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1 METHODOLOGIES
1.1 Ensemble Structure-Amplitude-Location (eSAL)

The ensemble Structure-Amplitude-Location (eSAL) analysis is conducted for an object-based spatial
verification of the simulated precipitation fields, obtained from the 16 WRF physics parameterization runs
in Northern sub-Saharan Africa (NSSA). This method compares the simulated ensemble, consisting of
ensemble members from different cumulus-, radiation-, and planetary boundary layer scheme runs, with
a reference field in terms of the amplitude A (the total precipitation of the domain), the location L (the
location of the center of mass of the total domain and the location of the centers of mass of individual
precipitation objects), and the structure S (the size, shape, or volume of the precipitation objects). The
description of the eSAL method closely follows Portele et al. (2021) in this Special Issue.

First, any contiguous grid cells of precipitation above a given threshold are defined as an object. The
threshold is calculated for each ensemble and reference data set separately, as R95 × f , with R95 being the
95th percentile of all non-zero grid cell values in the domain for the current time step. For the simulations,
R95
sim is defined by all non-zero grid cell values of all ensemble members. f is a threshold value considered

in the following calculations for S and L for daily values, given as:

f = max

(
1

15
,
0.01 mm

R95
sim

,
0.01 mm

R95
ref

)
. (S1)

f is set to 1/15, except that a threshold value below 0.01 mm is obtained (Radanovics et al., 2018). Note
that eSAL is only defined for non-zero precipitation fields and the different components of eSAL are all
functions of the time. eSAL is calculated over all (daily) time steps of the study period (2006–2010) and
eSAL values only exist if (i) the corresponding reference data is non-zero (i.e. precipitation exists in the
field at all) and (ii) at least one ensemble member also produced precipitation. For sake of simplicity the
time index is omitted in the following equations.

The ensemble amplitude error is defined as the relative difference of the ensemble mean (〈〉) of the
domain average precipitation (rr) in the simulation ensemble and the reference field:

eA =
〈rrsim〉 − rrref

0.5 (〈rrsim〉+ rrref)
. (S2)

eA ranges from −2 to 2, with perfect agreement for eA = 0, dry biases for eA < 0, and wet biases for
eA > 0. The ensemble structure error (eS) determines the relative difference of the ensemble mean (〈〉) of
the weighted averaged scaled precipitation volumes (V ) in the simulation ensemble and the reference field:

eS =
〈Vsim〉 − Vref

0.5 (〈Vsim〉+ Vref)
, (S3)

with

V =

∑
i

(
rri

rri
rrmax

i

)
∑
i
rri

. (S4)
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Here, rri is the precipitation amount of all contiguous grid cells in object i and rrmax
i the maximum grid

cell precipitation of this object. eS indicates if the ensemble is able to simulate the precipitation volumes.
Similar to eA, eS ranges from −2 to 2, with equally scaled volumes for eS = 0, too small or too peaked
simulated objects for eS < 0 and too large or too flat simulated objects for eS > 0.

The ensemble location error (eL) consists of two parts, relating to both the entire domain (eL1) and
individual objects (eL2):

eL = eL1 + eL2, (S5)

whereas eL1 is the relative distance of the ensemble mean (〈〉) centers of mass in the simulation ensemble,
and the reference field:

eL1 =
|〈x (rrsim)〉 − x (rrref) |

d
, (S6)

where d is the largest distance between two domain borders and x (rr) is the coordinate vector of the center
of mass of all precipitation in the domain. eL2 is finally specified as twice the squared distance between the
cumulative distribution functions P , i.e., the continuous ranked probability score (CRPS), of the relative
weighted average distances between the centers of mass of individual objects and the total center of mass
in the simulation ensemble and in the reference field:

eL2 = 2× CRPS
[
P
(rsim

d

)
, P
(rref

d

)]
, (S7)

with

r =

∑
i
rri|xi − x|∑
i
rri

, (S8)

and

CRPS (Psim, Pref) =

∞∫
−∞

[Psim(x)− Pref(x)]
2 dx. (S9)

Here, xi is the coordinate vector of the center of mass of precipitation in the object i. For the reference
field, the cumulative distribution function Pref is a step-function. Both L1 and L2 range between 0 and 1. A
value of L = 0 defines a perfect ensemble in terms of location. L = 2 would be found for total centers of
mass located at the opposite domain border (eL1 close to 1) and for contrarily organized objects, e.g., far
from each other in one field and close to each other in the other field (eL2 close to 1).
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1.2 Empirical Copula of T&P pairs
Sklar’s theorem (Sklar, 1959) states that any multivariate joint distribution F (x1, ..., xn) from independent

and identically distributed (iid) random variables x1, ..., xn can be written in terms of univariate marginal
distribution functions FXi

(xi) and a Copula function. Thus, the Copula expresses the dependence structure
between the variables and can be described with theoretical Copula functions (Cθ):

Fx1,...,Xn = Cθ(FX1(X1), ..., FXn(Xn)); Cθ : [0, 1]
n → [0, 1] (S10)

with the multivariate distribution F (x1, ..., xn), the theoretical Copula Cθ and the univariate marginals
FXi

(xi).

The multivariate PDF is then given through

f (x1, ..., xn) = c (fX1 (x1) , ..., fXn (xn)) · fX1 (x1) · ... · fXn (xn) (S11)

The dependency between two or more random variables is fully described by the Copula-PDF c and
independent from the univariate marginal distributions fX . In this study, however, we focus on the bivariate
case of P&T data only. We compare the dependence structure of the modelled data obtained by the 16
parameterization runs which is obtained by using the observation stations data across entire NSSA. It is
assumed that the observation stations represent well the entire modelling domain. The approach has already
been applied in a similar manner to evaluate the performance of parameterization runs for Kenya (Laux
et al., 2019). More detailed descriptions of the empirical Copula, also known as Deheuvels Copula, can be
found e.g. in Deheuvels (1983); Mao et al. (2015).

Let {r1(1), . . ., r1(n)} and {r2(1), . . ., r2(n)} denote the rank space values that are derived from the
fitted theoretical marginal distributions. Then the empirical Copula Cn is a rank based estimator of the
theoretical Copula Cθ:

Cn(u, v) = 1/n
n∑
t=1

1
(
r1(t)

n
6 u,

r2(t)

n
6 v

)
(S12)

with u = FX(x), v = FY (y) and 1(. . .) denoting the indicator function and n the sample size. Cn is a
discontinuous approximation of Cθ, to which it converges uniformly. Since it is completely non-parametric,
Cn can be considered to be the most objective approximation of the underlying true Copula Cθ (e.g. Genest
et al., 2009), which makes it a suitable candidate for GoF test statistics.
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2 DATA AVAILABILITY
The 16 WRF parameterization runs (2006–2010) are made available at the World Data Centre for
Climate (WDCC) of German Climate Computing Center (DKRZ) under the SaWaM project https:
//cera-www.dkrz.de/WDCC/ui/cerasearch/q?query=SaWaM to facilitate own evaluation
studies.

Table S1. Full factorial WRF parameterization combinations, consisting of two cumulus parameterization (CU), two microphysic parameterization (MP), two
planatery boundary layer parameterization (PBL), and two radiation parameterization (RA) schemes.

WRF ensemble member CU MP PBL RA Reference

run1 G3D + shallow WSM3 ACM2 RRTMG Laux (2021a)
run2 G3D + shallow WSM3 ACM2 RRTM + Dudhia Laux (2021b)
run3 G3D + shallow WSM3 YSU RRTMG Laux (2021c)
run4 G3D + shallow WSM3 YSU RRTM + Dudhia Laux (2021d)
run5 G3D + shallow WSM6 ACM2 RRTMG Laux (2021e)
run6 G3D + shallow WSM6 ACM2 RRTM + Dudhia Laux (2021f)
run7 G3D + shallow WSM6 YSU RRTMG Laux (2021g)
run8 G3D + shallow WSM6 YSU RRTM + Dudhia Laux (2021h)
run9 Tiedtke WSM3 ACM2 RRTMG Laux (2021i)
run10 Tiedtke WSM3 ACM2 RRTM + Dudhia Laux (2021j)
run11 Tiedtke WSM3 YSU RRTMG Laux (2021k)
run12 Tiedtke WSM3 YSU RRTM + Dudhia Laux (2021l)
run13 Tiedtke WSM6 ACM2 RRTMG Laux (2021m)
run14 Tiedtke WSM6 ACM2 RRTM + Dudhia Laux (2021n)
run15 Tiedtke WSM6 YSU RRTMG Laux (2021o)
run16 Tiedtke WSM6 YSU RRTM + Dudhia Laux (2021p)
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3 SUPPLEMENTARY FIGURES

Figure S1: Taylor diagrams, depicting the Pearson correlation coefficient (straight lines), the normalized
standard deviation (dashed lines) and the root-mean-square error (RMSE) (dotted lines) between simulated
JJA precipitation amounts of the 16 ensemble members and MSWEP (top) and CHIRPS (bottom) reference
data for the period 2006–2010.
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Figure S2: Taylor diagrams, depicting the Pearson correlation coefficient (straight lines), the normalized
standard deviation (dashed lines) and the root-mean-square error (RMSE) (dotted lines) between simulated
JJA temperature mean values of the 16 ensemble members CPC reference data for the period 2006–2010.
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Figure S3: Validation of the domain-averaged precipitation (amplitude, A), the structure (volume, S), and
the location (L) of precipitation objects for the ensembles (e), consisting of eight cumulus- (blue), radiation-
(orange), microphysics- (grey), and planetary boundary layer (magenta) parameterization runs, respectively,
for the period 2006–2010. The reference data is the MSWEP.

Frontiers 7



Supplementary Material

Figure S4: Same as for Figure S3, but using CHIRPS as reference data.
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