, i)’ = () p([we, vy])
+lt(vt(]4(wt))—wt(y(vt ) ([ve, wy ))+pt wy )d@/\w” dt

J J mt vt +lt+vt( V¢ )"‘Vt )d9/\a) dt
BxS!1

:L JB (wtﬂ}t>B+I‘(wt)(V(77t)+it)
+Vt<wtﬂ’t>B+l‘(vt)vt(l/‘(wt>)+I‘(wt)vt(ﬂ(vt>)
_%wt<vtlvt>B_y(vt)wt(ﬂ(vt))
= (p, [we, vg]))’ = p(ve) p([wr, 1))
1y (v () = wi{u(w)) = v wi])) + elw) o dt

+LTLmt(/"(17t)+it+vt(y(vt))+vt(lt))an dt

for any w; and m;. Hence, v, € Diff;, (B) satisfies

T .
0= L L((wt'VﬁB + l"(wt)(ﬂ(vt) + lt)
+v(wy, )’ + y(vt)vt(,u(wt)) + I‘(wt)vt(l/‘(vt))
- %Wt@tﬂ/t)B - l‘(vt)wt(l/‘(vt)) (v, [wt,vt])B — () p([wr, ve])

+ lt(vt(ﬂ(wt)) - wt(pt(vt)) - I/‘([Vt»wt])) + y(wt))a" dt (5.6

for any w; € T,4Diff}, (B), which is an Euler-type equation on the symplectomorphisms
of (B,o0), and then, I, satisfies

I+ v (1) :_”‘(vt)_vt(ﬂ(vt))f (5.7)

which is an inhomogeneous linear PDE corresponding to the homogeneous equa-
tion (5.4).

Proposition 5.4. On a Hamiltonian manifold (M = B x S',w) with generator R = 9y
of ker w and Riemannian metric with volume form vol = dO A w", the Euler equations
preserving R and w are given by Eqs. (5.6) and (5.7). O

To prove that solutions exist for short times, one can try to follow the strategies
in [EM70] and this thesis, i. e. one can compute the orthogonal projections on each of
the tangent spaces T, Diff* (B x s — T, Diffy, , (B x S1) for any 1 € Diffy ,,(Bx s') and
determine whether these maps are smooth in the base point #.
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vol(M) for any
(not necessarily trivial) circle bundle S' — M — B. By Theorem 2.24, Diffy ,o1(M) C
Diff] (M) is a totally geodesic submanifold. In our case, it therefore remains to com-
vol(BxS") > T, Diffy, , (BxS!).

For the long-time existence of solutions, one can then use Egs. (5.6) and (5.7) to

By the results in Section 2.4, we have (local) geodesics on Diff]

pute the projections T, Diff},

estimate the H*-norms of V; = v, + [,dg.
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